
Computational Statistics
https://doi.org/10.1007/s00180-019-00927-6

ORIG INAL PAPER

A simple method for implementing Monte Carlo tests

Dong Ding1 · Axel Gandy1 · Georg Hahn2

Received: 4 September 2018 / Accepted: 9 October 2019
© The Author(s) 2019

Abstract
We consider a statistical test whose p value can only be approximated using Monte
Carlo simulations. We are interested in deciding whether the p value for an observed
data set lies above or below a given threshold such as 5%. We want to ensure that the
resampling risk, the probability of the (Monte Carlo) decision being different from
the true decision, is uniformly bounded. This article introduces a simple open-ended
method with this property, the confidence sequence method (CSM). We compare our
approach to another algorithm, SIMCTEST, which also guarantees an (asymptotic)
uniform bound on the resampling risk, as well as to other Monte Carlo procedures
without a uniform bound. CSM is free of tuning parameters and conservative. It has
the same theoretical guarantee as SIMCTEST and, in many settings, similar stopping
boundaries. As it is much simpler than other methods, CSM is a useful method for
practical applications.

Keywords Algorithm · Hypothesis testing · Monte Carlo · p value

1 Introduction

Suppose we want to use a one-sided statistical test with null hypothesis H based on a
test statistic T with observed value t . We aim to calculate the p value

p = P(T ≥ t),

where the measure P is ideally the true null distribution in a simple hypothesis. Oth-
erwise, it can be an estimated distribution in a bootstrap scheme, or a distribution
conditional on an ancillary statistic, etc.

B Dong Ding
dong.ding10@imperial.ac.uk

1 Imperial College London, South Kensington Campus, London SW7 2AZ, UK

2 Lancaster University, Bailrigg, Lancaster LA1 4YW, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-019-00927-6&domain=pdf
http://orcid.org/0000-0002-1653-1768


D. Ding et al.

We consider the scenario in which p cannot be evaluated in closed form, but can be
approximated using Monte Carlo simulation, e.g. through bootstrapping or drawing
permutations. To be precise, we assume we can generate a stream (Ti )i∈N of i.i.d.
random variables from the distribution of a test statistic T under P . The information
about whether or not Ti exceeds the observed value t is contained in the random
variable Xi = I(Ti ≥ t), where I denotes the indicator function. It is a Bernoulli
random variable satisfying P(Xi = 1) = p. We will formulate algorithms in terms of
Xi .

Gleser (1996) suggests that two individuals using the same statistical method on
the same data should reach the same conclusion. For tests, the standard decision rule
is based on comparing p to a threshold α. In the setting we consider, Monte Carlo
methods are used to compute an estimate p̂ of p, which is then compared to α to reach
a decision.

We are interested in procedures which provide a user-specified uniform bound
ε > 0 on the probability of the decision based on p̂ being different to the decision
based on p. We call this probability the resampling risk and define it formally as

RRp( p̂) =
{
Pp( p̂ > α) if p ≤ α,

Pp( p̂ ≤ α) if p > α,

where p̂ is the p value estimate computed by aMonte Carlo procedure.We are looking
for procedures that achieve

sup
p∈[0,1]

RRp( p̂) ≤ ε (1)

for a pre-specified ε > 0.
We introduce a simple sequential Monte Carlo testing procedure achieving (1) for

any ε > 0, which we call the confidence sequence method (CSM). Our method is
based on a confidence sequence for p, that is a sequence of (random) intervals with a
joint coverage probability of at least 1 − ε. We will use the sequences constructed in
Robbins (1970) and Lai (1976). A decision whether to reject H is reached as soon as
the first interval produced in the confidence sequence ceases to contain the threshold
α.

The basic (non-sequential) Monte Carlo estimator (Davison and Hinkley 1997)

p̂ = 1 + ∑n
i=1 Xi

1 + n

does not guarantee a small uniform bound on RRp( p̂), where n is a pre-specified num-
ber of Monte Carlo simulations. In fact, the lowest uniform bound on the resampling
risk for this estimator is at least 0.5 (Gandy 2009).

A variety of procedures for sequential Monte Carlo testing are available in the
literature which target different error measures. Silva et al. (2009) and Silva and
Assunção (2013) bound the power loss of the test while minimising the expected
number of steps.

123



A simple method for implementing Monte Carlo tests

Silva and Assunção (2018, Section 4) construct truncated sequential Monte Carlo
algorithms which bound the power loss and the level of significance in comparison
to the exact test by arbitrarily small numbers. Other algorithms aim to control the
resampling risk (Fay and Follmann 2002; Fay et al. 2007; Gandy 2009; Kim 2010).
Fay et al. (2007) use a truncated sequential probability ratio test (SPRT) boundary and
discuss the resampling risk, but do not aim for a uniform lower bound on it. Fay and
Follmann (2002) andKim (2010) ensure a uniform bound on the resampling risk under
the assumption that the random variable p belongs to a certain class of distributions.
Besides being a much less restrictive requirement than (1), one drawback of this
approach is that in real situations, the distribution of p is typically not fully known,
as this would require knowledge of the underlying true sampling distribution.

We mainly compare our method to the existing approach of Gandy (2009), which
we call SIMCTEST in the present article. SIMCTEST works on the partial sum Sn =∑n

i=1 Xi and reaches a decision on p as soon as Sn crosses suitably constructed
decision boundaries. SIMCTEST is specifically constructed to guarantee a desired
uniform bound on the resampling risk.

Procedures for Monte Carlo testing can be classified as open-ended and truncated
procedures (Silva and Assunção 2013). A truncated approach (Davidson and MacK-
innon 2000; Silva and Assunção 2013, 2018; Besag and Clifford 1991) specifies a
maximum number ofMonte Carlo simulations in advance and forces a decision before
or at the end of all simulations. Open-ended procedures (e.g., Gandy 2009) do not have
a stopping rule or an upper bound on the number of steps. Open-ended procedures
can be turned into truncated procedures by forcing a decision after a fixed number
of steps. Truncated procedures cannot guarantee a uniform bound on the resampling
risk—Sect. 6 demonstrates this.

In practice, a truly open-ended procedure will often not be feasible. This is obvious
in settings where generating samples is very time-consuming (Tango and Takahashi
2005; Kulldorff 2001), but it is also true in other settings where a large number of
samples is being generated, as infinite computational effort is never available.

In the related context of Monte Carlo tests for multiple comparisons, algorithms
guaranteeing a uniform error bound on any erroneous decision have been considered
(Gandy and Hahn 2014, 2016). Though not explicitly discussed, CSM could in fact be
considered a special case of the framework of Gandy and Hahn (2016) when testing
one hypothesis using a Bonferroni correction (Bonferroni 1936).

This article is structured as follows. We first describe the confidence sequence
method in Sect. 2 before briefly reviewing SIMCTEST in Sect. 3. We compare the
(implied) stopping boundaries of both methods and investigate the real resampling
risk incurred from their use in Sect. 4. In Sect. 5, we investigate the rate at which
both methods spend the resampling risk and construct a new spending sequence for
SIMCTEST which (empirically) gives uniformly tighter stopping boundaries than
CSM, thus leading to faster decisions on p. In Sect. 6, we show that neither procedure
bounds the resampling risk in the truncated Monte Carlo setting, but that the truncated
version of CSM performs well compared to more complicated algorithms. The article
concludes with two example applications in Sect. 7 and a discussion in Sect. 8.

123



D. Ding et al.

2 The confidence sequencemethod

This section introduces the confidence sequence method (CSM), a simple algorithm
to compute a decision on p while bounding the resampling risk.

Let ε ∈ (0, 1) be the desired bound on the resampling risk. Using independent
Bernoulli(p) random variables Xi , i ∈ N, the following inequality holds (Robbins
1970):

Pp

(
∃n ∈ N : b(n, p, Sn) ≤ ε

n + 1

)
≤ ε (2)

for all p ∈ (0, 1), where b(n, p, x) = (n
x

)
px (1 − p)n−x and Sn = ∑n

i=1 Xi . Then,
In = {p ∈ [0, 1] : (n + 1)b(n, p, Sn) > ε} is a sequence of confidence sets that has
the desired joint coverage probability 1 − ε.

The In are intervals (Lai 1976). Indeed, if 0 < Sn < n we obtain In =
(gn(Sn), fn(Sn)), where gn(x) < fn(x) are the two distinct roots of (n +
1)b(n, p, x) = ε. If Sn = 0 then the equation (n+ 1)b(n, p, 0) = ε has only one root
rn , leading to In = [0, rn). Likewise for Sn = n, in which case In = (rn, 1].

CSM will determine a decision on H as follows. We take samples until α /∈ In ,
leading to the stopping time

τ = inf{n ∈ N : α /∈ In}.

If In ⊆ [0, α] we reject H . If In ⊆ (α, 1] we do not reject H . By construction, the
uniform bound on the resampling risk in (1) holds true.

It is not necessary to compute the roots of (n+1)b(n, p, x) = ε explicitly to check
the stopping criterion. Indeed, by the initial definition of In ,

τ = inf {n ∈ N : (n + 1)b(n, α, Sn) ≤ ε} ,

which is computationally easier to check.
For comparisons with SIMCTEST, it will be useful to write τ equivalently as

τ = inf{n ∈ N : Sn ≥ un or Sn ≤ ln},

where un = max{k : (n+1)b(n, α, k) > ε}+1 and ln = min{k : (n+1)b(n, α, k) >

ε}− 1 for any n ∈ N. We call (ln)n∈N and (un)n∈N the (implied) stopping boundaries.
Figure 1 illustrates the implied stopping boundaries for different testing thresholds α.

We may also be required to provide a confidence interval of the true p value when
the CSM stops. This confidence interval can be straightforwardly estimated based
upon Monte Carlo or bootstrap samples (Ruxton and Neuhäuser 2013). However, in
CSM, this is even simpler as a confidence interval can be directly obtained by using
Iτ .

123



A simple method for implementing Monte Carlo tests

0 2000 4000 6000 8000 10000
Number of steps n

0
40

0
80

0
12

00 Stopping boundaries
α = 0.01
α = 0.05
α = 0.10

Fig. 1 Lower (ln ) and upper (un ) stopping boundaries of CSM for several thresholds α

In order to define the resampling risk for CSM we define an estimator p̂c of p as

p̂c =
{

Sτ

τ
τ < ∞,

α τ = ∞.
(3)

The following theorem shows that the resampling risk of CSM is uniformly
bounded.

Theorem 1 The estimator p̂c satisfies

sup
p∈[0,1]

RRp( p̂c) < ε.

The proof of Theorem 1 can be found in “Appendix A”.
Will CSMstop in a finite number of steps? If p = α then the algorithmwill only stop

with probability of at most ε. Indeed, Pα(τ < ∞) = Pα(∃n ∈ N : α /∈ In) ≤ ε by
construction. However, if p �= α then the algorithmwill stop in a finite number of steps
with probability one. Lai (1976) shows that with probability one, limn→∞ fn(Sn) =
p = limn→∞ gn(Sn) given p �= α, thus implying the existence of n ∈ N such that
α /∈ In .

Figure 2 shows the expected number of steps as a function of p for three different
values ε ∈ {0.01, 0.001, 0.0001}. The testing threshold chosen for Fig. 2 was α =
0.05. In Fig. 2, the expected number of steps increases slightly as the resampling risk
decreases. For a fixed value of the resampling risk, the effort increases when the true
p value approaches the threshold α.

If one considers a setup in which p is random (e.g., for power/level computations
or in a Bayesian setup), then E[τ ] = ∞. This is a consequence of (Wald 1945,
Equation 4.81) which also applies to any procedure satisfying (1) for ε < 0.5 (see
also (Gandy 2009, Section 3.1)). To have a feasible algorithm for a random p, a finite
upper threshold on the number of steps of CSM has to be imposed. Alternatively, a
specialised procedure can be used (e.g., Gandy and Rubin-Delanchy 2013).

123



D. Ding et al.

0
10

00
20

00
30

00

p

E
p(τ

)

0.00 0.05 0.10 0.15 0.20

ε = 0.01
ε = 0.001
ε = 0.0001

Fig. 2 Expected number of steps Ep(τ ) required to decide whether p lies above or below the threshold
α = 0.05

3 Review of SIMCTEST

This section reviews the SIMCTEST method of Gandy (2009) (Sequential Imple-
mentation of Monte Carlo Tests) which also bounds the resampling risk uniformly.
SIMCTEST sequentially updates two integer sequences (Ln)n∈N and (Un)n∈N serv-
ing as lower and upper stopping boundaries and stops the sampling process once the
trajectory (n, Sn) hits either boundary. The decision whether the p value lies above
(below) the threshold depends on whether the upper (lower) boundary was hit first.

The boundaries (Ln)n∈N and (Un)n∈N are a function of α, computed recursively
such that the probability of hitting the upper (lower) boundary, given p ≤ α (p > α),
is less than ε. Starting withU1 = 2, L1 = − 1, the boundaries are recursively defined
as

Un = min{ j ∈ N :Pα(τα ≥ n, Sn ≥ j) + Pα(τα < n, Sτ ≥ Uτ ) ≤ εn},
Ln = max{ j ∈ Z :Pα(τα ≥ n, Sn ≤ j) + Pα(τα < n, Sτ ≤ Lτ ) ≤ εn},

where εn , n ∈ N, is called a spending sequence. The spending sequence is non-
decreasing and satisfies εn → ε as n → ∞ as well as 0 ≤ εn < ε for all n ∈ N. Its
purpose is to control how the overall resampling risk ε is spent over all iterations of
the algorithm: In any step n of SIMCTEST, new boundaries are computed with a risk
of εn − εn−1. Gandy (2009) suggests εn = εn/(n+ k) as a default spending sequence,
where k is a constant, and chooses k = 1000.

SIMCTEST stops as soon as the trajectory (n, Sn) hits the lower or upper boundary,
thus leading to the stopping time σ = inf{k ∈ N : Sk ≥ Uk or Sk ≤ Lk}. In this case,
a p value estimate can readily be computed as p̂s = Sσ /σ if σ < ∞ and p̂s = α

otherwise. Similarly to Fig. 2, the expected stopping time of SIMCTEST diverges as
p approaches the threshold α.

SIMCTEST achieves the desired uniform bound on the resampling risk under cer-
tain conditions. To be precise, Theorem 2 in Gandy (2009) states that if ε ≤ 1/4 and
log(εn − εn−1) = o(n) as n → ∞, then (1) holds with p̂ = p̂s .

123



A simple method for implementing Monte Carlo tests

0 1000 2000 3000 4000 5000
Number of steps n

0
10

0
20

0
30

0

0 1000 2000 5000

Stopping boundaries
CSM
SIMCTEST

Fig. 3 Stopping boundaries for CSM and SIMCTEST (with default spending sequence)

4 Comparison of CSM to SIMCTEST with the default spending
sequence

In this section we compare the asymptotic behaviour of the width of the stopping
boundaries for CSM and SIMCTEST. SIMCTEST is employed with the default
spending sequence given in Sect. 3. Unless stated otherwise, we always consider
the threshold α = 0.05 and aim to control the resampling risk at ε = 10−3.

4.1 Comparison of boundaries

We start by comparing the stopping boundaries of CSM and SIMCTEST. First, Fig. 3
gives an overview of the upper and lower stopping boundaries of CSM and SIM-
CTEST up to 5000 steps, respectively. Second, Fig. 4 shows the ratio of the widths
of the stopping boundaries for both methods, that is (un − ln)/(Un − Ln), up to 107

steps, where un , ln (Un , Ln) are the upper and lower stopping boundaries of CSM
(SIMCTEST).

According to Fig. 4, the boundaries of CSM are initially tighter than the ones of
SIMCTEST but become wider as the number of steps increases. However, this will
eventually reverse again for large numbers of steps as depicted in Fig. 4.

4.2 Real resampling risk in CSM and SIMCTEST

Both SIMCTEST and CSM are guaranteed to bound the resampling risk by some
constant ε chosen in advance by the user. We will demonstrate in this section that the
actual resampling risk (that is the actual probability of hitting a boundary leading to
a wrong decision in any run of an algorithm) for SIMCTEST is close to ε, whereas
CSM does not make full use of the allocated resampling risk. This in turn indicates
that it might be possible to construct boundaries for SIMCTEST which are uniformly
tighter than the ones of CSM; we will pursue this in Sect. 5.

123



D. Ding et al.

1e+00 1e+02 1e+04 1e+06

0.
6

0.
8

1.
0

1.
2

1.
4

Number of steps n
1e+02 1e+03 1e+04 1e+05 1e+06 1e+07

(un−ln)/(Un−Ln)

Fig. 4 Ratio of widths of stopping boundaries (un − ln)/(Un − Ln) for CSM (un upper, ln lower) and
SIMCTEST with default spending sequence (Un , Ln ). Log scale on the x-axis

We compute the actual resampling risk recursively for both methods by calculating
the probability of hitting the upper or the lower stopping boundary in any step for
the case p = α; other values of p give smaller resampling risks. This can be done as
follows: Suppose we know the distribution of Sn−1 conditional on not stopping up to
step n − 1. This allows us to compute the probability of stopping at step n as well as
to work out the distribution of Sn conditional on not stopping up to step n.

Figure 5 plots the cumulative probability of hitting the upper and lower boundaries
over 5 · 104 steps for both methods. As before we control the resampling risk at our
default choice of ε = 10−3.

SIMCTEST seems to spend the full resampling risk as the number of samples goes
to infinity. Indeed, the total probabilities of hitting the upper and lower boundaries in
SIMCTEST are both 9.804·10−4 within the first 5·104 steps. Thismatches the allowed
resampling risk up to that point of ε50000 = (5 ·104)/(5 ·104 +1000)ε ≈ 9.804 ·10−4

allocated by the spending sequence,which is close to the full resampling risk ε = 10−3.
CSM tends to be more conservative as it does not spend the full resampling risk.

Indeed, the total probabilities of hitting the upper and lower boundaries in CSM up to
step 5 ·104 are 4.726 ·10−4 and 4.472 ·10−5, respectively. In particular, the probability
of hitting the lower boundary in CSM is far less than ε.

This imbalance is more pronounced for even smaller thresholds. We repeated the
computation depicted in Fig. 5 for α ∈ {0.02, 0.01, 0.005} (figure not included),
confirming that the total probabilities of hitting the upper and lower boundaries in
CSM both decrease monotonically as α decreases.

5 Spending sequences which dominate CSM

5.1 Example of a bespoke spending sequence

One advantage of SIMCTEST lies in the fact that it allows control over the resampling
risk spent in each step through suitable adjustment of its spending sequence εn , n ∈ N.

123



A simple method for implementing Monte Carlo tests

1 10 100 1000 100000e
+0

0
4e

−0
4

8e
−0

4

Number of steps n
100 1000 10000 50000

P(hit boundary up to step n | p = α)
CSM, upper boundary
CSM, lower boundary
SIMCTEST, upper boundary
SIMCTEST, lower boundary

Fig. 5 Cumulative resampling risk spent over all iterations of the algorithm spent in CSM and SIMCTEST.
Log scale on the x-axis

This can be useful in practical situations in which the overall computational effort is
limited. In such cases, SIMCTEST can be tuned to spend the full resampling risk over
the maximum number of samples. On the contrary, CSM has no tuning parameters
and hence does not offer a way to influence how the available resampling risk is spent.

Suppose we are given a lower bound L and an upper bound U for the minimal and
maximal number of samples to be spent, respectively. We construct a new spending
sequence in SIMCTEST which guarantees that no resampling risk is spent over both
the first L samples as well as after U samples have been generated. We call this the
truncated spending sequence:

εn =

⎧⎪⎨
⎪⎩
0 if n ≤ L,
n

n+k ε if L < n < U ,

ε if n ≥ U .

Figure 6 shows upper and lower stopping boundaries of CSM and SIMCTEST with
the truncated spending sequence (using L = 100, U = 10,000, and k = 1000).

As expected, for the first 100 steps the stopping boundaries of SIMCTEST aremuch
wider than the ones of CSM since no resampling risk is spent.

As soon as SIMCTEST starts spending resampling risk on the computation of its
stopping boundaries, the upper boundary drops considerably. By construction, the
truncated spending sequence is chosen in such a way as to make SIMCTEST spend
all resampling risk within 104 steps. Indeed, we observe in Fig. 6 that as expected, the
stopping boundaries of SIMCTEST are uniformly narrower than those of CSM over
the interval (L,U), thus resulting in a uniformly shorter stopping time for SIMCTEST.

We also observe, however, that this improvement in the width of the stopping
boundaries seems to be rather marginal, making the tuning-free CSMmethod a simple
and appealing competitor.

123



D. Ding et al.

1 10 100 1000 10000
Number of steps n

0
20

0
40

0
60

0

Stopping boundaries
CSM (un,ln)
SIMCTEST (Un,Ln)

Fig. 6 Stopping boundaries of CSM and SIMCTEST with the truncated spending sequence. Log scale on
the x-axis

5.2 Uniformly dominating spending sequence

Section 5.1 gave an example in which it was possible to choose the spending sequence
for SIMCTEST in such a way as to obtain stopping boundaries which are strictly
contained within the ones of CSM for a pre-specified range of steps.

Motivated by Fig. 5 indicating that CSM does not spend the full resampling risk, we
aim to construct a spending sequence with the property that the resulting boundaries
in SIMCTEST are strictly contained within the ones of CSM for every number of
steps. This implies that the stopping time of SIMCTEST is never longer than the one
of CSM. Our construction is dependant on the specific choice α = 0.05.

We define a new spending sequence for SIMCTEST as εn = n0.5/(n0.5 + 3) · ε,
n ∈ N. “Appendix B” shows that this sequence empirically matches the rate at which
SIMCTEST spends the real resampling risk with the one of CSM.

Figure 7 depicts the differences between the upper and lower boundaries of
CSM (upper un , lower ln) and SIMCTEST (upper Un , lower Ln) with the afore-
mentioned spending sequence. We observe that ln ≤ Ln as well as un ≥ Un for
n ∈ {1, . . . , 5 · 104}, thus demonstrating that SIMCTEST can be tuned empirically
to spend the resampling risk at the same rate as CSM while providing strictly tighter
upper and lower stopping boundaries (over a finite number of steps). We observe that
the gap between the boundaries seems to increase with the number of steps, leading
to the conjecture that SIMCTEST has tighter boundaries for all n ∈ N.

6 Comparison with other truncated sequential Monte Carlo
procedures

In this section, we compute the resampling risk for several truncated procedures as
a function of p and thus demonstrate that they do not bound the resampling risk
uniformly.

123



A simple method for implementing Monte Carlo tests

−1
0

−5
0

5
10

Number of steps n
100 1000 10000 50000

un − Un
ln − Ln

Fig. 7 Differences between the upper and lower stopping boundaries of CSM and SIMCTEST. Log scale
on the x-axis

We consider truncated versions of CSM and SIMCTEST, which we denote by
tCSM and tSIMCTEST, as well as the algorithms in Besag and Clifford (1991),
Davidson and MacKinnon (2000), Fay et al. (2007) and Silva and Assunção (2018).
The maximum number of samples is set to 13,000 to roughly fit in with the maxi-
mum number of steps of Davidson and MacKinnon (2000). The methods of Besag
and Clifford (1991), Davidson and MacKinnon (2000), Fay et al. (2007) and Silva
and Assunção (2018) have tuning parameters, which we choose as follows. As sug-
gested in Besag and Clifford (1991), the recommended parameter h controlling the
number of exceedances is set to 10. For Davidson and MacKinnon (2000), the
pretest level β concerning the level and power of the test is set to 0.05, and the
minimum and maximum number of simulations are 99 and 12,799 as suggested
by the authors. For Fay et al. (2007), we choose one set of tuning parameters
(pα, p0, α0, β0) = (0.04, 0.0614, 0.05, 0.05) recommended by the authors. For the
algorithm of Silva and Assunção (2018, Section 4), a grid search on the parameters
(m, s, t1,Ce) with the aim to bound the type I error at 0.05 and the global power loss
at 21% produces the values (13,000, 2, 16, 702). The resampling risk parameter ε in
SIMCTEST and CSM is set to 0.05.

Figure 8 shows the resampling risk as a function of the p value. As expected, a
truncated test results in a resampling risk of at least 50% when p = α. For other p
values than p = α, the resampling risk can be smaller depending on the type of algo-
rithm used and the number of samples it draws. However, tCSM is still amongst the
best performers as it yields a low resampling risk almost everywhere with a localised
spike at 0.5. It also guarantees to bound the risk uniformly when the number of
simulations tends to infinity while other truncated procedures Besag and Clifford
(1991), Davidson and MacKinnon (2000) and Fay et al. (2007) do not have this prop-
erty.

123



D. Ding et al.

0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p value

R
es

am
pl

in
g 

ris
k

Besag & Clifford (1991)
Davidson & MacKinnon (2000)
Fay et.al (2007)
Silva & Assuncao (2017)
tSIMCTEST
tCSM

Fig. 8 Resampling risk incurred by several truncated procedures as a function of the underlying p. Threshold
α = 0.05

7 Application

7.1 Comparison of penguin counts on two islands

We apply CSM and SIMCTEST to a real data example which compares the number of
breeding yellow-eyed penguin pairs on two types of islands: Stewart Island (on which
cats are the natural predators of penguins) and some cat-free islands nearby (Massaro
and Blair 2003). The number of yellow-eyed penguin pairs are recorded in 19 discrete
locations on Steward Island, resulting in an average count of 4.2 and the following
individual counts per location:

{7, 3, 3, 7, 3, 7, 3, 10, 1, 7, 4, 1, 3, 2, 1, 2, 9, 4, 2}.

Likewise, counts at 10 discrete locations on the cat-free islands yield an average count
of 9.9 and individual counts of

{15, 32, 1, 13, 14, 11, 1, 3, 2, 7}.

Ruxton and Neuhäuser (2013) employ SIMCTEST to conduct a hypothesis test to
determine whether the means of the penguin counts on Stewart Island are equal to the
ones of the cat-free islands. They apply Welch’s t-test (Welch 1947) to assess whether
two population groups have equal means. The test statistic of Welch’s t-test is given
as

123



A simple method for implementing Monte Carlo tests

T = μ̂1 − μ̂2√
s21
n1

+ s22
n2

,

where n1, n2 are the sample sizes, μ̂1, μ̂2 are the sample means and s21 , s
2
2 are the

sample variances of the two groups.
Under the assumption of normality of the two population groups, the distribution of

the test statistic T under the null hypothesis is approximately a Student’s t-distribution
with v degrees of freedom, where

v =

(
1
n1

+ s22
s21n2

)2

1
n21(n1−1)

+ s22
s21n

2
2(n2−1)

.

Using the above data, we obtain t = −0.45 as the observed test statistic and a p value
of 0.09.

As the normality assumptionmaynot be satisfied in our case and as the t-distribution
is only an approximation, Ruxton and Neuhäuser (2013) implement a parametric
bootstrap test which randomly allocates each of the 178 penguin pairs to one of the 29
islands,where each island is chosenwith equal probability. Based on their experiments,
they conclude that they cannot reject the null hypothesis at a 5% level.

Likewise, we apply CSM and SIMCTEST with the same bootstrap sampling pro-
cedure. We record the average effort measured in terms of the total number of samples
generated.We set the resampling risk to ε = 0.001 and use SIMCTESTwith its default
spending sequence εn = εn/(n + 1000).

We first perform a single run of both CSM and SIMCTEST. CSM and SIMCTEST
stop after 751 and 724 steps with p value estimates of 0.09 and 0.08, respectively.
Hence, both algorithms reject the null hypothesis. We then conduct 10,000 indepen-
dent runs to stabilise the results. Amongst those 10,000 runs, CSM rejects the null
hypothesis 10,000 times compared with 9999 times for SIMCTEST. The average
efforts of CSM and SIMCTEST are 1440 and 1131, respectively. Therefore, in this
example, CSM gives comparable results to SIMCTEST while generating more sam-
ples on average. We expect such behaviour due to the wider stopping boundaries of
CSM in comparison with SIMCTEST (see Fig. 3). However, we need to pre-compute
the stopping boundaries of SIMCTEST in advance, which is not necessary in CSM.

7.2 Autocorrelation in the sunspot time series

We investigate the performance of CSM and SIMCTEST in a real time series for
testing lag autocorrelation based upon the generalised Durbin–Watson test (Vinod
1973). The test is designed to detect the autocorrelation at some lag k in the residuals
from regression analysis. The null hypothesis asserts that the autocorrelation at lag k

123



D. Ding et al.

is zero and the test statistic dk is defined by

dk =
n∑

t=k+1

(yt − yt−k)
2
/ n∑

t=1

(yt − ȳ)2,

wherewe denote the time series by {yt }nt=1 and ȳ = 1
n

∑n
t=1. The null distribution of dk

is usually analytically intractable except for some special cases, for example, when yt
is normally distributed (Ali 1984). Different methods are proposed for approximating
the null distribution (Sneek 1983; Ali 1984, 1987).

The time series we are interested in consists of the sunspot number per year from
1770 to 1869 (Box et al. 2015, Series E). Applying the generalised Durbin–Watson
test (Vinod 1973) with different approximation techniques of the null distribution, Ali
(1984, 1987) obtain different significance results regarding the lag autocorrelations.
To be more precise, Ali (1984) detects significant autocorrelations only at lag 1, 2, 9,
10 at a 5% level whereas Ali (1987) finds that significant autocorrelations at lag 5, 6,
11 and 12 also exist.

To employ CSM and SIMCTEST for testing the lag autocorrelations, we use the
approach proposed by MacKinnon (2002) to generate bootstrap samples. We first
calculate the residuals εt = yt − ȳ for t = 1, . . . , n. To simulate a new bootstrap
sample, we let y∗

t = ȳ + ε∗
t for t = 1, . . . , n, where each ε∗

t is randomly chosen from
{εt }nt=1 with equal probability. Given the bootstrap sample {y∗

t }nt=1, we can compute
the corresponding test statistic dk and compare it to the observed test statistic.

We run CSM and SIMCTEST following the aforementioned bootstrap sampling
procedure. We set the resampling risk ε = 0.001 in both algorithms, and the spending
sequence εn = εn/(n + 1000) in SIMCTEST. After a single run of CSM and SIM-
CTEST (based on the same bootstrap samples), we obtain significant results at a 5%
level at lag 1, 2, 5, 6, 9, 10, 11, 12, which coincide with Ali (1987). The stopping time
for CSM and SIMCTEST is shown in Table 1. An early stopping time of CSM with
fewer than 30 bootstrap samples generated usually implies a slightly faster algorithm
than SIMCTEST, as can be seen at lag 7, 14 and 15. These lags do not reject the
null hypothesis. For other lags, in particular those which reject the null hypothesis,
SIMCTEST enjoys an earlier stopping time than CSM.

8 Discussion

This article introduces a new method called CSM to decide whether an unknown p
value, which can only be approximated viaMonte Carlo sampling, lies above or below
a fixed threshold α while uniformly bounding the resampling risk at a user-specified
ε > 0. The method is straightforward to implement and relies on the construction of
a confidence sequence (Robbins 1970; Lai 1976) for the unknown p value.

We compare CSM to SIMCTEST (Gandy 2009), finding that CSM is the more
conservative method: The (implied) stopping boundaries of CSM are generally wider
than the ones of SIMCTEST and in contrast to SIMCTEST, CSM does not fully spend
the allocated resampling risk ε.

123



A simple method for implementing Monte Carlo tests

Ta
bl
e
1

St
op

pi
ng

tim
e
of

C
SM

an
d
SI
M
C
T
E
ST

fo
r
te
st
in
g
th
e
la
g
au
to
co
rr
el
at
io
ns

of
th
e
re
si
du

al
s
in

th
e
su
ns
po

tt
im

e
se
ri
es

(B
ox

et
al
.2
01

5,
Se
ri
es

E
)

L
ag

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

C
SM

52
0

52
0

78
17

61
63

9
23

75
25

17
0

52
0

52
0

52
0

52
0

11
52

24
13

SI
M
C
T
E
ST

32
9

32
9

76
77

2
32

9
16

86
27

16
4

32
9

32
9

32
9

32
9

98
1

25
20

123



D. Ding et al.

Table 2 Comparison between CSM and SIMCTEST

CSM SIMCTEST SIMCTEST with pre-
computed boundaries

Memory requirement O(1) O(
√

τ log τ)∗ O(τmax)

Computational effort O(τ ) O(τ
√

τ log τ)∗ O(τ )

Parameters of each method ε {εn}n∈N {εn}n∈N
Implementation from scratch Very easy Easy Easy

The parameter τ denotes the stopping time and τmax denotes the maximum length of the pre-computed
boundaries for SIMCTEST. Empirical quantities are denoted with ∗

We use these findings in two ways: First, an upper bound is usually known for the
maximal number of samples which can be spent in practical applications.We construct
a truncated spending sequence for SIMCTEST which spends all the available resam-
pling risk within a pre-specified interval, thus leading to uniformly tighter stopping
boundaries and shorter stopping times than CSM. Second, we empirically analyse at
which rate CSM spends the resampling risk. Bymatching this rate with a suitably cho-
sen spending sequence, we empirically tune the stopping boundaries of SIMCTEST
to uniformly dominate those of CSM even for open-ended sampling.

A comparison of memory requirement and computational effort for CSM and SIM-
CTEST is given in Table 2. In SIMCTEST, the boundaries are sequentially calculated
as further samples are being generated whereas in SIMCTEST with pre-computed
boundaries, the boundaries are initially computed and stored up to a maximum num-
ber of steps τmax. In CSM, solely the cumulative sum Sn needs to be stored in each
step, leading to a memory requirement of O(1). Gandy (2009) empirically shows
that SIMCTEST with the default spending sequence has a memory requirement of
O(

√
τ log τ). In SIMCTEST with pre-computed boundaries and default spending

sequence, the amount of memory required temporarily up to step n is O(
√
n log n).

To compute the boundaries up to τmax, a total memory of O(
√

τmax log τmax) is hence
required. Additionally, the values of the upper and lower boundaries up to τmax need to
be stored, which requires O(τmax) memory. Hence, the total memory requirement of
SIMCTEST with pre-computed boundaries is O(τmax). Evaluating the stopping crite-
rion in each step of CSMor SIMCTESTwith pre-computed boundaries requires O(1),
leading to the total computational effort of O(τ ) depicted in Table 2 for both cases.
The computational effort of SIMCTEST is roughly proportional to

∑τ
n=1 |Un − Ln|

(Gandy 2009). Using the empirical result |Un − Ln| ∼ O(
√
n log n), we obtain a

bound of O(τ
√

τ log τ) for the computational effort of SIMCTEST.
We also compare the truncated versions of CSM (tCSM) and SIMCTEST (tSIM-

CTEST) with other truncated sequential Monte Carlo procedures. We demonstrate
empirically that the resampling risk of the truncated methods cannot be bounded by
an arbitrary small number and exceeds 0.5 when the true p value equals the threshold.
Nevertheless, tCSM and tSIMCTEST are still among the best performers, meaning
that they yield a low resampling risk almost everywhere with a localised spike at 0.5.

The advantage of SIMCTEST (with pre-computed boundaries) lies in its adjustable
spending sequence {εn}n∈N: This flexibility allows the user to control the resampling

123



A simple method for implementing Monte Carlo tests

risk spent in each step, thus enabling the user to spend no risk before a pre-specified
step or to spend the full risk within a finite number of steps (see Sect. 5.1). This leads to
(marginally) tighter stopping boundaries and faster decisions. The strength of CSM,
however, lies in its straightforward implementation compared to SIMCTEST. Both
methods illustrate a superior performance (measured in resampling risk) if truncations
are applied. Overall we conclude that the simplicity of CSM, and its comparable
performance to SIMCTEST and other truncated procedures make it a very appealing
competitor for practical applications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Proof of Theorem 1

Proof We start by considering the case p ≤ α. If p ≤ α, the resampling risk is
RRp( p̂c) = Pp( p̂c > α). We show that p̂c > α only when hitting the upper boundary
and that the probability of hitting the upper boundary is bounded by ε.

To see the former: When not hitting any boundary, i.e. on the event {τ = ∞}, we
have p̂c = α. When hitting the lower boundary, i.e. on the event {τ < ∞, Sτ ≤ lτ },
we have p̂c = Sτ /τ ≤ lτ /τ . It thus suffices to show ln/n ≤ α for all n ∈ N.

Let n ∈ N. By (2), Pα(b(n, α, Sn) > ε
n+1 ) ≥ 1 − ε. Hence, there exists k such

that (n + 1)b(n, α, k) > ε. Furthermore, b(n, α, x) has a maximum at x = �αn� or
at x = �αn�. Thus, there exists a k ∈ {�αn�, �αn�} such that (n + 1)b(n, α, k) > ε.
Hence, by the definition of ln we have ln ≤ �αn� − 1 < αn.

To finish the proof for this case we show that the probability of hitting the upper
boundary is bounded by ε, which can be done using (Gandy 2009, Lemma 3) and (2):

Pp(τ < ∞, Sτ ≥ uτ ) ≤ Pα(τ < ∞, Sτ ≥ uτ ) ≤ Pα(τ < ∞)

= Pα(∃n ∈ N : (n + 1)b(n, α, Sn) ≤ ε) ≤ ε.

The case p > α can be proven analogously to the case p < α using that Pp(τ =
∞) = 0, which is shown in (Lai 1976, p. 268). ��

B Finding a uniformly dominating spending sequence

In Sect. 5.2 we aim to find a spending sequence in SIMCTEST so that its boundaries
are strictly contained within the ones of CSM for every number of steps.

We achieve this by first determining the (empirical) rate atwhich the real resampling
risk is spent in each step in CSM. By matching this rate using a suitably chosen
spending sequence, we obtain upper and lower stopping boundaries for SIMCTEST
which are uniformly narrower than the ones of CSM (verified for the first 5 ·104 steps).

123

http://creativecommons.org/licenses/by/4.0/


D. Ding et al.

1 2 5 10 20 50 100 200 500

0e
+0

0
1e

−0
4

2e
−0

4
3e

−0
4

4e
−0

4

Number of steps n

Upper boundary
l = 1.4
l = 1.5
l = 1.6

1 2 5 10 20 50 100 200 500

0e
+0

0
4e

−0
5

8e
−0

5

Number of steps n

Lower boundary
l = 1.4
l = 1.5
l = 1.6

Fig. 9 Trajectories of Δε̃100nn
l in the upper (left) and lower (right) boundary for l = {1.4, 1.5, 1.6}. Log

scale on the x-axis

We start by estimating the rate at which the real resampling risk is spent in CSM.
We are interested in empirically finding an l ∈ R such that nl · (

εCSMn − εCSMn−1

)
is

constant, where εCSMn is the (cumulative) real resampling risk (the total probability of
hitting either boundary) for the first n steps in CSM.

Figure 9 depicts nl · (εCSMn − εCSMn−1

)
for both the upper (left plot) and lower (right

plot) boundary of CSM as a function of the number of steps n and for three values
l ∈ {1.4, 1.5, 1.6}. Based on Fig. 9 we estimate that CSM spends the resampling risk
at roughly O(n−1.5) for both the upper and lower boundaries.

We start with an analytical calculation of the rate at which SIMCTEST spends the
resampling risk (as opposed to also estimating it). The default spending sequence in
SIMCTEST is εSn = n/(n+k)ε, n ∈ N. Hence the resampling risk spent in step n ∈ N

is ΔεSn = εSn − εSn−1 = k/((n + k)(n + k − 1)) ∼ n−2. We conducted simulations
(similar to the ones in Fig. 9 for CSM) which indeed confirm the analytical O(n−2)

rate for SIMCTEST (simulations not included in this article). Overall, the spending
rate of O(n−1.5) for CSM is thus slower than the O(n−2) rate of SIMCTEST with the
default spending sequence.

In order to match the O(n−1.5) rate for CSM, we generalise the default spending
sequence of SIMCTEST to εSn = nγ / (nγ + k) ε for n ∈ N and a fixed γ > 0.

123



A simple method for implementing Monte Carlo tests

Similarly to the aforementioned derivation, SIMCTEST in connection with εSn will
spend the real resampling risk at a rate of O

(
n−(γ+1)

)
. We choose the parameters γ

and k to obtain stopping boundaries for SIMCTESTwhich dominate the ones of CSM.
First, we set γ = 0.5 to match the rate of CSM. Second, we empirically determine k to
keep the stopping boundaries of SIMCTEST within the ones of CSM (for the range of
steps n ∈ {1, . . . , 5 · 104} considered in Fig. 7). We find that the choice k = 3 satisfies
this condition.

References

Ali MM (1984) Distributions of the sample autocorrelations when observations are from a stationary
autoregressive-moving-average process. J Bus Econ Stat 2(3):271–278

Ali MM (1987) Durbin–Watson and generalized Durbin-Watson tests for autocorrelations and randomness.
J Bus Econ Stat 5(2):195–203

Besag J, Clifford P (1991) Sequential Monte Carlo p-values. Biometrika 78(2):301–304
Bonferroni C (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto

Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62
Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley,

Hoboken
Davidson R, MacKinnon JG (2000) Bootstrap tests: how many bootstraps? Econom Rev 19(1):55–68
Davison AC, Hinkley DV (1997) Bootstrap methods and their application, vol 1 of Cambridge series in

statistical and probabilistic mathematics. Cambridge University Press, Cambridge
FayMP, Follmann DA (2002) DesigningMonte Carlo implementations of permutation or bootstrap hypoth-

esis tests. Am Stat 56(1):63–70
Fay MP, Kim H-J, Hachey M (2007) On using truncated sequential probability ratio test boundaries for

Monte Carlo implementation of hypothesis tests. J Comput Graph Stat 16(4):946–967
Gandy A (2009) Sequential implementation of Monte Carlo tests with uniformly bounded resampling risk.

J Am Stat Assoc 104(488):1504–1511
Gandy A, Hahn G (2014) MMCTest—a safe algorithm for implementing multiple Monte Carlo tests. Scand

J Stat Theory Appl 41(4):1083–1101
Gandy A, Hahn G (2016) A framework for Monte Carlo based multiple testing. Scand J Stat Theory Appl

43(4):1046–1063
GandyA,Rubin-DelanchyP (2013)Analgorithm to compute thepower ofMonteCarlo testswith guaranteed

precision. Ann Stat 41(1):125–142
Gleser LJ (1996)Comment onBootstrap confidence intervals byDiCiccio andEfron. Stat Sci 11(3):219–221
Kim H-J (2010) Bounding the resampling risk for sequential Monte Carlo implementation of hypothesis

tests. J Stat Plan Inference 140(7):1834–1843
Kulldorff M (2001) Prospective time periodic geographical disease surveillance using a scan statistic. J R

Stat Soc Ser A (Stat Soc) 164(1):61–72
Lai TL (1976) On confidence sequences. Ann Stat 4(2):265–280
MacKinnon JG (2002) Bootstrap inference in econometrics. Can J Econ/Revue canadienne d’économique

35(4):615–645
Massaro M, Blair D (2003) Comparison of population numbers of yellow-eyed penguins, Megadyptes

antipodes, on Stewart island and on adjacent cat-free islands. N Z J Ecol 27:107–113
Robbins H (1970) Statistical methods related to the law of the iterated logarithm. Ann Math Stat 41:1397–

1409
RuxtonGD, NeuhäuserM (2013) Improving the reporting of p-values generated by randomizationmethods.

Methods Ecol Evol 4(11):1033–1036
Silva I, Assunção R (2013) Optimal generalized truncated sequential Monte Carlo test. J Multivar Anal

121:33–49
Silva I, Assunção R (2018) Truncated sequential Monte Carlo test with exact power. Braz J Probab Stat

32(2):215–238
Silva I, Assunção R, Costa M (2009) Power of the sequential Monte Carlo test. Seq Anal Des Methods

Appl 28(2):163–174

123



D. Ding et al.

Sneek JM (1983) Some approximations to the exact distribution of sample autocorrelations for autoregres-
sive moving average models. In: Time series analysis: theory and practice, vol 3

Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic for detecting clusters. Int J Health
Geogr 4(1):11

Vinod H (1973) Generalization of the Durbin–Watson statistic for higher order autoregressive processes.
Commun Stat Theory Methods 2(2):115–144

Wald A (1945) Sequential tests of statistical hypotheses. Ann Math Stat 16:117–186
Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances

are involved. Biometrika 34:28–35

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A simple method for implementing Monte Carlo tests
	Abstract
	1 Introduction
	2 The confidence sequence method
	3 Review of SIMCTEST
	4 Comparison of CSM to SIMCTEST with the default spending sequence
	4.1 Comparison of boundaries
	4.2 Real resampling risk in CSM and SIMCTEST

	5 Spending sequences which dominate CSM
	5.1 Example of a bespoke spending sequence
	5.2 Uniformly dominating spending sequence

	6 Comparison with other truncated sequential Monte Carlo procedures
	7 Application
	7.1 Comparison of penguin counts on two islands
	7.2 Autocorrelation in the sunspot time series

	8 Discussion
	A Proof of Theorem 1
	B Finding a uniformly dominating spending sequence
	References




