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Abstract

Froth flotation is one of the most widely-used mineral processing operations. The pulp zone in flotation tanks is polydisperse in
general and serves as a medium for the interaction between the solid particles and the gas bubbles in a liquid continuum, leading
to particle–bubble attachment/detachment and bubble coalescence/breakage phenomena. To better predict the hydrodynamics and
inform the design of efficient flotation equipment, it is therefore important to accurately model and simulate the evolution of the size
distribution of the dispersed phases. This has created an urgent need for a framework that can model the pulp phase in an efficient
manner, which is not currently available in the literature. The available software products are not efficient enough to allow for a
tractable modelling of industrial-scale flotation cells and in some cases they cannot model the polydispersity of the dispersed phase
at all. This work presents an efficient numerical framework for the macroscale simulation of the polydisperse pulp phase in froth
flotation in an open-source finite element computational fluid dynamics (CFD) code that provides an efficient solution method using
mesh adaptivity and code parallelisation. A (hybrid finite element–control volume) finite element framework for modelling the pulp
phase has been presented for the first time in this work. An Eulerian–Eulerian turbulent flow model was implemented in this work
including a transport equation for attached and free solid particles. Special care was taken to model the settling velocity of the free
solids and the modification of the liquid viscosity due to the presence of these particles. Bubble polydispersity was modelled using
the population balance equation (PBE), which was solved using the direct quadrature method of moments (DQMOM). Appropriate
functions for bubble coalescence and breakage were chosen in the PBE. Mesh adaptivity was applied to the current problem to
produce fully-unstructured anisotropic meshes, which improved the solution efficiency, while all simulations were executed on a
multicore architecture. The model was validated for 2D simulations of a bubble column against experimental results available in
the literature. After successful validation, the model was applied to the simulation of the pulp phase in a flotation column for
monodisperse and polydisperse solids. Polydispersity of the solids was modelled for the first time in this work using three separate
solid size classes. A clear dependence of the flotation rate on the particle size was noticed and the monodisperse solids simulations
were shown to over-predict the flotation rate. Other than flotation, this open-source framework can be used for the simulation of a
variety of polydisperse multiphase flow problems in the process industry.
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1. Introduction

Froth flotation is one of the most widely used mineral process-
ing operations, used to selectively separate the valuable mineral
particles from the unwanted waste particles. Other than mineral
processing, flotation is also used for deinking in wastepaper re-
cycling, wastewater treatment, and oil separation applications.
Air is injected into a tank containing a slurry of crushed ore; and
mixing generated in the pulp zone causes the hydrophobic min-
eral particles to collide and attach to the air bubbles that rise to
the top into the froth zone, which overflows as concentrate. The
pulp zone in flotation is a multi-scale, turbulent, three-phase,
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and polydisperse system that serves as a medium for the in-
teraction between the solid particles and the gas bubbles in a
liquid continuum. It is therefore important to accurately model
the physics (particularly the hydrodynamics) in the pulp zone
for the development of efficient flotation equipment.

Computational fluid dynamics (CFD) has emerged as a pop-
ular technique for the numerical modelling and simulation of
multiphase flow systems. This can be attributed to continu-
ous improvements in computational power and development
of improved numerical algorithms for the modelling of multi-
phase flows. CFD therefore offers a promising possibility for
the modelling of the complex physics occurring in the pulp
zone in froth flotation. The pulp physics, however, are con-
siderably challenging compared to the typical multiphase flow
systems discussed in the literature, and the available CFD soft-
ware products either cannot handle all the above complexi-
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ties or are not tractable enough to allow for the modelling of
industrial-scale flotation devices. An efficient CFD framework
that can model the hydrodynamics in the pulp phase is therefore
needed.

Gaudin (1932) and Garcia-Zuñiga (1935) were the first to study
the effect of flow properties on flotation recovery, realising the
importance of the hydrodynamics in the pulp zone on flotation.
The flotation recovery was found to be sensitive to flow param-
eters and the need to understand the physics of the processes
occurring in the pulp zone was identified. There have been
studies that model the hydrodynamics of the pulp phase in froth
flotation (Bloom and Heindel, 2002, 2003), however Koh et al.
(2000) were the first to simulate the pulp phase in a flotation
tank using CFD modelling. Consistently improving their pulp
phase models over time (Koh and Schwarz, 2003, 2006, 2007),
the above researchers were able to model the fluids (liquid and
gas) using two-phase unsteady flow equations and the solids us-
ing separate transport equations for free and attached particles.
Please note that ‘particles’ in this paper refers to the solid par-
ticles, unless clarified otherwise. The Eulerian–Eulerian (E–E)
method coupled to the k-ε turbulence model was used for mod-
elling the fluid phases, and the equations were solved using the
CFX-4 code for a fixed bubble size. Karimi et al. (2014a) and
Karimi et al. (2014b) solved a similar pulp phase model in AN-
SYS Fluent.

The importance of including a good estimate for the bubble size
distribution (BSD) in the models for pulp hydrodynamcs has
been known (Gorain et al., 1995; Grevskott et al., 1996), and
Evans et al. (2008) and Koh and Schwarz (2008b) were the first
to include the population balance equation (PBE), which mod-
els the effects of bubble coalescence and breakage, for mod-
elling the BSD in a flotation pulp. The method of classes (CM)
implementation of ANSYS was used to solve the PBE in the
CFX software in both studies, and the latter reported a signifi-
cant effect of modelling the BSD on the flotation rate prediction.
Others have also used the CM to model the BSD in flotation
systems (Basavarajappa et al., 2017; Sarhan et al., 2017, 2018).
Recently, Schwarz et al. (2016) have summarised the impor-
tance of the need of more efficient methods—the quadrature-
based moment methods (QBMMs)—for solving the PBE in the
flotation pulp, since these methods are computationally eco-
nomical than their counterparts. The use of quadrature method
of moments (QMOM), a type of QBMM, to solve the PBE for
modelling the BSD in a flotation cell geometry has been re-
ported in the literature recently (Basavarajappa and Miskovic,
2015), however this work considered gas-liquid flows only
(without solids).

QBMMs, such as QMOM and direct quadrature method
of moments (DQMOM), have proven to be very efficient
when coupled to the E–E fluid flow equations for modelling
industrial-scale polydisperse multiphase systems (Marchisio
et al., 2003b). Although there are a few studies available that
model the pulp phase containing a model for the BSD evolution
as discussed above, there is a need for a framework that allows
for the modelling of the BSD using a QBMM in the pulp phase.

Sarhan et al. (2016, 2017, 2018) have recently proposed a CM-
based pulp phase modelling framework that models all three
phases as Eulerian phases and handles one class of solid par-
ticles. Additionally, the solids feed entering the flotation tank
is in the form of a particle size distribution and the framework
should also be able to consider this polydispersity of the solids
for an accurate modelling of the overall process. Current liter-
ature is confined to models that deal with monodisperse solids
in the pulp and there remains a need for a framework that can
model the polydispersity of the solids in the feed, along with the
polydispersity of the gas phase. The overall multiphase turbu-
lent CFD model becomes highly complex when the polydisper-
sity of the dispersed phases is considered. The available soft-
ware products are not efficient enough to allow for a tractable
modelling of industrial scale flotation devices, if at all they can
model the polydispersity of the dispersed phases.

To address the above limitations, this work presents an effi-
cient numerical framework for the macroscale simulation of
the three-phase polydisperse pulp. This framework, known
as Fluidity, is an open-source finite element code that pro-
vides an efficient solution method through its fully-unstructured
mesh adaptivity feature that can produce highly-anisotropic
meshes. Moreover, Fluidity is highly-parallelised, which, along
with its other features, makes the solution method highly
tractable.

This paper is organised as follows: Section 2 discusses the mod-
elling framework that was developed in this work, including
details of the multiphase model equations for the three phases
in flotation. Brief details of finite element discretisations and
adaptive mesh refinement are also presented in this section.
Section 3 describes the flotation problem (geometry and op-
erating conditions) that was solved using the present frame-
work. Section 4 presents model validation for a two-phase bub-
ble column, followed by results for a pulp phase simulation in
a flotation column-like geometry. Finally the conclusions and
the scope for future work are presented in Section 5.

2. Modelling framework

A set of coupled partial differential equations (PDEs) was used
to model the polydisperse pulp phase in this study, and these
equations were solved using the adaptive-mesh finite element
framework—Fluidity. Fluidity permitted the modelling of the
polydisperse phases in an efficient way, which is currently miss-
ing in the literature.

Figure 1 shows the complete set of equations and the coupling
between them that was used to model the pulp phase inside a
flotation column. Separate momentum equations were solved
for the air and the liquid (or slurry) phases, assuming the flow
to be incompressible (due to low Mach flow). The momentum
equations for these two Eulerian phases were coupled to each
other through a common pressure field, phase volume fractions
and the interphase interaction force, as shown in the figure. In
addition, a population balance equation for the air bubbles was
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solved to predict the change in the bubble size distribution due
to coalescence and breakage processes. The bubble diameter
field estimated using the PBE was used for the improved pre-
diction of the interphase interaction force, which depends on
the bubble size and can sometimes have a significant effect on
the hydrodynamics.

A two-equation k-ε Reynolds-averaged Navier–Stokes (RANS)
turbulence model was solved for the turbulent liquid phase. The
turbulence kinetic energy (per unit mass), k, and the turbulence
dissipation rate (per unit mass), ε, calculated in this turbulence
model were used as inputs in the other models such as: the time-
averaged liquid phase momentum equation for the calculation
of the eddy viscosity, the breakage and coalescence functions
in the PBE for air bubbles, and the attachment and detachment
terms in the model for solids.

The solid scalar transport equations, coupled to each other
through the attachment and detachment source terms, are shown
on the left in Figure 1. Although more than one solid class was
used in this work, only one has been shown in the figure for
illustration. The free (or unattached) solids equations are cou-
pled to the liquid phase momentum equation through the mean
(or time-averaged) liquid velocity Uc and the modified liquid
viscosity µmolecular. The attached solids transport equations are
coupled to the gas phase momentum equation through the gas
phase velocity field. The PBE supplies the bubble diameter
and the bubble concentration for the attachment and detachment
rate expressions.

In the present model the bubble size distribution is not affected
by attached solids. The breakage and coalescence rate expres-
sions for the bubble population balance equation should ide-
ally include the physics of particle attachment affecting stability
of bubbles. The present breakage and coalescence terms only
include the liquid phase turbulence, which is affected by the
free solids concentration only. Similarly, the gas holdup, which
gets modified with the change in bubble size distribution, also
doesn’t get affected by attached solids in this work. There is
no work in the literature that presents an empirical relation for
the effect of particle attachment on bubble stability. The effects
of adding reagents (collectors, frothers, activators and depres-
sants) in the pulp phase have not been modelled in the present
work.

This framework is unique allowing a strong coupling between
the different phases (as shown in Figure 1). The highly-
parallelised nature of Fluidity along with the ability to handle
fully-unstructured adaptive meshes makes it specially suitable
to simulate industrial scale flotation pulp. At the present stage
there is no other commercial or freely available software prod-
uct that allows this kind of modelling capability. A detailed
description of the modelling equations is presented in the sub-
sections that follow.

2.1. Flow equations

An incompressible E–E model was chosen in this work over
the other options available—mixture model and Eulerian–

Lagrangian model—as it provides a good balance between ac-
curacy and complexity.

As described in Ishii and Hibiki (2010), the RANS equation for
the two phases in this work can be written as:

αiρi
∂Ui

∂t
+αiρiUi ·∇Ui = −αi∇P+αiρig+∇·[αi(τi+τ

R
i )]+fi, (1)

where the subscript i can be c or d, denoting the continuous (liq-
uid) and the dispersed (gas) phases, respectively. In the above
equation, α is the phase volume fraction, ρ is the phase density,
U is the mean phase velocity, P is the mean static pressure, g is
the acceleration due to gravity, τ is the mean shear stress ten-

sor, τ
R

represents the Reynolds stress tensor, and fi is the sum
of all interphase forces acting on the ith phase due to the other
phase.

Ishii and Hibiki (2010) derived the above equation using
Reynolds time averaging performed at a point location in space,
unlike the usual spatial averaging approach. Their approach
defines a phase density function Mi which is equal to one for
the phase i and zero otherwise; the volume fraction therefore
results from the Reynolds time averaging of Mi at a point lo-
cation. Weight average of a function F, 〈wF〉/〈w〉, leads to
the definition of phase average (weight w = Mi) and mass
weighted average (w = ρ). In Equation (1), the mean velocity
is a mass-weighted average, and mean pressure and shear stress
are phase-averaged quantities. This kind of averaging prevents
any statistics of the volume fraction from appearing in the mean
equations. The fluctuations in the physical quantities were de-
fined with respect to the above definitions of the mean values.
In the present work turbulence was only modelled for the con-
tinuous phase and the dispersed phase was considered laminar
(same as Pfleger and Becker (2001) and Bhole et al. (2008)),
due to the gas phase eddy viscosity 2–3 orders smaller than the

liquid phase; i.e. Ud = ud and τ
R
d = 0 in Equation (1), where u

denotes the actual velocity field.

The mean shear stress term in Equation (1) was modelled as
τi = µd

(
∇Ui + ∇(Ui)T

)
+ Dinterf, which is obtained from the

constitutive equation for an isotropic linear viscous fluid with
dynamic viscosity µd. Dinterf is the interfacial extra deformation
tensor (∼ ∇αc), also known as the bubble-induced turbulence
(BIT) term (Ishii and Hibiki, 2010), which contains the contri-
bution of the bubble wake to the turbulence in the liquid phase.
There are two major ways to include the contribution of the
bubble wake on liquid velocity fluctuations (and hence the liq-
uid viscous shear stress)—through the inclusion of a modified
liquid viscosity (Sato and Sekoguchi, 1975) and through the
modification of production terms in turbulence kinetic energy
and turbulence dissipation rate equations (Pfleger and Becker,
2001; Bannari et al., 2008). The literature contains works com-
paring the two approaches and there is no consensus on the
superiority of one model over the other. While a few prefer
the use of modified viscosity (Pfleger et al., 1999; Ojima et al.,
2014), many found the use of modified production better (Ol-
mos et al., 2003), and a few simply found the inclusion of BIT
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Figure 1: Coupling of the model equations used for modelling the three-phase pulp phase in a flotation column.

model detrimental to validation (Pfleger and Becker, 2001). A
study by Zaruba et al. (2005) experimentally showed the con-
tribution of BIT an order or magnitude smaller than the shear-
induced turbulence in a thin rectangular bubble column, similar
to the geometry employed in the present work. The BIT model
was excluded from the present model due to its mixed accep-
tance in the literature.

A common pressure field was considered for the two Eulerian
phases (Bhutani et al., 2016), which required that only one
(common) continuity equation had to be solved. The common
continuity equation is given as (Ishii and Hibiki, 2010):

∇ · (αdUd) + ∇ · (αcUc) = 0, (2)

In polydisperse flow modelling, the interphase interaction force
fi, which includes the drag and non-drag forces, is responsi-
ble for coupling the dispersed phase particle size to the model
momentum equations. The drag force, which is the most signif-
icant of all interphase forces, consists of both the pressure and
the viscous drag on the body, and can be written as:

fi = ±
3αcαdCDρc(Uc − Ud)|Uc − Ud |

4d
, (3)

where CD is the drag coefficient and d is the dispersed phase
diameter. In the present work the Schiller–Naumann drag force
correlation was used to obtain the drag coefficient (Schiller and
Naumann, 1935). This coefficient models the drag well for vis-
cous and Newton’s flow regimes (Ishii and Hibiki, 2010), which
were prominent in the present situation. Many others have also
used the Schiller–Naumann correlation to model drag in bubbly
flows (Buwa and Ranade, 2002; Chen et al., 2005). It is given

as:

CD =


24
Red

(
1 + 0.15Red

0.687
)

if Red < 1000,

0.44 otherwise,
(4)

where Red, the dispersed phase Reynolds number, is defined
as:

Red =
ρcd|Uc − Ud |

µc
. (5)

Equation (4) clearly shows the two flow regimes—the viscous
flow regime with a strong dependence of the drag coefficient
on Red and the Newton’s regime with CD independent of Red.
The non-drag force includes the lift and virtual mass forces,
plus other forces such as the Basset force, the Brownian force
and the thermophoretic force. These forces, however, were ne-
glected in the present model as their effect on the flow is negli-
gible (Chen et al., 2004; Tabib et al., 2008; Dı́az et al., 2008a).
Reynolds-averaging of the discontinuities in the phases, which
results in the interphase interaction force term discussed above,
also gives rise to additional terms such as the interfacial pres-
sure term and the interfacial shear stress terms (∼ ∇αi), both
of which were neglected in the present formulation (Bhutani,
2016). The turbulent dispersion force term, which originates
from the continuous phase velocity fluctuations and affects bub-
ble motion was neglected in the present model due to its dis-
puted nature (Ishii and Hibiki, 2010).

The dispersed phase volume fraction, αd, was obtained from the
solution to:

∂αd

∂t
+ ∇ · (αdUd) = 0 (6)

and the conservation equation

αd + αc = 1 (7)
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was used to obtain continuous phase volume fraction αc.

The Reynolds stress, τ
R
c , is a result of the Reynolds-averaging

of the non-linear convective term in the momentum equation
and is responsible for applying the effect of turbulent fluctua-
tions on the mean flow. Since turbulence was only modelled
for the continuous phase, the subscript c has been omitted in
the subsequent discussion on turbulence modelling. The turbu-
lent viscosity hypothesis introduced by Boussinesq was used to
close the Reynolds stress term, given as:

τ
R

= −ρ〈u′u′〉 = µT

(
∇U + (∇U)T

)
−

2
3

kρI. (8)

In the above equation, u′ is the fluctuating component of the
liquid velocity and µT is the (isotropic) eddy viscosity. The
eddy viscosity in the k-ε model, which is the simplest complete
model for turbulence, is defined as:

µT = ρCµ
k2

ε
, (9)

where Cµ is a model constant. The turbulent kinetic energy,
k = 1

2 〈u
′ · u′〉, is the mean kinetic energy per unit mass

in the fluctuating velocity, and the turbulent dissipation rate,
ε =

2µ
ρ
〈s · s〉 (s being the fluctuating rate of deformation tensor),

quantifies the dissipation of turbulent kinetic energy at small
scales. Standard form of the transport equations for k and ε
(Jones and Launder, 1973) were solved; the equations are given
as:

αρ
∂k
∂t

+αρU ·∇k = ∇·

α (
µ +

µT

σk

)
∇k

+ατR : ∇U−αρε (10)

and

αρ
∂ε

∂t
+ αρU · ∇ε =∇ ·

(αµ +
µT

σε

)
∇ε

 + Cε1

(
εi

k

) (
ατR : ∇U

)
−Cε2αρ

ε2

k
.

(11)

The RHS terms in both equations consist of the diffusion, the
production from mean shear, and the destruction term. Inter-
phase interaction terms appearing in the k and ε equations were
neglected here, as did Ranade (1997) and Buwa and Ranade
(2002). Model constants suggested by Launder and Sharma
(1974) were used in this study (Table 1). σ is the turbulence
Schmidt number here.

Table 1
Model constants in the standard k-ε model given by Launder and Sharma
(1974).

Cµ 0.09
Cε1 1.44
Cε2 1.92
σk 1.0
σε 1.3

Koh and Schwarz (2007) incorporated the effect of attached par-
ticles on the gas bubble weight through a body force term in the
gas momentum equation. Further, they also presented the effect
of modifying the buoyancy term on the prediction of flotation
rate. The present model does not include the buoyancy modifi-
cation term.

2.2. Population balance equation

The population balance equation is a mesoscale integro-
differential equation that can be used to model the evolution
of the size distribution of polydisperse particles (Ramkrishna,
2000; Marchisio and Fox, 2013). In this study, the PBE was
used to model the evolution of the size distribution of the bub-
bles only. The polydispersity of the solids was modelled us-
ing three separate classes, which will be discussed later in Sec-
tion 3. The moving bubbles in a flotation system coalesce and
break, which results in the spatial and temporal evolution of
their distribution.

The PBE can be written as:

∂n(ξ, x, t)
∂t

+ ∇ ·
(
〈u|ξ〉 n

)
= S ξ(ξ, x, t), (12)

where n(ξ, x, t) is the dispersed phase number density function
(NDF), ξ is the internal coordinate (representing the dispersed
phase size), and x is the external (or spatial) coordinate. 〈u|ξ〉
is the mean dispersed phase velocity conditional to the bubble
size and is responsible for convecting the bubbles in the phys-
ical space. However this dependence on the dispersed phase
size was not considered in the present study and the air velocity
field computed using Equation (1) was used in the PBE. Only
one internal variable—the bubble size—was of interest in this
work, however multivariate PBE containing more than one in-
ternal variable has also been discussed in the literature (Buffo
and Alopaeus, 2016).

S ξ, the source term in Equation (12), includes all terms contain-
ing derivatives or integrals with respect to the dispersed phase
size ξ. It can be used to model dispersed phase growth, dif-
fusion in the internal space, and the birth and death functions
due to dispersed phase breakage and coalescence. Growth and
internal diffusion terms did not arise in the present model and
were not included in Equation (12).

As discussed previously, the PBE in this work was used to esti-
mate the bubble size in the flotation system to accurately model
the drag force term in momentum equations (Equations (1) and
(1)). The PBE was also used to calculate the bubble concentra-
tion, which was needed in the bubble–particle attachment and
detachment models.

Breakage and coalescence are discontinuous events that lead to
the birth and death of bubbles in a very short time. The contri-
bution to the source term S ξ from birth and death functions due
to bubble breakage and coalescence is given as:

S ξ = BB + BC − DB − DC . (13)
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The birth and death functions due to breakage are given
as:

BB(ξ) =

∫ ∞

ξ

ν(ξ1)a(ξ1)b(ξ|ξ1)n(ξ1) dξ1 (14)

and
DB(ξ) = a(ξ)n(ξ), (15)

respectively. Here, ν(ξ), a(ξ) and b(ξ|ξ1) are the breakage ker-
nels that define the number of bubbles formed after breakage,
the breakage frequency, and the daughter distribution function,
respectively. Note that the spatial and temporal dependence of
the NDF has been suppressed here for compactness.

Coalescence is described in terms of a coalescence frequency
β(ξ′, ξ) for bubbles of sizes ξ′ and ξ. If there is no statistical
correlation between the colliding bubbles, the bubble pairs can
be defined as the product of two individual number densities,
and the birth and death functions due to coalescence are given
as:

BC =
1
δ̃

∫ ξ

0

 ξ2

ξ′2

 β(ξ′, ξ1)n(ξ′)n(ξ1) dξ1 (16)

and

DC =

∫ ∞

0
β(ξ, ξ1)n(ξ)n(ξ1) dξ1, (17)

respectively. δ̃ in the above equation represents the number of
bubbles coalescing to form a larger bubble. In Equation (16), ξ′

is given as ξ′3 = ξ3 − ξ3
1 , i.e. the volume of the resulting bubble

class (ξ) is the sum of the volumes from the contributing size
classes (ξ′ and ξ1).

The internal coordinate presents the major challenge in the nu-
merical solution of the PBE. Most methods eliminate the in-
ternal coordinate from the PBE to bring it in a form that can
be solved numerically using established methods. The popular
numerical solution methods for the PBE can be grouped into
two general categories—the method of classes and the method
of moments. The CM discretises the internal coordinate in the
NDF, giving rise to various classes (Marchal et al., 1988). The
PBE transforms to a set of advection–diffusion equations for the
discretised NDF corresponding to each class. A large number
of classes are needed for a reasonable accuracy when the PBE
is coupled to the multiphase flow equations, which makes the
solution of a normal engineering system extremely expensive.
For instance, Sarhan et al. (2017) used 10 classes for the bubble
NDF in their flotation column model, which equates to solving
10 extra advection–diffusion equations in addition to the multi-
phase flow equations. The size distribution can change signifi-
cantly in a very short time due to the discontinuous nature of the
breakage and coalescence events, and therefore a large number
of classes must be considered to factor this possibility.

The method of moments (MOMs), as the name suggests, solves
for the evolution of the moments of the NDF instead; kth mo-
ment of the NDF can be written as mk =

∫ ∞
0 ξkn(ξ) dξ. The

internal coordinate gets integrated when the moments of the
NDF are evaluated in the PBE, but in the process various un-
closed terms are generated. The various methods of moments

available in the literature are differentiated based on the clo-
sure method used. Quadrature-based moment methods are pop-
ular as they are simple and robust, and the mathematical clo-
sure in the QBMM can be applied to any problem without
an understanding of its physics. In this method, the higher-
order unclosed moments are written in terms of the lower-order
moments, which are transported. QMOM and DQMOM are
two popular QBMMs used in the literature. QMOM approxi-
mates the integrals in terms of weights and abscissas (McGraw,
1997), whereas DQMOM uses a quadrature approximation for
the NDF itself (Marchisio and Fox, 2005), given by:

n
(
ξ, x, t

)
=

N∑
j=1

w j (x, t) δ
[
ξ − 〈ξ〉 j (x, t)

]
, (18)

where δ is the Dirac delta function, N is the total number of
quadrature points, and w j and 〈ξ〉 j are the weights and abscis-
sas in the DQMOM approximation, respectively. DQMOM was
chosen to solve the PBE in this work because each weight and
abscissa can be defined as a function of space, which makes
the implementation of the method in a CFD code straight-
forward. Also, very few abscissas are needed to accurately
model the NDF due to the adaptive quadrature approach of DQ-
MOM.

The DQMOM approximation to the NDF when substituted into
the PBE (Equation (12)) results in the following set of transport
equations (Marchisio and Fox, 2005):

∂w j

∂t
+ ∇ ·

(
u w j

)
= g j (19)

and
∂ς j

∂t
+ ∇ ·

(
u ς j

)
= h j, (20)

where j = 1, 2, ...,N. The source terms g j and h j are obtained
from the solution of the linear system

(1 − k)
N∑

j=1

〈ξ〉kjg j + k
N∑

j=1

〈ξ〉k−1
j h j = S

(N)
k , (21)

which is obtained by computing the kth moment of the PBE;
here k = 1, 2, ..., 2N. The above set of equations were solved
for the weights w j and the weighted abscissas ς j, which were
then used to calculate the moments and eventually the Sauter
mean diameter (d32 = m3/m2). The bubble surface area flux
is an important parameter that is used to characterise flotation
and since the Sauter mean diameter (SMD) includes the effect
of the total surface area of the bubbles (through m2) it was used
as an estimate for the bubble diameter in this study. S

(N)
k is the

kth moment of the source term in the PBE and the DQMOM
approximation to the NDF provides a convenient closure for
this source term. It is given as:

S
(N)
k =

N∑
j=1

b
(k)
j a jw j −

N∑
j=1

〈ξ〉kja jw j

+
1
2

N∑
j=1

N∑
i=1

(
〈ξ〉3j + 〈ξ〉3i

)k/3
β jiw jwi −

N∑
j=1

N∑
i=1

〈ξ〉kjβ jiw jwi,

(22)
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where the term b
(k)
j is given as:

b
(k)
j =

∫ ∞

0
ξkb(ξ|〈ξ〉 j)dξ. (23)

In the above equation, b(ξ|〈ξ〉 j) = 0 for ξ > 〈ξ〉 j, which re-
stricts the daughter bubble size to be smaller than the parent.
The breakage kernel ν(ξ) is usually absorbed in the daughter
distribution function b(ξ|ξ1) (Marchisio et al., 2003b,a) and has
been omitted from Equation (22).

Compared to the CM, DQMOM requires a fewer number of
equations that need to be solved to get a good estimate of the
BSD. For instance, Marchisio et al. (2003b) stated that 4–6
equations in DQMOM (i.e., N=2–3) provide similar accuracy
as 50–200 classes in the CM. Two quadrature points were used
in the DQMOM approximation in this study.

The problem of moment corruption (i.e., the moment-set be-
coming invalid or unrealisable) has been reported with the use
of the MOMs in the literature (Petitti et al., 2010). However,
it has been established that the first-order upwind convective
scheme in the finite volume discretisation, which was used for
the PBE transport equations in this work, always leads to re-
alisable moments for N ≤ 3 (Desjardins et al., 2008; Mazzei
et al., 2012). The details of the implementation of DQMOM in
Fluidity and its verification have been presented in a previous
publication by the authors (Bhutani et al., 2016).

2.2.1. Kernels

The breakage and coalescence kernels are chosen based on the
physics of the problem under consideration. The most widely
accepted theory for bubble breakage states that the bubble
breakage phenomenon is characterised by a balance between
the forces in the liquid trying to deform the bubble (the turbu-
lent fluctuations) and the restoring force due to interfacial ten-
sion (Andersson and Andersson, 2006). On the same lines, the
breakage rate proposed by Laakkonen et al. (2006) was used for
modelling bubble breakage in this work. It is given as:

a(ξ) = C1ε
1/3erfc

√C2
σ

ρcε2/3ξ5/3 + C3
µc

√
ρcρdε1/3ξ4/3

 ,
(24)

where σ is the gas–liquid interfacial tension, and C1, C2 and
C3 are empirical model constants with C1 having dimensions
of L−2/3. The stabilising effect of viscous stresses was also con-
sidered along with the interfacial tension effects in the above
breakage rate kernel. Other popular choices for the break-
age kernels are the ones proposed by Coulaloglou and Tavlar-
ides (1977), Luo and Svendsen (1996) and Prince and Blanch
(1990).

Binary breakage was assumed in this work (ν(ξ) = 2), and
the daughter distribution function proposed by Laakkonen et al.
(2007) was employed in this study. It is given as:

b(ξ1|ξ2) =
1
2

(C4+1)(C4+2)(C4+3)(C4+4)

ξ1
2

ξ2
3

 ξ1
3

ξ2
3

2 1 − ξ1
3

ξ2
3

C4

.

(25)

The above expression does not take the effect of turbulence or
any other parameter, other than the bubble size, into account.
It is mathematically well-posed and numerically more stable
than the other expressions (Luo and Svendsen, 1996). C4 is a
constant that can be calculated using the normalisation property
of daughter distribution function.

Bubble coalescence is considered more complex than breakage
because it not only involves the interaction between bubbles and
liquid, as in breakage, but also between different bubbles. The
coalescence rate kernel is written as a product of the collision
frequency and the coalescence efficiency. It is the turbulence
in the continuous phase that is responsible for the collision be-
tween the bubbles in the pulp zone. The coalescence efficiency
is modelled by comparing the film drainage time with the bub-
ble interaction time. Assuming the coalescing bubble interfaces
to be immobile, Laakkonen et al. (2006) obtained the following
expression for the coalescence efficiency:

η(ξ1, ξ2) = exp

−C6
µcρcε

σ2

(
ξ1ξ2

ξ1 + ξ2

)4
 . (26)

The coalescence rate was therefore given as:

β(ξ1, ξ2) = C5ε
1/3 (

ξ1 + ξ2
)2

(
ξ1

2/3 + ξ2
2/3

)1/2
η(ξ1, ξ2), (27)

and the same was used in the present study. Binary collision
was assumed here (δ̃ = 2). For more details on the theory of
bubble breakage and coalescence and the choice of kernels, see
Bhutani (2016).

Evans et al. (2008) proposed their own kernels for breakage
and coalescence, whereas Koh and Schwarz (2008b) used the
breakage and coalescence kernels of Luo and Svendsen (1996)
and Prince and Blanch (1990), respectively, to model flota-
tion. Buffo et al. (2013) reported promising results for mod-
elling bubble columns through the use of the breakage and co-
alescence kernels of Laakkonen et al. (2006); the same kernels
were used in this work. Although the coalescence and break-
age kernels of Laakkonen et al. (2006, 2007) used in this work
have been derived for pure liquid and bubble systems, Koh and
Schwarz (2008b) used similar liquid–gas expressions in their
flotation simulations reporting a reasonable match with the ex-
periments. However, it will be ideal to include kernels that can
account for the the effect of solids and surfactants, which, to
the best knowledge of the authors, do not exist in the literature
currently.

2.3. Solids

2.3.1. Transport equations for solids

Transport equations for the free and attached solids in the pulp
were solved. The total solid concentration inside the column,
ntot, can be given as:

ntot(x, t) = n f (x, t) + na(x, t), (28)
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where n f and na are the concentrations of the free and at-
tached particles, respectively, in number per unit volume
(#/m3).

Transport equations that were solved for n f (x, t) and na(x, t) can
be written as:

∂n f

∂t
+ (Uc + usettling) · ∇n f = −ψa + ψd, (29a)

∂na

∂t
+ Ud · ∇na = ψa − ψd. (29b)

Here, ψa is the rate of particle–bubble attachment and ψd is the
rate of detachment. A settling velocity usettling was added to the
continuous phase velocity to get the advection velocity of the
free particles, as seen in Equation (29a). The attached particles
advect with the dispersed phase velocity Ud

2.3.2. Attachment rate

The particle attachment rate was modelled as a product of the
number of collisions between free particles and available bub-
bles and the probability of successful attachment. Is is given
as:

ψa = Z1n f nA
b PcPaPs, (30)

where Z1 is the collision rate factor (m3s−1), nA
b is the concen-

tration of bubbles available for attachment, and Pc, Pa and Ps

are the probabilities of collision, adhesion and stabilisation, re-
spectively.

Collision rate factor

Abrahamson (1975) was the first to derive the collision rate fac-
tor between particles in a highly turbulent fluid. The same ex-
pression was later used by Koh et al. (2000) and Bloom and
Heindel (2002) to estimate the collision rate between particles
and bubbles in flotation. Based on the previous studies the
same collision rate factor was used in the present work, given
as:

Z1 = 5.0
(

ds + db

2

)2

(u2
t,s + u2

t,b)1/2, (31)

where db is the bubble diameter, ds is the particle diameter, ut,s

is the RMS fluctuating velocity for the particles and ut,b is the
RMS fluctuating velocity for the bubbles.

For large colliding particles and/or high intensity turbulence the
particles do not follow the fluid streamlines and the particle ve-
locities can be assumed to be distributed independently (in mag-
nitude and direction). The particle velocity distribution in the
above model is assumed to be Gaussian and the velocity fluctu-
ations are represented in terms of the turbulent dissipation rate
as (Koh and Schwarz, 2006; Bloom and Heindel, 2002):

ut,i =
0.4ε4/9ρ1/3

l d7/9
i

µ1/3
l

(
ρi − ρl

ρl

)2/3

, (32)

where the subscript i refers to solid and gas (bubble) phases.
Colliding species—particles and bubbles—are collectively re-
ferred to as ‘particles’ in this section in the interest of simplic-
ity.

Equation (31) was also used by Koh and Schwarz (2006) in
their pulp phase CFD model for uncorrelated solid particle and
bubble velocities. The solid particle and bubble velocities re-
main uncorrelated as long as turbulence in the fluid is isotropic
at the scale of colliding particles (which may be true even when
the large-scale motion is statistically anisotropic) and the two
colliding particles are moving in independent fluid elements.
Velocities for the fluid elements close to each other in space
will be correlated, but if the particle inertia is sufficiently larger
than the drag on the particle due to these correlated elements
the independence of particle velocities can be assumed. The
above condition is quantified by comparing the particle relax-
ation time to the characteristic time for velocity fluctuation at a
distance over which the fluid velocities are correlated. This re-
sults in a critical particle diameter expression, given as:

dcrit =

√
15µlu2

t,l

ρiε
. (33)

For a typical flotation situation dcrit is 1 mm for air bubbles
and 0.5 mm for solid particles (of density 2500 kgm−3). How-
ever, the value may change depending the intensity of turbu-
lence at a given location. Since the diameter of the bubbles
introduced into the column was 5 mm Abrahamson’s collision
rate factor was applicable in such cases. Abrahamson’s colli-
sion rate factor (Equation (31)) is therefore applicable when the
solid particle or bubble diameter is greater than the above crit-
ical diameter (Koh and Schwarz, 2006). Here, ut,l is the RMS
fluctuating velocity of the liquid phase which is equal to

√
2k.

For bubbles, ρi in the above equation is taken as 0.5ρl. Equa-
tion (31) is therefore applicable when the following conditions
are satisfied: high-intensity turbulence in the flow, turbulence is
isotropic on the scale of colliding particles, particles are nearly
spherical, and the particle size is greater than the critical di-
ameter for the solid particle and bubble velocities to be inde-
pendent. Most of the above conditions were applicable in the
present situation for particle–bubble collisions in flotation. The
particles (and larger bubbles) however are not spherical and this
is an assumption that is made here to ensure the applicability of
Equation (31).

In case the solid particle and bubble velocities are correlated
(i.e. for low intensity turbulence), the collision rate expression
developed in the past by Saffman and Turner (1956) was used
(same as Koh and Schwarz (2006)):

Z1 =

√
8π
15

(
ds + db

2

)3 (
ερl

µl

)1/2

. (34)

The above expression is based on the classical ‘gradient colli-
sion’ model of Smoluchowski (1917), which derives the colli-
sion rate of particles moving under uniform shear. This model
assumes ds + db to be smaller than the smallest eddies and that
the particles move with the fluid (i.e. they have a small iner-
tia).

Bubbles available for attachment

Different approximations have been used to estimate the avail-
able bubble concentration in the literature. Bloom and Heindel
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(1997) assumed that only one particle can attach to a bubble,
whereas Bloom and Heindel (2003) assumed that only the bub-
bles that have no particle attached to them are available for at-
tachment. Some replaced the number concentration of available
bubbles with the total bubble concentration. In this work, the
assumption of Koh and Schwarz (2006) of the bubbles being
either fully loaded or completely clean was used. The bubble
loading parameter βbub was, therefore, defined as:

nA
b = (1 − βbub)ntot

b , (35)

where ntot
b is the total bubble concentration. The bubble loading

factor for a particular solid class i was calculated as:

βbub,i =

na,i

ntot
b

 (ds,i

db

)2

0.5, (36)

assuming 50% maximum loading. The total bubble concentra-
tion ntot

b was calculated using the value of zeroth moment, m0,
of the bubble NDF. Equation (36) assumes that loaded bubbles
always contain particles of the same size.

Collision probability

The probability of collision between free particles and bubbles
in this work was calculated using the expression derived by
Yoon and Luttrell (1989), given as:

Pc =

(
3
2

+
4
15

Re0.72
b

) (
ds

db

)2

. (37)

This expression is based on an isolated bubble rising in particle
suspension in a quiescent flow. The particles are assumed to
follow fluid streamlines around the bubble, which is a reason-
able assumption if the particle inertia is small. The particles and
bubbles are assumed to be spherical. It was theorised by Suther-
land (1948) that the particles lying inside the grazing streamline
are able to collide with bubbles successfully. Using this theory,
the probability of collision was defined as the fraction of parti-
cles in the bubble path that end up colliding with it, quantified
as the ratio of the area inscribed by limiting radius R0 to the area
inscribed by bubble radius Rb, as shown in Figure 2. Yoon and
Luttrell (1989) developed an empirical relation for R0 as a func-
tion of the bubble Reynolds number (below 100), through mea-
surements of fluid streamlines. This led to the expression for the
collision probability as defined in Equation (37). Equation (37)
was also used by Koh and Schwarz (2006) in their pulp phase
models. Three other collision mechanisms, namely the gravita-
tional, inertial and turbulent collision are possible (Wang et al.,
2018); however, only the interceptional collision mechanism,
as described above, was considered in this work.

Adhesion probability

The short-range surface forces start acting once the parti-
cle is close enough to the bubble after collision. Sutherland
(1948) theorised that for the thermodynamically feasible cases
the bubble–particle adhesion occurs when the particle “sliding
time” is larger than the “induction time”, which is the minimum
time required for the liquid film to thin and rupture. For given

2R0 2Rb
grazing

streamlines

Figure 2: Fluid streamlines around a spherical bubble. Solid particles outside
the grazing streamlines do not contact the bubble.

particle and bubble sizes, there is a maximum incidence angle
that the incoming particle must hit at for the adhesion to be
successful. For particles approaching at angles above this max-
imum angle, the sliding distance will not be long enough for the
film thinning to occur in time. Yoon and Luttrell (1989) quanti-
fied the adhesion probability as the ratio of the area inscribed by
the limiting radius (corresponding to the maximum incidence
angle) to the area inscribed by the sum of bubble and particle
radii. This adhesion probability is equal to sin2 θinc, θinc be-
ing the maximum incidence angle. Using the empirical relation
for fluid streamlines as a function of bubble Reynolds number,
Yoon and Luttrell (1989) derived the sliding time in terms of
the incidence angle, assuming the particle inertial to be small.
Equating the sliding and induction times for the maximum in-
cidence case, the adhesion probability was obtained as:

Pa = sin2

2 arctan

exp

−(45 + 8Re0.72
b )ut,btind

15db(db/ds + 1)



 . (38)

The following well-known relation for the induction time was
used in this work:

tind = AinddBind
s , (39)

where Aind = 75/θCA (θCA is the contact angle in degrees) and
Bind = 0.6, using the statistical fitting performed by Dai et al.
(1999) and Koh and Schwarz (2006). Definition of the fitting
parameter A is consistent with the fact that the induction time
is short for hydrophobic surfaces (Wills and Finch, 2016). Al-
though the effect of collectors has not been modelled here, they
will affect the induction time directly through a change in the
contact angle of the mineral surface.

Ideally the adhesion probability should also consider the extent
of liberation of the mineral in the crushed ore. It is generally
not economical to crush the ore to very fine particle size to lib-
erate all mineral particles. Hence the partially-liberated ore has
a lower probability of attaching to the bubbles as compared to a
fully-liberated one. Welsby et al. (2010) measured the flotation
rate as a function of particle size for different mean liberation
values, noticing a clear trend. Jameson (2012) showed that the
ratio of the rate constant for a partially liberated particle sample
to a fully liberated sample was a unique function of liberation
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independent of particle size, called the liberation function. Al-
bijanic et al. (2011) saw a clear reduction in the adhesion time
as the liberation of the mineral increased, through their experi-
ments. There is currently no study that quantifies this effect of
liberation on the adhesion probability and the effect of libera-
tion therefore was not considered in the present model.

Stabilisation probability

Schulze (1993) proposed the stabilisation probability of the
particle–bubble aggregates in a flotation pulp as:

Ps = 1 − exp
(
1 −

1
Bo∗

)
. (40)

Here Bo∗ is the modified Bond number defined as the ratio of
detachment to attachment forces. It is given as:

Bo∗ =

d2
s

[
(ρs − ρl)|g| + 1.9ρsε

2/3
(

ds+db
2

)−1/3
]

|6σ sin
(
π − θCA

2

)
sin

(
π +

θCA
2

)
|

+
1.5ds

(
4σ
db
− dbρl|g|

)
sin2

(
π − θCA

2

)
|6σ sin

(
π − θCA

2

)
sin

(
π +

θCA
2

)
|
,

where g is the acceleration due to gravity vector. In the above
expression it is assumed that turbulent eddies of similar size as
the bubble–particle aggregate cause detachment. Turbulence
and capillary forces can be seen competing with each other
in the above expression for the modified Bond number. This
expression for stabilisation probability was used in the present
flotation modelling framework.

2.3.3. Detachment rate

The particle detachment rate was given by:

ψd = Z2nL
b Pd, (42)

where Z2 is the detachment frequency (1/t), nL
b is the concentra-

tion of loaded bubbles and Pd is the destabilisation probability.
The detachment frequency due to the turbulent eddies was cal-
culated using:

Z2 =

√
C̃ε1/3

(ds + db)1/3 , (43)

where the constant C̃ was taken to be equal to 2 (Bloom and
Heindel, 2002, 2003; Koh and Schwarz, 2006). The concen-
tration of loaded bubbles was calculated using nL

b = βbubntot
b .

The destabilisation probability was calculated simply as 1 −
Ps.

2.3.4. Settling velocity of solids

Richardson and Zaki (1954) obtained the relation for the set-
tling velocity of a suspension of uniform spherical particles
as:

usettling =
g(ρs − ρl)d2

s

18µl
ε4.65

s , (44)

where the subscripts s and l refer to the solid and liquid, respec-
tively. εs is the porosity in the solid-liquid mixture that can be
written as:

εs = 1 − n f Vs. (45)

Here, Vs is the volume of a solid particle. Equation (44) was
used to calculate the settling velocity of free solids, which was
superimposed on the liquid velocity field for getting the advec-
tion velocity in the free-solid scalar equation (Equation (29a)).
The pulp phase models presented by Koh and Schwarz have
also included the effect of the settling velocity of the particles,
which can be verified from the settled unattached particles at
the bottom of their tanks, as shown clearly in Koh and Schwarz
(2008a, 2009). The settling velocity expression used by them,
however, was not specified in their works. Neglecting the set-
tling velocity would mean that the larger (and heavier) solid
particles will also follow fluid streamlines like the lighter ones,
which is physically incorrect. This equation however is only
used for the better estimation of the advection term in the free-
solid transport equation as no momentum equation for the free
solids is solved in the present model.

2.3.5. Viscosity modification of the liquid phase

The collision between the solid particles in liquid phase man-
ifests as an increased viscosity the of liquid. Einstein’s equa-
tion, which relates the slurry viscosity µslurry to the solid vol-
ume fraction φ for spherical particles, is generally applicable to
very dilute systems and the equation does not apply to higher
solid concentrations. Krieger and Dougherty (1959) proposed
an expression for the change in the viscosity of a fluid due to
the presence of high concentration of rigid spherical particles
as:

µslurry = µl

1 − φ̃

φ̃max

−[µ]φ̃max

, (46)

where µl is the molecular viscosity of the fluid, φ̃ is the solid
volume fraction, φ̃max is the maximum packing fraction that
the solid particles can achieve and [µ] is the intrinsic viscos-
ity. Intrinsic viscosity is the limiting value of (µslurry/µl − 1)/φ̃,
which is equal to 2.5 using Einstein’s equation. Merve Genc
et al. (2012) used the values 2.5 and 0.74 for [µ] and φ̃max re-
spectively, in Equation (46) for estimating the pulp viscosity
in nickel sulphide flotation. Many other empirical and semi-
empirical relations between µslurry and φ̃ have been proposed
(Shook and Roco, 1991). Equation (46) was used in the present
work with the values 2.5 and 0.70 for [µ] and φ̃max, respectively.
Maximum solid packing fraction of 0.74 can be considered as
a theoretical maximum (corresponding to hexagonally-packed
spherical particles) that can be attained; real measured values
are much smaller (order of 0.01 due to the gangue fibre mesh).
The higher φ̃max value allows for the slurry to attain higher φ̃
values and still keep flowing. Moreover, the flotation simula-
tions demonstrated in this work are for a batch flotation sys-
tem containing mineral particles only, therefore allowing higher
values of φ̃max. The solid volume fraction was calculated as
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φ̃ = 1 − ε using Equation (45). Koh and Schwarz (2008a) have
reported the use of modified viscosity in their pulp phase model.
They used the Herschel Bulkley non-Newtonian model with
the consistency and flow indices fitted for various pulp densi-
ties.

Since the viscosity modification is the only way to apply the
effect of free solids on the liquid velocity field, this step is nec-
essary. It is independent of the settling velocity modification
in Equation (44), which does not impact liquid velocity as the
free-solid transport equation does not modify liquid velocity in
any way in the approach used in this paper. If a separate mo-
mentum equation was being solved for the free solids, viscosity
modification of the liquid phase would impact solid velocity
field and the Richardson and Zaki settling equation would not
be needed. In the present model, the viscosity modification and
Richardson and Zaki equation are used to independently apply
the effect of free solids on the liquid velocity and the solid ve-
locity, respectively.

Table 2 shows a comparison of the features of the present pulp
phase simulation framework with previous studies.

2.4. Numerical discretisation

Fluidity is an open-source code that uses the finite element
method (FEM) for solving coupled PDEs. The FEM was cho-
sen over the finite difference method (FDM) as the finite ele-
ment (FE) discretisation has been shown to naturally go well
with the unstructured meshes (Wilson, 2009), which were used
in the present work. Implementing higher-order discretisations
is not straightforward in the finite volume method (FVM) and
the FEM was chosen over it for reason that it provides a con-
venient way to increase the accuracy through an increase in the
degree of the fitting polynomials. Galerkin FEM was used to
discretise the pressure and velocity fields in this work. The
FE shape functions can be obtained from continuous or dis-
continuous function spaces. Piecewise-linear discontinuous FE
basis functions (P1DG) were used to represent velocity in the
momentum equation. The continuity equation (for pressure)
used piecewise-quadratic continuous FE basis functions (P2).
The P1DG–P2 velocity–pressure pair ensured the LBB stabil-
ity criterion (Cotter et al., 2009). See Figure 3 for a compari-
son between the different discretisations in one and two dimen-
sions.

A node-centred CV discretisation was also used in certain cases
(such as for phase volume fraction and PBE scalars) to en-
sure conservation. Control volume dual mesh was constructed
on a P1 parent mesh (as shown in Figure 3) and piecewise-
constant CV shape functions were used to discretise fields such
as volume fractions, turbulence scalars, DQMOM scalars (in
the PBE) and the solids concentrations. Therefore a hybrid
FE–CV method was established for the solution of the coupled
PDEs for modelling pulp hydrodynamics. See Bhutani et al.
(2016) for more details on the description of the discretisation
methods.

A

e1 e2

A
e1

e2

e

A e A
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Figure 3: Elements and the corresponding shape functions on 1D (left) and
2D (right) FE meshes. (a) A pair of piecewise-linear discontinuous FE basis
functions (P1DG) along with the support nodes. (b) Piecewise-quadratic
continuous FE basis functions (P2) along with the support nodes. (c) Control
volume dual mesh on P1 parent mesh, and piecewise-constant CV shape
functions for 1D and 2D are shown. The support for a basis function is the
same as the control volume. Figure adapted from Wilson (2009).
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Table 2
Comparison of the features of the present pulp phase simulation framework with previous studies.

Model feature Present
work

Koh et al.
(2000)

Koh and
Schwarz
(2003)

Koh and
Schwarz
(2006)

Koh and
Schwarz
(2007)

Koh and
Schwarz
(2008a,b)

Karimi
et al.
(2014b)

Sarhan
et al.
(2016,
2018)

E–E model for gas and
liquid phases

X X X X X X X X

k–ε turbulence model for
liquid phase

X X X X X X X X

Polydisperse bubbles X X X X X X X X

Polydisperse solids X X X X X X X X
Settling velocity for free
solids

X X X X X X X X

Viscosity modification of
liquid phase due to solids

X X X X X X X X

Transport equations for
free and attached solids

X X X X X X X X

Collision rate (bubble–
solids)

X X X X X X X X

Collision probability X X X X X X X X

Adhesion probability X X X X X X X X

Stabilisation probability X X X X X X X X

Detachment rate (bubble–
solids)

X X X X X X X X

Solver Fluidity CFX CFX CFX CFX CFX ANSYS
Fluent

AVL-
FIRE

Impeller modelling X X X X X X X X
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2.5. Mesh adaptivity

Mesh adaptivity is the method of systematic mesh modification
in a simulation, based on the physics of the problem, to pre-
dict the flow accurately as time progresses. Fluidity can gener-
ate fully-unstructured, non-homogeneous, anisotropic meshes
adaptively for a given set of optimisation parameters. Consid-
ering the many equations that needed to be solved in the model
in this work, it was imperative that an optimised mesh be con-
sidered for a tractable framework. Mesh adaptivity in Fluidity
is a three-step process which starts with metric estimation, fol-
lowed by mesh generation, and finally the interpolation of all
fields on the new mesh.

The mesh metric is a Hessian based error metric which is a
function of the curvature of the field to be adapted to and a user-
defined interpolation bound. The mesh metric allows for an in-
crease in the mesh resolution in the regions of strongly-varying
fields, keeping the mesh in the other parts of the domain coarse.
Different mesh metrics can be superposed in case the mesh
needs to be adapted to more than one field (Pain et al., 2001). In
the next step, the mesh is generated through a sequence of local
topological operations (Piggott et al., 2009). Finally, the inter-
polation of meshes can be achieved using a consistent interpola-
tion method or using a Galerkin projection method. Details on
the description of mesh adaptivity and its implementation can
be found in the previous work by the authors (Bhutani et al.,
2016), the Fluidity manual (AMCG, 2015), Pain et al. (2001),
and Piggott et al. (2009). Significant improvements in the so-
lution efficiency have been reported through the use of mesh
adaptivity in Fluidity in the past (Hiester et al., 2014; Jacobs
et al., 2013)

In the present work the mesh was adapted for the air volume
fraction, and the first weight and weighted-abscissa of the NDF.
The application of adaptivity to the PBE fields was shown to im-
prove the solution efficiency in the previous work by the authors
(Bhutani et al., 2016). Details of the interpolation-error bound
values used in this study are discussed in Section 4.

3. Problem description and simulation setup

Turbulence provides the necessary mixing needed in a flotation
system to aid in the particle–bubble collision. This turbulence
can either be generated using an impeller, such as in a flotation
cell, or using gravity resulting in rising buoyant bubbles, such
as in a flotation column. In this work a flotation column-like
system was modelled using the present Fluidity framework to
demonstrate its capabilities.

A rectangular column geometry, as shown in Figure 4, was
used for the flotation simulations in this work. This geome-
try was inspired from the bubble column experiments of Dı́az
et al. (2008b), which was used as a validation problem in this
work. Dı́az’s ‘thin’ bubble column measured 20 cm x 45 cm
x 4 cm which was approximated with a 20 cm x 45 cm two-
dimensional (2D) column in this work. Air was injected into

45
 c

m

20 cm 4 cm

Inlet

Outlet

x

y

z

Figure 4: Experimental column of Dı́az et al. (2008a) used in this work for
model validation. Inlet dimentions are 1.8 cm × 0.6 cm.

this 2D column through a 2 cm sparger placed symmetrically
at the base of the column, as shown in the figure. It was rea-
sonable to approximate Dı́az’s thin experimental column with
a 2D column as the z velocity component is much smaller than
the x and y velocity components. The dependence of the fluid
flow equations on the z-coordinate can be neglected if one is
interested in estimating the flow at the centre z-plane. The ac-
ceptability of the above approximation was established through
a good match with the bubble column experiments, as shown in
Section 4.

Boundary conditions, initial conditions and the numerical and
physical parameters used in the simulations are presented next.
The values for all fields presented are the same for the bubble
column validation problem and the flotation column problem,
except for the solids equations which only appear in the flota-
tion simulation.

The Schiller–Naumann (S–N) drag coefficient was used to
model the interphase momentum interaction between the gas
and liquid phases in this work. Gupta and Roy (2013) com-
pared different drag models for a thin 2D bubble column ge-
ometry (similar to the one employed in the present work) with
polydisperse bubbles and concluded that the Schiller–Naumann
model was good enough to model drag in their bubble column.
Although the S–N drag coefficient and similar models were
typically developed for rigid single spheres in a dilute laminar
flow, the application has been extended to polydisperse bub-
ble population. This drag coefficient (and similar models) has
(have) been used extensively over the years to model bubble-
water drag successfully (Buwa and Ranade, 2002; Chen et al.,
2005; Sanyal et al., 2005; Tabib et al., 2008; Silva et al., 2008;
Buffo et al., 2016). The Schiller–Naumann drag coefficient is
still popular in the minerals processing literature (Sarhan et al.,
2017; Mwandawande et al., 2019; Wang et al., 2019) due to its
good match with the standard drag curve (Clift et al., 1978).
For the same reason this drag coefficient was employed for the
present simulations even though the bubbles under considera-
tion were 5 mm in diameter.
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Table 3
BCs for the flow fields. n here denotes the normal coordinate. v denotes the
y-component of the velocity.

Flow field Inlet
(sparger)

Walls Outlet

Continuous phase
velocity

vc=0 no slip (weak) vc=0 (weak)

Gas velocity vd=0 (weak) no slip (weak) vd=0 (weak)

Pressure
∂p
∂n

= 0
∂p
∂n

= 0 p = 0 at
coordinate
(0,0.45)

Air volume frac-
tion

flux speci-
fied

no flux
∂αd

∂n
= 0 with

large absorp-
tion

Turbulent kinetic
energy

∂k
∂n

= 0 0
∂k
∂n

= 0

Turbulent dissi-
pation

∂ε

∂n
= 0

∂ε

∂n
= 0

∂ε

∂n
= 0

3.1. Boundary conditions

Table 3 shows the boundary conditions for the velocity, pres-
sure, volume fraction and turbulence fields that were used while
modelling the bubble column and the flotation column. The su-
perficial gas velocity (SGV) (also known as Jg) was used to

calculate the inlet air flux using: gas flux =

(
Across-section

Asparger

)
SGV.

For the 2D column, Across-section and Asparger were equal to 20 cm
and 2 cm, respectively. In order to extract the air at the outlet, a
special absorption BC was applied for the air volume fraction.
A large absorption term in the advection equation for the air
volume fraction was implemented as:

∂αd

∂t
+ ∇ · (αdud) + σabsαd = 0, (47)

where σabs is the absorption that was set equal to a very high
value close to the outlet and zero otherwise:

σabs =


10, 000 if y ≥ 0.45,

0 otherwise.
(48)

The large absorption term, in conjunction with a fully-implicit
time discretisation for the volume fraction transport equation,
ensured that all the air reaching the outlet boundary was re-
moved from the column. It is always tricky to “correctly” spec-
ify the outlet BC for the gas phase in a multiphase flow problem
(Prosperetti and Tryggvason, 2007) and after trying various op-
tions, the above outlet BC was seen to give the expected result
for the bubble column in this work. This boundary condition
mimics the presence of a large absor ption zone at the outlet,
which is more physical than the degassing BC typically em-
ployed in commercial codes.

For the PBE, since the number of quadrature points in the DQ-
MOM assumption, N, was taken as 2, there were four un-
knowns (two weights and two weighted-abscissas) in the DQ-
MOM transport equations. A no-flux BC was applied to the
side walls of the column for these four PBE scalars. A homo-
geneous Neumann BC was applied at the outlet. At the inlet
of the column, the incoming bubbles were assumed to be dis-
tributed normally with a standard deviation equal to 16% of
the mean (Laakkonen et al., 2007; Buffo et al., 2013); this is
based on the measurements by Laakkonen et al. (2007). With
the definition of the SMD, the relation between the third mo-
ment and the bubble volume fraction (for spherical bubbles),
and the above two assumptions about the inlet bubble distribu-
tion, the four unknown moments, and therefore the DQMOM
scalars—w1, w2, ς1 and ς2—were calculated. The following
system of coupled equations was solved for the inlet values of
m0, m1, m2 and m3:

m2 = m0

[
m2

1 + (s.d.)2
]
, (49a)

m3 = m0 m1

[
m2

1 + 3(s.d.)2
]
, (49b)

s.d. = 0.16 d32, (49c)
m3

m2
= d32 (49d)

and

m3 = αd

(
6
π

)
, (49e)

where d32 and αd are known. The moment inversion product–
difference (PD) algorithm (Gordon, 1968) was then applied
to obtain the weights and abscissas in the DQMOM ap-
proximation. At the inlet, a 5 mm average bubble diam-
eter along with a volume fraction of 0.14 gave the four
unknowns as w1 =1.158 391 × 106, w2 =1.158 391 × 106,
ς1 =4.560 935 × 103, and ς2=6.414 361 × 103. The inlet
volume fraction is a function of the sparger design and
was assumed to be 14% gas in this work for the cal-
culation of the PBE scalars. For the walls adjacent to
the sparger (the ‘lower walls’), a Dirichlet BC was ap-
plied for the four PBE scalars corresponding to an aver-
age bubble diameter of 1 mm and gas volume fraction of
1.0 × 10−7, giving w1 =1.034 281 × 102, w2 =1.034 281 × 102,
ς1 =8.144 541 × 10−2, and ς2=1.145 424 × 10−1. A no-flux BC
at the lower walls led to the moment-set getting corrupted caus-
ing the scalars to become non-positive. The Dirichlet BC, how-
ever, ensured that the PBE scalars remained positive.

A no-flux BC was applied on all the boundaries for the free
solids concentration field, whereas the attached solids were al-
lowed to escape from the outlet with the absorption BC applied
to them, as discussed in Equation (48).

3.2. Initial conditions

Zero velocity for the two phases was assumed initially with
an air volume fraction of 1.0 × 10−7 everywhere. Since the
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gas holdup (which is the percentage of gas in the column) in-
creases as the air flows inside the column, the water volume
goes down with time, but that decrease was not more than 5%
for the maximum gas flow rate in this work. Initial k was taken
as 1.0 × 10−7 m2s−2 and ε as 1.0 × 10−7 m2s−3. The steady state
result for the flow, however, was found to be independent of the
initial values of k and ε.

The PBE scalars were calculated from an initial average bub-
ble diameter of 1 mm and a gas volume fraction of 1.0 × 10−7

with the same two assumptions about the bubble number den-
sity function as discussed in the BCs. The initial PBE scalar
values were therefore identical to the BCs used for the lower
walls. The initial condition for the free and attached solids con-
centration fields are discussed in Section 4.2.

3.3. Physical and numerical parameters

Table 4
Physical parameters used in the simulations.

Physical parameter Value
Continuous phase density ρc (kg m−3) 998.2
Dispersed phase density ρd (kg m−3) 1.205
Continuous phase dynamic viscosity µc (Pa · s) 0.001
Dispersed phase dynamic viscosity µc (Pa · s) 1.254 × 10−5

Interfacial tension (air–water) σ (N m−1) 0.072
Solids density ρs (kg m−3) 2600
Solids contact angle 75◦

The physical parameters chosen in the simulations are pre-
sented in Table 4. The constants C1, C2 and C3 in the breakage
frequency expression, Equation (24), were 6.0, 0.04 and 0.01,
respectively, based on the work of Laakkonen et al. (2007).
Buffo et al. (2013) also used the same values for these con-
stants in their rectangular bubble column simulations. Binary
breakage was assumed in the present work (same as Laakkonen
et al. (2007)) and the value for the parameter C4 in the daugh-
ter distribution function, Equation (25), was therefore taken as
2.0. The value for parameter C5 in the coalescence frequency
relation, Equation (27), was chosen to be 0.88. The value of
C6 in the coalescence efficiency, Equation (26), was 6.0 × 109,
based on the work of Laakkonen et al. (2006) and Buffo et al.
(2013).

An adaptive time step, with a strict limit on the maximum
Courant number of 0.5, was used. Since the simulations were
performed using adaptive-mesh simulations, the CFL criterion
needed to be satisfied to ensure stability (due to the non-linear
nature of the equations). A maximum of two Picard iterations
were allowed per time step with a tolerance of 1.0 × 10−12 on
the infinity norm of the fields.

The non-linear relaxation parameter θnl in the turbulence equa-
tions was taken to be 1, which allowed for an implicit discreti-
sation of the source terms in the equations for k and ε, and in

the expression for µT . The non-linear relaxation parameter for
the velocities of the two phases was taken as 0.5.

3.4. Discretisations

The first-order upwind scheme was used for discretising the ad-
vection terms in all equations due to its conservative and mono-
tonic nature, which ensured stability. The method also ensured
that the moment-set obtained in the DQMOM was realisable,
as discussed in Section 2.2. The Bassi–Rebay discretisation
(Bassi and Rebay, 1997) was applied for the viscous terms in
the momentum equations. A fully-implicit time discretisation
scheme was used for the transient term in all PDEs. The con-
servative form of the advection equation was used for the air
volume fraction and the PBE scalars to ensure mass conserva-
tion, but, as expected, it did not ensure strict boundedness (LeV-
eque, 2002; Wilson, 2009). Slight artificial diffusion had to be
added to the volume fraction equation sometimes to stabilise
the scheme.

To maintain positivity and stability, the production term was ap-
plied as a source in the k and ε equations whereas the destruc-
tion term, which is always negative, was applied as absorption
(Patankar, 1980). Numerically it is always effective to have a
large absorption coefficient as it supports convergence through
under-relaxation. The implementation of the turbulence model
was generalised for handling mixed shape functions (discontin-
uous shape functions for velocity and continuous for turbulence
fields) for stability reasons.

The source terms in the PBE were evaluated at the mesh nodes
instead of the mesh quadrature points to prevent spatial interpo-
lation errors. These errors were particularly prominent for the
current problem due to the discontinuity in the weights and the
weighted-abscissas at the inlet at t = 0.

4. Results and discussions

In this section, the validation results for Dı́az’s bubble column
(Dı́az et al., 2008b) using the present modelling framework are
presented first, followed by the flotation simulation results for
the same geometry.

Adaptive meshes were used for all simulations in this study.
The mesh was adapted to the air volume fraction (αd), and the
first abscissa (ξ1) and the first weighted-abscissa (ς1) of the
bubble NDF. The corresponding interpolation-error bound val-
ues used for the three scalars were: 1.0 × 10−4, 1.0 × 10−5 m
and 100 m, respectively. The mesh was adapted after every 15
time steps. The maximum number of nodes was set to 20000,
the minimum and maximum edge lengths being 0.001 m and
0.01 m, respectively. It is evident that the finest mesh was as
small as the smallest bubble size in the column. Although it is
ideal to have a mesh that allows at least a few dispersed par-
ticles per cell, in the present case it is the numerical accuracy
that drove the limit on the mesh size. The mesh was adapted 4
times in an adapt cycle for a parallel simulation to compensate
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for node locking (AMCG, 2015). The number of initial adapts
was set to 6.

The minimum (adaptive) time step size in the highest gas flow
rate (SGV=2.0 cm s−1) simulation was 5.2 × 10−4 s. This was
due to the CFL criterion with a limit of 0.5 for the maximum
Courant number. This is a limitation that is inherent to the
adaptive-mesh simulations (Jacobs, 2013). There is always a
trade-off between the resolving power of the adaptive simula-
tions and the time step size, as the non-linear fluid flow equa-
tions have to be linearised and need an upper bound for the
Courant number. A value of the maximum Courant number
above 0.6 destabilised the simulation in this case.

4.1. Model validation – bubble column

Bubble columns are two-phase reactors used in the chemical in-
dustry for gas–liquid reactions, owing to the high heat and mass
transfer rates associated with them. A typical bubble column
generally consists of a vertical cylindrical column filled with
a liquid, through which the gas is bubbled. The gas bubbles,
as they rise due to buoyancy, generate a plume that gets tur-
bulent with height. The mixing caused by this plume-induced
turbulence allows for the maximum interphase exchange (of
mass, momentum and energy). As the gas flow rate is in-
creased the bubble plume starts oscillating—known as plume
oscillation. Bubble columns enjoy many advantages over their
counterparts—the stirred reactors—which makes them a suit-
able candidate as industrial mixers.

The bubble column model in this work was simulated for a
range of SGV values between 0.13 cm s−1 and 2.0 cm s−1. It
was noticed that a steady state was achieved in all simulations.
A “cooling tower” flow pattern for water was developed in the
column due to the flow of the bubble plume through it, generat-
ing the mixing required in such systems. The plume oscillation
died as the simulation reached a steady state, and two recircula-
tion zones for water were obtained as a result. This can be seen
from the water streamlines plotted in Figure 5.

All bubble column simulation results are presented when the
(transient) simulation achieved a steady state. Experiments
have reported an oscillating plume (Pfleger et al., 1999; Buwa
et al., 2006; Dı́az et al., 2008b) and the bubble plume oscilla-
tion period (POP) was shown to decrease exponentially with
superficial gas velocity. However, in the current simulation us-
ing the k − ε turbulence model, steady state flow was obtained,
which was similar to time-averaged flow profiles reported by
Dı́az et al. (2008a).

Many have claimed to model the unsteadiness in the flow using
the k − ε turbulence model coupled to the Eulerian–Eulerian
approach (Dı́az et al., 2008a; Pfleger et al., 1999). A simi-
lar 2D model was set up in ANSYS Fluent and compared to
the present Fluidity model. The turbulent viscosity, which was
very small to start with, gradually increased as the simulation
progressed and kept increasing until everything became steady.
Pfleger et al. (1999) and Sokolichin and Eigenberger (1999)

Figure 5: Predicted water streamlines at steady state for a SGV of 0.6 cm s−1.

discussed this effect and concluded that 3D modelling of the
columns is necessary to capture the plume oscillations; stat-
ing that the 2D models over-predict turbulence to a large extent
(5–10 times higher turbulent viscosity) (Pfleger et al., 1999).
As per them, the front and back walls in the column dampen
the overall TKE allowing the 3D model to show unsteady be-
haviour. In order to check if the 2D modelling suppressed flow
unsteadiness, a 3D column was simulated in Fluent for the exact
same physical conditions and it produced similar results with a
steady double recirculation zone for water. It was therefore de-
cided to simulate the 2D bubble column as it has been found
to model the mean-flow quantities reasonably (Pan et al., 1999)
and can be used for model validation. Oey et al. (2003) dis-
cussed the effect of the discretisation scheme of the convective
terms and suggested that lower-order diffusive schemes, such as
the first-order upwind scheme, can cause enough numerical dif-
fusion to suppress the transient terms in the results. However,
the QUICK scheme was used with the 3D model in Fluent and
as mentioned above, the unsteady plume could not be captured.
Table 5 shows a comparison of the present numerical simula-
tions with previous studies from literature in reference to the
prediction of flow unsteadiness.

It is believed that an overpredicted eddy viscosity using the k-ε
turbulence model could be responsible for suppressing the un-
steadiness in the solution. In fact, the time-averaged nature of
the RANS turbulence model could be causing the time aver-
aging of the plumes in the flow. Although no plume oscilla-
tion was obtained in the numerical simulations in this study,
the mean flow quantities obtained in a 2D simulation have
been shown to give reasonable match with the experiments (Pan
et al., 1999), and the same was used for validation here.

The strong circulation in the interior parts of column for the
liquid phase was responsible for providing the shear leading
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Table 5
Comparison of the present simulation behaviour with regards to the prediction of the plume oscillation with a few previous studies that used the k-ε model for
modelling a rectangular bubble column.

Model description Plume os-
cillation
predicted

Present work (Fluidity 2D) E–E, unstructured mesh, 2D, Π = 0, µT,d = 0, drag: Schiller and
Naumann (1935), lift: no, VM force: no, Discretisations – FE for
space, first-order time, ∆t ≈ 0.0001 s, BC – velocity: specified
at inlet and outlet, vol frac: flux at inlet and absorption at outlet,
walls: no-slip (weak).

no

Present work (Fluent 2D) E–E, unstructured mesh, 2D, Π = 0, µT,d = 0 evaluated from k-ε
model for dispersed phase, drag: Schiller and Naumann (1935),
lift: no, VM force: no, Discretisations – QUICK for space, first-
order time, ∆t = 0.01 s, BC – mass-flow inlet, outlet: degassing,
walls: no-slip for liquid and free-slip for gas.

no

Present work (Fluent 3D) E–E, structured mesh, 3D, Π = 0, µT,d = 0 evaluated from k-ε
model for dispersed phase, drag: Schiller and Naumann (1935),
lift: no, VM force: no, Discretisations – QUICK for space, first-
order time, ∆t = 0.005 s, BC – mass-flow inlet, outlet: degassing,
walls: no-slip.

no

Dı́az et al. (2008a) E–E, structured mesh, 3D, Π = 0, µT,d specified, drag: Grace
et al. (1976), lift: yes, VM force: yes, CFX, Discretisations –
second-order upwind for space, first-order time, ∆t = 0.025 s, BC
– velocity inlet, outlet: degassing, walls: no-slip for liquid and
free-slip for gas.

yes

Buwa and Ranade (2002) E–E, structured mesh, 3D, Π = 0, µT,d specified, drag: Tsuchiya
et al. (1997) and Schiller and Naumann (1935), lift: yes, VM
force: yes, Fluent, Discretisations – QUICK + SUPERBEE lim-
iter for space, first-order time, ∆t = 0.01 s, BC – velocity inlet,
outlet: velocity specified, walls: no-slip.

yes

Pfleger et al. (1999) E–E, structured mesh, 3D, Π = 0, µT,d = 0, drag: constant, lift:
no, VM force: no, CFX, Discretisations – higher-order TVD for
space, first-order time, ∆t = 0.1 s, BC – not specified in the paper.

yes
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Figure 6: Sauter mean diameter at t = 9.6 s compared for an adaptive-mesh (≈
19300 nodes) and a fixed-mesh (19347 nodes) for a SGV=0.6 cm s−1.

to turbulence production in the present case. No wall model
for turbulence was therefore used in this work as most of the
production occurred in the interior of the column.

Figure 6 shows a comparison of the bubble SMD for fixed and
adaptive meshes with approximately equal number of nodes for
a SGV of 0.6 cm s−1. It can be seen clearly that the adaptive
mesh produced better resolved SMD field.

The contour plots of SMD and air volume fraction, and the cor-
responding adaptive meshes are shown for five time instances:
5 s, 8 s, 11 s, 15 s and 19 s for a SGV of 2.0 cm s−1 in Figure 7.
It can be seen that the simulations converge to a steady state
result and the plume oscillation is only visible in the initial
stages. The anisotropy of the mesh is clearly visible with elon-
gated elements close to the boundary of the gas plume. On an
8-core 2.30 GHz Intel Xeon machine, it took 10.5 days to run
the SGV=2.0 cm s−1 simulation to 63 s. Strong scaling was per-
formed for the bubble column problem and eight cores were
found to be the optimum, beyond which the data bandwidth ef-
fect started dominating the processing power. Mesh adaptivity
and parallelisation can be applied at the same time in Fluidity
making it a highly desirable choice for the tractable modelling
of multiphase polydisperse flows. The plots for air Sauter mean
diameter are presented in Figure 8 at t=19 s . The variation
in the bubble diameter is small in the plume for the present
case.

To make a comparison of the local field predictions using the
current polydisperse flow model, liquid flow field values were
compared to the experiments of Pfleger et al. (1999). Their
experiments measured the liquid vertical-velocity profile (us-
ing laser Doppler velocimetry) at three column heights for a
SGV of 0.13 cm s−1 for a column of the same dimensions as

this work. Simulations for the same SGV were carried out in
the present work and the results were compared, as shown in
Figure 9. It can be seen that the Fluidity model was able to pre-
dict the trend in liquid velocity reasonably. The effect of coales-
cence and breakage is negligible at such low flow rate and the
polydisperse model takes that into account. Dı́az et al. (2008a),
on the other hand, had to revert to the monodisperse model for
low gas flow rates as their polydisperse model was still pre-
dicting bubble breakage and coalescence and the results did not
agree with the experiments. The agreement in Figure 9 is very
good in the lower part of the column as the effect of the ab-
sorption outlet condition on the predicted flow parameters fades
away in the lower reaches of the column. The under-prediction
of the liquid y-velocities in the central zone of the column at
h=0.25 m and 0.37 m can be attributed to the outlet boundary
condition chosen in the present CFD model, along with the k-ε
model potentially adding too much viscosity resulting in the un-
derprediction of liquid velocities. The gas plume flows through
the centre of the column and the choice of outlet BC has an
effect on the prediction of the plume velocities and therefore
the liquid velocities. An exaggerated drag force could also be
attributed to the under-predicted liquid velocities in the central
zone, however, a decent match close the column edges negates
this hypothesis. The agreement can potentially be improved
through a the inclusion of non-drag forces and the inclusion of
bubble-induced turbulence model. However, since the aim of
the present work was to demonstrate a tractable finite-element
framework for the modelling of three-phase polydisperse flows,
simplified models were chosen.

Gas holdup (or air volume fraction) is a very important global
property that is used to characterise the flow regime in a bubble
column. A larger gas holdup implies a larger residence time for
the gas, implying better mixing. In order to make quantitative
comparison of the gas holdup distribution, the experiments of
Buwa et al. (2006) were used. They conducted experiments for
the same column geometry as Dı́az et al. (2008b) for a SGV of
0.73 cm s−1 and measured the local gas holdup in the column at
a height of 0.37 m. Numerical simulation was carried out for the
same SGV in Fluidity and the time-averaged results of Buwa
et al. (2006) were compared to the numerical results obtained
in the present work, as shown in Figure 10. Bell-shaped curve
similar to the experiments are predicted by Fluidity, but the ex-
periments correspond to a slightly more ‘diffused’ curve. Fluid-
ity over-predicts the gas holdup at the column centre (x=0.1 m)
by 20%, under-predicting around the column sides.

To validate the global gas holdup obtained using Fluidity sim-
ulations, the experiments of Dı́az et al. (2008b) were used for
comparisons. Dı́az et al. (2008b) used the well-known mano-
metric method to measure the static pressure difference across
the column height to obtain the global gas holdup. Figure 11
shows the plot of the gas holdup obtained using the model in
Fluidity, compared to the experiments of Dı́az et al. (2008b). A
good agreement between the experimental values and the nu-
merical predictions can be seen in Figure 11. The expected
linear trend in the increase of gas holdup with SGV is also cap-
tured to a good extent. At SGV values lower than 0.5 cm s−1
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Figure 7: Contours of the bubble SMD and the air volume fraction plotted at five time instances (from left to right: t=5 s, 8 s, 11 s, 15 s and 19 s) for an
adaptive-mesh simulation in Fluidity. The SGV was equal to 2.0 cm s−1. Surface meshes are also shown.19
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Figure 10: Gas holdup comparisons between the experiments of Buwa et al.
(2006) and polydisperse Fluidity simulations. Values are plotted for a SGV of
0.73 cm s−1 at a height of 0.37 m in the column.
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Figure 11: Gas holdup plotted as a function of the superficial gas velocity.
The numerical results are compared to the experiments of Dı́az et al. (2008b).

there is not much coalescence or breakage that occurs in the col-
umn and the model predicts a good gas holdup for these values
of SGV. The kernels chosen in this work ensured that they did
not predict any false coalescence or breakage at low turbulence
values in the column at the lower values of the SGV.

The validation results presented in this section show a reason-
able match with the experiments. The chosen models for the
interphase drag force term, bubble breakage and coalescence
kernels, and the inlet size distribution of bubbles were good
enough to extend the bubble column model to a flotation col-
umn model through the introduction of solids.

4.2. Flotation column

The two-phase bubble column was allowed to attain a steady
state after which the solid particles were introduced into it.
Two simulation results are presented in this section, one for
monodisperse solids and another for polydisperse solids. Previ-
ous pulp phase models by Koh and Schwarz (2007, 2008b) have
considered monodisperse particles for simplicity. However, the
feed entering the flotation process in reality is in the form of a
particle size distribution and the model should be able to con-
sider this polydispersity of the solids for an accurate modelling
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of the overall process. For this reason a polydisperse solids
simulation was run in this work and the results were compared
to a monodisperse simulation to notice if the polydisperse mod-
elling of solids has any effect on the rate of flotation. Both simu-
lations were run for a superficial gas velocity of 1.0 cm s−1. The
monodisperse solids simulation consisted of 150 µm spherical
solid particles with an initial concentration of 15% by volume
(which is equal to 39% solids by mass for the present case).
The corresponding initial condition for the free solids, n f , was
8.25 × 1010 m−3. All the particles were assumed to be free in
the beginning and hence the initial concentration for the at-
tached solids was taken as 1.0 × 10−7 m−3. For the polydisperse
simulation, three solid sizes were considered—50 µm, 150 µm
and 250 µm. Initial concentration for each solid class was 5%
by volume, which corresponded to an initial concentration of
7.5 × 1011 m−3, 2.75 × 1010 m−3 and 6.0 × 109 m−3 for the free
solids of the three size classes, respectively.

4.2.1. Evolution of solid concentration

Figure 12 shows the total number of free particles of 150 µm
size as a function of time in the polydisperse simulation. A lin-
ear decrease in the free particle population in the column was
obtained in the 100 s simulation time. This decrease is due to
the particles getting attached to bubbles and the loaded bubbles
getting transported out of the batch flotation column. Figure 13
shows the total number of attached particles of 150 µm diame-
ter in the polydisperse column as a function of time. It can be
seen that the attached particles attain a steady state value in a
very short time. This means that the rate of attachment becomes
equal to the rate of transport of the attached particles out of the
column. Koh and Schwarz (2006) also reported the number of
attached particles becoming constant with time and the bubbles
getting loaded very quickly in their pulp phase simulations for
an impeller-driven cell. The rate of detachment was negligible
for the simulation conditions in this work. Since the overall
number of attached particles was constant and the detachment
was negligible, the transport rate is what determined the rate
of flotation here, similar to the findings of Koh and Schwarz
(2006). Figure 14 shows the contours of the attached solids con-
centration in the column at steady state for the 150 µm particles
in the polydisperse solids simulation. It can be seen that the
attached particle concentration is higher near the inlet as com-
pared to other sections in the column. The turbulent dissipation,
which affects the collision rate, was also found to be high near
the inlet of the column and may be the reason behind the in-
creased attached particle concentration in that region.

4.2.2. Effect of polydispersity of solids

The particle volume fraction remaining in the column as a func-
tion of time is plotted in Figure 15 for the three solid sizes.
Flotation rate, which is proportional to the negative of the slope
of the curves, increases with particle size, as shown in the fig-
ure. Larger particles have a higher chance to come in contact
with a bubble leading to higher collision rate. Although larger
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Figure 12: The total number of free particles (of 150 µm diameter) in the
column as a function of time for the polydisperse solids simulation.
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Figure 13: The total number of attached particles (of 150 µm diameter) in the
column as a function of time for the polydisperse solids simulation.
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Figure 14: Steady state contours of the attached particles (of 150 µm size) in
the polydisperse solids simulation.
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Figure 15: Particle volume fraction remaining in the flotation column plotted
as a function of time for polydiperse mineral particles. Three particle diameter
classes in the column were simulated with an initial volume fraction for each
class equal to 0.05. Jg (or SGV) = 1.0 cm s−1.
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Figure 16: Contours of the bubble loading factor (βbub) for the three solid
sizes.

particles have higher destabilisation rates, the current expres-
sion for the probability of stabilisation and the current operat-
ing conditions resulted in a destabilisation rate close to zero.
The bubble loading factor (βbub) for the three solid sizes are
compared in Figure 16. For the lower and intermediate particle
sizes, the bubble loading is higher outside the central plume ow-
ing to the smaller number of bubbles in that region. The lower
bubble loading corresponding to the smaller particle sizes sup-
ports the fact that attachment is more dominant for larger parti-
cles in this case.

Figure 17 shows a comparison of the total volume fraction of
particles remaining in the column as a function of time for the
monodisperse and the polydisperse simulations. The monodis-
perse solids simulation over-predicts the flotation rate as com-
pared to the polydisperse simulation. Although the difference
is only around 3.5% in the first 100 seconds, the linear trend
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Figure 17: Comparison of the volume fraction of particles remaining in the
column with time between monodisperse and polydisperse solids. The results
have been compared for all particle sizes with a total initial solid volume
fraction of 0.15 and a Jg of 1.0 cm s−1.

could lead to an increasing over-prediction of the flotation rate
with time. The overall higher flotation rate prediction in this
case was due to the larger particles having a higher flotation
rate overpowering the smallest ones. The over/underprediction
of flotation rate for polydisperse system may depend on the na-
ture of the flotation rates of the different particle sizes. This
may imply that modelling the polydispersity of the solids is im-
portant for the correct prediction of flotation rate through CFD
simulation of the pulp phase in a flotation column.

5. Conclusions

An efficient numerical framework for the modelling of the poly-
disperse pulp phase in froth flotation has been developed and
presented in this paper. The absence of a comprehensive model
for the pulp phase in the literature was the inspiration behind
this work. The focus of this research was the modelling of
the polydispersity of gas and solid phases and ensuring the
tractability of the solution framework. Bubble polydispersity
was modelled using the population balance equation that was
implemented in Fluidity using DQMOM. Mesh adaptivity and
code parallelisation features of Fluidity imparted tractability to
the overall solution method. This study validated the polydis-
perse model solved for the bubbles (using the PBE) in a bubble
column for a reasonable prediction of the flow hydrodynamics.
Polydispersity of the solids was modelled for the first time by
solving different equations for the solid classes. The effect of
modelling the polydispersity of solids on the overall flotation
rate prediction was also demonstrated.

Incompressible E–E momentum equations were solved for the
gas and liquid phases, with a PBE to estimate the change in
the bubble size due to breakage and coalescence in the pulp
phase in a flotation column. A k-ε turbulence model was solved
for the liquid phase, and the solids were modelled using scalar
transport equations. The transport equations for free and at-
tached particles were coupled through the attachment and de-
tachment source terms. For the modelling of the pulp phase,
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care was taken to modify the liquid viscosity in the momentum
equations to account for the presence of free solids, and apply a
settling velocity for the heavy particles in the free solids trans-
port equation. The PBE for gas bubbles supplied bubble diam-
eter and bubble concentration for attachment and detachment
rate expressions in the solids transport equations. A quadrature-
based moment method was used to solve the PBE for bubbles
in a flotation system.

The Galerkin FEM was used to discretise the velocity and pres-
sure fields in the momentum and pressure equations, respec-
tively, and the P1DG–P2 scheme was found to be the most stable
for this purpose. For the other fields (such as PBE scalars, vol-
ume fraction, etc.), where conservation was required, a node-
centred CV discretisation was employed. Therefore, a hybrid
FE–CV method was found to be the most effective for simulat-
ing polydisperse multiphase flows. To the best of the authors’
knowledge, this is the only framework that is capable of mod-
elling the pulp zone using a hybrid FE–CV method.

The mesh was optimised as the solution progressed by generat-
ing fully-unstructured, non-homogeneous, anisotropic meshes
adaptively for a given set of optimisation parameters—air vol-
ume fraction and PBE scalars. For the bubble column validation
problem, adaptivity was shown to resolve the SMD field more
accurately when compared to a similar fixed mesh. Mesh adap-
tivity was used for the first time in the modelling of the pulp
phase in this paper. Moreover, Fluidity is the only framework
that allows mesh adaptivity in the external coordinates of the
PBE for modelling polydisperse flows.

The results from the 2D simulations performed using the poly-
disperse adaptive-mesh FE framework of Fluidity were com-
pared to bubble column experiments in the literature. Although
the steady-state results obtained for the flow profiles using Flu-
idity were not ideal due to the missing plume oscillations, they
still showed a good match with the time-averaged local and
global flow properties, as was seen for the validation compar-
isons for liquid velocity and gas holdup in the experiments
by Dı́az et al. (2008b), Buwa et al. (2006) and Pfleger et al.
(1999).

The pulp phase was modelled for three solids classes and the
overall flotation rate was compared to the monodisperse solids
simulation. The flotation rate was found to increase with the
particle size due to the probability of destabilisation being close
to zero for the selected conditions; in reality the probability of
destabilisation will play a role for very coarse particles. The
monodisperse simulations were found to over-predict the flota-
tion rate as compared to the polydisperse simulations. A differ-
ence of 3.5% in flotation recovery was noticed at a simulation
time of 100 s for a Jg of 1.0 cm s−1. This error from neglecting
the polydispersity of solids in the pulp phase is expected to add
up in time and possibly lead to significant error in flotation re-
covery estimations. This research therefore confirmed the im-
portance of modelling the polydispersity of dispersed phases
in bubble and flotation columns for an accurate prediction of
the flow and the flotation rate, respectively. It was also shown
that a hybrid FE–CV framework can be successfully used for

modelling such a complex system (the pulp phase), which had
only been attempted in the past using the control volume codes
(Koh and Schwarz, 2006, 2007, 2008b; Sarhan et al., 2016,
2018).

This modelling framework can be applied to simulate a variety
of multiphase polydisperse problems in the process industries
other than froth flotation. The framework can be used to test
the effect of different physical models for dispersed phase in-
teractions on the system hydrodynamics.

The framework can be enhanced by adding complexity in dif-
ferent fronts, which the authors plan to address in the future.
These include the implementation of advanced turbulence mod-
els such as LES,

::::::::
interphase

:::::::::
interaction

:::::::
models

::::
such

::
as

:::
lift

:::
and

:::::
virtual

:::::
mass

::::::
forces,

:::::::
various

:::::
drag

:::::
force

::::::::::
correlations

:::::::
relevant

::
to

:::::::::::
non-spherical

::::::::
bubbles,

::::
other

:
improved models for bubble–

particle detachment (Wang et al., 2016), the use of multivari-
ate PBE for modelling the solids in the pulp phase (Bhutani
and Brito-Parada, 2017), and the integration of the froth phase
(Brito-Parada et al., 2012a,b) and pulp phase models.
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 An efficient numerical framework for the modelling of the polydisperse pulp phase in 
flotation has been presented.

 The framework—Fluidity, an open-source finite-element (FE) framework, uses mesh 
adaptivity and parallelisation; first FE framework for modelling the pulp phase.

 Bubble polydispersity modelled using population balance equation (PBE), which has 
been solved using the direct quadrature method of moments (DQMOM).

 Solid polydispersity modelled for the first time in flotation using transport equations 
for three size classes.

 The presented framework can be used for the simulation of a variety of polydisperse 
multiphase flow problems in the process industry.
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Abstract

Froth flotation is one of the most widely-used mineral processing operations. The pulp zone in flotation tanks is polydisperse in
general and serves as a medium for the interaction between the solid particles and the gas bubbles in a liquid continuum, leading
to particle–bubble attachment/detachment and bubble coalescence/breakage phenomena. To better predict the hydrodynamics and
inform the design of efficient flotation equipment, it is therefore important to accurately model and simulate the evolution of the size
distribution of the dispersed phases. This has created an urgent need for a framework that can model the pulp phase in an efficient
manner, which is not currently available in the literature. The available software products are not efficient enough to allow for a
tractable modelling of industrial-scale flotation cells and in some cases they cannot model the polydispersity of the dispersed phase
at all. This work presents an efficient numerical framework for the macroscale simulation of the polydisperse pulp phase in froth
flotation in an open-source finite element computational fluid dynamics (CFD) code that provides an efficient solution method using
mesh adaptivity and code parallelisation. A (hybrid finite element–control volume) finite element framework for modelling the pulp
phase has been presented for the first time in this work. An Eulerian–Eulerian turbulent flow model was implemented in this work
including a transport equation for attached and free solid particles. Special care was taken to model the settling velocity of the free
solids and the modification of the liquid viscosity due to the presence of these particles. Bubble polydispersity was modelled using
the population balance equation (PBE), which was solved using the direct quadrature method of moments (DQMOM). Appropriate
functions for bubble coalescence and breakage were chosen in the PBE. Mesh adaptivity was applied to the current problem to
produce fully-unstructured anisotropic meshes, which improved the solution efficiency, while all simulations were executed on a
multicore architecture. The model was validated for 2D simulations of a bubble column against experimental results available in
the literature. After successful validation, the model was applied to the simulation of the pulp phase in a flotation column for
monodisperse and polydisperse solids. Polydispersity of the solids was modelled for the first time in this work using three separate
solid size classes. A clear dependence of the flotation rate on the particle size was noticed and the monodisperse solids simulations
were shown to over-predict the flotation rate. Other than flotation, this open-source framework can be used for the simulation of a
variety of polydisperse multiphase flow problems in the process industry.

Keywords: CFD, mesh adaptivity, polydisperse flow, population balance modelling, pulp phase

1. Introduction

Froth flotation is one of the most widely used mineral process-
ing operations, used to selectively separate the valuable mineral
particles from the unwanted waste particles. Other than mineral
processing, flotation is also used for deinking in wastepaper re-
cycling, wastewater treatment, and oil separation applications.
Air is injected into a tank containing a slurry of crushed ore; and
mixing generated in the pulp zone causes the hydrophobic min-
eral particles to collide and attach to the air bubbles that rise to
the top into the froth zone, which overflows as concentrate. The
pulp zone in flotation is a multi-scale, turbulent, three-phase,
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and polydisperse system that serves as a medium for the in-
teraction between the solid particles and the gas bubbles in a
liquid continuum. It is therefore important to accurately model
the physics (particularly the hydrodynamics) in the pulp zone
for the development of efficient flotation equipment.

Computational fluid dynamics (CFD) has emerged as a pop-
ular technique for the numerical modelling and simulation of
multiphase flow systems. This can be attributed to continu-
ous improvements in computational power and development
of improved numerical algorithms for the modelling of multi-
phase flows. CFD therefore offers a promising possibility for
the modelling of the complex physics occurring in the pulp
zone in froth flotation. The pulp physics, however, are con-
siderably challenging compared to the typical multiphase flow
systems discussed in the literature, and the available CFD soft-
ware products either cannot handle all the above complexi-
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ties or are not tractable enough to allow for the modelling of
industrial-scale flotation devices. An efficient CFD framework
that can model the hydrodynamics in the pulp phase is therefore
needed.

Gaudin (1932) and Garcia-Zuñiga (1935) were the first to study
the effect of flow properties on flotation recovery, realising the
importance of the hydrodynamics in the pulp zone on flotation.
The flotation recovery was found to be sensitive to flow param-
eters and the need to understand the physics of the processes
occurring in the pulp zone was identified. There have been
studies that model the hydrodynamics of the pulp phase in froth
flotation (Bloom and Heindel, 2002, 2003), however Koh et al.
(2000) were the first to simulate the pulp phase in a flotation
tank using CFD modelling. Consistently improving their pulp
phase models over time (Koh and Schwarz, 2003, 2006, 2007),
the above researchers were able to model the fluids (liquid and
gas) using two-phase unsteady flow equations and the solids us-
ing separate transport equations for free and attached particles.
Please note that ‘particles’ in this paper refers to the solid par-
ticles, unless clarified otherwise. The Eulerian–Eulerian (E–E)
method coupled to the k-ε turbulence model was used for mod-
elling the fluid phases, and the equations were solved using the
CFX-4 code for a fixed bubble size. Karimi et al. (2014a) and
Karimi et al. (2014b) solved a similar pulp phase model in AN-
SYS Fluent.

The importance of including a good estimate for the bubble size
distribution (BSD) in the models for pulp hydrodynamcs has
been known (Gorain et al., 1995; Grevskott et al., 1996), and
Evans et al. (2008) and Koh and Schwarz (2008b) were the first
to include the population balance equation (PBE), which mod-
els the effects of bubble coalescence and breakage, for mod-
elling the BSD in a flotation pulp. The method of classes (CM)
implementation of ANSYS was used to solve the PBE in the
CFX software in both studies, and the latter reported a signifi-
cant effect of modelling the BSD on the flotation rate prediction.
Others have also used the CM to model the BSD in flotation
systems (Basavarajappa et al., 2017; Sarhan et al., 2017, 2018).
Recently, Schwarz et al. (2016) have summarised the impor-
tance of the need of more efficient methods—the quadrature-
based moment methods (QBMMs)—for solving the PBE in the
flotation pulp, since these methods are computationally eco-
nomical than their counterparts. The use of quadrature method
of moments (QMOM), a type of QBMM, to solve the PBE for
modelling the BSD in a flotation cell geometry has been re-
ported in the literature recently (Basavarajappa and Miskovic,
2015), however this work considered gas-liquid flows only
(without solids).

QBMMs, such as QMOM and direct quadrature method
of moments (DQMOM), have proven to be very efficient
when coupled to the E–E fluid flow equations for modelling
industrial-scale polydisperse multiphase systems (Marchisio
et al., 2003b). Although there are a few studies available that
model the pulp phase containing a model for the BSD evolution
as discussed above, there is a need for a framework that allows
for the modelling of the BSD using a QBMM in the pulp phase.

Sarhan et al. (2016, 2017, 2018) have recently proposed a CM-
based pulp phase modelling framework that models all three
phases as Eulerian phases and handles one class of solid par-
ticles. Additionally, the solids feed entering the flotation tank
is in the form of a particle size distribution and the framework
should also be able to consider this polydispersity of the solids
for an accurate modelling of the overall process. Current liter-
ature is confined to models that deal with monodisperse solids
in the pulp and there remains a need for a framework that can
model the polydispersity of the solids in the feed, along with the
polydispersity of the gas phase. The overall multiphase turbu-
lent CFD model becomes highly complex when the polydisper-
sity of the dispersed phases is considered. The available soft-
ware products are not efficient enough to allow for a tractable
modelling of industrial scale flotation devices, if at all they can
model the polydispersity of the dispersed phases.

To address the above limitations, this work presents an effi-
cient numerical framework for the macroscale simulation of
the three-phase polydisperse pulp. This framework, known
as Fluidity, is an open-source finite element code that pro-
vides an efficient solution method through its fully-unstructured
mesh adaptivity feature that can produce highly-anisotropic
meshes. Moreover, Fluidity is highly-parallelised, which, along
with its other features, makes the solution method highly
tractable.

This paper is organised as follows: Section 2 discusses the mod-
elling framework that was developed in this work, including
details of the multiphase model equations for the three phases
in flotation. Brief details of finite element discretisations and
adaptive mesh refinement are also presented in this section.
Section 3 describes the flotation problem (geometry and op-
erating conditions) that was solved using the present frame-
work. Section 4 presents model validation for a two-phase bub-
ble column, followed by results for a pulp phase simulation in
a flotation column-like geometry. Finally the conclusions and
the scope for future work are presented in Section 5.

2. Modelling framework

A set of coupled partial differential equations (PDEs) was used
to model the polydisperse pulp phase in this study, and these
equations were solved using the adaptive-mesh finite element
framework—Fluidity. Fluidity permitted the modelling of the
polydisperse phases in an efficient way, which is currently miss-
ing in the literature.

Figure 1 shows the complete set of equations and the coupling
between them that was used to model the pulp phase inside a
flotation column. Separate momentum equations were solved
for the air and the liquid (or slurry) phases, assuming the flow
to be incompressible (due to low Mach flow). The momentum
equations for these two Eulerian phases were coupled to each
other through a common pressure field, phase volume fractions
and the interphase interaction force, as shown in the figure. In
addition, a population balance equation for the air bubbles was
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solved to predict the change in the bubble size distribution due
to coalescence and breakage processes. The bubble diameter
field estimated using the PBE was used for the improved pre-
diction of the interphase interaction force, which depends on
the bubble size and can sometimes have a significant effect on
the hydrodynamics.

A two-equation k-ε Reynolds-averaged Navier–Stokes (RANS)
turbulence model was solved for the turbulent liquid phase. The
turbulence kinetic energy (per unit mass), k, and the turbulence
dissipation rate (per unit mass), ε, calculated in this turbulence
model were used as inputs in the other models such as: the time-
averaged liquid phase momentum equation for the calculation
of the eddy viscosity, the breakage and coalescence functions
in the PBE for air bubbles, and the attachment and detachment
terms in the model for solids.

The solid scalar transport equations, coupled to each other
through the attachment and detachment source terms, are shown
on the left in Figure 1. Although more than one solid class was
used in this work, only one has been shown in the figure for
illustration. The free (or unattached) solids equations are cou-
pled to the liquid phase momentum equation through the mean
(or time-averaged) liquid velocity Uc and the modified liquid
viscosity µmolecular. The attached solids transport equations are
coupled to the gas phase momentum equation through the gas
phase velocity field. The PBE supplies the bubble diameter
and the bubble concentration for the attachment and detachment
rate expressions.

In the present model the bubble size distribution is not affected
by attached solids. The breakage and coalescence rate expres-
sions for the bubble population balance equation should ide-
ally include the physics of particle attachment affecting stability
of bubbles. The present breakage and coalescence terms only
include the liquid phase turbulence, which is affected by the
free solids concentration only. Similarly, the gas holdup, which
gets modified with the change in bubble size distribution, also
doesn’t get affected by attached solids in this work. There is
no work in the literature that presents an empirical relation for
the effect of particle attachment on bubble stability. The effects
of adding reagents (collectors, frothers, activators and depres-
sants) in the pulp phase have not been modelled in the present
work.

This framework is unique allowing a strong coupling between
the different phases (as shown in Figure 1). The highly-
parallelised nature of Fluidity along with the ability to handle
fully-unstructured adaptive meshes makes it specially suitable
to simulate industrial scale flotation pulp. At the present stage
there is no other commercial or freely available software prod-
uct that allows this kind of modelling capability. A detailed
description of the modelling equations is presented in the sub-
sections that follow.

2.1. Flow equations

An incompressible E–E model was chosen in this work over
the other options available—mixture model and Eulerian–

Lagrangian model—as it provides a good balance between ac-
curacy and complexity.

As described in Ishii and Hibiki (2010), the RANS equation for
the two phases in this work can be written as:

αiρi
∂Ui

∂t
+αiρiUi ·∇Ui = −αi∇P+αiρig+∇·[αi(τi+τ

R
i )]+fi, (1)

where the subscript i can be c or d, denoting the continuous (liq-
uid) and the dispersed (gas) phases, respectively. In the above
equation, α is the phase volume fraction, ρ is the phase density,
U is the mean phase velocity, P is the mean static pressure, g is
the acceleration due to gravity, τ is the mean shear stress ten-

sor, τ
R

represents the Reynolds stress tensor, and fi is the sum
of all interphase forces acting on the ith phase due to the other
phase.

Ishii and Hibiki (2010) derived the above equation using
Reynolds time averaging performed at a point location in space,
unlike the usual spatial averaging approach. Their approach
defines a phase density function Mi which is equal to one for
the phase i and zero otherwise; the volume fraction therefore
results from the Reynolds time averaging of Mi at a point lo-
cation. Weight average of a function F, 〈wF〉/〈w〉, leads to
the definition of phase average (weight w = Mi) and mass
weighted average (w = ρ). In Equation (1), the mean velocity
is a mass-weighted average, and mean pressure and shear stress
are phase-averaged quantities. This kind of averaging prevents
any statistics of the volume fraction from appearing in the mean
equations. The fluctuations in the physical quantities were de-
fined with respect to the above definitions of the mean values.
In the present work turbulence was only modelled for the con-
tinuous phase and the dispersed phase was considered laminar
(same as Pfleger and Becker (2001) and Bhole et al. (2008)),
due to the gas phase eddy viscosity 2–3 orders smaller than the

liquid phase; i.e. Ud = ud and τ
R
d = 0 in Equation (1), where u

denotes the actual velocity field.

The mean shear stress term in Equation (1) was modelled as
τi = µd

(
∇Ui + ∇(Ui)T

)
+ Dinterf, which is obtained from the

constitutive equation for an isotropic linear viscous fluid with
dynamic viscosity µd. Dinterf is the interfacial extra deformation
tensor (∼ ∇αc), also known as the bubble-induced turbulence
(BIT) term (Ishii and Hibiki, 2010), which contains the contri-
bution of the bubble wake to the turbulence in the liquid phase.
There are two major ways to include the contribution of the
bubble wake on liquid velocity fluctuations (and hence the liq-
uid viscous shear stress)—through the inclusion of a modified
liquid viscosity (Sato and Sekoguchi, 1975) and through the
modification of production terms in turbulence kinetic energy
and turbulence dissipation rate equations (Pfleger and Becker,
2001; Bannari et al., 2008). The literature contains works com-
paring the two approaches and there is no consensus on the
superiority of one model over the other. While a few prefer
the use of modified viscosity (Pfleger et al., 1999; Ojima et al.,
2014), many found the use of modified production better (Ol-
mos et al., 2003), and a few simply found the inclusion of BIT
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Figure 1: Coupling of the model equations used for modelling the three-phase pulp phase in a flotation column.

model detrimental to validation (Pfleger and Becker, 2001). A
study by Zaruba et al. (2005) experimentally showed the con-
tribution of BIT an order or magnitude smaller than the shear-
induced turbulence in a thin rectangular bubble column, similar
to the geometry employed in the present work. The BIT model
was excluded from the present model due to its mixed accep-
tance in the literature.

A common pressure field was considered for the two Eulerian
phases (Bhutani et al., 2016), which required that only one
(common) continuity equation had to be solved. The common
continuity equation is given as (Ishii and Hibiki, 2010):

∇ · (αdUd) + ∇ · (αcUc) = 0, (2)

In polydisperse flow modelling, the interphase interaction force
fi, which includes the drag and non-drag forces, is responsi-
ble for coupling the dispersed phase particle size to the model
momentum equations. The drag force, which is the most signif-
icant of all interphase forces, consists of both the pressure and
the viscous drag on the body, and can be written as:

fi = ±
3αcαdCDρc(Uc − Ud)|Uc − Ud |

4d
, (3)

where CD is the drag coefficient and d is the dispersed phase
diameter. In the present work the Schiller–Naumann drag force
correlation was used to obtain the drag coefficient (Schiller and
Naumann, 1935). This coefficient models the drag well for vis-
cous and Newton’s flow regimes (Ishii and Hibiki, 2010), which
were prominent in the present situation. Many others have also
used the Schiller–Naumann correlation to model drag in bubbly
flows (Buwa and Ranade, 2002; Chen et al., 2005). It is given

as:

CD =


24
Red

(
1 + 0.15Red

0.687
)

if Red < 1000,

0.44 otherwise,
(4)

where Red, the dispersed phase Reynolds number, is defined
as:

Red =
ρcd|Uc − Ud |

µc
. (5)

Equation (4) clearly shows the two flow regimes—the viscous
flow regime with a strong dependence of the drag coefficient
on Red and the Newton’s regime with CD independent of Red.
The non-drag force includes the lift and virtual mass forces,
plus other forces such as the Basset force, the Brownian force
and the thermophoretic force. These forces, however, were ne-
glected in the present model as their effect on the flow is negli-
gible (Chen et al., 2004; Tabib et al., 2008; Dı́az et al., 2008a).
Reynolds-averaging of the discontinuities in the phases, which
results in the interphase interaction force term discussed above,
also gives rise to additional terms such as the interfacial pres-
sure term and the interfacial shear stress terms (∼ ∇αi), both
of which were neglected in the present formulation (Bhutani,
2016). The turbulent dispersion force term, which originates
from the continuous phase velocity fluctuations and affects bub-
ble motion was neglected in the present model due to its dis-
puted nature (Ishii and Hibiki, 2010).

The dispersed phase volume fraction, αd, was obtained from the
solution to:

∂αd

∂t
+ ∇ · (αdUd) = 0 (6)

and the conservation equation

αd + αc = 1 (7)
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was used to obtain continuous phase volume fraction αc.

The Reynolds stress, τ
R
c , is a result of the Reynolds-averaging

of the non-linear convective term in the momentum equation
and is responsible for applying the effect of turbulent fluctua-
tions on the mean flow. Since turbulence was only modelled
for the continuous phase, the subscript c has been omitted in
the subsequent discussion on turbulence modelling. The turbu-
lent viscosity hypothesis introduced by Boussinesq was used to
close the Reynolds stress term, given as:

τ
R

= −ρ〈u′u′〉 = µT

(
∇U + (∇U)T

)
−

2
3

kρI. (8)

In the above equation, u′ is the fluctuating component of the
liquid velocity and µT is the (isotropic) eddy viscosity. The
eddy viscosity in the k-ε model, which is the simplest complete
model for turbulence, is defined as:

µT = ρCµ
k2

ε
, (9)

where Cµ is a model constant. The turbulent kinetic energy,
k = 1

2 〈u
′ · u′〉, is the mean kinetic energy per unit mass

in the fluctuating velocity, and the turbulent dissipation rate,
ε =

2µ
ρ
〈s · s〉 (s being the fluctuating rate of deformation tensor),

quantifies the dissipation of turbulent kinetic energy at small
scales. Standard form of the transport equations for k and ε
(Jones and Launder, 1973) were solved; the equations are given
as:

αρ
∂k
∂t

+αρU ·∇k = ∇·

α (
µ +

µT

σk

)
∇k

+ατR : ∇U−αρε (10)

and

αρ
∂ε

∂t
+ αρU · ∇ε =∇ ·

(αµ +
µT

σε

)
∇ε

 + Cε1

(
εi

k

) (
ατR : ∇U

)
−Cε2αρ

ε2

k
.

(11)

The RHS terms in both equations consist of the diffusion, the
production from mean shear, and the destruction term. Inter-
phase interaction terms appearing in the k and ε equations were
neglected here, as did Ranade (1997) and Buwa and Ranade
(2002). Model constants suggested by Launder and Sharma
(1974) were used in this study (Table 1). σ is the turbulence
Schmidt number here.

Table 1
Model constants in the standard k-ε model given by Launder and Sharma
(1974).

Cµ 0.09
Cε1 1.44
Cε2 1.92
σk 1.0
σε 1.3

Koh and Schwarz (2007) incorporated the effect of attached par-
ticles on the gas bubble weight through a body force term in the
gas momentum equation. Further, they also presented the effect
of modifying the buoyancy term on the prediction of flotation
rate. The present model does not include the buoyancy modifi-
cation term.

2.2. Population balance equation

The population balance equation is a mesoscale integro-
differential equation that can be used to model the evolution
of the size distribution of polydisperse particles (Ramkrishna,
2000; Marchisio and Fox, 2013). In this study, the PBE was
used to model the evolution of the size distribution of the bub-
bles only. The polydispersity of the solids was modelled us-
ing three separate classes, which will be discussed later in Sec-
tion 3. The moving bubbles in a flotation system coalesce and
break, which results in the spatial and temporal evolution of
their distribution.

The PBE can be written as:

∂n(ξ, x, t)
∂t

+ ∇ ·
(
〈u|ξ〉 n

)
= S ξ(ξ, x, t), (12)

where n(ξ, x, t) is the dispersed phase number density function
(NDF), ξ is the internal coordinate (representing the dispersed
phase size), and x is the external (or spatial) coordinate. 〈u|ξ〉
is the mean dispersed phase velocity conditional to the bubble
size and is responsible for convecting the bubbles in the phys-
ical space. However this dependence on the dispersed phase
size was not considered in the present study and the air velocity
field computed using Equation (1) was used in the PBE. Only
one internal variable—the bubble size—was of interest in this
work, however multivariate PBE containing more than one in-
ternal variable has also been discussed in the literature (Buffo
and Alopaeus, 2016).

S ξ, the source term in Equation (12), includes all terms contain-
ing derivatives or integrals with respect to the dispersed phase
size ξ. It can be used to model dispersed phase growth, dif-
fusion in the internal space, and the birth and death functions
due to dispersed phase breakage and coalescence. Growth and
internal diffusion terms did not arise in the present model and
were not included in Equation (12).

As discussed previously, the PBE in this work was used to esti-
mate the bubble size in the flotation system to accurately model
the drag force term in momentum equations (Equations (1) and
(1)). The PBE was also used to calculate the bubble concentra-
tion, which was needed in the bubble–particle attachment and
detachment models.

Breakage and coalescence are discontinuous events that lead to
the birth and death of bubbles in a very short time. The contri-
bution to the source term S ξ from birth and death functions due
to bubble breakage and coalescence is given as:

S ξ = BB + BC − DB − DC . (13)
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The birth and death functions due to breakage are given
as:

BB(ξ) =

∫ ∞

ξ

ν(ξ1)a(ξ1)b(ξ|ξ1)n(ξ1) dξ1 (14)

and
DB(ξ) = a(ξ)n(ξ), (15)

respectively. Here, ν(ξ), a(ξ) and b(ξ|ξ1) are the breakage ker-
nels that define the number of bubbles formed after breakage,
the breakage frequency, and the daughter distribution function,
respectively. Note that the spatial and temporal dependence of
the NDF has been suppressed here for compactness.

Coalescence is described in terms of a coalescence frequency
β(ξ′, ξ) for bubbles of sizes ξ′ and ξ. If there is no statistical
correlation between the colliding bubbles, the bubble pairs can
be defined as the product of two individual number densities,
and the birth and death functions due to coalescence are given
as:

BC =
1
δ̃

∫ ξ

0

 ξ2

ξ′2

 β(ξ′, ξ1)n(ξ′)n(ξ1) dξ1 (16)

and

DC =

∫ ∞

0
β(ξ, ξ1)n(ξ)n(ξ1) dξ1, (17)

respectively. δ̃ in the above equation represents the number of
bubbles coalescing to form a larger bubble. In Equation (16), ξ′

is given as ξ′3 = ξ3 − ξ3
1 , i.e. the volume of the resulting bubble

class (ξ) is the sum of the volumes from the contributing size
classes (ξ′ and ξ1).

The internal coordinate presents the major challenge in the nu-
merical solution of the PBE. Most methods eliminate the in-
ternal coordinate from the PBE to bring it in a form that can
be solved numerically using established methods. The popular
numerical solution methods for the PBE can be grouped into
two general categories—the method of classes and the method
of moments. The CM discretises the internal coordinate in the
NDF, giving rise to various classes (Marchal et al., 1988). The
PBE transforms to a set of advection–diffusion equations for the
discretised NDF corresponding to each class. A large number
of classes are needed for a reasonable accuracy when the PBE
is coupled to the multiphase flow equations, which makes the
solution of a normal engineering system extremely expensive.
For instance, Sarhan et al. (2017) used 10 classes for the bubble
NDF in their flotation column model, which equates to solving
10 extra advection–diffusion equations in addition to the multi-
phase flow equations. The size distribution can change signifi-
cantly in a very short time due to the discontinuous nature of the
breakage and coalescence events, and therefore a large number
of classes must be considered to factor this possibility.

The method of moments (MOMs), as the name suggests, solves
for the evolution of the moments of the NDF instead; kth mo-
ment of the NDF can be written as mk =

∫ ∞
0 ξkn(ξ) dξ. The

internal coordinate gets integrated when the moments of the
NDF are evaluated in the PBE, but in the process various un-
closed terms are generated. The various methods of moments

available in the literature are differentiated based on the clo-
sure method used. Quadrature-based moment methods are pop-
ular as they are simple and robust, and the mathematical clo-
sure in the QBMM can be applied to any problem without
an understanding of its physics. In this method, the higher-
order unclosed moments are written in terms of the lower-order
moments, which are transported. QMOM and DQMOM are
two popular QBMMs used in the literature. QMOM approxi-
mates the integrals in terms of weights and abscissas (McGraw,
1997), whereas DQMOM uses a quadrature approximation for
the NDF itself (Marchisio and Fox, 2005), given by:

n
(
ξ, x, t

)
=

N∑
j=1

w j (x, t) δ
[
ξ − 〈ξ〉 j (x, t)

]
, (18)

where δ is the Dirac delta function, N is the total number of
quadrature points, and w j and 〈ξ〉 j are the weights and abscis-
sas in the DQMOM approximation, respectively. DQMOM was
chosen to solve the PBE in this work because each weight and
abscissa can be defined as a function of space, which makes
the implementation of the method in a CFD code straight-
forward. Also, very few abscissas are needed to accurately
model the NDF due to the adaptive quadrature approach of DQ-
MOM.

The DQMOM approximation to the NDF when substituted into
the PBE (Equation (12)) results in the following set of transport
equations (Marchisio and Fox, 2005):

∂w j

∂t
+ ∇ ·

(
u w j

)
= g j (19)

and
∂ς j

∂t
+ ∇ ·

(
u ς j

)
= h j, (20)

where j = 1, 2, ...,N. The source terms g j and h j are obtained
from the solution of the linear system

(1 − k)
N∑

j=1

〈ξ〉kjg j + k
N∑

j=1

〈ξ〉k−1
j h j = S

(N)
k , (21)

which is obtained by computing the kth moment of the PBE;
here k = 1, 2, ..., 2N. The above set of equations were solved
for the weights w j and the weighted abscissas ς j, which were
then used to calculate the moments and eventually the Sauter
mean diameter (d32 = m3/m2). The bubble surface area flux
is an important parameter that is used to characterise flotation
and since the Sauter mean diameter (SMD) includes the effect
of the total surface area of the bubbles (through m2) it was used
as an estimate for the bubble diameter in this study. S

(N)
k is the

kth moment of the source term in the PBE and the DQMOM
approximation to the NDF provides a convenient closure for
this source term. It is given as:

S
(N)
k =

N∑
j=1

b
(k)
j a jw j −

N∑
j=1

〈ξ〉kja jw j

+
1
2

N∑
j=1

N∑
i=1

(
〈ξ〉3j + 〈ξ〉3i

)k/3
β jiw jwi −

N∑
j=1

N∑
i=1

〈ξ〉kjβ jiw jwi,

(22)
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where the term b
(k)
j is given as:

b
(k)
j =

∫ ∞

0
ξkb(ξ|〈ξ〉 j)dξ. (23)

In the above equation, b(ξ|〈ξ〉 j) = 0 for ξ > 〈ξ〉 j, which re-
stricts the daughter bubble size to be smaller than the parent.
The breakage kernel ν(ξ) is usually absorbed in the daughter
distribution function b(ξ|ξ1) (Marchisio et al., 2003b,a) and has
been omitted from Equation (22).

Compared to the CM, DQMOM requires a fewer number of
equations that need to be solved to get a good estimate of the
BSD. For instance, Marchisio et al. (2003b) stated that 4–6
equations in DQMOM (i.e., N=2–3) provide similar accuracy
as 50–200 classes in the CM. Two quadrature points were used
in the DQMOM approximation in this study.

The problem of moment corruption (i.e., the moment-set be-
coming invalid or unrealisable) has been reported with the use
of the MOMs in the literature (Petitti et al., 2010). However,
it has been established that the first-order upwind convective
scheme in the finite volume discretisation, which was used for
the PBE transport equations in this work, always leads to re-
alisable moments for N ≤ 3 (Desjardins et al., 2008; Mazzei
et al., 2012). The details of the implementation of DQMOM in
Fluidity and its verification have been presented in a previous
publication by the authors (Bhutani et al., 2016).

2.2.1. Kernels

The breakage and coalescence kernels are chosen based on the
physics of the problem under consideration. The most widely
accepted theory for bubble breakage states that the bubble
breakage phenomenon is characterised by a balance between
the forces in the liquid trying to deform the bubble (the turbu-
lent fluctuations) and the restoring force due to interfacial ten-
sion (Andersson and Andersson, 2006). On the same lines, the
breakage rate proposed by Laakkonen et al. (2006) was used for
modelling bubble breakage in this work. It is given as:

a(ξ) = C1ε
1/3erfc

√C2
σ

ρcε2/3ξ5/3 + C3
µc

√
ρcρdε1/3ξ4/3

 ,
(24)

where σ is the gas–liquid interfacial tension, and C1, C2 and
C3 are empirical model constants with C1 having dimensions
of L−2/3. The stabilising effect of viscous stresses was also con-
sidered along with the interfacial tension effects in the above
breakage rate kernel. Other popular choices for the break-
age kernels are the ones proposed by Coulaloglou and Tavlar-
ides (1977), Luo and Svendsen (1996) and Prince and Blanch
(1990).

Binary breakage was assumed in this work (ν(ξ) = 2), and
the daughter distribution function proposed by Laakkonen et al.
(2007) was employed in this study. It is given as:

b(ξ1|ξ2) =
1
2

(C4+1)(C4+2)(C4+3)(C4+4)

ξ1
2

ξ2
3

 ξ1
3

ξ2
3

2 1 − ξ1
3

ξ2
3

C4

.

(25)

The above expression does not take the effect of turbulence or
any other parameter, other than the bubble size, into account.
It is mathematically well-posed and numerically more stable
than the other expressions (Luo and Svendsen, 1996). C4 is a
constant that can be calculated using the normalisation property
of daughter distribution function.

Bubble coalescence is considered more complex than breakage
because it not only involves the interaction between bubbles and
liquid, as in breakage, but also between different bubbles. The
coalescence rate kernel is written as a product of the collision
frequency and the coalescence efficiency. It is the turbulence
in the continuous phase that is responsible for the collision be-
tween the bubbles in the pulp zone. The coalescence efficiency
is modelled by comparing the film drainage time with the bub-
ble interaction time. Assuming the coalescing bubble interfaces
to be immobile, Laakkonen et al. (2006) obtained the following
expression for the coalescence efficiency:

η(ξ1, ξ2) = exp

−C6
µcρcε

σ2

(
ξ1ξ2

ξ1 + ξ2

)4
 . (26)

The coalescence rate was therefore given as:

β(ξ1, ξ2) = C5ε
1/3 (

ξ1 + ξ2
)2

(
ξ1

2/3 + ξ2
2/3

)1/2
η(ξ1, ξ2), (27)

and the same was used in the present study. Binary collision
was assumed here (δ̃ = 2). For more details on the theory of
bubble breakage and coalescence and the choice of kernels, see
Bhutani (2016).

Evans et al. (2008) proposed their own kernels for breakage
and coalescence, whereas Koh and Schwarz (2008b) used the
breakage and coalescence kernels of Luo and Svendsen (1996)
and Prince and Blanch (1990), respectively, to model flota-
tion. Buffo et al. (2013) reported promising results for mod-
elling bubble columns through the use of the breakage and co-
alescence kernels of Laakkonen et al. (2006); the same kernels
were used in this work. Although the coalescence and break-
age kernels of Laakkonen et al. (2006, 2007) used in this work
have been derived for pure liquid and bubble systems, Koh and
Schwarz (2008b) used similar liquid–gas expressions in their
flotation simulations reporting a reasonable match with the ex-
periments. However, it will be ideal to include kernels that can
account for the the effect of solids and surfactants, which, to
the best knowledge of the authors, do not exist in the literature
currently.

2.3. Solids

2.3.1. Transport equations for solids

Transport equations for the free and attached solids in the pulp
were solved. The total solid concentration inside the column,
ntot, can be given as:

ntot(x, t) = n f (x, t) + na(x, t), (28)

7



where n f and na are the concentrations of the free and at-
tached particles, respectively, in number per unit volume
(#/m3).

Transport equations that were solved for n f (x, t) and na(x, t) can
be written as:

∂n f

∂t
+ (Uc + usettling) · ∇n f = −ψa + ψd, (29a)

∂na

∂t
+ Ud · ∇na = ψa − ψd. (29b)

Here, ψa is the rate of particle–bubble attachment and ψd is the
rate of detachment. A settling velocity usettling was added to the
continuous phase velocity to get the advection velocity of the
free particles, as seen in Equation (29a). The attached particles
advect with the dispersed phase velocity Ud

2.3.2. Attachment rate

The particle attachment rate was modelled as a product of the
number of collisions between free particles and available bub-
bles and the probability of successful attachment. Is is given
as:

ψa = Z1n f nA
b PcPaPs, (30)

where Z1 is the collision rate factor (m3s−1), nA
b is the concen-

tration of bubbles available for attachment, and Pc, Pa and Ps

are the probabilities of collision, adhesion and stabilisation, re-
spectively.

Collision rate factor

Abrahamson (1975) was the first to derive the collision rate fac-
tor between particles in a highly turbulent fluid. The same ex-
pression was later used by Koh et al. (2000) and Bloom and
Heindel (2002) to estimate the collision rate between particles
and bubbles in flotation. Based on the previous studies the
same collision rate factor was used in the present work, given
as:

Z1 = 5.0
(

ds + db

2

)2

(u2
t,s + u2

t,b)1/2, (31)

where db is the bubble diameter, ds is the particle diameter, ut,s

is the RMS fluctuating velocity for the particles and ut,b is the
RMS fluctuating velocity for the bubbles.

For large colliding particles and/or high intensity turbulence the
particles do not follow the fluid streamlines and the particle ve-
locities can be assumed to be distributed independently (in mag-
nitude and direction). The particle velocity distribution in the
above model is assumed to be Gaussian and the velocity fluctu-
ations are represented in terms of the turbulent dissipation rate
as (Koh and Schwarz, 2006; Bloom and Heindel, 2002):

ut,i =
0.4ε4/9ρ1/3

l d7/9
i

µ1/3
l

(
ρi − ρl

ρl

)2/3

, (32)

where the subscript i refers to solid and gas (bubble) phases.
Colliding species—particles and bubbles—are collectively re-
ferred to as ‘particles’ in this section in the interest of simplic-
ity.

Equation (31) was also used by Koh and Schwarz (2006) in
their pulp phase CFD model for uncorrelated solid particle and
bubble velocities. The solid particle and bubble velocities re-
main uncorrelated as long as turbulence in the fluid is isotropic
at the scale of colliding particles (which may be true even when
the large-scale motion is statistically anisotropic) and the two
colliding particles are moving in independent fluid elements.
Velocities for the fluid elements close to each other in space
will be correlated, but if the particle inertia is sufficiently larger
than the drag on the particle due to these correlated elements
the independence of particle velocities can be assumed. The
above condition is quantified by comparing the particle relax-
ation time to the characteristic time for velocity fluctuation at a
distance over which the fluid velocities are correlated. This re-
sults in a critical particle diameter expression, given as:

dcrit =

√
15µlu2

t,l

ρiε
. (33)

For a typical flotation situation dcrit is 1 mm for air bubbles
and 0.5 mm for solid particles (of density 2500 kgm−3). How-
ever, the value may change depending the intensity of turbu-
lence at a given location. Since the diameter of the bubbles
introduced into the column was 5 mm Abrahamson’s collision
rate factor was applicable in such cases. Abrahamson’s colli-
sion rate factor (Equation (31)) is therefore applicable when the
solid particle or bubble diameter is greater than the above crit-
ical diameter (Koh and Schwarz, 2006). Here, ut,l is the RMS
fluctuating velocity of the liquid phase which is equal to

√
2k.

For bubbles, ρi in the above equation is taken as 0.5ρl. Equa-
tion (31) is therefore applicable when the following conditions
are satisfied: high-intensity turbulence in the flow, turbulence is
isotropic on the scale of colliding particles, particles are nearly
spherical, and the particle size is greater than the critical di-
ameter for the solid particle and bubble velocities to be inde-
pendent. Most of the above conditions were applicable in the
present situation for particle–bubble collisions in flotation. The
particles (and larger bubbles) however are not spherical and this
is an assumption that is made here to ensure the applicability of
Equation (31).

In case the solid particle and bubble velocities are correlated
(i.e. for low intensity turbulence), the collision rate expression
developed in the past by Saffman and Turner (1956) was used
(same as Koh and Schwarz (2006)):

Z1 =

√
8π
15

(
ds + db

2

)3 (
ερl

µl

)1/2

. (34)

The above expression is based on the classical ‘gradient colli-
sion’ model of Smoluchowski (1917), which derives the colli-
sion rate of particles moving under uniform shear. This model
assumes ds + db to be smaller than the smallest eddies and that
the particles move with the fluid (i.e. they have a small iner-
tia).

Bubbles available for attachment

Different approximations have been used to estimate the avail-
able bubble concentration in the literature. Bloom and Heindel
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(1997) assumed that only one particle can attach to a bubble,
whereas Bloom and Heindel (2003) assumed that only the bub-
bles that have no particle attached to them are available for at-
tachment. Some replaced the number concentration of available
bubbles with the total bubble concentration. In this work, the
assumption of Koh and Schwarz (2006) of the bubbles being
either fully loaded or completely clean was used. The bubble
loading parameter βbub was, therefore, defined as:

nA
b = (1 − βbub)ntot

b , (35)

where ntot
b is the total bubble concentration. The bubble loading

factor for a particular solid class i was calculated as:

βbub,i =

na,i

ntot
b

 (ds,i

db

)2

0.5, (36)

assuming 50% maximum loading. The total bubble concentra-
tion ntot

b was calculated using the value of zeroth moment, m0,
of the bubble NDF. Equation (36) assumes that loaded bubbles
always contain particles of the same size.

Collision probability

The probability of collision between free particles and bubbles
in this work was calculated using the expression derived by
Yoon and Luttrell (1989), given as:

Pc =

(
3
2

+
4
15

Re0.72
b

) (
ds

db

)2

. (37)

This expression is based on an isolated bubble rising in particle
suspension in a quiescent flow. The particles are assumed to
follow fluid streamlines around the bubble, which is a reason-
able assumption if the particle inertia is small. The particles and
bubbles are assumed to be spherical. It was theorised by Suther-
land (1948) that the particles lying inside the grazing streamline
are able to collide with bubbles successfully. Using this theory,
the probability of collision was defined as the fraction of parti-
cles in the bubble path that end up colliding with it, quantified
as the ratio of the area inscribed by limiting radius R0 to the area
inscribed by bubble radius Rb, as shown in Figure 2. Yoon and
Luttrell (1989) developed an empirical relation for R0 as a func-
tion of the bubble Reynolds number (below 100), through mea-
surements of fluid streamlines. This led to the expression for the
collision probability as defined in Equation (37). Equation (37)
was also used by Koh and Schwarz (2006) in their pulp phase
models. Three other collision mechanisms, namely the gravita-
tional, inertial and turbulent collision are possible (Wang et al.,
2018); however, only the interceptional collision mechanism,
as described above, was considered in this work.

Adhesion probability

The short-range surface forces start acting once the parti-
cle is close enough to the bubble after collision. Sutherland
(1948) theorised that for the thermodynamically feasible cases
the bubble–particle adhesion occurs when the particle “sliding
time” is larger than the “induction time”, which is the minimum
time required for the liquid film to thin and rupture. For given

2R0 2Rb
grazing

streamlines

Figure 2: Fluid streamlines around a spherical bubble. Solid particles outside
the grazing streamlines do not contact the bubble.

particle and bubble sizes, there is a maximum incidence angle
that the incoming particle must hit at for the adhesion to be
successful. For particles approaching at angles above this max-
imum angle, the sliding distance will not be long enough for the
film thinning to occur in time. Yoon and Luttrell (1989) quanti-
fied the adhesion probability as the ratio of the area inscribed by
the limiting radius (corresponding to the maximum incidence
angle) to the area inscribed by the sum of bubble and particle
radii. This adhesion probability is equal to sin2 θinc, θinc be-
ing the maximum incidence angle. Using the empirical relation
for fluid streamlines as a function of bubble Reynolds number,
Yoon and Luttrell (1989) derived the sliding time in terms of
the incidence angle, assuming the particle inertial to be small.
Equating the sliding and induction times for the maximum in-
cidence case, the adhesion probability was obtained as:

Pa = sin2

2 arctan

exp

−(45 + 8Re0.72
b )ut,btind

15db(db/ds + 1)



 . (38)

The following well-known relation for the induction time was
used in this work:

tind = AinddBind
s , (39)

where Aind = 75/θCA (θCA is the contact angle in degrees) and
Bind = 0.6, using the statistical fitting performed by Dai et al.
(1999) and Koh and Schwarz (2006). Definition of the fitting
parameter A is consistent with the fact that the induction time
is short for hydrophobic surfaces (Wills and Finch, 2016). Al-
though the effect of collectors has not been modelled here, they
will affect the induction time directly through a change in the
contact angle of the mineral surface.

Ideally the adhesion probability should also consider the extent
of liberation of the mineral in the crushed ore. It is generally
not economical to crush the ore to very fine particle size to lib-
erate all mineral particles. Hence the partially-liberated ore has
a lower probability of attaching to the bubbles as compared to a
fully-liberated one. Welsby et al. (2010) measured the flotation
rate as a function of particle size for different mean liberation
values, noticing a clear trend. Jameson (2012) showed that the
ratio of the rate constant for a partially liberated particle sample
to a fully liberated sample was a unique function of liberation
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independent of particle size, called the liberation function. Al-
bijanic et al. (2011) saw a clear reduction in the adhesion time
as the liberation of the mineral increased, through their experi-
ments. There is currently no study that quantifies this effect of
liberation on the adhesion probability and the effect of libera-
tion therefore was not considered in the present model.

Stabilisation probability

Schulze (1993) proposed the stabilisation probability of the
particle–bubble aggregates in a flotation pulp as:

Ps = 1 − exp
(
1 −

1
Bo∗

)
. (40)

Here Bo∗ is the modified Bond number defined as the ratio of
detachment to attachment forces. It is given as:

Bo∗ =

d2
s

[
(ρs − ρl)|g| + 1.9ρsε

2/3
(

ds+db
2

)−1/3
]

|6σ sin
(
π − θCA

2

)
sin

(
π +

θCA
2

)
|

+
1.5ds

(
4σ
db
− dbρl|g|

)
sin2

(
π − θCA

2

)
|6σ sin

(
π − θCA

2

)
sin

(
π +

θCA
2

)
|
,

(41)

where g is the acceleration due to gravity vector. In the above
expression it is assumed that turbulent eddies of similar size as
the bubble–particle aggregate cause detachment. Turbulence
and capillary forces can be seen competing with each other
in the above expression for the modified Bond number. This
expression for stabilisation probability was used in the present
flotation modelling framework.

2.3.3. Detachment rate

The particle detachment rate was given by:

ψd = Z2nL
b Pd, (42)

where Z2 is the detachment frequency (1/t), nL
b is the concentra-

tion of loaded bubbles and Pd is the destabilisation probability.
The detachment frequency due to the turbulent eddies was cal-
culated using:

Z2 =

√
C̃ε1/3

(ds + db)1/3 , (43)

where the constant C̃ was taken to be equal to 2 (Bloom and
Heindel, 2002, 2003; Koh and Schwarz, 2006). The concen-
tration of loaded bubbles was calculated using nL

b = βbubntot
b .

The destabilisation probability was calculated simply as 1 −
Ps.

2.3.4. Settling velocity of solids

Richardson and Zaki (1954) obtained the relation for the set-
tling velocity of a suspension of uniform spherical particles
as:

usettling =
g(ρs − ρl)d2

s

18µl
ε4.65

s , (44)

where the subscripts s and l refer to the solid and liquid, respec-
tively. εs is the porosity in the solid-liquid mixture that can be
written as:

εs = 1 − n f Vs. (45)

Here, Vs is the volume of a solid particle. Equation (44) was
used to calculate the settling velocity of free solids, which was
superimposed on the liquid velocity field for getting the advec-
tion velocity in the free-solid scalar equation (Equation (29a)).
The pulp phase models presented by Koh and Schwarz have
also included the effect of the settling velocity of the particles,
which can be verified from the settled unattached particles at
the bottom of their tanks, as shown clearly in Koh and Schwarz
(2008a, 2009). The settling velocity expression used by them,
however, was not specified in their works. Neglecting the set-
tling velocity would mean that the larger (and heavier) solid
particles will also follow fluid streamlines like the lighter ones,
which is physically incorrect. This equation however is only
used for the better estimation of the advection term in the free-
solid transport equation as no momentum equation for the free
solids is solved in the present model.

2.3.5. Viscosity modification of the liquid phase

The collision between the solid particles in liquid phase man-
ifests as an increased viscosity the of liquid. Einstein’s equa-
tion, which relates the slurry viscosity µslurry to the solid vol-
ume fraction φ for spherical particles, is generally applicable to
very dilute systems and the equation does not apply to higher
solid concentrations. Krieger and Dougherty (1959) proposed
an expression for the change in the viscosity of a fluid due to
the presence of high concentration of rigid spherical particles
as:

µslurry = µl

1 − φ̃

φ̃max

−[µ]φ̃max

, (46)

where µl is the molecular viscosity of the fluid, φ̃ is the solid
volume fraction, φ̃max is the maximum packing fraction that
the solid particles can achieve and [µ] is the intrinsic viscos-
ity. Intrinsic viscosity is the limiting value of (µslurry/µl − 1)/φ̃,
which is equal to 2.5 using Einstein’s equation. Merve Genc
et al. (2012) used the values 2.5 and 0.74 for [µ] and φ̃max re-
spectively, in Equation (46) for estimating the pulp viscosity
in nickel sulphide flotation. Many other empirical and semi-
empirical relations between µslurry and φ̃ have been proposed
(Shook and Roco, 1991). Equation (46) was used in the present
work with the values 2.5 and 0.70 for [µ] and φ̃max, respectively.
Maximum solid packing fraction of 0.74 can be considered as
a theoretical maximum (corresponding to hexagonally-packed
spherical particles) that can be attained; real measured values
are much smaller (order of 0.01 due to the gangue fibre mesh).
The higher φ̃max value allows for the slurry to attain higher φ̃
values and still keep flowing. Moreover, the flotation simula-
tions demonstrated in this work are for a batch flotation sys-
tem containing mineral particles only, therefore allowing higher
values of φ̃max. The solid volume fraction was calculated as
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φ̃ = 1 − ε using Equation (45). Koh and Schwarz (2008a) have
reported the use of modified viscosity in their pulp phase model.
They used the Herschel Bulkley non-Newtonian model with
the consistency and flow indices fitted for various pulp densi-
ties.

Since the viscosity modification is the only way to apply the
effect of free solids on the liquid velocity field, this step is nec-
essary. It is independent of the settling velocity modification
in Equation (44), which does not impact liquid velocity as the
free-solid transport equation does not modify liquid velocity in
any way in the approach used in this paper. If a separate mo-
mentum equation was being solved for the free solids, viscosity
modification of the liquid phase would impact solid velocity
field and the Richardson and Zaki settling equation would not
be needed. In the present model, the viscosity modification and
Richardson and Zaki equation are used to independently apply
the effect of free solids on the liquid velocity and the solid ve-
locity, respectively.

Table 2 shows a comparison of the features of the present pulp
phase simulation framework with previous studies.

2.4. Numerical discretisation

Fluidity is an open-source code that uses the finite element
method (FEM) for solving coupled PDEs. The FEM was cho-
sen over the finite difference method (FDM) as the finite ele-
ment (FE) discretisation has been shown to naturally go well
with the unstructured meshes (Wilson, 2009), which were used
in the present work. Implementing higher-order discretisations
is not straightforward in the finite volume method (FVM) and
the FEM was chosen over it for reason that it provides a con-
venient way to increase the accuracy through an increase in the
degree of the fitting polynomials. Galerkin FEM was used to
discretise the pressure and velocity fields in this work. The
FE shape functions can be obtained from continuous or dis-
continuous function spaces. Piecewise-linear discontinuous FE
basis functions (P1DG) were used to represent velocity in the
momentum equation. The continuity equation (for pressure)
used piecewise-quadratic continuous FE basis functions (P2).
The P1DG–P2 velocity–pressure pair ensured the LBB stabil-
ity criterion (Cotter et al., 2009). See Figure 3 for a compari-
son between the different discretisations in one and two dimen-
sions.

A node-centred CV discretisation was also used in certain cases
(such as for phase volume fraction and PBE scalars) to en-
sure conservation. Control volume dual mesh was constructed
on a P1 parent mesh (as shown in Figure 3) and piecewise-
constant CV shape functions were used to discretise fields such
as volume fractions, turbulence scalars, DQMOM scalars (in
the PBE) and the solids concentrations. Therefore a hybrid
FE–CV method was established for the solution of the coupled
PDEs for modelling pulp hydrodynamics. See Bhutani et al.
(2016) for more details on the description of the discretisation
methods.

A

e1 e2

A
e1

e2

e

A e A

A
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v A

Figure 3: Elements and the corresponding shape functions on 1D (left) and
2D (right) FE meshes. (a) A pair of piecewise-linear discontinuous FE basis
functions (P1DG) along with the support nodes. (b) Piecewise-quadratic
continuous FE basis functions (P2) along with the support nodes. (c) Control
volume dual mesh on P1 parent mesh, and piecewise-constant CV shape
functions for 1D and 2D are shown. The support for a basis function is the
same as the control volume. Figure adapted from Wilson (2009).
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Table 2
Comparison of the features of the present pulp phase simulation framework with previous studies.

Model feature Present
work

Koh et al.
(2000)

Koh and
Schwarz
(2003)

Koh and
Schwarz
(2006)

Koh and
Schwarz
(2007)

Koh and
Schwarz
(2008a,b)

Karimi
et al.
(2014b)

Sarhan
et al.
(2016,
2018)

E–E model for gas and
liquid phases

X X X X X X X X

k–ε turbulence model for
liquid phase

X X X X X X X X

Polydisperse bubbles X X X X X X X X

Polydisperse solids X X X X X X X X
Settling velocity for free
solids

X X X X X X X X

Viscosity modification of
liquid phase due to solids

X X X X X X X X

Transport equations for
free and attached solids

X X X X X X X X

Collision rate (bubble–
solids)

X X X X X X X X

Collision probability X X X X X X X X

Adhesion probability X X X X X X X X

Stabilisation probability X X X X X X X X

Detachment rate (bubble–
solids)

X X X X X X X X

Solver Fluidity CFX CFX CFX CFX CFX ANSYS
Fluent

AVL-
FIRE

Impeller modelling X X X X X X X X
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2.5. Mesh adaptivity

Mesh adaptivity is the method of systematic mesh modification
in a simulation, based on the physics of the problem, to pre-
dict the flow accurately as time progresses. Fluidity can gener-
ate fully-unstructured, non-homogeneous, anisotropic meshes
adaptively for a given set of optimisation parameters. Consid-
ering the many equations that needed to be solved in the model
in this work, it was imperative that an optimised mesh be con-
sidered for a tractable framework. Mesh adaptivity in Fluidity
is a three-step process which starts with metric estimation, fol-
lowed by mesh generation, and finally the interpolation of all
fields on the new mesh.

The mesh metric is a Hessian based error metric which is a
function of the curvature of the field to be adapted to and a user-
defined interpolation bound. The mesh metric allows for an in-
crease in the mesh resolution in the regions of strongly-varying
fields, keeping the mesh in the other parts of the domain coarse.
Different mesh metrics can be superposed in case the mesh
needs to be adapted to more than one field (Pain et al., 2001). In
the next step, the mesh is generated through a sequence of local
topological operations (Piggott et al., 2009). Finally, the inter-
polation of meshes can be achieved using a consistent interpola-
tion method or using a Galerkin projection method. Details on
the description of mesh adaptivity and its implementation can
be found in the previous work by the authors (Bhutani et al.,
2016), the Fluidity manual (AMCG, 2015), Pain et al. (2001),
and Piggott et al. (2009). Significant improvements in the so-
lution efficiency have been reported through the use of mesh
adaptivity in Fluidity in the past (Hiester et al., 2014; Jacobs
et al., 2013)

In the present work the mesh was adapted for the air volume
fraction, and the first weight and weighted-abscissa of the NDF.
The application of adaptivity to the PBE fields was shown to im-
prove the solution efficiency in the previous work by the authors
(Bhutani et al., 2016). Details of the interpolation-error bound
values used in this study are discussed in Section 4.

3. Problem description and simulation setup

Turbulence provides the necessary mixing needed in a flotation
system to aid in the particle–bubble collision. This turbulence
can either be generated using an impeller, such as in a flotation
cell, or using gravity resulting in rising buoyant bubbles, such
as in a flotation column. In this work a flotation column-like
system was modelled using the present Fluidity framework to
demonstrate its capabilities.

A rectangular column geometry, as shown in Figure 4, was
used for the flotation simulations in this work. This geome-
try was inspired from the bubble column experiments of Dı́az
et al. (2008b), which was used as a validation problem in this
work. Dı́az’s ‘thin’ bubble column measured 20 cm x 45 cm
x 4 cm which was approximated with a 20 cm x 45 cm two-
dimensional (2D) column in this work. Air was injected into

45
 c

m

20 cm 4 cm

Inlet

Outlet

x

y

z

Figure 4: Experimental column of Dı́az et al. (2008a) used in this work for
model validation. Inlet dimentions are 1.8 cm × 0.6 cm.

this 2D column through a 2 cm sparger placed symmetrically
at the base of the column, as shown in the figure. It was rea-
sonable to approximate Dı́az’s thin experimental column with
a 2D column as the z velocity component is much smaller than
the x and y velocity components. The dependence of the fluid
flow equations on the z-coordinate can be neglected if one is
interested in estimating the flow at the centre z-plane. The ac-
ceptability of the above approximation was established through
a good match with the bubble column experiments, as shown in
Section 4.

Boundary conditions, initial conditions and the numerical and
physical parameters used in the simulations are presented next.
The values for all fields presented are the same for the bubble
column validation problem and the flotation column problem,
except for the solids equations which only appear in the flota-
tion simulation.

The Schiller–Naumann (S–N) drag coefficient was used to
model the interphase momentum interaction between the gas
and liquid phases in this work. Gupta and Roy (2013) com-
pared different drag models for a thin 2D bubble column ge-
ometry (similar to the one employed in the present work) with
polydisperse bubbles and concluded that the Schiller–Naumann
model was good enough to model drag in their bubble column.
Although the S–N drag coefficient and similar models were
typically developed for rigid single spheres in a dilute laminar
flow, the application has been extended to polydisperse bub-
ble population. This drag coefficient (and similar models) has
(have) been used extensively over the years to model bubble-
water drag successfully (Buwa and Ranade, 2002; Chen et al.,
2005; Sanyal et al., 2005; Tabib et al., 2008; Silva et al., 2008;
Buffo et al., 2016). The Schiller–Naumann drag coefficient is
still popular in the minerals processing literature (Sarhan et al.,
2017; Mwandawande et al., 2019; Wang et al., 2019) due to its
good match with the standard drag curve (Clift et al., 1978).
For the same reason this drag coefficient was employed for the
present simulations even though the bubbles under considera-
tion were 5 mm in diameter.
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Table 3
BCs for the flow fields. n here denotes the normal coordinate. v denotes the
y-component of the velocity.

Flow field Inlet
(sparger)

Walls Outlet

Continuous phase
velocity

vc=0 no slip (weak) vc=0 (weak)

Gas velocity vd=0 (weak) no slip (weak) vd=0 (weak)

Pressure
∂p
∂n

= 0
∂p
∂n

= 0 p = 0 at
coordinate
(0,0.45)

Air volume frac-
tion

flux speci-
fied

no flux
∂αd

∂n
= 0 with

large absorp-
tion

Turbulent kinetic
energy

∂k
∂n

= 0 0
∂k
∂n

= 0

Turbulent dissi-
pation

∂ε

∂n
= 0

∂ε

∂n
= 0

∂ε

∂n
= 0

3.1. Boundary conditions

Table 3 shows the boundary conditions for the velocity, pres-
sure, volume fraction and turbulence fields that were used while
modelling the bubble column and the flotation column. The su-
perficial gas velocity (SGV) (also known as Jg) was used to

calculate the inlet air flux using: gas flux =

(
Across-section

Asparger

)
SGV.

For the 2D column, Across-section and Asparger were equal to 20 cm
and 2 cm, respectively. In order to extract the air at the outlet, a
special absorption BC was applied for the air volume fraction.
A large absorption term in the advection equation for the air
volume fraction was implemented as:

∂αd

∂t
+ ∇ · (αdud) + σabsαd = 0, (47)

where σabs is the absorption that was set equal to a very high
value close to the outlet and zero otherwise:

σabs =


10, 000 if y ≥ 0.45,

0 otherwise.
(48)

The large absorption term, in conjunction with a fully-implicit
time discretisation for the volume fraction transport equation,
ensured that all the air reaching the outlet boundary was re-
moved from the column. It is always tricky to “correctly” spec-
ify the outlet BC for the gas phase in a multiphase flow problem
(Prosperetti and Tryggvason, 2007) and after trying various op-
tions, the above outlet BC was seen to give the expected result
for the bubble column in this work. This boundary condition
mimics the presence of a large absor ption zone at the outlet,
which is more physical than the degassing BC typically em-
ployed in commercial codes.

For the PBE, since the number of quadrature points in the DQ-
MOM assumption, N, was taken as 2, there were four un-
knowns (two weights and two weighted-abscissas) in the DQ-
MOM transport equations. A no-flux BC was applied to the
side walls of the column for these four PBE scalars. A homo-
geneous Neumann BC was applied at the outlet. At the inlet
of the column, the incoming bubbles were assumed to be dis-
tributed normally with a standard deviation equal to 16% of
the mean (Laakkonen et al., 2007; Buffo et al., 2013); this is
based on the measurements by Laakkonen et al. (2007). With
the definition of the SMD, the relation between the third mo-
ment and the bubble volume fraction (for spherical bubbles),
and the above two assumptions about the inlet bubble distribu-
tion, the four unknown moments, and therefore the DQMOM
scalars—w1, w2, ς1 and ς2—were calculated. The following
system of coupled equations was solved for the inlet values of
m0, m1, m2 and m3:

m2 = m0

[
m2

1 + (s.d.)2
]
, (49a)

m3 = m0 m1

[
m2

1 + 3(s.d.)2
]
, (49b)

s.d. = 0.16 d32, (49c)
m3

m2
= d32 (49d)

and

m3 = αd

(
6
π

)
, (49e)

where d32 and αd are known. The moment inversion product–
difference (PD) algorithm (Gordon, 1968) was then applied
to obtain the weights and abscissas in the DQMOM ap-
proximation. At the inlet, a 5 mm average bubble diam-
eter along with a volume fraction of 0.14 gave the four
unknowns as w1 =1.158 391 × 106, w2 =1.158 391 × 106,
ς1 =4.560 935 × 103, and ς2=6.414 361 × 103. The inlet
volume fraction is a function of the sparger design and
was assumed to be 14% gas in this work for the cal-
culation of the PBE scalars. For the walls adjacent to
the sparger (the ‘lower walls’), a Dirichlet BC was ap-
plied for the four PBE scalars corresponding to an aver-
age bubble diameter of 1 mm and gas volume fraction of
1.0 × 10−7, giving w1 =1.034 281 × 102, w2 =1.034 281 × 102,
ς1 =8.144 541 × 10−2, and ς2=1.145 424 × 10−1. A no-flux BC
at the lower walls led to the moment-set getting corrupted caus-
ing the scalars to become non-positive. The Dirichlet BC, how-
ever, ensured that the PBE scalars remained positive.

A no-flux BC was applied on all the boundaries for the free
solids concentration field, whereas the attached solids were al-
lowed to escape from the outlet with the absorption BC applied
to them, as discussed in Equation (48).

3.2. Initial conditions

Zero velocity for the two phases was assumed initially with
an air volume fraction of 1.0 × 10−7 everywhere. Since the
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gas holdup (which is the percentage of gas in the column) in-
creases as the air flows inside the column, the water volume
goes down with time, but that decrease was not more than 5%
for the maximum gas flow rate in this work. Initial k was taken
as 1.0 × 10−7 m2s−2 and ε as 1.0 × 10−7 m2s−3. The steady state
result for the flow, however, was found to be independent of the
initial values of k and ε.

The PBE scalars were calculated from an initial average bub-
ble diameter of 1 mm and a gas volume fraction of 1.0 × 10−7

with the same two assumptions about the bubble number den-
sity function as discussed in the BCs. The initial PBE scalar
values were therefore identical to the BCs used for the lower
walls. The initial condition for the free and attached solids con-
centration fields are discussed in Section 4.2.

3.3. Physical and numerical parameters

Table 4
Physical parameters used in the simulations.

Physical parameter Value
Continuous phase density ρc (kg m−3) 998.2
Dispersed phase density ρd (kg m−3) 1.205
Continuous phase dynamic viscosity µc (Pa · s) 0.001
Dispersed phase dynamic viscosity µc (Pa · s) 1.254 × 10−5

Interfacial tension (air–water) σ (N m−1) 0.072
Solids density ρs (kg m−3) 2600
Solids contact angle 75◦

The physical parameters chosen in the simulations are pre-
sented in Table 4. The constants C1, C2 and C3 in the breakage
frequency expression, Equation (24), were 6.0, 0.04 and 0.01,
respectively, based on the work of Laakkonen et al. (2007).
Buffo et al. (2013) also used the same values for these con-
stants in their rectangular bubble column simulations. Binary
breakage was assumed in the present work (same as Laakkonen
et al. (2007)) and the value for the parameter C4 in the daugh-
ter distribution function, Equation (25), was therefore taken as
2.0. The value for parameter C5 in the coalescence frequency
relation, Equation (27), was chosen to be 0.88. The value of
C6 in the coalescence efficiency, Equation (26), was 6.0 × 109,
based on the work of Laakkonen et al. (2006) and Buffo et al.
(2013).

An adaptive time step, with a strict limit on the maximum
Courant number of 0.5, was used. Since the simulations were
performed using adaptive-mesh simulations, the CFL criterion
needed to be satisfied to ensure stability (due to the non-linear
nature of the equations). A maximum of two Picard iterations
were allowed per time step with a tolerance of 1.0 × 10−12 on
the infinity norm of the fields.

The non-linear relaxation parameter θnl in the turbulence equa-
tions was taken to be 1, which allowed for an implicit discreti-
sation of the source terms in the equations for k and ε, and in

the expression for µT . The non-linear relaxation parameter for
the velocities of the two phases was taken as 0.5.

3.4. Discretisations

The first-order upwind scheme was used for discretising the ad-
vection terms in all equations due to its conservative and mono-
tonic nature, which ensured stability. The method also ensured
that the moment-set obtained in the DQMOM was realisable,
as discussed in Section 2.2. The Bassi–Rebay discretisation
(Bassi and Rebay, 1997) was applied for the viscous terms in
the momentum equations. A fully-implicit time discretisation
scheme was used for the transient term in all PDEs. The con-
servative form of the advection equation was used for the air
volume fraction and the PBE scalars to ensure mass conserva-
tion, but, as expected, it did not ensure strict boundedness (LeV-
eque, 2002; Wilson, 2009). Slight artificial diffusion had to be
added to the volume fraction equation sometimes to stabilise
the scheme.

To maintain positivity and stability, the production term was ap-
plied as a source in the k and ε equations whereas the destruc-
tion term, which is always negative, was applied as absorption
(Patankar, 1980). Numerically it is always effective to have a
large absorption coefficient as it supports convergence through
under-relaxation. The implementation of the turbulence model
was generalised for handling mixed shape functions (discontin-
uous shape functions for velocity and continuous for turbulence
fields) for stability reasons.

The source terms in the PBE were evaluated at the mesh nodes
instead of the mesh quadrature points to prevent spatial interpo-
lation errors. These errors were particularly prominent for the
current problem due to the discontinuity in the weights and the
weighted-abscissas at the inlet at t = 0.

4. Results and discussions

In this section, the validation results for Dı́az’s bubble column
(Dı́az et al., 2008b) using the present modelling framework are
presented first, followed by the flotation simulation results for
the same geometry.

Adaptive meshes were used for all simulations in this study.
The mesh was adapted to the air volume fraction (αd), and the
first abscissa (ξ1) and the first weighted-abscissa (ς1) of the
bubble NDF. The corresponding interpolation-error bound val-
ues used for the three scalars were: 1.0 × 10−4, 1.0 × 10−5 m
and 100 m, respectively. The mesh was adapted after every 15
time steps. The maximum number of nodes was set to 20000,
the minimum and maximum edge lengths being 0.001 m and
0.01 m, respectively. It is evident that the finest mesh was as
small as the smallest bubble size in the column. Although it is
ideal to have a mesh that allows at least a few dispersed par-
ticles per cell, in the present case it is the numerical accuracy
that drove the limit on the mesh size. The mesh was adapted 4
times in an adapt cycle for a parallel simulation to compensate
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for node locking (AMCG, 2015). The number of initial adapts
was set to 6.

The minimum (adaptive) time step size in the highest gas flow
rate (SGV=2.0 cm s−1) simulation was 5.2 × 10−4 s. This was
due to the CFL criterion with a limit of 0.5 for the maximum
Courant number. This is a limitation that is inherent to the
adaptive-mesh simulations (Jacobs, 2013). There is always a
trade-off between the resolving power of the adaptive simula-
tions and the time step size, as the non-linear fluid flow equa-
tions have to be linearised and need an upper bound for the
Courant number. A value of the maximum Courant number
above 0.6 destabilised the simulation in this case.

4.1. Model validation – bubble column

Bubble columns are two-phase reactors used in the chemical in-
dustry for gas–liquid reactions, owing to the high heat and mass
transfer rates associated with them. A typical bubble column
generally consists of a vertical cylindrical column filled with
a liquid, through which the gas is bubbled. The gas bubbles,
as they rise due to buoyancy, generate a plume that gets tur-
bulent with height. The mixing caused by this plume-induced
turbulence allows for the maximum interphase exchange (of
mass, momentum and energy). As the gas flow rate is in-
creased the bubble plume starts oscillating—known as plume
oscillation. Bubble columns enjoy many advantages over their
counterparts—the stirred reactors—which makes them a suit-
able candidate as industrial mixers.

The bubble column model in this work was simulated for a
range of SGV values between 0.13 cm s−1 and 2.0 cm s−1. It
was noticed that a steady state was achieved in all simulations.
A “cooling tower” flow pattern for water was developed in the
column due to the flow of the bubble plume through it, generat-
ing the mixing required in such systems. The plume oscillation
died as the simulation reached a steady state, and two recircula-
tion zones for water were obtained as a result. This can be seen
from the water streamlines plotted in Figure 5.

All bubble column simulation results are presented when the
(transient) simulation achieved a steady state. Experiments
have reported an oscillating plume (Pfleger et al., 1999; Buwa
et al., 2006; Dı́az et al., 2008b) and the bubble plume oscilla-
tion period (POP) was shown to decrease exponentially with
superficial gas velocity. However, in the current simulation us-
ing the k − ε turbulence model, steady state flow was obtained,
which was similar to time-averaged flow profiles reported by
Dı́az et al. (2008a).

Many have claimed to model the unsteadiness in the flow using
the k − ε turbulence model coupled to the Eulerian–Eulerian
approach (Dı́az et al., 2008a; Pfleger et al., 1999). A simi-
lar 2D model was set up in ANSYS Fluent and compared to
the present Fluidity model. The turbulent viscosity, which was
very small to start with, gradually increased as the simulation
progressed and kept increasing until everything became steady.
Pfleger et al. (1999) and Sokolichin and Eigenberger (1999)

Figure 5: Predicted water streamlines at steady state for a SGV of 0.6 cm s−1.

discussed this effect and concluded that 3D modelling of the
columns is necessary to capture the plume oscillations; stat-
ing that the 2D models over-predict turbulence to a large extent
(5–10 times higher turbulent viscosity) (Pfleger et al., 1999).
As per them, the front and back walls in the column dampen
the overall TKE allowing the 3D model to show unsteady be-
haviour. In order to check if the 2D modelling suppressed flow
unsteadiness, a 3D column was simulated in Fluent for the exact
same physical conditions and it produced similar results with a
steady double recirculation zone for water. It was therefore de-
cided to simulate the 2D bubble column as it has been found
to model the mean-flow quantities reasonably (Pan et al., 1999)
and can be used for model validation. Oey et al. (2003) dis-
cussed the effect of the discretisation scheme of the convective
terms and suggested that lower-order diffusive schemes, such as
the first-order upwind scheme, can cause enough numerical dif-
fusion to suppress the transient terms in the results. However,
the QUICK scheme was used with the 3D model in Fluent and
as mentioned above, the unsteady plume could not be captured.
Table 5 shows a comparison of the present numerical simula-
tions with previous studies from literature in reference to the
prediction of flow unsteadiness.

It is believed that an overpredicted eddy viscosity using the k-ε
turbulence model could be responsible for suppressing the un-
steadiness in the solution. In fact, the time-averaged nature of
the RANS turbulence model could be causing the time aver-
aging of the plumes in the flow. Although no plume oscilla-
tion was obtained in the numerical simulations in this study,
the mean flow quantities obtained in a 2D simulation have
been shown to give reasonable match with the experiments (Pan
et al., 1999), and the same was used for validation here.

The strong circulation in the interior parts of column for the
liquid phase was responsible for providing the shear leading
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Table 5
Comparison of the present simulation behaviour with regards to the prediction of the plume oscillation with a few previous studies that used the k-ε model for
modelling a rectangular bubble column.

Model description Plume os-
cillation
predicted

Present work (Fluidity 2D) E–E, unstructured mesh, 2D, Π = 0, µT,d = 0, drag: Schiller and
Naumann (1935), lift: no, VM force: no, Discretisations – FE for
space, first-order time, ∆t ≈ 0.0001 s, BC – velocity: specified
at inlet and outlet, vol frac: flux at inlet and absorption at outlet,
walls: no-slip (weak).

no

Present work (Fluent 2D) E–E, unstructured mesh, 2D, Π = 0, µT,d = 0 evaluated from k-ε
model for dispersed phase, drag: Schiller and Naumann (1935),
lift: no, VM force: no, Discretisations – QUICK for space, first-
order time, ∆t = 0.01 s, BC – mass-flow inlet, outlet: degassing,
walls: no-slip for liquid and free-slip for gas.

no

Present work (Fluent 3D) E–E, structured mesh, 3D, Π = 0, µT,d = 0 evaluated from k-ε
model for dispersed phase, drag: Schiller and Naumann (1935),
lift: no, VM force: no, Discretisations – QUICK for space, first-
order time, ∆t = 0.005 s, BC – mass-flow inlet, outlet: degassing,
walls: no-slip.

no

Dı́az et al. (2008a) E–E, structured mesh, 3D, Π = 0, µT,d specified, drag: Grace
et al. (1976), lift: yes, VM force: yes, CFX, Discretisations –
second-order upwind for space, first-order time, ∆t = 0.025 s, BC
– velocity inlet, outlet: degassing, walls: no-slip for liquid and
free-slip for gas.

yes

Buwa and Ranade (2002) E–E, structured mesh, 3D, Π = 0, µT,d specified, drag: Tsuchiya
et al. (1997) and Schiller and Naumann (1935), lift: yes, VM
force: yes, Fluent, Discretisations – QUICK + SUPERBEE lim-
iter for space, first-order time, ∆t = 0.01 s, BC – velocity inlet,
outlet: velocity specified, walls: no-slip.

yes

Pfleger et al. (1999) E–E, structured mesh, 3D, Π = 0, µT,d = 0, drag: constant, lift:
no, VM force: no, CFX, Discretisations – higher-order TVD for
space, first-order time, ∆t = 0.1 s, BC – not specified in the paper.

yes
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Adaptive Fixed

Sauter mean diameter (mm)
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Figure 6: Sauter mean diameter at t = 9.6 s compared for an adaptive-mesh (≈
19300 nodes) and a fixed-mesh (19347 nodes) for a SGV=0.6 cm s−1.

to turbulence production in the present case. No wall model
for turbulence was therefore used in this work as most of the
production occurred in the interior of the column.

Figure 6 shows a comparison of the bubble SMD for fixed and
adaptive meshes with approximately equal number of nodes for
a SGV of 0.6 cm s−1. It can be seen clearly that the adaptive
mesh produced better resolved SMD field.

The contour plots of SMD and air volume fraction, and the cor-
responding adaptive meshes are shown for five time instances:
5 s, 8 s, 11 s, 15 s and 19 s for a SGV of 2.0 cm s−1 in Figure 7.
It can be seen that the simulations converge to a steady state
result and the plume oscillation is only visible in the initial
stages. The anisotropy of the mesh is clearly visible with elon-
gated elements close to the boundary of the gas plume. On an
8-core 2.30 GHz Intel Xeon machine, it took 10.5 days to run
the SGV=2.0 cm s−1 simulation to 63 s. Strong scaling was per-
formed for the bubble column problem and eight cores were
found to be the optimum, beyond which the data bandwidth ef-
fect started dominating the processing power. Mesh adaptivity
and parallelisation can be applied at the same time in Fluidity
making it a highly desirable choice for the tractable modelling
of multiphase polydisperse flows. The plots for air Sauter mean
diameter are presented in Figure 8 at t=19 s . The variation
in the bubble diameter is small in the plume for the present
case.

To make a comparison of the local field predictions using the
current polydisperse flow model, liquid flow field values were
compared to the experiments of Pfleger et al. (1999). Their
experiments measured the liquid vertical-velocity profile (us-
ing laser Doppler velocimetry) at three column heights for a
SGV of 0.13 cm s−1 for a column of the same dimensions as

this work. Simulations for the same SGV were carried out in
the present work and the results were compared, as shown in
Figure 9. It can be seen that the Fluidity model was able to pre-
dict the trend in liquid velocity reasonably. The effect of coales-
cence and breakage is negligible at such low flow rate and the
polydisperse model takes that into account. Dı́az et al. (2008a),
on the other hand, had to revert to the monodisperse model for
low gas flow rates as their polydisperse model was still pre-
dicting bubble breakage and coalescence and the results did not
agree with the experiments. The agreement in Figure 9 is very
good in the lower part of the column as the effect of the ab-
sorption outlet condition on the predicted flow parameters fades
away in the lower reaches of the column. The under-prediction
of the liquid y-velocities in the central zone of the column at
h=0.25 m and 0.37 m can be attributed to the outlet boundary
condition chosen in the present CFD model, along with the k-ε
model potentially adding too much viscosity resulting in the un-
derprediction of liquid velocities. The gas plume flows through
the centre of the column and the choice of outlet BC has an
effect on the prediction of the plume velocities and therefore
the liquid velocities. An exaggerated drag force could also be
attributed to the under-predicted liquid velocities in the central
zone, however, a decent match close the column edges negates
this hypothesis. The agreement can potentially be improved
through a the inclusion of non-drag forces and the inclusion of
bubble-induced turbulence model. However, since the aim of
the present work was to demonstrate a tractable finite-element
framework for the modelling of three-phase polydisperse flows,
simplified models were chosen.

Gas holdup (or air volume fraction) is a very important global
property that is used to characterise the flow regime in a bubble
column. A larger gas holdup implies a larger residence time for
the gas, implying better mixing. In order to make quantitative
comparison of the gas holdup distribution, the experiments of
Buwa et al. (2006) were used. They conducted experiments for
the same column geometry as Dı́az et al. (2008b) for a SGV of
0.73 cm s−1 and measured the local gas holdup in the column at
a height of 0.37 m. Numerical simulation was carried out for the
same SGV in Fluidity and the time-averaged results of Buwa
et al. (2006) were compared to the numerical results obtained
in the present work, as shown in Figure 10. Bell-shaped curve
similar to the experiments are predicted by Fluidity, but the ex-
periments correspond to a slightly more ‘diffused’ curve. Fluid-
ity over-predicts the gas holdup at the column centre (x=0.1 m)
by 20%, under-predicting around the column sides.

To validate the global gas holdup obtained using Fluidity sim-
ulations, the experiments of Dı́az et al. (2008b) were used for
comparisons. Dı́az et al. (2008b) used the well-known mano-
metric method to measure the static pressure difference across
the column height to obtain the global gas holdup. Figure 11
shows the plot of the gas holdup obtained using the model in
Fluidity, compared to the experiments of Dı́az et al. (2008b). A
good agreement between the experimental values and the nu-
merical predictions can be seen in Figure 11. The expected
linear trend in the increase of gas holdup with SGV is also cap-
tured to a good extent. At SGV values lower than 0.5 cm s−1
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Figure 7: Contours of the bubble SMD and the air volume fraction plotted at five time instances (from left to right: t=5 s, 8 s, 11 s, 15 s and 19 s) for an
adaptive-mesh simulation in Fluidity. The SGV was equal to 2.0 cm s−1. Surface meshes are also shown.19
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Figure 10: Gas holdup comparisons between the experiments of Buwa et al.
(2006) and polydisperse Fluidity simulations. Values are plotted for a SGV of
0.73 cm s−1 at a height of 0.37 m in the column.
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Figure 11: Gas holdup plotted as a function of the superficial gas velocity.
The numerical results are compared to the experiments of Dı́az et al. (2008b).

there is not much coalescence or breakage that occurs in the col-
umn and the model predicts a good gas holdup for these values
of SGV. The kernels chosen in this work ensured that they did
not predict any false coalescence or breakage at low turbulence
values in the column at the lower values of the SGV.

The validation results presented in this section show a reason-
able match with the experiments. The chosen models for the
interphase drag force term, bubble breakage and coalescence
kernels, and the inlet size distribution of bubbles were good
enough to extend the bubble column model to a flotation col-
umn model through the introduction of solids.

4.2. Flotation column

The two-phase bubble column was allowed to attain a steady
state after which the solid particles were introduced into it.
Two simulation results are presented in this section, one for
monodisperse solids and another for polydisperse solids. Previ-
ous pulp phase models by Koh and Schwarz (2007, 2008b) have
considered monodisperse particles for simplicity. However, the
feed entering the flotation process in reality is in the form of a
particle size distribution and the model should be able to con-
sider this polydispersity of the solids for an accurate modelling
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of the overall process. For this reason a polydisperse solids
simulation was run in this work and the results were compared
to a monodisperse simulation to notice if the polydisperse mod-
elling of solids has any effect on the rate of flotation. Both simu-
lations were run for a superficial gas velocity of 1.0 cm s−1. The
monodisperse solids simulation consisted of 150 µm spherical
solid particles with an initial concentration of 15% by volume
(which is equal to 39% solids by mass for the present case).
The corresponding initial condition for the free solids, n f , was
8.25 × 1010 m−3. All the particles were assumed to be free in
the beginning and hence the initial concentration for the at-
tached solids was taken as 1.0 × 10−7 m−3. For the polydisperse
simulation, three solid sizes were considered—50 µm, 150 µm
and 250 µm. Initial concentration for each solid class was 5%
by volume, which corresponded to an initial concentration of
7.5 × 1011 m−3, 2.75 × 1010 m−3 and 6.0 × 109 m−3 for the free
solids of the three size classes, respectively.

4.2.1. Evolution of solid concentration

Figure 12 shows the total number of free particles of 150 µm
size as a function of time in the polydisperse simulation. A lin-
ear decrease in the free particle population in the column was
obtained in the 100 s simulation time. This decrease is due to
the particles getting attached to bubbles and the loaded bubbles
getting transported out of the batch flotation column. Figure 13
shows the total number of attached particles of 150 µm diame-
ter in the polydisperse column as a function of time. It can be
seen that the attached particles attain a steady state value in a
very short time. This means that the rate of attachment becomes
equal to the rate of transport of the attached particles out of the
column. Koh and Schwarz (2006) also reported the number of
attached particles becoming constant with time and the bubbles
getting loaded very quickly in their pulp phase simulations for
an impeller-driven cell. The rate of detachment was negligible
for the simulation conditions in this work. Since the overall
number of attached particles was constant and the detachment
was negligible, the transport rate is what determined the rate
of flotation here, similar to the findings of Koh and Schwarz
(2006). Figure 14 shows the contours of the attached solids con-
centration in the column at steady state for the 150 µm particles
in the polydisperse solids simulation. It can be seen that the
attached particle concentration is higher near the inlet as com-
pared to other sections in the column. The turbulent dissipation,
which affects the collision rate, was also found to be high near
the inlet of the column and may be the reason behind the in-
creased attached particle concentration in that region.

4.2.2. Effect of polydispersity of solids

The particle volume fraction remaining in the column as a func-
tion of time is plotted in Figure 15 for the three solid sizes.
Flotation rate, which is proportional to the negative of the slope
of the curves, increases with particle size, as shown in the fig-
ure. Larger particles have a higher chance to come in contact
with a bubble leading to higher collision rate. Although larger

0 20 40 60 80 100

time (s)

9.3

9.4

9.5

9.6

9.7

9.8

9.9

N
um

be
r

of
fr

ee
pa

rt
ic

le
s

×107

Figure 12: The total number of free particles (of 150 µm diameter) in the
column as a function of time for the polydisperse solids simulation.
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Figure 13: The total number of attached particles (of 150 µm diameter) in the
column as a function of time for the polydisperse solids simulation.
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Figure 14: Steady state contours of the attached particles (of 150 µm size) in
the polydisperse solids simulation.
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Figure 16: Contours of the bubble loading factor (βbub) for the three solid
sizes.

particles have higher destabilisation rates, the current expres-
sion for the probability of stabilisation and the current operat-
ing conditions resulted in a destabilisation rate close to zero.
The bubble loading factor (βbub) for the three solid sizes are
compared in Figure 16. For the lower and intermediate particle
sizes, the bubble loading is higher outside the central plume ow-
ing to the smaller number of bubbles in that region. The lower
bubble loading corresponding to the smaller particle sizes sup-
ports the fact that attachment is more dominant for larger parti-
cles in this case.

Figure 17 shows a comparison of the total volume fraction of
particles remaining in the column as a function of time for the
monodisperse and the polydisperse simulations. The monodis-
perse solids simulation over-predicts the flotation rate as com-
pared to the polydisperse simulation. Although the difference
is only around 3.5% in the first 100 seconds, the linear trend
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Figure 17: Comparison of the volume fraction of particles remaining in the
column with time between monodisperse and polydisperse solids. The results
have been compared for all particle sizes with a total initial solid volume
fraction of 0.15 and a Jg of 1.0 cm s−1.

could lead to an increasing over-prediction of the flotation rate
with time. The overall higher flotation rate prediction in this
case was due to the larger particles having a higher flotation
rate overpowering the smallest ones. The over/underprediction
of flotation rate for polydisperse system may depend on the na-
ture of the flotation rates of the different particle sizes. This
may imply that modelling the polydispersity of the solids is im-
portant for the correct prediction of flotation rate through CFD
simulation of the pulp phase in a flotation column.

5. Conclusions

An efficient numerical framework for the modelling of the poly-
disperse pulp phase in froth flotation has been developed and
presented in this paper. The absence of a comprehensive model
for the pulp phase in the literature was the inspiration behind
this work. The focus of this research was the modelling of
the polydispersity of gas and solid phases and ensuring the
tractability of the solution framework. Bubble polydispersity
was modelled using the population balance equation that was
implemented in Fluidity using DQMOM. Mesh adaptivity and
code parallelisation features of Fluidity imparted tractability to
the overall solution method. This study validated the polydis-
perse model solved for the bubbles (using the PBE) in a bubble
column for a reasonable prediction of the flow hydrodynamics.
Polydispersity of the solids was modelled for the first time by
solving different equations for the solid classes. The effect of
modelling the polydispersity of solids on the overall flotation
rate prediction was also demonstrated.

Incompressible E–E momentum equations were solved for the
gas and liquid phases, with a PBE to estimate the change in
the bubble size due to breakage and coalescence in the pulp
phase in a flotation column. A k-ε turbulence model was solved
for the liquid phase, and the solids were modelled using scalar
transport equations. The transport equations for free and at-
tached particles were coupled through the attachment and de-
tachment source terms. For the modelling of the pulp phase,
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care was taken to modify the liquid viscosity in the momentum
equations to account for the presence of free solids, and apply a
settling velocity for the heavy particles in the free solids trans-
port equation. The PBE for gas bubbles supplied bubble diam-
eter and bubble concentration for attachment and detachment
rate expressions in the solids transport equations. A quadrature-
based moment method was used to solve the PBE for bubbles
in a flotation system.

The Galerkin FEM was used to discretise the velocity and pres-
sure fields in the momentum and pressure equations, respec-
tively, and the P1DG–P2 scheme was found to be the most stable
for this purpose. For the other fields (such as PBE scalars, vol-
ume fraction, etc.), where conservation was required, a node-
centred CV discretisation was employed. Therefore, a hybrid
FE–CV method was found to be the most effective for simulat-
ing polydisperse multiphase flows. To the best of the authors’
knowledge, this is the only framework that is capable of mod-
elling the pulp zone using a hybrid FE–CV method.

The mesh was optimised as the solution progressed by generat-
ing fully-unstructured, non-homogeneous, anisotropic meshes
adaptively for a given set of optimisation parameters—air vol-
ume fraction and PBE scalars. For the bubble column validation
problem, adaptivity was shown to resolve the SMD field more
accurately when compared to a similar fixed mesh. Mesh adap-
tivity was used for the first time in the modelling of the pulp
phase in this paper. Moreover, Fluidity is the only framework
that allows mesh adaptivity in the external coordinates of the
PBE for modelling polydisperse flows.

The results from the 2D simulations performed using the poly-
disperse adaptive-mesh FE framework of Fluidity were com-
pared to bubble column experiments in the literature. Although
the steady-state results obtained for the flow profiles using Flu-
idity were not ideal due to the missing plume oscillations, they
still showed a good match with the time-averaged local and
global flow properties, as was seen for the validation compar-
isons for liquid velocity and gas holdup in the experiments
by Dı́az et al. (2008b), Buwa et al. (2006) and Pfleger et al.
(1999).

The pulp phase was modelled for three solids classes and the
overall flotation rate was compared to the monodisperse solids
simulation. The flotation rate was found to increase with the
particle size due to the probability of destabilisation being close
to zero for the selected conditions; in reality the probability of
destabilisation will play a role for very coarse particles. The
monodisperse simulations were found to over-predict the flota-
tion rate as compared to the polydisperse simulations. A differ-
ence of 3.5% in flotation recovery was noticed at a simulation
time of 100 s for a Jg of 1.0 cm s−1. This error from neglecting
the polydispersity of solids in the pulp phase is expected to add
up in time and possibly lead to significant error in flotation re-
covery estimations. This research therefore confirmed the im-
portance of modelling the polydispersity of dispersed phases
in bubble and flotation columns for an accurate prediction of
the flow and the flotation rate, respectively. It was also shown
that a hybrid FE–CV framework can be successfully used for

modelling such a complex system (the pulp phase), which had
only been attempted in the past using the control volume codes
(Koh and Schwarz, 2006, 2007, 2008b; Sarhan et al., 2016,
2018).

This modelling framework can be applied to simulate a variety
of multiphase polydisperse problems in the process industries
other than froth flotation. The framework can be used to test
the effect of different physical models for dispersed phase in-
teractions on the system hydrodynamics.

The framework can be enhanced by adding complexity in dif-
ferent fronts, which the authors plan to address in the future.
These include the implementation of advanced turbulence mod-
els such as LES, interphase interaction models such as lift and
virtual mass forces, various drag force correlations relevant
to non-spherical bubbles, other improved models for bubble–
particle detachment (Wang et al., 2016), the use of multivari-
ate PBE for modelling the solids in the pulp phase (Bhutani
and Brito-Parada, 2017), and the integration of the froth phase
(Brito-Parada et al., 2012a,b) and pulp phase models.
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Garcia-Zuñiga, H., 1935. La eficiencia de la flotación es una función exponen-
cial del tiempo. Boletı́n Minero Sociedad Nacional de Minerı́a 47, 83–86.

Gaudin, A. M., 1932. Flotation. McGraw-Hill, New York.
Gorain, B. K., Franzidis, J.-P., Manlapig, E. V., 1995. Studies on impeller type,

impeller speed and air flow rate in an industrial scale flotation cell. Part 1:
Effect on bubble size distribution. Minerals Engineering 8 (6), 615–635.

Gordon, R. G., 1968. Error bounds in equilibrium statistical mechanics. Journal
of Mathematical Physics 9, 655.

Grace, J. R., Wairegi, T., Nguyen, T. H., 1976. Shapes and velocities of sin-
gle drops and bubbles moving freely through immiscible liquids. Chemical
Engineering Research and Design 54a, 167–173.

Grevskott, S., Sannæs, B. H., Duduković, M. P., Hjarbo, K. W., Svendsen,
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