
Flint for Safer Smart Contracts

Franklin Schrans2, Daniel Hails1, Alexander Harkness1, Sophia Drossopoulou1,
and Susan Eisenbach1

1 Imperial College London, London SW7 2AZ, UK
{susan, sd}@ic.ac.uk

2 Franklin Schrans’s contributed while a student at Imperial College.
fr@nklinschrans.com

Abstract. The Ethereum blockchain platform supports the execution
of decentralised applications or smart contracts. These typically hold
and transfer digital currency to other parties on the platform; however,
they have been subject to numerous attacks due to the unintentional
introduction of bugs. Over a billion dollars worth of currency has been
stolen since its release in July 2015. As smart contracts cannot be up-
dated after deployment, it is imperative that the programming language
supports the development of robust contracts.
We propose Flint, a new statically-typed programming language specifi-
cally designed for writing robust smart contracts. Flint’s features enforce
the writing of safe and predictable code. To encourage good practices, we
introduce protection blocks. Protection blocks restrict who can run code
and when (using typestate) it can be executed. To prevent vulnerabilities
relating to the unintentional loss of currency, Flint Asset traits provide
safe atomic operations, ensuring the state of contracts is always consis-
tent. Writes to state are restricted, simplifying reasoning about smart
contracts.

Keywords: smart contracts · Flint programming language design

1 Introduction

The Ethereum Virtual Machine[45,7] (EVM) is an open network supporting de-
centralised execution of programs, known as smart contracts. The EVM is similar
to a stateful web service, but instead of being executed by computers controlled
by an organisation it is deployed to its nodes (or miners). Smart contracts are
held in an append-only data structure a blockchain composed of blocks, allow-
ing miners to maintain a consistent view of the network’s state. Cryptographic
schemes ensure old blocks cannot be modified. Miners select which transaction
to process from their transaction pool.

Users can interact with a smart contract by calling the functions it exposes.
Function calls are executed by miners, which maintain the state of each smart
contract and are paid for processing transactions. Ethereum users and smart
contracts can exchange a digital currency known as Ether whose smallest de-
nomination is the Wei (10−18 Ether). Users also use Ether to purchase gas,
required to pay for computational costs when executing transactions.

ar
X

iv
:1

90
4.

06
53

4v
1

 [
cs

.P
L

]
 1

3
A

pr
 2

01
9

2 F. Schrans et al.

Smart contracts implement self-managed agreements, enforced autonomously.
The source code of a smart contract is available, and cannot be changed after
deployment. Individuals who interact with smart contracts trust the correct ex-
ecution of the code rather than reprogrammable machines controlled by a single
authority. Smart contracts have been used to implement auctions, votes[19], and
sub-currencies[33] for crowdfunding purposes. Voters do not have to place their
trust in the integrity of an electoral organisation when the votes are counted
using a smart contract.

Not being able to update a smart contract’s code after deployment requires
it to be bug free. Attackers have found vulnerabilities in smart contracts allow-
ing the redirection of Ether funds to their personal Ethereum account. Attacks
against TheDAO[8] and the Multi-sig Wallet smart contracts[37,36] have accu-
mulated losses of over a billion dollars worth of Ether.

The primary programming language used to write smart contracts, Solid-
ity [19], is expressive and introduces features designed for smart contract pro-
gramming. However, Solidity supports a variety of unsafe patterns[4] which
makes it difficult for analysis tools[32,11] and programmers to find all vulnerabili-
ties. Solidity has few built-in security mechanisms and even worse, vulnerabilities
are easily introduced because of simple programming mistakes, such as forget-
ting a modifier. Others are harder to notice, such as implicit integer overflows,
or discarding the return value of sensitive functions.

For traditional problems, languages such as Java[34], Haskell[30], Swift[3],
Rust[40], and Pony[9] leverage years of research in programming languages to
prevent the writing of unsafe code. In contrast, multiple programming languages[19,16,43,22,18]
for writing smart contracts, including Solidity, have attempted to mimic lan-
guages such as JavaScript[25] and Python[39], without providing additional
safety mechanisms for Ethereum’s unique programming model.

Smart contracts introduce new challenges, which we address in our statically-
typed programming language Flint3, specifically designed for writing smart con-
tracts. By identifying challenges and learning from past vulnerabilities, Flint’s
features facilitate the development of robust code, and make it more difficult and
unnatural to write vulnerable contracts. We highlight the features that should
aid in the development of robust code:

1. Protection Blocks: Smart contracts often carry out sensitive operations
which need to be protected from unauthorised calls. A call can be unautho-
rised because the caller shouldn’t be allowed to make the call or because
(using typestate[14]) the contract isn’t a valid state to be executed (e.g. until
you join a club you cannot participate in its activities). Flint requires pro-
grammers to systematically think about which Ethereum users are allowed
to call a smart contract’s functions, and what state the contract has to be
in, before defining it.

2. Assets: Flint supports special operations for handling Assets such as Wei in
smart contracts. Transfer operations are performed atomically, and ensure

3 Flint was made open source on GitHub[27] in April 2018 under the MIT license.

Flint for Safer Smart Contracts 3

that the state of a contract is always consistent. In particular, Assets in
Flint cannot be accidentally created, duplicated, or destroyed, but they can
be atomically split, merged, and transferred to other Asset variables. Using
Asset types avoids a class of vulnerabilities in which smart contracts’ internal
state does not accurately represent their true Wei balance.

3. Wei is an asset: In Solidity, Wei values are represented as integers rather
than a dedicated type, allowing accidental conversions between numbers and
currency. This can lead to inconsistent states, in which the actual balance
of the smart contract is incorrect.

4. Static typing: Given that contracts cannot be corrected, type errors need
to be found before contracts are released.

5. Modifiers: Flint’s code is by default private and immutable. A programmer
has to explicitly override either of these defaults. It is a compiler error to
declare something mutable that isn’t changed by the contract.

6. Safe Arithmetic: Integer overflow causes an exception and contract exe-
cution to terminate. There are also cyclic versions of the operators, but a
programmer would have to use these special operators explicitly.

7. Loops are finite: The only loop construct is a for-in loop which is used to
iterate over arrays, dictionaries and ranges.

8. Initialisers: Contracts and structs must define public initialisers, and all
state properties will be initialised during their execution.

9. Limited Fallback Functions: Fallback functions cannot change any state.
Default fallback functions rollback the contract.

As recommended by the Ethereum Foundation, we implemented a compiler
for Flint which produces EVM bytecode via Solidity’s intermediate representa-
tion Yul[17,20]. To fit into the existing Ethereum ecosystem, we use the Solidity
Application Binary Interface (ABI) and leverage Ethereum’s existing crypto-
graphic schemes to use Ethereum user addresses to protect from rogue callers.
Our novel protection system enables static checks on internal calls and runtime
checks on external calls.

To evaluate Flint, we translated existing smart contracts and showed the
resulting code to be more concise. To assess safety, we ran analysis tools on
the bytecode produced and show that a certain class of vulnerabilities cannot
be reproduced in Flint. We also assessed the performance of our main safety
features.

2 Solidity: Current State of Play

Solidity [19] is statically-typed and imperative. With syntax inspired by JavaScript,
Solidity provides a rich set of constructs and it is this expressivity that is visible
in many of the bugs. Avoiding the vulnerabilities that have been exposed by the
flawed contracts is critical in the design of Flint.

A Solidity contract is similar to an object-oriented class, which can inherit
functionality from other classes. Solidity provides integers, addresses, fixed-size

4 F. Schrans et al.

arrays, dynamic arrays, and dictionaries (mapping). It is also possible for pro-
grammers to define their own types (struct) and their own interfaces. A contract
contains storage fields, event declarations, and function declarations.

Function modifiers such as require can be used to check preconditions before
entering a function’s body. If they fail, execution of the contract stops, and the
sender receives an exception. Modifiers may mutate the contract’s state.

Functions return a specified number of values. A function’s signature can
contain attributes to specify how they are allowed to access the contract’s state,
and their visibility. Functions declared without visibility modifiers are implicitly
public.

Contracts can define an unnamed fallback function. When an account calls a
function of a contract which has not been defined, the fallback function is called.
Calls can be delegated in which case mutation of state in the target function call
is performed in the caller ’s storage. So programmers who mistype a function’s
name may unintentionally end up updating state in the wrong storage space.

2.1 Attacks Against Solidity Contracts

The design of the Solidity language itself has contributed to it being vulnerable
to attack.[44] “Solidity was introducing security flaws into contracts that were
not only missed by the community, but missed by the designers of the language
themselves.”[8] One problem is unintuitive semantics [12] of the call method:
“you cannot assume anything about the state of your contract after the external
call is executed.” We highlight problems with example vulnerable contracts[4]:

1. Call Re-entrancy: TheDAO Attack. The attack on TheDAO was possible
because Solidity does not have a way to make transfer of Ether and internal
bookkeeping atomic, and because function calls are synchronous – thus a
function which calls another contract may be re-entered before terminating.
In its refund function, TheDAO contract sends Ether to a client, and then
does the corresponding internal bookkeeping. A malicious client re-enters
refund as soon as it receives the Ether, and thus Ether is repeatedly sent,
the bookkeeping is not performed, and the process is repeated until refund
runs out of gas or the contract runs out of Ether.

2. Visibility Modifiers: the First Parity Multi-sig Wallet Hack. At the time of
the attack, Solidity initialisers could be called anywhere any number of times.
The confusing semantics of delegation and fallback functions means that
external contracts can update state not intended by the contract developer.
Parity accounts control a common wallet. An attacker exploited the wallet to
steal over $80 million [37]. The library code Parity provided was written as a
contract and users creating their own wallet contract, could delegate all the
functions to the library instance. There is an initialising function to set the
owner of a wallet that should only be called in the constructor that sets up
a new wallet. Unfortunately, due to the semantics of delegation and fallback
functions, the caller can call an initialiser at any time and set themselves as
the owner of the entire Parity contract.

Flint for Safer Smart Contracts 5

3. Contract as a Library: the Second Parity Multi-sig Wallet Hack. At the
time of the attack, Solidity libraries were just contracts so they could have
updateable state. A second problem was that initialisers do not have to be
called. The previous Parity Multi-sig contract was affected by another at-
tack, which caused the loss of approximately $260 million. The initialisation
function now did have a modifier (only_uninitialised). The assumption
from the developers was that their WalletLibrary would only be interacted
with through delegate calls (mutating the caller’s state rather than the li-
brary’s state). However, WalletLibrary, which was just an ordinary contract,
didn’t actually call the initialisation function, so an attacker was able to call
the initialiser, set the owner to itself and then terminate the contract. All
of the other wallets delegating their calls to WalletLibrary were frozen: the
instance of WalletLibrary they were delegating was destroyed. There were
two problems: the first was that an initialiser did not have to be called at
all, and the second was that a user was able to modify the state of a smart
contract which was only meant to be used as a stateless library.

4. Unchecked Calls: King of the Ether Throne. Solidity does not require
return values to be checked. This contract keeps track of a current king.
An account needs to pay more than the king paid in order to dethrone him
and when a king is dethroned, he gets sent his stake back. This will not
happen if the contract runs out of gas and the boolean indicating whether
the transaction was successful is not checked. When an out of gas exception
occurs, the Ether is returned to the caller and as the king is not the caller
he doesn’t get his Ether back.

5. Arithmetic Overflows: Proof of Weak Hands Coin. Arithmetic operators
have wrap-around semantics. This contract implements a currency. About
$476K was lost due to an arithmetic overflow following an addition.

The attacks can mostly be attributed to a mix of human error and unintuitive
language semantics. Understanding the pitfalls that some Solidity programs have
fallen into, was the starting point of the design of Flint. We now discuss how
Flint makes the development of vulnerable contracts harder to write accidentally.

1. Call Reentrancy: TheDAO Attack. Flint uses an @payable function anno-
tation, for currency transfer. @payable requires a Wei value rather than an
integer. Wei is transferred atomically so there could not be a transfer before
updating the contract’s bookkeeping. Also there is limited re-entrancy, and
our fallback functions cannot update state.

2. Visibility Modifiers: the First Parity Multi-sig Wallet Hack. Flint requires
initialisers which have to initialise all state and which get called exactly once
and that is before use. A caller could overwrite these values, if the contract
developer made them visible, but the default is everything is private and
immutable.

3. Contract as a Library: the Second Parity Multi-sig Wallet Hack. Libraries
are stateless, Flint’s default fallback functions just rollback, and Flint en-
forces the initialisation of contract state properties inside the init call which
has to occur on the instantiation of contracts and structs.

6 F. Schrans et al.

4. Unchecked Calls: King of the Ether Throne. In Flint, the King of the
Ether Throne vulnerability caused by discarding the result of send could
not happen as it is a compile error to discard the result of a function call.
There is also a possible denial of service attack[4] and the corresponding
Flint program would only suffer from this problem, if the non re-entrancy of
external calls were explicitly changed to allow re-entrancy.

5. Arithmetic Overflows: Proof of Weak Hands Coin. Flint’s default integers
do not overflow. So a Flint programmer could cause an arithmetic overflow,
but they have to do it explicitly by using the alternative integers operators.

The developers of Solidity apparently shared some of our concerns but have
been proposing very different solutions to the problems. For example, having
a modifier (only_uninitialised) although sufficient to prevent a constructor
from being called twice, is not sufficient to get it called once, whereas Flint’s
constructor is called exactly once and at the appropriate time. Solidity’s new
inclusion of some SMT verification of arithmetic[1] should catch overflows, but
Flint’s philosophy is to use safe arithmetic in the first place. We do not see how
the Solidity developers are going to be able to alter their language to prevent the
confusing semantics of fallbacks and delegation. Both languages have assertions.
Solidity programmers need to insert them in their code in the places that Flint
programmers will use safe arithmetic, protection blocks and Assets.

3 Flint by Example

We present Flint, influenced by Swift[3] syntax, for writing safe Ethereum smart
contracts. Like in Solidity, a Flint smart contract’s state is represented by its
fields, or state properties. Unlike in Solidity, state properties are declared in
isolation from functions so that programmers can easily ensure that no unneces-
sary state properties are declared. Like in Solidity, they are stored in the smart
contract’s persistent memory (storage), with high access costs.

Like in Solidity, a Flint contract’s behaviour is characterised by its functions.
Unlike Solidity, they are declared within protection blocks rather than at the
top level of the contract. This forces programmers to first think about what
state the contract needs to be in and which parties should be able to make
function calls before defining functions. Functions are by default non-mutating,
but can explicitly mutate the contract’s state if declared as mutating. Functions
are by default private, but those with a public modifier can be called by external
Ethereum users. The standard library offers an Asset trait, which provides safe
atomic operations to handle currency, ensuring the state of smart contracts is
always consistent.

3.1 Declaring Contracts

Flint for Safer Smart Contracts 7

To introduce some features of Flint4 we start the development of a SimpleDAO
contract. When declaring the contract, we observe how Flint’s syntax requires
programmers to write their smart contact in a specific sequence of steps.

Fig. 1. DAO State Changes

1. Declaring the contract’s possible states. The contract needs to enable
users to join (Join), if they have joined to be able to propose transfers of Wei
(Propose), and if a transfer has been proposed to vote (Vote). This typestate
appears in the contract header. The Address type represents an Ethereum
address (a user or another contract).

1 contract SimpleDAO (Join, Propose, Vote) {
2 var curator: Address // a very simple consensus mechanism
3 visible var proposal: Int = 0
4 var proposals: [Proposal] = [] // a list of all proposals to transfer Wei
5 var balances: [Address: Wei] = [:] // rmembers’ Wei balances
6 }

2. Declaring the protection blocks. Functions of a contract are declared
within protection blocks, which restrict when the enclosed functions are al-
lowed to be called. There are two elements to protection blocks: the caller
protection and the optional typestate protection. A protection block decla-
ration has to include the contract name (SimpleDAO) followed by @(types-
tate)(e.g., Join) , followed by a :: and admisable callers (e.g., curator).
The first protection block for this contract is for setting up a new SimpleDao
contract. Anyone (any) may do this and the caller’s address is bound to the
caller local variable. This initialiser can only be called when the contract
is created as all other contracts have a typestate parameter associated with
them. The second protection block is for joining an existing contract. The
third is for the curator to explicitly change the state from Join to Propose,

4 For the full description of Flint see [41].

8 F. Schrans et al.

closing off the SimpleDAO from accepting new members. The final two pro-
tection blocks are for processing proposals and votes respectively. The bodies
of the protection blocks are completed later.

7 SimpleDAO @(any) :: caller <- (any) { ... }
8 SimpleDAO @(Join) :: caller <- (any) { ... }
9 SimpleDAO @(Join) :: (curator) { ...}
10 SimpleDAO @(Propose) :: caller <- (tokenHolder) { ... }
11 SimpleDAO @(Propose) :: caller <- (curator) { ... }
12 SimpleDAO @(Vote) :: caller <- (tokenHolder) { ... }

Declaring the global structs. Struct values can be declared as state prop-
erties or local variables, and are initialised through their initialiser. When
stored as a state property, the struct’s data resides in EVM storage. When
stored as a local variable, it resides in EVM memory, and a pointer is allo-
cated on the EVM stack. A struct’s functions are not explicitly protected
by being in protection blocks, rather they will be protected by the contract
functions that call them. Our contract only needs a Proposal struct:

13 struct Proposal {
14 var proposer: Address
15 var payout: Int
16 var recipient: Address
17 var yea: Int = 0
18 var nay: Int = 0
19 var finished: Bool = false
20 var success: Bool = false
21 var voted: [Address: Bool] = [:]
22
23 mutating init(proposer: Address, payout: Int, recipient: Address) { self.

proposer = proposer
24 self.payout = payout
25 self.recipient = recipient
26 }
27 }

3. Declaring the functions. Finally, functions are declared within the pro-
tection blocks. For example, the third protection block where the curator
stops taking new members is only one function. The complete code appears
in Appendix A.

1 SimpleDAO @(Join) :: (curator) {
2 public mutating func joinTimeElapsed() {
3 become Propose
4 }
5 }

3.2 Additional Language Features

Initialisation Each smart contract and struct must define exactly one public
initialiser. All of the state properties must be initialised before the initialiser

Flint for Safer Smart Contracts 9

returns. State properties can be declared with a default value and constants
must be assigned exactly once.

Type System Flint is a statically-typed language, with no support for sub-
typing. Flint supports basic types and dynamic types (Figure 2). Dynamic types
can be passed by value or by reference (&).

Type Description
Address 160-bit Ethereum address
Int 256-bit unsigned integer
Bool Boolean value
String String value
Void Void value
Fixed-size
Array

Fixed-size memory block containing elements of the same type. T[n]
refers to an array of size n, of element type T.

Array Dynamically-sized array. [T] refers to an array of element type T.
Dictionary Dynamically-size mappings from one key type to a value type. [K: V]

is a dictionary of key type K and value type V.
Structs Struct values, including Wei, are considered to be of dynamic type.

Fig. 2. Flint Types

Flint has traits which are based on Rust[40] traits. There are both contract
and struct traits and they describe the partial behaviour of the contracts and
structs which conform to them. Contracts and structs can conform to multiple
traits as long as there is at most one function body for any given function. An
example struct trait with a conforming struct is given below. A contract trait
would be similar with the keyword contract replacing struct.

1 struct trait Animal {
2 // Must have an empty and named initialiser
3 public init()
4 public init(name: String)
5 func isNamed() -> Bool
6 public func name() -> String
7 public func noise() -> String
8 public func speak() -> String {
9 if isNamed() {return name()} else {return noise()}

10 }
11 }
12
13 struct Person: Animal {
14 let name: String
15 public init() self.name = "John Doe"}
16 public init(name: String) {self.name = name}
17 func isNamed() -> Bool {return true}
18 public func name() -> String {return self.name}

10 F. Schrans et al.

19 public func noise() -> String {return "Huh?"}
20 // Person can also have functions in addition to Animal
21 public func greet() -> String {return "Hi"}
22 }

Function Description
send(address: Address,
value: inout Wei)

Sends value Wei to the Ethereum address address, and
clears the contents of value.

fatalError() Terminates the transactions with an exception, and revert
any state changes.

assert(condition: Bool) Ensures condition holds, cause a fatalError().

Fig. 3. Flint Global Functions

The Standard Library We also define three global functions, shown in Fig-
ure 3. Global functions are defined in the special Flint$Global struct in stdlib/-
Global.flint and are imported globally by the compiler. There is an Asset trait
defined in the standard library (see Appendix D) as well as Wei which conforms
to it. Compiler checks ensure that contracts use Wei from the Standard Library.

Asset Traits

No Unprivileged Creation It is not possible to create an asset of non-zero
quantity without transferring it from another asset.

No Unprivileged Destruction It is not possible to decrease the quantity of
an asset without transferring it to another asset.

Safe Internal Transfers Transferring a quantity of an asset from one vari-
able to another within the same smart contract does not change the smart
contract’s total quantity of the asset.

Safe External Transfers Transferring a quantity q of an asset A from a smart
contract S to an external Ethereum address decreases S’s representation of
the total quantity of A by q. Sending a quantity q′ of an asset A to S increases
S’s representation of the total quantity of A by q′.

Safe Arithmetic Operators The +, -, and * operators throw an exception and
abort execution of the smart contract when an overflow occurs. The / operator
implements integer division. For the rare cases where the intended behaviour is
cyclic, Flint also supports wrap-around operators, &+, &-, and &*.

@payable Annotation Similar to what Solidity does, when a user creates a
transaction to call a function, Ether can be sent by using @payable. A single
parameter marked implicit of type Wei must be declared; implicit parame-
ters expose information from the Ethereum transaction to the developer of the
smart contract, without using globally accessible variables, such as msg.value in
Solidity.

Flint for Safer Smart Contracts 11

1 @payable
2 public func receiveMoney(implicit value: Wei) {
3 doSomething(value)
4 }

Events JavaScript applications can listen to events emitted by an Ethereum
smart contract. Flint provides the same functionality with slightly different syn-
tax from that provided by Solidity.

1 contract Bank {
2 var balances: [Address: Int]
3 let didCompleteTransfer: Event<Address, Address, Int> // (origin, destination,

amount)
4 }
5 Bank :: caller <- (any) {
6 mutating func transfer(destination: Address, amount: Int) {
7 // Omitting the code which performs the transfer.
8 emit didCompleteTransfer(caller, destination, amount)
9 }

10 }

4 Implementation

We implemented flintc, a compiler for Flint which runs on Linux and macOS.
The compiler’s source code (about 25,000 lines of Swift[3] code) is open source
and available on GitHub[27].

The compiler stages are illustrated in Figure 4. Programs are analysed, com-
piled to the Yul intermediate representation, and finally to EVM bytecode. By
embedding Yul in a Solidity file, tools built for Solidity work with Flint. We
compile Yul code using the Solc[19] compiler. The tokeniser and parser are hand
written as this has enabled us to provide better error messages.

The Parser has an additional step at the end which populates an environ-
ment. The environment contains information about the discovered types in the
compilation step. Contract/Structure types contain information about the con-
forming traits, functions and fields. Contracts also contain additional informa-
tion about any declared typestates. This provides sufficient information to AST
Passes for the checking of non-trivial program properties.

Our code architecture decouples AST traversal and node processing. The tra-
ditional visitor pattern[35] leverages dynamic method dispatch mechanisms to
separate node processing logic from tree traversal logic. However, visited nodes
invoke the visitor on their children nodes manually. Our nodes do not have refer-
ences to visitors, rather we have an architecture which uses a single AST Visitor,
and multiple AST Passes. Each AST Pass implements a process function for each
type of AST node. The AST Visitor updates the tree using the nodes returned
by the AST Pass, collects diagnostics, and propagates contextual information.

12 F. Schrans et al.

Yul Preprocessor

Embed in Solidity File

Yul Code Generator

Solc Compiler

EVM Bytecode

Backend

Flint Source File

Parser

Tokeniser

Semantic Analyser

Frontend

TypeChecker

Optimiser

Trait expander

Fig. 4. Compiler Stages

The AST passes are Semantic Analyser, Type Checker, TraitResolver, and Yul
Preprocessor.

The Semantic Analysis AST Pass verifies the correctness of the input pro-
gram. This performs the static checks for caller and typestate protection, traits,
mutating functions, verifying whether there are uses of undefined variables, etc.
Appendix E contains some examples of errors and warning diagnostics that are
produced during this pass.

As there is no subtyping or polymorphism, the Type Checking pass is straight-
forward. Appendix E also contains examples of type error messages.

4.1 Code Generation and Runtime

Before the code generation phase, like in most object oriented language compil-
ers, we apply a preprocessing step which mangles function names (needed for
disambiguating for overloading and for functions coming from different contracts
or structs). For each parameter which can be passed by value or by reference
an isMem parameter is added. At this stage traits are embedded in conforming
structures and contracts.

We implement a code generating function per AST Node, which takes an
AST node as a parameter, and returns its Yul representation. The YulStruct
function generates code for a Flint struct. Similarly, we implement YulFunction,
YulAssignment, YulExpression, etc.

4.2 Functions and Application Binary Interface

Flint’s Application Binary Interface (ABI) specifies at the bytecode level how
Ethereum users and other smart contracts can call the public functions of a Flint
smart contract. Flint follows Solidity’s ABI, therefore Flint and Solidity con-
tracts can interoperate. Users can call a smart contract’s function on Ethereum

Flint for Safer Smart Contracts 13

by creating a transaction, and specifying which function to call with which argu-
ments in the transaction payload. Transaction payloads are raw bytes, thus the
data needs to be encoded. Specifying which function to call is done via encod-
ing the function’s signature. Function arguments are appended to the function
signature hash as a hexadecimal value. Calling f with arguments 100 and true
would be encoded as 0x64 and 1, padded with zeros to fill a 256-bit value. An
Ethereum user or another smart contract can thus call f with arguments 100
and true by entering the following value in the transaction payload (without
newline characters):

0x13d1aa2e
0064
0001

A struct value passed as an inout (reference) argument to a function is an
implicit reference to either an EVM memory location or an EVM storage loca-
tion. When accessing the memory location, the runtime needs to know whether
it should read the value from memory or from storage. To support this, when a
struct is passed by reference to a function, an extra boolean argument, specify-
ing the location of the reference, is inserted in the argument list of the function
call. The storage and memory of a Flint smart contract are organised similarly.
The runtime functions load and store work for both variants. A contract’s state
properties are stored in EVM storage sequentially, except for values in dynamic
arrays and dictionaries. Local variables are stored in memory, and are allocated
dynamically. The allocateMemory runtime function reserves a number of bytes
in memory, and returns the start pointer of the block. The first 64 bytes of
memory (8 words) are reserved as scratch space and can be used to perform
temporary computation, or load values into memory to compute sha3 hashes or
emit Ethereum events. Memory location 0x40 (64th byte) holds a pointer to the
next available memory location (initially 0x60).

State properties of smart contracts are stored contiguously in storage, start-
ing at location 0. Each state property occupies one word (32 bytes) in the case of
basic types, or multiple words when storing structs or fixed-sized arrays. Structs
can also be stored in memory. Dynamically-sized types, such as arrays and dic-
tionaries, are not necessarily allocated contiguously. Storage accesses yield the
same gas cost regardless of which location is accessed.

The Flint runtime contains 20 runtime functions to perform low-level opera-
tions. A runtime function f can be called from the Flint standard library using
flint$f, but not from user-defined code.

Protection checks (both callers and typestate) are performed at compile-time
for internal (same contract) function calls (except try code) while the protection
of foreign contracts calling into Flint contracts, (and try code) are checked at
runtime. To enable the verification, runtime checks are inserted immediately
before running the function’s body. If the caller’s address is not in the set of
caller protections required to call the function, an exception is thrown and the
call is aborted (the REVERT opcode is executed).

14 F. Schrans et al.

Typestate protection checks are performed similarly to caller protection checks
and are done at compile-time for internal functions and at runtime for foreign
contracts calling into Flint contracts. At compile time an internal typestate enu-
meration is generated denoting all of the user defined states and the internal
states. An internal contract state property is defined by the compiler with that
type. When a runtime check needs to be performed the compiler will generate a
comparison against the set of valid typestates, and if it is not valid, an exception
is thrown and the call is aborted (the REVERT opcode is executed).

Typestate can only be changed in user-defined code through become StateI-
dentifier statements. The compiler will generate code to update the contract
state property to the appropriate enumeration value.

4.3 Intermediate Representation Organisation

To generate the IR code it is done in the following order:

1. Contract function definitions. Code is generated for user-defined contract
functions, one IR function for each Flint contract function. The Yul code does
not include explicit declarations of state properties, as accesses to storage
properties in functions are represented as static offsets into memory.

2. Struct function definitions. The function code for each user-defined and stan-
dard library struct is included next.

3. Runtime functions. Finally, we include the definition of any runtime func-
tions.

5 Evaluation

In this section we compare Flint to Solidity. We were able to use the same
analysers Oyente[32] and Mythril[11] by embedding Flint’s IR code in a Solidity
file. The Solidity and Flint gas costs have been retrieved from executing the calls
on our simulated Ethereum network.

The most important features of Flint for writing robust code are protection
blocks (with callers and typestate), Assets, and safe arithmetic so these are the
features we examine in some detail. We provide small example programs for each
construct in both languages so that we can compare code styles, potential for
bugs as discovered by Solidity dynamic analysis tools, and gas usage. Solidity
has run-time type checking which should add a performance overhead, whereas
Flint currently has no optimisation and there is a performance overhead caused
by embedding our Yul code in a Solidity file.

5.1 Caller Protections

To compare caller protections we define simple functions some of which can be
called by any user, some by owner, and some by any customer in the customers ar-
ray. In Solidity, we implement two modifiers, onlyOwner and anyCustomer, which
check whether the caller is owner or is in the customers array, respectively.

Solidity

Flint for Safer Smart Contracts 15

1 modifier onlyOwner {
2 require(msg.sender == owner);
3 _;
4 }
5 modifier anyCustomer {
6 uint numCustomers = customers.length;
7 bool found = false;
8 for (uint i = 0; i < numCustomers; i++) {
9 if (customers[i] == msg.sender) { found = true; }

10 }
11 require(found);
12 _;
13 }
14 contract Callers {
15 address owner;
16 address[] customers;
17 uint256 counter;
18 modifier anyOwner {...}
19 modifier anyCustomer {...}
20 function anyUser() public constant returns(uint256) {...}
21 function ownerCall(uint counter) public constant onlyOwner returns(uint256)

{...}
22 function customerCall(uint counter) public constant anyCustomer returns(

uint256) {...}
23 function ownerInternalCalls() public onlyOwner {...}
24 function customerInternalCalls() public anyCustomer {...}
25 }

The organisation of the smart contracts presents notable differences. In the
Solidity code (above), the state and the functions are all defined at the top level of
the contract. Solidity does not enforce the inclusion of the user-defined modifiers
we have specified in some of the function signatures. In the more concise Flint
code (below) the contract itself and the protection blocks are at the top level.

Flint

1 contract Callers {
2 var owner: Address
3 var customers: [Address]
4 var numCustomers: Int
5 var counter: Int
6 }
7 Callers :: owner <- (any) {
8 mutating public func addCustomer(customer: Address) {...}
9 public func anyUser() -> Int {...}

10 }
11 Callers :: (owner) {
12 public func ownerCall(counter: Int) -> Int {...}
13 public mutating func ownerInternalCalls() {...}
14 }
15 Callers :: (customers) {

16 F. Schrans et al.

16 public func customerCall(counter: Int) -> Int {...}
17 public mutating func customerInternalCalls() {...}
18 }

In Figure 5 we compare the gas costs of executing each function in the Solidity
and Flint contracts. Flint is significantly faster when functions perform internal
calls to functions which require the same caller protection. This is expected, as
the caller protection check is only executed once.

The gas costs are similar for simple examples using a caller protection backed
by a single address. When calling a function which calls multiple functions,
requiring the same caller protection, Flint is up to 12 times faster than Solidity.

For caller protections backed by an array, the results aren’t as good. Flint
code is cheaper to run when the array is relatively small, but becomes more
expensive when it is large. In the example which performs a large number of
internal calls, the Flint code is up to two times faster as Flint performs a single
runtime check, whereas Solidity performs one per function call.

Operation Solidity Flint Difference
(Solidity vs
Flint)

Possible Explanation

Deploying 438121 514268 S: -14.8% Flint does not optimise code.
Any call 268 283 S: -5% V: -

32%
Determining which function was
called is slightly faster in Flint.

Owner call 633 836 S: -24% V:
-22%

Owner many in-
ternal calls

32662 28673 S: +14% V:
+496%

Only one dynamic caller protec-
tion check is performed in Flint.

Customer call
(5 customers)

3791 1707 S: +122%
V: +158%

Flint’s array iteration algorithm
is better suited for small arrays.

Customer call
(20 customers)

13136 18047 S: -27% V:
-37%

Solidity’s array iteration algo-
rithm suits larger arrays.

Customer call
(50 customers)

31434 43847 S: -28% V:
-43%

Same as above.

Customer
many calls (5
customers)

168804 54426 S: +210%
V: +1068%

Only one dynamic caller protec-
tion check is performed in Flint.

Customer many
calls (20 cus-
tomers)

510129 67326 S: +658%
V: +2327%

Same as above.

Customer many
calls (50 cus-
tomers)

1192779 93126 S: +1181%
V: +3792%

Same as above.

Fig. 5. Gas Costs for Callers.

We compare the result of the analyses performed by the dynamic Solidity
analysis tools Oyente and Mythril. Both analysis tools detect if the customers

Flint for Safer Smart Contracts 17

array has the potential to become too large. While in Solidity the array will
silently overflow, in Flint it would throw an exception.

5.2 Typestate Protection

To examine typestate we define simple functions which can be called in only one
of two states, as well as simple functions to transition between the two states.
In Solidity, we implement a modifier, atStage which checks that the contract is
in the correct State.

Solidity

1 modifier atStage(Stages _stage) {
2 require(
3 stage == _stage,
4 "Function cannot be called at this time."
5);
6 _;
7 }
8 contract StateMachine {
9 enum Stages {

10 Stage1,
11 Stage2
12 }
13 Stages public stage = Stages.Stage1;
14 modifier atStage(Stages _stage) { ... }
15 function nextStage() public { ... }
16 function Stage1Function() public atStage(Stages.Stage1) { ... }
17 function Stage1ComplexFunction() public atStage(Stages.Stage1) { ... }
18 function Stage2Function() public atStage(Stages.Stage2) { ... }
19 }

Flint

1 contract States (State1, State2) { ... }
2 States @(any) :: (any) {
3 public init() {
4 become State1;
5 }
6 }
7 States @(State1) :: (any) {
8 public mutating func State2Transition() { ... }
9 public func State1Function() { ... }

10 public func State1ComplexFunction() { ... }
11 }
12 States @(State2) :: (any) {
13 public mutating func State1Transition() { ... }
14 public func State2Function() { ... }
15 }

We compare the gas costs of executing each function in the Solidity and Flint
contracts in Figure 6. For simple external calls requiring a state check, the gas

18 F. Schrans et al.

consumption for both Flint and Solidity is low, although Flint has a slightly
higher consumption, probably due to function selection not being optimised.
State transition takes less gas in Flint as only a single memory store has to take
place while the compiled Solidity code makes multiple changes.

For operations involving many internal calls, Flint has a much lower gas
consumption, with the Flint code consuming only about half as much as the
comparable Solidity code. This lower overhead is because Flint only has to per-
form a single runtime check at the start of the transaction rather than many
checks for each function as the code progresses.

Flint’s source code is more concise, whereas the compiled code is slightly
larger and deployment therefore takes more gas.

Operation Solidity Flint Difference
(Solidity vs
Flint)

Possible Explanation

Deploying 239350 282031 S: -15.1% Flint does not optimise code.
External call 650 970 S: -33.0% Flint function selector less opti-

mised
Many internal
calls (50)

18434 8729 S: +111% Only one dynamic caller protec-
tion check is performed in Flint.

State transition
(average)

20855 6696 S: +211% Fewer state changes performed
in Flint

Fig. 6. Gas Costs for Typestates.

5.3 Asset Types and Safe Arithmetic Operations

In this section we are interested in the security of Solidity and Flint contracts
when handling Wei, and measure whether Flint Assets introduce performance
penalties. We define the Bank smart contract where customers can send Wei
to the contract, and Bank keeps track of how much each customer has sent.
Customers can then withdraw their Wei, or transfer it to another Bank account.
The complete Flint code for Bank is in Appendix B.

The deposit function of both smart contracts are similar, and record received
Wei to state. Flint uses the Wei type, whereas as there is no built-in Wei type in
Solidity, currency is held as an integer. It is easy to accidentally add currency
to an account, or forget to do so. Using Flint’s Wei Assets allows safer and more
concise code for transferring funds.

Solidity

1 function deposit() anyCustomer public payable {
2 balances[msg.sender] += msg.value;
3 }

Flint

Flint for Safer Smart Contracts 19

1 @payable
2 public mutating func deposit(implicit value: Wei) {
3 balances[account].transfer(&value)
4 }

The comparison between transfer functions is similar. An additional advan-
tage of the Flint transfer is the update of state when the currency is moved is
atomic.

Solidity

1 function transfer(uint amount, address destination) anyCustomer public {
2 require(balances[msg.sender] >= amount);
3 balances[destination] += amount;
4 balances[msg.sender] -= amount;
5 }

Flint

1 public mutating func transfer(amount: Int, destination: Address) {
2 balances[destination].transfer(&balances[account], amount)
3 }

The withdraw function is one line shorter in Flint as we do not need to
check whether the account holder has enough funds to perform an operation; an
exception is thrown if the result of an arithmetic operation overflows. There are
cleaner ways to say that a withdraw failed, but at least it is safe. However, if
a Solidity programmer forgot and there wasn’t enough in the account to make
the withdrawal there would be a silent overflow and the value of the account’s
balance would be wrong.

Solidity

1 function withdraw(uint amount) anyCustomer public {
2 require(balances[msg.sender] >= amount);
3 balances[msg.sender] -= amount;
4 msg.sender.transfer(amount);
5 }

Flint

1 public mutating func withdraw(amount: Int) {
2 // Transfer some Wei from balances[account] into a local variable.
3 let w: Wei = Wei(&balances[account], amount)
4 // Send the amount back to the Ethereum user.
5 send(account, &w)
6 }

Figure 7 shows that the Flint version of the smart contract is marginally
more expensive to run in terms of gas costs. However, the Oyente and Mythril
analysers find 4 potential integer overflows on lines 30 (the array can become
too large), and lines 34, 43, and 48 (the integer value in the balances mapping
can become too large). They do not find any potential integer overflows in the
Flint code.

20 F. Schrans et al.

Operation Solidity Flint DifferencePossible Explanation
Deploying 422589 415901 +1.6% Solidity and Flint produce simi-

larly sized binaries.
Register 40741 61528 -34% Solidity is more efficient at adding

elements to an array.
Deposit 10 Wei 21460 24002 -11% This is because of the overhead

of Flint’s safe Asset operations,
which prevent overflows and state
inconsistencies.

Transfer 80 Wei 27200 30685 -11% Same as above.
Withdraw 5 Wei 14301 17245 -17% Same as above.
Mint 100 Wei 23098 20867 +10% Similar results.

Fig. 7. Gas Costs for Bank

5.4 The Solidity Attacks

In section 2.1 we described five attacks on four contracts. In section 3, we dis-
cussed how a Flint programmer would be unlikely to create the TheDAO’s
vulnerability. When implementing a Multi-sig wallet, Flint’s initialisation can’t
be omitted and fallback functions cannot update state. Flint libraries are state-
less but a programmer doesn’t have to use them. When implementing a King of
Ether contract, the Flint compiler would reject code that didn’t access the result
of a function. In the Proof of Weak Hands Coin contract wrap-around semantics
of Solidity integers used to hold the currency, caused an overflow. Its vulnera-
bilities could have been prevented using Flint’s Assets, in a similar way to our
bank example in section 5.3. The same errors could be in a Flint contract by not
using an Asset for the new coin and using our non-default wrap around integers
{balanceOf[caller] = balanceOf[caller] &- amount}. At this stage in Flint’s
development, only Wei is used with @payable. The plan is to extend @payable to
work with any currency.

As the vulnerabilities in these contracts were the starting point for the design
of Flint it isn’t surprising that the Flint code for them looks more robust. The
Flint and Solidity code for the four (simplified) contracts is available at [28].

6 Related Work

Languages For traditional computer architectures, languages such as Java[34],
Rust[40], and Pony[9] have been designed to prevent writing unsafe code. For
instance, Java prevents direct access to memory, Rust uses ownership types to
efficiently free memory, and Pony uses reference capabilities to prevent data races
in concurrent programs. In contrast, even though the Ethereum platform requires
smart contract programmers to ensure the correct behaviour of their program
before deployment, Solidity lacks even a strong static type system to catch errors.
Solidity provides both optional modifiers and assertions which programmers can
use to decorate their contracts.

Flint for Safer Smart Contracts 21

The Ethereum Foundation has created several other programming languages
for writing smart contracts. Lisp Like Language[16] (LLL)was abandoned in
favour of higher level languages. Serpent[22] is a high-level programming lan-
guage with a syntax similar to Python’s that was deprecated due to numerous
security issues, see [46]. Solidity, was an attempt to solve the issues these pro-
gramming languages presented. Since Solidity, probably due to the vulnerabilities
that have occurred, newer programming languages have been developed:

Vyper[18] inspired by Python, aims at providing developers with better secu-
rity and more intuitive semantics than Solidity. Like Flint, it doesn’t have con-
tract inheritance or infinite loops. However, its dynamically type system seems
inappropriate for a language for robust contract development. Like in Solidity,
assertions are provided to prevent vulnerabilities. Flint, too has assertions, but
we don’t place as great an importance on the for vulnerability prevention as
programmers can easily forget to include them.

Like Flint with its protection blocks, the Bamboo[29] programming language
allows reasoning about smart contracts as state machines. Developers define
which functions can be called in each state, and the language provides constructs
to specify changes of state explicitly. Bamboo does not present any additional
features geared towards the safety of programs.

There are several large organisations developing the Linux foundation’s Hy-
perledger Fabric[24] framework which can run on the EVM. Contracts in this
framework can be written in a variety of languages including Javascript and
Go. Currently the focus seems to be more focussed on building networks and
applications.

There are substantial design activities for creating new languages for Smart
Contracts that do not necessarily target the Ethereum platform. These designs
all have correctness as part of their design goals. Closest to Flint is Obsidian[10],
which includes typestate and linear types for resources. We haven’t gone to
full linear types for assets because we believe they would be too restrictive.
AxLang[31] is a Scala DSL that will compile to the JVM before being targeted
at the EVM. The hope is that Scala verification tools will be useful on AxLang
programs. The development of Plutus[38] is an effort to produce an eager Haskell-
like language for a range of blockchains including Ethereum. Another functional
language in the design stage, Formality[26], will target Ethereum’s web assembly
language eWASM[23]. It isn’t obvious what eWASM will add to the safety of the
compiler.

Protections Our protection blocks define both typestate[14,6] and caller pro-
tections. There have been many other techniques that protected code from being
called by unwanted callers. Solidity modifiers allow checking for any type of as-
sertion before the body of a function is entered. However, Solidity programmers
are not required to use modifiers. As we believe protecting privileged functions
in smart contracts is a basic requirement, Flint requires these to be coded before

22 F. Schrans et al.

writing functions,5 Our implementation is also more efficient for internal calls,
as shown in section 5.1. Flint users can use the assert function to perform other
types of checks at runtime.

Ideas similar to our caller protections have arisen several times in the past.
In the original definition of a capabilities by Jack Dennis et al.[13] they regard
a capability as an unforgeable token (a number) which when possessed by a
user, allows access to a resource. In Flint, a caller protection is linked with an
Ethereum address, which can be regarded as an unforgeable token. An individual
has the authority to call a function if it possesses the appropriate private key,
and transferring authority is done by simply sharing the private key. In Pony[9],
reference capabilities (similar to Flint’s protections) are associated with object
references and are part of the object’s type. Flint’s caller protections are not
encoded in the functions’ type. They are also similar to roles in role-oriented
programming[15]. The underlying idea of role-oriented programming is to cap-
ture the human idea of roles and their interactions when writing code. Operating
systems may use ACLs (access control lists)[2] to specify which users or system
processes are granted access to which operations on objects.

Analysis tools In addition to designing the right language there is work aimed
at finding vulnerabilities, focussing on early stages in the development cycle.
Oyente[32] and Mythril[11] are both dynamic analysis tools. The Oyente sym-
bolic execution tool analyses EVM bytecode. The authors of the tool claim they
have found that 50% of smart contracts on Ethereum’s network has at least one
vulnerability. Oyente finds issues such as timestamp dependencies, mishandled
exceptions, and detects reentrancy calls. Mythril uses concolic analysis to de-
termine execution paths. Mythril tries to find a variety of vulnerabilities, such
as timestamp dependencies, integer overflows, and reentrancy issues. One of the
concerns with both Oyente and Mythril is that they are not closely tied into con-
tract development so vulnerabilities that they could catch may not be caught
because the tool is not used.

The online Remix[21] IDE for Solidity has a built-in code analyser to find
bug, such as reentrancy bugs and incorrect usage of low-level calls. In our test-
ing, when running on the examples given in 2.1, the Remix Analyser warned
when low-level calls’ return value was not checked, but was not able to find any
reentrancy call issues that could be found by the dynamic analysis tools.

Converting to F*[5] involves translating Solidity code to F*, decompiling
EVM bytecode to F*, then checking equivalence between the two translations.
Scilla[42] is a continuous passing style–based intermediate representation lan-
guage for smart contracts that converts Scilla code to the Coq theorem prover
where properties of the contract can be proven.

An SMT module has been added to the Solidity compiler[1]. Its current
capabilities include catching infinite loops, arithmetic overflows, and re-entrancy,

5 A programmer could decide, however, to write all functions in an any block with no
typestate.

Flint for Safer Smart Contracts 23

problems that by construction cannot exist in Flint code. The plans are to extend
the subset of Solidity that it deals with and the problems it looks for.

7 Conclusions and Future Work

The goal of Flint is to make it easy to write smart contracts which are are safe
by construction. Although our current compiler targets the EVM, the language
design was not much influenced by the choice of backend and could be retargeted.
Flint needs to contain the constructs that programmers want in order to write
easy to read smart contracts and no more. We haven’t had difficulty translating
existing smart contracts on the web into Flint. Omitting constructs that have
been implicated many times such as sophisticated fallback functions, infinite
loops, default integers with wrap-around semantics, functions that are public and
mutable by default, will prevent previous errors re-appearing in new contracts.

We have provided many features such as protection blocks, restricting access
with typestate and callers, non-wraparound integers, Wei implemented as an as-
set, and functions private and immutable by default. Our protection blocks shift
the design pattern for developing smart contracts and we believe that should be
a game changer. Flint programmers will have to think about who and when each
piece of code can be accessed before starting to write any individual functions.
Adding who can execute code after writing it by using modifiers is likely to be
far more error prone than defining the gateway code first. Vyper has omitted So-
lidity’s new(ish) modifiers because the designers are concerned about how error
prone they are.

Our language design is certainly not frozen. Wei is checked by the compiler,
but we need to ensure that all assets are treated as carefully as Wei. We also
would like to be able to deal with collections of assets elegantly. We also have
not investigated the problems caused by aliasing. Another area of interest is
interacting with non-Flint contracts as we need to be confident that bad Solid-
ity contracts do not pollute Flint contracts. Re-entrancy can be prevented by
limiting the number of times (using typestate) a foreign and a Flint contract
are allowed to interact. Our performance figures are in line with those of Solid-
ity, and this is without an optimisation pass in our compiler. We do have plans
to optimise, but only after the compiler provides the full functionality. We are
currently working on a toolchain to provide the Flint programmer the toolset
software engineers rely on.

Providing programmers a language with fewer ways they can make mistakes,
is a first step towards ensuring contracts will be correct. But contracts have
to implement the intentions of the people who request them and programming
languages do not always encode intentions. Intentions need to be captured in
specifications and existing specification techniques do not capture the long-term,
open-world nature of smart contracts.

Acknowledgements We would like acknowledge Aurel Bily, Catalin Cracium,
Calin Farcas, Yicheng Luo, Constantin Mueller, and Niklas Vangerow for their

24 F. Schrans et al.

work on Flint, both the language and the toolchain. We would like to thank
Nobuko Yoshida and Alastair Donaldson for supporting some of this work. It
has been partially supported by grant EPSRC EP/K011715/1 and a grant from
the Ethereum Foundation.

References

1. Alt, L., Reitwiessner, C.: Smt-based verification of solidity smart contracts. In:
Proceedings, Part IV. vol. 11247, pp. 376–388. Springer Verlag, Limassol,Cyprus
(11 2018)

2. Ancilotti, P., Boari, M., Lijtmaer, N.: Language features for access control.
IEEE Trans. Software Eng. 9(1), 16–25 (1983), https://doi.org/10.1109/TSE.1983.
236166

3. Apple: The Swift programming language. https://swift.org
4. Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of Attacks on Ethereum Smart

Contracts (SoK). In: International Conference on Principles of Security and Trust.
pp. 164–186 (2017)

5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Beguelin, S.: Formal
verification of smart contracts. In: Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security-PLAS16. pp. 91–96 (2016)

6. Bierhoff, K., Aldrich, J.: Lightweight object specification with typestates. In:
Proceedings of the 10th European Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. pp. 217–226 (2005),
http://doi.acm.org/10.1145/1081706.1081741

7. Buterin, V.: Ethereum: A next-generation smart contract and decentralised appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2014)

8. CCN: Ethereum’s Solidity Flaw Exploited in DAO Attack Says Cornell Researcher.
https://www.ccn.com/ethereum-solidity-flaw-dao/

9. Clebsch, S., Drossopoulou, S., Blessing, S., McNeil, A.: Deny capabilities for safe,
fast actors. In: Proceedings of the 5th International Workshop on Programming
Based on Actors, Agents, and Decentralized Control. pp. 1–12. ACM (2015)

10. Coblenz, M., Aldrich, J.: Obsidian: Language Development. https://mcoblenz.
github.io/Obsidian/ (2018)

11. ConsenSys: Mythril — Security analysis tool for Ethereum smart contracts. https:
//github.com/ConsenSys/mythril/

12. Daian, P.: Chasing the DAO Attacker’s Wake. https://pdaian.com/blog/
chasing-the-dao-attackers-wake/

13. Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. Communications of the ACM 9(3), 143–155 (1966)

14. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: More dynamic
object reclassification: Fickle∥. ACM Trans. Program. Lang. Syst. 24(2), 153–
191 (Mar 2002), http://doi.acm.org/10.1145/514952.514955

15. Edelweiss, N., Palazzo M. de Oliveira, J., de Castilho, J.M.V., Peressi, E., Mon-
tanari, A., Pernici, B.: T-ORM: temporal aspects in objects and roles. In: Halpin,
T.A., Meersman, R. (eds.) Proceedings of the First International Conference on
Object-Role Modelling, ORM-1, Magnetic Island, Australia, 4-6 July 1994. pp.
18–27 (1994)

https://doi.org/10.1109/TSE.1983.236166
https://doi.org/10.1109/TSE.1983.236166
https://swift.org
http://doi.acm.org/10.1145/1081706.1081741
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.ccn.com/ethereum-solidity-flaw-dao/
https://mcoblenz.github.io/Obsidian/
https://mcoblenz.github.io/Obsidian/
https://github.com/ConsenSys/mythril/
https://github.com/ConsenSys/mythril/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
https://pdaian.com/blog/chasing-the-dao-attackers-wake/
http://doi.acm.org/10.1145/514952.514955

Flint for Safer Smart Contracts 25

16. Edgington, B.: LLL Programming Language. http://lll-docs.readthedocs.io/en/
latest/ (2017)

17. Ethereum: Joyfully Universal Language for (Inline) Assembly. http://solidity.
readthedocs.io/en/develop/julia.html

18. Ethereum: The Vyper programming language. https://github.com/ethereum/vyper
19. Ethereum: Solidity Documentation. http://solidity.readthedocs.io/en/latest/

(2014)
20. Ethereum: Yul. https://solidity.readthedocs.io/en/latest/yul.html (2016-2018)
21. Ethereum: Remix IDE for Solidity. https://remix.ethereum.org (2017)
22. Ethereum: Serpent. https://github.com/ethereum/serpent (2017)
23. Updates on Ethereum?s Moon Project. https://github.com/ewasm (2018)
24. Hyperledger Fabric. https://www.hyperledger.org/projects/fabric (2018)
25. Flanagan, D.: JavaScript: the definitive guide. " O’Reilly Media, Inc." (2006)
26. Updates on Ethereum?s Moon Project. https://medium.com/@maiavictor/

updates-on-ethereums-moon-project-535f8c0497ef (2018)
27. Franklin Schrans, Daniel Hails, A.H.: The Flint Programming Language GitHub

Repository. https://github.com/franklinsch/flint
28. Franklin Schrans, Daniel Hails, A.H.: The Flint Programming Language

GitHub Repository. https://github.com/flintlang/flint/tree/master/examples/
casestudies

29. Hirai, Y.: The Bamboo programming language. https://github.com/pirapira/
bamboo

30. Jones, S.P.: Haskell 98 language and libraries: the revised report. Cambridge Uni-
versity Press (2003)

31. Konstantinidis, A., Schultz, E.: AxLang: Compiling Scala to EVM Bytecode for
Secure and Reliable Ethereum Smart Contracts. https://guidebook.com/guide/
117233/event/21956112/ (2018)

32. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. pp. 254–269 (2016)

33. OpenZeppelin: StandardToken. https://github.com/OpenZeppelin/
openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
(2018)

34. Oracle: The Java Language Specification. https://docs.oracle.com/javase/specs/
jls/se8/jls8.pdf (2018)

35. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: Computer Soft-
ware and Applications Conference, 1998. COMPSAC’98. Proceedings. The Twenty-
Second Annual International. pp. 9–15. IEEE (1998)

36. Parity: A Postmortem on the Parity Multi-Sig Library Self-Destruct. http://
paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/

37. Parity: The Multi-sig Hack: A Postmortem. http://paritytech.io/
the-multi-sig-hack-a-postmortem/

38. IOHK. https://iohk.io/ (2018)
39. Python: Python. https://www.python.org (2018)
40. Rust: Rust Documentation. https://doc.rust-lang.org (2018)
41. Schrans, F., Hails, D.: Flint Programming Language Guide. https://docs.

flintlang.org/language-guide (2018)
42. Sergey, I., Kumar, A., Hobor, A.: Scilla: a Smart Contract Intermediate-Level

LAnguage. arXiv preprint arXiv:1801.00687 (2018)
43. Wilcke, J.: Mutan Programming Language. https://github.com/obscuren/mutan

(2017)

http://lll-docs.readthedocs.io/en/latest/
http://lll-docs.readthedocs.io/en/latest/
http://solidity.readthedocs.io/en/develop/julia.html
http://solidity.readthedocs.io/en/develop/julia.html
https://github.com/ethereum/vyper
http://solidity.readthedocs.io/en/latest/
https://solidity.readthedocs.io/en/latest/yul.html
https://remix.ethereum.org
https://github.com/ethereum/serpent
https://github.com/ewasm
https://www.hyperledger.org/projects/fabric
https://medium.com/@maiavictor/updates-on-ethereums-moon-project-535f8c0497ef
https://medium.com/@maiavictor/updates-on-ethereums-moon-project-535f8c0497ef
https://github.com/franklinsch/flint
https://github.com/flintlang/flint/tree/master/examples/casestudies
https://github.com/flintlang/flint/tree/master/examples/casestudies
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://guidebook.com/guide/117233/event/21956112/
https://guidebook.com/guide/117233/event/21956112/
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/token/ERC20/StandardToken.sol
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self -destruct/
http://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self -destruct/
http://paritytech.io/the-multi-sig-hack-a-postmortem/
http://paritytech.io/the-multi-sig-hack-a-postmortem/
https://iohk.io/
https://www.python.org
https://doc.rust-lang.org
https://docs.flintlang.org/language-guide
https://docs.flintlang.org/language-guide
https://github.com/obscuren/mutan

26 F. Schrans et al.

44. Wired: A $50 million hack just showed that the dao was all too human. https:
//www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

45. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151 (2014)

46. Zeppelin: Serpent Compiler Audit. https://blog.zeppelin.solutions/
serpent-compiler-audit-3095d1257929 (2017)

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://blog.zeppelin.solutions/serpent-compiler-audit-3095d1257929
https://blog.zeppelin.solutions/serpent-compiler-audit-3095d1257929

Flint for Safer Smart Contracts 27

Appendices

A The SimpleDAO

1 // A condensed smart contract for a Decentralized Autonomous Organization (DAO)
2 // to automate organizational governance and decision-making.
3
4 // Removed features:
5 // - Spliting DAO
6 // - Grace/Quorum Periods
7 // Moved consensus features to curator to simplify contraxt
8
9 struct Proposal {

10 var proposer: Address
11 var payout: Int
12 var recipient: Address
13 var yea: Int = 0
14 var nay: Int = 0
15 var finished: Bool = false
16 var success: Bool = false
17 var voted: [Address: Bool] = [:]
18
19 mutating init(proposer: Address, payout: Int, recipient: Address) {
20 self.proposer = proposer
21 self.payout = payout
22 self.recipient = recipient
23 }
24 }
25
26 contract SimpleDAO (Join, Propose, Vote) {
27 var curator: Address
28 visible var proposal: Int = 0
29 var proposals: [Proposal] = []
30 var balances: [Address: Wei] = [:]
31 }
32
33 SimpleDAO @(any) :: caller <- (any) {
34 public init(curator: Address){
35 self.curator = curator
36 become Join
37 }
38
39 public mutating fallback() {
40 fatalError()
41 }
42
43 public func tokenHolder(addr: Address) -> Bool {
44 return balances[addr].getRawValue() != 0

28 F. Schrans et al.

45 }
46
47 public func getTotalStake() -> Int {
48 var sum: Int = 0
49 for let balance: Wei in balances {
50 sum += balance.getRawValue()
51 }
52 return sum
53 }
54 }
55
56 SimpleDAO @(Join) :: caller <- (any) {
57
58 @payable
59 public mutating func join(implicit value: inout Wei) {
60 balances[caller].transfer(&value)
61 }
62 }
63
64 SimpleDAO @(Join) :: (curator) {
65 public mutating func joinTimeElapsed() {
66 become Propose
67 }
68 }
69
70 SimpleDAO @(Propose) :: caller <- (tokenHolder) {
71 public mutating func newProposal(value: Int, recipient: Address) -> Int {
72 // Sanity checks omitted to be concise
73 let pID: Int = proposals.size + 1;
74 proposals[pID] = Proposal(caller, value, recipient)
75 return pID
76 }
77
78 public mutating func leave() {
79 send(caller, &balances[caller])
80 }
81 }
82
83 SimpleDAO @(Propose) :: (curator) {
84 public mutating func beginVote(proposal: Int) {
85 self.proposal = proposal
86 become Vote
87 }
88 }
89
90 SimpleDAO @(Vote) :: caller <- (tokenHolder) {
91 public mutating func vote(approve: Bool) {
92 if proposals[proposal].voted[caller] {
93 fatalError()
94 }

Flint for Safer Smart Contracts 29

95
96 if approve {
97 proposals[proposal].yea += balances[caller].getRawValue()
98 } else {
99 proposals[proposal].nay += balances[caller].getRawValue()

100 }
101
102 proposals[proposal].voted[caller] = true
103 }
104
105 public mutating func executeProposal() {
106 if(caller != proposals[proposal].proposer || proposals[proposal].finished)

{
107 fatalError()
108 }
109
110 proposals[proposal].finished = true
111 // Quorum check omitted for brevity.
112 if proposals[proposal].yea > proposals[proposal].nay {
113 proposals[proposal].success = true
114 let transfervalue: Wei = Wei(0)
115 let totalstake: Int = getTotalStake()
116 for let value: Wei in balances {
117 let rawvalue: Int = (proposals[proposal].payout * value.getRawValue())

/ totalstake
118 transfervalue.transfer(&value, rawvalue)
119 }
120 send(proposals[proposal].recipient, &transfervalue)
121 }
122
123 become Propose
124 }
125 }

B The Bank Contract

1
2 // Contract declarations contain only their state properties.
3 contract Bank {
4 var manager: Address
5 var balances: [Address: Wei] = [:]
6 var accounts: [Address] = []
7 var lastIndex: Int = 0
8
9 var totalDonations: Wei = Wei(0)

10
11 event didCompleteTransfer {
12 let from: Address
13 let to: Address
14 let value: Int

30 F. Schrans et al.

15 }
16 }
17
18 // The functions in this block can be called by any user.
19 Bank :: account <- (any) {
20 public init(manager: Address) {
21 self.manager = manager
22 }
23
24 // Returns the manager’s address.
25 public mutating func register() {
26 accounts[lastIndex] = account
27 lastIndex += 1
28 }
29
30 public func getManager() -> Address {
31 return manager
32 }
33
34 @payable
35 public mutating func donate(implicit value: Wei) {
36 // This will transfer the funds into totalDonations.
37 totalDonations.transfer(&value)
38 }
39 }
40
41 // Only the manager can call these functions.
42 Bank :: (manager) {
43
44 // This function needs to be declared "mutating" as its body mutates
45 // the contract’s state.
46 public mutating func freeDeposit(account: Address, amount: Int) {
47 var w: Wei = Wei(amount)
48 balances[account].transfer(&w)
49 }
50
51 public mutating func clear(account: Int) {
52 balances[account] = Wei(0)
53 }
54
55 // This function is non-mutating.
56 public func getDonations() -> Int {
57 return totalDonations.getRawValue()
58 }
59 }
60
61 // Any user in accounts can call these functions.
62 // The matching user’s address is bound to the variable account.
63 Bank :: account <- (accounts) {
64 public func getBalance() -> Int {

Flint for Safer Smart Contracts 31

65 return balances[account].getRawValue()
66 }
67
68 public mutating func transfer(amount: Int, destination: Address) {
69 // Transfer Wei from one account to another. The balances of the
70 // originator and the destination are updated atomically.
71 // Crashes if balances[account] doesn’t have enough Wei.
72 balances[destination].transfer(&balances[account], amount)
73
74 // Emit the Ethereum event.
75 emit didCompleteTransfer(from: account, to: destination, value: amount)
76 }
77
78 @payable
79 public mutating func deposit(implicit value: Wei) {
80 balances[account].transfer(&value)
81 }
82
83 public mutating func withdraw(amount: Int) {
84 // Transfer some Wei from balances[account] into a local variable.
85 let w: Wei = Wei(&balances[account], amount)
86
87 // Send the amount back to the Ethereum user.
88 send(account, &w)
89 }
90 }

C The Flint Grammar

The grammar is specified in Backus-Naur form. Elements in square brackets are
tokens, and elements in parentheses are optional.

; FLINT GRAMMAR (RFC 7405)

; TOP LEVEL
topLevelModule = 1*(topLevelDeclaration CRLF);

topLevelDeclaration = contractDeclaration
/ contractBehaviourDeclaration
/ structDeclaration
/ enumDeclaration
/ traitDeclaration;

; CONTRACTS
contractDeclaration = %s"contract" SP identifier SP [identifierGroup] SP "{" *(WSP variableDeclaration CRLF) "}";

; VARIABLES
variableDeclaration = [*(modifier SP)] WSP (%s"var" / %s"let") SP identifier typeAnnotation [WSP "=" WSP expression];

; TYPES

32 F. Schrans et al.

typeAnnotation = ":" WSP type;

type = identifier ["<" type *("," WSP type) ">"]
/ basicType
/ arrayType
/ fixedArrayType
/ dictType;

basicType = %s"Bool"
/ %s"Int"
/ %s"String"
/ %s"Address";

arrayType = "[" type "]";
fixedArrayType = type "[" numericLiteral "]";
dictType = "[" type ":" WSP type "]";

; ENUMS
enumDeclaration = %s"enum" SP identifier SP [typeAnnotation] SP "{" *(WSP enumCase CRLF) "}";
enumCase = %s"case" SP identifier

/ %s"case" SP identifier WSP "=" WSP expression;

; TRAITS
traitDeclaration = %s"struct" SP %s"trait" SP identifier SP "{" *(WSP traitMember CRLF) "}"

/ %s"contract" SP %s"trait" SP identifier SP "{" *(WSP traitMember CRLF) "}"
/ %s"external" SP %s"trait" SP identifier SP "{" *(WSP traitMember CRLF) "}";

traitMember = functionDeclaration
/ functionSignatureDeclaration
/ initializerDeclaration
/ initializerSignatureDeclaration
/ contractBehaviourDeclaration
/ eventDeclaration;

; EVENTS
eventDeclaration = %s"event" identifer parameterList

; STRUCTS
structDeclaration = %s"struct" SP identifier [":" WSP identifierList] SP "{" *(WSP structMember CRLF) "}";

structMember = variableDeclaration
/ functionDeclaration
/ initializerDeclaration;

; BEHAVIOUR
contractBehaviourDeclaration = identifier WSP [stateGroup] SP "::" WSP [callerBinding] callerProtectionGroup WSP "{" *(WSP contractBehaviourMember CRLF) "}";

contractBehaviourMember = functionDeclaration
/ initializerDeclaration
/ fallbackDeclaration

Flint for Safer Smart Contracts 33

/ initializerSignatureDeclaration
/ functionSignatureDeclaration;

; ACCESS GROUPS
stateGroup = "@" identifierGroup;
callerBinding = identifier WSP "<-";
callerProtectionGroup = identifierGroup;
identifierGroup = "(" identifierList ")";
identifierList = identifier *("," WSP identifier)

; FUNCTIONS + INITIALIZER + FALLBACK
functionSignatureDeclaration = functionHead SP identifier parameterList [returnType]
functionDeclaration = functionSignatureDeclaration codeBlock;
initializerSignatureDeclaration = initializerHead parameterList
initializerDeclaration = initializerSignatureDeclaration codeBlock;
fallbackDeclaration = fallbackHead parameterList codeBlock;

functionHead = [*(attribute SP)] [*(modifier SP)] %s"func";
initializerHead = [*(attribute SP)] [*(modifier SP)] %s"init";
fallbackHead = [*(modifier SP)] %s"fallback";

attribute = "@" identifier;
modifier = %s"public"

/ %s"mutating"
/ %s"visible";

returnType = "->" type;

parameterList = "()"
/ "(" parameter *("," parameter) ")";

parameter = *(parameterModifiers SP) identifier typeAnnotation [WSP "=" WSP expression];
parameterModifiers = %s"inout" / %s"implicit"

; STATEMENTS
codeBlock = "{" [CRLF] *(WSP statement CRLF) WSP statement [CRLF]"}";
statement = expression

/ returnStatement
/ becomeStatement
/ emitStatement
/ forStatement
/ ifStatement;

returnStatement = %s"return" SP expression
becomeStatement = %s"become" SP expression
emitStatement = %s"emit" SP functionCall
forStatement = %s"for" SP variableDeclaration SP %s"in" SP expression SP codeBlock

; EXPRESSIONS
expression = identifier

34 F. Schrans et al.

/ inOutExpression
/ binaryExpression
/ functionCall
/ literal
/ arrayLiteral
/ dictionaryLiteral
/ self
/ variableDeclaration
/ bracketedExpression
/ subscriptExpression
/ rangeExpression
/ attemptExpression;

inOutExpression = "&" expression;

binaryOp = "+" / "-" / "*" / "/" / "**"
/ "&+" / "&-" / "&*"
/ "="
/ "==" / "!="
/ "+=" / "-=" / "*=" / "/="
/ "||" / "&&"
/ ">" / "<" / "<=" / ">="
/ ".";

binaryExpression = expression WSP binaryOp WSP expression;

self = %s"self"

rangeExpression = "(" expression ("..<" / "...") expression ")"

bracketedExpression = "(" expression ")";

subscriptExpression = subscriptExpression "[" expression "]";
/ identifier "[" expression "]";

attemptExpression = try expression
try = %s"try" ("!" / "?")

; FUNCTION CALLS
functionCall = identifier "(" [expression] *("," WSP expression) ")";

; CONDITIONALS
ifStatement = %s"if" SP expression SP codeBlock [elseClause];
elseClause = %s"else" SP codeBlock;

; LITERALS
identifier = (ALPHA / "_") *(ALPHA / DIGIT / "$" / "_");
literal = numericLiteral

/ stringLiteral
/ booleanLiteral

Flint for Safer Smart Contracts 35

/ addressLiteral;

number = 1*DIGIT;
numericLiteral = decimalLiteral;
decimalLiteral = number

/ number "." number;

addressLiteral = %s"0x" 40HEXDIG;

arrayLiteral = "[]";
dictionaryLiteral = "[:]";

booleanLiteral = %s"true" / %s"false";
stringLiteral = """ identifier """;

D Assets

1 // Any currency should implement this trait to be able to use the currency
2 // fully. The default implementations should be left intact, only
3 // ‘getRawValue‘ and ‘setRawValue‘ need to be implemented.
4
5 struct trait Asset {
6 // Initialises the asset "unsafely", i.e. from ‘amount‘ given as an integer.
7 init(unsafeRawValue: Int)
8
9 // Initialises the asset by transferring ‘amount‘ from an existing asset.

10 // Should check if ‘source‘ has sufficient funds, and cause a fatal error
11 // if not.
12 init(source: inout Self, amount: Int)
13
14 // Initialises the asset by transferring all funds from ‘source‘.
15 // ‘source‘ should be left empty.
16 init(source: inout Self)
17
18 // Moves ‘amount‘ from ‘source‘ into ‘this‘ asset.
19 mutating func transfer(source: inout Self, amount: Int) {
20 if source.getRawValue() < amount {
21 fatalError()
22 }
23
24 // TODO: support let _: Int = ...
25 let unused1: Int = source.setRawValue(value: source.getRawValue() - amount)
26 let unused2: Int = setRawValue(value: getRawValue() + amount)
27 }
28
29 mutating func transfer(source: inout Self) {
30 transfer(source: &source, amount: source.getRawValue())
31 }

36 F. Schrans et al.

32
33 // Returns the funds contained in this asset, as an integer.
34 mutating func setRawValue(value: Int) -> Int
35
36 // Returns the funds contained in this asset, as an integer.
37 func getRawValue() -> Int
38 }
39
40 struct Wei: Asset {
41 var rawValue: Int = 0
42
43 init(unsafeRawValue: Int) {
44 self.rawValue = unsafeRawValue
45 }
46
47 init(source: inout Wei, amount: Int) {
48 transfer(source: &source, amount: amount)
49 }
50
51 init(source: inout Wei) {
52 let amount: Int = source.getRawValue()
53 transfer(source: &source, amount: amount)
54 }
55
56 mutating func setRawValue(value: Int) -> Int {
57 rawValue = value
58 return rawValue
59 }
60
61 func getRawValue() -> Int {
62 return rawValue
63 }
64 }

E Compiler Diagnostics

Caller Protections

Use of undeclared caller protection.
Caller protection ’admin’ is undefined in ’Bank’, or has incompatible type.

No matching function for function call.
Function ’setManager’ is not in scope or cannot be called using caller protection
’(any)’. Note: Perhaps you meant this function, which requires caller protection
’(manager)’.

Mutation

Mutating statement in nonmutating function.
Use of mutating statement in a nonmutating function.

No mutating statements in mutating function (Warning).
Function does not have to be declared mutating: none of its statements are mutating.

Flint for Safer Smart Contracts 37

Reassignment to constant.
Cannot reassign to value: ’manager’ is a let-constant. Note: ’manager’ is declared
on line 18, column 12.

Initialisation

State property is not assigned a value.
State property ’manager’ needs to be assigned a value, as no initialiser was declared.

Return from initialiser without initialising all properties.
Return from initialiser without initialising all properties. Note: ’manager’ is
uninitialised.

Contract does not have a public initialiser.
Contract ’Bank’ needs a public initialiser accessible using caller capability
’any’.

Contract has multiple public initialisers.
A public initialiser has already been defined. Note: A public initialiser is defined
on line 5, column 6.

Public contract initialiser is not accessible using caller capability any.
Public contract initialiser should be callable using caller capability ’any’.

Invalid Declarations

Invalid redeclaration of an identifier.
Invalid redeclaration of ’setManager’. Note: Previous declaration on line 12,
column 4.

Use of invalid character. The $ character is reserved for use in the standard library.
Use of invalid character ’$’ in ’my$Func’.

Contract Behaviour Declaration has no matching Contract Declaration.
Contract behaviour declaration for ’Bank’ has no associated contract declaration.

Invalid contract behaviour declaration.
Contract behaviour declaration for Bank has no associated contract declaration.

Invalid @payable function.
receive is declared @payable but doesn’t have an implicit parameter of a currency
type.

Ambiguous @payable value parameter.
Ambiguous implicit payable value parameter. Only one parameter can be declared
’implicit’ with a currency type.

Public function has a parameter of dynamic type, such as struct, array, or dictionary.
Function ’isSeatFree’ cannot have dynamic parameters. Note: ’seat’ cannot be used
as a parameter.

Use of undeclared identifier.
Use of undeclared identifier ’manager’.

Missing return in non-void function.
Missing return in function expected to return ’Int’.

Code after return (Warning).
Code after return will never be executed.

Type Checking

Incompatible return type.
Cannot convert expression of type ’Int’ to expected return type ’Address’.

38 F. Schrans et al.

Incompatible assignment.
Incompatible assignment between values of type Int and Wei.

Incompatible argument type.
Cannot convert expression of type Int to expected argument type Wei

	Flint for Safer Smart Contracts

