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Emerging non-volatile memory (NVM) technologies promise the durability of disks with the performance

of volatile memory (RAM). To describe the persistency guarantees of NVM, several memory persistency

models have been proposed in the literature. However, the formal persistency semantics of mainstream

hardware is unexplored to date. To close this gap, we present a formal declarative framework for describing

concurrency models in the NVM context, and then develop the PARMv8 persistency model as an instance

of our framework, formalising the persistency semantics of the ARMv8 architecture for the first time. To

facilitate correct persistent programming, we study transactions as a simple abstraction for concurrency

and persistency control. We thus develop the PSER (persistent serialisability) persistency model, formalising

transactional semantics in the NVM context for the first time, and demonstrate that PSER correctly compiles

to PARMv8. This then enables programmers to write correct, concurrent and persistent programs, without

having to understand the low-level architecture-specific persistency semantics of the underlying hardware.
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1 INTRODUCTION

Computer storage is traditionally divided into two categories: fast, volatile, byte-addressable mem-
ory (e.g. DRAM), which loses its contents in case of a power failure, and slow, persistent, block-
addressable storage (e.g. hard drives), which preserves its contents in case of a power failure.
Due to this split, applications typically maintain their data structures in memory and periodically
write important data to disk. However, emerging new technologies in non-volatile memory (NVM)
[Kawahara et al. 2012; Lee et al. 2009; Strukov et al. 2008] may soon render this dichotomy obsolete
by enabling processors to access data guaranteed to persist a power failure at byte-level granu-
larity and at performance comparable to regular (volatile) RAM. It is widely believed that NVM
(a.k.a. persistent memory) will eventually supplant volatile memory, allowing for efficient access to
persistent data [Intel 2014; ITRS 2011; Pelley et al. 2014]. As such, the NVM literature has grown
rapidly over the recent years [Boehm and Chakrabarti 2016; Chakrabarti et al. 2014; Chatzistergiou
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et al. 2015; Coburn et al. 2011; Gogte et al. 2018; Izraelevitz et al. 2016a; Kolli et al. 2017, 2016a,b;
Nawab et al. 2017; Raad and Vafeiadis 2018; Volos et al. 2011; Wu and Reddy 2011; Zhao et al. 2013].
Using persistent memory correctly, however, is not easy. A key challenge is ensuring correct

recovery after a crash (e.g. a power failure) by maintaining the consistency of data in memory,
which requires an understanding of the order in which writes are propagated to memory. The
problem is that CPUs are not directly connected to memory; instead there are multiple volatile
caches in between. As such, writes may not propagate to memory at the time and in the order that
the processor issues them, but rather at a later time and in the order decided by the cache coherence
protocol. This can lead to surprising outcomes. For instance, consider the simple sequential program
x:= 1; y:= 1, running to completion and crashing thereafter. On restarting the computer, thememory
may contain y=1, x=0; i.e. the x:= 1 write may not have propagated to memory before the crash.
To ensure correct recovery, one must thus control the order in which writes are propagated to

persistent memory. To this end, Pelley et al. [2014] introduced the notion of persistency models to
formally define the persistency semantics of programs (the permitted behaviours upon recovery) by
prescribing the order in which writes are persisted to memory. Existing literature includes several
proposals of persistency models varying in strength and performance [Condit et al. 2009; Gogte
et al. 2018; Izraelevitz et al. 2016b; Joshi et al. 2015; Kolli et al. 2017, 2016b; Raad and Vafeiadis 2018].
However, to our knowledge, the persistency semantics of mainstream hardware such as the ARM
[ARM 2018] architecture remains unexplored to date.
To address this, we formalise the persistency semantics of the ARM architecture for the first

time to our knowledge. To define our declarative semantics, we develop a general framework for
describing declarative concurrency models in the context of persistent memory. We then develop
the PARMv8 (persistent ARMv8) model as an extension of the ARMv8 (weak) memory model by
Pulte et al. [2018], and present PARMv8 as an instance of our general framework.
Although it is crucial to support the nascent NVM technologies at the hardware level, pro-

grammers rarely develop code on top of low-level hardware models such as PARMv8. To support
persistent programming in high-level languages such as C/C++, researchers have proposed language-
level persistency models instead [Gogte et al. 2018; Kolli et al. 2017], and the C++ committee has
called for a study group to incorporate NVM support into C++ in the near future [Douglas 2018].
Whilst no mainstream language currently supports persistent programming, existing language-level
persistency models remain too low-level. In particular, existing work does not provide high-level
concurrency control mechanisms (e.g. transactions) readily available to programmers in traditional
volatile settings, making correct persistent programming inaccessible to the uninitiated programmer.
This has led Intel to develop PMDK [Intel 2015], providing a transactional persistence library.

To formalise the semantics of transactions in the presence of NVM, we develop the PSER
(persistent serialisability) model as an extension of the well-known transactional consistency model:
serialisability. To our knowledge, PSER is the first formal transactional consistency and persistency
model in the NVM context. To show that PSER is useful, we demonstrate that PSER can be used to
convert any correct sequential implementation of a library to a correct, concurrent and persistent
implementation of the same library. Moreover, to show that PSER is feasible, we develop a sound
implementation of PSER in PARMv8, thereby showing that PSER correctly compiles to PARMv8.

Related Work. Although the existing literature on non-volatile memory has grown rapidly in
the recent years, formalising persistency models has largely remained unexplored to date.

At the hardware level, existing literature includes several persistency models. Pelley et al. [2014]
describe several such models, including epoch persistency, under sequentially consistent (SC) ma-
chines, whilst Condit et al. [2009]; Joshi et al. [2015] describe epoch persistency under ‘total-
store-order’ (TSO) machines. However, neither work provides a formal description of the studied
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persistency semantics (declarative or operational). Izraelevitz et al. [2016b] give a formal declarative
semantics for epoch persistency under the release consistency model [Gharachorloo et al. 1990]
using abstract executions, whilst Raad and Vafeiadis [2018] formalise epoch persistency under the
TSO model. However, neither work formalises the existing persistency semantics of mainstream
hardware such as Intel-x86 [Intel 2019] and ARM [ARM 2018]. In particular, the work of Raad
and Vafeiadis [2018] proposes a potential persistency model for Intel-x86 which is rather different
from the existing Intel-x86 model described informally in [Intel 2019]. Liu et al. [2019] develop the
PMTest testing framework for finding persistency bugs in software running over hardware models.
However, they do not formalise the persistency semantics of the underlying hardware. We believe
that our formal PARMv8 model can provide a more rigorous foundation for tools such as PMTest.

At the software level, Kolli et al. [2017] propose acquire-release persistency (ARP), as an analogue
to release-acquire consistency in C/C++. Gogte et al. [2018] propose the notion of synchronisation
free regions (regions delimited by synchronisation operations or system calls), to ensure that the
state observed after recovery is at a frontier of past synchronization operations on each thread. Both
approaches enjoy good performance and can be efficiently used by seasoned persistent programmers.
Nevertheless, their semantic models are rather low-level, rendering them too complex for the
inexperienced developers. The NVM community has thus moved towards high-level transactional
approaches [Avni et al. 2015; Kolli et al. 2016a; Shu et al. 2018; Tavakkol et al. 2018], most notably
that of PMDK by Intel [2015], which offers a transactional persistence library.

Additional Material. The proofs of all theorems stated in the paper are given in full in the
technical appendix available at http://plv.mpi-sws.org/pmem/. We also provide machine-readable
versions of our persistency models in the Alloy modelling language [Jackson 2012].

Contributions and Outline. Our contributions (detailed in ğ2) are as follows: (1) in ğ3 we
develop a formal declarative framework for describing concurrency models in the NVM context;
(2) in ğ4 we develop PARMv8 as the first formal model of the ARM persistency semantics; (3) in
ğ5 we develop PSER as the first formal transactional model in the NVM context, and show its
utility for correct, concurrent and persistent library implementations; (4) in ğ6 we develop a sound
implementation of PSER in PARMv8, demonstrating correct PSER-to-PARMv8 compilation. Finally,
in ğ7 we discuss future work and conclude.

2 OVERVIEW

We proceed with a brief background (ğ2.1) and an overview of our contributions (ğ2.2śğ2.4).

2.1 Persistency Semantics

Memory Consistency and Persistency. Memory consistency models describe the permitted
behaviours of programs by ensuring that memory operations follow certain rules. These rules in
effect describe a (volatile) memory order which constrains the visible order of memory accesses
(reads and writes). That is, the volatile memory order defines the admissible visible memory states
between threads, which in turn allows memory operations to be reordered, while preserving the
intended program behaviour. For instance, under the sequential consistency (SC) model [Lamport
1979], the volatile memory order is given by the total execution order present under SC. The existing
literature includes several consistency models, both at the hardware (architecture) [Pulte et al. 2018;
Sewell et al. 2010] and software (programming language) levels [Batty et al. 2011; Lahav et al. 2017].
Analogously, memory persistency models describe the permitted behaviours of programs upon

recovering from a crash (e.g. due to a power failure) by defining a persistent memory order [Pelley
et al. 2014]. The persistent memory order constrains the order in which the effects of instructions
are committed to persistent memory. As such, any pair of writes ordered by the persistent memory
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order may not be observed out of that order upon crash recovery. To distinguish the volatile and
persistent memory orders, memory stores are differentiated from memory persists: the former
denotes the process of making the effects of an instruction (e.g. a write) visible to other processors,
whilst the latter denotes the process of committing the effects of an instruction durably to non-
volatile memory. As such, the volatile memory order constrains the order on stores, whilst the
persistent memory order constrains the order on persists. As with consistency models, persistency
models may be at the hardware or software level.

Existing literature includes several proposals for persistency models [Gogte et al. 2018; Izraelevitz
et al. 2016b; Kolli et al. 2017; Pelley et al. 2014; Raad and Vafeiadis 2018]. Generally, persistency
models are categorised along two axes: (1) strict versus relaxed; and (2) unbuffered versus buffered.

Strict and Relaxed Persistency. As with consistency models, persistency models may be strict
or relaxed. Under strict persistency the volatile and persistent memory orders coincide. For instance,
in the case of the sequential consistency (SC) model, this means that the execution order determines
not only the volatile memory order, but also the order in which writes are persisted to memory.
However, strict persistency may introduce unnecessary dependencies between persists, thus hinder-
ing performance needlessly. To remedy this, Pelley et al. [2014] propose relaxed persistency models,
where the volatile and persistent memory orders are separated. The authors propose several such
models including epoch persistency, studied by Raad and Vafeiadis [2018]. As we discuss shortly,
the ARMv8 architecture follows a relaxed persistency model [ARM 2018], while the persistent
serialisability (PSER) model (described below) follows a strict persistency model.

Unbuffered and Buffered Persistency. This dichotomy denotes whether persists occur syn-
chronously or asynchronously. Under unbuffered persistency, persists occur synchronously: when
executing a store instruction, its effects are immediately committed to persistent memory; i.e. exe-
cution is stalled by persists. In order to improve performance, persist buffering has been proposed
to allow memory persists to occur asynchronously [Condit et al. 2009; Izraelevitz et al. 2016b;
Joshi et al. 2015]. That is, memory persists are buffered in a queue of write-backs to persistent
memory. This way, persists occur after their corresponding stores and as prescribed by the persis-
tent memory order; however, execution may proceed ahead of persists. As such, after recovering
from a crash, only a prefix of the persistent memory order may have successfully persisted. As we
describe shortly, both the ARMv8 [ARM 2018] architecture and the PSER model follow a buffered
persistency model. When it is necessary to control the write-back of buffered persists explicitly (e.g.
before performing I/O), buffered models typically offer synchronous write-back instructions (with
varying granularity) that wait until relevant pending persists have been drained from the persistent
buffer and committed to persistent memory. For instance, the epoch persistency model provides a
sync instruction which commits all pending writes, while ARM provides per-location write-back
instructions which commit all pending writes on a given cache line (set of memory locations).

2.2 Formal Declarative Persistency Models

In ğ3 we describe a general framework for declarative concurrency models in the context of
persistent memory. We then present our PARMv8 and PSER persistency models (described shortly)
as instances of this general framework in ğ4 and ğ5, respectively.
In the literature of declarative concurrency models, the traces of a concurrent program P are

typically represented as a set of complete executions that do not crash. However, in order to
model the crashing behaviour of programs in the presence of persistent memory, one cannot
simply consider complete executions only. Instead, we define an execution chain C as a sequence
G1, · · · ,Gn , comprising n eras. That is, theG1, · · · ,Gn chain models an execution of a program that
crashes n−1 times, with each Gi describing an execution era between two adjacent crashes. Each
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execution era Gi denotes the traces of shared memory accesses generated by the program in that
era. As is standard in the literature of declarative concurrency models, each Gi comprises a set of
memory events (theGi nodes), and a number of relations on events (theGi edges), describing e.g.
the execution control flow via the ‘program order’ relation po. In order to capture the persistent
memory orderings, we extend each execution Gi to include a ‘non-volatile-order’ relation, nvo,
defining the order in which writes are persisted to memory.

Furthermore, in order to ensure correct recovery upon a crash, each program P is associated with
a recovery mechanism describing the code to be executed upon recovery from a crash. As such, we
model a persistent program as a pair ⟨P, rec⟩, where P denotes the original program to be executed,
and rec denotes its recovery mechanism. As such, given a chainG1, · · · ,Gn of a persistent program
⟨P, rec⟩, G1 describes the execution of the original program P up to the very first crash; and for
2 ≤ i ≤ n, each Gi describes the execution of rec in the ith era, recovering from the (i−1)st crash.

Alloy Encoding. When expressed in the declarative style, memory consistency models can
be naturally encoded in the Alloy language [Jackson 2012], where they can be explored and
compared [Wickerson et al. 2017], or used as a basis for generating conformance tests [Lustig et al.
2017]. Our memory persistency models are also declarative, and are hence amenable to analysis
with Alloy. We have encoded our PARMv8 and PSER models in Alloy, and provide our Alloy model
files in our supplementary material, along with sanity checks necessary for exploring the models.

2.3 Architecture-Level Persistency: The PARMv8 Model

We develop the PARMv8 memory model, formalising the persistency semantics of the ARMv8
architecture as described informally in [ARM 2018]. We specify PARMv8 as an extension of the
ARMv8 model by Pulte et al. [2018]. We proceed with a brief account of the ARMv8 and PARMv8
models. Later in ğ4 we describe the PARMv8 semantics formally.

The ARMv8 Model. The ARMv8 consistency model formalised by Pulte et al. [2018] is a relaxed
model that allows for a number of weak behaviours (not present under sequential consistency),
due in part to instruction reordering. In particular, under the ARMv8 model the instructions in each
thread may be executed out of order. Consider the following programs:1

x:= 1;
y:= 1;

b:= y;
c:= x;

(P1)
x:= 1;
DMBfull;
y:= 1;

b:= y;
DMBfull

c:= x;
(P2)

In the absence of additional orderings imposed by e.g. memory barriers, the instructions in each
thread may be reordered. As such, the x:= 1 and y:= 1 writes in the left thread (as well as the b:= y
and c:= x reads in the right thread) of (P1) may be reordered, allowing the right thread to observe
b=1 ∧ c=0. By contrast, in (P2) the instructions in each thread are separated by a DMBfull (a full
‘data memory barrier’) instruction, prohibiting their reordering. As such, the right thread cannot
observe b=1 ∧ c=0 in (P2).

The PARMv8 Model. As mentioned earlier, the ARM architecture follows a relaxed, buffered
persistency model. The buffered persistency of PARMv8 is reflected in the example of Fig. 1a,
corresponding to the program in the left thread of (P1). Due to the buffered model of PARMv8,
if a crash occurs during the execution of this program, at crash time either write may or may
not have already persisted and thus x, y ∈ {0, 1} upon recovery. In particular, as discussed above,
ARMv8 allows for the two writes to be reordered, and thus in case of a crash it is possible to

1In all our examples we use x, y, · · · for (shared) memory locations and use a, b, · · · for thread-local registers.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 135. Publication date: October 2019.



135:6 Azalea Raad, John Wickerson, and Viktor Vafeiadis

x:= 1;
y:= 1;

(a)

x:= 1;
DMBfull;
y:= 1;

(b)

x:= 1;
wb x;
y:= 1;

(c)

x:= 1
wb x;
DSBfull;
y:= 1;

(d)

x:= 1;
wb x;
DSBfull;
y:= 1;

a:= y;
DMBfull;
if (a)

z:= 1;

(e)

rec: x, y ∈ {0, 1} rec: x, y ∈ {0, 1} rec: x, y ∈ {0, 1} rec: y=1 ⇒ x=1 rec: (y=1 ∨ z=1) ⇒ x=1

Fig. 1. PARMv8 programs (top) and the possible values of x,y upon recovery (bottom); in all examples x and

y are locations in persistent memory where x ∈X , y < X , initially x=y=0, and thus x, y ∈ {0, 1} after recovery.

observe x=0∧y=1. This is indeed unsurprising as this behaviour is possible even during the normal
(non-crashing) execution of the program in (P1).

However, the relaxed nature of the PARMv8 model allows for somewhat surprising behaviours
that are not possible during normal executions. For instance, consider the program in Fig. 1b,
corresponding to the program in the left thread of (P2) above. As discussed above, at no point
during the execution of this program the x=0∧ y=1 behaviour is observable: the two writes cannot
be reordered due to DMBfull. Nevertheless, in case of a crash it is possible under PARMv8 to
observe x=0 ∧ y=1 after recovery. This is due to the relaxed persistency of PARMv8: the order in
which writes are made visible to other threads (x before y) is separate from the order in which
writes are persisted to memory (y before x). That is, the store and persist orders may disagree.2

In order to control the write-back of pending writes, the ARMv8 architecture provides an explicit
write-back instruction, wb x [ARM 2018, p. C5-438].3 The PARMv8 write-back instruction wb x
persists all pending writes on all locations in the cache line of x. That is, when x is in the cache line
X , written x ∈ X , the wb x instruction persists all pending writes on all locations x ′ ∈ X . A persist
instruction wb x cannot be reordered with respect to earlier (in program order) writes on X ; but
may be reordered with respect to (both earlier and later) writes on non-X locations (locations not
in X ), As such, certain permitted reorderings mean that the write-back instructions may not take
effect at the intended program point. Consider the example in Fig. 1c. Since the y:= 1 write may be
reordered before x:= 1;wb x, and the crash may occur after y:= 1 (but before x:= 1;wb x), there
is no guarantee upon recovery that x:= 1 has persisted, despite the write-back instruction wb x. It
is therefore possible to observe x=0 ∧ y=1 upon recovery in Fig. 1c.

In order to afford more control over the order in which writes on different locations are persisted,
the ARMv8 architecture provides data synchronisation barriers. A data synchronisation barrier,
DSBfull, is strictly stronger than aDMBfull, and additionally awaits the completion of all previous
write-back instructions. That is, (1) a write-back instruction cannot be reordered after a later (in
program order) DSBfull in the same thread; and (2) writes cannot be ordered before an earlier (in
program order) DSBfull in the same thread. For instance, consider the program in Fig. 1d obtained
from that in Fig. 1c by introducing a DSBfull after the write-back. Although in the case of Fig. 1c it
is possible under PARMv8 to observe y=1∧x=0 upon recovery as discussed above, the introduction
of DSBfull in the example above ensures that the write on x persists before that on y and thus
upon recovery y=1 ⇒ x=1. More concretely, wb x cannot be reordered after DSBfull, the write
on y cannot be reordered before DSBfull, and the execution of DSBfull awaits the completion of
wb x. As such, if upon recovery y=1 (i.e. the write on y has executed and persisted prior to the
crash), then x=1 (i.e. wb x and the write on x have also executed and persisted).

2Stores and persists are referred to as point of coherency (PoC) and point of persistence (PoP) in [ARM 2018, p. D4-2362].
3In [ARM 2018] this is referred to asDC CVAP or ‘data or unified cache line clean by virtual address to point of persistence’;

for brevity we write wb instead. The instruction was introduced in ARMv8.2 (released September 2017).
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The examples discussed thus far all concern sequential programs and the persist orderings on the
writes in the same thread. The example in Fig. 1e illustrates how persist orderings can be imposed
on the writes of different threads. Note that the program in the left thread of Fig. 1e is that of Fig. 1d.
As such, as before we have y=1 ⇒ x=1. Moreover, when the right thread in Fig. 1e reads 1 from y
(written by the left thread), then under the ARMv8 model y:= 1 is ordered before a:= y. As such,
since x:= 1;wb x;DSBfull is executed before y:= 1 (as in Fig. 1d), y:= 1 is ordered before a:= y,
and z:= 1 is ordered after a:= y (due to the intervening DMBfull), we know x:= 1;wb x;DSBfull

is ordered before z:= 1. Consequently, if upon recovery z=1 (i.e. z:= 1 has persisted before the
crash), then x=1 (x:= 1;wb x must have also persisted before the crash). Note that by contrast
z=1 ⇒ y ∈ {0, 1}. This is because y:= 1 may persist after z:= 1. As such, if a crash occurs after
z:= 1 has executed and persisted but before y:= 1 has persisted, it is possible to observe y=0, z=1
after recovery, even though y=0, z=1 is never possible during normal (non-crashing) executions.

2.4 Language-Level Persistency: The PSER Model

With the emergence of non-volatile memory (NVM) technologies, researchers have identified
in-memory recoverable data structures as one of the main applications of NVM. This is because, as
we demonstrated in ğ2.3, NVM offers the durability of storage with the byte-addressability of RAM.
This allows programmers to manipulate data structures directly using processor reads and writes,
rather than high-latency software intermediaries such as the operating system or the file system.
However, programmers rarely develop code on top of hardware models such as PARMv8. This is
mainly because developing at this low-level (1) is significantly harder as it does not afford high-level
abstractions such as encapsulation or concurrency control; and (2) requires an understanding of the
hardware-specific instructions and guarantees, which in turn (3) hinders cross-platform portability.
As such, researchers have proposed language-level persistency models instead [Gogte et al. 2018;
Kolli et al. 2017], aiming to enable persistent programming in high-level languages such as C/C++.
However, although the C++ committee has called for a study group to integrate NVM support into
C++ in the near future [Douglas 2018], no mainstream programming language supports persistent
programming as of yet.

One approach to language-level persistency is to extend a language such as C/C++withwrite-back
primitives analogous towb x in PARMv8. This extension is simple in that it can be straightforwardly
compiled into the corresponding write-backs in the underlying hardware. However, this approach
is not conducive to simple programming as the overhead of ensuring correct persistency may
render the code verbose. In particular, since the wb x instruction is fine-grained and specifies a
single location (x) to be persisted, programmers need to continually keep a log of updated locations
in order to issue the relevant write-backs and ensure correctness. This, however, is not an easy task
for sophisticated data structures such as in-memory databases.

An alternative approach is to extend C/C++ with a more coarse-grained write-back instruction in
the form of a persistent barrier [Izraelevitz et al. 2016b; Joshi et al. 2015; Pelley et al. 2014]. Rather
than persisting the pending writes on a single location, a persistent barrier persists all pending
writes. Persistent barriers are analogous to memory barriers: memory barriers order stores across
multiple locations, while persistent barriers order persists across multiple locations. Persistent
barriers thus allow programmers to control the write-back of several locations without keeping
track of updated locations. However, implementing persistent barriers is not straightforward,
and no existing architecture currently supports them. Indeed, following our conversations with
engineers at ARM Research, we have been informed that such coarse-grained barriers are not part
of their agenda in the foreseeable future as they are too costly to implement. We thus believe that
architectures are unlikely to provide persistent primitives beyond those of fine-grained write-backs.
As such, extending C/C++ with persistent barriers cannot be realised in a simple way as their
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compilation to existing hardware (e.g. PARMv8) requires heavy code instrumentation to track the
updated locations and to insert appropriate write-backs at compile time.

A third approach to providing language-level persistency is through high-level persistent libraries.
Such libraries may be implemented using persistent primitives in existing hardware (e.g. wb x),
while shielding their clients from such low-level details. Instead, they provide abstractions that make
persistent programming much simpler. A powerful such abstraction is that of atomic transactions,
used widely in the database community to ensure the consistency of persistent data. This has led
the NVM community to study transactional implementations in the context of NVM [Avni et al.
2015; Kolli et al. 2016a; Shu et al. 2018; Tavakkol et al. 2018], most notably that of PMDK (persistent
memory development kit) by Intel [2015], which provides a transactional persistence library.

NVM Transactions and TM/Database Transactions. Note that NVM transactions are more
general than those of transactional memory (TM) in the shared memory concurrency literature,
as well as those of database transactions in the distributed computing literature. In particular,
TM transactions are typically run on volatile hardware. As such, TM semantics describe only the
consistency guarantees during non-crashing executions and provide no persistency guarantees
in case of a crash. By contrast, NVM transactions are run on persistent hardware and thus their
semantics describe both consistency and persistency guarantees. On the other hand, although
database transactions are run on traditionally persistent hardware (e.g. disks), there are two main
differences between database and NVM transactions. First, the order in which database transactions
are executed (made visible to other clients) is also the order in which they are persisted to hardware.
That is, database transactions exhibit strict persistency, whilst NVM transactions may exhibit strict
or relaxed persistency. Second, database transaction are persisted to hardware as soon as they
are committed and made visible to other clients. That is, database transactions follow unbuffered
(synchronous) persistency, whereas NVM transactions may follow buffered or unbuffered persistency.

To formalise the semantics of NVM transactions, we develop the PSER model. To our knowledge,
PSER is the first formal transactional consistency and persistency model in the context of NVM.

The PSER Model. We develop the PSER (persistent serialisability) persistency model as an
extension of the well-known transactional consistency model: serialisability. A transaction describes
a block of code that executes atomically, ensuring that the transactional writes exhibit an all-or-
nothing behaviour. Consider the transaction: Tx [x:= 1; y:= 1]. If initially x=y=0, at all points
during the execution of Tx either x=y=0 or x=y=1. The most well-known transactional consistency
model is serialisability (SER), where all concurrent transactions appear to execute atomically one
after another in a total sequential order. Consider the transactional program (PTx) below:

Tx1:

[
x:= 1;
b:= y;

Tx2:

[
y:= 1;
a:= x;

(PTx)

Under serialisability, either Tx1 executes before Tx2 and thus a=1∧b=0; or Tx2 executes before
Tx1 and thus a=0∧ b=1. Serialisability is the gold standard of transactional consistency models, as
it provides strong consistency guarantees with simple intuitive semantics.

We develop the PSER transactional persistency model by extending the atomicity and ordering
guarantees of serialisability to persistency. That is, PSER provides (1) persist atomicity, ensuring
that the persists in a transaction exhibit an all-or-nothing behaviour. For instance, if a crash occurs
during the execution of Tx in the example above, upon recovery either x=y=0 or x=y=1. Moreover,
PSER guarantees (2) strict, buffered persistency in that all concurrent transactions appear to persist
atomically one after another in the same total sequential order in which they (appear to) have
executed. As such, upon recovery, a prefix of the transactions in the total order may have persisted.
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Basic domains

a ∈ Reg Registers
v ∈ Val Values
τ ∈ TId Thread identifiers

Programs
P ∈ Prog ≜ TId

fin
→ Com

Expressions and sequential commands

Exp ∋ e ::=v | a | e+e | · · ·

PCom ∋ c ::= · · ·
Com ∋ C ::= e | c | let a:=C in C

| if (C) then C else C | repeat C

Fig. 2. A simple concurrent programming language

For example, consider the (PTx2) program below and assume that Tx3 executes before Tx4.

Tx3:

[
x:= 1;
y:= 1;

Tx4:

[
a:= x;
if a > 0 then z:= 1;

(PTx2)

If the execution of (PTx2) crashes, under PSER z=1 ⇒ x=y=1 upon recovery. That is, if Tx4 has
persisted (z=1), then the earlier transaction Tx3 must have also persisted (x=y=1). As with serial-
isability, PSER provides strong consistency and persistency guarantees with intuitive semantics.

PSER Implementation. We present the formal semantics of PSER in ğ5. In order to show the
feasibility of our PSER model, in ğ6 we develop a sound PSER implementation in PARMv8, thereby
demonstrating that PSER correctly compiles to PARMv8.

3 A DECLARATIVE FRAMEWORK FOR PERSISTENCY SEMANTICS

We present a formal declarative framework for describing the persistency semantics of concurrent
programs in the NVM context. In ğ3.1 we describe our programming language and its semantics; in
ğ3.2 we present the necessary components for capturing the persistency guarantees of programs.

3.1 Programming Language and Semantics

Programming Language. To keep our presentation concise, we employ a simple concurrent
programming language as given in Fig. 2. We assume a finite set Reg of registers (local variables); a
finite set Val of values; a finite set TId ⊆ N+ of thread identifiers; and any standard interpreted
language for expressions, Exp, containing at least registers and values. We use v as a metavariable
for values, τ for thread identifiers, and e for expressions. The sequential fragment of the language is
given by the Com grammar and includes primitive commands (c), as well as the standard constructs
of expressions, local variable assignment, conditionals and loops. The primitive commands in PCom
include model-specific instructions (e.g. reads and writes) and are thus determined by the underlying
memory model. We model a multi-threaded program P as a function mapping each thread to its
(sequential) program. We write P = C1 | | · · · | |Cn when dom(P) = {τ1 · · · τn} and P(τi ) = Ci . For
better readability, we do not always follow syntactic conventions in our examples and write e.g.
a:= C for let a:=C in a, and C1;C2 for let a:=C1 in C2, where a is a fresh local variable.

Locations. Although non-volatile RAM is believed to eventually supplant volatile RAM com-
pletely, it may also be feasible to have hybrid memory hierarchies, where both volatile and non-
volatile RAMs are combined together. To capture such hybrid hierarchies, we assume two dis-
tinct sets of persistent memory locations, PLoc, and volatile memory locations, VLoc such that

PLoc ∩ VLoc=∅. The set of locations is then given by Loc ≜ PLoc ∪ VLoc. We typically use
xp, yp, . . . as meta-variables for persistent locations, and x, y, . . . for locations. We define the set

of cache lines as CL ≜ P (Loc), and use X , Y , . . . as meta variables for cache lines. We write Xp to

restrict the X cache line to its persistent locations: Xp ≜ X ∩ PLoc.
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Labels and Events. In the literature of declarative models, the traces of shared memory accesses
generated by a program are commonly represented as a set of execution graphs, where the graph
nodes denote execution events, and graph edges capture the sundry relations on events. Each
event corresponds to the execution of a primitive command (c ∈ PCom) and is a tuple of the form
e=⟨n,τ , l⟩, where n ∈ N is the event identifier uniquely identifying e , τ ∈ TId is the thread identifier
of the executing thread, and l ∈ Lab is the event label, described below.

As the set of primitive commands is memorymodel-specific, the set of event labels is consequently
also model-specific. As such, we keep our framework parametric in the choice of memorymodel, and
assume a set of labels, Lab, associated with the primitive commands of the underlying model. For
instance, under the ARMv8 model, the command DMBfull is associated with the label (DMB, full).
We further assume a set of read labels, RLab, and a set of write labels, WLab, such that RLab ∪

WLab ⊆ Lab. The read and write labels are associated with (primitive) read and write commands,
respectively. For instance, as we describe later in ğ4, under the ARMv8 model the (relaxed) write
command x:=v is associated with the write label (W, x,v, rlx). We assume that functions loc, valr
and valw respectively project the location, the read value and the written value of a label, where
applicable. For instance, loc(l)=x and valw(l)=v for l=(W, x,v, rlx). Finally, we assume a set of
durable labels, DLab ⊆ Lab, associated with durable commands. Intuitively, durable commands are
those whose effects may be observed when recovering from a crash. For instance, the effects of a
write instruction xp:=v may be observed upon recovery if the write of v on the persistent location
xp has persisted prior to the crash. As such, the label of xp:=v is durable. Note that durability does
not reflect whether the effects of the associated command do persist; rather that its effect could
persist. That is, regardless of whether the effects of the write xp:=v persist, its associated label is
deemed durable. By contrast, a read instruction a:= xp has no durable effects and its label is thus
not durable. As write instructions on persistent locations are durable (their effects may be observed
after a crash), we require that write labels on persistent locations be included in durable events:{
l ∈ WLab loc(l) ∈ PLoc

}
⊆ DLab. Moreover, we require that durable labels only include labels

with persistent locations: DLab ∩
{
l ∈ Lab loc(l) ∈ VLoc

}
=∅.

Parameter 1 (Labels). Assume a set of labels Lab, a set of read labels RLab ⊆ Lab, and a set ofwrite
labelsWLab ⊆ Lab. Assume functions loc : Lab⇀ Loc, valr : RLab → Val, and valw : WLab →

Val. Assume a set of durable labels, DLab ⊆ Lab, such that
{
l ∈ WLab loc(l) ∈ PLoc

}
⊆ DLab

and DLab ∩
{
l ∈ Lab loc(l) ∈ VLoc

}
=∅.

Definition 1 (Events). An event is a tuple ⟨n,τ , l⟩, where n ∈ N is an event identifier, τ ∈ TId is a
thread identifier, and l ∈ Lab is an event label.

We typically use a, b and e to range over events. The functions tid and lab respectively project
the thread identifier and the label of an event. We lift the label functions loc, valr and valw to
events, and given an event e , we write e.g. loc(e) for loc(lab(e)).

Basic Executions. We define the semantics of programs in terms of basic executions. A basic
execution,G=⟨E, po⟩, is a (partially) ordered set of events E (Def. 1), where po denotes the program
order, describing whether one event precedes another in the control flow of the program. We write

G0 ≜ ⟨∅, ∅⟩ for the empty execution and {a}G ≜ ⟨{a}, ∅⟩ for the execution with a single event a.
Given two executions, G1=⟨E1, po1⟩ and G2=⟨E2, po2⟩, with disjoint sets of events (E1 ∩ E2=∅), we

define their sequential composition, G1;G2, by ordering all G1 events before those of G2: G1;G2 ≜

⟨E1 ∪ E2, po1 ∪ po2 ∪ (E1 × E2)⟩. Similarly, we define their parallel composition, G1∥G2, by placing

no additional order between events of G1 and G2: G1∥G2 ≜ ⟨E1 ∪ E2, po1 ∪ po2⟩.
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s ∈ Store ≜ Reg → Val RV ≜ P (({⊥} ∪ Val) × BExec)

⟨|.|⟩ : PCom → Store → RV J.K : Com → Store → RV {|.|} : Prog → RV

JvK(s) ≜ {⟨v,G0⟩} JeK(s) ≜ {⟨s(e),G0⟩} JCK(s) ≜ ⟨|C|⟩(s)

Jlet a:=C1 in C2K(s) ≜
{
⟨r2,G1;G2⟩ ⟨v1,G1⟩ ∈ JC1K(s) ∧ ⟨r2,G2⟩ ∈ JC2K(s[a 7→ v1])

}

∪
{
⟨r1,G1⟩ ⟨r1,G1⟩ ∈ JC1K(s) ∧ ∄v . r1 = v

}

Jif (C) then C1 else C2K(s) ≜
{
⟨r1,G;G1⟩ ⟨v,G⟩ ∈ JCK(s) ∧v , 0 ∧ ⟨r1,G1⟩ ∈ JC1K(s)

}

∪
{
⟨r2,G;G2⟩ ⟨v,G⟩ ∈ JCK(s) ∧v = 0 ∧ ⟨r2,G2⟩ ∈ JC2K(s)

}

∪
{
⟨r ,G⟩ ⟨r ,G⟩ ∈ JCK(s) ∧ ∄v . r = v

}

Jrepeat CK(s) ≜
⋃

n∈N

{
⟨0,G1; . . . ;Gn⟩

∀i < n. ⟨vi ,Gi ⟩ ∈ JCK(s) ∧vi,0
∧⟨0,Gn⟩ ∈ JCK(s)

}

∪
⋃

n∈N

{
⟨⊥,G1; . . . ;Gn⟩

∀i < n. ⟨vi ,Gi ⟩ ∈ JCK(s) ∧vi,0
∧⟨−,Gn⟩ ∈ JCK(s)

}

{|C1∥ · · · ∥Cn |} ≜
{
par(r1,G1, · · · , rn ,Gn) ∀i ≤ n. ⟨ri ,Gi ⟩ ∈ JCiK(s0)

}

par(r1,G1, · · · , rn ,Gn) ≜

{
⟨1,G1∥ · · · ∥Gn⟩ if ∃v1, · · · ,vn ∈ Val. r1=v1 ∧ · · · ∧ rn=vn

⟨⊥,G1∥ · · · ∥Gn⟩ otherwise

Fig. 3. The semantics of our programming language in Fig. 2

Definition 2 (Basic executions). A basic execution,G ∈ BExec, is a tupleG = ⟨E, po⟩, where E is a
set of events with distinct identifiers (Def. 1) and po ⊆ E × E is a strict partial order denoting the
program order relation.

Semantics. Sequential commands are interpreted with respect to a store s ∈ Store, which maps
local variables (registers) to their values. The interpretation of a command C with respect to s,
written JCK(s), generates a set of pairs of the form (r ,G), where r denotes the outcome returned by
C, andG denotes the corresponding basic execution leading to r . The outcome r may in turn be
either ⊥, when the computation has not yet terminated, or a value v ∈ Val.

The interpretation function J.K is given in Fig. 3, and is defined by induction over the language
syntax. Interpreting value v yields outcome v with the empty executionG0; interpreting an expres-
sion e evaluates e with respect to the store s, and thus returns outcome s(e) with empty execution
G0. Recall that primitive commands in PCom are model-specific and are supplied as a parameter to
our framework. As such, we assume the existence of a primitive interpretation function, ⟨|.|⟩, that
interprets a primitive command with respect to a store. The interpretation of a primitive command
is then simply given by its primitive interpretation.
When ⟨r1,G1⟩ ∈ JC1K(s) and ⟨r2,G2⟩ ∈ JP2K(s), the interpretation of let a:=C1 in C2 captures

the sequential composition of C1 and C2 and comprises two cases depending on the outcome of C1.
When the computation of JC1K(s) terminates (i.e. r1 is a value), as expected the resulting outcome
is that of P2 (i.e. r2) and the resulting execution is obtained from the sequential composition of
executions (G1;G2). On the other hand, when JC1K(s) does not terminate, the interpretation yields
⟨r1,G1⟩. Analogously, the interpretation of a conditional is determined by the value of the condition.
Similarly, interpreting Jrepeat CK(s) comprises two cases. The first captures the case when

the computation of Jrepeat CK(s) terminates after n iterations. That is, computing the first n−1
iterations of C yield non-zero values and thus do not trigger loop termination, whilst the nth
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iteration of C yields 0, indicating loop termination. As such, the loop is exited with return value 0.
The resulting execution is that of the n iterations composed sequentially. The second captures the
ongoing computation of Jrepeat CK(s) after n iterations, and thus the returned outcome is ⊥. As
before, the resulting execution is obtained from the sequential composition of the n executions
accumulated thus far.
When ⟨ri ,Gi ⟩ ∈ JCiK(s0) for i ≤ n and s0 denotes the initial store which assigns 0 to all local

variables, interpreting the program C1∥ · · · ∥Cn captures the parallel composition of C1, · · · ,Cn

via the par function. The definition of par (at the bottom of Fig. 3) comprises two cases depending
on the outcomes of constituent commands. When all computations terminate, the outcome is 1
(parallel composition does not return a meaningful value). Otherwise, the computation is marked as
non-terminating (⊥). In both cases, the resulting execution is obtained from the parallel composition
of the constituent executions (G1∥ · · · ∥Gn ).

Parameter 2 (Primitive semantics). Assume a primitive interpretation function, ⟨|.|⟩ : Prog →

Store → RV, that interprets a primitive command with respect to a store.

Definition 3 (Semantics). The semantics of the programming language in Fig. 2 is given in Fig. 3.

3.2 Persistency Semantics

Notation. Given a relation r on a set A, we write r?, r+ and r∗ for the reflexive, transitive and
reflexive-transitive closures of r, respectively. We write r−1 for the inverse of r; r|A for r ∩ (A ×A);
[A] for the identity relation on A, i.e. {(a,a) | a ∈ A}; irreflexive(r ) for ∄a. (a,a) ∈ r ; and acyclic(r)

for irreflexive(r+). We write r1; r2 for the relational composition of r1 and r2, i.e. {(a,b) | ∃c . (a, c) ∈
r1 ∧ (c,b) ∈ r2}. When r is a strict partial order, we write r|imm for the immediate edges in r, i.e.

r \ (r; r). When A is a set of events, we define Ax ≜ {a ∈A | loc(a)=x}, AX ≜ {a ∈A | loc(a) ∈X },
and Ap ≜ {a ∈A | loc(a) ∈ PLoc}; i.e. Ap restricts A to events on persistent locations. Similarly,

we define rx ≜ r ∩ (Ax ×Ax), rX ≜ r ∩ (AX ×AX ), and rp ≜ r ∩ (Ap ×Ap).

Executions and Chains. The traces of shared memory accesses generated by a program are
commonly represented as a set of executions, where each execution G is a graph comprising: (i) a
set of events denoting the graph nodes; and (ii) a number of relations on events, denoting the
sundry graph edges. It is common practice to consider complete executions only, i.e. those that
do not crash. However, this assumption renders this model unsuitable for capturing the crashing
behaviour of executions in the presence of persistent memory. Instead, we model an execution
chain C as a sequence G1, · · · ,Gn , with each Gi describing an execution era between two adjacent
crashes. More concretely, when an execution of program P crashes n−1 times, we model this as the
chain C=G1, · · · ,Gn , where (1)G1 describes the initial era between the start of execution up to the
first crash; (2) for all i ∈ {2, · · · ,n−1}, Gi denotes the i

th execution era, recovering from the (i−1)st

crash; and (3) Gn describes the final execution era terminating successfully.

Definition 4 (Executions). An execution, G ∈ Exec, is a tuple (E, I , P, po, rf,mo, nvo), where:

• E denotes a set of events. The set of read events in E is denoted by R ≜
{
e ∈ E lab(e) ∈ RLab

}
;

the set of write events,W , and durable events, D, are defined analogously.
• I is a set of initialisation events, comprising a single write eventwx ∈ W for each location x.
• P is a set of persisted events such that Ip ⊆ P ⊆ D.
• po ⊆ E × E denotes the ‘program-order’ relation, defined as a disjoint union of strict total orders,
each ordering the events of one thread, with I × (E \ I ) ⊆ po.

• rf ⊆ W ×R denotes the ‘reads-from’ relation between write and read events of the same location
with matching values; i.e. (a,b) ∈ rf ⇒ loc(a)=loc(b) ∧ valw(a)=valr(b). Moreover, rf is total
and functional on its range, i.e. every read is related to exactly one write.
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• mo ⊆ E×E is the ‘modification-order’, denoting a strict partial order defined as the disjoint union
of relations {mox}x∈Loc, such that eachmox is a strict total order onW x and I x×(W x\I x) ⊆ mox .

• nvo ⊆ D×D is the ‘non-volatile-order’, defined as a strict total order onD, such that Ip×(D\Ip) ⊆
nvo and dom(nvo; [P]) ⊆ P .

In the context of an execution graph G ś we often use the łG .ž prefix to make this explicit ś the
persisted events P include those durable events (P ⊆ D) whose effects have reached the persistent
memory; e.g. those stores that have persisted. As such, persisted events include initialisation
writes on persistent locations (Ip ⊆ P). The ‘modification-order’ mo constrains the visible order
of stores to the memory (i.e. allowable visible memory states) between threads. Analogously, the
‘non-volatile-order’ nvo constrains the visible order in which stores are committed to the persistent
memory. Note that nvo prescribes the order in which writes are persisted to memory. As such, we
require that the persisted events in P be downward-closed with respect to nvo: dom(nvo; [P]) ⊆ P .
That is, let e1 · · · en denote an enumeration of D according to nvo (since nvo describes a total order
on D); as P is downward-closed with respect to nvo, we know there exists 1 ≤ i ≤ n such that
e1, · · · , ei ∈ P and ei+1, · · · , en ∈ D \ P .

For simplicity, we assume that event identifiers in each thread are ordered by po: for all a,b:

(a,b) ∈ po|imm ⇐⇒ id(b)=id(a)+1. Lastly, we define the ‘reads-before’ relation as: rb ≜

(rf−1;mo) \ id, relating a read r to all writesw that are mo-after the write r reads from.
Note that in this initial stage, executions are unrestricted in that there are few constraints on rf,mo

and nvo. Such restrictions are determined by the set of memory-model specific consistent executions.
We thus assume a consistency predicate, consM(.), which determines whether an execution is M-
consistent (i.e. consistent under the M memory model). In the upcoming sections we define
execution consistency for the PARMv8 and PSER models discussed in ğ2.

Parameter 3 (Consistency). Assume a consistency predicate, consM(.) : Exec → {true, false}.

Definition 5 (Chains). A chain C is a sequence G1, · · · ,Gn of executions such that for 1 ≤ i < n

and Gi=(Ei , I i , Pi , poi , rfi ,moi , nvoi ):

• ∀x ∈ Loc. ∃w . w ∈ I 1 ∧ loc(w)=x ∧ valw(w)=0;
• ∀x ∈ VLoc. ∃w . w ∈ I i+1 ∧ loc(w)=x ∧ valw(w)=0;
• ∀x ∈ PLoc. ∃w, e . w ∈ I i+1 ∧ loc(w)=x ∧ e=max

(
nvoi |Pi∩W x

)
∧ valw(w)=valw(e);

• Pn = En ∩ D.

Given a memory modelM, a chain C=G1, · · · ,Gn is M-valid if consM(Gi ) holds for all Gi .

The first axiom ensures that in the first era all locations are initialised with 0. The second axiom
ensures that in each subsequent (i+1)st era all volatile locations are initialised with 0; That is,
volatile locations lose their values upon a crash and are thus reset to 0 in the following era. By
contrast, the third axiom ensures that in each subsequent (i+1)st era all persistent locations are
initialised with a value persisted by a write in the previous (ith) era maximally (in nvoi ). In other
words, persistent locations retain their values in case of a crash. The last axiom ensures that the
final era executes completely (does not crash) by stipulating that all its durable events be persisted.
That is, in the absence of a crash, all durable events are eventually persisted.

Persistent Programs. In the persistent setting, each program P is associated with a recovery
mechanism describing the code to be executed upon recovery from a crash. As such, we model a
persistent program, P ∈ PProg, as a pair ⟨P, rec⟩, where P ∈ Prog denotes the original program
to be executed, and rec denotes its recovery mechanism. A naive recovery mechanism of P may
always choose to restart the execution of P from the beginning. However, a more sophisticated
mechanism may resume the execution of P upon recovery by determining the progress made prior
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to the crash. To do this, the recovery mechanism may inspect the memory to identify the operations
whose effects have persisted to memory, and then resume P from the last persisted operation in each
thread. To capture this, we model a recovery mechanism as a function rec : Prog × Exec → Prog.
That is, rec(P,G) describes the recovery mechanism associated with P when the memory upon
recovery is that obtained after execution G. Intuitively, execution G corresponds to the previous
execution era and thus the state of memory upon recovery can be ascertained by inspecting G.

Definition 6 (Persistent programs). A recovery mechanism is a function rec ∈ Rec : Prog ×

Exec → Prog. A persistent program is a pair P ∈ PProg ≜ Prog × Rec.

From Programs to Executions and Chains. Recall from ğ3.1 that we described the semantics
of a program P as a set of basic executions (Def. 2) associated with P. The set of executions associated
with P, written exec(P), contains those executions (Def. 4) that can be projected to basic executions
that have terminated. That is, G ∈ exec(P) iff there exists v such that ⟨v, ⟨G .E,G .po⟩⟩ ∈ {|P|}.
The set of partial executions associated with P, written pexec(P), contains execution prefixes.
Intuitively, partial executions contain those executions that are rendered incomplete due to a crash.
Analogously, in the persistent setting each persistent program P is a associated with a set of

chains. More concretely, a persistent program P=⟨P, rec⟩ is associated with a chain C=G1, · · · ,Gn

if: (1) G1 is a partial execution of P; (2) Gi is a partial execution of rec(P,Gi−1), for all 2 ≤ i ≤ n−1;
and (3) Gn is an execution of rec(P,Gn−1). Note that executions of all but the last era are partial in
that they have failed to run to completion due to a crash.

Definition 7 (Program executions). Given a program P, the set of executions of P, written exec(P), is:{
G ∈ Exec ∃v ∈ Val. ⟨v, ⟨G .E,G .po⟩⟩ ∈ {|P|}

}
; the set of partial executions of P, written pexec(P),

is:
{
G ∈ Exec ∃⟨−, ⟨E′

, po′⟩⟩ ∈ {|P|}. ⟨G .E,G .po⟩ ⊑ ⟨E′
, po′⟩

}
, where:

⟨E, po⟩ ⊑ ⟨E′
, po′⟩

def
⇐⇒ E ⊆ E′ ∧ po ⊆ po′ ∧ dom(po′; [E]) ⊆ E

Definition 8 (Program chains). Given a persistent program P=⟨P, rec⟩, the set of chains associated
with P, written chain(P), contains chains of the form G1, · · · ,Gn such that: (1) G1 ∈ pexec(P);
(2) Gi ∈ pexec(rec(P,Gi−1)) for 2 ≤ i ≤ n−1; and (3) Gn ∈ exec(rec(P,Gn−1)).

4 THE PERSISTENT ARMv8 MODEL (PARMv8)

We present the formal PARMv8 model declaratively as an instance of the general framework in ğ3.

PARMv8 Programming Language. The PARMv8 programming language is the programming
language in Fig. 2 instantiated with PARMv8 primitive commands given by the grammar below:

PComPARMv8 ∋ c ::= loadlm(x) | storesm(x, e) | CASlm,sm(x, e, e
′) | DMBbm | DSBbm | wb xp

where lm ::= rlx | A | Q sm ::= rlx | L | Q bm ::= ld | st | full

The highlighted sections denote the persistent extensions from the original ARMv8 model by
Pulte et al. [2018]. The loadlm(x) instruction denotes a load (read) from x with the load mode lm.
Analogously, the storesm(x, e) instruction denotes a store (write) on x with the store mode sm.
The CAS(x, e, e′) denotes an atomic ‘compare-and-swap’ (with the given load and store modes),
where the value of location x is compared against e: if the values match then the value of x is set
to e′ and 1 is returned; otherwise x is left unchanged and 0 is returned. The DMBbm denotes a
‘data memory barrier’ with the barrier mode bm. Load, store and barrier modes vary in strength
and accordingly alter the imposed ordering constraints. Understanding these constraints is not
necessary for understanding the persistency semantics of PARMv8. We refer the reader to [Pulte
et al. 2018] for a description of these guarantees. As before, for readability we write a:=lm x for
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let a:=loadlm(x) in awhen a is fresh, and write x:=sm e for storesm(x, e). We omit the access modes
when relaxed (rlx) and simply write x:= e and a:= x for x:=rlx e and a:=rlx x, respectively.

To capture the PARMv8 persistency semantics, we extend the ARMv8 language with DSBbm

and wb xp, denoting ‘data synchronisation barrier’ and ‘write-back’ instructions, respectively. As
discussed in ğ2, a DSBbm is strictly stronger than a DMBbm (with the same access mode), and may
additionally constrain the order in which writes are persisted, as we discuss shortly. Recall that
wb x commits all pending writes on x to persistent memory. As such, write-back instructions are
only issued on persistent locations since writes on volatile locations cannot be persisted.

PARMv8 Labels. As discussed in ğ3, event labels are associated with the primitive commands of
the underlying memory model. Given access modes lm, sm and bm above, a PARMv8 label is either:
a load label (R, x,v, lm), a store label (W, x,v, sm), an update (CAS) label (U, x,v,v ′

, lm, sm), a DMB
label (DMB, bm), a DSB label (DSB, bm), or a write-back label (WB, xp). PARMv8 read labels comprise
load and update labels; PARMv8 write labels comprise store and update labels. PARMv8 durable
labels comprise write-back labels, as well as write labels on persistent locations. The loc, valr, valw
functions are defined as expected.

Definition 9 (PARMv8 labels). The set of PARMv8 labels is defined as follows:

LabPARMv8 ≜

{
(R, x,v, lm), (W, x,v, sm), (U, x,v,v ′

, lm, sm),

(DMB, bm), (DSB, bm), (WB, xp)
x ∈ Loc ∧v,v ′ ∈ Val

xp ∈ PLoc

}

PARMv8 read labels are: RLabPARMv8 ≜ LabPARMv8 ∩ {(R, x,v, lm), (U, x,v,v ′
, lm, sm)}; PARMv8

write labels are: WLabPARMv8 ≜ LabPARMv8 ∩ {(W, x,v, sm), (U, x,v,v ′
, lm, sm)}; PARMv8 durable

labels are: DLabPARMv8≜LabPARMv8 ∩ {(WB, x), (W, xp,v, sm) | xp ∈ PLoc}.

PARMv8 Executions. A PARMv8 event is an event (Def. 1) with a PARMv8 label; a PARMv8
execution is an execution (Def. 4) with PARMv8 events. The sets of read (R), write (W ) and durable
(D) events are as in Def. 4. The sets of write-back (WB), DMB (DMBbm) and DSB (DSBbm) events are
defined analogously. For instance, we write DSBfull for DSB events with the full barrier mode.

Compared to our executions (Def. 4), the ARMv8 executions of [Pulte et al. 2018] carry additional
components that record address, data and control dependencies between events, which in turn
impose additional ordering constraints. Understanding the details of these dependencies is not
necessary for understanding the PARMv8 persistency semantics. We refer the reader to [Podkopaev
et al. 2019] for the details of how these dependencies are computed for a given program.

Definition 10 (PARMv8 consistency). A PARMv8 execution (E, I , P, po, rf,mo, nvo) is PARMv8-
consistent iff:

• ARMv8 axioms in [Pulte et al. 2018] hold with DMBbm replaced with DMBbm ∪ DSBbm (arm)

• (po?; [DMBfull ∪ DSBfull]; po
?) \ id ⊆ ob (arm-ob-bar)

• ∀X ∈ CL. [WX ∪ RX ]; po; [WBX ] ⊆ ob (ob-w-wb)

• ∀X ∈ CL. [WBX ]; po; [WBX ] ⊆ ob (ob-wb-wb)

• dom([WB]; ob; [DSBfull]) ⊆ P (nvo-pers)

• [WB]; ob; [DSBfull]; ob; [D] ⊆ nvo (nvo-wb-d)

• ∀X ∈ CL. [WXp ]; ob; [WBXp ] ⊆ nvo (nvo-w-wb)

• ∀xp ∈ PLoc. moxp ⊆ nvo (nvo-mo)

TheARMv8model by Pulte et al. [2018] defines the permitted program behaviours by constraining
the visible order of memory instructions. To do this, they define the ‘ordered-before’ relation, ob,
which prescribes the ordering constraints that must be preserved. That is, ob denotes the ‘volatile-
memory-order’ and thus two ob-related instructions cannot be reordered. However, note that
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the axioms of Pulte et al. [2018] do not account for DSB and wb instructions; nor have they any
bearing on the PARMv8 persistency semantics as they impose no constraints on nvo. We capture
the ordering constraints of DSB and wb via (arm), (ob-w-wb) and (ob-wb-wb). We describe the
PARMv8 persistency semantics via (nvo-pers), (nvo-w-wb), (nvo-wb-d) and (nvo-mo).
The (arm) axiom imports the ARMv8 axioms by Pulte et al. [2018] with DMBbm replaced with

DMBbm ∪DSBbm. This is because DSB barriers are strictly stronger than DMB ones (with the same
mode). This is captured by the following text in the ARM reference manual, where italicised text in
square brackets denotes our added clarification:

łit [DSB] acts as a stronger barrier than a DMB and ordering that is created by a DMB with
specific options is also generated by a DSB with the same options.ž [ARM 2018, p. B2-106]

For brevity, we have elided the axioms included in (arm), with the exception of the (arm-ob-bar)
axiom which we repeat here. This is because apart from (arm-ob-bar), the axioms in (arm) have
no bearing on the persistency behaviour of PARMv8 programs; we refer the reader to [Pulte et al.
2018] for the remaining axioms in (arm). The (arm-ob-bar) axiom states that if two instructions
are po-ordered and are separated by a full barrier (a DMBfull or DSBfull) instruction, then they
are also ob-related and thus cannot be reordered.
The (ob-w-wb) and (ob-wb-wb) axioms describe the ordering constraints on wb instructions:

given locations x, x ′ in the same cache line X , a write-back event wb on x, and a write/read/write-
back event e on x ′, if e is po-before wb, then e is executed before (ob-before) wb. This reflects the
following text in the ARM manual (see Remark 1 below for a clarification of ‘normal’ memory):

łAll data cache instructions . . . that specify an address [including wb]:
• Execute in program order relative to loads [reads] or stores [writes]which access an address
in normal memory . . . within the same cache line . . .

• Execute in program order relative to other data cache instructions [including wb] . . . that
specify an address within the same cache line . . .

• Can execute in any order relative to loads [reads] or stores [writes] that access an address in
a different cache line . . . unless aDMBfull orDSBfull is executed between the instructions.

• Can execute in any order relative to other data cache instructions [including wb] . . . that
specify an address in a different cache line . . . unless a DMBfull or DSBfull is executed
between the instructions.ž [ARM 2018, p. D4-2371]

The (nvo-pers) axiom states that a write-back instruction executed before (ob-before) a DSBfull

is always persisted and is thus included in P . This is because executing a DSBfull instruction awaits
the completion of all previously executed wb instructions:

ła DSBfull instruction will not complete until all previous wb instructions have completedž
[ARM 2018, p. D4-2366]

The (nvo-wb-d) axiom describes the persist orderings imposed by DSBfull. More concretely,
recall that a DSBfull instruction awaits the completion (persistence) of all its ob-before write-
backs (nvo-pers). As such, all instructions executed after (ob-after) a DSBfull are persisted after
(nvo-after) the write-backs ob-before the DSBfull.

Recall from ğ2.3 that when x ∈ X , then executing wb x persists all pending writes on X to
persistent memory. That is, the effect ofwb x is committed to persistent memory (i.e.wb x persists)
once all pending (ob-earlier) writes on X have persisted. As such, all pending writes on X persist
beforewb x and are thus nvo-ordered before it. This is captured by the (nvo-w-wb) axiom. Note that
(arm-ob-bar), (ob-w-wb), (nvo-wb-d) and (nvo-w-wb) together ensure the recovery behaviour
illustrated in the examples of Fig. 1d and Fig. 1e in ğ2.3.
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Lastly, the (nvo-mo) axiom states that for each location x, the volatile and non-volatile memory
orders (mo and nvo) agree. This is illustrated in the following examples:

x:= 1;
x:= 2;
wb x;
DSBfull;
y:= 1

(P3)

rec: y=1 ⇒ x=2

x:= 1;
DMBfull;
z:= 1

if z = 1 then
x:= 2;
wb x;
DSBfull;
y:= 1

(P4)

rec: y=1 ⇒ x=2

As po andmo orders agree under ARMv8, in (P3) x:= 1 ismo-ordered before x:= 2. Therefore, from
(nvo-mo) we know x:= 1 is also nvo-ordered before x:= 2. Note that the program in (P3) is that
in Fig. 1d with the additional x:= 2 write on x. As such, as in Fig. 1d, if upon recovery y:= 1 has
persisted, then the nvo-latest write on x, i.e. x:= 2, must also have persisted, and thus y=1 ⇒ x=2.

The program in (P4) illustrates a similar scenario withmo between the writes in different threads.
When the if condition holds (i.e. the second thread reads from the first thread), then under ARMv8
x:= 1 is mo-ordered before x:= 2. Consequently, as in (P3) we have y=1 ⇒ x=2 after recovery.

Remark 1 (Non-cacheable locations). The ARMmanual [ARM 2018] distinguishes between normal
(cacheable) and non-cacheable locations, with the latter denoting those locations whose contents
cannot be cached locally and must be accessed directly from memory. The existing ARMv8 spec-
ification by Pulte et al. [2018] does not model non-cacheable locations and only describes the
behaviour of normal locations. As we model PARMv8 as an extension of ARMv8, we also model
normal locations only. That is, we assume all locations in PARMv8 are normal (cacheable).
The interplay between the ARMv8 consistency axioms of Pulte et al. [2018] in (arm) above and

non-cacheable locations is rather subtle and is beyond the scope of this paper. However, it is
straightforward to alter our extended axioms above to model non-cacheable locations. In particular,
while (ob-wb-wb), (nvo-pers), (nvo-wb-d), (nvo-w-wb) and (nvo-mo) axioms remain unchanged,
the (ob-w-wb) axiom must be altered to refer to normal locations only. This is because the ordering
constraints of write-backs on non-cacheable locations are weaker than those on normal locations.
Specifically, a write-back on a non-cacheable location x is ob-ordered with respect to a po-earlier
read or write on x only if the two are separated by a DMB or a DSB:

łAll data cache instructions . . . that specify an address [including wb]:
• Can execute in any order relative to loads [reads] or stores [writes] that access any address
. . . with Inner Non-cacheable attribute unless a DMBfull or DSBfull is executed between
the instructions.ž [ARM 2018, p. D4-2371]

In other words, if location x in Fig. 1d of ğ2.3 were non-cacheable, in order to ensure that upon
recovery y=1 ⇒ x=1, one would need to insert an additional DMBfull (or DSBfull) instruction
between the write on x and its write-back, as described in the ARMmanual [ARM 2018, p. D4-2366]:

x:= 1; DMB; wb x; DSBfull; y:= 1

Remark 2 (PARMv8 Fidelity). We have discussed our PARMv8 model and examples at length with
the engineers at ARM Research, and we have been reassured that PARMv8 faithfully describes the
persistency semantics of the subset of ARM instructions modelled.

5 THE PERSISTENT SERIALISABILITY MODEL (PSER)

We present the formal declarative PSER model as an instance of the general framework in ğ3. To
show the utility of PSER, we demonstrate that PSER can be used to convert any correct sequential
implementation of a given library L to a correct, concurrent and persistent implementation of L
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(ğ5.1). To show the feasibility of PSER, later in ğ6 we develop a sound PSER implementation in
PARMv8, thus demonstrating that PSER correctly compiles to PARMv8.

PSER Programming Language. The PSER primitive commands comprise simple load (read)
and store (write) operations, and are given by the grammar below:

PComPSER ∋ c ::= load(x) | store(xp, e)

Note that we only allow stores on persistent locations. As we describe shortly, this allows us to keep
the PSER model simple with respect to transactional persist atomicity. As before, we write a:= x for
let a:=load(x) in a (when a is fresh), and write xp:= e for store(xp, e). For simplicity, we assume
that the (sequential) programs in each thread comprise a sequence of PSER transactions. That is,
we define the set of PSER programs, ProgPSER ⊆ Prog, as follows where C denotes a sequential
program as defined in Fig. 2, instantiated with PSER primitive commands:

ProgPSER ∋ P ::= TId
fin
→ ComPSER ComPSER ∋ CPSER ::= [C] | CPSER;CPSER

PSER Labels and Events. In order to distinguish the events of one transaction from another,
we assume a finite set of transaction identifiers, TXId, ranged over by ξ . We model a transaction
identifier as a pair ξ=⟨τ ,n⟩, where τ denotes the thread with which the transaction is associated, and
n identifies the transaction within thread τ . A PSER label is then either: (1) a load label (R, x,v, ξ ),
for a primitive load from x in ξ ; or (2) a store label (W, xp,v, ξ ), for a primitive store to xp in ξ ; or
(3) a begin label (B, ξ ), marking the beginning of ξ ; or (4) an end label (E, ξ ), marking the end of ξ .
PSER read and write labels comprise load and store labels, respectively. PSER durable labels coincide
with PSER write labels. Functions loc, valr, valw are defined as expected. The function tx returns
the transaction identifier of a PSER label. A PSER event is an event (Def. 1) with a PSER label. As
before, we lift the tx function to events and write e.g. tx(e) for tx(lab(e)).

Given an execution G , the ‘same-transaction’ relation, st ∈ G .E ×G .E, is the equivalence relation

given by st ≜
{
(a,b) ∈ G .E ×G .E tx(a)=tx(b)

}
. Given a relation r on G .E, we write rT for lifting

r to (equivalence) classes: rT ≜ st; (r \ st); st. We write [a]st for the st class that contains a, i.e.

[a]st ≜
{
e ∈ G .E (a, e) ∈ st

}
. Note that a class without an end event denotes a transaction whose

executionwas rendered incomplete by a crash.WewriteG .T for the events of complete transactions in

G; i.e. those events whose associated end events is inG:G .T ≜
{
a ∈ G .E ∃e ∈ [a]st. lab(e)=(E,−)

}
.

PSER Executions. An execution G is a PSER execution if: (1) events in G .E have PSER labels;
(2) each transaction class contains exactly one begin event; (3) each transaction class contains at most
one end event; (4) each begin (resp. end) event is the first (resp. last) event (in po) within its transac-
tion; and (5) only the last (po-maximal) transaction in each threadmay be incomplete (due to a crash),
i.e. [E \ T ]; poT=∅. For simplicity, we further require that (6) transaction identifiers in each thread
be ordered by po; that is, for all a,b: (a,b) ∈ poT |imm ⇐⇒ ∃τ ,n. tx(a)=(τ ,n) ∧ tx(b)=(τ ,n+1).

Definition 11 (PSER-consistency). A PSER executionG=(E, I , P, po, rf,mo, nvo) is PSER-consistent
iff:

• (rf ∪mo ∪ rb) ∩G .st ⊆ po (ser1)

• hbser is irreflexive, where hbser ≜ (poT ∪ rfT ∪moT ∪ rbT)
+ (ser2)

• hbser |D ⊆ nvo (pser-nvo)

• dom([D];G .st; [P]) ⊆ P ⊆ G .T (pser-atomic1)

• acyclic(nvoT) (pser-atomic2)

The (ser1) and (ser2) axioms are those of serialisability [Papadimitriou 1979] adapted to our
declarative framework as done e.g. in [Raad et al. 2018, 2019]. The (ser1) ensures that e.g. a
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transaction observes its ownwrites by requiring rf∩st ⊆ po (i.e. intra-transactional reads respect po).
The (ser2) guarantees the existence of a total sequential order in which all concurrent transactions
appear to execute atomically one after another. This total order is obtained by an arbitrary extension
of the (partial) ‘happens-before’ relation hbser, which captures synchronisation resulting from
transactional orderings imposed by program order (poT) or conflict (rfT ∪moT ∪ rbT).

Intuitively, rfT ∪moT ∪ rbT describes synchronisation due to conflicts between transactions. Two
transactions are conflicted if they both access (read or write) a location x, and at least one of these
accesses is a write. As such, the inclusion of rfT∪moT∪ rbT enforces conflict-freedom of serialisable
transactions. For instance, if transactions ξ1 and ξ2 both write to x via eventsw1 andw2 such that
(w1,w2) ∈ mo, then ξ1 must commit before ξ2, and thus the entire effect of ξ1 must be visible to ξ2.

The (pser-nvo), (pser-atomic1) and (pser-atomic2) axioms describe the persistency semantics
of PSER. The (pser-nvo) stipulates that transactional writes persist in the hbser order. This in turn
preserves inter-transactional synchronisation orderings across crashes. For instance, if ξ2 reads
from ξ1, then ξ1 persists before ξ2; as such, upon recovery we never encounter the erroneous
scenario where ξ2 has persisted, whilst the transaction it read from, namely ξ1, has not.
Lastly, (pser-atomic1) and (pser-atomic2) ensure that transactions persist atomically: (1) only

complete transactions persist (P ⊆ G .T ); (2) either all or none of the (durable) events in a transaction
persist (dom([D]; G .st; [P]) ⊆ P); and (3) the persists of a transaction are not interleaved by those
of others: acyclic(nvoT).

Remark 3. Note that as all transactional writes are on persistent locations, we can require all or
none of the events in a transaction to persist. Allowing transactional writes on volatile locations
would violate persist atomicity as the writes on volatile locations do not survive a crash. Our notion
of persist atomicity is inspired by the write atomicity of database transactions requiring that either
all or none of the writes in a transaction commit. It is however straightforward to relax PSER to
support mixed-volatility: we can require write atomicity on all writes during normal (non-crashing)
executions, while requiring persist atomicity only on writes of persistent locations upon a crash.

5.1 PSER Utility: Persistently Linearisable Concurrent Library Implementations

Implementing and verifying concurrent libraries correctly is challenging. Typically, the library
implementer is tasked with ensuring that the library state (e.g. a queue) remains consistent (e.g.
a queue maintains its FIFO invariant), when simultaneously accessed by multiple threads. The
library verifier is tasked with identifying the appropriate proof techniques to establish the desired
consistency guarantees. One well-known such technique is the linearisability proofs of Herlihy
and Wing [1990], which has been used extensively in the verification literature.
The challenges of implementing and verifying concurrent libraries are further compounded in

the context of persistent hardware. Library implementers must additionally account for crashes
and ensure that the library state remains both consistent and persistent across crashes. Library
verifiers must accordingly adapt their proof techniques to establish the desired consistency and
persistency guarantees. To do this, Izraelevitz et al. [2016b] introduced buffered durable linearisability,
henceforth persistent linearisability, as an extension of linearisability in persistent settings.
We demonstrate that PSER can be used to streamline the tasks of implementing and verifying

concurrent libraries in the persistent setting. In particular, we show PSER can convert any cor-
rect sequential implementation of a library into a correct (persistently linearisable) concurrent
implementation. We proceed with the definitions of linearisability and persistent linearisability.

Linearisability and Persistent Linearisability. In linearisability proofs, a library call is typi-
cally represented as two call events, inv and ack, called a matching pair, denoting the call invocation
and acknowledgement. To model executions of library clients, we define library events as the
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extension of events (Def. 1) with inv and ack events. To identify each matching pair uniquely, we
assume a finite set of call identifiers, CId, ranged over by ι. The labels of matching pairs are thus of
the form (I, ι,m,va) and (A, ι,m,vr ), wherem denotes the library method called, va denotes the
invocation argument, and vr denotes the return value.
A trace of a client program of a library is then represented as a history (a strict total order of

events), to. As the library is concurrently accessed by multiple threads, the matching inv and ack
events in a history may be interleaved with those of others. A history to is sequential if matching
pairs in to are not interleaved by other call events in to. Given a set of events E and a relation r on E,
a history to linearises ⟨E, r⟩ if: (1) E can be extended to Ec by adding zero or more ack events; (2) Ec
can be truncated to Et by removing every inv in Et without a matching ack; (3) to is a strict total
order on Et and includes r; and (4) to is a sequential history. The first step captures the notion that
a pending inv may have taken effect even though its matching ack has not yet been returned; the
second step captures the notion that the remaining pending invocations have not yet had an effect.
An execution G of library L is linearisable if there exists a history to such that: (i) to linearises

⟨G .E,G .hb⟩, where G .hb ≜ (G .po ∪G .rf)+ denotes the ‘happens-before’ relation; and (ii) to is a
legal history. The definition of legal histories is library-specific, e.g. the FIFO property of queue
histories. A program P is linearisable if all its consistent executions are linearisable.
Persistent linearisability extends linearisability to persistent settings. Note that given a chain

C=G1, · · · ,Gn , due to asynchronicity of persists in buffered models, in each era Gi (except Gn)
only a subset of events in G .E may persist prior to a crash, i.e. those in G .P . As such, a chain
C=G1, · · · ,Gn is persistently linearisable if there exist to1 · · · ton such that: (i) each toi linearises
⟨G .P,G .hb⟩; and (ii) to1++ · · ·++ton is a legal history, where ++ denotes sequence concatenation. A
persistent program P is persistently linearisable if all its valid chains are persistently linearisable.

Definition 12 (Library events). Assume a finite set of call identifiers, CId, ranged over by ι.
Given a library L and its associated set of operations OpL ⊆ String, A library event of L
is a tuple ⟨n,τ , l⟩, where n ∈ N is an event identifier, τ ∈ TId is a thread identifier, and l ∈

Lab ∪
{
(I, ι,m,va), (A, ι,m,vr ) ι ∈ CId ∧m ∈ OpL ∧va ,vr ∈ Val

}
is an event label with Lab as

described in Def. 1. The set of invocation events is : I ≜
{
e lab(e)=(I,−,−,−)

}
. The set of ac-

knowledgement events, A, is defined analogously. The set of matching call pairs is: Match ≜{
(ei , ea) ∃ι,m. lab(ei )=(I, ι,m,−) ∧ lab(ea)=(A, ι,m,−)

}
.

The definitions of execution graphs (Def. 4) and execution chains (Def. 5) are simply lifted to
admit library events. As such, we write e.g. library execution graph for an execution graph whose
events are library events. Given a library execution graph G, we assume that call identifiers are
unique across matching pairs in G .E, i.e. no two inv (resp. ack) events have the same call identifier.

Definition 13 (Persistent linearisability). Given a set of events E and a relation r ⊆ E×E, a history
(strict total order of events) to linearises ⟨E, r⟩ iff there exist Ec and Et such that:

• Ec ∈ comp(E) with comp(S) ≜





S ′ ⊇ S

S ′ \ S ⊆ A ∧ ∀ea ∈ S ′ \ S .

∃ei ∈ S . (ei , ea) ∈ Match

∧ ∄e ′a ∈ S . (ei , e
′
a) ∈ Match

∧∀e ′a ∈ S ′ ∩ A. cid(ea)=cid(e
′
a) ⇒ ea=e

′
a





;

• Et = trunc(Ec ) with trunc(S) ≜ (I ∪ A) ∩
(
S \

{
i ∈ I ∄a ∈ S . (i,a) ∈ Match

} )
;

• to is an enumeration of Et such that: ∀a,b ∈ Et . (a,b) ∈ r ⇒ (a,b) ∈ to; and
• to is sequential, i.e. is of the form i1;a1; · · · ; im ;am , with each (ik ,ak ) ∈ Match.

An ExecutionG of libraryL is linearisable iff there exist to such that: (1) to linearises ⟨G .P,G .hb⟩,

whereG .hb ≜ (G .po∪G .rf)+; and (2) to is a legal history of L. A program P is linearisable if all its
consistent executions are linearisable.
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A chain C=G1, · · · ,Gn of library L is persistently linearisable iff there exist to1 · · · ton such that:
(1) each toi linearises ⟨Gi .P,Gi .hb⟩; and (2) to1++ · · ·++ton is a legal history of L. A persistent
program P is persistently linearisable if all its valid chains are persistently linearisable.

PSER for Concurrent Library Implementation. We next show that given a library L, and any
correct sequential implementation I of L, we can use PSER to convert I into a correct, concurrent
and persistent implementation as follows. Consider a library L with operations m1 · · ·mn , e.g.
a queue library with enq and deq operations. Given a sequential implementation I of L, let
I(mi ) denote the implementation (body) ofmi in I, for eachmi . We can then convert I into a
concurrent implementation, Itx, by wrapping each I(mi ) in a PSER transaction. If the sequential
implementation I is correct, then the concurrent implementation Itx is persistently linearisable.
Note that Itx is persistently linearisable only if the sequential implementation I is correct. For

instance, a bogus queue implementation where deq always returns value 7 is not correct and thus
cannot be converted into a persistently linearisable concurrent implementation. To rule out such
erroneous implementations, we require that I be sequentially sound. An implementation I of
library L is sequentially sound if its sequential execution always yields a legal history.

Definition 14. An implementation I is sequentially sound iff for all programs P, executions G of
P and sequential histories to of G .E, if G .hb ⊆ to, then to is a legal history.

Given a client program P, let Ptx denote the program obtained from P by replacing every call to I
with a call to Itx. To show that Itx is persistently linearisable, we must show that given an arbitrary
PSER program P, all valid chains of Ptx are persistently linearisable. However, recall that chains are
associated with persistent programs (Def. 6). We thus define the PSER recovery mechanism, recPSER,
for recovering from a crash under PSER. Given an executionG of a PSER program P, recPSER(P,G)
resumes P from the last persisted transaction in each thread. That is, given that under PSER the
transactions persist atomically and in the po order of each thread, recPSER(P,G) identifies the latest
(in po) persisted transaction in each thread and resumes execution thereafter. Recall that given a
PSER program P ∈ ProgPSER, the sequential program in each thread τ is a sequence of transactions:
P[τ ]=[C1]; · · · ; [Cm]; we thus write sub(P[τ ],k) to denote the sub-program [Ck ]; · · · ; [Cm].

Definition 15 (PSER recovery). The PSER recoverymechanism is: recPSER(P,G)≜λτ .sub(P[τ ],n+1),
with n=max

(
{i | ∃e∈G .T .tx(e)=(τ , i) ∧ dom([D]; poT

?; [e]st) ⊆ P}
)
.

Theorem 1 (Linearisability). Given an implementation I of library L, if I is sequentially sound,
then for all PSER programs P: (1) Ptx is linearisable; and (2) ⟨Ptx, recPSER⟩ is persistently linearisable.

Proof. The full proof is given in the accompanying technical appendix.

6 A PSER IMPLEMENTATION IN PARMv8

We develop a sound implementation of PSER and its recovery mechanism in PARMv8, thus demon-
strating the feasibility of our PSER model through correct compilation to PARMv8.

Notation. We shortly present our PSER implementation in Fig. 4. All memory locations accessed
in the implementation are persistent; we thus write e.g. x rather than xp for better readability.
Recall that for brevity we omit the access modes when relaxed, and write e.g. x:= b for x:=rlx b. As
we often need to persist writes using write-backs, we write x:=wb e as a shorthand for x:= e;wb x.

MRSW Locks. As we describe shortly, our PSER implementation in Fig. 4 uses locks to synchro-
nise concurrent accesses to shared data. As serialisability allows concurrent transactions to read
from the same memory location simultaneously, for better performance we use MRSW (multiple-
readers-single-writer) locks. We thus assume that each location x is associated with an MRSW
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0. [C]PSER→PARMv8 ≜

1. LS:= ∅;
2. RS:= ∅; WS:= ∅;
3. τ:= getTID(); ξ:= getTxID();
4. log[τ ]:=wb ξ ; w :=wb new-array();
5. LCM; DSBfull;
6. ws[ξ ]:=wb w;
7. for (x ∈ WS) {
8. if (promote(x)) LS.add(x);
9. else {
10. for (x ∈ LS) w-unlock(x);
11. for (x ∈ (WS∪RS)\LS) r-unlock(x);
12. goto line 1; } }
13. for (x ∈ WS) {
14. a:= w[x];
15. x :=wb a;
16. }
17. DSBfull;
18. for (x ∈ WS) w-unlock(x);
19. for (x ∈ RS\WS) r-unlock(x);

Lx:= aM ≜ if (x < RS∪ WS) {

r-lock(x);

l[x]:=wb ξ ;

} WS.add(x);

w[x]:=wb a;

La:= xM ≜ if (x < RS∪ WS) {

r-lock(x);

l[x ]:=wb ξ ;

} RS.add(x);

if (x <WS)

a:= x;

else

a:= w[x];

LC1;C2M ≜ LC1M;LC2M

. . .

20. recover(P) ≜

21. for (x ∈ dom(l))

22. w-unlock(x);

23. for (τ ∈ dom(P)) {

24. ξ:= log[τ ];

25. w := ws[ξ ];

26. if (w= ⊥)

27. P’[τ ]:= sub(P[τ ], ξ );

28. else {

29. P’[τ ]:= sub(P[τ ], ξ + 1);

30. if (!committed(w, ξ)) {

31. for (x ∈ dom(w))

32. x :=wb w [x ];

33. }

34. }

35. }

36. DSBfull;

37. run(P’);

where committed(w, ξ)
def
⇐⇒ dom(w)=∅ ∨ ∃x, ξ ′. x ∈ dom(w) ∧ ξ ′ , ξ ∧ l[x]=ξ ′

Fig. 4. PSER implementation of transaction [C] in PARMv8 (left middle) where the grey code ensures deadlock

avoidance and the highlighted code ensures persistency; PSER recovery implementation in PARMv8 (right).

lock which can be acquired by either (i) multiple threads reading from x simultaneously; or (ii) a
single thread writing to x. A reader (resp. writer) lock on x is acquired by calling r-lock(x) (resp.
w-lock(x)), and released by calling r-unlock(x) (resp. w-unlock(x)). Moreover, a reader lock on
x can be promoted to a writer one by calling promote(x). As two distinct reader locks on x may
simultaneously attempt to promote their locks, promotion is done on a ‘first-come-first-served’
basis. A call to promote(x) thus returns a boolean denoting either (i) successful promotion (true);
or (ii) failed promotion as another reader lock on x is currently being promoted (false). A call to
promote(x) returns successfully once all other readers have released their locks on x and thus the
calling reader can safely assume exclusive ownership of the lock (in write mode). Our MRSW lock
implementation is straightforward, and is provided in the accompanying technical appendix.

Serialisability of Our PSER Implementation. Given a transaction [C], our PSER implemen-
tation of C in PARMv8, written [C]PSER→PARMv8, is given in Fig. 4 (left). Ignoring the code in grey
(lines 1, 8ś12), and the highlighted code, [C]PSER→PARMv8 describes a serialisable implementation
of C using MRSW locks. Let RS and WS respectively denote the read set and write set of C, i.e. the
locations read and written by C. Conceptually, a serialisable implementation of C would: (i) acquire
the locks on all locations in RS ∪ WS; (ii) execute C locally where the reads in C are carried out in
place (read directly from memory), while the writes are recorded tentatively in a log w; (iii) commit
the effect of C (in w) by propagating the writes in w to memory; and (iv) release the acquired locks.

Note that the locations accessed by a transaction are not known in advance; i.e. the RS and WS are
not known beforehand. As such, we cannot acquire all necessary locks at the beginning as stated
in step (i) above. Instead, we compute RS and WS incrementally, acquiring the necessary locks on
the fly, by combining steps (i)-(ii) above. Moreover, to reduce lock contention as much as possible,
we acquire all necessary locks in read mode, and promote the locks on WS just before committing.
Our serialisable implementation thus proceeds as follows. Starting with empty RS and WS (line 2),
and an empty write log w (line 4), we execute C locally (as described above) whilst acquiring the
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necessary locks on the fly. This is denoted by LCM on line 5, as described shortly. Once the local
execution LCM is completed, we promote the locks on WS (lines 7ś8), commit the writes recorded in
w to memory (lines 13ś15), and finally release all acquired locks (lines 18ś19).
The local execution LCM is given in Fig. 4 (middle), and is obtained from C as follows. For each

write operation x:= a, the WS is extended with x, and the written value is logged in w[x]. Recall
that to reduce lock contention, for each written location x, our implementation first acquires a
reader lock on x, and subsequently promotes it to a writer lock. As such, the local execution of
x:= a first checks if a reader lock for x has been acquired (i.e. x ∈ RS ∪ WS) and obtains one if this
is not the case. Analogously, for each read operation a:= x, a reader lock is acquired if necessary
and RS is extended with x. Moreover, as each transaction must observe its own writes, the local
execution of a:= x first checks if x has been written to by itself (i.e. x ∈ WS). If this is not the case
the value of x is read from the memory; otherwise, the value of x is read from the log w. The local
execution of the remaining inductive cases (e.g. C1;C2) is defined by straightforward induction on

the structure of commands (e.g. LC1;C2M ≜ LC1M; LC2M), and is omitted here.

Avoiding Deadlocks. Recall that a call to promote(x) by reader r returns false when another
reader r ′ is in the process of promoting a lock on x. When this is the case, r must release its reader
lock on x to ensure the successful promotion of x by r ′ and thus avoid deadlocks. To this end, our
implementation includes a deadlock avoidance mechanism (lines 8ś12) as follows. We record a set
LS (initialised with ∅ on line 1) of those locks on the write set that have been successfully promoted
so far. When promoting a lock on x succeeds (line 8), then LS is extended with x. On the other
hand, when promoting x fails (line 9), all those locks promoted so far (i.e. in LS) as well as the other
reader locks acquired thus far (i.e. in WS ∪ RS \ LS) are released and the transaction is restarted.

Persistency of PSER Implementation. Recall that given a PSER program P ∈ ProgPSER, we
assume that the sequential program in each thread τi ∈ dom(P) comprises a sequence of transactions,

i.e. P(τi )=[C
1
i ]; · · · ; [C

n
i ]. We thus represent P(τi ) as an array Ci such that Ci [j] = [C

j
i ]. We further

assume that the context of each thread τi is set up such that: (1) a call to getTID() returns i; and

(2) a call to getTxID() returns j when executing [C
j
i ]. A program P is executed by calling run(P).

To ensure correct recovery, our implementation must account for the possibility of a crash at
each program point. To do this, we record the metadata for tracking the progress of each thread in
log, ws and l, as follows. For each thread τ , log[τ ] records the last executed transaction; for each
transaction ξ , ws[ξ ] records the effect of ξ ; and for each location x, l[x] records the last transaction
that acquired a lock on x. As such, when thread τ executes transaction ξ (line 3) with transaction
code given by C, our implementation logs ξ in log[τ ] (line 4); records the transaction’s effect in
ws[ξ ] (line 6); and records ξ in l[x] for each location x accessed in C (via LCM on line 5).

Recall that the transaction effect is computed incrementally in w via the local execution LCM. For
correct recovery, we must ensure that the transaction effect is persisted fully and not partially in
case of a crash. To achieve this, before recording the effect w in ws[ξ ] on line 6, we insert a DSBfull

instruction (line 5) to ensure that all pending writes, including those of w, are persisted to memory.
Observe that our implementation adheres to the following pattern: (1) it updates the metadata for

tracking the thread progress (lines 3ś4); (2) executes a DSBfull (line 5); (3) executes the transaction
(lines 7ś15); and (4) executes a DSBfull (line 17). The first two steps ensure that the recovery
metadata of each thread does not lag behind its progress; conversely, the last two steps ensure that
the progress of each thread does not lag behind its recovery metadata. Therefore, in case of a crash,
the persisted progress of each thread τ may at most be one step behind its persisted metadata.
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PSER Recovery Implementation. After a crash, a program P is restored by calling recover(P)
in Fig. 4 (right), which releases all locks to avoid deadlocks (lines 21ś22); restores the progress of
threads by generating a new program P’ (lines 23ś36); and ultimately runs P’ (line 37).

Recall that the persisted progress of each thread is at most one step behind its persisted metadata.
As such, it suffices to check whether the effect of the last recorded transaction for τ has persisted,
and to resume the execution of τ accordingly. More concretely, let the last transaction executed by
τ be ξ (line 24) and let us read the effect of ξ in the local variable w (line 25). Then, either (i) the
effect has not persisted before the crash (i.e. the crash occurred before line 6) and thus w=⊥ and
P[τ ] is resumed from ξ (line 27), or (ii) the effect has persisted (i.e. the crash occurred after line 6)
and thus P[τ ] is advanced to ξ+1 (line 29), where sub(P[τ ],n) denotes the subarray of P[τ ] at n.

Note that in case (ii), the effect of ξ (in w) may not have fully committed or persisted to memory
(e.g. if the crash occurred before line 13), and we must thus commit the transaction effect (lines
31ś35). This is ascertained via committed(w, ξ) on line 30, checking if the writes of ξ in w have fully
persisted. The committed(w, ξ) predicate is defined in Fig. 4. When dom(w)=∅, the transaction is
read-only and w is vacuously persisted. When dom(w),∅ and x ∈ dom(w), we can safely assume w
has persisted if another transaction ξ ′,ξ is the last transaction to acquire the lock on x (i.e. l[x]=ξ ′).
More concretely, since w has persisted, the crash must have occurred after line 6. That is, the LCM on
line 5 has fully persisted and thus the lock on x was acquired by ξ (as x ∈ dom(w)). Consequently,
as ξ ′ is the last transaction to acquire the x lock, then ξ must have released the lock on x (line 18),
i.e. ξ has fully committed and persisted. Finally, the DSBfull on line 36 ensures that the committed
writes are persisted before restarting P’.

Theorem 2 (Soundness). The PSER implementation and its recovery mechanism in Fig. 4 are sound.

Proof. The full proof is given in the accompanying technical appendix.

7 CONCLUSIONS AND FUTURE WORK

Although research into burgeoning NVM technologies has grown rapidly over the recent years,
the formal study of NVM persistency semantics has remained largely unexplored, both at the
architecture and the language levels. To close this gap, we developed a formal declarative framework
for describing concurrency models in the NVM context. We then presented the PARMv8 model
as an instance of this framework, formalising the ARM persistency semantics for the first time.
To streamline NVM programming, we developed the PSER model (as another instance of our
framework) as the first formal transactional model in the NVM context. We then showed the PSER
utility for correct, concurrent and persistent library implementations. Finally, we developed a sound
implementation of PSER in PARMv8, demonstrating correct PSER-to-PARMv8 compilation.
As discussed in ğ2.2, we have encoded our PARMv8 and PSER models in Alloy [Jackson 2012],

and provide our model files in our supplementary material. However, we have not attempted to use
our models to generate conformance tests, due to the complications introduced by the nvo relation.
While for consistency models it is well-known how to write a test for a desired mo relation (e.g. by
adding a concurrent thread with a sequence of loads), we cannot inspect the nvo relation in the same
way. More concretely, the only reliable way to ensure that we observe persistent data is to contrive
a crash and read the data afterwards, since post-crash reads retrieve persistent data. However,
this only allows us to observe the nvo-latest write on each location before the crash, and is not

sufficient for inferring the nvo order on the other writes. For instance, when P ≜ x:= 1| | · · · | |x:= n
crashes and x=i afterwards, we can deduce that x:= i was the nvo-maximal write that persisted,
but cannot infer the nvo order between the other n−1 writes.
More generally, experimental validation of memory persistency models remains an interesting

open problem, and we plan to pursue it in future work. Litmus testing for memory consistency
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models is well established [Alglave et al. 2015, 2011; Chong et al. 2018], but it remains unclear how
best to insert the crashes that would be needed to test memory persistency models. One option
would be to use a simulator (which is how Bornholt et al. [2016] validated their crash-consistency
models for filesystems) but this would not necessary reveal all the concurrency behaviours that real
processors can exhibit. Another option, applicable when the processor-under-test is a component
of a system-on-chip (SoC) FPGA [Jain et al. 2018], is to build custom hardware to monitor the traffic
to persistent memory, and thus to detect nvo violations without the need for crashes.
As additional directions of future work, we plan to build on top of the work presented here

in several ways. First, having established a sound baseline PSER implementation in PARMv8, we
plan to investigate its performance, and the extent to which its performance can be improved by
the selective removal of barriers and write-backs [Alglave et al. 2017]. Second, we plan to explore
language-level persistency models further by (1) investigating weaker transactional consistency
models than serialisability (e.g. snapshot isolation) in the context of NVM; and (2) researching
persistency extensions of high-level languages such as C/C++. Third, we plan to formalise other
architecture-level persistency models, including that of Intel-x86 described informally in [Intel
2019]; such a formalisation would provide a firmer foundation for tools such as PMTest [Liu et al.
2019] that seek persistency bugs in software running over x86. Fourth, we plan to specify and
verify the persistency semantics and guarantees of existing NVM libraries, such as those in [Cooper
2008; Intel 2015; PCJ 2016]. Lastly, using our formal declarative framework, we plan to develop
automated verification techniques for NVM, such as model checking.
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