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Abstract

Maintaining the stability of a liquid surface in contact with a plasma is of crucial importance in a range of industrial
and fusion applications. The most fundamental feature of a plasma-surface interaction, the formation of a highly-
charged sheath region, has been neglected from the majority of previous studies of plasma-liquid interactions. This
paper considers the effect of the electric field of the sheath on the ejection of micron-scale droplets from bubbles bursting
at the liquid surface. A numerical simulation method, based on the ideal electrohydrodynamic model, is introduced and
validated against the well-known Taylor cone theory. This model is then used to include the electrical effects of the
sheath in simulations of bubble bursting events at a plasma-liquid interface. The results show a significant enhancement
in droplet ejection at modest electric fields of between 10% and 20% of the critical field strength required for a solely
electrohydrodynamic instability. This finding is in good qualitative agreement with experimental observations and its
importance in a wide range of fusion and atmospheric-pressure plasma-liquid interactions is discussed. The inclusion of
sheath physics in future studies of plasma-liquid interactions is strongly advocated.

1. Introduction

Interactions between plasmas and liquid surfaces play
a crucial role in a large and ever-increasing number of in-
dustrial processes: examples can be found in advanced ma-
terials processing techniques, electric propulsion of space-
craft, chemical catalysis, nanoparticle synthesis, plasma
medicine and decontamination of food and drinks [1, 2].

Plasma-liquid interactions are also critically important
for the successful operation of magnetic fusion devices.
Current and next-generation tokamaks use metallic plasma-
facing components, typically beryllium and tungsten, for
their favourable properties of low atomic mass and resis-
tance to erosion, respectively. However these materials
are susceptible to melting under the high heat loads of
the fusion plasma as evident in observations from JET [3],
ASDEX-Upgrade [4], TEXTOR [5] and Alcator C-Mod
[6]. Such melting causes compromises the lifetime of the
affected components and can be a source of 10-100 µm
metallic droplets which enter the plasma. The subsequent
deposition of impurities by these droplets into the plasma
is an operational concern which can cause the loss of high-
confinement modes of operation [7] or the complete termi-
nation of the discharge in a disruption event [8].

Alternative proposals to coat tokamak walls with liquid
metals provide numerous advantages over traditional solid
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surfaces. Liquid metals are able to self-replenish any dam-
age due to erosion and provide additional convective and
evaporative cooling mechanisms [9]. Their main drawback
is their susceptibility to hydrodynamic instabilities and the
resulting ejection of droplets into the plasma [10, 11, 12]
but these surfaces remain an excellent long-term propo-
sition for handling the immense heat fluxes of a fusion
plasma [13].

A clear understanding of the processes which cause
droplet ejection from liquid metals is required in order
to optimise the design of plasma-facing components in
magnetic fusion devices. Hassanein and Konkashbaev first
mentioned the bursting of bubbles on the surface of liquid
metals as a mechanism for droplet ejection from melted
surfaces in tokamaks [14, 15]. These bubbles might origi-
nate from boiling of the liquid or the absorption of gases
which can create blisters on the surface of plasma-facing
metal components [16]. The basic mechanism is illustrated
in Fig. 4 of Ref. [15]: the film covering the surface of the
bubble bursts, which can release some very fine droplets
[17], and the subsequent collapse of the bubble forms a
rising jet of liquid which pinches off, according to the
Rayleigh-Plateau instability, to form a spray of droplets.
This process is also observed, for instance, in the bursting
bubbles at the surface of a glass of champagne; the ejected
droplets are alleged to “complement the sensual experience
of the taster” [18].

The comprehensive parametric study of Duchemin et
al. [19] indicates that 10–100 µm bubbles at metallic sur-
faces eject droplets with velocities of 10–100 m s−1 and
radii around one-tenth of the initial bubble radius. Shi,
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Miloshevsky and Hassanein simulated the specific cases of
tungsten and aluminium surface bubbles and found con-
sistency with Duchemin’s more general study [20]. The
agreement between these predicted droplet velocities and
those observed in de Temmerman’s tungsten and aluminium
melting experiments on Magnum-PSI [21] provides strong
evidence that the bubble bursting mechanism is responsi-
ble for high-velocity droplet production in tokamaks. How-
ever de Temmerman provides a further intriguing observa-
tion: the formation of liquid droplets is dependent on the
electric potential, and hence the electric field, of the metal
surface. The ejection rate of aluminium droplets increased
by a factor of 10 when the surface was at floating poten-
tial, rather than being grounded, and further increased by
another factor of 10 when the target was biased at −40 V.

These experimental results can be investigated further
by including electrical effects in simulations of plasma-
liquid interactions. Langmuir’s observation of the highly-
charged sheath region at a plasma-surface boundary was
one of the earliest discoveries in plasma science [22, 23].
This sheath contains a large electric field which draws ions
out of the plasma in order to give an equal flux of ions
and electrons, which move much faster than the ions, to
the plasma-facing surface. Any credible theory of plasma-
liquid interactions must account for the large electric fields
and particle fluxes of sheath region but their role has been
broadly neglected until recently [24, 25]. These studies
used a model of cold ions and Boltzmann electrons to ac-
count for the charge density and electric fields at a plasma-
liquid interface with a planar initial configuration. How-
ever the surface of a liquid in contact with a plasma is un-
likely to maintain an idealised planar shape due to effects
such as liquid/plasma flow, surface rippling or bubble for-
mation. The present paper builds on these early studies
by considering numerical simulations of the effect of the
sheath’s electric field on droplet ejection from the bub-
ble bursting mechanism where the initial surface geome-
try contains a spherical void. The enhancement in droplet
ejection rates in these simulations is in good qualitative
agreement with the findings of de Temmerman’s experi-
ment and strongly advocates the inclusion of electric fields
in future studies of plasma-liquid interactions.

2. Ideal electrohydrodynamics (EHD)

If the lengthscale of surface deformations is smaller
than the Debye length then the electric field close to a
conducting surface is dominated by the free charges on
the surface. The charge density of electrons and ions in
the plasma is insufficient to modify the electric field signifi-
cantly over these short, sub-Debye distances so the electric
field close to the surface can be well approximated as a vac-
uum field. The fluid equations describing this system are
those of a charged liquid in a vacuum; these equations have
been referred to as the ideal electrohydrodynamic (EHD)
equations elsewhere [26] and are restated here. Previous
studies have shown that a complete plasma model, which

includes ion and electron fluxes onto the liquid surface, re-
covers the ideal EHD behaviour in the short-perturbation
regime (see Ref. [25], Fig. 3). The fact that the plasma
does not appear explicitly in the equations here does not
mean that the plasma has completely disappeared; it is
still responsible for the accumulated charge on the liquid
surface and hence is the original source of the electric field.

The fluid equations of an incompressible liquid, with
viscosity η and density ρ, in contact with a vacuum are
given by the incompressibility condition and Navier-Stokes
equation

∇ · v = 0, (1)

ρ
∂v

∂t
+ ρ (v · ∇) v = −∇p+ η∇2v + ρg (2)

where p and v denote the liquid pressure and velocity, re-
spectively, and g is the acceleration due to gravity. The
electric potential φ in the vacuum region is given by Laplace’s
equation

∇2φ = 0 (3)

which produces the electric field as E = −∇φ. The con-
ducting liquid provides an equipotential boundary condi-
tion for Laplace’s equation. The pressure at the surface of
the liquid is determined by the jump condition

ps = −γκ− ε0E
2
s

2
(4)

where γ is the surface tension value and κ is the local cur-
vature of the surface. As noted previously, the omission
of the ion ram pressure and electron thermal pressure in
this description of plasma-liquid interactions is valid pro-
vided that deformations of the liquid surface occur over
lengthscales shorter than the plasma Debye length.

The ideal EHD equations, Eqs. 1-4, have been solved
in numerous different situations. Among the most cele-
brated solutions are the Rayleigh criterion for disruption of
charged droplets [27], the static Taylor cone configuration
of a liquid surface in an electric field [28], and Melcher’s
linear analysis of the dispersion and stability of EHD sur-
face waves [29]. The latter result gives the dispersion re-
lation for a wave-like perturbation, with frequency ω and
wavenumber k, on the surface of a conducting liquid under
the application of a uniform electric field of strength E0 as

ω2 =
gρk + γk3 − ε0E2

0k
2

ρ
. (5)

The perturbations are unstable when ω2 < 0 which gives
the marginal condition for instability

E0 >
1
√
ε0

(
γk +

gρ

k

)1/2

. (6)

This stability criterion is the same for both plane-wave
and cylindrical, i.e. Bessel function, surface perturbations
[30]. Note that this stability criterion reduces to that of
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the standard Rayleigh-Taylor instability; setting E0 = 0
and reversing the sign of g gives the marginal condition for
a Rayleigh-Taylor instability of a liquid layer, with density
ρ and surface tension γ, placed above a field-free vacuum
region as ρg > γk2.

3. Simulation method

A code to solve the ideal EHD equations, Eqs. 1-4, has
been developed recently and applied to the dynamics of
charged and rotating droplets [26]. This original code is
freely available at http://www.github.com/joshholgate/
iEHD. The workings of this simulation method are briefly
outlined here; full details can be found in the original
publication and source code. A few adjustments to the
boundary conditions and initial configuration of the liquid
surface allow simulations of the bubble bursting droplet
ejection process with the inclusion of electric fields.

The simulation is based upon the finite-difference, level-
set (FDLS) method which has emerged as a popular scheme
for simulating EHD flows over the past decade [26]. The
position and motion of the liquid surface is captured by
defining an additional scalar field ψ, known as the level-
set function [31], which is positive inside the conducting
liquid and negative outside it; the interface between the
two regions is then given by the contour ψ = 0. A popular
choice for ψ is the signed distance function, as used here
to specify the initial surface configuration, which gives the
closest distance from the interface at any point and which
changes sign across the interface. The level-set function is
convected with the velocity field according to

∂ψ

∂t
+ (v · ∇)ψ = 0 (7)

and the surface of the liquid moves with it. The level-set
function allows straightforward calculation of the normal
vector and curvature of the free surface using the formulae
n̂ = −∇ψ/|∇ψ| and κ = −∇ · n̂. The ideal EHD equa-
tions, together with level-set interface tracking equation,
are discretised using the finite-difference method on a uni-
form staggered grid configuration in axisymmetric cylin-
drical coordinates and solved using the Chorin projection
method as outlined in Ref. [26]. No-slip boundary condi-
tions are utilised at the points where the liquid comes into
contact with the edges of the simulation region.

4. Simulation validation

The method described above is used to simulate the
motion of a liquid surface in an electric field and the re-
sults compared with Melcher’s linear stability results, Eqs.
5 and 6, in order to verify that the code is producing
physically-realistic results. The simulation domain is a
cylinder of radius 10 µm and height 20 µm which is half-
filled by a conducting liquid with the same viscosity, den-
sity and surface tension as tungsten: η = 7 mPa s−1,

Figure 1: Axisymmetic simulation of the growth of a Taylor cone
and ejection of droplets from an unstable tungsten surface of radius
10 µm in an electric field given by ε0E2

0/γk = 1.1.

ρ = 17600 kg m−3 and γ = 2.5 N m−1 [20]. The Debye
length in tokamak plasmas is larger than this radius [32,
Appendix A], so the dimensions of the simulation corre-
spond to the ideal EHD regime described in Sec. 2. A
fixed potential difference is applied between the top of the
cylinder and the liquid surface which has an initial height
perturbation given by a zeroth-order Bessel function with
peak-to-trough amplitude 0.5 µm. The radial wavenumber
is k = 3.8217×105 m−1 which corresponds to the first min-
imum of the Bessel function occurring at r = 10 µm. The
linear perturbation theory predicts, from the dispersion re-
lation in Eq. 5, that this perturbation grows exponentially
at a rate of

iω =
(
γk3

ρ

)1/2 (
ε0E

2
0

γk
− 1

)1/2

(8)

where gravity is neglected. Growth rates can be extracted
from the simulations and compared with this prediction in
order to make a quantitative comparison between theory
and simulation.

The growth of a Taylor cone from this initial setup is
shown in Fig. 1 for an electric field given by ε0E2

0/γk = 1.1.
The opening angle of the flat slopes of this cone at 46 µm
is measured as 46 ± 2◦, in close agreement with Taylor’s
theoretical value of 49.3◦ [28]. Subsequent frames show the
extrusion of the cone tip into a fine jet of droplets which
replicates the process seen in experimental observations
[33]. The exact mechanism of droplet pinch-off is likely
to be adversely affected by the grid spacing used in the
simulation as the apex of the cone approaches the size of
the numerical grid. As such the size of the ejected droplets
tends to be determined by the grid resolution, which places
a lower limit on the size of the simulated droplets, rather
than by any physical effects.

The simulation is run for various electric field strengths
as characterised by the factor ε0E2

0/γk. The amplitude of
the surface perturbation increases exponentially during the
early stages of each simulation, as predicted by the linear
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Figure 2: Comparison of the growth rates of ideal electrohydrody-
namic instabilities as estimated from simulations of a 10 µm radius
tungsten surface in an electric field and the linear perturbation the-
ory (PT) according to Eq. 8.

perturbation theory, so growth rates can be extracted by
least-squares fitting exponential curves to these growing
amplitudes. The results are shown in Fig. 2 along with
the growth rates predicted by Eq. 8. The simulation re-
sults lie on a line with the formula 0.702(ε0E2

0/γk − 1)1/2

whereas the linear perturbation theory predicts that the
factor before the square root should be exactly one. There-
fore the growth rates observed in the simulation are 30%
lower than predicted the linear perturbation theory; this
discrepancy is tentatively assigned to the inclusion of vis-
cosity in the simulations. However the marginal stability
limit, ε0E2

0 = γk, is accurately reproduced by the code
which gives a strong indication that the simulations are
producing physically-realistic results.

At this point it is natural to wonder whether the basic
EHD instability described by these simulations is solely
responsible for the ejection of droplets from plasma-facing
liquid metal surfaces in tokamaks. The answer is almost
certainly no. The critical electric field required to make a
tungsten surface become unstable, determined according
to Eq. 8 as ε0E2

c = γk, is over 100 MV m−1 for the 10 µm
radius perturbation shown in Fig. 1. The electric field
in the sheath of a typical tokamak plasma, with electron
temperature Te = 50 eV and Debye length λD = 20 µm
[32, Appendix A], is approximately

E0 ≈
kBTe

eλD
≈ 2.5 MV m−1 (9)

where the sheath width is on the order of λD and kBTe/e
provides an approximate value for the potential drop across
the sheath [23]. This electric field strength is clearly in-
sufficient to initiate a short-wavelength EHD instability

of the surface. If the initial perturbation has a larger
wavelength than these simulations, and hence a smaller
value of k, then the marginal stability criterion predicts
a smaller critical electric field strength which could feasi-
bly be experienced in a typical tokamak sheath. However
such a perturbation would require surface deformations on
a lengthscale larger than the Debye radius and the ideal
EHD equations would no longer apply. The linear stabil-
ity theory of the full system of plasma-liquid fluid equa-
tions associated with these large scale instabilities is con-
sidered in Ref. [24] which shows that ion bombardment can
stabilise long-wavelength instabilities against the electric
field.

On the other hand some technological uses of plasma-
liquid interactions involve the application of a large elec-
trical voltage, which far exceeds the floating value, to a
liquid cathode. Vyalykh provided the first experimen-
tal study of electrically-driven oscillations and instabili-
ties of liquid cathode surfaces in low-pressure glow dis-
charges [34]. Bruggeman later applied the EHD marginal
stability condition, Eq. 6, to argue that water cathodes
are always electrically-unstable for typical plasma glow
discharge parameters and that this instability is manifest
in observations of the plasma splitting into a filamentary
structure [35]. The detailed experimental studies of Shi-
rai provide images and analysis of Taylor cone formation
and droplet ejection in an atmospheric negative corona
discharge [36, 37]; plumes of ejected droplets are also re-
ported in the atmospheric-pressure solution-cathode glow
discharge of Schwartz, who notes the similar characteris-
tics of these micron-scale jets to those produced by Taylor
cones [38]. Finally, the importance of charge accumulation
on plasma-facing liquid surfaces is further demonstrated
by the recent experiments of Dubinov who observed un-
usual deformations of a liquid surface in a capillary tube
and between thinly-spaced capillary plates when a spark
discharge was applied to the surface of an ionic solution
[39].

5. Field-enhanced droplet ejection from bursting
bubbles

The linear stability theory and simulations considered
so far make the assumption that the surface of the liquid
is almost flat before the instability begins. This idealised
initial configuration is not always accurate; in particular
the bubble bursting mechanism for droplet formation from
a liquid surface, as introduced in Sec. 1, begins with the
air cavity left at the surface of the liquid after its cover-
ing thin film has burst. Previous works have identified this
mechanism as a leading contender for droplet ejection from
molten surfaces in tokamaks but have not yet accounted
for the role of the electric field in the sheath. The signif-
icance of this omission is indicated by the experiments of
de Temmerman et al. where the ejection of droplets from
melted aluminium and tungsten targets in the Magnum-
PSI device was attributed to bubble bursting [21]. The
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Figure 3: Axisymmetric simulations of droplet formation by a bursting bubble at a molten aluminium surface in an electric field. The
simulation domain extends beyond the regions shown. The application of an electric field to the surface, such as the field generated by
a plasma sheath, enhances the ejection rate of droplets even when the field alone would be insufficient to cause an electrohydrodynamic
instability.

ejection rate of aluminium droplets increased by a factor
of 10 when the surface was at floating potential, rather
than being grounded, and further increased by another
factor of 10 when the target was biased at −40 V. The
axisymmetric simulation described in the previous section
can be used to investigate the role of electric fields in en-
hancing the bubble bursting mechanism and to explain the
findings of these experiments.

The evolution of an aluminium surface with a spheri-
cal cavity, of radius 10 µm and with its centre positioned
7.5 µm below the liquid surface, is shown in the top row
of Fig. 3. The liquid region is 4 bubble radii (40 µm) deep
and 4 bubble radii from its centre to its outer radial edge.
A small potential difference is applied between the liquid
and the top of the simulation domain which is located 8
bubble radii (80 µm) above the liquid surface. Gravity is
ignored in this simulation. The electric field at the start of
the simulation has some enhancement at the corners where
the bubble meets the surface while the electric field inside
the bubble is almost zero due to the shielding effect of the
bubble cap. The bubble collapses rapidly after the sim-

ulation is initialised which causes a jet of liquid to shoot
upwards but, before it can pinch off into a droplet, surface
tension pulls this jet back down. This contradicts the find-
ings of Shi, Miloshevsky and Hassanein who did observe
pinching-off of the liquid aluminium column [20]. This dif-
ference could be due to their smaller simulation domain,
which is 3 bubble radii in depth and 2 bubble radii in ra-
dius, which concentrates energy into the upwards motion
of the jet.

The second and third rows of Fig. 3 show the develop-
ment of the bubble-bursting process with the same initial
conditions as before but with a larger potential difference
applied between the liquid and the top of the simulation
domain. If the surface was perfectly-flat then the electric
field generated by this potential difference would still be in-
sufficient to initiate an EHD instability with a wavelength
equal to the bubble radius; the ratio of the applied field to
the critical field, Ec, required for this EHD instability is
indicated for each simulation. The electric field strength is
significantly enhanced at highly-curved points on the liq-
uid surface as evidenced by the small nodules which are
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pulled out of the jets in the 1 µs frames. The second
row shows the electric field removing a single large droplet
from the rising jet of liquid whereas the jet is elongated
before being pinched-off in the third row. The resulting
column of liquid in the bottom-right frame then becomes
unstable to a Rayleigh-Plateau instability where the liq-
uid column pinches-off into a chain of droplets. Note that
the charge on these ejected droplets will be determined
by electron currents within the plasma, with a character-
istic charging timescale of 10−9 s [40], rather than any
charge relaxation effects occurring over the much longer
bubble-bursting timescale of 10−6 s. The ejection of liquid
droplets from the bubble bursting mechanism is clearly
facilitated and enhanced by sub-critical electric fields in
accordance with de Temmerman’s experimental observa-
tions [21]. The highly-curved surfaces created by the bub-
ble bursting mechanism lead to significant enhancements
in the electric field strength over that of a planar surface;
such geometric effects can be just as important in deter-
mining the stability of a plasma-facing surface as the raw
strength of the sheath’s electric field.

The simulation results discussed here are also impor-
tant in non-fusion atmospheric plasma discharges. A di-
rect application of this mechanism occurs in plasma weld-
ing and cutting devices which use the high temperatures
of the plasma to melt the metal surface [41]. As the metal
surface boils it will produce surface bubbles which, to-
gether with the large electric field of the plasma arc, pro-
vide the same initial conditions as shown in Fig. 3. The
removal rate of melted material in the efflux plasma is cru-
cial for decreasing surface roughness and improving the
quality of the cut and remains a topic of active research
[42].

Furthermore it is noted by Bruggeman that ”plasmas
interacting with liquid water can drive instabilities leading
to formation of bubbles in solution in addition to affecting
the micron-sized bubbles already present” [2]. As such the
bubble-bursting mechanism will play a role in the injec-
tion of micrometre droplets in atmospheric-pressure low
temperature discharges interacting with liquids. However
the electric field in these atmospheric plasmas is unlikely
to reach the strength required for significant enhancement
in droplet ejection rates: a plasma with electron density
of 1019 m−3 and temperature of 1 eV has a field strength
of approximately 0.4 MV m−1, as given by to Eq. 9, while
the critical field strength of an electrohydrodynamic in-
stability, ε0E2

c = γk, is 20 MV m−1 for a 10 µm water
surface perturbation with γ = 0.072 N m−1. The typical
field strength, at 2% of the critical field, falls below the 10-
20% level which is required for enhanced droplet emission
in the simulation results of Fig. 3.

6. Conclusions

Maintaining the stability of plasma-facing liquid sur-
faces is of crucial importance in a wide range of industrial
applications and in magnetic confinement fusion devices

where metallic components can suffer melt damage due to
the high fusion heat loads. The melting and erosion of
metal surfaces is also critical for the operation of plasma
cutting and welding devices. The plasma region immedi-
ately adjacent to the liquid surface, known as the sheath,
is highly-charged and exerts a considerable electric stress
on the liquid. The electric field of the sheath has only
recently been included in models of plasma-liquid interac-
tions. However these electrical effects have been consid-
ered in isolation so far; this paper investigates their role
in enhancing droplet ejection rates from the bursting of
bubbles on the surface of the liquid.

The dynamics of micrometre-scale deformations of the
plasma-liquid interface, such as those involved in the bub-
ble bursting mechanism, can be resolved using the ideal
electrohydrodynamic equations which are introduced in
Sec. 2. A code to solve these equations using the finite-
difference, level-set method is briefly described in Sec. 3
and validated against the linear stability theory for small
perturbations of a nearly-flat liquid surface in Sec. 4. Full
simulations of the bubble bursting process, both with and
without an electric field, are then described in Sec. 5 and
the results are displayed in Fig. 3. The number of droplets
ejected from the surface increases with the strength of the
electric field in accordance with experimental observations
of the bubble bursting mechanism [21]. The electric field
does not need to be particularly large to cause this en-
hancement; an electric field between 10% and 20% of the
critical field strength required for a solely electrohydro-
dynamic instability leads to a noticeable enhancement in
droplet ejection.

It is clear that the electric field strength of the sheath
alone does not entirely determine the stability of a plasma-
facing surface; the initial shape of the surface, and any
geometric enhancement of the electric field, is vital in de-
termining its behaviour. The example of field-enhanced
droplet ejection from the bubble bursting mechanism demon-
strates the importance of these geometric effects and ex-
plains the increase in droplet emission in experiments where
the surface has a slight potential bias [21]. The inclusion
of electrical effects in other known droplet-forming mech-
anisms, such as Kelvin-Helmholtz instabilities [12, 43],
should certainly be investigated further in the future.
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