1904.06534v1 [cs.PL] 13 Apr 2019

arxXiv

Flint for Safer Smart Contracts

Franklin Schrans?, Daniel Hails', Alexander Harkness', Sophia Drossopoulou!,
and Susan Eisenbach!

! Imperial College London, London SW7 2AZ, UK
{susan, sd}@ic.ac.uk
2 Franklin Schrans’s contributed while a student at Imperial College.
fr@nklinschrans.com

Abstract. The Ethereum blockchain platform supports the execution
of decentralised applications or smart contracts. These typically hold
and transfer digital currency to other parties on the platform; however,
they have been subject to numerous attacks due to the unintentional
introduction of bugs. Over a billion dollars worth of currency has been
stolen since its release in July 2015. As smart contracts cannot be up-
dated after deployment, it is imperative that the programming language
supports the development of robust contracts.

We propose Flint, a new statically-typed programming language specifi-
cally designed for writing robust smart contracts. Flint’s features enforce
the writing of safe and predictable code. To encourage good practices, we
introduce protection blocks. Protection blocks restrict who can run code
and when (using typestate) it can be executed. To prevent vulnerabilities
relating to the unintentional loss of currency, Flint Asset traits provide
safe atomic operations, ensuring the state of contracts is always consis-
tent. Writes to state are restricted, simplifying reasoning about smart
contracts.

Keywords: smart contracts - Flint programming language design

1 Introduction

The Ethereum Virtual Machine[45]7] (EVM) is an open network supporting de-
centralised execution of programs, known as smart contracts. The EVM is similar
to a stateful web service, but instead of being executed by computers controlled
by an organisation it is deployed to its nodes (or miners). Smart contracts are
held in an append-only data structure a blockchain composed of blocks, allow-
ing miners to maintain a consistent view of the network’s state. Cryptographic
schemes ensure old blocks cannot be modified. Miners select which transaction
to process from their transaction pool.

Users can interact with a smart contract by calling the functions it exposes.
Function calls are executed by miners, which maintain the state of each smart
contract and are paid for processing transactions. Ethereum users and smart
contracts can exchange a digital currency known as Fther whose smallest de-
nomination is the Wei (1078 Ether). Users also use Ether to purchase gas,
required to pay for computational costs when executing transactions.

2 F. Schrans et al.

Smart contracts implement self-managed agreements, enforced autonomously.
The source code of a smart contract is available, and cannot be changed after
deployment. Individuals who interact with smart contracts trust the correct ex-
ecution of the code rather than reprogrammable machines controlled by a single
authority. Smart contracts have been used to implement auctions, votes[I9], and
sub-currencies[33] for crowdfunding purposes. Voters do not have to place their
trust in the integrity of an electoral organisation when the votes are counted
using a smart contract.

Not being able to update a smart contract’s code after deployment requires
it to be bug free. Attackers have found vulnerabilities in smart contracts allow-
ing the redirection of Ether funds to their personal Ethereum account. Attacks
against THEDAOIg] and the Multi-sig Wallet smart contracts[37J36] have accu-
mulated losses of over a billion dollars worth of Ether.

The primary programming language used to write smart contracts, Solid-
ity[19], is expressive and introduces features designed for smart contract pro-
gramming. However, Solidity supports a variety of unsafe patterns[d] which
makes it difficult for analysis tools[32/TT] and programmers to find all vulnerabili-
ties. Solidity has few built-in security mechanisms and even worse, vulnerabilities
are easily introduced because of simple programming mistakes, such as forget-
ting a modifier. Others are harder to notice, such as implicit integer overflows,
or discarding the return value of sensitive functions.

For traditional problems, languages such as Java[34], Haskell|30], Swift[3],
Rust[40], and Pony[9] leverage years of research in programming languages to
prevent the writing of unsafe code. In contrast, multiple programming languages|[TT6/43]22//18|
for writing smart contracts, including Solidity, have attempted to mimic lan-
guages such as JavaScript[25] and Python[39], without providing additional
safety mechanisms for Ethereum’s unique programming model.

Smart contracts introduce new challenges, which we address in our statically-
typed programming language FlintEL specifically designed for writing smart con-
tracts. By identifying challenges and learning from past vulnerabilities, Flint’s
features facilitate the development of robust code, and make it more difficult and
unnatural to write vulnerable contracts. We highlight the features that should
aid in the development of robust code:

1. Protection Blocks: Smart contracts often carry out sensitive operations
which need to be protected from unauthorised calls. A call can be unautho-
rised because the caller shouldn’t be allowed to make the call or because
(using typestate[14]) the contract isn’t a valid state to be executed (e.g. until
you join a club you cannot participate in its activities). Flint requires pro-
grammers to systematically think about which Ethereum users are allowed
to call a smart contract’s functions, and what state the contract has to be
in, before defining it.

2. Assets: Flint supports special operations for handling Assets such as Wei in
smart contracts. Transfer operations are performed atomically, and ensure

3 Flint was made open source on GitHub[27] in April 2018 under the MIT license.

Flint for Safer Smart Contracts 3

that the state of a contract is always consistent. In particular, Assets in
Flint cannot be accidentally created, duplicated, or destroyed, but they can
be atomically split, merged, and transferred to other Asset variables. Using
Asset types avoids a class of vulnerabilities in which smart contracts’ internal
state does not accurately represent their true Wei balance.

3. Wei is an asset: In Solidity, Wei values are represented as integers rather
than a dedicated type, allowing accidental conversions between numbers and
currency. This can lead to inconsistent states, in which the actual balance
of the smart contract is incorrect.

4. Static typing: Given that contracts cannot be corrected, type errors need
to be found before contracts are released.

5. Modifiers: Flint’s code is by default private and immutable. A programmer
has to explicitly override either of these defaults. It is a compiler error to
declare something mutable that isn’t changed by the contract.

6. Safe Arithmetic: Integer overflow causes an exception and contract exe-
cution to terminate. There are also cyclic versions of the operators, but a
programmer would have to use these special operators explicitly.

7. Loops are finite: The only loop construct is a for-in loop which is used to
iterate over arrays, dictionaries and ranges.

8. Initialisers: Contracts and structs must define public initialisers, and all
state properties will be initialised during their execution.

9. Limited Fallback Functions: Fallback functions cannot change any state.
Default fallback functions rollback the contract.

As recommended by the Ethereum Foundation, we implemented a compiler
for Flint which produces EVM bytecode via Solidity’s intermediate representa-
tion Yul[I7I20]. To fit into the existing Ethereum ecosystem, we use the Solidity
Application Binary Interface (ABI) and leverage Ethereum’s existing crypto-
graphic schemes to use Ethereum user addresses to protect from rogue callers.
Our novel protection system enables static checks on internal calls and runtime
checks on external calls.

To evaluate Flint, we translated existing smart contracts and showed the
resulting code to be more concise. To assess safety, we ran analysis tools on
the bytecode produced and show that a certain class of vulnerabilities cannot
be reproduced in Flint. We also assessed the performance of our main safety
features.

2 Solidity: Current State of Play

Solidity [19] is statically-typed and imperative. With syntax inspired by JavaScript,
Solidity provides a rich set of constructs and it is this expressivity that is visible
in many of the bugs. Avoiding the vulnerabilities that have been exposed by the
flawed contracts is critical in the design of Flint.

A Solidity contract is similar to an object-oriented class, which can inherit
functionality from other classes. Solidity provides integers, addresses, fixed-size

4 F. Schrans et al.

arrays, dynamic arrays, and dictionaries (mapping). It is also possible for pro-
grammers to define their own types (struct) and their own interfaces. A contract
contains storage fields, event declarations, and function declarations.

Function modifiers such as require can be used to check preconditions before
entering a function’s body. If they fail, execution of the contract stops, and the
sender receives an exception. Modifiers may mutate the contract’s state.

Functions return a specified number of values. A function’s signature can
contain attributes to specify how they are allowed to access the contract’s state,
and their visibility. Functions declared without visibility modifiers are implicitly
public.

Contracts can define an unnamed fallback function. When an account calls a
function of a contract which has not been defined, the fallback function is called.
Calls can be delegated in which case mutation of state in the target function call
is performed in the caller’s storage. So programmers who mistype a function’s
name may unintentionally end up updating state in the wrong storage space.

2.1 Attacks Against Solidity Contracts

The design of the Solidity language itself has contributed to it being vulnerable
to attack.[44] “Solidity was introducing security flaws into contracts that were
not only missed by the community, but missed by the designers of the language
themselves.”[8] One problem is unintuitive semantics [I12] of the call method:
“you cannot assume anything about the state of your contract after the external
call is executed.” We highlight problems with example vulnerable contracts[4]:

1. Call Re-entrancy: TheDAO Attack. The attack on TheDAO was possible
because Solidity does not have a way to make transfer of Ether and internal
bookkeeping atomic, and because function calls are synchronous — thus a
function which calls another contract may be re-entered before terminating.
In its refund function, TheDAO contract sends Ether to a client, and then
does the corresponding internal bookkeeping. A malicious client re-enters
refund as soon as it receives the Ether, and thus Ether is repeatedly sent,
the bookkeeping is not performed, and the process is repeated until refund
runs out of gas or the contract runs out of Ether.

2. Visibility Modifiers: the First Parity Multi-sig Wallet Hack. At the time of
the attack, Solidity initialisers could be called anywhere any number of times.
The confusing semantics of delegation and fallback functions means that
external contracts can update state not intended by the contract developer.
Parity accounts control a common wallet. An attacker exploited the wallet to
steal over $80 million [37]. The library code Parity provided was written as a
contract and users creating their own wallet contract, could delegate all the
functions to the library instance. There is an initialising function to set the
owner of a wallet that should only be called in the constructor that sets up
a new wallet. Unfortunately, due to the semantics of delegation and fallback
functions, the caller can call an initialiser at any time and set themselves as
the owner of the entire Parity contract.

Flint for Safer Smart Contracts 5

3. Contract as a Library: the Second Parity Multi-sig Wallet Hack. At the
time of the attack, Solidity libraries were just contracts so they could have
updateable state. A second problem was that initialisers do not have to be
called. The previous Parity Multi-sig contract was affected by another at-
tack, which caused the loss of approximately $260 million. The initialisation
function now did have a modifier (only uninitialised). The assumption
from the developers was that their WalletLibrary would only be interacted
with through delegate calls (mutating the caller’s state rather than the li-
brary’s state). However, WalletLibrary, which was just an ordinary contract,
didn’t actually call the initialisation function, so an attacker was able to call
the initialiser, set the owner to itself and then terminate the contract. All
of the other wallets delegating their calls to WalletLibrary were frozen: the
instance of WalletLibrary they were delegating was destroyed. There were
two problems: the first was that an initialiser did not have to be called at
all, and the second was that a user was able to modify the state of a smart
contract which was only meant to be used as a stateless library.

4. Unchecked Calls: King of the Ether Throne. Solidity does not require
return values to be checked. This contract keeps track of a current king.
An account needs to pay more than the king paid in order to dethrone him
and when a king is dethroned, he gets sent his stake back. This will not
happen if the contract runs out of gas and the boolean indicating whether
the transaction was successful is not checked. When an out of gas exception
occurs, the Ether is returned to the caller and as the king is not the caller
he doesn’t get his Ether back.

5. Arithmetic Overflows: Proof of Weak Hands Coin. Arithmetic operators
have wrap-around semantics. This contract implements a currency. About
$476K was lost due to an arithmetic overflow following an addition.

The attacks can mostly be attributed to a mix of human error and unintuitive
language semantics. Understanding the pitfalls that some Solidity programs have
fallen into, was the starting point of the design of Flint. We now discuss how
Flint makes the development of vulnerable contracts harder to write accidentally.

1. Call Reentrancy: TheDAO Attack. Flint uses an @payable function anno-
tation, for currency transfer. @payable requires a Wei value rather than an
integer. Wei is transferred atomically so there could not be a transfer before
updating the contract’s bookkeeping. Also there is limited re-entrancy, and
our fallback functions cannot update state.

2. Visibility Modifiers: the First Parity Multi-sig Wallet Hack. Flint requires
initialisers which have to initialise all state and which get called exactly once
and that is before use. A caller could overwrite these values, if the contract
developer made them visible, but the default is everything is private and
immutable.

3. Contract as a Library: the Second Parity Multi-sig Wallet Hack. Libraries
are stateless, Flint’s default fallback functions just rollback, and Flint en-
forces the initialisation of contract state properties inside the init call which
has to occur on the instantiation of contracts and structs.

6 F. Schrans et al.

4. Unchecked Calls: King of the Ether Throne. In Flint, the King of the
Ether Throne vulnerability caused by discarding the result of send could
not happen as it is a compile error to discard the result of a function call.
There is also a possible denial of service attack[4] and the corresponding
Flint program would only suffer from this problem, if the non re-entrancy of
external calls were explicitly changed to allow re-entrancy.

5. Arithmetic Overflows: Proof of Weak Hands Coin. Flint’s default integers
do not overflow. So a Flint programmer could cause an arithmetic overflow,
but they have to do it explicitly by using the alternative integers operators.

The developers of Solidity apparently shared some of our concerns but have
been proposing very different solutions to the problems. For example, having
a modifier (only uninitialised) although sufficient to prevent a constructor
from being called twice, is not sufficient to get it called once, whereas Flint’s
constructor is called exactly once and at the appropriate time. Solidity’s new
inclusion of some SMT verification of arithmetic[I] should catch overflows, but
Flint’s philosophy is to use safe arithmetic in the first place. We do not see how
the Solidity developers are going to be able to alter their language to prevent the
confusing semantics of fallbacks and delegation. Both languages have assertions.
Solidity programmers need to insert them in their code in the places that Flint
programmers will use safe arithmetic, protection blocks and Assets.

3 Flint by Example

We present Flint, influenced by Swift[3] syntax, for writing safe Ethereum smart
contracts. Like in Solidity, a Flint smart contract’s state is represented by its
fields, or state properties. Unlike in Solidity, state properties are declared in
isolation from functions so that programmers can easily ensure that no unneces-
sary state properties are declared. Like in Solidity, they are stored in the smart
contract’s persistent memory (storage), with high access costs.

Like in Solidity, a Flint contract’s behaviour is characterised by its functions.
Unlike Solidity, they are declared within protection blocks rather than at the
top level of the contract. This forces programmers to first think about what
state the contract needs to be in and which parties should be able to make
function calls before defining functions. Functions are by default non-mutating,
but can explicitly mutate the contract’s state if declared as mutating. Functions
are by default private, but those with a public modifier can be called by external
Ethereum users. The standard library offers an Asset trait, which provides safe
atomic operations to handle currency, ensuring the state of smart contracts is
always consistent.

3.1 Declaring Contracts

Flint for Safer Smart Contracts 7

To introduce some features of Flinf]we start the development of a SimpleDA0

contract. When declaring the contract, we observe how Flint’s syntax requires
programmers to write their smart contact in a specific sequence of steps.

joinTimeElapsed() / beginVote() /
curator curator

<’ Propose >
o leave() / ‘\—/ vote() /
join() / tokenHolder tokenHolder

any executeProposal() /
curator

Fig. 1. DAO State Changes

1. Declaring the contract’s possible states. The contract needs to enable

ST W N

users to join (Join), if they have joined to be able to propose transfers of Wei
(Propose), and if a transfer has been proposed to vote (Vote). This typestate
appears in the contract header. The Address type represents an Ethereum
address (a user or another contract).

contract SimpleDAO (Join, Propose, Vote) {
var curator: Address // a very simple consensus mechanism
visible var proposal: Int = 0
var proposals: [Proposal] [1 // a list of all proposals to transfer Wei
var balances: [Address: Wei] = [:] // rmembers’ Wei balances

}

2. Declaring the protection blocks. Functions of a contract are declared

within protection blocks, which restrict when the enclosed functions are al-
lowed to be called. There are two elements to protection blocks: the caller
protection and the optional typestate protection. A protection block decla-
ration has to include the contract name (SimpleDA0) followed by @(types-
tate)(e.g., Join) , followed by a :: and admisable callers (e.g., curator).

The first protection block for this contract is for setting up a new SimpleDao
contract. Anyone (any) may do this and the caller’s address is bound to the
caller local variable. This initialiser can only be called when the contract
is created as all other contracts have a typestate parameter associated with
them. The second protection block is for joining an existing contract. The
third is for the curator to explicitly change the state from Join to Propose,

* For the full description of Flint see [41].

8

7
8
9
10
11
12

F. Schrans et al.

closing off the SimpleDAQ from accepting new members. The final two pro-
tection blocks are for processing proposals and votes respectively. The bodies
of the protection blocks are completed later.

SimpleDAO @(any) :: caller <- (any) { ... }

SimpleDAO @(Join) :: caller <- (any) { ... }

SimpleDAO @(Join) :: (curator) { ...}

SimpleDAO @(Propose) :: caller <- (tokenHolder) { ... }
SimpleDAO @(Propose) :: caller <- (curator) { ... }
SimpleDAO @(Vote) :: caller <- (tokenHolder) { ... }

Declaring the global structs. Struct values can be declared as state prop-

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27

3.

Tt W N~

erties or local variables, and are initialised through their initialiser. When
stored as a state property, the struct’s data resides in EVM storage. When
stored as a local variable, it resides in EVM memory, and a pointer is allo-
cated on the EVM stack. A struct’s functions are not explicitly protected
by being in protection blocks, rather they will be protected by the contract
functions that call them. Our contract only needs a Proposal struct:

struct Proposal {
var proposer: Address
var payout: Int
var recipient: Address
var yea: Int =0
var nay: Int = 0
var finished: Bool = false
var success: Bool = false
var voted: [Address: Bool] = [:]

mutating init(proposer: Address, payout: Int, recipient: Address) { self.
proposer = proposer
self.payout = payout
self.recipient = recipient
}
}

Declaring the functions. Finally, functions are declared within the pro-
tection blocks. For example, the third protection block where the curator
stops taking new members is only one function. The complete code appears
in Appendix [Al

SimpleDAO @(Join) :: (curator) {
public mutating func joinTimeElapsed() {
become Propose
}
}

3.2 Additional Language Features

Initialisation Each smart contract and struct must define exactly one public
initialiser. All of the state properties must be initialised before the initialiser

© 00~ O U Wi

ol
N = O

13
14
15
16
17
18

Flint for Safer Smart Contracts

returns. State properties can be declared with a default value and constants
must be assigned exactly once.

Type System Flint is a statically-typed language, with no support for sub-
typing. Flint supports basic types and dynamic types (Figure . Dynamic types
can be passed by value or by reference (&).

lType [Description

Address 160-bit Ethereum address

Int 256-bit unsigned integer

Bool Boolean value

String String value

Void Void value

Fixed-size Fixed-size memory block containing elements of the same type. T[n]

Array refers to an array of size n, of element type T.

Array Dynamically-sized array. [T] refers to an array of element type T.

Dictionary |Dynamically-size mappings from one key type to a value type. [K: V]
is a dictionary of key type K and value type V.

Structs Struct values, including Wei, are considered to be of dynamic type.

Fig. 2. Flint Types

Flint has traits which are based on Rust[40] traits. There are both contract
and struct traits and they describe the partial behaviour of the contracts and
structs which conform to them. Contracts and structs can conform to multiple
traits as long as there is at most one function body for any given function. An
example struct trait with a conforming struct is given below. A contract trait
would be similar with the keyword contract replacing struct.

struct trait Animal {
// Must have an empty and named initialiser
public init()
public init(name: String)
func isNamed() -> Bool
public func name() -> String
public func noise() -> String
public func speak() -> String {
if isNamed() {return name()} else {return noise()}

}
}

struct Person: Animal {
let name: String

public init() self.name = "John Doe"}
public init(name: String) {self.name = name}
func isNamed() -> Bool {return true}

public func name() -> String {return self.name}

19
20
21
22

10 F. Schrans et al.

public func noise() -> String {return "Huh?"}

// Person can also have functions in addition to Animal

public func greet() -> String {return "Hi"}
)
lFunction ‘Description ‘
send(address: Address, Sends value Wei to the Ethereum address address, and
value: inout Wei) clears the contents of value.
fatalError() Terminates the transactions with an exception, and revert

any state changes.

assert(condition: Bool) |Ensures condition holds, cause a fatalError().

Fig. 3. Flint Global Functions

The Standard Library We also define three global functions, shown in Fig-
ure Global functions are defined in the special Flint$Global struct in stdlib/-
Global.flint and are imported globally by the compiler. There is an Asset trait
defined in the standard library (see Appendix E[) as well as Wei which conforms
to it. Compiler checks ensure that contracts use Wei from the Standard Library.

Asset Traits

No Unprivileged Creation It is not possible to create an asset of non-zero
quantity without transferring it from another asset.

No Unprivileged Destruction It is not possible to decrease the quantity of
an asset without transferring it to another asset.

Safe Internal Transfers Transferring a quantity of an asset from one vari-
able to another within the same smart contract does not change the smart
contract’s total quantity of the asset.

Safe External Transfers Transferring a quantity ¢ of an asset A from a smart
contract S to an external Ethereum address decreases S’s representation of
the total quantity of A by q. Sending a quantity ¢’ of an asset A to S increases
S’s representation of the total quantity of A by ¢’.

Safe Arithmetic Operators The +, -, and * operators throw an exception and
abort execution of the smart contract when an overflow occurs. The / operator
implements integer division. For the rare cases where the intended behaviour is
cyclic, Flint also supports wrap-around operators, &+, &-, and &*.

@payable Annotation Similar to what Solidity does, when a user creates a
transaction to call a function, Ether can be sent by using @payable. A single
parameter marked implicit of type Wei must be declared; implicit parame-
ters expose information from the Ethereum transaction to the developer of the
smart contract, without using globally accessible variables, such as msg.value in
Solidity.

B~ W N

W N

O © 00O U

Flint for Safer Smart Contracts 11

@payable
public func receiveMoney(implicit value: Wei) {
doSomething(value)

}

Events JavaScript applications can listen to events emitted by an Ethereum
smart contract. Flint provides the same functionality with slightly different syn-
tax from that provided by Solidity.

contract Bank {
var balances: [Address: Int]
let didCompleteTransfer: Event<Address, Address, Int> // (origin, destination,
amount)
)
Bank :: caller <- (any) {
mutating func transfer(destination: Address, amount: Int) {
// Omitting the code which performs the transfer.
emit didCompleteTransfer(caller, destination, amount)
}
}

4 Implementation

We implemented flintc, a compiler for Flint which runs on Linux and macOS.
The compiler’s source code (about 25,000 lines of Swift[3] code) is open source
and available on GitHub|[27].

The compiler stages are illustrated in Figure[d] Programs are analysed, com-
piled to the Yul intermediate representation, and finally to EVM bytecode. By
embedding Yul in a Solidity file, tools built for Solidity work with Flint. We
compile Yul code using the Solc[I9] compiler. The tokeniser and parser are hand
written as this has enabled us to provide better error messages.

The Parser has an additional step at the end which populates an environ-
ment. The environment contains information about the discovered types in the
compilation step. Contract/Structure types contain information about the con-
forming traits, functions and fields. Contracts also contain additional informa-
tion about any declared typestates. This provides sufficient information to AST
Passes for the checking of non-trivial program properties.

Our code architecture decouples AST traversal and node processing. The tra-
ditional visitor pattern|35] leverages dynamic method dispatch mechanisms to
separate node processing logic from tree traversal logic. However, visited nodes
invoke the visitor on their children nodes manually. Our nodes do not have refer-
ences to visitors, rather we have an architecture which uses a single AST Visitor,
and multiple AST Passes. Each AST Pass implements a process function for each
type of AST node. The AST Visitor updates the tree using the nodes returned
by the AST Pass, collects diagnostics, and propagates contextual information.

12 F. Schrans et al.

Frontend Backend

Flint Source File

l Yul Preprocessor
|
l Yul Code Generator
Semantic Analyser Embed in Solidity File
Typecfecker Solc Compiler
Trait expander
l EVM Bytecode

Optimiser

Fig. 4. Compiler Stages

The AST passes are Semantic Analyser, Type Checker, TraitResolver, and Yul
Preprocessor.

The Semantic Analysis AST Pass verifies the correctness of the input pro-
gram. This performs the static checks for caller and typestate protection, traits,
mutating functions, verifying whether there are uses of undefined variables, etc.
Appendix [E] contains some examples of errors and warning diagnostics that are
produced during this pass.

As there is no subtyping or polymorphism, the Type Checking pass is straight-
forward. Appendix [E] also contains examples of type error messages.

4.1 Code Generation and Runtime

Before the code generation phase, like in most object oriented language compil-
ers, we apply a preprocessing step which mangles function names (needed for
disambiguating for overloading and for functions coming from different contracts
or structs). For each parameter which can be passed by value or by reference
an isMem parameter is added. At this stage traits are embedded in conforming
structures and contracts.

We implement a code generating function per AST Node, which takes an
AST node as a parameter, and returns its Yul representation. The YulStruct
function generates code for a Flint struct. Similarly, we implement YulFunction,
YulAssignment, YulExpression, etc.

4.2 Functions and Application Binary Interface

Flint’s Application Binary Interface (ABI) specifies at the bytecode level how
Ethereum users and other smart contracts can call the public functions of a Flint
smart contract. Flint follows Solidity’s ABI, therefore Flint and Solidity con-
tracts can interoperate. Users can call a smart contract’s function on Ethereum

Flint for Safer Smart Contracts 13

by creating a transaction, and specifying which function to call with which argu-
ments in the transaction payload. Transaction payloads are raw bytes, thus the
data needs to be encoded. Specifying which function to call is done via encod-
ing the function’s signature. Function arguments are appended to the function
signature hash as a hexadecimal value. Calling f with arguments 100 and true
would be encoded as 0x64 and 1, padded with zeros to fill a 256-bit value. An
Ethereum user or another smart contract can thus call f with arguments 100
and true by entering the following value in the transaction payload (without
newline characters):

0x13dlaa2e
0064
0001

A struct value passed as an inout (reference) argument to a function is an
implicit reference to either an EVM memory location or an EVM storage loca-
tion. When accessing the memory location, the runtime needs to know whether
it should read the value from memory or from storage. To support this, when a
struct is passed by reference to a function, an extra boolean argument, specify-
ing the location of the reference, is inserted in the argument list of the function
call. The storage and memory of a Flint smart contract are organised similarly.
The runtime functions load and store work for both variants. A contract’s state
properties are stored in EVM storage sequentially, except for values in dynamic
arrays and dictionaries. Local variables are stored in memory, and are allocated
dynamically. The allocateMemory runtime function reserves a number of bytes
in memory, and returns the start pointer of the block. The first 64 bytes of
memory (8 words) are reserved as scratch space and can be used to perform
temporary computation, or load values into memory to compute sha3 hashes or
emit Ethereum events. Memory location 0x40 (64th byte) holds a pointer to the
next available memory location (initially 0x60).

State properties of smart contracts are stored contiguously in storage, start-
ing at location 0. Each state property occupies one word (32 bytes) in the case of
basic types, or multiple words when storing structs or fixed-sized arrays. Structs
can also be stored in memory. Dynamically-sized types, such as arrays and dic-
tionaries, are not necessarily allocated contiguously. Storage accesses yield the
same gas cost regardless of which location is accessed.

The Flint runtime contains 20 runtime functions to perform low-level opera-
tions. A runtime function f can be called from the Flint standard library using
flint$f, but not from user-defined code.

Protection checks (both callers and typestate) are performed at compile-time
for internal (same contract) function calls (except try code) while the protection
of foreign contracts calling into Flint contracts, (and try code) are checked at
runtime. To enable the verification, runtime checks are inserted immediately
before running the function’s body. If the caller’s address is not in the set of
caller protections required to call the function, an exception is thrown and the
call is aborted (the REVERT opcode is executed).

14 F. Schrans et al.

Typestate protection checks are performed similarly to caller protection checks
and are done at compile-time for internal functions and at runtime for foreign
contracts calling into Flint contracts. At compile time an internal typestate enu-
meration is generated denoting all of the user defined states and the internal
states. An internal contract state property is defined by the compiler with that
type. When a runtime check needs to be performed the compiler will generate a
comparison against the set of valid typestates, and if it is not valid, an exception
is thrown and the call is aborted (the REVERT opcode is executed).

Typestate can only be changed in user-defined code through become Statel-
dentifier statements. The compiler will generate code to update the contract
state property to the appropriate enumeration value.

4.3 Intermediate Representation Organisation
To generate the IR code it is done in the following order:

1. Contract function definitions. Code is generated for user-defined contract
functions, one IR function for each Flint contract function. The Yul code does
not include explicit declarations of state properties, as accesses to storage
properties in functions are represented as static offsets into memory.

2. Struct function definitions. The function code for each user-defined and stan-
dard library struct is included next.

3. Runtime functions. Finally, we include the definition of any runtime func-
tions.

5 Evaluation

In this section we compare Flint to Solidity. We were able to use the same
analysers Oyente[32] and Mythril[IT] by embedding Flint’s IR code in a Solidity
file. The Solidity and Flint gas costs have been retrieved from executing the calls
on our simulated Ethereum network.

The most important features of Flint for writing robust code are protection
blocks (with callers and typestate), Assets, and safe arithmetic so these are the
features we examine in some detail. We provide small example programs for each
construct in both languages so that we can compare code styles, potential for
bugs as discovered by Solidity dynamic analysis tools, and gas usage. Solidity
has run-time type checking which should add a performance overhead, whereas
Flint currently has no optimisation and there is a performance overhead caused
by embedding our Yul code in a Solidity file.

5.1 Caller Protections

To compare caller protections we define simple functions some of which can be

called by any user, some by owner, and some by any customer in the customers ar-

ray. In Solidity, we implement two modifiers, onlyOwner and anyCustomer, which

check whether the caller is owner or is in the customers array, respectively.
SOLIDITY

22

23
24
25

© 00~ O U Wi

= e e
T W N~ O

modifier onlyOwner {

}

require(msg.sender == owner);

’

modifier anyCustomer {

}

uint numCustomers = customers.length;

bool found = false;

for (uint i = 0; i < numCustomers; i++) {
if (customers[i] == msg.sender) { found

}

require(found);

’

contract Callers {

}

Solidity code (above), the state and the functions are all defined at the top level of

address owner;

address[] customers;
uint256 counter;

modifier anyOwner {...}
modifier anyCustomer {...}

Flint for Safer Smart Contracts

= true; }

function anyUser() public constant returns(uint256) {...}

function ownerCall(uint counter) public constant onlyOwner returns(uint256)

Tooad

function customerCall(uint counter) public constant anyCustomer returns(

uint256) {...}

function ownerInternalCalls() public onlyOwner {...}
function customerInternalCalls() public anyCustomer {...}

15

The organisation of the smart contracts presents notable differences. In the

the contract. Solidity does not enforce the inclusion of the user-defined modifiers
we have specified in some of the function signatures. In the more concise Flint
code (below) the contract itself and the protection blocks are at the top level.

FLINT

contract Callers {

}

var owner: Address

var customers: [Address]
var numCustomers: Int
var counter: Int

Callers :: owner <- (any) {

}

mutating public func addCustomer(customer
public func anyUser() -> Int {...}

Callers :: (owner) {
public func ownerCall(counter: Int) -> Int {...}

}

public mutating func ownerInternalCalls()

Callers :: (customers) {

: Address) {...}

{...}

16
17
18

16 F. Schrans et al.

public func customerCall(counter: Int) -> Int {...}
public mutating func customerInternalCalls() {...}

}

In Figure [§] we compare the gas costs of executing each function in the Solidity
and Flint contracts. Flint is significantly faster when functions perform internal
calls to functions which require the same caller protection. This is expected, as
the caller protection check is only executed once.

The gas costs are similar for simple examples using a caller protection backed
by a single address. When calling a function which calls multiple functions,
requiring the same caller protection, Flint is up to 12 times faster than Solidity.

For caller protections backed by an array, the results aren’t as good. Flint
code is cheaper to run when the array is relatively small, but becomes more
expensive when it is large. In the example which performs a large number of
internal calls, the Flint code is up to two times faster as Flint performs a single
runtime check, whereas Solidity performs one per function call.

Operation Solidity |Flint |Difference |Possible Explanation
(Solidity vs
Flint)
Deploying 438121 [514268|S: -14.8% |Flint does not optimise code.
Any call 268 283 S: -5% V: -|Determining which function was
32% called is slightly faster in Flint.
Owner call 633 836 S: -24% V:
-22%
Owner many in-|32662 28673 |S: +14% V:|Only one dynamic caller protec-
ternal calls +496% tion check is performed in Flint.
Customer call|3791 1707 |S: +122%|Flint’s array iteration algorithm
(5 customers) V: +158% |is better suited for small arrays.
Customer call|13136 18047 |S: -27% V:|Solidity’s array iteration algo-
(20 customers) -37% rithm suits larger arrays.
Customer call|31434 43847 |S: -28% V:[Same as above.
(50 customers) -43%
Customer 168804 54426 |S: +210%]|Only one dynamic caller protec-
many calls (5 V: +1068%|tion check is performed in Flint.
customers)
Customer many|510129 |67326 |S: +658%]|Same as above.
calls (20 cus- V: +2327%
tomers)
Customer many|1192779 (93126 |S: +1181%|Same as above.
calls (50 cus- V: +3792%
tomers)

Fig. 5. Gas Costs for Callers.

We compare the result of the analyses performed by the dynamic Solidity
analysis tools Oyente and Mythril. Both analysis tools detect if the customers

0~ O ULk Wi

o e el e e e N e N e S
© 00O Ul W~ O

© 00~ O U Wi+

= e e e
T W N~ O

Flint for Safer Smart Contracts 17

array has the potential to become too large. While in Solidity the array will
silently overflow, in Flint it would throw an exception.

5.2 Typestate Prote