
Non-linear function evaluation reusing

matrix-vector multipliers

Ce Guo1, Wayne Luk1 and Wenguang Xu2

1Imperial College London 2Huawei Technologies

Email: 1{c.guo, w.luk}@imperial.ac.uk 2 xuwenguang@huawei.com

Abstract

This paper presents a method to extend matrix-
vector multipliers to support the evaluation of non-
linear functions. The proposed approach introduces
non-linearity by optionally overriding the input sig-
nals of the matrix-vector multiplier. The method
aims to reduce the idleness of hardware resources dur-
ing computation, to maximise the reuse of arithmetic
units and internal structures in existing matrix-vector
multipliers, and to reduce the effort in adding addi-
tional functions. From our analysis on a case with
eight non-linear functions, the proposed design con-
sumes fewer components for addition, multiplication,
division, exponentiation and logarithm than a refer-
ence design with dedicated function evaluation facil-
ities.

1 Introduction

Two types of operations consume the majority of ex-
ecution time in various data processing tasks. One
type of operation is linear combination that takes the
weighted sum of a vector against a dense weight ma-
trix. The other type of operation is non-linear func-
tion evaluation that evaluates a function for all entries
in a vector. The sequential dependencies between the
calculations only allow the execution of one type of
operation at the same time. For instance, the for-
ward and backward propagation operations for fully
connected layers in neural networks follow this pat-
tern.

Linear combination and non-linear function evalua-
tion are fundamentally different regarding arithmetic
operations. A straightforward way to design hard-
ware is to create a separate arithmetic block for each
operation [3]. When the arithmetic block for one op-
eration is active, the blocks for other operations are
idle. In other words, only a small fraction of logic
units work at the same time, resulting in wastage of
hardware resources. Admittedly, it is possible to use

reconfigurable hardware to time-multiplex hardware
resources for different operations [1]. However, recon-
figurable hardware runs at lower frequencies, and run-
time reconfiguration may take a considerable amount
of execution time.

This paper presents a method to extend matrix-
vector multipliers to support non-linear function eval-
uation to counter drawbacks brought by dedicated
function evaluations blocks while avoiding run-time
reconfiguration.

2 Motivation

Matrix-vector multiplication is a well-studied topic
in hardware design [2]. A matrix-vector multi-
plier for arbitrary-width inputs often uses fixed-width
matrix-vector multipliers as computational kernels.
A scheduling logic partitions high-dimensional tasks
into tiles that fit the fixed-width matrix-vector mul-
tiplier.

The transformation that the matrix-vector multi-
plier can apply must be linear. Purely linear mod-
els may not be able to capture the pattern of real-
life data. It is often desirable for a data processing
system to evaluate non-linear functions in addition
to the calculation of linear combination. An obvi-
ous way to evaluate non-linear functions on hardware
is to design a dedicated datapath for each non-linear
function, as shown in design D in Figure 1(a). A mul-
tiplexer selects one result vector among the outputs
of the matrix-vector multiplier and a group of non-
linear functions. This method has three drawbacks.
First, the datapath ignored by the multiplexer should
either stay idle or compute useless results. At any mo-
ment, at most one branch among the matrix-vector
multiplier and the non-linear functions contributes to
the final result. Second, a practical design needs to
support multiple non-linear functions. Each of these
function may be complicated so that a data path for
accurate evaluation may occupy a large area on the
chip. Third, when it is necessary to support addi-



Vector-matrix
multiplier

Coefficient
memory

Data
memory

Function f
0

Function f
1

Function f
F-1

...

mux

Control
signal

(a) Design D: non-linearity with dedicated datapaths

Vector-matrix
multiplier

Coefficient
memory

Data
memory

Data
overrider

Coefficient
overrider

Overrider

Control signal

(b) Design P: proposed method with overriders

Figure 1: Architectures for linear combination and
non-linear function evaluation

tional non-linear functions or change the definition of
existing ones, it is necessary to redesign the datap-
aths, which may result in considerable development
cost.

This paper tackles the three drawbacks by option-
ally overriding the inputs of the matrix-vector multi-
plier, as shown in design P in Figure 1(b). The pri-
mary objective is to extend the matrix-vector multi-
plier to support the evaluation of arbitrary non-linear
functions without modifying its internal structure.

3 Mathematical derivation

In this section, we present the mathematical back-
ground of the proposed method. The key idea is
to find a unified mathematical form for both linear
combination and non-linear function evaluation. We
aim to support the evaluation of arbitrary real-valued
functions without introducing additional multipliers
or changing the connections between adders and mul-
tipliers. Following this principle, we adopt piecewise
linear approximation to compute approximate values
for non-linear functions. In general, the piecewise lin-
ear approximation technique is mathematically sim-

ple. However, the approximation technique in this
study is challenging because we aim to reuse the hard-
ware resources in matrix-vector multipliers.

Our main achievement is to derive a mathematical
foundation for this approximation technique, given
by Eq. 1–11. The following function captures the be-
haviour of the hardware block that supports both lin-
ear and non-linear operations:

g(~x,m, k) = σ
(
φ(W,m, k)� ψ(~x,m, k)

)
(1)

where σ(·) is the row-sum function; W is a b × b
matrix; � is the entrywise multiplication operator;
φ(W,m, k) and ψ(~x, o, k) are function that returning
b×b matrices; the entry at position [i, j] in φ(W,m, k)
and ψ(~v,m, k) are respectively:

φi,j(W,m, k) =

{
Wi,j m = 0

αk,i m = 1
(2)

ψi,j(~x,m, k) =


xj m = 0

0 m = 1, xi ≤ hk,j
xi m = 1, hk,j < xi ≤ hk,j+1

βj m = 1, hk,j+1 < xi
(3)

where m is a Boolean variable controlling the linearity
of the operation; k ∈ [0..K − 1] that selects the non-

linear function to evaluate; ~β = [β0 . . . βB−1]T and
~h = [h0 . . . hb]

T are parameter vectors. Note that ~β

has b entries while ~h has (b + 1) entries. The func-
tion in Eq. 1 supports linear and non-linear opera-
tions as follows. When m = 0, ψ(~x,m, k) contains b
copies of ~x. Therefore, Eq. 1 downgrades to a func-
tion that takes the matrix-vector product W~x. As
a result, one may evaluate a linear combination with
arbitrary weight matrices by tiling and accumulation.
When m = 1, xi appears exactly once in the i-th row
in ψ(~x, o, k) by Eq. 3. The position that xi appears
corresponds to the interval that covers xi; each en-
try before xi takes a predefined value βj . Each row
of W is a copy of ~αk. As a result, Eq. 1 becomes
a piece-wise linear function that can approximate a
non-linear function.

The set of parameters {~hk, ~αk, ~βk, λk} defines the

k-th non-linear function. In particular, ~hk defines
the boundary of the input for the approximation seg-
ments; ~αk consists of slopes of the segments; ~βk car-
ries differentiated intercepts scaled by 1/~α; λ gives
the baseline intercept.

We present a way to compute the parameter set.
Let ~h′k = [h′0 . . . h

′
b−2]T be an ascending vector of b

numbers sampled from the domain of f(·). The pa-



rameters are as follows:

~hk =
[
−∞ h′k,0 . . . h′k,b−2 +∞

]
(4)

~αk =
[
α⊥ α′k,0 . . . α′k,b−1 α>

]
(5)

βk =
[
zk,0 . . . zk,b−2 0

]
÷ ~α (6)

λk = lim
x→−∞

f(x) (7)

where α⊥ and α> are respectively the slope of f(x)
when x approximates −∞ and −∞; and

~yk = f(~h′k) (8)

~α′ = diff(~yk)÷ diff(~hk) (9)

~y′′k = −~α� [h′k,0 . . . h
′
k,b2] + [yk,1 . . . yk,b−1] (10)

~z = diff(
[
yk,0 y′′k,0 . . . y′′k,b−2

]
) (11)

where ÷ is the entrywise division operator; diff(·) is
the vector difference function.

4 Hardware design

We design an input overrider for the matrix-vector
multiplier that optionally overwrites its inputs to in-
troduce non-linearity.

Table 1: Assignment of control signals ci,j

m xi < hk,j xi < hk,j+1 ci,j output
0 any any 00 xj
1 1 1 01 0
1 0 1 10 xi
1 1 0 11 βk,j

The overrider for the vector ~x includes b × b four-
to-one multiplexers. Each multiplexer has an index
[i, j] where i ∈ [0..b− 1] and j ∈ [0..b− 1]. The multi-
plexer indexed by [i, j] implements the four cases for
ψi,j(~x,m, k) in Eq. 3. The assignment of the corre-
sponding two-bit control signal ci,j follows Table 1.
The overrider for the matrix W does not need multi-
plexers because the overridden value is independent
of ~x. As a result, one may pre-compute and store
the overridden coefficient weight matrices rather than
computing them on the fly.

For instance, Figure 2 shows a arithmetic block
with that extends a matrix-vector multiplier with
b = 2. The four scalar multipliers and the two adders
constitute the original matrix-vector multiplier. The
four multiplexers constitute the overrider. The two-
bit control signals for multiplexers follow the assign-
ment in Table 1.

The proposed arithmetic block has three proper-
ties. Each property address a drawback discussed in

c0,0

00
01
10
11

0
x

0

x
0

βk,0 11

c
0,1

00
01
10
11

0
x

0

x
1

β
k,1

11

c
1,0

00
01
10
11

0
x

1

x
0

β
k,0

11

c
1,1

00
01
10
11

0
x

1

x1

β
k,1

11

×

×

×

×

w
0,0 

or
α

k,0

+

+

v
0

v
1

w
0,1 

or
α

k,1

w1,0 

or
α

k,0

w
1,1 

or
α

k,1

Original matrix-vector multiplier

Figure 2: Matrix-vector multiplier with overrider

Section 2. First, all scalar multipliers work in both
linear combination and non-linear function evalua-
tion. The reduction in hardware idleness addresses
the first drawback. Second, overriders do not con-
sume multipliers. Therefore, the number of multi-
pliers in the arithmetic blocks is independent of the
number of non-linear functions that the system can
support, addressing the second drawback. Third, the
specification of a non-linear function is a set of nu-
meric parameters. It is possible to define additional
functions in memory without touching the arithmetic
block, addressing the third drawback. Moreover, the
proposed method preserves the internal connections
between multipliers and adders inside the vector-
multiplier, which makes it possible to preserve related
optimisations.

5 Evaluation

This section evaluates the proposed method by com-
paring potential resource usage between the reference
design D with dedicated function evaluation blocks in
Figure 1(a) and the proposed design P with overriders
in Figure 1(b).

Both designs should fully pipeline the same set of
linear and non-linear operations. In particular, each
design should (i) calculate the linear combination be-
tween a b-dimensional vector ~x and a b × b matrix
W (ii) apply one of the eight non-linear functions in
Table 2 to all entries in ~x in parallel. The functions
in the table are non-linear activation functions for



Table 2: Non-linear functions in P and D where s is
the number of segments in P

Function < + × ÷ exp log
Sigmoid 0 1 0 1 1 0
Log-sigmoid 1 1 0 1 1 1
Tanh 0 2 2 1 2 0
Tanhshrink 0 2 1 0 1 1
ELU 1 1 1 0 1 1
SELU 1 2 2 0 1 0
Softplus 1 1 0 0 1 1
Softsign 0 1 0 1 0 0
Total for D 4 11 7 4 8 4
Total for P s 0 0 0 0 0

feed-forward neural networks in the PyTorch 1.0 ma-
chine learning framework. In addition to the function
names, Table 2 also shows the number of arithmetic
operations for comparison, addition, multiplication,
division, exponentiation and logarithm.

Each design should include b2 multipliers and b(b−
1) adders for linear combination. The reference de-
sign needs to include components to evaluate all func-
tions for b inputs. Let RA be the count of arith-
metic block A. We have R< = 4b, R+ = b2 + 10b,
R× = b2 + 7b, R÷ = 4b, Rexp = 8b and Rlog = 4b.
In contrast, the proposed design reuses the matrix-
vector multiplier and introduces non-linearity with
comparators. The counts for the six components in
the proposed design are R< = bs, R+ = b(b − 1),
R× = b2 and R÷ = Rexp = Rlog = 0 where s ∈ [1..b]
is the number of segments for the piecewise linear
approximation. Larger s brings better accuracy for
function approximation. We use s = 16 in this study
as this setting is enough to keep the relative error for
all functions in Table 2 to be less than 1%.

Compared with the reference design with dedicated
function evaluation blocks, the proposed design al-
ways consumes fewer components for addition, mul-
tiplication, division, exponentiation and logarithm re-
gardless the value of b, although the proposed design
consumes 12b more comparators. The comparators in
the proposed design and the arithmetic components
in the reference design grow linearly with b. However,
a set of arithmetic components in the reference design
D far higher logic complexity than a comparator in
design P.

Assume that (i) we use a fixed-point representation
with n bits throughout the design; (ii) an adder or a
comparator has αn transistors; (iii) a multiplier or a
divider has αn2 transistors; (iv) an evaluation block
for the exponential function or the logarithm func-
tions has µαn2 transistors. The ratio between the

number of transistors for design D and P is:

TD
TP

=
bn+ b+ 12µn+ 11n+ 14

bn+ b+ s− 1
(12)

As a number takes at least one bit, the ratio is always
larger than 1. In other words, design D always takes
more transistors than design P.

A practical setting with b = s = 16 and µ = 5 is
sufficient to accurately evaluate all non-linear func-
tions in Table 2 in both designs. In this case, the
ratio becomes

TD
TP

=
87n+ 30

16n+ 31
(13)

A larger n leads to higher precision. The ratio for
n = 16, 32, 64 are respectively 4.95, 5.18 and 5.31,
which means that design D consumes around 5 times
more transistors than design P with 16-bit, 32-bit and
64-bit fixed-point numbers. The ratio grows slightly
as the number of bits increases. The upper bound of
TD

TP
is 5.4375.

6 Conclusion

This paper presents an arithmetic block extending
matrix-vector multipliers to evaluate non-linear func-
tions without changing their internal structures. The
method reduces hardware idleness, the number mul-
tipliers and potential maintaining costs. From our
analysis on eight non-linear functions, a reference de-
sign with dedicated function evaluation facilities con-
sumes up to five times more transistors than the pro-
posed design.

7 Acknowledgements

The support of the United Kingdom EPSRC
(grant numbers EP/L016796/1, EP/N031768/1,
EP/P010040/1 and EP/L00058X/1), Corerain, Max-
eler, Intel and Xilinx is gratefully acknowledged.

References

[1] W Zhao et. al. An FPGA-based framework for
training convolutional neural networks. In ASAP,
2016.

[2] S. Kestur, J. D. Davis, and E. S. Chung. To-
wards a universal FPGA matrix-vector multipli-
cation architecture. In FCCM, 2012.

[3] Y. Li and A. Pedram. Caterpillar: Coarse grain
reconfigurable architecture for accelerating the
training of deep neural networks. In ASAP, 2017.


