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Abstract

The iron sulphide greigite (Fe3S4) is linked to important diagenetic processes in sediments

and to hydrocarbon formation and migration. The magnetic properties of this ferrimagnetic

mineral are relatively obscure because it is difficult to synthesise and because it is unstable and

therefore thought to be irrelevant to the geological record. However, it is increasingly recognised

that greigite can remain stable on geological timescales. It is important to understand the

magnetic properties of greigite to identify its presence and timing of formation as it is a proxy

for environmental magnetic studies and for hydrocarbon microseepage identification.

In this thesis, numerical methods are used to study the magnetic properties of greigite. Using

a micromagnetic finite-element method (FEM), important questions regarding the magnetic

structure and palaeomagnetic recording fidelity of gregite are addressed. For equidimensional

particles, the single-domain (SD) to single-vortex (SV) threshold is found to be d0 ≈ 54 nm

and only SV particles > 70 nm to carry stable magnetisations over billion-year timescales. A

simplified model is developed to study the hysteresis and first-order reversal curve (FORC)

properties of non-interacting idealised SD greigite particles. To understand the effects of SV

magnetisations on FORC properties, a micromagnetic FEM is used to simulate randomly

oriented dispersions of non-interacting greigite in the SV size range. SV effects dominate the

FORC signal for particles > 70 nm. Implications for FORC diagram interpretation are discussed.

Magnetic inter-particle interactions are known to effect the FORC response of magnetic particle

ensembles. A micromagnetic FEM is used to study the FORC signal of randomly dispersed

strongly interacting clusters of greigite. The FORC response of strongly interacting greigite is

found to be similar to that of multi-domain (MD) particles. Since naturally occurring greigite

is rarely in a MD state, it is concluded that in greigite-bearing rocks that produce MD-like

FORC signals the origin of this signal should be attributed to strong interactions between the

particles.
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Chapter 1

Introduction

1.1 Motivation

Since ancient times, when peoples like the Olmecs, Chinese and Greeks discovered the strange

properties of lodestones (Carlson, 1975; Evans, 1977)—magnetic rocks composed of magnetite

and hematite—magnetism has marvelled human imagination and been used to aid navigation

(May, 1981). The fundamental physical theory of magnetism was laid out by the mid nineteenth

century (Maxwell, 1861); however, understanding of the magnetic properties of rocks would

have to wait.

In the first half of the twentieth century, systematic studies of how rocks acquire and

retain magnetisations (Koenigsberger, 1938; Thellier, 1938; Nagata et al., 1943) gave rise to

the discipline of rock magnetism. Knowledge of rock magnetism has been behind some of

the most significant breakthroughs in our understanding of the workings of our planet, e.g.,

continental drift. Today, insights gained from rock magnetism are used to study the history of

Earth’s and planetary magnetic fields (palaeomagnetism) (Dunlop and Özdemir, 1997) as well as

palaeoclimates (environmental magnetism) (Evans and Heller, 2003), among other applications

in Earth and planetary science.

In environmental magnetism, palaeoclimatic conditions can be ascertained from the abun-

dance of and size distributions of magnetic particles found in, e.g., sediments. The smaller

particles are magnetised uniformly, this is the so-called single-domain (SD) state. With in-
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Chapter 1. Introduction

Figure 1.1: Domain state schematic. Single-domain particles (a) are uniformly magnetised
(highest magnetic moment). With increasing size, the magnetisation curls into a single-vortex
state (b) (lower magnetic moment). In larger particles, the magnetisation is arranged in a
multi-domain state (c) with regions called magnetic domains uniformly magnetised (lowest
magnetic moment).

creasing particle size, a particle can no longer exist in a SD state; the magnetisation curls to

produce a single-vortex (SV) structure (Roberts et al., 2017) (Fig. 1.1). Even larger particles

form a multi-domain (MD) structure, i.e., multiple regions each uniformly magnetised along

different directions. Each of these domain states has different magnetic properties (Dunlop and

Özdemir, 1997); rock magnetic measurements can provide estimates for the abundance and size

distributions of magnetic minerals and thus palaeoclimatic information. This magnetic proxy

for environmental studies also has applications for hydrocarbon exploration (Emmerton et al.,

2013a; Abubakar et al., 2015).

Airborne magnetic surveys over oil fields (Donovan et al., 1979) have revealed magnetic

anomalies, i.e., measurable variations in the background magnetic field. Donovan et al. (1979)

suggested that these anomalies are caused by the creation of authigenic near-surface magnetite

in an environment of hydrocarbon seepage from the underlying reservoir. Further studies by

Donovan et al. (1984), Elmore et al. (1993) and Reynolds et al. (1993) in the U.S.A., Dı́az

et al. (2000), Costanzo-Alvarez et al. (2006, 2012), González et al. (2002), Guzmán et al. (2011)

in Venezuela and Liu and Liu (1999), Liu et al. (2004, 2006) in China have provided strong

evidence for a genetic relationship between the magnetic contrasts produced by ferrimagnetic

minerals near the surface and the underlying reservoir. These investigations confirm the original
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hypothesis (Donovan et al., 1979) that the reducing environment caused by the upward seepage

from the reservoirs is conducive to the formation of magnetic minerals such as magnetite and

other iron oxides, greigite and other iron sulphides and depletion of minerals such as hematite

(Machel and Burton, 1991), thus furthering the case for using a combination of aeromagnetic

surveying and rock-magnetic measurements of soils and rocks for hydrocarbon prospecting.

Authigenic formation of magnetic minerals under hydrocarbon-producing conditions has

been confirmed by Abubakar et al. (2015); however, discussion on the exact mechanism for the

formation of these minerals at different depths is ongoing. Machel and Burton (1991) have

identified two primary agents for the precipitation of magnetic minerals under the influence of

hydrocarbon seepage. At higher temperatures and thus greater depths they propose chemical

processes as the main factor while at shallower depths and lower temperatures it is argued that

microbial sulphate-reducing processes are playing the larger role. Machel and Burton (1991) also

emphasised the difficulty in linking a magnetic anomaly to a process of hydrocarbon seepage

because the precipitation of magnetic minerals can cause positive or negative anomalies—that is,

peaks or dips in the geomagnetic field and the magnetic susceptibility of the soils. Nevertheless,

careful analysis of the local conditions can result in the successful application of rock-magnetic

measurements to hydrocarbon exploration (Donovan et al., 1984; Liu et al., 2006; Emmerton

et al., 2013a). Magnetisation of oil-bearing rocks can also be used to assess the quality of

oil (Emmerton et al., 2013b). It was recognised by Reynolds et al. (1993) that in some cases

iron sulphides are more important to the magnetic contrasts and thus to the identification

of prospective oil-producing fields than iron oxides. Particularly, greigite (Fig. 1.2) has been

identified as an authigenic mineral of the utmost importance (Reynolds et al., 1993).

Greigite, first discovered in lacustrine sediments (Skinner et al., 1964), is an iron sulphide

(Fe3S4) that can be thought of as the sulphide equivalent of the iron oxide magnetite (Fe3O4)

as they have the same crystal structure only with sulphur replacing oxygen. Like magnetite,

it is highly magnetic (Li et al., 2014). It is commonly formed authigenically in diagenetic

anoxic sulphate-reducing sediments (Roberts et al., 2011) as a precursor to pyrite (Berner, 1984;

Hunger and Benning, 2007). Because of its unstable and precursory nature, its importance

as a palaeomagnetic recorder has not been as readily realised as that of magnetite. However,
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Chapter 1. Introduction

Figure 1.2: Greigite associated to magnetic contrasts in hydrocarbon reservoirs. a) Scanning
electron microscope micrograph and b) energy-dispersive X-ray spectroscopy analysis from
the magnetic fraction of drill cuttings show spherical aggregates of minerals with high Fe and
S content (likely greigite). c) Hysteresis curves for the same sample support the presence of
ferrimagnetic minerals. (From Guzmán et al. (2011)).
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geochemical conditions in sediments that are conducive to the long-term preservation of greigite

are not uncommon (Roberts et al., 2011; Roberts, 2015) and so, greigite is an important carrier

of natural remanent magnetisation (NRM) in many systems (Reynolds et al., 1994; Snowball,

1997; Ron et al., 2007; Roberts et al., 2010).

Magnetic mineral grains that are linked to hydrocarbon seepage have sizes ≤ 30 nm and thus

generally in the SD range (Liu et al., 2006). In terms of morphology, it has been repeatedly found

(Ariztegui and Dobson, 1996; Snowball, 1997; Aldana et al., 1999; Rowan and Roberts, 2006;

Roberts et al., 2010; Roberts, 2015) that equant grains of greigite assemble in raspberry-shaped

aggregates (Fig. 1.3) called framboids (from the French framboise meaning raspberry). Presence

of magnetic particle framboidal clusters has been linked to chemical alterations produced by

hydrocarbon seepage (Aldana et al., 1999) and to palaeoclimatic conditions (Ariztegui and

Dobson, 1996).

Given the unstable nature of greigite and the difficulties to produce synthetic samples,

numerical investigations have the potential to answer important questions about greigite that

can have great impact on magnetic hydrocarbon exploration and environmental magnetic studies.

It is important that the fundamental magnetic parameters of greigite are precisely known to

create accurate numerical models. Fabrication of higly pure synthetic greigite allowed Chang

et al. (2008) to measure the saturation magnetisation MS and the exchange stiffness constant A;

Li et al. (2014) improved the measurement of the saturation magnetisation. Winklhofer et al.

(2014) measured the first estimates for the magnetocrystalline anisotropy (MCA) constants.

These studies allow now for accurate models of greigite magnetisations.

In this thesis, numerical methods are employed to answer some fundamental questions about

the magnetic properties of greigite:

� How does shape and size effect the magnetic structure in sub-micronic greigite?

� What is the critical size at which greigite can no longer be SD?

� Can greigite carry stable magnetisations over geological scales?

Also, it is important to answer some questions on how these properties effect bulk measurements

commonly used for the identification of greigite. In this thesis, the focus is on hysteresis

18
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Figure 1.3: Scanning electron microscopy images of iron sulphide minerals. Elongated framboids
and non-framboidal pyrite aggregates that probably represent remineralisation of plant cellular
matter(a, b). Images at progressively higher magnification of an iron sulphide nodule with
evidence of plant matter remineralisation (c–f). The platey minerals are non-magnetic hexagonal
pyrrhotite. In (e), a void within the polished surface reveals a cluster of greigite (finest-grained)
and pyrite (coarser-grained) framboids that have been overgrown by pyrrhotite (platey texture).
(From Roberts (2015)).

(Mayergoyz, 1986) and first-order reversal curve (FORC) (Roberts et al., 2000) properties:

� What is the hysteresis and FORC signal of non-interacting SD greigite ensembles?

� What effect does SV magnetisations have on the non-interacting FORC response?

� What is the FORC response of framboidal aggregates of greigite?

Answers to these questions have the potential to aid identification of greigite associated with

magnetic constrasts over oil reservoirs.

1.2 The iron sulphide greigite

1.2.1 Greigite occurrence in sediments

In sulphide-rich sediments, ubiquitous redox reactions cause magnetic iron oxide minerals like

magnetite and hematite to be replaced by iron sulphides (Roberts, 2015), most commonly
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pyrite (Berner, 1984). Pyrite is a paramagnetic mineral, and thus does not carry a permanent

magnetisation. The replacement of magnetite and hematite for pyrite has important consequences

for palaeomagnetic analyses of sediments as it can cause the effective destruction of the

palaeomagnetic signal (Rowan et al., 2009). This process is pervasive in continental margin

marine sediments with high organic carbon contents (Roberts, 2015). However, if the rate of

Fe2+ supply exceeds H2S production (e.g. by sulphate-reducing bacteria), iron sulphides that

form as precursors to pyrite formation (like greigite) can be preserved (Berner, 1984). Greigite

can form early during sediment burial (Reynolds et al., 1999) or at a later stage, remagnetising

the host sediment (Roberts and Weaver, 2005) depending on the chronological sequence of the

availability of the reactants conducive to greigite preservation. Identification of greigite and the

timing of its formation is therefore critical for the magnetic interpretation of sediments.

1.2.2 Greigite textures: framboidal clusters

Iron sulphide textures can provide important environmental information about the early sed-

imentary conditions (Roberts, 2015). It is, then, important to identify the texture in which

greigite occurs. Among the possible greigite textures, framboidal greigite has been identified as

widespread (Ariztegui and Dobson, 1996; Wilkin and Barnes, 1997) and potentially related to

hydrocarbon migration (Aldana et al., 1999).

Framboids are spherical aggregates of greigite nano-crystals in which all the crystallites

have the same size (Fig. 1.3). Greigite and pyrite are often found in framboidal clusters and

greigite also filling the space in a less organised manner (Wilkin and Barnes, 1997; Roberts

and Weaver, 2005; Roberts et al., 2010; Rowan and Roberts, 2006). Framboid origin is still

debated, although some conclusions have been proposed. This morphology does not require

biological activity (Sweeney and Kaplan, 1973; Wilkin and Barnes, 1996) although abundance

of framboidal greigite is associated with high organic content. It is argued that formation of

framboidal greigite is a necessary precursor to pyrite framboids (Sweeney and Kaplan, 1973;

Wilkin and Barnes, 1997). Greigite framboids have been widely observed and the constituent

nanocrystals are always finer-grained than neighbouring pyrite crystals (Ariztegui and Dobson,

1996; Roberts and Weaver, 2005; Roberts et al., 2010; Rowan and Roberts, 2006). This is
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consistent with the pyrite framboid formation process proposed by Wilkin and Barnes (1997):

1. nucleation of iron monosulphide (FeS, mackinawite) nanocrystals,

2. chemical alteration of these into greigite (Fe3S4),

3. aggregation of greigite nanocrystals with uniform sizes to form framboids,

4. replacement of greigite by pyrite (FeS2).

Alternatively, the geochemical balance between iron and sulphur can impede the replacement of

greigite by pyrite, leading to greigite preservation.

Independently of formation mechanism, an important aspect of greigite and pyrite framboids

is that the nanocrystals in all framboids have uniform particle sizes (Wilkin and Barnes, 1996).

This is a potential indication that the crystallites nucleated simultaneously, at the same growth

rate and thus all under the same geochemical conditions. This is an important observation with

potential applications for the timing of sulphidisation events on a geological timescale. Because

of this, identification of framboidal greigite is an important problem for environmental magnetic

studies. Occurences of magnetite framboids in meteoritic samples have also been observed

(Astafieva et al., 2004; Kimura et al., 2013); therefore, magnetic mineral framboidal textures are

widespread and identification via rock magnetic measurements is an important problem.

1.2.3 Fundamental magnetic parameters of greigite

The fundamental magnetic parameters of greigite used throughout this investigation are the

saturation magnetisation MS = 3.51µB p.c.u. (Li et al., 2014) or ∼2.7 × 105 A/m which is

∼11% higher than the value previously reported by Chang et al. (2009) of 3.25µB p.c.u.

(and ∼57% the value of MS for magnetite). Li et al. (2014) synthesised highly pure, high-

crystallinity greigite samples on which M(H) hysteresis curves were measured. The saturation

magnetisation was estimated from a nonlinear fitting M(H) = MS(1− aH−1 + bH−2) + cH1/2

where a, b, c are constants that describe the structural inhomogeneity within the sample, the

magnetic anisotropy energy, and the paramagnetic effect caused by the applied field, respectively.

Microstructural inhomogeneities determine the low field response whereas the approach to
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saturation is determined by the anisotropy (Li et al., 2014). The obtained room-temperature

value of MS = 3.51µB p.c.u. is lower than the value of 4µB p.c.u. predicted from a purely ionic

model (Coey et al., 1970), this is due to the degree of covalency of the Fe–S bond as well as

the possible canting of surface spins induced by surfactant molecules bonded to the surface (Li

et al., 2014).

Winklhofer et al. (2014) used ferromagnetic resonance spectroscopy to estimate the anisotropy

constants. They obtained a (first) cubic MCA constant K1 = −1.7× 104 J/m3 and negligible

second MCA constant K2 to K1 ratio, i.e., the easy axes are the <111>. The data was consistent,

as well, with a positive value for K1 and large K2 ≈ 3K1 and thus <100> easy axes; however,

there is indirect (Winklhofer et al., 2014) and direct (Li et al., 2014) evidence favouring the

anisotropy model with negative K1 which we use throughout this work.

The exchange stiffness constant was estimated by Chang et al. (2008) to be A = 2×10−12 J/m.

The exchange energy in a ferrimagnet is related to the spin wave stiffness. Spin waves are

collective wave-like disturbances in the magnetic ordering of magnetic matter. Experimental

observation of spin waves can be achieved by several methods, e.g., inelastic neutron scattering

and spin wave resonance. These experimental techniques require, however, relatively large,

uniform crystals on which to observe spin wave propagation. Since fabrication of such samples is

as yet impossible for greigite, Chang et al. (2008) measured the saturation magnetisation (in a

field of 5 T) of powdered greigite samples at low temperatures. Using the spin wave expansion of

the spontaneous magnetisation for low temperaturesM(T ) = MS(1−CT 3/2) (Bloch, 1932), where

C is a function of the spin wave stiffness, they were able to fit the data and obtain an estimate

of the spin wave stiffness and therefore the exchange stiffness constant. Determination of the

spin wave stiffness through different approaches like inelastic neutron scattering (Torrie, 1967),

low-temperature heat capacity (Kenan et al., 1963) and low-temperature MS measurements

(Aragón, 1992), however, has been known to produce variable results for magnetite (Chang

et al., 2008). This places a degree of uncertainty on this measurement for greigite that is hard to

quantify in the absence of measurements acquired through means other than low-temperature

saturation magnetisation.

Chemical alteration of greigite at high temperatures has made difficult to measure accurately
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the Curie temperature; however, there is strong evidence for a Curie temperature TC > 620 K

(Roberts et al., 2010). The exchange energy is directly related to TC; within a mean field

approximation (Kouvel, 1956):

TC =
4
√

2JAB

KB

√
SASB(SA + 1)(SB + 1), (1.1)

where KB is Boltzmann’s constant, JAB is the exchange integral between A- and B-sites of

the inverse spinel crystal lattice of greigite and SA, SB the spin magnetic moments of sites A

and B, respectively. Plugging in the relatively low value of JAB ≈ 1 meV measured by Chang

et al. (2008) and SA = 1.54, SA = 1.63 (Chang et al., 2009) predicts a low TC ≈ 260− 287 K.

This suggests the uncertainty in the measurement of A by Chang et al. (2008) is significant. A

value of JAB = 2.31 meV results in a TC ≈ 620 K. However, mean field approximations tend to

overestimate the Curie temperature, so the value of the exchange integral JAB could be up to 4

times the value reported by Chang et al. (2008). Throughout this work the value of Chang et al.

(2008) is used. Increased values of A have the effect of increasing the domain wall width and thus

the critical size d0 of the transition from uniform to non-uniform magnetisation; a calculation of

the SD to SV critical size d0 was done for values A = 4 × 10−12 J/m and A = 8 × 10−12 J/m

(Chapter 2) to quantify this effect. Changes in the exchange stiffness constant have little effects

on the coercivities of SD and possibly SV grains. Uncertainty in this parameter can modify the

absolute values of some of the magnetic properties simulated in this work, however, the physics

should remain mostly unaffected.

1.3 Magnetism and matter

For the purposes of the thesis, a brief review of fundamental concepts of magnetism follows.
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1.3.1 Fundamentals of magnetism

The magnetic induction field B, like the electric field E, is defined by its effect on a test particle,

namely, the Lorentz force (Feynman et al., 1964):

F Lorentz = q(E + v ×B), (1.2)

where q is the electrical charge of the test particle and v its velocity. The force a magnetic

B field exerts on a moving electrical charge is perpendicular to both its velocity and to the

field itself. From Eq. 1.2, the units of B are N/(C · m
s
), this physically meaningful unit (one

Newton of force per charge of one Coulomb moving at one meter per second) is called Tesla,

with symbol T.

When describing magnetic fields, a distinction between the magnetic induction B and the

magnetic field H is made. These denominations, however, are of historical character; it can be

proved that the fundamental field is the induction field B (Feynman et al., 1964). In a vacuum,

B and H coincide in direction. In the SI the magnetic and induction fields differ by a scalar

factor µ0, the magnetic constant, also known as the vacuum permeability or permeability of free

space:

µ0 =
Bvacuum

Hvacuum

= 4π × 10−7 T · m

A
. (1.3)

Although the names vacuum permeability and permeability of free space are still widespread

it is preferable to use the name magnetic constant since it reflects the fact that it is a defined

value and not a measurement.

The description of magnetic fields is analogue to that of electrical fields. Although, unlike

the situation in electricity, there are no magnetic charges, only magnetic dipoles (Feynman

et al., 1964). The induction due to a wire carrying a current I (generally varying along the

path) at a point r can be calculated from the Biot-Savart law:

B(r) =
µ0

4π

∫
C

I dl × r
r3

, (1.4)

where dl is a differential element of length along the wire in the direction of the current. The
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integral is carried out along a line, usually but not necessarily a closed curve.

In general, it is more interesting and important to consider magnetism in the presence of

matter. A material is composed of atoms, which individually may hold a permanent magnetic

dipole moment µ (with units A ·m2). The magnetisation vector field M (with constant norm

|M | = MS) is the spatial average of a myriad of these individual atomic dipole moments over a

suitable volume. Therefore, M accounts for the contribution of atomic magnetic moments to

the total field. In the SI units we have

B = µ0(H +M ); (1.5)

H and M have the same units, the Ampere per meter A/m. The meaning of this unit is

somewhat obscured, but made evident if written in the form A/m = A ·m2/m3, i.e., this unit

can be thought of as a density of magnetic moments.

1.3.2 Diamagnetism and paramagnetism

Magnetism in matter can be broadly categorised into three phenomena: diamagnetism, param-

agnetism and ferromagnetism. Diamagnetism and paramagnetism are of little importance to

this work so will be only briefly described.

Diamagnetism is a property of all matter. It is the smallest effect and is a tendency of a

material to oppose an external magnetic field. An external magnetic field exerts a Lorentz force

on the bound electrons that causes them to precess like a gyroscope. This is called Larmor

precession and is equivalent to an electric current producing a magnetic moment in the direction

opposed to the external B field. Water is a common example of a highly diamagnetic material.

Paramagnetism is a partial alignment of the atomic magnetic moments of the atoms in a

material with an external B field. It is only thermal noise that prevents a perfect alignment of

the atomic magnetic moments with the external field, therefore this is a highly temperature

dependent phenomenon. Nevertheless, at ordinary temperatures, paramagnetism outweighs

diamagnetism by a factor greater than 10.

In both diamagnetism and paramagnetism a magnetisation is induced by an external field.
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The rate at which the magnetisation is acquired with respect to the applied field is called the

magnetic susceptibility χ = dM
dH

, in general a tensor.

1.3.3 Ferromagnetism

A ferromagnetic material, in contrast with diamagnetic and paramagnetic materials, can retain

a (non-saturated) remanent magnetisation in the absence of an external field. In the presence

of a relatively weak external field, ferromagnetic materials acquire magnetisations thousands

of times stronger than paramagnetic materials. To reconcile these two observations, Weiss

(1906) proposed that in ferromagnetic materials there exist magnetic domains, regions which

are locally magnetised to saturation, brought about by an ad-hoc molecular field; when there is

an external field, domains aligned with the field would grow and/or the domains would rotate

with the field and when the field is removed the domains would return to random alignments

thereby reducing the net magnetisation of the body. Although domain theory was succesful in

explaining important aspects of ferromagnetic behaviour, the theory was unsatisfying as it did

not explain the origin of the molecular field (Kittel, 1949).

Ultimately, ferromagnetism is a phenomenon that cannot be explained solely by classical

physics. At the core is the quantum-mechanical concept of exchange coupling, a phenomenon

with no classical counterpart (Heisenberg, 1926). The origin of ferromagnetism is the alignment

of atomic moments (electron spins) by quantum exchange forces. However, in a narrower

sense, ferromagnetic materials are those in which all the atomic moments share the same

alignment. There is a class of materials in which the quantum exchange forces create anti-

parallel alignments between atomic moments in different sublattices. When the net magnetic

moment of one sublattice is smaller than that of the other, there remains a net moment: these

are the ferrimagnetic materials. When the magnetic moments of the different sublattices cancel

there is no net magnetic moment: these are the antiferromagnetic materials. Throughout the

thesis, the term ferromagnetism is used in a broad sense to include ferrimagnetic behaviour.

Exchange coupling is hindered by thermal noise, i.e., ferromagnetic behaviour weakens

with increasing temperature. There is a threshold temperature beyond which thermal fluctua-

tions destroy all magnetic ordering and the material becomes paramagnetic; this is the Curie
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temperature TC, characteristic of a ferromagnetic material.

Landau and Lifshitz (1935) obtained a continuum expression for the exchange energy. The

main result in Landau and Lifshitz (1935) was the theoretical proof that inside a ferromagnetic

material there are regions that are magnetised to saturation: the magnetic domains, and that

between these domains exist regions where the magnetisation continuously rotates from the

direction of one domain to that of the other; these are called domain walls. The calculation

of Landau and Lifshitz (1935) of magnetic domain size and domain wall width and speed of

propagation was the first micromagnetic calculation (Brown, 1963).

1.4 Micromagnetics

Brown (1963) recognised that there was a need for a robust theory on a scale large enough

to treat ferromagnetic bodies as a a continuum and small enough to capture the magnetic

structure at sub-micron lengths. He called such a theory micromagnetics. The seminal work

of Landau and Lifshitz (1935) and that of Brown (1963) are the theoretical basis from which

micromagnetics emerged. Micromagnetics is the theory that bridges the fundamental quantum-

mechanical picture and the effective macroscopic theory of Maxwell equations. The main goal of

micromagnetics is to obtain a configuration of the magnetisation vector M in a ferromagnetic

material.

1.4.1 Magnetic Gibbs free energy

There are two main approaches to micromagnetism. One is to obtain a configuration of the

magnetisation in a ferromagnetic material by minimising the magnetic Gibbs free energy. The

other is to solve a partial differential equation (PDE) that describes the dynamics of the magnetic

moments; this equation was derived by Landau and Lifshitz (1935) and improved by Gilbert

(2004) to include damping effects, the Landau-Lifshitz-Gilbert (LLG) equation.

It is known from thermodynamics that starting from a nonequilibrium state the evolution of

a system can only be such that its Gibbs free energy diminishes. So, by an explicit formulation

of the different energies contributing to the total magnetic Gibbs free energy it is possible to find
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a configuration that is either a local energy minimum (LEM) or global energy minimum (GEM).

One of the biggest contributions of micromagnetics to our understanding of magnetic phenomena

in matter is that it is quite common for a material to be in a LEM configuration rather than

GEM. This is the cause of magnetic hysteresis and magnetic remanence. Disregarding thermal

effects and magnetostrictive forces, four magnetic energies contribute to the total. There are

microscopic contributions like the exchange energy and the MCA energy. Also macroscopic

contributions like the magnetostatic self-energy and the external field energy. The external field

is independent of the magnetisation and the exchange and anisotropy energies are short range

so these are very easy to calculate. The magnetostatic self-energy, i.e., the interaction between

the magnetic moments in the material and the stray field the magnetic body produces is a long

range, non-local interaction. This energy creates a demagnetising effect.

We can write the total magnetic Gibbs free energy EG as the integral of the sum of energy

densities φ associated with these effects (Brown, 1963):

EG =

∫
Ω

(φexchange + φanisotropy + φstray + φexternal) d3r, (1.6)

where Ω is the ferromagnetic volume and d3r the volume differential.

The exchange energy is a quantum-mechanical phenomenon wherein the exchange of inner

shell electrons between neighbouring atoms results in spin-exchange coupling. The continuum

expression was obtained by Landau and Lifshitz (1935) and found to be proportional, up to a

constant, to the square of the gradient of the magnetisation distribution:

φexchange = A|∇m|2, (1.7)

where A is the exchange stiffness constant and m is the reduced magnetisation vector, i.e., m is

a unit vector in the direction of the magnetisation. This energy density is minimised for uniform

magnetisations, therefore, the effect of the exchange energy is to homogenise the distribution of

moments.

MCA energy is due to the atomic configuration of a crystalline material. The specific

arrangement of atoms in the crystal can cause some directions to be easier for the moments
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to align with (Kittel, 1949). These directions are called easy axes. The anisotropy energy of a

cubic crystal is given by:

φanisotropy =
K1

2

∑
i 6=j

γ2
i γ

2
j +K2

∏
i

γ2
i , (1.8)

where γi are the magnetisation direction cosines and K1, K2 the first and second anisotropy

constants. In terms of the reduced magnetisation vector components, this can be written as:

φanisotropy = K1(m2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2m

2
xm

2
ym

2
z. (1.9)

The effect of the MCA energy is a tendency for the magnetic moments to align with the easy

axes of magnetisation.

The external field energy is the potential energy associated with the interaction of the

magnetic moments with an external field:

φexternal = −M ·Bexternal, (1.10)

where Bexternal is an external magnetic induction field. This energy tends to align the magnetic

moments with the external field.

The magnetostatic self-energy is due to the magnetostatic interaction each magnetic moment

has with each other. Because in a numerical micromagnetic model there can be hundreds

of thousands of individual magnetic moments (mesh/grid points), this is energy is the most

numerically expensive to calculate; many methods have been devised to avoid calculating this

interaction for each moment, most of these based on the magnetic scalar potential.

A partial differential equation for the magnetic potential ϕ is formulated of the form:

∇2ϕ(r) =


4π∇ ·M , for r ∈ Ω

0, for r ∈ R3/Ω;

(1.11)
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with boundary conditions on the surface ∂Ω:

[ϕ]|∂Ω = 0, (1.12)[
∂ϕ

∂n̂

]∣∣∣∣
∂Ω

= −4πM · n̂, (1.13)

where [· · · ]|∂Ω denotes a discontinuity across the boundary (surface) and n̂ an outward-pointing

surface-normal unit vector. Also, a condition:

lim
|r|→∞

ϕ(r) = 0 (1.14)

must be met. Solving this sytem for ϕ is sufficient to calculate the stray field from:

Bstray = −µ0∇ϕ. (1.15)

One of the principal difficulties in solving Eq. 1.11 is the limit condition (Eq. 1.14) because in

numerical calculations it is impossible to formally evaluate the potential at infinity. Imhoff et al.

(1990) proposed a transformation method that requires space surrounding the ferromagnetic

body to be meshed into two concentric shells. The potential is mapped on the outer shell

to infinity to satisfy the boundary conditions. A hybrid finite-element method (FEM) and

boundary-element method (BEM) formulation (Fredkin and Koehler, 1990) does not require

free space to be meshed, at the cost of the mathematical complexity involved in the hybrid

scheme. In this scheme, the scalar magnetic potential is split ϕ = ϕ1 + ϕ2, where for r ∈ Ω, ϕ1

is the solution to the inhomogenous Neumann problem:

∇2ϕ1 = 4π∇ ·M (1.16)

with the boundary condition

∂ϕ1

∂n̂

∣∣∣∣
∂Ω

= 4πM · n̂, (1.17)
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and ϕ1 is defined ϕ1 = 0 for r ∈ R3/Ω. With this, ϕ2 satisfies:

∇2ϕ2 = 0, (1.18)

and from the boundary conditions (Eqs. 1.12, 1.13), there are conditions at the boundary:

[ϕ2]|∂Ω = ϕ1, (1.19)[
∂ϕ2

∂n̂

]∣∣∣∣
∂Ω

= 0; (1.20)

a condition lim|r|→∞ ϕ2 = 0 is also required. In practice, ϕ1 is determined with a FEM which

gives the boundary conditions to determine ϕ2 via BEM.

The magnetostatic self-energy creates a demagnetising effect, that is, the fieldBstray produced

by the magnetisation distribution opposes the magnetisation. It is also the phenomenon that

has the principal role in the domain structure of large particles. When this demagnetising field

is calculated, the magnetostatic self-energy can be expressed as (Brown, 1963):

φstray = −1

2
M ·Bstray, (1.21)

where the factor 1/2 accounts for the interaction between all magnetic dipoles being counted

twice when calculating Bstray.

With these expressions for the energy densities, Eq. 1.6 can now be rewritten as:

EG =

∫
Ω

(
A|∇m|2 +K1(m2

xm
2
y +m2

ym
2
z +m2

zm
2
x) +K2m

2
xm

2
ym

2
z

−M ·Bexternal −−
1

2
M ·Bstray

)
d3r. (1.22)

A system out of equilibrium is spontaneously driven to diminish its free energy. The aim

of a micromagnetic algorithm is to obtain a distribution of the magnetisation in equilibrum.

Fischbacher et al. (2017) describes energy minimisation algorithms for the micromagnetic energy

functional. Brown (1963) proposed a variational method based on the variational derivative

of the total energy with respect to the magnetisation. In equilibrium, the variation of the free
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energy vanishes

δEG

δm
= 0. (1.23)

This leads to Brown’s equation:

m×
(

2A

MS

∇2m+Banisotropy +Bexternal +Bstray

)
= 0, (1.24)

with Banisotropy = 1
MS

(2K1mx(1−m2
x) + 2K2m

2
ym

2
zmx)ı̂+ (2K1my(1−m2

y) + 2K2m
2
zm

2
xmy)̂+

(2K1mz(1−m2
z) + 2K2m

2
xm

2
ymz)k̂. This means that in equilibrium the magnetisation is parallel

to an effective field:

Beff =
2A

Ms

∇2m+Banisotropy +Bexternal +Bstray = µ0Heff, (1.25)

and so, the torque (analogue) acting on the magnetic moments vanishes m×Beff = 0. This is

the motivation to use a dynamical equation involving the torques produced by the effective field

as an alternative to energy minimisation.

1.4.2 The Landau-Lifshitz-Gilbert equation

Finding an equilibrium magnetisation via energy minimisation (Eq. 1.6) may not always result

in physically meaningful distributions. This is because in micromagnetic systems, the energy

landscape is usually very complicated and contains many local maxima, minima and saddle

points. A more physical approach is finding a solution to the dynamical problem. However, this

is numerically more expensive than energy minimisation. The motion of a magnetic moment

is mainly due to the Larmor precession around its local field. The Gilbert equation (Gilbert,

2004) describes this precession and considers damping effects with a single damping constant:

∂M

∂t
= −γM ×Heff + αM × ∂M

∂t
, (1.26)

where γ = 2.210173 × 105 m
A·s is the gyromagnetic ratio and α a phenomenological damping

parameter, characteristic of the material (Gilbert, 2004). An equivalent formulation is the LLG
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equation:

∂M

∂t
= −γ′

M ×Heff −
αγ

′

MS

M × (M ×Heff) , (1.27)

with γ
′
= γ/(1 + α2).

1.4.3 Micromagnetic modelling

Although the fundamentals of micromagnetic theory were laid out, analytical treatment of

the micromagnetic equations was limited to simple cases (Landau and Lifshitz, 1935; Brown,

1940; Kittel, 1949). In order to investigate more complex situations it is necessary to turn to

approximate methods. Numerical simulations of the micromagnetic equations are, in the most

general case, numerically very expensive, specially the calculation of the long-range nonlinear

demagnetising energy due to magnetostatic dipolar interactions. This constrained the early

numerical investigations to one- or two-dimensional rotations of the dipoles as well as geometries

(Brown and LaBonte, 1965; LaBonte, 1969; Stapper, 1969; Aharoni and Jakubovics, 1986;

Fredkin and Koehler, 1987; Zhu and Bertram, 1988). Although useful to probe the stability

of ferromagnetic crystals with palaeomagnetic implications (Moskowitz and Banerjee, 1979;

Moon and Merrill, 1984; Enkin and Dunlop, 1987), these constrained simulations are very

limited as there is no doubt that the true nature of spin structures in ferromagnetic crystals is

three-dimensional.

Williams and Dunlop (1989) conducted the first unconstrained three-dimensional simulations

of single magnetite cubic grains, confirming the critical size of single domain magnetite grains

using a conjugate gradient method for minimising the energy. Their method consisted in

subdividing a cubic “sample” of magnetite into further cubes within the exchange length of

the material. Inside each of the cubic cells the magnetisation is the average over a very large

number of atomic spins and is represented by a magnetic dipole µ at the center of the cube.

The magnitude of all the dipoles is constant but their directions are allowed to vary. Already

in a sample divided into 12 × 12 × 12 cells, a direct calculation of the demagnetising energy

needs around 1.5 million interaction calculations per iteration. Rewriting the demagnetising

energy in the manner of Rhodes and Rowlands (1954) they were able to reduce the computation
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significantly and solve for up to 22× 22× 22 subcubes.

While the exchange, anisotropy and external field energy are local and easily calculated, it

is the nonlocal dipolar magnetostatic interactions that are the principal obstacle in scaling up

simulations. Much of the effort in micromagnetic research has been directed towards creating

ever more efficient ways to calculate the demagnetising energy. Fabian et al. (1996) and Wright

et al. (1997) developed and applied finite difference (FD) methods based on a fast Fourier

transform to calculate the demagnetising energy. This, along growing computing capabilities,

has allowed micromagnetics to tackle larger, more complex models (Williams and Wright, 1998).

Nevertheless, FD methods restrict the model geometries to cuboid (rectangular prisms more

generally) shapes that, while useful, are somewhat unrealistic shapes for most magnetic minerals.

FEMs have the advantage of being more flexible in the geometries that can be modelled;

in fact, they allow for arbitrary shapes. This is because the spatial domain is discretised into

tetrahedral so-called elements to create an unstructured mesh. This advantage comes at the

cost of higher mathematical complexity. In FEMs, to solve a PDE, it is transformed to its weak

form; the weak form is obtained by multiplying the equation by a so-called test function from a

suitable function space and integrating the equation via integration by parts. The solution is

found in terms of so-called trial functions; in each node i of the mesh the solution ui is postulated

as a linear combination of the trial functions, e.g., ui = aiψ1 + biψ2, usually ψj are linear ‘hat’

functions. Then, an algebraic equation is formed for each node in the mesh to produce a large

system of linear equations for the coefficients ai, bi which is solved by an appropriate algebraic

numerical method. The geometric flexibility of FEMs allows the modelling of mineral grains

with complex morphologies (e.g. Williams et al. (2010)). For producing the FEM tetrahedral

meshes, the proprietary software Trelis has been used.

The capabilities of today’s computers allows to simulate not only single grains but clusters of

them that interact magnetostatically with each other. This once untractable problem has been

proved to be crucial and influence the critical sizes of single domain grains. Muxworthy et al.

(2003), Muxworthy et al. (2004) and Muxworthy and Williams (2006) used a FD method and

investigated the effect of magnetostatic interactions between magnetite grains. Muxworthy et al.

(2013) used the more recently measured (Chang et al., 2008) magnetic parameters of highly
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pure greigite to investigate the intergrain influence in chains of greigite and its implications

for magnetosome crystals, i.e., chains biomineralised by magnetotactic bacteria (Lefèvre et al.,

2011). However, newer, more accurate values of the magnetic parameters of greigite (Li et al.,

2014) have since become available. These investigations can be furthered by FEM models

of more realistic geometries. In this work, the bulk of micromagnetic simulations have been

carried out using the open-source program MERRILL (Ó Conbhúı et al., 2018). This package,

written in FORTRAN, uses a hybrid FEM/BEM formulation for calculation of the stray field

(Fredkin and Koehler, 1990), which makes it particularly useful for problems consisting of several

non-joined ferromagnetic bodies. A number of simulations (Chapter 2) were performed using

the parallelised FEM package DUNLOP (Nagy, 2016). This package, written in C++ and

Python, uses a transformation method to calculate the stray field (Imhoff et al., 1990). Because

of this, this package can tackle large single-body problems.

1.5 Brief introduction to the thesis

In Chapter 2, the zero-field size dependence of the magnetic structure of greigite is investigated

for a variety of naturally occurring shapes via a micromagnetic FEM. A nudged elastic-band

(NEB) method (Fabian and Shcherbakov, 2017) is used to calculate minimal action paths

between minimal energy states for a variety of shapes and sizes. This allows calculation of the

stability of a magnetisation, with implications for palaeomagnetic studies.

A simplified numerical model is developed in Chapter 3 to study the hysteresis of small

greigite grains in a SD state. A spherical magnetic particle is essentially treated as a magnetic

dipole; a gradient method is used to find the energy minimum in an applied field. This model is

used to study the FORC diagrams produced by randomly oriented dispersions of non-interacting

ideal SD greigite (and iron as another relevant application).

A micromagnetic model is used to study the FORC response of randomly oriented non-

interacting particle dispersions of greigite with a variety of sizes in Chapter 4. The FORC signal

of dispersions of particles with non-uniform, vortex magnetisations is investigated. This model

results in heuristics for interpretation of FORC signals when the magnetisations are carried
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by particles in the SV state. For this endeavour, the micromagnetic models were deployed on

Imperial College CX1 high-performance cluster (HPC).

The effects of strong inter-particle magnetostatic interactions on the FORC response is

investigated in Chapter 5. Framboidal geometries are used to study the FORC signal of randomly

oriented dispersions of framboidal greigite. The signal is identified with consequences for the

interpretation of FORC diagrams of greigite-rich sediments. The heavy computational demands

for these simulations were met by deploying the models on Australian National University

Terrawulf HPC.
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Chapter 2

The magnetic structure and

palaeomagnetic recording fidelity of

sub-micron greigite (Fe3S4)

This Chapter is published as Valdez-Grijalva, M. A., Nagy, L., Muxworthy, A. R., Williams, W.,

Fabian, K., 2018. The magnetic structure and palaeomagnetic recording fidelity of sub-micron

greigite (Fe3S4). Earth Planet. Sci. Lett. 483, 76–89.

M. V. G. performed the simulations and wrote the article. M. V. G. and A. M. designed the

experiment and analysed the results. W. W. and L. N. developed the code. W. W. and K. F.

developed the nudged elastic-band method algorithm.

Abstract

We present the results of a finite-element micromagnetic model of 30 nm to 300 nm greigite

(Fe3S4) grains with a variety of equant morphologies. This grain size range covers the magnetic

single-domain (SD) to pseudo single-domain (PSD) transition, and possibly also the PSD to

multi-domain (MD) transition. The SD–PSD threshold d0 is determined to be 50 nm ≤ d0 ≤

56 nm depending on grain shape. The nudged elastic-band method was used to determine the

room temperature energy barriers between stable states and thus the blocking volumes. It is
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found that, in the absence of interparticle magnetostatic interactions, the magnetisation of

equant SD greigite is not stable on a geological scale and only PSD grains ≥ 70 nm can be

expected to carry a stable magnetisation over billion-year timescales, i.e., all non-interacting

SD particles are essentially superparamagnetic. We further identify a mechanism for the PSD

to multi-domain (MD) transition, which is of a continuous nature from PSD nucleation up to

300 nm, when structures typical of MD behaviour like closure domains begin to form.

2.1 Introduction

The ferrimagnetic mineral greigite (Fe3S4) is the iron sulphide analogue of the iron oxide

magnetite (Fe3O4). It is commonly formed as a precursor to pyrite in early diagenetic anoxic

sulphate-reducing sediments (Berner, 1984; Hunger and Benning, 2007) and as a product of

biomineralisation by magnetotactic bacteria (Mann et al., 1990). Although thought to be

thermodynamically unstable under most sedimentary regimes, it has been found to be stable

on geological timescales (Roberts et al., 2011), making greigite a possible natural remanent

magnetisation (NRM) carrier in many systems, e.g., lacustrine (Babinszki et al., 2007; Ron et al.,

2007) and marine (Roberts and Turner, 1993; Roberts and Weaver, 2005; Rowan and Roberts,

2006; Rowan et al., 2009) sediments, oil fields’ shallow overburdens (Abubakar et al., 2015;

Donovan et al., 1984; Reynolds et al., 1993) and gas-hydrate-bearing sediments (Larrasoaña et al.,

2007). To further our understanding of the potential use of greigite as a proxy for environmental

change, hydrocarbon exploration, magnetostratigraphy and in general the contribution of this

iron sulphide to the magnetic properties of rocks, we have implemented micromagnetic numerical

finite-element method (FEM) simulations of greigite. To characterise its basic properties we

have modelled its magnetic domain state’s shape and size dependence using the DUNLOP

package (Nagy, 2016) and its stability on geological timescales at room temperature using the

MERRILL package (Nagy et al., 2017).

The model solutions are dependent on a balance between various magnetic forces and thus

it is important that the material’s magnetic parameters be known as accurately as possible.

Past difficulties in producing pure greigite samples on which to determine these parameters has
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resulted in a lack of accurate models in the literature. However, these difficulties have been

overcome, and recent measurements on highly pure, high crystallinity synthetic greigite samples

(Chang et al., 2008, 2009; Li et al., 2014; Winklhofer et al., 2014) now allow for numerical

micromagnetic models to probe the magnetic microstructure of greigite.

The fundamental magnetic parameters of greigite used in this investigation are the saturation

magnetisation MS = 3.51µB p.c.u. (Li et al., 2014) or ∼2.7 × 105 A/m which is ∼11% higher

than the value reported by Chang et al. (2009) of 3.25µB p.c.u. (and ∼57% the value of MS for

magnetite) and the exchange stiffness constant A = 2× 10−12 J/m (Chang et al., 2008) (∼15%

the value of A for magnetite). Winklhofer et al. (2014) estimated a cubic magnetocrystalline

anisotropy (MCA) term K1 = −1.7 × 104 J/m3 (∼42% higher than the value for magnetite)

and negligible second MCA constant K2 to K1 ratio, i.e., the easy axes are the <111>. The

simulations presented in this work are computationally intensive, which makes exploration of

parameter space unpractical; however, the trends and the physics observed are characteristic of

equidimensional particles with cubic anisotropy.

Very few micromagnetic models of greigite have so far been attempted, with only the work

of Muxworthy et al. (2013) having been published. They implemented a micromagnetic finite-

difference (FD) method that used the earlier value of MS from Chang et al. (2009) to model

both individual grains and the effects of magnetostatic interactions between cuboidal particles of

greigite arranged in chains. For the single crystals they found good agreement with the analytical

calculations of Diaz-Ricci and Kirschvink (1992) (for which crude estimates of the magnetic

parameters were used). However, due to their structured spatial discretisation, FD methods

are not as well suited for the simulation of the euhedral morphologies seen in natural samples

(Snowball, 1997) as FEMs are. Elongation is a common feature of magnetosomal grains but not

of particles with non-biogenic origin. Although Muxworthy et al. (2013) have demonstrated

that particle elongation and interparticle magnetostatic interactions are important, this study

is limited to a variety of equant, isolated particles whose behaviour represent the limit as the

particle concentration approaches zero. As such, this study provides a first step towards a more

complete picture of the role of non-biogenic greigite in rock magnetics.

The grain size of a magnetic mineral strongly affects its magnetic behaviour and palaeo-
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magnetic recording fidelity. As grain size distributions are usually inferred from bulk magnetic

properties, a deep understanding of how a grain’s magnetic properties depend on size is needed.

We present here the results of a numerical FEM study of the stress-free, zero-field domain states

of spherical and equant euhedral single grains of greigite in the single-domain (SD) to pseudo

single-domain (PSD) range. To address this question we used the nudged elastic-band (NEB)

method (Fabian and Shcherbakov, 2017) to calculate action-minimising paths (AMPs) between

stable magnetic configurations which allow us to determine energy barriers and from these the

blocking volumes of naturally occurring equant euhedral grains of greigite.

2.2 Methods

2.2.1 The micromagnetic algorithm

A numerical micromagnetic FEM has been implemented (Ó Conbhúı et al., 2018) to study the

magnetic domain structure and stability of sub-micron equidimensional greigite. For details on

the micromagnetic method see Section 1.4.

FEMs allow for an unstructured discretisation of the spatial domain which in our case is

decomposed into tetrahedral elements. In the treatment of the micromagnetic theory of Brown

(1963) there are some linearisations, which means that there should not be large variations in the

direction of m between neighbouring nodes in the FE mesh. To model nonuniform structures it

is sufficient that the spatial discretisation in the model be smaller than the exchange length

lexch =
√

2A/µ0M2
S (Rave et al., 1998), which for greigite is lexch ≈ 6.6 nm; a maximum element

size of 5 nm has been chosen for all the models.

2.2.2 Choice of morphologies

Based on scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

micrographs of synthetic greigite samples (Chang et al., 2008; Li et al., 2014) and of naturally

occurring samples (Snowball, 1997; Vasiliev et al., 2008), five octahedral shapes have been chosen

with increasing degrees of truncation of their corners: from no truncation at all (octahedron) to a
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‘completely’ truncated shape (cuboctahedron) and three truncated octahedral shapes in-between

to which we further refer to as minimally truncated octahedron, truncated octahedron (the

regular case), and maximally truncated octahedron (Fig. 2.1). This series of shapes models the

influence of the ratio of {001} to {111} faces, which increases with truncation. Furthermore,

spherical shapes which, although unrealistic, serve as ‘control subjects’ that do not exhibit

configurational anisotropy (Williams et al., 2006) and cubic shapes which have been modelled

before by Muxworthy et al. (2013) and represent the case of only {001} faces. All the volumes

are normalised to cubes, i.e., a particle sized 120 nm has a volume of (120 nm)3.

2.2.3 Crystal growth model

The magnetic domain structure of a ferromagnetic nanoparticle obtained by a micromagnetic

algorithm is not only a function of its mineralogy, size and shape, but also of its history. In

particular, it is known that a SD particle can grow and remain SD up to a threshold size dmax

after which it will become PSD (Enkin and Williams, 1994). (In this study we are concerned

with the zero-field microstructure and properties; in this context, the onset of PSD behaviour is

marked by the formation of a single-vortex structure). If the particle then decreases its volume

it will remain PSD down to a threshold dmin (< dmax) below which it will become SD again.

This defines a size range in which a ferromagnetic grain can be either SD or PSD dependent on

its history (Muxworthy and Williams, 2006). This phenomenon has been modelled for the seven

morphologies (Fig. 2.1) in the 30 nm to 300 nm size range.

Starting from a 30 nm particle, we obtain the micromagnetic solution and extrapolate it to

a larger grain. This becomes the new initial condition for which we solve and repeat, growing

the particle in steps of 2 nm. Since a very fine incremental size step is used, much smaller than

the exchange length, we can be certain that we are not missing any features from one step to

the next. This process accurately models grain growth.

Once the particles have grown to 120 nm, the procedure is then reversed in decreasing steps

of 2 nm until the initial size of 30 nm is reached. Since chemical alteration usually proceeds

by alteration of the surfaces, the volume decreasing process can be thought of as a model for

chemical alteration to a non-magnetic phase. This growth from 30 nm to 120 nm followed by
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Figure 2.1: FE meshes of the model euhedral geometries. From a) a regular octahedron, the rest
are obtained by increasingly cutting more off the corners such that the edges of the octahedron
are: b) halved (min. t. octahedron); c) reduced to a third (regular t. octahedron); d) reduced
to a quarter (max. t. octahedron). e) A regular cuboctahedron is obtained by truncating to
the point where the octahedron edges disappear entirely. The easy axes of magnetisation are
the <111> and the hard are the <001>, which are normal to the hexagonal {111} and square
{001} faces, respectively, of the truncated octahedra. For a sense of scale, f) three nested regular
truncated octahedra are shown with sizes 30 nm (red), 120 nm (blue) and 300 nm (black).

the reverse process is referred to as the main loop (ML).

Solutions on the size-descending curve not found on the size-increasing curve were also

subject to growth; the secondary loop (SL). The ML and SL allow us to investigate the different

domain states with size, shape and history. These micromagnetic solutions were performed

by numerical integration of the LLG equation (Eqn. ??). Stable solutions at 120 nm, whether

found on the ML or SL, were further grown up to 300 nm. Energy minimisation was used for

calculations larger than 120 nm, as integration of the LLG equation is prohibitively slow at

these sizes. The parallel DUNLOP package (Nagy, 2016) was used to model these grain size

dependencies.

These models overlook the effect of thermal fluctuations. However, this limitation is addressed

by calculation of the relaxation times. These allow the determination of the particles domain

state at a given size beyond the capabilities of standard micromagnetics.
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2.2.4 Relaxation times

Over a sufficiently long observation time, termed the relaxation time, a ferromagnetic particle

will switch between different stable states due to thermal activation. The relaxation time is

given by (Néel, 1955)

τ = τ0 exp (EB/KBT ) , (2.1)

where KB is Boltzmann’s constant, T the temperature at which the transition occurs and τ0 the

attempt time, commonly with a value of ∼10−9 s (McNab et al., 1968). Any transition between

stable states must occur along an AMP (Fabian and Shcherbakov, 2017); EB is the energy barrier

along such a path. When EB is of the order of the thermal energy available on a timescale of

interest, a particle is in a superparamagnetic (SP) state, spontaneously switching back and forth

between different SD orientations. SD grains with an energy barrier larger than ∼60KBT have a

relaxation time in the order of billions of years and are thus considered stable SD (SSD) reliable

palaeomagnetic recorders (Dunlop and Özdemir, 1997). The SP–SSD threshold is therefore one

of the key parameters to assess the palaeomagnetic significance of a NRM. A NEB method

(Fabian and Shcherbakov, 2017) has been implemented in the micromagnetic package MERRILL

(Nagy et al., 2017) (such methods are currently unavailable in DUNLOP) to calculate the energy

barriers between the stable configurations for the (truncated) octahedral particles, from 30 nm

increasing in steps of 2 nm until the blocking volume is reached, which is here taken to be the

volume for which the relaxation time surpasses four billion years.

Unlike early NEB methods (as applied to magnetic systems) which approximated each

particle as a single dipole (Berkov, 1998), here we are concerned with full micromagnetic

solutions and thus, our results extend beyond SD configurations and coherent rotations. A

similar method was implemented by Dittrich et al. (2002) to study the energy barriers in

patterned granular media.
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2.3 Results and Discussion

2.3.1 Magnetic structure in the SD–PSD regime

Starting at 30 nm from a randomised initial condition, all shapes relax to a SD state along an

easy direction. Extrapolating the solution thus obtained onto a larger grain, this state remains

stable up to a threshold dmax (Figs. 2.2a, c). When the SD state solutions are grown beyond

dmax, they are found to relax to an easy aligned vortex (EAV) (Figs. 2.2a, d). For all shapes,

this vortex configuration is stable up to 120 nm. On reversal, the EAV is stable down to a

threshold dEH (Fig. 2.2a). Below dEH, the EAV goes to a hard-aligned vortex (HAV) preserving

its chirality (Figs. 2.2a, e). Further decreasing the volume, the HAV is stable down to dmin

and below that, the HAV relaxes back to SD (Fig. 2.2a). This general behaviour on the ML is

referred to as Type 1 (Figs. 2.2a, 2.3a, e, g, k), for which we introduce the notation:

T1 =
(
SDdmax

30 → EAV120
dmax

)
→︸ ︷︷ ︸

growth part

+
(

EAVdEH
120 → HAVdmin

dEH
→ SD30

dmin

)
←︸ ︷︷ ︸

volume-decreasing part

, (2.2)

with 30 nm < dmin < dEH < dmax < 120 nm.

Another sequence was observed. On the size-descending curve, the EAV is stable down to a

threshold dEI below which the EAV goes to a <011> intermediate-aligned vortex (IAV) (Figs.

2.2f, g), stable down to dIH. Below that, the IAV goes to a HAV which remains down to dmin.

Finally, below dmin the HAV relaxes back to SD. This ML behaviour is referred to as Type 2

(Figs. 2.3c, i), with the formula:

T2 =
(
SDdmax

30 → EAV120
dmax

)
→︸ ︷︷ ︸

growth part

+
(

EAVdEI
120 → IAVdIH

dEI
→ HAVdmin

dIH
→ SD30

dmin

)
←︸ ︷︷ ︸

volume-decreasing part

, (2.3)

with 30 nm < dmin < dIH < dEI < dmax < 120 nm.

Growth of the vortex configurations found on the size-descending curve (HAVs, IAVs) forms

the SL. When the ML is Type 1, the HAV is grown up to a threshold dHE beyond which it

realigns with an easy direction (Fig. 2.2a). When the ML is Type 2, the HAV goes to either an

EAV (Fig. 2.3c) or to the IAV it nucleated from (Fig. 2.3i). When the IAV is grown beyond a

44



Chapter 2. Magnetic structure and recording fidelity

Figure 2.2: Micromagnetic structures of spheres and intermediate-aligned vortex states. Reduced
magnetisation (a) and energy density (b) against size. The SD [1̄1̄1̄] state is numerically stable
up to dmax = 92 nm (c). Growing this solution to a 94 nm grain it is found to relax to a [1̄1̄1̄]
EAV (d), stable up to 120 nm. The EAV is then interpolated into smaller grains, stable down
to dEH = 54 nm (a). At 52 nm the EAV goes to a [001̄] HAV (e), stable down to dmin = 40 nm.
At 38 nm, the solution relaxes to the original SD state (a). This sequence is referred to as a
Type 1 main loop (ML). Growth of the HAV from 52 nm forms the Type A secondary loop (SL):
the HAV is found to be stable up to dHE = 68 nm (a) and to realign with the easy direction at
70 nm. Vortex states can not only be easy or hard-aligned, but also <011> intermediate-aligned
vortices (IAVs) (f) and distorted IAV configurations (dIAV) (g). MLs in which IAVs are found
are referred to as Type 2. Colour represents the MCA energy normalised by |K1|. The vortex
cores are highlighted by obtaining a helicity (K = m · ∇ ×m) isosurface and reducing the
opacity of the rest of the arrows.
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threshold dIE it realigns with an easy direction (Fig. 2.3c). This behaviour on the SL is referred

to as Type A (Fig. 2.2a, 2.3c, e, g), with the general formula (in the case of growth of the HAV

and realignment to an EAV):

TA =
(

HAVdHE
dEH
→ EAV120

dHE

)
→︸ ︷︷ ︸

secondary growth part

. (2.4)

There is also the possibility that the HAV/IAV is stable up to 120 nm. This SL is a Type B

(Fig. 2.3a, i, k), with the general formula (in the case of growth of the HAV):

TB =
(
HAV120

dEH

)
→︸ ︷︷ ︸

secondary growth part

. (2.5)

2.3.1.1 Spheres

Fig. 2.2a shows the reduced magnetisation and Fig. 2.2b the energy density (against size) for

the spherical shapes. Spheres showed a Type 1 ML (Eq. 2.2), with a specific formula:

MLsph. =
(
SD92

30 → EAV120
94

)
→ +

(
EAV54

120 → HAV40
52 → SD30

38

)
← . (2.6)

The SD state at dmax = 92 nm and the EAV at 94 nm are shown in Figs. 2.2c–d. The SL is

formed by growing the HAV found at 52 nm (Fig. 2.2e). This is a Type A SL (Eq. 2.4), with

formula:

SLsph. =
(
HAV68

52 → EAV120
70

)
→ . (2.7)

2.3.1.2 Octahedra and truncated octahedra

Fig. 2.3 shows the reduced magnetisation and energy density plots for the rest of the shapes.

The octahedra (Figs. 2.3a–b) showed a Type 1 ML (Eq. 2.2), specifically:

MLoct. =
(
SD68

30 → EAV120
70

)
→ +

(
EAV52

120 → HAV46
50 → SD30

44

)
← . (2.8)
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Figure 2.3: Domain states and energies in the SD–PSD transition regime. Reduced magnetisation
(a, c, e, g, i, k) and energy density (b, d, f, h, j, l) against size. All shapes relax to an easy
aligned SD state at 30 nm from a randomised initial condition. The SD state is numerically
stable up to dmax (black lines). Growth beyond dmax results in the magnetisation relaxing to
an EAV, stable up to 120 nm (red lines). The solution is then interpolated into smaller grains.
This forms the main loop (ML) (opaque lines). The EAV is stable down to a threshold beyond
which a HAV is nucleated on the size-descending curve. The HAV is stable down to dmin, below
which it relaxes to a SD state. This is a Type 1 ML (a, e, g, k). When the EAV goes through an
IAV (green lines) before going to the HAV configuration the ML is Type 2 (c, i). Growth of the
HAVs and IAVs found on the size-descending curve forms the secondary loop (SL) (translucent
lines). When these realign with the EAV or with the vortex state they nucleated from the SL is
Type A (c, e, g, i (translucent blue line)). When they are stable up to 120 nm the SL is Type B
(a, i (translucent green line), k).
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The SD state at dmax = 68 nm (Fig. 2.4a) shows significant flowering—deflection of the

magnetisation onto edges and vertices. The EAV nucleated at 70 nm is shown in Fig. 2.4b.

Growth of the HAV nucleated at 50 nm (Fig. 2.4c) showed a Type B SL (Eq. 2.5), i.e., the

HAV was found to be stable up to 120 nm,

SLoct. =
(
HAV120

50

)
→ . (2.9)

The minimally truncated octahedra (Figs. 2.3c–d) showed a Type 2 ML (Eq. 2.3):

MLmin.
t.oct. =

(
SD74

30 → EAV120
76

)
→ +

(
EAV50

120 → IAV48
48 → HAV44

46 → SD30
42

)
← . (2.10)

The SD state shows greater stability and less flowering at dmax = 74 nm (Fig. 2.4d) than for the

octahedra, before relaxing to an EAV at 76 nm (Fig. 2.4e). Growth of both the IAV from 48 nm

(Fig. 2.2f) and HAV from 46 nm (Fig. 2.4f) forms the composite SL. Both showed a Type A SL

(Eq. 2.4), specifically:

SLmin.
t.oct. =

(
IAV68

48 → EAV120
70

)
→ +

(
HAV70

56 → EAV120
72

)
→ . (2.11)

The next two degrees of truncation, the regular truncated octahedra (Figs. 2.3e–f) and the

maximally truncated octahedra (Figs. 2.3g–h), both showed Type 1 MLs (Eq. 2.2):

MLreg.
t.oct. =

(
SD78

30 → EAV120
80

)
→ +

(
EAV50

120 → HAV42
48 → SD30

40

)
← ; (2.12)

and

MLmax.
t.oct. =

(
SD80

30 → EAV120
82

)
→ +

(
EAV48

120 → HAV42
46 → SD30

40

)
← . (2.13)

The SD states show increasing stability and less flowering (Figs. 2.4g, 2.5a). The EAVs at

80 nm and 82 nm are shown in Figs. 2.4h, 2.5b. Growth of the HAVs nucleated at 48 nm (Fig.

2.4i) and at 46 nm (Fig. 2.5c) showed the SL was Type A (Eq. 2.4) for both shapes:

SLreg.
t.oct. =

(
HAV68

48 → EAV120
70

)
→ ; (2.14)
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and

SLmax.
t.oct. =

(
HAV70

46 → EAV120
72

)
→ . (2.15)

2.3.1.3 Cuboctahedra

The cuboctahedra (Figs. 2.3i–j) showed a Type 2 ML (Eq. 2.3). The PSD state nucleated on

the size-descending curve from the EAV is a distorted IAV (dIAV)—a sort of mixed state with

the vortex mostly aligned with the [01̄1̄] direction and the ends of the vortex attached to the

square {100} faces. The ML then has a formula:

MLcub
oct. =

(
SD114

30 → EAV120
116

)
→ +

(
EAV86

120 → dIAV62
84 → HAV38

60 → SD30
36

)
← . (2.16)

The SD state is more stable, with dmax increasing to dmax = 114 nm (Fig. 2.5d) before relaxing

to an EAV at 116 nm (Fig. 2.5e). Growth of the HAV from 60 nm (Fig. 2.5f) shows a Type A

SL (Eq. 2.4), with the HAV going to the dIAV it nucleated from. The dIAV (Fig. 2.2f) instead

shows a Type B SL. The SL is then:

SLcub
oct. =

(
HAV72

60 → dIAV120
74

)
→ +

(
dIAV120

84

)
→ . (2.17)

2.3.1.4 Cubes

The cubes (Figs. 2.3k–l) showed a Type 1 ML (Eq. 2.2). The EAV nucleated from the SD state

is a distorted EAV (dEAV). The dEAV mostly aligns with an easy direction, but its ends deflect

from the vertices to a hard direction, attaching to opposite faces. The ML is then:

MLcube =
(
SD80

30 → dEAV120
82

)
→ +

(
dEAV64

120 → HAV38
62 → SD30

36

)
← . (2.18)

The SD state at dmax = 80 nm is largely flowered (Fig. 2.5g). The dEAV initially nucleated at

82 nm (Fig. 2.5h) could also be interpreted as a distorted HAV. However, the alignment of such

state with an easy direction becomes more obvious for larger cubes. Growth of the HAV from
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Figure 2.4: Micromagnetic structures of octahedra, minimally truncated octahedra and regular
truncated octahedra. Left column (a, d, g) shows the largest SD solutions at dmax, obtained
by interpolating from solutions for smaller grains starting at 30 nm. On interpolating to a
grain 2 nm larger, the structure relaxes to an EAV (b, e, h), stable up to 120 nm. From 120 nm
interpolation is carried out into smaller grains. Eventually the vortex aligns with a hard direction
(c, f, i) which is stable down to dmin after which the solution becomes SD again down to 30 nm.
Top row (a, b, c) shows the structures for the octahedra; centre row (d, e, f) for the minimally
truncated octahedra and bottom row (g, h, i) for the regular truncated octahedra. Colour
represents the MCA energy normalised by |K1|.
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62 nm (Fig. 2.5i) results in a Type B SL:

SLcube =
(
HAV120

62

)
→ . (2.19)

2.3.1.5 Discussion

The values for dmax of the spheres are significantly larger than those found for the euhedral

shapes (except for the cuboctahedra which have an anomalously large value), perhaps due to the

absence of corners to act as nucleation points. Truncation of the octahedral particles increases

the (numerical) stability of the SD solutions which is expressed as the increase in dmax from

68 nm for the octahedra (Fig. 2.3a) to 114 nm for the cuboctahedra (Fig. 2.3i) (Table 2.1). A

less pronounced effect is the decrease of dmin with truncation from 46 nm for the octahedra to

38 nm for the cuboctahedra (Table 2.1). HAVs are more (numerically) stable at smaller sizes

the more truncated the particle is. This is due to the large stray field energy created by a

vortex pointing towards a vertex. It is energetically favourable for a vortex to attach its ends

to flat surfaces large enough to accommodate its core. This is seen in the distortion of the

vortex structures shown in Figs. 2.2g, 2.5h. These avoid the production of large stray fields by

attaching their ends to grain faces, at the cost of anisotropy and exchange energies needed to

distort the otherwise straight structures of the vortices.

Table 2.1: Critical sizes for all shapes. All sizes in nm. d0, dmin decrease with truncation while
dmax increases.

main loop dmax dEH dEI dIH dmin d0

Spheres T1 92 54 N/A N/A 40 51
Octahedra T1 68 52 N/A N/A 46 56
Min. t. octahedra T2 74 N/A 50 48 44 54
T. octahedra T1 78 50 N/A N/A 42 53
Max. t. octahedra T1 80 48 N/A N/A 42 52
Cuboctahedra T2 114 N/A 86 62 38 50
Cubes T1 80 64 N/A N/A 38 52

The energy plots (Figs. 2.2b, 2.3b, d, f, h, j, l) show the SD energy density is fairly constant

with size for all shapes. For the octahedra, the intersection of the EAV and HAV energy curves

51



Chapter 2. Magnetic structure and recording fidelity

Figure 2.5: Micromagnetic structures of maximally truncated octahedra, cuboctahedra and
cubes. Left column (a, d, g) shows the largest SD solutions at dmax, obtained by interpolating
from solutions for smaller grains starting at 30 nm. On interpolating to a grain 2 nm larger, the
structures relax to an EAV (b, e) or a distorted EAV (h) which are stable up to 120 nm. From
120 nm interpolation is carried out into smaller grains. Eventually the vortex aligns with a hard
direction (c, f, i), stable down to dmin after which the solution becomes SD again down to 30 nm.
Top row (a, b, c) shows the structures for the maximally truncated octahedra; centre row (d, e,
f) for the cuboctahedra and bottom row (g, h, i) for the cubes. Colour represents the MCA
energy normalised by |K1|.
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occurs above the SD curve. This means that it is then the EAV energy curve which first

intersects the SD curve at d0 and thus this PSD state becomes the GEM thereon (Fig. 2.3b).

With truncation, this intersection moves closer to the SD curve as can be seen in Fig. 2.3d in

which all the different PSD states (EAV, IAV and HAV) and the SD energy curves meet at

roughly the same point. Further truncation causes this intersection to eventually occur below

the SD energy curve. This creates a narrow range of sizes for which the HAV is the lowest energy

state (Figs. 2.3f, h). Completely truncated, the cuboctahedra show a split of this intersection

into distinct crossings of the HAV/IAV and IAV/EAV energy curves (Fig. 2.3i, compare with

Fig. 2.3d), creating a broad range of sizes, from ∼50 nm to ∼66 nm, for which the HAV has the

lowest energy. A range for which the HAV has the lowest energy was also found for spheres and

cubes. The overall effect of truncation on d0 is to decrease this threshold (Table 2.1).

For the cubes we found dmax = 80 nm, much smaller than the value of 107 nm obtained by

Muxworthy et al. (2013). We found dmin = 38 nm, in agreement with the value by Muxworthy

et al. (2013). We found the intersection of the SD and HAV energy curves d0 ≈ 52 nm (Fig.

2.3l), lower than the value of 58 nm by Muxworthy et al. (2013). Modelling the ML for cubes

with the MS value used by Muxworthy et al. (2013) we obtained dmax = 92 nm, dmin = 42 nm

smaller and larger, respectively, than the values by Muxworthy et al. (2013). The differences in

dmax, dmin can be due to Muxworthy et al. (2013) using a FD method as opposed to a FEM

used here. However, excellent agreement of d0 ≈ 60 nm was found with the value of 58 nm by

Muxworthy et al. (2013). The difference between d0 obtained with the different MS is significant

as it is larger than the exchange length and thus, unlikely to be an effect of discretisation.

2.3.2 Identifying the PSD–MD transition

Unlike fine SD grains, bulk ferromagnetic materials can possess a (roughly) null net magneti-

sation. This is because bulk ferromagnets, in their lowest energy state, have a multi-domain

(MD) magnetic structure (Dunlop and Özdemir, 1997). MD structure is characterised by the

coexistence of multiple magnetic domains: small regions saturated in different easy directions

and separated by narrow planar regions called domain walls where the magnetisation vector

transforms continuously from the direction of one domain to that of its neighbour. Near the
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surface of a bulk sample the magnetic domains lie in directions parallel to the surfaces, which do

not necessarily coincide with the magnetocrystalline easy axes; these are called closure domains

as they enclose the magnetic flux. Then, MD grains minimise the stray field energy at the

expense of exchange and MCA energies associated with the domain walls and closure domains.

This balance becomes more energetically favourable as a particle grows. To identify a plausible

PSD–MD transition, EAV states found to be stable at 120 nm were further grown up to 300 nm

in steps of 2 nm.

2.3.2.1 Growth of EAVs

The octahedron EAV (Fig. 2.4b) was found to remain stable up to 300 nm—as was the case for

the EAVs for all shapes. However, although the overall structure is preserved as the grain grows,

there is a gradual, continuous transformation towards MD structure. As the crystal becomes

larger, the vortex core (the cylindrical region encompassing the highest helicity K = m ·∇×m)

width remains the same. The regions radially far from the core become screened from its

influence and more influenced by the effects of MCA, giving way to six ever larger expanses

of the grain that become magnetised along easy axes. The sections with higher MCA energy

become increasingly narrower, more planar and confined between the easy-aligned regions.

With further growth, the regions close to the edges become magnetised along the edges thus

completing a picture of MD structure: magnetic domains magnetised along easy directions (Fig.

2.6a); flat, narrow magnetic domain walls dividing these and closure domains formed along

edges of the body (Fig. 2.6b). The spheres (not shown) show this same general behaviour of

formation of magnetic domains and domain walls, but without the formation of closure domains

as there are no edges to nucleate these type of domains.

At 300 nm, the regular truncated octahedron shows the same basic structure as the 300 nm

octahedron except for the widening of the domain walls as they approach the square {001} faces

(Figs. 2.6c–d). Completely truncated, the cuboctahedra have a somewhat different structure. In

the 300 nm cuboctahedron solution the domain walls have become so wide as they draw closer

to the square faces that they engulf three of the magnetic domains (Fig. 2.6e), and hard-aligned

Néel walls appear which are visible as blue streaks on the square faces (Fig. 2.6f).
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Figure 2.6: MD formation by easy aligned vortices. From the solutions obtained by growing the
120 nm EAVs up to 300 nm, the mesh nodes with MCA energy <-0.28 (normalised by |K1|) are
shown in the left column (a, c, e). These are regions which deviate from an easy axis alignment
by less than ∼15◦. The complement is shown in the right column: the regions with moderate to
high (>-0.28) MCA energy (b, d, f). In the octahedron, there form six large magnetic domains
filling up most of the volume (a) and narrow, flat regions acting as domain walls and small
wedge-like regions formed along the edges interpreted as closure domains (b). The regular
truncated octahedron EAV grown up to 300 nm shows the same pattern: large magnetic domains
with low MCA energy occupy most of the volume (c); the effect of truncation (and consequent
creation of {001} surfaces) is to widen the domain walls as they approach the surfaces as this
reduces the stray field energy (d). Closure domains along the edges are still pronounced (d).
Fully truncated, the effect on the structure of the cuboctahedron EAV grown to 300 nm is to
reduce the proportion of the volume occupied by magnetic domains (e). The domain walls are
so wide close to the surfaces that they engulf three of the domains, while also hard-aligned Néel
walls are formed as seen from the blue streaks on the surface (f). Colour represents the MCA
energy normalised by |K1|.
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2.3.2.2 Discussion

A tentative mechanism for a PSD–MD transition has been identified. This proceeds by a

gradual formation of magnetic domains, domain walls and closure domains ‘seeded’ by the

vortex structures nucleated in the SD–PSD transition regime. However, this transition is more

obvious for the octahedra than the truncated octahedra and cuboctahedra.

Since our models do not account for the effects of thermal fluctuations, the stability of the

solutions is only numerical, e.g., the energy landscape of a micromagnetic solution is somewhat

flat in the vicinity of the solution, thus small numerical perturbations can be insufficient for a

micromagnetic algorithm to drive the solution to a new local energy/torque minimum depending

on the sensitivity or control parameters of the algorithm. We find for the octahedra and the

cuboctahedra two solutions for each morphology up to 300 nm (Figs. 2.3a, e). Although the

EAVs for both have the lowest energies, this leaves open the question of whether we can expect

to find metastable grains with the higher energy structures. Likewise, in Section 2.3.1 we find

that grains remain SD beyond d0. In theory, a particle can remain in a metastable SD state

beyond this threshold if the energy barrier separating the SD from the PSD state is higher than

the thermal energy available. Knowledge of the energy barriers near the SD–PSD transition is

needed to answer these questions.

2.3.3 Energy barriers and blocking volumes

A nudged elastic-band (NEB) method (Fabian and Shcherbakov, 2017) was implemented for

the calculation of the energy barriers at room temperature as a function of size and shape for

the (truncated) octahedral morphologies. To calculate the energy barrier for a given shape and

size we obtain many solutions from randomised initial conditions. From this set of solutions

the state with the lowest energy is identified. For the smaller particles we expect the GEM

to be SD and for larger grains PSD. Once the GEM has been identified from the set of initial

solutions, two appropriate solutions must be chosen to calculate the action-minimising path

(AMP) between them and thus the energy barrier.

When the GEM is a <111>-aligned SD state, the pair of appropriate solutions are magnetised
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normal to contiguous {111} faces. Above d0 the GEM is usually a HAV, then, the paths to

test are between vortices at 90◦ from each other, e.g., between [100] and [001] vortices. For

some shapes the GEM is a distorted vortex, for these, it is important to calculate several paths

between different configurations to find the transition with the lowest energy barrier. At larger

sizes, for all shapes the GEM is an EAV, this means that the paths to calculate are between

vortices pointing towards contiguous {111} faces, much like for SD particles. For all PSD to

PSD transitions the vortices must have the same chirality as a change produces prohibitively

large energy barriers one to two orders of magnitude larger than the AMP barrier and thus we

can neglect the possibility of such transitions. It is not necessary to calculate the energy barriers

for transitions other than the ones with the lowest energy as these dominate the behaviour and

higher energy transitions usually proceed via lower energy ones (Nagy et al., 2017). For perfectly

regular, equant grains as those modelled in this study, the lowest energy transition is degenerate

and so, the relaxation time has to be divided by three (for the three distinct degenerate paths).

2.3.3.1 Octahedra and truncated octahedra

Fig. 2.7 shows three examples of transitions for the regular truncated octahedra which were

found to be typical for all the (truncated) octahedra, but for the cuboctahedra. At the smaller

sizes (Fig. 2.7, left column) the transition is from SD to SD via coherent rotation. The energy

along such a path is plotted in Fig. 2.7a; the energy barrier is the difference between the easy

(Figs. 2.7d, j) and intermediate-aligned SD (Fig. 2.7g) energies. The energy barrier for such

transitions, for all shapes, is quite low, with relaxation times from a few microseconds to a few

days for the largest of these. A few nanometres before the SD–PSD transition the AMP is not a

coherent rotation, but a transition via a curling mode (Fig. 2.7, centre column). The energy

barrier is also the difference between the easy and intermediate-aligned SD energies.

Once the GEM is an EAV, the transitions are between isochiral EAVs directed towards

contiguous {111} faces (Fig. 2.7, right column). The transition is a structured rotation of the

vortex, through an IAV (Fig. 2.7i), which maintains its overall shape along the path. The energy

along such paths is a double-bump where the IAV sits in a shallow local energy minimum (LEM).

This means that the energy barrier is not the difference between the EAV and IAV energies.
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Rather, it is given by the barrier separating the EAV from the IAV. However, with increasing

size the IAV LEM becomes more shallow and thus the energy barrier is better approximated by

the difference between the EAV and IAV energies—at 64 nm the IAV LEM is so shallow that

the double-bump feature becomes flattened (Fig. 2.7c). In general, the PSD to PSD transitions

are very similar to coherent rotations between SD states in that they are structured rotations of

the vortex core. However, the energy barrier per unit volume is smaller for SD grains, i.e., SV

grains are intrinsically more unstable but their larger volume makes them block.

2.3.3.2 Cuboctahedra

The cuboctahedra show a very different behaviour. Their relaxation times increase exponentially

for the SD to SD transitions, but do not drop for the first PSD to PSD transitions, at 48 nm,

which are hard-aligned to hard-aligned (Fig. 2.8, left column) and pass through a dIAV (Fig.

2.8g). The energy barrier is an IAV (Fig. 2.8j). The relaxation times for these transitions then

decrease as the HAV and dIAV energies get closer until, at 66 nm, the GEM is a dIAV. Then,

since the straight IAV has a very high energy, transitions in which the dIAV ends reattach to

contiguous faces are unfavourable. The transition with the lowest energy barrier is between

two distorted vortices like the ones shown in Figs. 2.8e, k, which are (though distorted) [01̄1̄]-

and [11̄0]-aligned. The transition preserves the shape of the distorted vortex as it structuredly

rotates keeping its ends attached to the square faces.

The relaxation times for this type of transition plateau at a few microseconds up to 74 nm.

For this transition, the net magnetic moment does not change drastically as the distorted vortex

precesses from one GEM to another. In Fig. 2.3j the energies of the dIAV and the EAV intersect

at roughly 90 nm and are very close up to 120 nm. Since the transition between two EAVs

is likely to go through a dIAV, it is not expected that the relaxation time for EAV to EAV

transitions will rapidly increase until sizes much larger than 90 nm. Indeed, we find that only

for the particles larger than 110 nm the relaxation times start to grow exponentially—though at

a rate slower than for (truncated) octahedra transitions—surpassing 4 billion years at roughly

134 nm (Fig. 2.9c). A typical transition of this type at 132 nm is shown on the right column of

Fig. 2.8 between [111]- and [111̄]-aligned vortices via vortex distortion (not shown). The highest
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Figure 2.7: Typical action-minimising paths. The regular truncated octahedra illustrate the
typical AMPs found for all the (truncated) octahedral shapes. Well below the SD–PSD threshold
the AMP between SD configurations is a coherent rotation (left column). The energy along the
AMP is a single bump (a) and the energy barrier is an intermediate-aligned SD state (d). At
sizes just below the SD–PSD threshold the AMP is still between SD states, but via a curling
mode (vortex nucleation) (centre column). Starting from SD (e), a vortex is nucleated (h) then
unwinds to an intermediate-aligned SD state which has the highest energy along the AMP (not
shown). Then, the final SD state (k) is reached via coherent rotation. This makes the energy
along the AMP more complex and asymmetric (b). Well above the SD–PSD threshold, once
the EAV has the lowest energy, the AMP is via a structured rotation of the vortex core (right
column). The transition is between two EAVs with the same chirality (f, l) as a change of
chirality produces prohibitively large energy barriers. In the AMP there is an IAV sitting in its
own shallow LEM (i). The energy barrier is the one that separates the EAVs from the IAV.
However, as the grain grows, the IAV LEM becomes more shallow and the energy along the
AMP flattens (c). Colour represents the MCA energy normalised by |K1|. The energies along
the AMPs are plotted in units of KBT , with T = 300 K.
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energy state along the path is a straight IAV (Fig. 2.8i).

2.3.3.3 Discussion

Fig. 2.9 summarizes the results of the relaxation times obtained for the five (truncated)

octahedral shapes in the 30 nm to 74 nm range and the relaxation times for the cuboctahedra

in the 120 nm to 134 nm range (Fig. 2.9, inset). For all shapes, except the cuboctahedral, the

general behaviour is an exponential increase of the relaxation times for the SD to SD transitions

from a few tens of microseconds to a few seconds for the regular truncated octahedra and up

to 12 days for the octahedra, followed by a sharp drop at 46 nm (for the regular truncated

octahedra) to 50 nm (for the octahedra). This drop in the relaxation times marks the SD–PSD

threshold. Then, the PSD to PSD transitions have increasingly lower relaxation times until

reaching a global minimum at ∼50 nm to ∼54 nm. Once the GEM is the EAV the relaxation time

shoots up exponentially with crystal growth, surpassing 4 billion years at ∼68 nm to ∼72 nm.

These calculations show that equant, non-interacting, room-temperature SD grains of greigite

are on a geological timescale, SP given that the largest relaxation time found for SD particles

(octahedra) of 12 days is only stable on laboratory timescales. Therefore, the expected SP–SSD

threshold does not exist but rather a SP–PSD threshold since it is only the PSD grains which

can hold a remanence for extended periods of time. Muxworthy et al. (2013) estimated the

energy barriers for non-interacting cubes of greigite from the anisotropy energy surface and

found a SP–SSD threshold of 56 nm, for a relaxation time of four billion years. In this study the

blocking volumes for cubes and spheres were not calculated as these are not naturally occurring

morphologies for greigite. However, given the results for the five (truncated) octahedral shapes,

it is unlikely that a SP–SSD threshold should exist for either cubes or spheres.

Since the relaxation times for the larger SD particles are so small and since the transitions

from SD to SD just before the GEM becomes PSD are through a curling mode (vortex nucleation),

we conclude that the SD–PSD threshold is defined only by the first intersection of a PSD energy

curve with the SD energy curve, d0 (Figs. 2.2b, 2.3b, d, f, h, j, l). That SD–SD transitions

just below the SD–PSD threshold occur via a curling mode was also observed for magnetite by

Enkin and Williams (1994) and shows that greigite particles are likely to show PSD aspects even
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Figure 2.8: Action-minimising paths for the cuboctahedra. The cuboctahedra showed different
AMPs above the SD–PSD threshold from the rest of the shapes. Above the SD–PSD threshold,
and up to 66 nm, the lowest energy state for the cuboctahedron is a HAV. Transitions between
HAVs (left column) occur via a distortion (g) and structured rotation (j) of the vortex core.
The energy barrier is an IAV (j). The dIAV along the AMP (g) sits in its own LEM, forming a
three-bump energy barrier (a). The dIAV becomes the lowest energy from 66 nm. Transitions
between dIAVs (centre column) form a single bump energy barrier (b). The transition is a
structured rotation of the distorted vortex, keeping attached to the same surface (e, h, k). Once
the lowest energy is an EAV, transitions between these (right column) occur via a distortion
and structured rotation of the vortex core. The energy barrier is an IAV (i). Colour represents
the MCA energy normalised by |K1|. The energies along the AMPs are plotted in units of KBT ,
with T = 300 K.
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Figure 2.9: Relaxation times for the euhedral shapes. The relaxation times are calculated with
τ0 = 1 ns, T = 300 K. τ increases exponentially for the SD–SD transitions, but reaches only
laboratory scale stabilities before the SD–PSD threshold. The (truncated) octahedral shapes
show a dip in the stability in the lower end of the PSD range for HAV–HAV and IAV–IAV
transitions, reaching a minimum at ∼52 nm. Once the EAVs have the lowest energies, the
relaxation times grow exponentially with size, reaching four billion years from ∼70 nm. The
cuboctahedra, however, show a different behaviour: they do not show a dip in the stability for
the first HAV–HAV transitions, but with increasing size they produce lower relaxation times
as the energy of the dIAV gets closer. The relaxation times for the transitions between dIAVs
plateau up to 74 nm. Exponential growth of the relaxation times occurs from ∼110 nm (inset),
surpassing four billion years from ∼134 nm.

62



Chapter 2. Magnetic structure and recording fidelity

below the SD–PSD threshold. It is highly unlikely that metastable SD grains exist beyond d0 in

the absence of grain–grain interactions. The relaxation times between PSD states just above d0

are the shortest of all and only start to grow exponentially for the EAV to EAV transitions. We

thus conclude that the PSD–MD transition through a crystal growth mechanism, must occur

through an EAV path.

The splitting of the energy curves’ intersections exhibited by the cuboctahedra not only has

repercussions on the SD–PSD threshold, but also on its stability against thermal fluctuations. All

the (truncated) octahedral particles have blocking volumes of ∼72 nm while for the cuboctahedra

this volume is ∼134 nm. This could be explained by the fact that the first PSD to PSD

transitions, between hard-aligned PSD states, traverse through IAVs (Fig. 2.8, left column):

as the cuboctahedral particle grows, the energy difference between the IAV and HAV becomes

smaller (Fig. 2.3j) and this is reflected in a diminishing of the relaxation times for this type of

transition (Fig. 2.9). Since for the rest of the shapes the PSD and SD energy curves all meet in

a relatively short span, this effect of diminished stability with increasing size only lasts for a

much smaller range of sizes, and once the EAV is the GEM, the relaxation times for transitions

between this type of domain state grow very rapidly. However, for the cuboctahedra the EAV

becomes the GEM at a larger size than for the rest of the shapes and the energy difference with

the dIAV, through which the AMP goes through, is very small.

2.4 Conclusion

We have presented calculations of the SD–PSD threshold for realistic shapes of equant greigite

grains. We have found that octahedral shapes have the largest SD–PSD threshold d0 ≈ 56 nm,

a value lower than the threshold obtained for magnetite octahedra by Witt et al. (2005) of

∼73 nm. This value decreases by the effects of truncation to d0 ≈ 53 nm for the regular truncated

octahedra and further down to d0 ≈ 50 nm for the cuboctahedra. The SD–PSD threshold for

greigite cubes was lower (d0 ≈ 52 nm) than that of Muxworthy et al. (2013) (=58 nm); however,

we used a different value for MS. When we modelled using the same parameters as Muxworthy

et al. (2013) we found excellent agreement, obtaining a d0 ≈ 60 nm.
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The parameters MS and K1 used in this study are well constrained; however, uncertainty in

the value of A as measured by Chang et al. (2008) is hard to quantify. Considering that the

Curie temperature of greigite has been estimated to be > 620 K (Roberts et al., 2011) the value

of A could be up to four times larger. To obtain an upper-bound estimate on d0 we conducted

the simulations described in Section 2.3.1 for a regular truncated octahedral grain with values

of A two times (A = 4 × 10−12 J/m) and four times (A = 8 × 10−12 J/m) larger. We found

that d0 increases with A, from ∼54 nm to ∼62 nm for A = 4× 10−12 J/m and up to ∼90 nm for

A = 8× 10−12 J/m. The physics and general behaviour are nevertheless the same even if the

absolute values depend nonlinearly on A.

NEB method calculations of the room-temperature blocking volumes of greigite show the

importance of thermal fluctuations in determining the magnetic structure of a ferromagnetic

grain beyond simpler micromagnetic models. We found that equant SD greigite grains cannot be

expected to be reliable palaeomagnetic recorders: only PSD grains larger than ∼72 nm are able

to hold a remanence in geological timescales, though there is a strong grain shape dependence.

We found that cuboctahedral particles have a blocking volume of ∼134 nm, a volume almost

seven times larger than for the (truncated) octahedral particles. This highlights the importance

of addressing not only the size distribution in sedimentary rock samples, but also the shapes of

the greigite grains present.

We found that the transitions between PSD states occur via well-defined states by a structured

rotation of the vortex cores. This could be useful for future analytical models beyond the SD

coherent rotation theory.

Although in this study we have disregarded the effects of particle elongations, which are

sure to effect the blocking volumes (Muxworthy et al., 2013), our results are representative of

widespread authigenic greigite grains of abiotic origin. The effects of grain–grain magnetostatic

interactions have also been excluded from this study. Isolated greigite grains are not very

common, rather, natural samples show that greigite is more commonly aggregated in tight

clusters. However, this study provides a stepping-stone towards understanding the more complex

greigite clusters.
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anisotropy. J. Magn. Magn. Mater., in review.

M. V. G. designed the experiment, developed the algorithm and code, performed the simula-

tions and wrote the article. M. V. G. and A. R. analysed the results.

Abstract

First-order reversal curve (FORC) diagrams are increasingly used as a magnetic domain state

fingerprint. FORC diagrams of noninteracting dispersions of single-domain (SD) particles with

uniaxial magnetocrystalline anisotropy (MCA) are well studied. However, a large class of

materials possess a cubic MCA, for which the FORC diagram properties of non-interacting SD

particle dispersions are less understood. A coherent rotation model was implemented to study the

FORC diagram properties of non-interacting ensembles of SD particles with positive and negative

cubic MCA constants. FORC diagrams are calculated for greigite (Fe3S4) and iron (Fe) particle
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ensembles with a distribution of anisotropy values. FORC diagrams contain mixed information

of irreversible and reversible rotations of the magnetisations. The pattern formation mechanism

is identified and related to the irreversible events the individual particles undergo. The purely

reversible signal is determined based on the FORC diagram properties of the individual particles.

Our results support the utility of FORC diagrams for the identification of non-interacting to

weakly-interacting SD particles with cubic MCA or, more generally, non-uniaxial MCA.

3.1 Introduction

Ferromagnetic materials exhibit magnetic hysteresis: the dependence of the material’s magneti-

sation M on its magnetic history (Mayergoyz, 1986). The hysteretic response of a material is

obtained by a series of measurements of its scalar magnetisation M = M · n̂ as a function of

the applied magnetic field H = Hn̂. To trace a hysteresis loop the magnetic field strength H is

slowly decreased from its saturation value H = Hsat down to H = −Hsat, followed by the slow

increase up to H = Hsat.

First-order reversal curves (FORCs) are a set of partial hysteresis loops, each starting at

a saturation field H = Hsat, followed by the quasi-static decrease of the applied field strength

down to H = Ha. From Ha, the field strength is increased back to H = Hsat to trace a given

curve labelled by its Ha value. On each FORC, the scalar magnetisation is then a function

M = M(Hb, Ha) of the applied field H = Hb and the Ha value of the given curve (Ha ≤ Hb).

The FORC distribution, an empirical analog of the Preisach weight function based on the

experimental protocol described above, is defined as the second order mixed partial derivative

(Roberts et al., 2000)

ρ = ρ(Hb, Ha) = −1

2

∂2M

∂Ha∂Hb

, (3.1)

which must be understood in some weak sense to allow the discontinuous M . Contour plots

of the FORC distribution (Eq. 3.1) are known as FORC diagrams and have been increasingly

used by the wide magnetics community as a proxy for the magnetic domain state and switching

behaviour of a variety of magnetic systems (Pike et al., 1999, 2005; Roberts et al., 2000; De Biasi

et al., 2016; Proenca et al., 2017).

66



Chapter 3. Single-domain FORC diagrams

Based on Stoner-Wohlfarth theory (Stoner and Wohlfarth, 1948) significant progress has been

made towards understanding the contribution of fine magnetic single-domain (SD) particles with

uniaxial magnetocrystalline anisotropy (MCA) to the FORC diagram properties of interacting

and non-interacting dispersions (Newell, 2005; Egli et al., 2010; De Biasi et al., 2016). However,

many materials including the most abundant ferromagnetic minerals on Earth possess a cubic

MCA.

The general hysteretic properties of non-interacting dispersions of particles with cubic MCA

have been previously studied (Usov and Peschany, 1997; Walker et al., 1993). The cubic

MCA system is more complicated than the uniaxial due to the existence of more local energy

minima (LEM) and the mechanism behind the FORC diagram pattern formation is not as

well understood as the uniaxial case. Previous studies of FORC diagram pattern formation

by minerals with cubic MCA used computationally intensive methods like micromagnetics

(Muxworthy et al., 2004) and dipole-dipole modelling (Harrison and Lascu, 2014) to study the

influence of magnetostatic interactions on the FORC diagram.

In this study we present an approach for numerically calculating the FORC diagram of a

uniform non-interacting dispersion of SD particles with cubic MCA. The magnetic parameters

of: greigite (Fe3S4), saturation magnetisation Ms = 2.7 × 105 A/m (Li et al., 2014) and first

anisotropy constant K1 = −1.7 × 104 J/m3 (Winklhofer et al., 2014); and metallic iron (Fe),

Ms = 1.7 × 106 A/m (Dunlop and Özdemir, 1997) and K1 = 4.8 × 104 J/m3 (Graham Jr.,

1958) have been used due to their opposing K1 signs, their relatively high anisotropy and their

importance for technological applications as well as the Earth sciences.

3.2 Methods

3.2.1 The FORC model

In an ensemble of identical, randomly aligned particles the probability of a given particle

orientation is uniform over the sphere. If the ensemble is non-interacting (dilute) then the
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ensemble has a magnetic response

M = M(Hb, Ha)

=

∫ 2π

0

∫ 2π

0

m′(Hb, Ha, θ, φ) sin θ dθ dφ, (3.2)

where m′(Hb, Ha, θ, φ) is the magnetisation of a particle at (Hb, Ha) when the applied field is

directed along the unit vector n̂ = êr + θêθ + φêφ. Given the symmetry of the cubic anisotropy

system, the integration can instead be carried out over the subdomain I ≡ [0, π/2]× [0, π/2], so:

M † = M †(Hb, Ha) =
M(Hb, Ha)

8

=

∫ π/2

0

∫ π/2

0

m′(Hb, Ha, θ, φ) sin θ dθ dφ. (3.3)

We consider this subdomain for simplicity to carry the integral; however, a smaller subdomain

consisting of the spherical triangle with its corners on the [111], [001] and [101] directions would

also suffice.

We calculate Eq. (3.3) using the backtracking line-search gradient method outlined in Section

3.2.2 to obtain each m′(Hb, Ha, θ, φ) over a uniform grid G ≡ {iπ/100 : i = 0, . . . , 50}×{jπ/100 :

j = 0, . . . , 50} with the evaluation performed in the center of the cells:

M∗ = M∗(Hb, Ha)

=
∑
i

∑
j

m′(Hb, Ha, θi, φj) sin θi ∆θ∆φ. (3.4)

The hysteresis loop of a single particle in the simplest case is a hysteron with switching

fields H− and H+. In such a case, all the FORCs are contained in the main branches of the

hysteresis loop (i.e., the field-descending and -ascending curves). The FORC distribution (Eq.

(3.1)) is, accordingly:

ρ = −1

2
δ
(
Ha −H−

){[dm′

dHb

]
+ [m′] δ(Hb −H+)

}
, (3.5)

where [m′] is, up to its sign, the size of the magnetisation discontinuity at the switching field
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H+ and [dm′/dHb] the difference in the slopes between the main branches. The distribution

has two parts: tail and front. The front contains the information about the magnetisation

behaviour at the switching fields and has a delta-like support. The tail has support along a

line (Ha = H−, Hb < H+) and contains information about the slopes traced by the reversible

motions. This contribution is usually an order of magnitude lower than the front so the reversible

information is mostly obscured in a FORC diagram. It is possible, however, to identify the

fronts (from the switching fields) and remove them from the FORC distribution to obtain purely

reversible FORC distributions.

For a single particle, the computation of the complete set of FORCs can be simplified if we

note that each curve consists mostly of reversible motion with only a few irreversible jumps at

the switching fields. This means that all the FORCs with Ha larger than the first switching

field are implicitly calculated in the main branch of the hysteresis loop. Similarly for all the

m′(Hb, Ha) between the first (second) and second (third) switching field, if there are more than

one (two) irreversible jumps, and the m′(Bb, Ba) between the last switching field and −Hsat .

All that is left then, after calculating the hysteresis main branch, is to calculate the FORCs

starting at Ha values corresponding to the switching fields (Fig. 3.1(b)). Once obtained, all

m′(Hb, Ha) form a grid mj
i on which the FORC distribution can now be calculated (Fig. 3.1(c)).

The calculation is done at each grid point by least-square fitting a second degree polynomial

surface on a subgrid
{
mj+l
i+k : k, l = −SF, · · · , SF

}
, where SF is the so-called smoothing factor,

taking care to exclude points with Hb < Ha; from the general equation of the fitted polynomial

surface m = a0 + a1Ha + a2Hb + a3HaHb + a4H
2
a + a5H

2
b the FORC distribution is simply −a3/2

(Pike et al., 1999).

A SF=1 was used to calculate the FORC distribution of each individual particle to limit the

smoothing and retain the delta-like profile of the FORC distribution as much as possible (Figure

3.1(d)). In this manner, FORC distributions were obtained by adding those of each individual

particle instead of calculating ρ on the ensemble magnetic response; essentially, this is what

allows to remove the irreversible contribution from the FORC distribution of each particle and

obtain the purely reversible FORC signal. For each particle, 501 reversal curves were calculated

with a field-step resolution of 1 mT between 250 mT and -250 mT.
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Figure 3.1: Basic concepts. a) Energy landscape projection in polar coordinates for K1 <
0, K2 = 0; b) a complete set of FORCs for θ, φ as marked by the × in a); c) the reduced
magnetisation m(Bb = µ0Hb, Ba = µ0Ha); d) the corresponding FORC distribution (normalised)
with SF=1. The FORC distribution fronts and tails coincide with the sharp edges of m(Bb, Ba).
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3.2.2 Backtracking line-search gradient-descent method

A small spherical ferromagnetic particle of volume V in the single-domain (SD) state is modelled

as a magnetic point dipole with constant magnitude |M | = MSV , with MS the saturation

magnetisation of the material. The magnetic Gibbs free-energy density of the particle is then

the sum of the magnetocrystalline anisotropy (MCA) and the external field energy densities:

E = Ea + Ez (3.6)

with

Ea =
K1

2

∑
i 6=j

α2
iα

2
j +K2

∏
i

α2
i , (3.7)

Ez = −MS (m ·B) = −MSB (αχ+ βψ + γω) ; (3.8)

where αi = (α, β, γ) are the direction cosines of the reduced magnetisation m = M/|M | and

(χ, ψ, ω) those of the external field B = µ0H ; K1 and K2 the first and second MCA constants.

From thermodynamics it is known that a system is spontaneously driven towards states with

locally minimal Gibbs free-energy. Therefore, we are concerned with finding the LEM of the

function E = E(m, B).

Since the reduced magnetisation vector is unitary, it is natural to express the energy in the

spherical coordinate system E = E(m = m(θ, φ), B) (θ, φ the polar and azimuthal angles,

respectively):

Ea = K1 sin2 θ
[
cos2 θ + (sin θ cosφ sinφ)2]

+K2 sin2 θ (sin θ cos θ sinφ cosφ)2 , (3.9)

Ez = −MSB (χ sin θ cosφ+ ψ sin θ sinφ+ ω cos θ) . (3.10)

Ea minima and maxima lie along crystallographic orientations depending on the sign of K1, K2

and the ratio |K2|/|K1|. For K1 < 0 (K2 = 0) the easy axes (minima) are the <111> and the

hard (maxima) the <100>; the <110> are saddle points (Fig. 3.1(a)). When K1 > 0 (K2 = 0)
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instead, the easy axes become the <100> and the hard the <111> while the <110> remain as

saddle points.

From Eq. (3.6), (3.9–3.10), the gradient is then

∇E = êθ (Ea + Ez)θ + êφ (Ea + Ez)φ

= êθ ((Ea)θ + (Ez)θ) + êφ ((Ea)φ + (Ez)φ) ; (3.11)

where

(Ea)θ = 2 sin θ cos θ
{
K1

[
2 (sin θ sinφ cosφ)2

− sin2 θ + cos2 θ
]

+ K2

[
2(sin θ cos θ sinφ cosφ)2 − sin4 θ

]}
, (3.12)

(Ez)θ = −MSB(χ cos θ cosφ+ ψ cos θ sinφ− ω sin θ) (3.13)

(Ea)φ = 2 sin4 θ sinφ cosφ
(
K1 +K2 cos2 θ

)
×
(
− sin2 φ+ cos2 φ

)
(3.14)

(Ez)φ = −MSB sin θ (−χ sinφ+ ψ cosφ) . (3.15)

A backtracking line-search gradient-descent method (Armijo, 1966) was implemented to

simulate hysteresis loops and first-order reversal curves of nanomagnets with cubic MCA. The

Armijo-Goldstein control parameters c = 1 × 10−4, τ = 1/2 were used in this study. These

ensure that the minimiser follows the gradient-descent direction very closely (Fig. 3.2). An

example of the code can be consulted in Appendix A.

3.3 Results and Discussion

Calculated FORCs for a given field orientation are shown in Fig. 3.1(b) (using the magnetic

parameters for greigite). Fig. 3.1(c–d) shows the magnetisation as a function of (Bb, Ba) and

the corresponding FORC diagram (normalised). It is seen that the distribution is a collection

of tail/front pairs like Eq. 3.5 along the discontinuities in m(Bb, Ba). A negative delta-like
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Figure 3.2: The behaviour of the minimiser during irreversible motion along the main branch of
the FORCs shown in Fig. 3.1(b). a) When the field is -30 mT the magnetisation irreversibly
rotates from its position in the positive octant (x, y, z > 0) (grey dot) to the one with z < 0,
where a local energy minimum is found (black dot). As the field strength is further increased
the local energy minimum becomes more shallow until b) at -39 mT an energy gradient causes
the irreversible motion to the negative octant (x, y, z < 0) where saturation occurs.

source at (Bb = 17 mT, Ba = −39 mT) is caused by the curve with Ba = −38 mT going back

to positive saturation at Bb = 17 mT while the one with Ba = −39 mT remains in its negative

saturation state up to Bb = 30 mT. These type of strong, highly-localised FORC distribution

negative sources are then due to irreversible events on different FORCs. These strong, negative

delta-like sources cannot occur in uniaxial particles which have only one irreversible event

along the hysteresis main branch; low-valued negative delta-like sources are possible in uniaxial

systems for the particles with easy axis almost normal to the applied field which experience

very small irreversible upward jumps (Stoner and Wohlfarth, 1948; Newell, 2005).

As the energy density is linear on MS, K1 the FORC distributions are presented in nondi-

mensional axes Bnondim. = B × (MS/K1). This allows to scale for different MS, K1 values. The

particles that have an easy axis alignment closer to the external field produce highly-symmetric,

hysteron-like hysteresis curves which are responsible for the accumulation of positive delta-like

sources along the central ridge (the line Ha = −Hb). The material with the highest coercivities

BC was found to be greigite, with BC as high as 80 mT for particles with an easy axis closely
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Figure 3.3: FORC distribution heat maps (normalised) and presented in nondimensional axes.
a) Greigite (K1 < 0) and b) its purely reversible part; same for c,d) iron (K1 > 0). Note the
different scales for each material. The K1 < 0 and K1 > 0 cases show very similar patterns.
However, for K1 > 0 no negative sources, either reversible or irreversible, appear to the right of
the negative-valued vertical ridge.
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aligned with the applied field. Iron has coercivities as high as 50 mT. The lowest coercivities for

iron and greigite are 16 mT. However, coercivities are intrinsically higher for K1 > 0 which are

∼2 in nondimensional terms and ∼1.5 for K1 < 0.

The FORC distributions (Fig. 3.3) show similar patterns for both signs of K1 (Figs. 3.3(a–b)).

Greigite, with its high coercivity, accumulates positive delta-like sources along the central ridge

from 26 mT up to 80 mT. A region {(Bb, Ba) : 15 mT < Bb < 18 mT, −26 mT < Ba < −16 mT}

with the highest ρ∗ = ρ/max(ρ) values is caused by a cascade of particles with easy axis far

from the field orientation switching at low Ba values to intermediate states and back to positive

saturation at Bb < |Ba|. These irreversible events then cause the accumulation of negative

delta-like sources along a negative-valued vertical ridge. To the right of this, another (smaller)

negative feature is produced by the irreversible events of particles undergoing hysteresis loops

with more than two jumps, which corresponds to the fraction of particles with hard axes very

closely aligned with the external field. Comparing Figs. 3.3(a–b) it is clear that the negative

ridge in the FORC distribution disappears in the purely reversible map and is therefore caused

only by irreversible events.

For K1 > 0 (Figs. 3.3(c–d)), the pattern formation is similar, if only with the position and

width of the features changing. However, a fundamental difference is that for K1 > 0 there is

not an appreciable fraction of particles with hysteresis loops with more than two irreversible

events. This is manifested in the FORC distribution by the absence of negative sources to the

right of the negative vertical ridge.

Using a log-normal distribution, FORC diagrams for greigite and iron with a distribution of

K1 values were calculated. FORC diagrams are usually presented as contour plots of the FORC

distribution with the transformed axes Bc = (Bb −Ba)/2, Bu = (Bb +Ba)/2; in this manner,

FORC diagrams for greigite and iron with a distribution of anisotropy values are presented (Fig.

3.4).

The position of the features in the FORC diagrams is slightly offset from being centered

around the Bu = 0 axis. This has been observed before in both measured and modelled

FORC diagrams. Newell (2005) attributes this to either a numerical artifact introduced by the

least-square fitting-type calculation of the FORC distribution or to thermal effects. However, at
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Figure 3.4: The FORC diagrams (SF=1). a) Greigite (K1 < 0) with a log-normal distribution
of K1 (inset); b) iron (K1 > 0) with a log-normal distribution of K1 (inset). The pattern
formations are similar in overall shape but with small differences. Contour lines are plotted using
a combination of linear and nonlinear scales at (2−7, . . . , 2−1, 0.6, 0.7, 0.8)× (max(ρ),min(ρ)).

least in this study, this should be attributed to the reversible contributions accumulating just

below the central ridge.

The FORC diagrams obtained here for non-interacting ensembles of SD particles with

cubic MCA shows good agreement with the non-interacting ensembles of Harrison and Lascu

(2014) as far as overall shape, e.g., the tilted negative ridge (Fig. 3.5). The elongated, tilted,

negative-valued ridge is highly significant and is related to the presence of intermediate states,

i.e., more than one irreversible event along the hysteresis curve. This feature becomes wider

and fan-like when the FORC distribution is calculated for a distribution of K1 values, which

is observed also by Harrison and Lascu (2014). Uniaxial particles cannot produce this type of

FORC distribution sources, so this is a magnetic fingerprint of particles undergoing multiple

switching events. This can be caused in general by non-uniaxial, non-interacting to weakly

interacting SD particles. However, particles with non-uniform magnetisations also experience

more than one switching event which could cause the appearance of this feature. The tilted

negative ridge has been observed before in FORC measurements of synthetic and natural greigite

samples (Roberts et al., 2011).
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Figure 3.5: FORC diagram for a randomly aligned, non-interacting SD magnetite dispersion
obtained with the FORCulator package (Harrison and Lascu, 2014). (From Harrison and Lascu
(2014)).

3.4 Conclusion

The FORC distribution and diagram of non-interacting dispersions of SD particles with cubic

MCA was calculated. The numerical algorithm was found to be robust and fast. It is important

that the minimiser takes sensible steps in order to closely follow the gradient-descent direction

and not end up in local energy minima across energy barriers; the Armijo-Goldstein control

parameters used in this study ensure these conditions.

The mechanism behind the pattern formation on the FORC diagram of dilute dispersions

of SD particles with cubic MCA was identified. The FORC signals due to the reversible and

irreversible motions were determined. The FORC diagram pattern of non-interacting to weakly

interacting, cubic MCA SD particle ensembles are robust, which supports the idea of FORC

diagram use for the identification of a non-interacting to weakly-interacting fraction of SD

particles with cubic MCA.

The elongated negative ridge can be interpreted as the FORC signal of non-uniaxial (e.g.,

cubic MCA), non-interacting SD particles; however, it is possible that particles in the vortex

state (Valdez-Grijalva et al., 2018) can produce similar results due to the existence of inter-
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mediate non-saturated states along the main hysteresis branch. Identification of this signal

should be straightforward since its non-interacting nature means that it is essentially additive.

Experimental work with dilute dispersions of fine particles of greigite, iron, magnetite or other

magnetic minerals with a cubic MCA can provide answers to some of these open questions.
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This Chapter is submitted for publication as Valdez-Grijalva, M. A., Muxworthy, A. R., Williams,

W., Ó Conbhúı, P., Nagy, L., Roberts, A. P., Heslop, D., 2018. Magnetic vortex effects on

first-order reversal curve (FORC) diagrams for greigite dispersions. Earth Planet. Sci. Lett., in

review.

M. V. G. designed the experiment, performed the simulations and wrote the article. W. W.,

P. C. and L. N. wrote the micromagnetic code. M. V. G., A. M., A. R. and D. H. analysed the

results.

Abstract

First-order reversal curve (FORC) diagrams are used increasingly in geophysics for magnetic

domain state identification. The domain state of a magnetic particle is highly sensitive to

particle size, so FORC diagrams provide a measure of magnetic particles size distributions.

However, the FORC signal of particles with nonuniform magnetisations, which are the main

carrier of natural remanent magnetisations in many systems, is still poorly understood. In this
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study, the properties of non-interacting, randomly oriented dispersions of greigite (Fe3S4) in

the uniform single-domain (SD) to non-uniform single-vortex (SV) size range are investigated

via micromagnetic calculations. Signals for SD particles (< 50 nm) are found to be in excellent

agreement with previous SD coherent-rotation studies. A transitional range from ∼50 nm to

∼70 nm is identified for which a mixture of SD and SV behaviour produces complex FORC

diagrams. Particles > ∼70 nm have purely SV behaviour with the remanent state for all

particles in the ensemble represented by the vortex state. It is found that for SV ensembles the

FORC diagram provides a map of vortex nucleation and annihilation fields and that the FORC

distribution peak should not be interpreted simply as the coercivity of the sample, but as a

vortex annihilation field on the path to saturation.

4.1 Introduction

First-order reversal curve (FORC) diagrams are a powerful tool in rock magnetic studies,

which allow mineral and domain state identification as well as quantification of magnetostatic

interactions among particles (Pike et al., 1999; Roberts et al., 2000, 2014; Dumas et al., 2007;

Egli et al., 2010). As such, they have been the subject of numerical studies aimed at relating

the behaviour of individual magnetic particles and small assemblages to experimental bulk

properties (Pike et al., 1999; Carvallo et al., 2003, 2006; Muxworthy et al., 2004; Muxworthy

and Williams, 2005; Newell, 2005; Harrison and Lascu, 2014; Valdez-Grijalva and Muxworthy,

2017; Roberts et al., 2017).

With the exceptions of Carvallo et al. (2003) and Roberts et al. (2017), all of these numerical

studies have concentrated on FORC diagrams for ideal, uniformly magnetised single-domain

(SD) particles. They have shown that uniaxial SD particles produce patterns in FORC diagrams

(Muxworthy et al., 2004; Newell, 2005; Harrison and Lascu, 2014), that are distinct from those

for SD materials with cubic anisotropy (Muxworthy et al., 2004; Harrison and Lascu, 2014;

Valdez-Grijalva and Muxworthy, 2017). However, it is well-documented that most natural

systems have magnetic signals dominated by larger grains with more complex magnetic domain

states (Dunlop and Özdemir, 1997; Roberts et al., 2017). Grains just above the SD threshold size
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(e.g., ∼64 nm for equidimensional magnetite, ∼54 nm for greigite), are typically in a single-vortex

(SV) state. The SV state dominates magnetic structures over an order of magnitude of size

variations (Nagy et al., 2017; Valdez-Grijalva et al., 2018), which is much wider than the stable

SD size range. SV grains have recently been found to be geologically meta-stable and retain

relatively high remanences (Almeida et al., 2014; Nagy et al., 2017; Valdez-Grijalva et al., 2018).

Previous experimental studies on nano-patterned arrays of SV particles (Pike and Fernandez,

1999; Dumas et al., 2007) found that FORC diagrams are significatively more complex than for

SD signals, with complex off-axis “butterfly” patterns that are related to vortex nucleation/an-

nihilation processes. However, it is difficult to relate the behaviour of 2D nano-patterned

arrays to the behaviour of natural particle systems found in geological samples. In natural

samples, particles with varying size and orientation are dispersed in 3 dimensions. Thus, it is

important to understand the contribution of dispersions of randomly aligned SV particles to

FORC diagrams. Numerical modelling can aid the study of such systems. Carvallo et al. (2003)

used a finite-difference model to calculate the FORC distributions of SV magnetite particles;

however, that study primarily examined the effects of interactions between small clusters of

cubic grains, and neither random particle distributions nor realistc grain morphologies were

included.

In this study, we employ a micromagnetic finite element method (FEM) to obtain FORC

diagrams for non-interacting ensembles of SD and SV greigite (Fe3S4). Greigite is the iron-

sulphide counterpart to magnetite. Recent interest in greigite comes from both its promising

properties for material science (Li et al., 2014) and the abundance of this mineral in sedimentary

rocks for Earth science (Roberts et al., 2011). FORC diagrams are often used to help identify

greigite. The relatively high anisotropy of greigite means that the behaviour of this mineral

is representative of cubic-anisotropic ferri- and ferro- magnets like magnetite and iron. We

calculate FORC diagrams for simulations of non-interacting dispersions of randomly oriented

greigite with sizes 30–80 nm; this size range covers the SD–SV threshold (Valdez-Grijalva et al.,

2018). Simulations are carried out on an ensemble of 500 particles with random orientations.

The unstructured discretisation of FEMs allows us to study realistic greigite particle shapes as

observed in nature. We determine the onset of SV behaviour and its consequences for FORC
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diagram interpretation.

4.2 Methods

4.2.1 The micromagnetic algorithm

A numerical micromagnetic FEM (Ó Conbhúı et al., 2018) has been implemented to study the

FORC properties of truncated octahedral greigite particles in the SD–SV size range. For details

on the micromagnetic method see Section 1.4.

The magnetic parameters of greigite used in this investigation are: the saturation magnetisa-

tion MS = 2.7× 105 A/m (Li et al., 2014); the exchange stiffness constant A = 2× 10−12 J/m

(Chang et al., 2008); and the first MCA constant K1 = −1.7×104 J/m3 (Winklhofer et al., 2014).

This set of parameters has been used in recent numerical studies of greigite (Valdez-Grijalva

et al., 2018; Valdez-Grijalva and Muxworthy, 2017).

4.2.2 The FORC model

FORC diagrams are constructed from a class of partial hysteresis curves called first-order

reversal curves (Mayergoyz, 1986), each starting at a value Ba of the applied field along the

main hysteresis branch and tracing the magnetisation as the field Bb is increased to saturation.

A magnetisation function on two variables M = M(Ba, Bb) is thus obtained. The FORC

distribution ρ is then defined as (Roberts et al., 2000):

ρ = −1

2

∂2M

∂Ha∂Hb

= −µ
2
0

2

∂2M

∂Ba∂Bb

, (4.1)

where µ0 is the magnetic constant (or vacuum permeability) and H = B/µ0.

Once M(Ba, Bb) is obtained, calculation of ρ(Ba, Bb) is done by least-squares fitting of a

degree 2 polynomial surface a0 +a1Ba +a2Bb +a3BaBb +a4B
2
a +a5B

2
b + error = M(Ba, Bb) on a

subgrid of M(Ba, Bb) centered around (Ba, Bb) as determined by the so-called smoothing factor

(SF) and including (2×SF + 1)2 points; the value of ρ is then simply −µ2
0a3/2 (Pike et al., 1999).

FORC diagrams are usually presented with rotated axes Bc = (Bb −Ba)/2, Bu = (Bb +Ba)/2.
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Distributions with random orientation of magnetic particles with respect to the applied field

were determined by taking 500 field orientations from a sector of the unit sphere (Fig. 4.1). We

use 500 field orientations as a workable compromise between accuracy and calculation speed.

Also, for each particle/field-orientation, the hysteresis curve consists mostly of reversible motion

of the magnetisation; thus, we only need to calculate the main branch of the hysteresis loop

and the few reversal curves starting at the different switching fields along the main branch

(Valdez-Grijalva and Muxworthy, 2017). The switching events are identified either by an abrupt

change in the scalar net magnetisation ∆(M/MS) > 0.1 or a rotation of the net magnetisation

vector larger than 5 degrees. These simplifications reduce vastly the number of calculations

needed without loss of important information. The external-field rate of change for all models

was 1 mT with a saturation field of 250 mT, so that 501 reversal curves were calculated for each

particle/field-orientation.

Scanning electron and transmission electron micrographs of naturally occurring greigite

samples (Snowball, 1997; Vasiliev et al., 2008; Roberts, 2015) reveal that greigite tends to grow

authigenically as well-defined regular truncated octahedral particles. Micromagnetic calculations

for truncated octahedral greigite particles indicate that the SD–SV threshold occurs at ∼54 nm

(Valdez-Grijalva et al., 2018). In this study we model FORC diagrams for non-interacting

ensembles of truncated octahedral greigite particles sized 30–80 nm (where size is normalised

to the volume of a cube) at 2 nm size intervales. This range is chosen because it spans the

transition from SD to SV behaviour.

4.3 Results

For ensembles with SD particles < 50 nm, hysteresis behaviour is dominated by coherent rotation

(Fig. 4.2). This is seen by comparing FORC diagrams for these ensembles (Fig. 4.2b) with

those of idealised SD (effectively a single magnetic dipole), coherently rotating greigite particles

(Fig. 4.2a) determined using the method outlined in Valdez-Grijalva and Muxworthy (2017).

Diagrams for particles < 50 nm obtained with the micromagnetic algorithm (Fig. 4.2b) are

offset ∼3 mT to the left compared to the dipole model (Fig. 4.2a); lower coercivities due to
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Figure 4.1: Model geometry and field orientations. The most common morphology for authigenic
greigite is truncated octahedral. To avoid the high density of field orientations necessary near the
sphere poles when using a regular grid, 500 random field orientations (arrows) were chosen from
a uniform distribution over a sector of the unit sphere. The periodicity of the magnetocrystalline
anisotropy and particle symmetry allow modelling of the effects of field orientations on only a
sector of the sphere without loss of generality.
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Figure 4.2: Comparison between FORC diagrams produced with dipole and micromagnetic
models. a) Dipole model; FORC diagram (SF=4) for a non-interacting ensemble of idealised (size-
independent) SD greigite particles obtained using the model of Valdez-Grijalva and Muxworthy
(2017). b) Micromagnetic model; FORC diagram (SF=4) for a non-interacting ensemble of
30 nm truncated octahedral greigite particles. Up to 48 nm, the FORC diagram is that of an
ensemble of coherently rotating SD moments. For particles larger than 48 nm, magnetic vortex
effects become important. Dashed contour lines denote negative ρ values.

the micromagnetic algorithm, which includes flowering (small deviations from a perfect SD

structure) as a result of magnetostatic self-interaction effects, account for this effect.

Particles with cubic anisotropy have hysteresis behaviour that departs from that observed

from the simple hysteron consisting of one plus and one minus magnetisation states. There

exist intermediate easy axis states along hysteresis curves for the SD state (Valdez-Grijalva

and Muxworthy, 2017). The tilted, elongated, negative-valued ridge (Fig. 4.2) is a consequence

of the availability of multiple hysteresis main branches caused by the cubic anisotropy. This

negative-valued ridge is produced by the fraction of particles with a hard axis aligned closely

with the applied field. These particles have the lowest switching fields: from the plus-state

to an intermediate state at B = B+
∗ and from the intermediate state to the minus-state at

B = B∗−. Reversal curves with B∗− < Ba < B+
∗ experience a sharp upward discontinuity at

Bb = B∗+ ≤ |B+
∗ | when hard-aligned particles return to the plus-state from their intermediate

states. The combination of this type of irreversible event in hard-aligned particles causes

the local peak at Bc ≈ 15 mT, Bu ≈ −3 mT (Fig. 4.2b). For reversal curves with Ba < B∗−,

hard-aligned particles are initially in the minus-state and undergo irreversible rotation to an
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intermediate state on the path to positive saturation at B = B−∗ = |B+
∗ | due to the symmetry of

the particles and the lack of magnetostatic interactions. The combination of these irreversible

events causes a negative FORC distribution response at Ba = B∗−, Bb = B∗+. The sum effect

of this type of response for many particles with a distribution of switching fields produces the

elongated negative contribution observed in all SD ensembles, roughly along the line segment

connecting (Bc = 18 mT, Bu = −6 mT) with (Bc = 42 mT, Bu = −30 mT).

The fraction of particles with easy axis alignment close to the applied field orientation

exhibits hysteron-like behaviour, i.e., just two switching fields: from the plus-state to the

minus-state B+
− and vice versa B−+ . The lack of interactions and the symmetry of particles

in our simulations ensure that |B+
− | = B+

− . Thus, this fraction of particles produces FORC

distribution responses at Ba = B+
− , Bb = B−+ . These types of irreversible responses accumulate

on the line Ba = −Bb; they account for the most drastic changes in the magnetisation of the

ensemble and, thus, account for the high slopes around the coercive field of the sample. This

makes the position of the FORC diagram peak coincide with the coercivity of BC ≈ 24 mT for

SD ensembles.

Particles with size d ≥ 50 nm switch incoherently; that is, the FORC diagrams depart

from coherent rotation behaviour associated with SD particles as the tight boomerang-shaped

FORC diagram pattern exhibited by the SD greigite (Fig. 4.2) becomes more fragmented

(Fig. 4.3). This change is driven initially by particles with hard axes close to the applied field

nucleating hard-aligned vortices (Valdez-Grijalva et al., 2018) as intermediate meta-stable states

during hysteresis. Even though nucleation of hard-aligned vortices occurs in particles below the

zero-field SD–SV threshold d0 ≈ 54 nm (Valdez-Grijalva et al., 2018), this is expected because

vortex nucleation greatly reduces the magnetic free-energy. A corollary of this is that a fraction

of particles (with easy axis alignment close to the applied field) above the zero-field SD–SV

threshold can remain in a SD state throughout hysteresis. These effects are due to distortion of

the zero-field energy landscape by the applied field.

An appreciable positive source in the FORC distribution appears along the Bu = 0 axis

at Bc ≈ 52 mT (the Bc axis is not to be confused with the coercivity BC) for ensembles with

particles ≥ 54 nm (Fig. 4.4, region 5); this contribution represents the annihilation of vortex
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Figure 4.3: FORC diagrams with increasing vortex effects. SF=4 for all diagrams. a) 50 nm; b)
60 nm; c) 66 nm; and d) 76 nm. At these sizes, an ever larger fraction of the particle moments
begin to switch with nonuniform magnetisations, i.e., vortex nucleation. At 76 nm all particles
are in the single vortex remanent state. Dashed contour lines denote negative ρ values.
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states on the return to positive saturation. The elongated, negative ridge due to SD particles

with cubic MCA and its corresponding symmetric positive response move to lower (Bc, Bu)

values (Fig. 4.4, regions 1, 3) and the first responses for Bu > 0 begin to form (Fig. 4.4, region

2); these are elongated features at 45◦ to the Bu = 0 axis, which are different to the vertical

widening usually attributed to magnetostatic interactions (Pike et al., 1999; Muxworthy et al.,

2004; Muxworthy and Williams, 2005).

For particles slightly below and above the SD–SV threshold d0, vortex nucleation occurs only

for negative applied field values, thus noticeable changes in the FORC diagrams (Fig. 4.3a–c) are

not evident in changes in the saturation remanence MRS to saturation magnetisation MS ratio

up to 72 nm, whereas coercivity decreases sharply above 48 nm (Fig. 4.5b). The monotonically-

decreasing coercivity trend is preserved up to 62 nm when it rises from BC ≈ 15 mT to ∼20 mT

for d = 68 nm. With increasing size, coercivitiy decreases further, accompanied by a sharp

decrease in MRS (Fig. 4.5b). The drop in MRS is driven by particles nucleating vortices at

Ba > 0 for d ≥ 68 nm. For d ≥ 76 nm, all particles nucleate vortices so that the vortex state

becomes the remanent magnetic domain state; this is reflected in the Day plot (Day et al.,

1977), a scatter plot of the MRS/MS ratio against the coercivity of remanence BCR (the field

necessary to reduce the remanence to zero) to BC ratio, by particles 76 nm and larger (Fig.

4.5a), associated here with the SV state.

Particles sized 62–72 nm move away from the top left of the Day plot (Fig. 4.5a) to a

region with high remanence but larger BCR/BC values. These sizes coincide with the anomalous

coercivity increase for these sizes (Fig. 4.5b). The increased coercivities can be explained by

vortex nucleation, which causes hysteresis loops to become increasingly wasp-waisted (Fig. 4.6)

so that they cross the zero-magnetisation axis at increasing (absolute) values of the applied field

strength. FORC diagrams for these sizes are the most complex of all those simulated here, and

have a variety of features (Figs. 4.3c, 4.6) caused by the complex interplay of SV and SD effects.

The elongated, negative ridge becomes more faint with increasing particle size, whereas the

positive responses for Bu > 0 become larger and move toward the Bc = 0 axis with increasing

size. Large, positive FORC responses for Bu > 0 along the Bc = 0 axis are expected for larger

multi-domain (MD) grains (Pike et al., 2001; Roberts et al., 2006). The non-interacting nature
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Figure 4.4: FORC diagram (SF=4) (bottom) and hysteresis curves (top) for 54 nm particles.
Annotations link the FORC diagram responses to the raw hysteresis curves. See text for details.
Dashed contour lines on the FORC diagram denote negative ρ values.
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Figure 4.5: Day plot and MRS/MS and coercivity against particle size. a) The Day plot
(Day et al., 1977) contains data for SD particles up to 60 nm; however, we know from the
micromagnetic solutions that vortices form from 50 nm onward. Particles with size from 62 to
72 nm plot in an unexpected region. Particles larger than 74 nm plot with lower MRS/MS and
higher BCR/BC values. b) Remanence (circles) and coercivity (triangles) versus particle size.

of these ensembles means that the SD and SV FORC signals are linearly additive. Therefore, it

is possible to discern the FORC responses due to SD (Fig. 4.6, regions 3, 6) and SV particles

(Fig. 4.6, regions 1, 2, 4, 5, 7, 8).

The elongated, negative ridge typical of SD particles with cubic MCA (Valdez-Grijalva and

Muxworthy, 2017) disappears for particles ≥ 76 nm (Fig. 4.3d). A circular, negative feature

centered roughly at (Bc = 8 mT, Bu = −8 mT) becomes larger and of a magnitude comparable

to the largest positive reponses. For d = 76 and 78 nm the negative response has a larger

absolute value than the distribution peak (Fig. 4.3d). For the 80 nm particle model, a faint

negative response appears centered roughly at (Bc = 40 mT, Bu = −12 mT) (Fig. 4.7, region 6).

Fig. 4.7 represents the contribution of purely SV particles, that is, ensembles of particles that

are all in a SV remanent state. It is logical that this FORC diagram is somewhat less complex

than those for ensembles with a fraction of particles still in the SD state as well as some in the

SV state; the difference is due to the field angle relative to particle orientation, as has also been

shown by Roberts et al. (2017) for magnetite.

Particles with hard axes aligned closely with the applied field nucleate hard-aligned vortices

at high applied field values (Figs. 4.8a, 4.9); as the field decreases below ∼12 mT these vortices

rotate irreversibly to an easy axis alignment (Fig. 4.8b). As the field is increased on reversal
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Figure 4.6: FORC diagram (SF=4) (bottom) and hysteresis curves (top) for 62 nm particles.
Annotations link the FORC diagram responses to the raw hysteresis curves. See text for details.
Dashed contour lines on the FORC diagram denote negative ρ values.
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Figure 4.7: FORC diagram (SF=4) (bottom) and hysteresis curves (top) for 80 nm particles.
Annotations link the FORC diagram responses to the raw hysteresis curves. See text for details.
Dashed contour lines on the FORC diagram denote negative ρ values.
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a)

b)

Figure 4.8: Hysteresis main branch, reversal curves and micromagnetic solutions of 80 nm-sized
particle with applied field along a hard <010> axis. A hard-aligned vortex nucleates at high
values of the applied field with a negligible net magnetisation change and therefore negligible
contribution to the FORC distribution. The vortex is stable as the field is decreased down
to 6 mT (a). Decreasing the field to 5 mT causes the vortex core to rotate irreversibly to an
easy <111> axis (b). A reversal curve starting at this switching value rotates back to the hard
axis alignment when the field is increased to 28 mT. The vortex cores are highlighted by their
helicity (m · ∇ ×m) and coloured according to the anisotropy energy.

curves with ∼0 mT ≤ Ba ≤ ∼12 mT these vortices switch irreversibly back to a hard alignment

at Bb ≈ 28 mT to create a local peak at Bc ≈ 12 mT, Bu ≈ 16 mT (Fig. 4.7, region 1); this is

manifested in the raw hysteresis data by the smoothed discontinuity at B ≈ 28 mT whereas

the reversible motion traced by the reversal curves around this region accounts for the tilted,

elongated response surrounding the local peak.

During hysteresis, as the remanent state is approached, all particles ≥ 76 nm have nucleated

vortices: particles with easy axis alignment close to the applied field directly nucleate an easy-

aligned vortex while the rest nucleate vortices initially oriented along hard <100> or <110>
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directions (Fig. 4.9b), which rotate irreversibly to an easy axis alignment as the field approaches

zero. The latter fraction of particles then undergo irreversible rotations to intermediate positions

for ∼−10 mT ≤ B ≤ ∼−20 mT. For FORCs with ∼−10 mT ≤ Ba ≤ ∼−20 mT, these vortices

rotate back to the initial easy axis alignment at Bb ≈ 4 mT. A combination of these irreversible

events creates the lowest negative FORC response (Fig. 4.7, region 2). A further applied field

increase to ∼30 mT causes these vortices to switch to the initial hard position from which they

nucleated. These events cause the tilted, elongated FORC response (Fig. 4.7, region 3).

As the applied field decreases past ∼−52 mT, the vortices of particles with easy axis alignment

close to the applied field annihilate (Fig. 4.9). Reversal curves with ∼−80 mT ≤ Ba ≤ ∼−52 mT

trace lower slopes with decreasing Ba due to the combined reversible motion of vortices and

single domains; this is the source of the faint negative contribution for Bu < ∼45 mT (Fig.

4.7, region 4). On increasing Bb on these curves, nucleation of easy-aligned vortices occurs

at ∼−5 mT creating the boomerang-shaped response (Fig. 4.7, region 5) that limits the faint

negative response in region 4; this corresponds with the smoothed discontinuity in hysteresis

curves as the field approaches zero from the left. Increasing the applied field to positive values

causes the easy-aligned vortices of particles with hard axes close to the applied field to switch

to hard alignments at ∼28 mT, creating a negative FORC region (Fig. 4.7, region 6). The

distribution peak at region 7 (Fig. 4.7) corresponds to the average annihilation field of the

vortices on the reversal paths to positive saturation.

There is a large spread in the vortex nucleation and annihilation fields (Fig. 4.9). Particles

with hard axis alignment close to the applied field nucleate hard-aligned vortices for fields as

high as ∼200 mT and annihilate on the opposite side of the particle for equally high (absolute)

values. However, these nucleation and annihilation events make a negligible contribution to the

FORC diagram because the change in magnetisation of a particle nucleating/annihilating a

hard-aligned vortex from/to a SD state can be as low as 1%.
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Figure 4.9: Vortex nucleation and annihilation fields for the simulated particle ensembles. a)
Scatter plot of annihilation field against nucleation field. Three trends are observed depending
on whether the nucleated/annihilated vortex has an easy, hard or other alignment. b) Vortex
core angle with an easy direction against the nucleation and annihilation fields (circles and
triangles, respectively).

4.4 Discussion

Comparison of results for micromagnetic simulations presented here with the coherently rotating

dipole model of Valdez-Grijalva and Muxworthy (2017) indicates excellent agreement (Fig. 4.2).

This confirms the accuracy of our model using only 500 random field orientations instead of

field orientations on a regular grid, which requires a high density of field orientations near

the poles of the sphere. A FORC diagram for SD coherently rotating particles has the same

general features as those obtained for weakly interacting SD particles with cubic MCA by

Harrison and Lascu (2014), i.e., a positive ridge along the Bc axis, slightly offset toward Bu < 0

values and a tilted, negative ridge on the lower half of the FORC plane. For these ensembles,

the horizontal spread along the Bc axis corresponds to the density of switching fields of the

differently oriented particles and the FORC distribution peak position corresponds directly

to the ensemble coercivity. The negative ridge is indicative of intermediate states along the

hysteresis curve and, therefore, of SD particles with non-uniaxial (in this case cubic) MCA

(Valdez-Grijalva and Muxworthy, 2017); this type of FORC response has been identified in

simulations for magnetite (Harrison and Lascu, 2014) and hematite (Harrison, 2017), and is

potentially unique to non-interacting to weakly interacting SD particles with cubic or other

non-uniaxial MCA. Experimental data from the Vulcan iron formation (Michigan, USA) (Laird,

95



Chapter 4. Single-vortex effects on FORC diagrams

Figure 4.10: FORC diagram (SF=6) of a SD magnetite- and hematite-dominated sample from
the Vulcan iron formation (Michigan, USA). (From Laird (2017)).

2017) shows very similar FORC diagram patterns for a mixture of SD magnetite and hematite

(Fig. 4.10).

The coercivities obtained here are considerably lower than the commonly accepted value for

natural greigites of ∼60 mT. This discrepancy could be explained by shape anisotropy effects:

if the greigite grains are slightly elongated, shape anisotropy can increase the coercive fields,

therefore the FORC distribution would shift towards higher Bc values. The effect of shape

anisotropy would also remove the tilted, negative ridge as no intermediate states along the

hysteresis main branch would exist. SD greigite is commonly diagnosed from concentric FORC

distributions centered at Bc ≈ 60 mT (Roberts et al., 2011) without the tilted, negative ridge.

Another possibility is for magnetostriction effects to induce a uniaxial anisotropy and increase

the coercivities. However, the magnetostrictive properties of greigite are poorly understood.

Whereas the pure SD signal produces a tight, boomerang-shaped FORC distribution (Fig.

4.2), increasing particle size introduces SV structures that fragment this pattern. The FORC

distribution peak is moved toward higher Bc values along the Bu = 0 axis. Paradoxically, as

this occurs, the bulk coercivity of the ensembles decreases (Fig. 4.5). This paradox has been
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Figure 4.11: FORC diagrams for a weakly interacting 2D array of Fe dots fabricated using a
nanoporous alumina shadow mask technique in conjuction with electron beam evaporation. a)
The array with the smallest (52 nm) particles shows SD properties. b) The array with 58 nm
particles shows SD and PSD properties. c) The array with the largest particles (67 nm) shows
purely PSD properties. (From Dumas et al. (2007)).

observed previously by Dumas et al. (2007) in synthetic size-controlled samples of sub-100 nm

Fe dots (Fig. 4.11).

Fragmentation of the FORC diagram for non-uniformly magnetised particles has been

observed in experimental studies (Pike and Fernandez, 1999; Dumas et al., 2007; Roberts et al.,

2017; Zhao et al., 2017) (Fig. 4.11) and in numerical models (Carvallo et al., 2003; Roberts et al.,

2017); however, these studies did not include random field orientation distributions. The trend

is, nevertheless, clear and is representative of the complex self-interactions brought about by

nonuniform structures and multiple vortex nucleation/annihilation fields (Pike and Fernandez,

1999). It is difficult to compare our results to the FORC signals measured by Muxworthy et al.

(2006) and Krása et al. (2011) for synthetic patterned magnetite because many of their FORC

diagrams appear to have smoothed the subtle features observed here, which raises questions

about the integrity of these samples (e.g., crystallinity) or the adequateness of the FORC

measurement density for these samples. However, a general trend is recognised in the elongation

of the FORC diagram contours in the direction of a negative angle diagonal from the Bu = 0

axis (Fig. 4.12) probably related to region 5 in Fig. 4.7. FORC diagrams for coarse-grained

synthetic greigite samples by Roberts et al. (2011) also show this type of elongations as well as

a negative ridge (Fig. 4.13) probably caused by a fraction of SD particles.

Pike and Fernandez (1999) obtained asymmetric nucleation and annihilation fields of magnetic
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Figure 4.12: FORC diagram (SF=4) for a weakly interacting 2D array of synthetic magnetite
produced by electron beam lithography. Applied field along the elongation of the grains. (From
Muxworthy et al. (2006)).

vortices in nano-patterned Co dots; our models agree with this finding (Fig. 4.9). However, Pike

and Fernandez (1999) studied elongated disc-like particles where the vortex cores were always

perpendicular to the particle plane that mostly underwent reversible motion from nucleation to

annihilation as they traversed the particle. In this study, we demonstrate that different features

on SV FORC diagrams are due to a variety of vortex nucleation and annihilation events, which

depend on particle alignment with respect to the applied field and on the presence of distinctly

different vortex states, i.e., the vortex energies and stabilities depend on their alignment within

the crystalline structure (Valdez-Grijalva et al., 2018).

FORC diagrams were averaged for simulations between 30 and 80 nm (Fig. 4.14a) and

between 60 and 80 nm (Fig. 4.14b). That is, the particle size distributions are uniform (flat) for

these averaged FORC diagrams. The FORC diagram in Fig. 4.14a has a boomerang-shaped

distribution surrounded by a variety of more complex responses. This pattern shows some

similarities to the patterns observed by Dumas et al. (2007) for samples that included both SD

and SV particles. The FORC distribution peak position coincides with the ensemble coercivity,

while still having a response corresponding to the annihilation field of easy-aligned vortices.

Both diagrams in Fig. 4.14 have a significant spread in the positive Bu region. This effect is

purely due to domain state, not magnetostatic interactions. The main peak for the averaged

SV-dominant diagram (Fig. 4.14b) occurs along the Bu = 0 axis at Bc ≈ 52 mT, which indicates
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Figure 4.13: FORC diagram (SF=3) for a synthetic coarse-grained greigite sample of predomi-
nantly PSD particles. (From Roberts et al. (2011)).

Figure 4.14: Averaged FORC diagrams (SF=4) (top) for multiple particle sizes and corresponding
raw hysteresis curves (bottom). Uniform size distributions are used for particles a) 30 nm ≤
d ≤ 80 nm and b) 60 nm ≤ d ≤ 80 nm. Dashed contour lines denote negative ρ values.
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a disconnect with the bulk coercivity of the ensemble (BC ≈ 16 mT). This is a departure from

the usual interpretation of FORC diagrams, i.e., that the FORC diagram provides a map of the

coercivity distribution. This interpretation holds for SD coherently rotating grains, where the

peak response coincides with the value of the ensemble coercivity. It does not hold, however,

for SV grains because their coercivity decreases with size while the position of the maximum

moves toward higher Bc values. Instead, for SV grains the FORC distribution peak, and most

FORC features, should be interpreted as due to vortex nucleation/annihilation fields and their

irreversible motions.

4.5 Conclusion

A micromagnetic FEM/BEM was employed to calculate FORC distributions for non-interacting

ensembles of greigite across a size range that spans the SD to SV threshold. 500 random

orientations from a uniform distribution over a sector of the unit sphere were used for each

particle size. This choice was found to be in excellent agreement with previous calculations for

SD greigite (Valdez-Grijalva and Muxworthy, 2017).

FORC diagrams are found to be extremely sensitive to the domain state of the simulated

particles. When even a small fraction of particles starts to nucleate vortices, e.g., d ≈50 nm,

this is reflected in the FORC diagram (Fig. 4.3a compared to Fig. 4.2). The same cannot be

said of the Day plot (Fig. 4.5a). Anomalous behaviour for particles sized 62 to 72 nm, with

coercivity increasing with size was found; these particles plot in an unexpected region of the

Day plot. The anomaly disappears for particles > 72 nm, and when d ≥ 76 nm they have much

lower MRS/MS and higher BCR/BC values.

Detailed FORC analysis and micromagnetic solutions for d = 80 nm particles reveals the

meaning of the FORC diagram for SV ensembles as a map of vortex nucleation/annihilation

fields. Interpretation of FORC diagrams as a coercivity distribution does not apply to SV

systems (see Pike and Fernandez (1999); Roberts et al. (2017)). Recognition that the remanence

in palaeomagnetic studies is often carried by vortex state particles should help users of FORC

diagrams to avoid misinterpretation of vertical spread in FORC diagrams, just as it is recognised
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that vertical spread in MD particles is due to domain wall interactions within particles (Pike

et al., 2001). For SD particles, the typical interpretation of the peak position coinciding with

the coercivity of the sample holds; however, for SV-dominated samples, the position of the peak

occurs at a value much higher than the bulk coercivity of the sample.
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First-order reversal curve diagram

modelling of framboidal greigite

Abstract

First-order reversal curve (FORC) diagrams are an increasingly used technique in rock magnetism

that has the potential to identify magnetic domain state and magnetostatic inter-particle

interactions. The hysteresis and FORC properties of non-interacting dispersions of greigite

in the single-domain (SD) to single-vortex (SV) size range is well studied. However, most

greigite occurs as highly interacting clusters. In this chapter, a micromagnetic method is used

to study the FORC response of a simulated ensemble of highly interacting, close-packed greigite

framboids. The magnetic signature of framboidal greigite is found to be very similar to that

of multi-domain (MD) particles. Identification of MD-like FORC signals in samples known to

contain greigite should be interpreted as produced by framboidal greigite.

5.1 Introduction

Greigite (Fe3S4) is a ferrimagnetic mineral often of authigenic origin in sediments (Roberts

et al., 2011). It is most commonly found in strongly interacting, close-packed clusters called

framboids (Ariztegui and Dobson, 1996; Rowan and Roberts, 2006; Rowan et al., 2009; Roberts
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et al., 2011) (Fig. 1.3).

The zero-field magnetic structure and stability properties of isolated greigite have been the

subject of previous numerical studies (Chapter 2; Muxworthy et al. (2013)). There have also

been numerical simulations of the hysteresis and first-order reversal curve (FORC) properties

of ideal single-domain (SD) grain (Chapter 3) and single-vortex (SV) and SD grain (4) disper-

sions. However, the FORC properties of highly interacting ensembles of greigite is yet poorly

understood.

In this chapter, a numerical micromagnetic finite element method (FEM) is employed to

calculate the FORC response of a simulated ensemble of framboidal greigite composed of

highly interacting, close-packed 30 nm grains. At this size, these grains are SD in the non-

interacting case (Chapter 4) and produce FORC signals charactersitic of SD grains with cubic

magnetocrystalline anisotropy (MCA) (Chapters 3, 4).

Here, truncated-octahedral particles are chosen as the model geometry, because they are

a common morphology for authigenic greigite (Snowball, 1997; Roberts et al., 2011). Also,

truncated-octahedral solids can efficiently tessellate 3D space (the bitruncated cubic honeycomb)

and thus produce the close-packed geometries observed in framboidal greigite.

Touching grains are theoretically problematic to model as possible exchange coupling between

particles is not well understood. Here, a vanishing exchange coupling is assumed. Framboidal

geometries with small gaps between the particles are used, so the only inter-particle interaction

is magnetostatic.

Ferromagnetic materials have magnetisation states that are dependent on their magnetic (or

thermal, chemical) history. This is the well-known phenomenon of magnetic hysteresis. Standard

hysteresis measurements proceed by saturating the magnetisation by applying a saturating

magnetic field B (= µ0H) with strength Bsat; in this saturated state, magnetisations are

uniform and completely aligned with the applied field. Gradually, the magnetic field strength is

decreased to desaturate the magnetic material. A curve M = M(B) of the projection of the

material’s magnetisation on the applied field direction M = M · n̂ (where n̂ is a unit vector in

the direction of the applied field) against the applied field strength B is traced. When the applied

field is removed, the remanent magnetisation state is left. The ratio of the saturation remanent
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state magnetisation MRS ≥ 0 to the saturation magnetisation MS is one of the key magnetic

hysteresis parameters (Dunlop and Özdemir, 1997). The applied magnetic field strength is then

increased in the direction opposite the initial (effectively, making B < 0): the applied field value

at which a magnetisation M = 0 state is obtained is called the coercivity, BC. If from this state

the field is taken back to zero, a magnetisation M > 0 is obtained; however, there exists a field

value BCR < BC, called the coercivity of remanence, from which a remanent M = 0 state is

obtained for B = 0. These fields and the ratio BCR/BC are key parameters characterising a

hysteresis curve. To complete a hysteresis loop, the magnetisation is driven to a negatively

saturated state and gradually returned to the initial positive saturation state. This traces the

main (upper and lower) branches of a hysteresis loop.

A scatter plot of the ratio MRS/MS against BCR/BC is called a Day plot (Day et al., 1977)

and is one of the most common plots in rock magnetism (Dunlop and Özdemir, 1997). Although

these basic magnetic hysteresis parameters can be useful to discern the magnetic domain state

and magnetisation reversal mechanisms of magnetic systems, it has been argued recently that

the Day plot can lead to erroneous interpretations (Egli and Winklhofer, 2014; Roberts et al.,

2017). It is logical that access to the interior of the hysteresis loop can reveal more information

about magnetic behaviours, which is the basic idea behind the calculation of BCR.

5.2 Methods

5.2.1 The micromagnetic method

A numerical micromagnetic FEM (Ó Conbhúı et al., 2018) has been implemented to study the

FORC properties of strongly interacting clusters of SD greigite. For details on the method see

Section 4.2.1.

5.2.2 The FORC model

First-order reversal curves are a set of partial hysteresis curves obtained from magnetisation

states on the upper branch of the hysteresis loop for different field values Ba (Mayergoyz, 1986).
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For a given Ba and M(Ba), the field B = Bb is increased to positive saturation to trace a

magnetisation curve. This proceedure for a number of Ba values creates a magnetisation function

on two variables M = M(Ba, Bb) for Bb ≥ Ba. The FORC distribution ρ is then defined as

(Roberts et al., 2000):

ρ = −µ
2
0

2

∂2M

∂Ba∂Bb

. (5.1)

It has been argued that, the FORC distribution is an empirical analog of the Preisach

distribution which is well defined for magnetic systems that do not necessarily obey the strict

conditions imposed by the Preisach model (Mayergoyz, 1986). Contour plots of the FORC

distribution are called FORC diagrams and have been used increasingly as a proxy for the

magnetic domain state and magnetic reversal behaviour of a variety of systems (Pike et al.,

1999, 2001; Roberts et al., 2000; Dumas et al., 2007; Egli et al., 2010; Egli and Winklhofer, 2014;

De Biasi et al., 2016; Proenca et al., 2017; Zhao et al., 2017).

Calculation of the FORC distribution (Eq. 5.1) is performed by least-squares fitting of a

second degree polynomial surface M(Ba, Bb) = a0 + a1Ba + a2Bb + a3BaBb + a4B
2
a + a5B

2
b + e,

where e is a collection of error terms, on a subgrid of the magnetisation function M(Ba, Bb)

including (2× SF + 1)2 points in the vicinity of (Ba, Bb) as determined by the smoothing factor

SF (Pike et al., 1999). If the magnetisation is approximated in this manner, calculation of Eq.

5.1 yields ρ = −µ2
0a3/2. Rotated (Bb, Ba) axes, the so-called coercive field Bc = (Bb − Ba)/2

(not to be confused with the coercivity BC) and interaction field Bu = (Ba +Bb)/2, respectively,

are used for contour plots to produce FORC diagrams.

In an ensemble of randomly oriented particles, there are equal probabilities of finding particles

with any orientation within an area element of the unit sphere. To simulate a randomly oriented

dispersion of identical particles efficiently, it is necessary to obtain a number of applied field

directions (equivalently, particle orientations with respect to the applied field) each of them

representative of a given area on the unit sphere. Additionally all these areas should span

the unit sphere or alternatively, in high symmetry particle scenarios, a section of the sphere

which can recreate the particle geometry under rotation operations (Chapters 3, 4). Given the

symmetry of the modelled framboidal cluster geometries (Fig. 5.1) it is sufficient to simulate

the effects of field orientations on the spherical triangle delimited by (1, 0, 0), (a, a, a), (0, 0, 1),
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Figure 5.1: Framboidal mesh and field orientations. Field orientations are obtained from
a triangular mesh over the spherical triangle delimited by (1, 0, 0), (a, a, a), (0, 0, 1), where
a = 1/

√
3. Given the symmetry of the cluster, this region contains all field orientations of

interest. The framboid contains 65 truncated octahedral particles each with size d = 30 nm.
The small gap between the particles is ∼2 nm.

where a = 1/
√

3. Then, the spherical triangle is subdivided into roughly equiareal triangle

sub-units to obtain 85 triangular cells. Each cell represents a field orientation we obtain the

FORC response for here, with the coordinates of the centre of the cell used as the direction of

the field. The weighted average (using the cell area as the weight for each field direction) of all

the FORC responses for each of these field orientations is the approximation to the total FORC

response of the ensemble:

M(Bb, Ba)total =

∑cells
i Mi(Bb, Ba)Ai∑cells

i Ai
, (5.2)

where Ai is the area of cell i and Mi the FORC response of the framboid for field direction

associated with cell i.

Since these calculations are computationally intensive, it is important to reduce further the

amount of calculations. For each field orientation, the upper branch of the hysteresis loop is

calculated. Most of the curve is traced by the sum of reversible motions of the magnetisations in

each of the individual particles in the framboid. Therefore, FORCs need only to be calculated

for Ba field values for which at least one particle undergoes an irreversible rotation (switching)

(Chapters 3, 4).
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A saturating field Bsat = 250 mT and an external field rate of change of 2 mT is used for all

calculations. This means that for each field orientation we calculate 251 FORCs to obtain the

FORC signal of a given cluster orientation.

5.3 Results

5.3.1 The hysteresis and FORC response of framboidal greigite

The FORC response is dependent on field orientation with respect to the framboid; all the

30 nm particles have the same orientation. When the field is close to the isolated particle easy

axis <111>, the hysteresis response of the framboid is saturated as low as ∼50 mT (Fig. 5.2a).

Complex local interaction fields cause outer particles to coherently rotate to minimise the stray

fields as the field is decreased. The remanent state is a double magnetic super-vortex with a

low remanence ∼0.1MS that is due to the effective magnetic flux-closure brought about by the

super-vortex structures (Harrison et al., 2002; Evans et al., 2006) (Fig. 5.3). All particles in the

framboid remain in a SD state throughout the hysteresis and FORCs.

The FORC diagram for the easy axis-aligned applied field (Fig. 5.2b) has a positive peak at

Bc ≈ 80 mT roughly 5 mT above the Bu = 0 axis. A negative response of comparable magnitude

is situated below and to the left of the distribution peak. The positive peak response corresponds

to the large upward jumps experienced by the reversal curve starting at the lowest switching

field Ba ≈ −80 mT as it approaches positive saturation (Fig. 5.2a). The negative response is

caused by irreversible switching of individual particles in the framboid on FORCs with higher

Ba values at Bb ≈ 75 mT. Most of the FORC diagram has a noisy appearance due to the

complexity of individual particle responses caused by the local interaction fields. However, a

large, continuous, positive response close to the Bc = 0 axis is important as it was found for all

field orientations.

When the applied field is close to a hard axis, the hysteresis and FORC response is very

different. The hysteresis main branches are much more rounded, desaturating via reversible

motion and experiencing the first irreversible switchings at roughly 150 mT (Fig. 5.2c) which

are much smaller than the jumps for the easy axis-aligned applied field response (Fig. 5.2a).
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Figure 5.2: FORCs for greigite clusters with 30 nm crystallites for fields along an easy (a, b)
and a hard (c, d) axis. When the field is aligned close to an easy axis, there is a peak FORC
response on the Bu = 0 axis at Bc ≈ 80 mT (b). For fields close to the hard axis, the FORC
response has a peak for Bc ≈ 10 mT (d).

The FORC diagram (Fig. 5.2d) is dominated by signals close to the Bc = 0 axis.

Averaging the response for all 85 field orientations results in a very smooth set of FORCs (Fig.

5.4a). The remanence of the framboid ensemble is MRS/MS ≈ 0.1 and the hysteretic coercivity

BC ≈ 5 mT; compare this to the remanence and coercivity of a noninteracting ensemble of

isolated SD greigite particles of the same size, MRS/MS ≈ 0.86 and BC ≈ 24 mT, respectively

(Chapter 4). The magnetostatic interactions between the particles in the framboids cause large

decreases in the remanence and coercivity. The saturating field for the framboid ensemble is

roughly 150 mT.

The FORC diagram of the simulated ensemble of framboidal clusters (Fig. 5.4b) is dominated
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by a large response roughly centered at (Bc = 10 mT, Bu = 0) and two lobes roughly at

(Bc = 10 mT, Bu = ±40 mT). These sources are part of a larger, continuous signal roughly in

the rectangle defined by coordinates (Bc = 0, Bu = −60 mT), (Bc = 20 mT, Bu = −60 mT),

(Bc = 20 mT, Bu = 100 mT), (Bc = 0, Bu = 100 mT). This is because the set of averaged

FORCs are very smooth and do not experience sharp discontinuities on the path to positive

saturation; therefore, the signal is dominated by the differences in magnetisation values along

the upper branch that serve as starting points for the FORCs.

The negative and smaller positive responses form a noisy region to the right of this rectangle.

However, these are only ∼20% the magnitude of the peak response at maximum on some

very small regions, and most of it is less than ∼10%. The simulated FORC response of an

ensemble of randomly aligned greigite framboids (composed of 30 nm particles) is much lower

per mass than the response of noninteracting, isolated 30 nm grains: 25.6×10−9 m4A−1kg−1 and

531.6×10−9 m4A−1kg−1 (Chapter 4) for the peak responses, respectively.

Using the model of Chapter 4, the FORC response of noninteracting ensembles of isolated

greigite particles in the size range 30–80 nm is obtained to produce FORC diagrams of mixtures

of framboidal greigite and isolated particles in the SD and SV magnetic domain states. FORC

diagrams of mixtures of equal mass framboidal and noninteracting SD particles (30–48 nm) (Fig.

5.5a) and equal mass framboidal and noninteracting SV particles (70–80 nm) (Fig. 5.5b) are

presented.

The mixture of framboidal greigite and noninteracting SD particles (Fig. 5.5a) is dominated

by the noninteracting SD signal, erasing most of the noisy structure while keeping the important

framboidal source close to the Bc = 0 axis. When noninteracting SV particles are included

(Fig. 5.5b) to the framboid signal, the response is dominated by the SV particles. As with the

mixture of SD and framboidal greigite, most of the noisy region disappears on account of it

being so faint and there is more behaviour in the region close to the Bc = 0 axis as SV particles’

response is also in this region (Chapter 4).

A scatter plot of the remanence of saturation MRS/MS against the coercivity of remanence

BCR to coercivity BC ratio, (Day plot (Day et al., 1977)), reveals the simulated ensemble of

framboidal greigite in a region that is unoccupied by the noninteracting, isolated particles (Fig.
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Figure 5.3: Framboid remanent super-vortex states. Super-vortex structures are the remanent
state for all field orientations. Shown here: (a) field close to an easy axis; (b) field close to a
hard axis; (c) field close to a saddle point; (d) field close to an intermediate direction between
the easy, hard and saddle point directions. The net magnetic moment of the ensemble is ∼12◦

from the applied field.

Figure 5.4: FORCs of the greigite framboid dispersion. The framboids are formed by 65 particles
identically aligned and with equal size d =30 nm. Averaging over the 85 field directions, the raw
hysteresis/FORCs are smooth (a). The FORC response (b) is MD-like.
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Figure 5.5: FORCs of a dispersion of equal-mass framboids and non-interacting SD (a) and SV
(b) particles. The signal is dominated by the non-interacting particles because the framboid
signal is weaker per unit mass. The framboid signal is still visible, however, as it occupies
regions the non-interacting particles do not.

5.6), i.e., a region with a remanence as low as that of ensembles of SV particles ∼80 nm but

BCR/BC values that are expected of smaller particles ∼70 nm (Chapter 4). Increasing content

of SD or SV noninteracting particles have very different effects on the Day plot (Fig. 5.6):

increasing the SD content increases the remanence and decreases the BCR/BC ratio; whereas,

increasing the SV content has little effect on the remanence while increasing the BCR/BC value.

5.3.2 Hysteresis of larger particle framboids

An attempt was made to investigate FORC diagrams for assemblages of particles which are

SV when isolated, however, due to memory and time constraints, the FORC response of larger

particle framboids could not simulated. Instead, to investigate this, hysteresis simulations of

framboids composed of fifteen (compared to 65 particles in Section 5.3.1), larger SV particles

with size d = 76 nm particles were carried out for a few selected field orientations. When

the applied field is close to the easy axis the main branches remain saturated down to 50 mT

(Fig. 5.9). As the field is decreased below this value, outer particles in the framboid nucleate

hard-aligned vortices (Fig. 5.9a). The remanent state (Fig. 5.9b) has a super-vortex structure

in which most particles are individually in a two-domain state with very clearly defined domain
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Figure 5.6: Day plot of framboid and noninteraring particles mixtures. The framboidal clusters
(square) plots in a region with very low MRS/MS ≈ 0.1 and BCR/BC ≈ 2.2. Increasing non-
interacting SD particles content increases MRS/MS and reduces BCR/BC. With increasing
non-interacting SV particles content, the effect is to increase BCR/BC.

walls (Fig. 5.9b, green). This state is remarkably similar to the easy-aligned SV state exhibited

by large >200 nm particles (Chapter 2) with six easy aligned domains curling around the vortex

core. However, in this super-vortex structure, outer particles are in a two-domain state and

the six easy aligned magnetic domains span multiple particles. Non-interacting 76 nm particles

nucleate vortices (Chapter 4); however, for this field orientation, the innermost particle in the

cluster always remains in a SD state due to the internal magnetostatic interactions (Fig. 5.9b,

grey line). This is likely true for larger assemblages as the interaction fields deep inside the

framboids will be stronger, thus favouring SD configurations for larger fractions of the crystallites

in the framboid. This means that, for larger framboids composed of larger crystallites, the FORC

signal could be very similar to the signal of framboids composed of SD crystallites (Section

5.3.1).

5.4 Discussion

The FORC response of a framboidal cluster depends strongly on the orientation of the framboid

relative to the applied field. When the field is aligned with an easy axis (<111>) the signal has
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its peak on the Bu = 0 axis at Bc ≈ 80 mT (Fig. 5.2b) and a vertical, almost-continuous feature

centered on Bc ≈ 10 mT from Bu ≈ −60 mT to Bu ≈ 60 mT. The latter bears similarities with

FORCs calculated by Pike et al. (2001) for one-dimensional domain-wall pinning.

Remanent states for all particle-field configurations are super-vortex states (Fig. 5.3). For

framboids formed by SD particles, the magnetic domain state of all individual particles in a

framboid is SD; this probably holds for the innermost particles in larger framboids formed by

larger SV particles. In the remanent state, the SD particles align in super-vortex configurations

to create flux-closures, giving each framboid a very low net magnetic moment. This means that

inter-framboidal interactions are weak even in cases when there are multiple framboids close

to each other. The zero-field net magnetic moment of the simulated ensemble of framboids

deviates from the applied field by ∼12◦. Whether framboidal greigite can carry potentially

meaningful palaeo-directions is dubious. Simulations with more framboidal clusters and studies

of the stability of the remanence could resolve this.

The FORC response of the simulated ensemble of clustered greigite (Fig. 5.4) is very different

from that of isolated SD and SV grains (Chapter 4). Isolated SD greigite particles produce

FORC signals with a characteristic boomerang shape, strong Bu = 0 contributions and a

tilted negative ridge. SV grains produce a more disjointed pattern. For isolated SD and SV

grains the FORC response is dominated by irreversible switching which is evident in the raw

hysteresis/FORC data. For framboidal greigite, the ensemble raw data is very smooth, i.e., there

are no obvious discontinuities associated with irreversible events. This signal is very similar to

MD signals (Pike et al., 2001).

Simulated FORC responses for ensembles of framboidal and isolated SD grains (Fig. 5.5a)

are very similar to those of greigite framboid-rich samples from Taiwan obtained by Chou et al.

(2012) (Fig. 5.7) and less so to those obtained by Rowan and Roberts (2006) (Fig. 5.8) from

marine sediments in New Zealand. The diagrams obtained by Rowan and Roberts (2006) appear

to be caused by weakly interacting particles (Fig. 5.8a, g, vertical spread). However, SEM

reveals clustered greigite. This apparent paradox could be due to extensive pyritization of the

greigite surfaces, which would increase the distance between the ferrimagnetic particles. Greigite

inclusions inside pyrite framboids have been documented (Ebert et al., 2018) and are likely
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Figure 5.7: FORC diagrams of greigite-rich samples from Taiwan. Interpreted as containing
weakly interacting SD and SP particles. (From Chou et al. (2012)).

ubiquitous.

The similarities between MD FORC patterns and FORC patterns of framboidal clusters are

due to greigite framboids behaving very much like MD grains even in the absence of inter-particle

exchange forces, i.e., the magnetostatic interactions between the close-packed grains play a role

similar to the combination of exchange forces and internal magnetostatic energies in MD grains.

Limited simulations of larger grain (76 nm) framboids with 15 particles reveals that, at least

for some particle-field configurations, the innermost particle in these small clusters behaves as a

SD particle with coherent rotations (Fig. 5.9). It is very likely that in framboids with many

more particles many of the inner particles will behave as SD particles even for particle sizes

which are SV when isolated and their FORC response is likely similar to that calculated here,

i.e., for framboids formed by 30 nm crystals.
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Figure 5.8: FORC diagrams and SEM images of greigite-rich samples from New Zealand.
Concentrinc contours with vertical spread (a, g) produced by interacting SD greigite. SP
patterns (d, m). (From Rowan and Roberts (2006)).
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Figure 5.9: Hysteresis of a framboid with 76 nm particles for a field aligned closely with the
easy axis. The magnetisation remains saturated down to ∼50 mT when a few particles nucleate
vortices (a). The remanent state is a super-vortex structure (b) with most of the particles in a
two-domain state. Domain walls are visible as thin, green regions. The net magnetic moment of
the innermost particle (grey line) is always close to one as it remains in a SD sate throughout
hysteresis.
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5.5 Conclusions

The FORC response of a simulated ensemble of framboidal greigite has been calculated with a

micromagnetic algorithm. Observed trends support the similarity between the FORC response

of framboidal greigite clusters and that of MD grains. Naturally occurring greigite in sediments

is usually authigenic in origin and its growth and possible transformation to pyrite is controlled

by a delicate balance between sulfate and iron availability (Roberts et al., 2011). Commonly,

greigite is found with other iron sulfides like pyrite as the finest-grained phase (Rowan and

Roberts, 2006; Rowan et al., 2009) so it is uncommon to find large, MD greigite grains. This

means that if a sample is known to contain greigite (for example, by identifying a high gyro-

magnetic remanent magnetisation (Snowball, 1997) or by the chemical alteration it experiences

at high temperatures), MD-like FORC signals should be interpreted as caused by framboidal or

some other form of strongly interacting greigite. Even though the FORC response has been

calculated for framboids with SD 30 nm particles, these observations are likely to hold for

framboids composed of larger grains as it is logical these will produce more MD-like FORC

signals.

The apparent disconnect between authigenic greigite FORC responses of concentric contours

with vertical spreading (Fig. 5.8) and the simulated response obtained here could be explained

by the greigite being partially chemically altered; if the surfaces are altered to a non-magnetic

phase (e.g., pyrite) this would increase the effective distance between the magnetic greigite

particles even when the grains are touching. Weaker interactions would then cause the FORC

response to spread vertically while retaining high coercivities. Pyritisation of greigite framboids,

manifested as greigite inclusions inside pyrite framboids, has been observed (Ebert et al., 2018)

and this could explain the weak magnetic moments associated with pyrites in magnetic extracts.

FORC diagrams of very stable greigites in Taiwan (Fig. 5.7) are very similar to the simulated

signals obtained here. In environments where the greigite is stable it is less likely that the

greigite surfaces are pyritised and therefore the strong interparticle interactions are in full effect,

giving rise to a signal more similar to MD. This means that FORC diagrams could potentially

hold information about the degree of pyritisation of a greigite-rich sample.
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Conclusions

6.1 Numerical models and greigite

Numerical methods have been employed to answer some open questions about the magnetic

properties of rocks containing the ferrimagnetic mineral greigite. Difficulty in producing pure

greigite with well-constrained sizes and morphologies makes numerical methods the best option

for studying the magnetic hysteresis properties and thermal stability of this mineral.

In this study, the focus was first on the zero-field magnetic structures and the stability of

these against thermal fluctuations (Chapter 2) via micromagnetic methods. This has allowed

me to determine precisely the single-domain (SD) to pseudo single-domain (PSD) threshold and

the room temperature blocking volumes for a variety of naturally occurring shapes.

A simplified model for hysteresis of SD, coherently rotating particles with cubic magnetocrys-

talline anisotropy (MCA) was developed (Chapter 3). This method allows for fast calculations

of hysteresis loops and first-order reversal curve (FORC) diagrams for non-interacting ensembles

of cubic anisotropic minerals. To my knowledge, this simplified model for cubic MCA is the

first of its type (energy minimisation-based).

Hysteresis and FORC diagram properties of non-interacting SD and SV particle dispersions

have been calculated with a micromagnetic method (Ó Conbhúı et al., 2018) (Chapter 4). This

has allowed for a robust reinterpretation of the FORC diagram for SV particles. The FORC

properties of highly-interacting framboidal greigite dispersions have been calculated with a
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micromagnetic method (Ó Conbhúı et al., 2018) (Chapter 5).

6.1.1 Basic zero-field properties

Zero-field structures were found to be highly shape- and size- dependent (Chapter 2). The

magnetic free-energy of the different domain states like the SD state and the differently aligned

SV states was determined as a function of shape and size. A plausible mechanism for a SD–MD

transition was identified. This proceeds by the growth of particles in an easy aligned SV state.

As the particle grows, the magnetic vortex regions aligned closely with easy axes grow, while

the rest of the regions become more domain-wall-like.

A nudged elastic-band method (Fabian and Shcherbakov, 2017) was used to determine the

energy barriers between the minimal-energy states as a function of particle size and shape.

This allowed me to determine precisely the shape dependency of the SD–PSD threshold,

d0 ≈ 54 nm for truncated-octahedral particles (the most common natural greigite shape) and

the room temperature blocking volumes of sub-micron greigite for different naturally occurring

shapes, ∼74 nm for truncated-octahedral particles. It was found that isolated SD greigite is

essentially super-paramagnetic and only larger particles d > ∼74 nm SV grains can carry stable

magnetisations over geological scales.

Uncertainty in the measured value of A (Chang et al., 2008) for greigite is hard to quantify

in absence of other measurements obtained via different methods to compare with. Based on the

lower bound for the Curie temperature of greigite TC > 620 K (Roberts et al., 2011), the value of

A could be up to ∼4 times higher. Using values for A twice (A = 4× 10−12 J/m3) and four times

(A = 8× 10−12 J/m3) larger I re-calculated the SD–SV threshold d0 for a truncated-octahedral

particle. Increasing A increases d0 from ∼54 nm to ∼62 nm for A = 4× 10−12 J/m3 and up to

∼90 nm for A = 8× 10−12 J/m3. This would imply that the blocking volume would also shift to

larger values. However, the general behaviour, i.e., low energy barriers for transitions between

SD states making equidimensional SD greigite essentially SP and only larger SV grains holding

stable magnetisations over geological timescales, would remain the same. This is supported by

the same behaviour being observed in simulations for equidimensional iron (Shah et al., 2018)

particles, which have a very different set of magnetic parameters.
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6.1.2 Hysteretic and FORC properties

The FORC properties of non-interacting dispersions of ideal SD grains with cubic MCA were

investigated with a novel algorithm based on energy minimisation of the energy of an idealised

SD coherently rotating particle (Chapter 3). The method proposed in this study is fast and

found to be as accurate as micromagnetic models of small SD particles for which the effects of

non-uniform magnetisations are negligible. Characteristic FORC signals were determined for

SD particles with cubic MCA. A tilted, elongated, negative ridge was identified as the magnetic

signature of non-interacting SD particles with multi-axial MCA (Fig. 3.4).

Both the dipolar (Chapter 3) and the full micromagnetic (Chapter 4) models predict a

coercivity BC ≈ 24 mT much lower than the widely recognised BC ≈ 60 mT in natural greigite

samples (Roberts et al., 2011). This could be explained by either: a) the measured (absolute)

value of K1 (Winklhofer et al., 2014) is significantly lower than its real value; b) particle

elongations produce a shape (uniaxial) anisotropy which increases the coercivities of natural

samples; c) magnetostrictive effects play an important role in natural greigite or d) a combination

of these effects. Natural greigite is commonly identified by concentric FORC diagram contours

centered around Bc ≈ 60 mT, usually unaccompanied by the negative-valued ridge identified

for non-uniaxial SD particles. This lends more credibility to the relatively high coercivities of

natural greigite samples being explained by some physical mechanism conducive to the formation

of an effective uniaxial MCA. However, it is also possible that relatively weak interparticle

magnetostatic interactions can cause the negative ridge to disappear, while also producing the

vertical spread commonly observed in greigite FORC diagrams. More research is necessary to

solve this apparent paradox.

To go beyond idealised magnetic domain states and reversal mechanisms, a micromagnetic

algorithm was used to calculate the FORC properties of non-interacting dispersions of greigite

in the SD to SV size range (Chapter 4). SV effects and their onset were precisely identified.

On increasing particle size within the model, these are apparent from 50 nm, slightly below the

zero-field SD–PSD threshold (here calculated to be d0 ≈ 54 nm) and completely dominant from

76 nm. SV particles produce FORC diagrams very different from SD particles (Fig. 4.7). Also,

it was shown that the interpretation of the FORC diagram should be domain state-dependent,
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i.e., FORC diagrams for SD particles provide a coercivity distribution whereas for SV particles,

the FORC responses are mostly associated with vortex nucleation and annihilation fields as

observed by (Pike and Fernandez, 1999) for nano-patterned synthetic arrays.

Since greigite rarely occurs naturally as isolated particles, a micromagnetic algorithm was

used to calculate the FORC response of an ensemble of randomly dispersed greigite framboids.

The magnetic signature of these framboids was found to be like that of MD particles. Most

naturally occurring greigite is found as a fine-grained phase; therefore, samples known to contain

greigite that produce MD-like FORC diagrams should be interpreted as containing framboidal

or some other form of strongly interacting greigite.

The FORC signal of SD greigite is commonly assumed to be concentric contours with a

relatively high coercivity despite, being observed to occur in tight clusters. According to the

simulations presented in this study, strong magnetostatic interactions between the particles

expected to exist in tight clusters should make the FORC signal more similar to a low coercivity

MD response. Given the metastable nature of greigite, it is possible that pyritisation of the

greigite surfaces causes the effective distance between the magnetic grains of greigite to increase,

reducing the magnetic interactions between the particles. This is supported by samples from

Taiwan (Chou et al., 2012), known for their high content of greigite, having FORC responses

similar to the framboidal signal simulated here (Fig. 5.7). Whereas, samples from New

Zealand marine sediments known to have undergone extensive pyritisation (Rowan and Roberts,

2006) have concentric contours (Fig. 5.8). A thorough investigation of the transition from a

non-interacting to a strongly interacting regime is still needed.

6.2 Future work

Memory and time constraints imposed by the available computing facilities (Imperial College’s

high-performance cluster (HPC) CX1 (Chapter 4) and Australia National University’s HPC

Terrawulf (Chapter 5)) have restrained some aspects of this investigation. Future studies need to

focus on simulations of FORC properties for larger non-interacting grains to determine the onset

of MD behaviour. The largest particle size studied here was 80 nm. Based on extrapolations,
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it is possible that already at ∼90 nm the BCR/BC ratio is as large as 4 and MRS/MS as low as

0.05; this would be a Day plot region commonly identified as MD (for uniaxial particles). This

would lend more credibility to the theory of MD formation elaborated in this study, i.e., SV

particles are essentially MD.

Larger grains in larger framboids (composed of more particles) also need more investigation.

However, it is most likely that their FORC responses will be even more MD-like. If a framboid

composed of particles as small as 30 nm produces MD-like signals, it is logical to expect larger

grains to produce MD-like signals. Perhaps it will be of greater interest to attempt nudged elastic-

band studies of framboidal greigite and determine their stability as a palaeomagnetic recorder.

It would be very illuminating, but challenging, to include nudged elastic-band calculations

to hysteresis and FORC simulations to obtain temperature-dependent properties. Nudged

elastic-band methods couls also be used to investigate the super-paramagnetic to SD threshold

in framboidal clusters. Another interesting area is to investigate the dynamic interactions of

the crystallites in the framboids. However, simulations using LLG equation solvers are needed

for this, which are orders of magnitude slower than energy minimisers and so are impossible

at this stage. The FORC properties of magnetite framboids need investigating, although it is

very likely they will be found to produce MD-like FORC signals. It would be very interesting

to compare micromagnetic simulations to electron holography images like Einsle et al. (2016)

did for iron particles in dusty olivines. This is very difficult, however, due to gregite’s chemical

instability.

The studies presented here and these further avenues for research could eventually be

integrated to magnetic hydrocarbon explorations and environmental magnetic studies. Current

research suggests that hydrocarbon migration produces more iron sulphides while depleting the

iron oxide content of the host rocks. Results of this work can aid a robust proxy for identifying

iron sulphides via bulk rock magnetic measurements and prove a valuable tool in the search for

hydrocarbons as this non-renewable resource becomes ever scarcer.
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Dunlop, D. J., Özdemir, Ö., 1997. Rock magnetism. Cambridge University Press, Cambridge.

Ebert, Y., Shaar, R., Emmanuel, S., Nowaczyk, N., Stein, M., 2018. Overwriting of sedimentary

magnetism by bacterially mediated mineral alteration. Geology 46 (4), 291–294.

URL https://doi.org/10.1130/G39706.1

Egli, R., Chen, A. P., Winklhofer, M., Kodama, K. P., Horng, C., 2010. Detection of noninter-

acting single domain particles using first-order reversal curve diagrams. Geochem. Geophys.

Geosyst. 11 (1).

URL https://doi.org/10.1029/2009GC002916

Egli, R., Winklhofer, M., 2014. Recent developments on processing and interpretation aspects

of first-order reversal curves (FORC). Proc. Kazan U. Nat. Sc. 156 (1).
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Appendix A

Ideal particle hysteresis code

For Chapter 3, a gradient-descent method with line search was developed. Numerical implemen-

tation was done in the Python language. A minimal working example follows. This code can be

run as:

python -i SWCAFORC.py -m greigite --applied_field 0.247 0.474 0.845 -f 1

for an interactive Python session that will produce two plots: (1) the hysteresis loop and

first-order reversal curves (FORCs) and (2) a plot of the FORC distribution for an idealised

greigite particle with applied field in the direction of the vector (0.247ı̂+ 0.474̂+ 0.845k̂) and

a smoothing factor SF=1.

#!/usr/bin/env python

from numpy import sin, cos, power, sqrt, dot, meshgrid, min, max

from numpy import array, linspace, arange, arccos, pi, c_, hstack

from numpy import zeros, zeros_like, ones, prod, concatenate

from random import uniform

from scipy.linalg import lstsq

import matplotlib.pyplot as plt

from matplotlib.cm import RdBu_r as cmap

from matplotlib.colors import LinearSegmentedColormap

from argparse import ArgumentParser
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Appendix A. Ideal particle hysteresis code

def main():

# Parse arguments

ap = ArgumentParser(

description=(

’A simple StonerWohlfarth-like model with cubic anisotropy. ’ +\

’Perform a hysteresis half-loop with saturation field strength 250 mT.’+\

’Followed by the necessary FORCs.’)

)

ap.add_argument(’-m’, ’--material’,

type= str,

choices= [’greigite’, ’magnetite’, ’iron’],

default= ’greigite’,

help= ’The material. Greigite, magnetite or iron (defaults to

greigite).’,

)

ap.add_argument(’-a’, ’--applied_field’,

nargs= 3,

type= float,

help= ’A vector in the direction of the applied field.’,

)

ap.add_argument(’-f’, ’--factor’,

type= int,

default= 1,

help= ’The smoothing factor (defaults to 1).’

)

args = ap.parse_args()

material = args.material

field = args.applied_field

SF = args.factor
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#Magnetic parameters for different materials

params = {’greigite’ : {’K1’: -1.7e4, ’Ms’: 2.702e5 , ’K2’: 0.},

’magnetite’: {’K1’: -1.2e4, ’Ms’: 4.8e5 , ’K2’: 0.},

’iron’ : {’K1’: 4.8e4, ’Ms’: 1.715e6 , ’K2’: 0.},

}

K1 = params[material][’K1’]

Ms = params[material][’Ms’]

K2 = params[material][’K2’]

# Normalise the field direction

field = array(field)

field = field/sqrt(dot(field, field))

# Applied Field. In Tesla

start = 0.25

end = -0.25

step = 0.001

n = int(round((start-end)/step)) + 1

applied = linspace(start, end, n)

# Initial guess. A random point from a uniform distribution over the sphere

u = uniform(0., 1.)

v = uniform(0., 1.)

phi = 2.*pi*u

theta = arccos(2.*v - 1.)

# The gradient at the initial guess

g = grad(theta,

phi,
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field,

B=start,

K1=K1,

K2=K2,

Ms=Ms

)

# The energy of the initial guess

nrg = energy(theta,

phi,

field,

B=start,

K1=K1,

K2=K2,

Ms=Ms

)

# Energy tolerance

etol = 1e-12

# Gradient tolerance

gtol = 1e-12

# Armijo-Goldstein parameters

tau = 1./2.

c = 1e-4

mag = zeros(n)

mvectors = zeros((n,3))

path = zeros((n,2))
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# Main branch hysteresis

print ’Calculating hysteresis loop’

for i, B in enumerate(applied):

theta, phi, nrg = minimise(theta,

phi,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms,

tau=tau,

c=c,

gtol=gtol,

etol=etol,

)

m = to_cartesian(theta, phi)

mvectors[i] = m

m_along_field = dot(m, field)

mag[i] = m_along_field

path[i] = theta, phi

print ’Field=%5.1f mT, m=%9.6f’ % (B*1e3, m_along_field)

# Find the discontinuities to calculate the necessary FORCs

discontinuities = [array((applied[i+1], i+1)) for i in range(n-1) if (

angle(mvectors[i], mvectors[i+1]) > 5.*pi/180.)

]

discontinuities = array(discontinuities)

mFORCs = []

# Solution loop for the necessary FORCs

for fieldvalue, index in discontinuities:
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print ’Calculating FORC starting at Ba=%5.1f mT’ % (fieldvalue*1e3)

theta, phi = path[int(round(index))]

magF = zeros_like(arange(fieldvalue, start+step, step))

magF[0] = dot(to_cartesian(theta, phi), field)

for i, B in enumerate(arange(fieldvalue+step, start+step, step)):

theta, phi, nrg = minimise(theta,

phi,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms,

tau=tau,

c=c,

gtol=gtol,

etol=etol,

)

m_along_field = dot(to_cartesian(theta, phi), field)

magF[i+1] = m_along_field

print ’Ba=%5.1f, Bb=%5.1f mT, m=%9.6f’ % (fieldvalue*1e3, B*1e3,

m_along_field)

mFORCs.append(magF)

mFORCs = array(mFORCs)

# Plot the hysteresis loop and FORCs

fig, ax = plt.subplots()

plt.plot(applied*1e3, mag)

for forc in mFORCs:

147



Appendix A. Ideal particle hysteresis code

plt.plot(applied[:len(forc)][::-1]*1e3, forc)

plt.xlabel(r’$B\,(\mathrm{mT})$’)

plt.ylabel(r’$m$’)

plt.show(block=False)

print ’FORCs calculated. Calculating the FORC distribution:’

# Produce the m=m(Bb,Ba) 2D array

m = forcdata(mag, mFORCs)

Bb, Ba = meshgrid(linspace(end, start, n), linspace(start, end, n))

# Calculate the FORC distribution

# using numpy to calculate least-square fitting

rho = zeros_like(m)

for i in xrange(n):

for j in xrange(n-1-i, n):

grid = in_grid(i, j, SF)

data = []

for indices in grid:

points = (Bb[indices[0]][indices[1]],

Ba[indices[0]][indices[1]],

m[indices[0]][indices[1]],

)

points = array(points)

data.append(points)

data = array(data)

A = c_[ones(data.shape[0]), data[:,:2], prod(data[:,:2], axis=1),

data[:,:2]**2]

C,_,_,_ = lstsq(A, data[:,2])

148



Appendix A. Ideal particle hysteresis code

rho[i][j] += -C[3]/2.

# Normalise the FORC distribution

rhomax = max(rho)

rho /= rhomax

rhomin = min(rho)

shiftedCMap = shiftedColorMap(cmap, midpoint=(1. - 1./(1. + abs(rhomin))))

# A simple plot, no contours

fig, ax = plt.subplots()

plt.pcolor(Bb*1e3, Ba*1e3, rho, cmap=shiftedCMap)

plt.xlim(-100., 100.)

plt.ylim(-100., 100.)

plt.plot([ 0., 100.], [ 0., -100.], color= ’black’, ls=’--’, lw=0.25)

plt.plot([-100., 100.], [-100., 100.], color= ’black’, lw=0.25)

clb = plt.colorbar()

clb.ax.set_title(r’$\rho^{*}$’)

plt.xlabel(r’$B_b\,(\mathrm{mT})$’)

plt.ylabel(r’$B_a\,(\mathrm{mT})$’)

plt.show(block=False)

print ’FORC distribution calculated’

def in_grid(i, j, sf=1):

’’’

Utility for smoothing factor-related calculation

’’’

grid = []

for k in range(i-sf, i+sf+1):

for l in range(j-sf, j+sf+1):
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if in_triangle(k, l) and in_square(k, l):

grid.append((k, l))

return tuple(grid)

def in_triangle(i, j):

’’’

Utility for smoothing factor-related calculation

’’’

return (True if j >= (500-i) else False)

def in_square(i, j):

’’’

Utility for smoothing factor-related calculation

’’’

return (True if (i<=500 and j<=500) else False)

def energy(theta,

phi,

field,

B=0.,

K1=-1.7e4,

K2= 0.,

Ms=2.2706e5

):

’’’

Calculate the energy

’’’

xi, psi, omega = field
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return ((K1/Ms)*power(sin(theta), 2)*(

power(cos(theta), 2)+power(sin(theta)*cos(phi)*sin(phi), 2)) +

(K2/Ms)*power(power(sin(theta), 2)*cos(theta)*sin(phi)*cos(phi), 2) -

B*(xi*sin(theta)*cos(phi)+psi*sin(theta)*sin(phi)+omega*cos(theta)

)

)

def grad(theta,

phi,

field,

B=0.,

K1=-1.7e4,

K2= 0.,

Ms=2.2706e5

):

’’’

Compute the gradient

’’’

xi, psi, omega = field

# The gradient component on theta-axis

ehat_theta = (2.*(K1/Ms)*sin(theta)*cos(theta)*(

2.*power(sin(theta)*sin(phi)*cos(phi), 2) -

power(sin(theta), 2)+power(cos(theta), 2)) +

2.*(K2/Ms)*sin(theta)*cos(theta)*(

power(sin(phi)*cos(phi), 2)*(2.*power(sin(theta)*cos(theta), 2) -

power(sin(theta), 4))) -

B*(xi*cos(theta)*cos(phi)+psi*cos(theta)*sin(phi)-omega*sin(theta))

)

# The gradient component on phi-axis
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ehat_phi = (2.*(K1/Ms)*power(sin(theta), 4)*sin(phi)*cos(phi)*(

power(cos(phi), 2)-power(sin(phi), 2)) +

2.*(K2/Ms)*power(sin(theta), 4)*sin(phi)*cos(phi)*(

power(cos(theta), 2)*(power(cos(phi), 2)-power(sin(phi), 2))) -

B*sin(theta)*(psi*cos(phi)-xi*sin(phi))

)

return array((ehat_theta, ehat_phi))

def linesearch(f,

g,

theta,

phi,

field,

B=0.,

K1=-1.7e4,

K2=0.,

Ms=2.2706e5,

tau=0.5,

c=1e-4,

):

’’’

The line-search algorithm:

decrease the value of gamma until the Armijo-Goldstein is met

’’’

xi, psi, omega = field

# Starting gamma value

gamma = 1.

# Calculate optimal gamma

152



Appendix A. Ideal particle hysteresis code

while ( f(theta-gamma*g[0], phi-gamma*g[1], field, B=B, K1=K1, K2=K2, Ms=Ms) >

f(theta, phi, field, B=B, K1=K1, K2=K2, Ms=Ms) - c*gamma*dot(g, g)

):

gamma *= tau

return gamma

def minimise(theta,

phi,

field,

B=0.,

K1=-1.7e4,

K2=0.,

Ms=2.2706e5,

tau=0.5,

c=1e-4,

gtol=1e-12,

etol=1e-12,

):

’’’

Minimiser function, a gradient descent method

with line-search

’’’

# Compute the gradient and energy of starting point

g = grad(theta, phi, field, B=B, K1=K1, K2=K2, Ms=Ms)

nrg = energy(theta, phi, field, B=B, K1=K1, K2=K2, Ms=Ms)

# Dummy value for initial energy to get the algorithm started

nrg_old = 1e10
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# Minimisation loop

while (dot(g, g) > gtol or Ms*abs(nrg_old-nrg) > etol):

# Compute gamma, the constant scaling the size of the

# step along the gradient descent direction

gamma = linesearch(energy,

g,

theta,

phi,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms,

c=c,

tau=tau,

)

theta_old, phi_old = theta, phi

# Move along the gradient descent direction

theta += -gamma*g[0]

phi += -gamma*g[1]

# Compute energies and gradient to keep going

nrg_old = energy(theta_old,

phi_old,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms

)
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nrg = energy(theta,

phi,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms

)

g = grad(theta,

phi,

field,

B=B,

K1=K1,

K2=K2,

Ms=Ms

)

# Return final value after while loop is finished

return (theta, phi, nrg)

def to_cartesian(theta, phi):

’’’

Transform from (theta,phi) spherical coordinates (r=1)

to cartesian coordinates

’’’

return array((sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)))

def angle(u, v):

’’’
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Compute the angle between vectors u, v;

result in radians

’’’

return arccos(dot(u, v))

def forcdata(mainbranch, forcs):

# the main branch

mb = mainbranch

# the mFORC array

m = zeros((len(mb), len(mb)))

# main branch to diagonal

for i in xrange(len(mb)):

m[i, len(mb)-1-i] = mb[i]

# forcs to rows

for forc in forcs:

m[len(forc)-1, len(mb)-len(forc):][:] = forc[:]

# fill array

row_indices = zeros(len(forcs), dtype=int)

for i, forc in enumerate(forcs):

row_indices[i] = len(forc)

start = 1

for index in row_indices:

for i in xrange(start, index-1):

for j in xrange(len(mb)-i, len(mb)):

m[i, j] = m[i-1, j]
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start = index

for i in xrange(start, len(mb)):

for j in xrange(len(mb)-i, len(mb)):

m[i, j] = m[i-1, j]

return m

def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name=’shiftedcmap’):

’’’

Function to offset the "center" of a colormap. Useful for

data with a negative min and positive max and you want the

middle of the colormap’s dynamic range to be at zero

Input

-----

cmap : The matplotlib colormap to be altered

start : Offset from lowest point in the colormap’s range.

Defaults to 0.0 (no lower ofset).

Should be between 0.0 and ‘midpoint‘.

midpoint : The new center of the colormap. Defaults to

0.5 (no shift). Should be between 0.0 and 1.0. In

general, this should be 1 - vmax/(vmax + abs(vmin))

For example if your data range from -15.0 to +5.0 and

you want the center of the colormap at 0.0, ‘midpoint‘

should be set to 1 - 5/(5 + 15)) or 0.75

stop : Offset from highets point in the colormap’s range.

Defaults to 1.0 (no upper ofset). Should be between

‘midpoint‘ and 1.0.

’’’
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cdict = {

’red’: [],

’green’: [],

’blue’: [],

’alpha’: []

}

# Regular index to compute the colors

reg_index = linspace(start, stop, 257)

# Shifted index to match the data

shift_index = hstack([

linspace(0.0, midpoint, 128, endpoint=False),

linspace(midpoint, 1.0, 129, endpoint=True)

])

# Fill cdict with rgb values

for ri, si in zip(reg_index, shift_index):

r, g, b, a = cmap(ri)

cdict[’red’].append ((si, r, r))

cdict[’green’].append((si, g, g))

cdict[’blue’].append ((si, b, b))

cdict[’alpha’].append((si, a, a))

newcmap = LinearSegmentedColormap(name, cdict)

plt.register_cmap(cmap=newcmap)

return newcmap
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# Program entry-point

if __name__ == ’__main__’:

main()
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