
1. INTRODUCTION 

Seismic hazard in mining is the probability of hazard 

events induced by mining-induced seismicity (Kornowski 

and Kurzeja, 2012), which have become one of the 

common risks in underground coal mining and their 

assessment is an important component of safety 

management. Such events often include rock bursts and 

gas outbursts (Li et al., 2007; Ding et al., 2016). With the 

buildup of these events, the distribution of seismic 

information, including space, time and energy, are usually 

seen to be clustering. To capture this clustering 

phenomenon, the subsurface microseismic monitoring is 

considered as a potentially powerful tool. The fractal 

analysis integrated with microseismic monitoring is 

recognised as a powerful approach towards quantification 

of the clustering properties. 

Since Mandelbrot (1982), who first introduced the use of 

fractals to describe geometric patterns in nature, it has 

been widely applied in crustal seismology and earthquake 

engineering to explain the regional seismicity clustering 

(e.g. Roy and Gupta, 2015 and references therein), 

demonstrating that fractal dimension based analysis is an 

effective method for studying seismic hazards. 

Xie and Pariseau (1993) were the first to adopt the fractal 

dimension to study the rock burst mechanism and 

evaluate associated seismic hazards in mining. They 

found that the spatial distribution of seismic events have 

a fractal clustering structure. The degree of this clustering 

increases with an approaching main rock burst event 

which corresponds to a decreasing fractal dimension. This 

is consistent with the conclusion of a decreasing fractal 

dimension being associated with the occurrence of a main 

earthquake in seismology. More recently, further analyses 

of fractal behaviour of seismic energy (Feng et al., 2016) 

and time fractal behaviour of seismic events (Yu et al., 

2018) confirmed that the distributions of seismic energy 

and event time also have a fractal structure, as well as the 

same conclusion that a decreasing fractal dimension is 

generally an indicator of an approaching rock burst. In 
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ABSTRACT: Seismic hazards have become one of the common risks in underground coal mining and their assessment is an 

important component of the safety management. In this study, a methodology, involving nine fractal dimension-based indices and a 

fuzzy comprehensive evaluation model, has been developed based on the processed real time microseismic data from an underground 

coal mine, which allows for a better and quantitative evaluation of the likelihood for the seismic hazards. In the fuzzy model, the 

membership function was built using a Gaussian shape and the weight of each index was determined using the performance metric 

F score derived from the confusion matrix. The assessment results were initially characterised as a probability belonging to each of 

four risk levels (none, weak, moderate and strong). The comprehensive result was then evaluated by integrating the maximum 

membership degree principle (MMDP) and the variable fuzzy pattern recognition (VFPR). The model parameters of this methodology 

were first calibrated using historical microseismic data over a period of seven months at Coal Mine Velenje in Slovenia, and then 

applied to analyse more recent microseismic monitoring data. The results indicate that the calibrated model was able to assess seismic 

hazards in the mine. 

 

 

 

 

 

 

 



these studies, only a single attribute, i.e. time, space and 

energy, of seismic information was considered, where the 

clustering properties were quantified using capacity 

dimensions. 

However, this quantification of seismic clustering of 

attributes remains at the level of qualitative trend analysis, 

which can only lead to an indication of such ‘abnormal 

values’, without the capability of identifying a certain 

time period or mining area that is susceptible to a seismic 

hazard. As Wesseloo (2018) suggested, seismic hazard 

should be assessed probabilistically, which could then 

allow one to quantitatively integrate hazard over space 

and time. In recent years, probabilistic seismic hazard 

assessment, knowledge-based and data-driven fuzzy 

modelling, and artificial intelligence methods have been 

used in a number of studies (e.g. Takuska-Wkgrzyn, 

2008; Sun et al., 2009; Kornowski and Kurzeja, 2012; 

Adoko et al., 2013; Wang et al., 2015; Cai et al., 2016; 

2018; Wesseloo, 2018; Afraei et al., 2018; 2019 and 

references therein). 

This paper presents a methodology developed to cover all 

three aspects of seismic information using real time 

microseismic monitoring data from an underground coal 

mine. The developed methodology involves a total of nine 

fractal dimension-based indices, including both capacity 

and information dimensions. The latter allows the 

integration of two or more aspects for an improved 

quantification of the seismic clustering properties. The 

methodology was then incorporated into the fuzzy 

comprehensive evaluation model developed in a previous 

study (Cai et al., 2018) for the probabilistic and 

comprehensive assessment of seismic hazards. The 

application of this methodology has been successfully 

demonstrated at Coal Mine Velenje in Slovenia. 

2. FRACTAL DIMENSION BASED INDICES 

USING MICROSEISMIC MONITORING 

DATABASE 

2.1. Fractal Dimension Definition 
The terms fractal and fractal dimension were coined by 

Mandelbrot in 1975. It is used to describe geometrical 

objects which are scale invariant, i.e. the part of an object 

is similar to the whole, referred to as self-similarity. It has 

also been used to characterise objects by quantifying their 

complexity through comparing how detail changes with 

the scale at which it is measured. These fractal objects 

have a power-law dependence on the scale and the power 

is the so-called fractal of Hausdorff dimension D. 

Consider an assembly of objects which are embedded in 

a hyper-volume in an E-dimensional Euclidean space 

with a maximal linear length L. The fractal dimension is 

usually calculated by covering the objects with hyper-

boxes of a linear length 𝜀  or a hyper-volume given by 

𝜀−𝐷𝐸  (𝜀 ≤ 𝐿; 𝐷𝐸 ≥ 𝐷 is the dimension of the Euclidean 

space where the objects are embedded), and counting the 

number 𝑁(𝜀) of boxes that contain objects: 

𝑁(𝜀) ∝ 𝜀−𝐷                                (1) 

where the symbol ∝ denotes proportionality. This scale 

rule is typical of conventional rules with respect to the 

Euclidean geometry and dimensions, which is illustrated 

in Fig. 1. It is quantified that D=1 for lines (1-dimensional 

objects having length only) because 𝑁(𝜀)=3 when 𝜀=1/3; 

D=2 for surfaces (2-dimensional objects having length 

and width); D=3 for volumes (3-dimensional objects 

having length, width and height); and a special case D=0 

for points (0-dimensional objects). When this changes for 

fractal sets, the non-integer dimension will have a value 

not equal to the space it resides in. 

 
Fig. 1. Traditional notions of the Euclidean geometry for 

defining scale and dimension.  

2.2. Capacity Dimension based Indices 
Depending on the characteristics of microseismic data, 

there are three kinds of calculation scales for the capacity 

dimension (D0) to be defined in space (DS0), time (DT0) 

and energy (DE0). Following Eq. (1), the three scale values 

of D0 can be obtained by performing a regression analysis 

of the plot 𝑙𝑜𝑔𝑁(𝜀) vs 𝑙𝑜𝑔(𝜀).  

𝐷0 = − lim
𝜀→0

𝑙𝑜𝑔𝑁(𝜀)

log(𝜀)
                           (2) 

In this study, the box-counting method was adopted to 

estimate 𝑁(𝜀)  corresponding to the three scales. The 

study areas are first discretised into small 2D boxes of ε 

in space length (Fig. 2 (a)), 1D line segments of ε in time 

axis length (Fig. 2 (b)), and 1D line segments of ε in 

energy axis length (Fig. 2 (c)), respectively. Then a group 

of data set (𝜀, 𝑁(𝜀)) is generated through changing the 

length 𝜀 , where 𝑁(𝜀)  is the smallest number of 

hypothetical boxes which can cover all seismic events, as 

shade boxes displayed in the figures. 

2.3. Information Dimension based Indices 
Capacity dimension D0 mentioned above does not 

consider the specific information about the number of 

seismic events or the amount of seismic energy in each 



box, and thereby the capacity dimension D0 might not be 

the best way to fully extract information of 

microseismicity in a statistical sense, even though it has 

been applied for seismic hazards assessment utilising 

microseismic data. In this context, further statistical 

extraction should be considered with the assistance of the 

information dimension D1, which is based on the 

normalised probabilities 𝑃𝑖(𝜀) for measure in the ith box 

and defined as: 

 
Fig. 2. Box-counting method for estimating fractal dimension 

in the (a) space scale, (b) time scale, and (c) energy scale of 

microseismic events. Filled circles indicate seismic events and 

different colours represent different magnitudes. 

𝑃𝑖(𝜀) =
𝑚𝑖

∑ 𝑚𝑖
𝑁(𝜀)
𝑖=1

                             (3) 

𝐼1(𝜀) = ∑ {𝑃𝑖(𝜀) ∙ 𝑙𝑜𝑔[𝑃𝑖(𝜀)]}
𝑁(𝜀)
𝑖=1               (4) 

𝐷1 = − lim
𝜀→0

𝐼1(𝜀)

𝑙𝑜𝑔𝜀
= − lim

𝜀→0

∑ {𝑃𝑖(𝜀)∙𝑙𝑜𝑔[𝑃𝑖(𝜀)]}
𝑁(𝜀)
𝑖=1

𝑙𝑜𝑔𝜀
    (5) 

where 𝐼1(𝜀) is the Shannon entropy, 𝑚𝑖 is the number of 

seismic events or the amount of seismic energy in the ith 

box, and ∑ 𝑚𝑖
𝑁(𝜀)
𝑖=1  is the total number of seismic events or 

the total amount of seismic energy. Accordingly, these 

information dimensions are named as D1-N and D1-E, 

respectively. Specifically, the information dimensions, in 

terms of different time-space-energy scales with box-

counting measures, are further divided into DS1-N and DS1-

E in space scale, DT1-N and DT1-E in time scale, and DE1-N 

and DE1-E in energy scale.  

In this study, capacity and information dimension based 

indices were both selected as inputs, although the 

information dimensions will be more effective than mere 

extraction of capacity dimension for the assessment of 

seismic hazards. They include three capacity dimension 

indices (DS0, DT0 and DE0) and six information dimension 

indices (DS1-N, DS1-E, DT1-N, DT1-E, DE1-N and DE1-E). 

3. A FRACTAL-FUZZY EVALUATION 

METHODOLOGY FOR SEISMIC HAZARDS 

ASSESSMENT 

Based on the fuzzy comprehensive evaluation model 

developed in a previous study (Cai et al., 2018), a 

fractal-fuzzy evaluation model for seismic hazards 

assessment was developed using the fractal dimension 

based indices as inputs, which includes three key sections 

to determine: the membership function for each fractal 

dimension based index, the weight for each index, and the 

probabilistic and comprehensive assessment for seismic 

hazards. More specifically, there are six key steps as 

illustrated in Fig. 3 and summarised below: 

 

Fig. 3. Framework of the fractal-fuzzy evaluation methodology 

for seismic hazards assessment using microseismic data. 

 Build the factor set 𝐖 = {𝐷T0, 𝐷T1−N, 𝐷T1−E, 𝐷S0, 
𝐷S1−N, 𝐷S1−E, 𝐷E0, 𝐷E1−N, 𝐷E1−E}. 

 Build the alternative set 𝐕 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} =
{none,weak,moderate, strong}. 

 Build the single-factor evaluation matrix R (see Eq. 

(6), here q=9) using a Gaussian membership 

function. The component rij in this matrix R means 

the membership degree of the ith factor to the jth 

alternative subset. 

𝐑 = [

𝑟11 𝑟12 𝑟13 𝑟14
𝑟21 𝑟22 𝑟23 𝑟24
… … … …
𝑟𝑞1 𝑟𝑞2 𝑟𝑞3 𝑟𝑞4

]                      (6) 

 Determine the weight set 𝐀 = {𝑎1, 𝑎2, … , 𝑎9} using 

the performance metric F score derived from the 

confusion matrix. 

 Determine the probabilistic assessment for each 

risk level 𝐁 = 𝐀 ∙ 𝐑 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}. 

 Locate the comprehensive assessment combining 

with the maximum membership degree principle 

(MMDP) and the variable fuzzy pattern recognition 

(VFPR). 

3.1. Membership Function of each Fractal 

Dimension based Index 
Microfracturing and associated dynamic instability in 

rocks can occur at different scales (Scholz, 1968; Alber et 

al., 2009; Amitrano, 2012; Qian, 2014; Cheng et al., 

2017), e.g., acoustic emission (AE) from coal/rock 

specimen failure in the laboratory, microseismicity from 

rock bursts in the underground mines, and seismicity 

corresponding to the landslide and earthquake in the 
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Information dimension DT1-E
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Information dimension DS1-E
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Moderate v3: b3 %; Strong v4: b4 %]

Gaussian
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Weight matrix A
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MMDP model:𝑣𝑗 |𝑏𝒋 → max 𝑏𝒋   𝑐 ≥ 0.5

VFPR model: (𝑏𝑗 ∙ 𝑣𝑗 ) / 𝑏𝑗  𝑐 < 0.5

 



crustal field. Therefore, AE measurements during 

laboratory tests of coal samples to failure can provide a 

useful guidance on the determination of microseismicity 

indicators for seismic hazards assessment.  

Based on the curves of stress and AE performances verse 

strain created from the loading test of a typical coal 

sample, as displayed in Fig. 4, five phases are observed: 

compaction (OA), elastic deformation (AB), stable 

microcrack growth (BC), unstable microcrack 

propagation and macro-fracture formation (CD), and 

post-failure (DE). During the stable phase BC, AE events 

increase significantly, as well as the associated fractal 

indices. After approaching the point C, the fractal 

dimensions first decrease for a while and then increase to 

the high value again, and finally drop dramatically until 

the failure (point D) occurs. It should be noted that this 

same evolution can be also obtained from the information 

dimension indices, although only the capacity dimensions 

are presented here. In this context, it can be concluded that 

the macro-fractures are formed by joining of microcracks 

and then cause the final failure. In response to this process 

from microcrack growth and propagation to macro-

fracture formation (around C) and finally to the failure 

occurrence (around D), there will be a precursor within 

low value anomaly in fractal dimension indices calculated 

on the basis of AE monitoring data. Therefore, this 

precursor can be used for the failure assessment. 

Accordingly, an anomaly index A𝐷 , which is based on 

fractal dimensions for categorising seismic hazard levels, 

can be defined by referring to the definition of b-value 

anomaly (Mutke et al., 2016): 

A𝐷 =
𝐷𝑏−𝐷

𝐷𝑏
                             (7) 

where D is the fractal dimension index, calculated in a 

given time window, and 𝐷𝑏  is the background value of D, 

determined using the entire catalog of seismic events 

previously recorded during coal mining. 

 

Fig. 4. Evolution of fractal dimensions on AE performances in 

response to a coal sample under loading to failure. 

Building upon Eq. (7), four risk levels (none, weak, 

moderate and strong) are suggested in this work to 

categorise seismic hazards, which correspond to the 

anomaly index value ranges (0 to 0.25, 0.25 to 0.50, 0.50 

to 0.75, and 0.75 to 1).These four levels constitute the 

alternative set 𝐕 = {none,weak,moderate, strong}  in 

the fuzzy set theory. On this basis, a Gaussian shape 

membership function is built as displayed in Fig. 5: 

 

Fig. 5. Gaussian shape membership function based on the 

anomaly index AD for categorising seismic hazard levels. 

3.2. Weighting of each Fractal Dimension based 

Index 
Seismic hazards assessment can be considered as a two-

class prediction problem (Li and Jimenez, 2018), so that 

there are four possible situations, which constitute the 

confusion matrix (Fawcett, 2006): 

 True positive (TP): the actual condition (hazard 

forms) and the prediction are both positive. 

 False negative (FN): the actual condition (hazard 

forms) is positive but the prediction is negative. 

 True Negative (TN): the actual condition (no 

hazard forms) and the prediction are both negative. 

 False Positive (FP): the actual condition (no hazard 

forms) is negative but the prediction is positive. 

Based on these four situations, the F score was adopted in 

this study to evaluate the assessment accuracy of each 

fractal dimension index for seismic hazards. It is defined 

as (Fawcett, 2006): 

𝐹 =
2∙TP

2∙TP+FN+FP
                            (8) 

In calculation, the risk levels (weak, moderate and strong) 

need to be considered to classify each index in assessing 

potential seismic hazards, respectively, and their values of 

F score are signified as FW, FM and FS accordingly. The 

overall assessment score is calculated by assigning 

different weightings to the individual F values 

corresponding to different risk levels: 
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𝐹𝑖 o =
0.75∙𝐹S+0.50∙𝐹M+0.25∙𝐹W

0.75+0.50+0.25
              (9) 

The weight of each index can then be calculated by the 

following normalisation: 

𝑎𝑖 =
𝐹𝑖com

∑𝐹𝑖com
                             (10) 

3.3. Probabilistic and Comprehensive Assessment 

of Seismic Hazards 
As illustrated in Fig. 3, the probabilistic assessment for 

the degree of each hazard level can be determined by 

B=A∙R=｛None v1: b1%; Weak v2: b2%; Moderate v3: 

b3%; Strong v4: b4%｝. 

With respect to the comprehensive assessment of seismic 

hazards, the commonly-used method MMDP considers 

the maximum membership degree only, which may often 

make the evaluation result to be uncertain and even fail 

under some special circumstances, since it ignores the 

information of other membership degrees. In the current 

application, an index    is defined to check the validity of 

MMDP: 

  =
𝑛𝑉∙𝐵max−1

2∙𝐵second(𝑛𝑉−1)
                      (11) 

where   =4 is the number of the alternative subsets in the 

set V.     = max{𝑏𝑖} .     o  = max𝑗≠𝑖 𝑏𝑗 . This 

index is often applied as: 

 When 𝑽𝒄 = +∞, MMDP is completely valid. 

 When  ≤   < +∞, MMDP is very valid. 

 When 0.5 ≤   <  , MMDP is valid. 

 When 0 <   < 0.5, MMDP is invalid. 

 When   = 0, MMDP is completely invalid. 

On this basis, the results of MMDP are accepted only for 

the valid cases. For the rest of invalid cases, the level 

characteristic value derived from VFPR model is adopted 

to evaluate the comprehensive result. Therefore, the 

combination model MMDP-VFPR is established as: 

 i    = {
MMDP model: 𝑣𝑗|𝑏𝒋 → max 𝑏𝒋    ≥ 0.5

VFPR model: ∑(𝑏𝑗 ∙ 𝑣𝑗) / ∑ 𝑏𝑗   < 0.5
   (12) 

where j=1, 2, 3, 4. v1=0.125, v2=0.375, v3=0.625 and 

v4=0.875 in the set V were designed for numeralisation, 

in line with the four hazard levels, which correspond to 

the index value ranges (0 to 0.25, 0.25 to 0.50, 0.50 to 

0.75, and 0.75 to 1). 

4. FRACTAL-FUZZY EVALUATION MODEL 

CALIBRATION AND APPLICATION AT COAL 

MINE VELENJE 

4.1. Field Site and Microseismic Monitoring 
Located in Slovenia, Coal Mine Velenje currently 

produces around 3.4 million tonnes of lignite per annum 

from a lens-shaped deposit, which is up to 165 m thick at 

the centre and pinches out towards the margins (Fig. 6). 

Depth of the seam varies from 200 to 500 m. The mining 

method used at Coal Mine Velenje is a combination of 

multi-level mining and longwall top coal caving (LTCC), 

developed over the decades as the most effective method 

due to extreme seam thickness, depth and prevailing 

geotechnical conditions. From the top to the bottom, the 

entire coal deposit is divided into a series of mining levels 

ranging from 10 to 20 m thick, mined in time-sequence 

with at least six months between the mining of each 

underlying longwall panel. At each level, the lower part 

of the panel, which is 3 to 4 metres high, is cut by a shearer 

under the hydraulic supports while the upper section is 

allowed to cave and be recovered in front of the supports. 

 
Fig. 6. Schematic SW–NE trending geological cross-section of 

the Velenje lignite deposit (after Markič and Sachsenhofer, 

2010). 

Rock bursts and coal/gas outbursts have affected coal 

production at Coal Mine Velenje since the early days of 

mine production. Rock burst potential is mostly a concern 

during development in large coal blocks at the mine. To 

address this risk, a 32-channel flameproof automated 

seismic observation system (SOS) developed by the 

Laboratory of Mining Geophysics of Central Mining 

Institute (GIG) in Poland was used for real time 

microseismic monitoring at the mine. For further details 

of the monitoring systems used, please refer to Si et al. 

(2015). Microseismic data recorded were collected 

automatically and transferred to surface data loggers, and 

then processed to obtain source parameters and event 

locations. An example of the spatial distribution of two 

months’ recorded microseismic events and the layout of 

microseismic sensors installed at Coal Mine Velenje are 

displayed in Fig. 7. 

The microseismic monitoring campaign targeted LTCC 

panels operating at -80 m and -95 m production levels 

from 2016 onwards. Longwall panels K.-80/B, K.-80/C, 

K.-80/D, K.-80/E, and CD2 were scheduled to mine 

during 2016-18 with longwall panels K.-95/A, K.-95/E, 

K.-95/D and CD3G coming into production during 2018-

19 as the -80 m level is being mined-out. It was also 

recognised that a relatively high stress concentration on 

areas around the central coal pillar, which protects the 

main infrastructure in the production district, could 

increase the risk of seismic hazards in this region 

considerably, particularly during the development of 

longwall headings. 
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Fig. 7. Longwall layout at -80 and -95 m production levels, 

production schedule, microseismic sensors installed and the 

spatial distribution of seismic events occurred during the period 

18/02/2018 to 18/04/2018 when longwall panel K.-95/D 

gateroad was being driven at Coal Mine Velenje. 

4.2. Model Calibration 
During the monitoring period from 01/03/2017 to 

01/10/2017, longwall panel K.-80/C was being mined and 

induced microseismicity mostly clustered in the vicinity 

and ahead of the advancing longwall face, which makes 

them to be easily distinguished from other mining 

activities and thereby to be an appropriate site for the 

model calibration and its input parameters (weight and 

background value of each index) determination. Over this 

period, there were 3,586 microseismic events recorded 

(see Fig. 8). To calibrate the model, nine fractal 

dimension based indices (DT0, DT1-N, DT1-E, DS0, DS1-N, 

DS1-E, DE0, DE1-N and DE1-E) for the whole period were first 

computed and plotted (Fig. 9). It was found that the 

correlation coefficients were close to 0.99. This means 

that the distributions of microseismic events in time, 

space and energy scales follow a fractal set and the box-

counting algorithm adopted in this study is valid. 

As illustrated in Fig. 9, the fractal dimensions can be 

determined through fitting the distribution based on the 

regression analysis. The values (DT0=0.9033, DT1-

N=0.8732, DT1-E=0.7691, DS0=1.4470, DS1-N=1.8073, DS1-

E=1.5797, DE0=0.9039, DE1-N=0.9723 and DE1-E=0.9196) 

were considered as the background values (𝐷𝑏) of fractal 

dimensions for seismic hazards assessment over the 

coming mining period. 

 

Fig. 8. Spatial distribution of microseismic events during LW 

K.-80/C mining over the period in 01/03/2017-01/10/2017. 
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Fig. 9. Calibration of the fractal dimension based indices using 

historical microseismic data over the mining period of longwall 

panel K.-80/C between 01/03/2017 and 01/10/2017. 

In order to determine the weighting of each fractal index, 

the time-sequence curves of fractal indices were first 

plotted using a time sliding window of ten days and a time 

sliding step of one day, as an example of DS1-E displayed 

in Fig. 10. For further details of the calculation process of 

the time sliding method, please refer to Cai et al. (2018). 

The figure shows that most of the strong seismic events 

occurred when the fractal index decreased dramatically 

and then reached to the low value, which agrees well with 

the fractal dimensions evolution of tested coal sample 

under loading to the failure (see Fig. 4). It should be noted 

that the seismic hazard level will be higher as the energy 

of seismic event is larger. This also means that the seismic 

hazard will be more likely to occur. 

 

Fig. 10. An example time-sequence of fractal index DS1-E. 

Subsequently, the time-sequence values of each fractal 

index were converted into anomaly index values using 

Eq. (7). Based on this anomaly index, the F score value of 

each fractal index was then computed using Eq. (8). After 

obtaining the F score values of all fractal indices, the 

weighting of each fractal index was finally calculated 

using Eqs. (9) and (10), as summarised in Table 1. It 

should be noted that the basis here for judging whether an 

assessment is accurate or not is to check whether or not a 

strong seismic event occurs with the following three days 

(this time length can be adjusted based on filed-specific 

conditions) after indices exceed corresponding critical 

hazards levels (weak, moderate and strong). If the seismic 

hazard occurs, it is defined as true positive; otherwise, it 

is false positive. It can be found from Table 1 that DS1-E 

and DE1-E have a good performance for the assessment of 

seismic hazards, but others (DT1-E, DS0 and DS1-N) have not 

or even some of them (DT0, DT1-N, DE0 and DE1-N) yield in 

invalid for this case. 

Table 1. F score value and weight of each fractal index. 

Fractal index F score Weighting 

DT0 0.0000 0.0000 

DT1-N 0.0000 0.0000 

DT1-E 0.0321 0.1192 

DS0 0.0134 0.0497 

DS1-N 0.0158 0.0586 

DS1-E 0.1040 0.3860 

DE0 0.0000 0.0000 

DE1-N 0.0000 0.0000 

DE1-E 0.1041 0.3864 

4.3. Model Validation 
As mentioned in Section 4.1 and confirmed through 

numerical modelling, longwall gateroad developments in 

zones of high stress concentration in a new production 

level (such as moving from level -80 m to -95 m level) 

often face high risk of seismic hazards. Fig. 11 presents 

one such stress analysis carried out in FLAC3D to establish 

the peak stress zone ahead of gateroad development for 

longwall panel K.-95/D, which was being driven below 

the mined-out panel K.-80/D. 

Numerical modelling has clearly shown that driving a 

heading through the stress abutment zone within the 

central pillar poses a seismic hazard. As shown in Fig. 7, 

during the period when longwall panel K.-95/D gateroad 

was being driven, a spatial clustering (marked with a 

rectangle) of the events around the region where the 

gateroad was located can be easily identified. Fig. 12 

presents the results of a risk assessment study performed 

using the spatially smoothed seismicity model (Frankel. 

1995; Cai et al., 2015) based on the number of seismic 

events per m2 in the study area. This aimed at identifying 

potential seismic hazard zones during the period 

18/02/2018 to 18/04/2018. It was observed that three 

potential seismic hazard zones were close to the central 

pillarand located over/under the barrier pillars of the 

longwall panels K.-80/E, K.-80/D and K.-80/C. 
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Fig. 11. (a) 3D model geometry and geological representation 

of the area around longwall panel K.-80/D and stress 

distribution (b) before and (c) after the longwall K.-95/D 

gateroad is developed. 

Fig.13 presents risk analysis based on temporal evolution 

of fractal dimension based indices due mainly to driving 

the gateroad heading for longwall panel K.-95/D. The 

figure illustrates that there are two periods of dramatic 

drop to a low value and then an initial increase, suggesting 

potential seismic hazards. By further processing of these 

fractal indices utilising the fractal-fuzzy model, a 

probabilistic assessment for each seismic hazard level and 

its comprehensive assessment can be achieved (Fig.14). 

The figure demonstrates a quantitative analysis for the 

assessment of seismic hazard risk. Such analysis can be 

conducted on a daily basis and help plan safety measures. 

 

 

Fig. 12. Hazard assessment based on the density distribution of 

seismic events recorded in the period 18/02/2018 to 

18/04/2018. 

 

Fig. 13. Sequential evolution of fractal indices. 

 

Fig. 14. Probabilistic and comprehensive assessment of seismic 

hazards. 
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5. CONCLUSIONS 

A methodology for seismic hazards assessment, involving 

fractal dimension-based indices and fuzzy comprehensive 

evaluation model, has been developed based on the 

processed real time microseismic data from an 

underground coal mine, which allows for a better and 

quantitative assessment of the likelihood for seismic 

hazards on a daily basis. 

In this methodology, the fractal dimension-based indices 

used include nine indices in total, from capacity and 

information dimensions. The membership function in the 

fuzzy model was built using a Gaussian distribution. The 

weighting of each index was determined using the 

performance metric F score derived from the confusion 

matrix. The assessment results were initially 

characterised as a probability belonging to each of four 

risk levels, and on this basis the comprehensive result was 

then achieved by integrating the maximum membership 

degree principle (MMDP) and the variable fuzzy pattern 

recognition (VFPR). The application of this methodology 

has been successfully demonstrated at Coal Mine Velenje. 
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