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Abstract—Effective connectivity (EC) amongst functional
near-infrared spectroscopy (fNIRS) signals is a quantitative
measure of the strength of influence between brain activity
associated with different regions of the brain. Evidently, accurate
deciphering of EC gives further insight into the understanding
of the intricately complex nature of neuronal interactions
in the human brain. This work presents a novel approach
to estimate EC in the human brain signals using enhanced
fuzzy cognitive maps (FCMs). The proposed method presents
a regularized methodology of FCMs, called effective FCMs
(E-FCMs), with improved accuracy for predicting EC between
real, and synthetic fNIRS signals. Essentially, the revisions
made in the FCM methodology include a more powerful
prediction formula for FCM combined with independent tuning
of the transformation function parameter. A comparison of EC
in fNIRS signals obtained from E-FCM with that obtained
from standard FCM, general linear model (GLM) parameters
that power Dynamic Causal Modelling (DCM), and Granger
Causality (GC) manifests the greater prowess of the proposed
E-FCM over the aforementioned methods. For real fNIRS data,
an empirical investigation is also made to gain an insight
into the role of oxyhemoglobin and deoxyhemoglobin (oxy-Hb,
deoxy-Hb) in representing the cognitive activity. We believe this
work has profound implications for neuroergonomics research
communities.

Index Terms—Fuzzy connectivity measures, Brain connectivity,
Effective Connectivity, Fuzzy Cognitive Maps, Functional
Neuroimaging

I. INTRODUCTION

AN effective connectivity (EC) amongst the brain signals
represent influence between neural systems which can

be both activity, and/or time dependent [1], [2]. Hence EC
elucidates the relationships in a brain network thus formed
during a cognitive task undertaken by a subject. An accurate
deciphering of connections amongst the brain signals is a
significant step towards a better understanding of EC linkages
between different brain regions. A comprehensive picture
of EC between brain regions, for a particular mental task,
can lead to a thorough assimilation of the workings of the
human brain [3]. Owing to the significance associated with the
detection and subsequent analysis of the discerned influence
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between brain regions, an accurate interpretation of EC in
fNIRS data is crucial.

Owing to the multitude of advantages of functional
near-infrared spectroscopy (fNIRS) over functional magnetic
resonance imaging (fMRI) such as the former being safe, cost
efficient, and a portable technique with reasonable spatial and
excellent temporal resolution, fNIRS is fast replacing fMRI
for empirical studies in the field of neuroscience. This is true
in particular for psychological studies where brain activity is
inspected to understand human factors at work and normal life
settings. This new paradigm of research has been termed as
Neuroergonomics [3].

The de facto standard for EC analysis in fMRI studies
is Dynamic Causal Modelling (DCM) [4]. However DCMs
cannot be used for discerning EC in fNIRS data since the
temporal resolution of fNIRS is sufficient to be affected by
interregional axonal conduction delay [5]. This is because
extending DCMs to account for time delays will not only
introduce parameterized complexity but also pose a problem
of formulation. In this regard, an alternative approach that
is used to estimate connections in fNIRS data is Granger
Causality (GC) [6]. The GC is a relatively fast, scalable
technique that can be used to compute EC while taking into
account time delays. However, GC analysis cannot transcribe
non-linear cause-effect relationships without compromising
GC scalability owing to the linear vector auto regression in
GC [6], [7].

The GC analysis is also predominantly dependent on
the pertinent information presented beforehand. Essentially
it implies that the GC analysis may identify spurious
connections, or even estimate wrong feedback relations [8]
on account of missing relevant information. Further, the
limitations of GC analysis comprise its inability to account
for connections that change direction over time [8]. Another
consequential constraint that limits GC analysis applicability
is its dependence on the temporal resolution in the data to be
analyzed for accurate deciphering of EC. Hence if the data
has low temporal resolution than the minimum resolution to
identify the time lags between which an influence transpires,
the GC analysis will not be able to decipher the underlying
EC in the data [9].

In the realm of neuroimaging, and in particular for
fNIRS data, the sensitivity of GC analysis to the lack of
relevant information is critical. Essentially, it renders the
inference made by GC rather obscure for identification of
EC in fNIRS data. Moreover, the GC analysis is unable to
transcribe nonlinear effective connections and is also unable
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to assimilate effective links changing direction over time.
This has implications for GC application in fNIRS data since
the underlying EC in fNIRS data are inherently non-linear.
Furthermore, the lack of flexibility of GC to cater for changing
effective connections renders GC particularly inapplicable for
an insightful EC analysis between fNIRS data. Owing to the
aforementioned shortcomings of GC analysis for uncovering
the EC in fNIRS data in particular, we propose the novel
approach of using Fuzzy Cognitive Maps (FCMs) to delineate
EC in fNIRS data.

The major four contributions of the proposed methods
are as follows: 1) An automatic data driven method
is proposed to compute EC from neural hemodynamic
data. 2) A new FCM formulation, called Effective Fuzzy
Cognitive Maps (E-FCMs), for regularizing the network by
weight reinforcement using error-driven learning. 3) E-FCM
fusion from individual E-FCMs obtained from bidimensional
hemodynamic data. 4) An empirical analysis of the individual
contribution of oxy-Hb and deoxy-Hb in representing the
underlying cognitive activity. In particular, this work presents
an approach at fusion of bi-dimensional fNIRS data whilst
retaining their individualism by utilizing individual E-FCM
models representative of EC generated by both oxy- and
deoxyhemoglobin (oxy-Hb, deoxy-Hb). This approach has the
potential for uncovering the EC in fNIRS data more accurately
since it explores its dual dimensions both separately at first,
and then by combination later.

II. HIGH-ORDER FUZZY COGNITIVE MAPS

An FCM is inherently a signed directed fuzzy graph
which is capable of representing fuzzy connectivity between
variables as fuzzy degrees of relationships in a complex
system. The advantages of FCMs over GC analysis are
numerous owing to their expressiveness, and flexibility they
inherit from neuro-fuzzy systems. FCMs are scalable, can
handle non-linear data, and combined with their prowess to
accommodate changing effective connections along with the
flexibility to modify the memory order of the model, they
offer a powerful paradigm to analyze EC in fNIRS data.
The extension of the generic FCM model to a higher-order
memory implies that those complex systems, such as fNIRS
data, which exhibit higher-order effective connections amongst
their concepts can also be modelled by FCM [10], [11].

FCMs offer a graphical representation of the dynamics of
a given system which can be seen as a combination of fuzzy
logic, and neural networks [10]. FCMs are widely recognized
for discerning the presence, and strength of relationships
between nodes in a given dynamic system from various
domains such as engineering, medicine, control, and political
affairs [12]–[16].

Following is a formal mathematical description of a higher
order FCM [15]:

Cj(t+ 1) = f(

k∑
l=0,l≤t

(gj(l)

N∑
i=1

eijCi(t− k))) (1)

where Cj(t) is the fuzzy value of the concept or node (or
signal in fNIRS paradigm) j at time t based on the strength of

the interaction, eij in the range [−1, 1], of concept j with other
concepts in the system, and the past values of the concept j,
Cj(t − k). The total number of concepts in a given system
is represented by N and T denotes the total length of a
signal. The number of past fuzzy values of a given concept
to be considered by the FCM when computing the new fuzzy
value for that concept is dictated by the order of the FCM,
represented by k. The FCM also allows for tuning the strength
of influence of the preceding fuzzy values on the current fuzzy
value for a given concept by optimizing values of gj(k), and
eij using Genetic Algorithm (GA).

The new fuzzy value for a given concept is normalized
using a transformation function with a specified normalized
range. The most commonly used tranformation function is the
sigmoid function (2) that restricts the weighted sum to the
usual range of [0, 1] [17], [18]. The transformation function
f(x), used in this work (3), is inherently a sigmoid function
with range of [−1, 1]. This normalization of fuzzy degree of
relationship of a particular concept with respect to any other
concept in the fuzzy graph facilitates the comparative analysis
such that a value of 1 means fully interconnected, a value of -1
means fully interconnected in the opposite direction, a value
of 0 means disconnected, and a value between 0 and 1 (or -1)
means interconnected to a certain extent.

sigmoid(x) =
1

1 + e−Cx
(2)

f(x) = 2sigmoid(2x)− 1 (3)

where C is a parameter used to define a particular shape of
the sigmoid function. The most common value of C found in
literature is 5 [14], [19].

A quantitative assessment of the predicted states generated
by the FCM can be done using the two standard FCM
error functions Error 1 and Error 2 outlined in (4) and (5)
[14], respectively. The error is estimated by comparing the
reconstructed signals from the resultant FCM model with the
original signals- synthetic fNIRS signals for Experiment 1, and
real fNIRS signals for Experiment 2.

error1 =

T∑
t=1

N∑
i=1

|Ci(t)− Ĉi(t)| (4)

error2 =

T∑
t=1

N∑
i=1

|(Ci(t)− Ĉi(t))
2 + (C ′i(t)− Ĉ ′i(t))2| (5)

where Ĉ is the predicted state of the concept of resultant
FCM, and C ′ is the rate of change in the state of a concept.

III. RELATED WORKS

A. EC in fNIRS

One of the most common approaches for computing EC
in fNIRS data is through GC analysis. The work by Holper
et al. [20] focus on computing EC via GC between brain
signals recorded from two subjects undertaking the same task
simultaneously. They conclude that GC values are greater for
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signal of the model to cause the imitator signal than when
the direction is reversed i.e. from the signal of the imitator to
that of the model. This could be attributed to the limitation
of the GC model to read the causality within the same set
of signals when the direction and/or time lag during which
causality transpires is changed. In the study by Im et al.
[21], the fNIRS signal analysis is conducted using GC. Their
conclusion is also limited to unidirected coupling between the
somatosensory areas and the motor areas, owing to limitations
imposed by unidirectional data analysis of GC.

A comparative study of the brain activity recorded during
rest and movement using fNIRS is done by Bajaj et al. [22].
The estimation of EC in the recorded fNIRS data is done by
GC. However, they credited the use of DCM over GC analysis
when there is varying time lag in activation of causation
between two signals. This is due to limited prowess of GC
to analyze signals with time lag, or the order of causality,
unknown and/or varying. An interesting study by Yuan [23]
presents estimating EC by using GC mapping on regions of
interest (ROIs) identified by independent component analysis
(ICA). The improved results of the GC-ICA hinges on accurate
over simplification of the brain regions identified by ICA along
with the associated shortcomings of GC analysis for fNIRS
data.

An attempt to estimate EC using DCM is done by Tak et
al. [5]. Though their results are consistent with findings of the
previous fMRI studies, successful application of DCM for EC
analysis on fNIRS data is highly contingent on the undertaken
task and hence the corresponding characteristic hemodynamic
response function used in DCM analysis.

B. Learning Methods for FCMs
A hybrid technique for FCMs learning for predicting

nonstationary time series is proposed by Yang et al. [24].
They present the use of wavelet transform with higher order
FCMs for predicting nonstationary time series. The application
of wavelet transform converts original time series into
multivariate time series, which are then employed by higher
order FCMs to model, and predict the original nonstationary
time series.

Towards automatic learning of large scale FCMs the work
by Zou et al. [25] presents the use of mutual information based
two phase memtic algorithm (MA). Their work optimizes the
edge weights of only those links identified in the first phase
of MA, thereby reducing the search space for MA. The works
by Wu et al. offer two different approaches for large-scale
and sparse FCMs learning, one using compressed sensing [26]
and the second using least absolute shrinkage and selection
operator [27].

The use of multiagent genetic algorithm for large scale
FCMs learning is done by Liu et al. [28]. Their work
demonstrates the strength of using multiagent genetic
algorithm for reconstructing large scale gene regulatory
networks with 200 nodes.

C. Pruning Methods for FCMs
A critical problem in the simulation of computational

networks, like FCMs and artificial neural networks (ANNs),

is over fitting due to a large number of learnable parameters
introduced to accurately model a given system [29]. Amongst
the prominent works done for regularization of neural
networks to minimize overfitting include DropOut (DO) [30],
and DropConnect (DC) [31]. In DO [30], nodes (along
with any associated connections) from the hidden and/or
output layer(s) are dropped out randomly during training.
Whereas in DC [31] only some of the connections are
randomly removed rendering DC to be a more liberal form
of network regularization than DO. Both works demonstrate a
higher network performance post implementation of network
regularization.

One noteworthy solution for the pruning of FCM
specifically is proposed by Averkin [18]. In their work, a
regularization of FCMs for hybrid decision support system
is presented. The work proposes pruning of weights as an
approach to compensate for 1) expert inaccessibility for
modelling a system that vary a little from their experience,
and 2) multiple experts to collaborate on one system. The
work is limited by the assumption that the system model does
not change during the course of the analysis.

Another consideration in FCMs implementation is the
normalization of weights using a transformation function to a
certain specified range (usually [0,1] for FCMs). The steepness
or the gradient of the transformation function establishes the
range of variability of the non-normalized weights that will
have non-extreme (neither 0 nor 1) normalized equivalents.
In essence, the parameter tuning defines the window of the
non-normalized weights that can contribute meaningfully to
the model estimation by a FCM simulation.

In this regard, the work by Papageorgiou and Froelich
[17] is a significant contribution towards the transformation
function parameter optimization. The study investigates the
influence of the transformation function parameter on the
shape and properties of the transformation function. They
conclude that optimization of the transformation function
parameter is quintessential for the FCM model to fit a given
data set.

IV. MATERIALS AND METHODS

A. fNIRS Data

fNIRS is a popular neuroimaging technique used extensively
for the study of brain activity. It is capable of recording
brain activity in real time by detecting changes in metabolic
profile of a given brain region under investigation. The changes
in concentration of oxy-Hb, deoxy-Hb can be inferred from
metabolic activity and oxygen consumption of the underlying
neural tissues [32], [33]. The recorded hemodynamic response
can be used in the study of neuroergonomics, and brain
computer interfaces [34]. Since fNIRS has a multitude of
advantages over other neuroimaging techniques (eg. fMRI)
such as it is low-cost, offers better temporal resolution, has
a higher sampling rate, and robustness to motion artifacts
alongside safety, and portability, fNIRS is fast becoming a
medium of choice for empirical investigations in cognitive
neuroscience [35], [36].
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In this section, a description of synthetic [32] and real
fNIRS [36] data used to evaluate the proposed E-FCM
methodology for detecting EC is presented.

1) Experiment 1: In this work synthetic fNIRS data is
generated to evaluate the efficacy of the proposed E-FCM
methodology for assessing EC in fNIRS signals. The method
outlined by Scarpa et al. [32] is reproduced to generate a
total of 16 synthetic fNIRS causal signals. The synthetic
fNIRS signals are generated according to (6), with minor
modifications to accommodate the needs of this work:

ysim(t) = kutrue(t) + 0.01φsim(t) + η(t) + r(t) (6)

where utrue(t) represents the true hemodynamic response
(HR). The true HR, utrue(t), is scaled by a constant k which
can take the value of 0, 0.5 or 1. The channel location would
determine the exact value of k for a given synthetic fNIRS
signal. The processes of physiological noise, random noise,
and noise due to possible motion artefacts are represented by
φsim(t), η(t), and r(t) respectively in the overall simulated
fNIRS signal, ysim(t).

For more information on utrue(t), and noise models in (6),
the reader is referred to [32], [37], [38].

Fig. 1 shows a representative synthetic fNIRS signal,
ysim(t), corresponding to a given true HR stimulus, utrue(t).
The synthetic fNIRS signal is inherently noisier than true HR
stimulus by contributions from physiological and random noise
mainly. The incorporation of physiological noise also stretches
the length of the HR stimulus in the synthetic fNIRS whilst
the occurrence of the maximum displacement of the synthetic
fNIRS is in sync with that of the true HR stimulus [38]. A
total of 16 synthetic fNIRS signals are generated to remain
consistent with the 16 real fNIRS signals available as outlined
in section IV-A2.
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Fig. 1: Synthetic fNIRS signal (blue) generated by the
corresponding true HR signal (red).

a) Preprocessing of Synthetic fNIRS data: Inherently,
fNIRS signals are a measure of the metabolic changes in
the blood owing to cognitive activity. In this regard, motion
artefacts arising from possible head movement can cause
fluctuations in fNIRS recordings which are not representative
of the cognitive activity. Therefore, it is crucial to remove
motion artefacts from fNIRS signals before analyzing it for
more accurate assessment of cognitive activity in the brain.

In this work, the synthetic fNIRS signals are filtered using
Kalman filter as outlined in [39]. The order of the state space
model is one, and the autoregressive model parameters are
estimated using the Yule-Walker equations.

The filtered synthetic fNIRS signals are also down sampled
before introducing EC within the data. This is because the total
length of the synthetic fNIRS signal (≈ 500 s) is significantly
larger (≈10 times) than the length of the signal where the
two true HR stimulus transpire (≈50 s) hence down sampling
the signal will pronounce the connectivity within the data by
omitting some non-salient data points. In this work the down
sampling factor is experimentally chosen to be 10 such that
the fNIRS data still retains its characteristics.

b) Effective Synthetic fNIRS connectivity data: The EC
in the down sampled and filtered synthetic fNIRS data is
incorporated according to Fig. 2 and (7) [40]. As can be seen
in Fig. 2 and (7), signal 1 (X1

t ) value at time t is independent
of all other signals. However, signal 2 (X2

t ) and signal 3 (X3
t )

value is dependent on signal 1 (X1
t−2) value with a time lag of

2, and signal 1 value with a time lag of 3 (X1
t−3) respectively.

The signal 4 (X4
t ) values is influenced by signal 1 values

(X1
t−1) and (X1

t−2), and signal 5 (X5
t−1) values; whereas only

signal 4 (X4
t−1) influences on signal 5 (X5

t ).
The 16 synthetic fNIRS signals are enhanced with EC

by forming three sets of five signals each having same
dependencies as delineated in Fig. 2 and (7). The 16th signal
(like the 1st, 6th, and 11th signal) has no causal dependencies
on any other signal(s). A generic connection matrix, E, with
elements eij , corresponding to the causal network illustrated
in Fig. 2, and (7) is shown in Table I.

The resultant set of 16 synthetic fNIRS signals enhanced
with EC is used by the E-FCM model to estimate the EC
within the signals.



X1
t = X1

t + 0.95
√
2X1

t−1 − 0.9025X1
t−2

X2
t = X2

t + 0.5X1
t−2

X3
t = X3

t − 0.4X1
t−3

X4
t = X4

t − 0.5X1
t−2 + 0.25

√
2X4

t−1 + 0.25
√
2X5

t−1
X5

t = X5
t − 0.25

√
2X4

t−1 + 0.25
√
2X5

t−1
(7)

2) Experiment 2: The real fNIRS data [36] used in
this work comes from a Neuroergonomics study that
involved 27 right-handed male surgeons affiliated with
National Health Service, and Imperial College London.

 
Fig. 2: EC between synthetic fNIRS signals: signal 1 is
influencing signals 2, 4, and 3, whereas signal 4 and signal 5
are influencing each other.
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TABLE I: Generic connection matrix, E, for causal network
shown in Fig. 2, and (7)

Concepts X1 X2 X3 X4 X5

X1 0 e12 e13 e14 0
X2 0 0 0 0 0
X3 0 0 0 0 0
X4 0 0 0 0 e45
X5 0 0 0 e54 0

A local research ethics committee approval was obtained
(project number: 05/Q0403/142). The participants performed
a complex visual-spatial task (namely laparoscopic surgery
(LS)) whilst their brain activity is recorded, as shown in Fig.
3. Specifically, amongst the 27 surgeons included 9 novices
(NV), 10 trainees (TN), and 8 expert (EX) consultants. The
reader is referred to [36] for a more detailed description of
the participants, the task, and the pre-processing of the fNIRS
signals.

A total of 16 real fNIRS signals are used in this study.
The fNIRS digitized probe positions were registered from a
real-world coordinate to the Montreal Neurological Institute
(MNI) space. The MNI coordinates were transformed to
Talairach space [41], and look up in a brain atlas [42] to
establish their relations with the ROI. A detailed explanation
of the fNIRS probe positions transformation is provided in
the study by Andreu-Perez et al. [36]. The measured channels
locations are as shown in Fig. 4.

The reason this particular dataset is chosen to gauge the
performance of E-FCM method is because the participants can
be categorized based on their expertise level for performing
LS. A range of expertise within the participants implied a
better differentiation can be inferred in the cognitive activity
arising from the dexterity of the task.

The dataset also entails separate records for oxy-Hb and
deoxy-Hb levels in the investigated brain regions. Hence,
in order to better assess the EC within the 16 real fNIRS
signals grouped using the proposed E-FCM model, the oxy-Hb
fNIRS signal and deoxy-Hb fNIRS signals are analyzed
separately. This is important because no direct coupling of the
two hemoglobin dimensions of fNIRS has been established
in the literature yet [33], [43], [44] therefore it would be
counter-intuitive to use total hemoglobin (THb) response

Fig. 3: Brain activity being recorded via fNIRS whilst
participants perform LS task.

Fig. 4: The 16 measured fNIRS signals channel position
differentiated based on ROIs- Prefrontal Cortex (PFC) in pink,
and Motor Cortex (MC) in yellow.

instead of individual hemoglobin responses. However, the
discrepancies between the oxy-Hb and deoxy-Hb signal may
be meaningful to elucidate transient neural activity as revealed
in Sasai et al. [45]. A detailed discussion of how the dual
dimensionality of fNIRS signals has been used in this work
to establish EC in the brain regions is presented in following
sections: IV-A2a and IV-D.

a) Fusing Hemodynamic Varieties: In order to address
the particular issue of which hemoglobin response is more
representative of the metabolic activity in the underlying
neural tissue, the individual effective links deduced by the
E-FCM model for both hemoglobin dimensions of fNIRS are
analyzed separately and used to compute an overall network
that is a combination of the stand-alone networks of oxy-Hb
and deoxy-Hb signals.

In particular, the resulting weights of the connection matrix
from the E-FCM simulation of both oxy-Hb and deoxy-Hb
for all NVs, TNs, and EXs are averaged based on their
accuracy level as outlined in section IV-D. This would
facilitate minimization of any random errors that may arise
due to slight environmental changes whilst recording of the
data as well as any discrepancies within the subjects per
category (such as intelligence quotient (IQ), degree of alertness
etc.). The averaged weights of the oxy-Hb and deoxy-Hb are
then analyzed to compute an overall E-FCM representing both
dimensions of fNIRS. In essence, the combined E-FCM would
be a representative of the THb response without undermining
the individual characteristics of both oxy-Hb and deoxy-Hb.

B. Effective Fuzzy Cognitive Maps (E-FCMs)

In this section, the proposed changes to the FCM are
outlined. These revisions include a regularized FCM prediction
formula motivated from DC for neural networks [31],
optimization of the transformation function parameter value, C
in (2), and the significance of employing a higher order FCM,
k in (1), in particular for detecting EC in fNIRS signals.

The proposed regularization of FCM is achieved by
straining the weights of the connection matrix, E, using a
soft regularizer, Z. The soft regularizer Z is a generalization
of DC mask since elements of Z ∈ R and can attain any
value in the range of [0, 1] unlike a binary mask in DC whose
elements can only be 0 or 1 [31]. The elements in E and Z are
both optimized using GA, however, please note only elements
of E can model the direction of the EC whereas Z can only
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optimize the strength of the EC, and hence cannot affect the
direction of EC unlike E.

Eq. (8) entails the formal mathematical definition of
E-FCM:

C(t+ 1) = f(g; (E � Z)C(t))

Cj(t+ 1) = f(

k∑
l=0,l≤t

(gj(l)

N∑
i=1

(eij � zij)Ci(t− k)))
(8)

where Cj(t) is the fuzzy value of the concept or node (or
signal in fNIRS paradigm) j at time t based on the strength and
direction of the interaction, eij�zij (� represent element wise
multiplication) in the range [−1, 1], of concept j with other
concepts in the system, and the past values of the concept j,
Cj(t − k). The total number of concepts in a given system
is represented by N and T denotes the total length of a
signal. The number of past fuzzy values of a given concept
to be considered by the E-FCM when computing the new
fuzzy value for that concept is dictated by the order of the
E-FCM, represented by k. The E-FCM also allows for tuning
the strength of influence of the preceding fuzzy values on the
current fuzzy value for a given concept by optimizing values
of gj(k), zij , and eij using GA.

The effectiveness of the E-FCM arises from entailing
greater degrees of freedom owing to the weight regularizer Z
whilst finding the optimum EC direction, and strength without
violating the set of constraints imposed (see tolerance criterion
in section IV-C) on it. In the Results section V-A and in
particular Fig. 7 and Table III, a comparison of E-FCM results
with the original FCM results is also made to further fortify
the effectiveness of E-FCM.

In this work, both Error 1 (4) and Error 2 (5), are computed
when analyzing the performance of the proposed E-FCM
technique for evaluating the effective connections between
synthetic signals, and real fNIRS signals, separately.

1) Transformation Function Parameter Tuning: As
mentioned earlier, transformation function is responsible for
normalizing the fuzzy degrees of relationship (or weight
values) in a specified range. The particular transformation
function used in this work is the sigmoid function, see
(3). Essentially, the gradient of the transformation function
determines how fast the non-normalized fuzzy degrees of
relationship are squeezed into the normalized range for the
fuzzy degrees of relationship.

Fig. 5 shows the transformation function plot for two values
of the parameter, C, that defines the gradient of the function.
The value for C is assumed to be 5 for most practical
applications [14], [19]. However, with C = 5, the gradient
of the transformation function proved too steep to suit the
needs for this work- the fuzzy degrees of relationship were
being squashed to the normalized range too fast, and hence
were not generating the required results.

In contrast, the empirically found value of C = 1, is more
inclusive of the non-normalized fuzzy degrees of relationship
to be translated to the non-extreme values in the normalized
range for the fuzzy degrees of relationship by having a
less steep gradient. This can also be seen in Fig. 5. The

transformation function with C = 1 (red) is including values
from approximately (−4, 4) to be converted to non-extreme
normalized equivalents whereas with C = 5, values from
the approximate range of (−1, 1) only are being translated
to non-extreme counterparts in the normalized fuzzy degrees
of relationship.

2) E-FCM Order, k: The E-FCM order dictates how many
past fuzzy values, k, in a set of observations will be considered
by the E-FCM when trying to discern a fuzzy effective
connection between them. The implications of the choice of
the order of the E-FCM are largely dependent on the particular
application. In (8), the parameter k defines the order of the
E-FCM. As is also evident in (8), the impact of the preceding
state(s) on the current state can also be scaled by tuning the
value of the parameter g.

The motivation for employing a higher order E-FCM for
fNIRS signals lies in a more accurate deciphering of the fuzzy
EC between the fNIRS signals. This is owing to complex,
higher order fuzzy effective connections amongst the fNIRS
signals which first order E-FCM dynamics cannot comprehend
very well.

C. E-FCM Learning

The E-FCM learning can be achieved either manually
using the information provided by experts or by employing
an automated process that can use historical information
to develop FCMs [15]. There is an increasing trend to
use computerized techniques to uncover the fuzzy relations
between concepts for an FCM simulation [46] since using an
automated approach to learn the inherent model of a given
system does not introduce a bias in the FCM simulation that
may be incorporated into the results had the FCM evolution
been governed by human knowledge.

In accordance with the greater advantages of automated
FCM learning, in this work, E-FCM learning is achieved by
utilizing the GA. GA is an optimization algorithm that is
based on evolutionary ideas of natural selection and genetics
and is capable of solving both constrained and unconstrained
optimization problems. Owing to its robust, and heuristic
nature, GA can be applied to learn the inherent model of a
given system using the historical data of the system [14].

The GA can also accommodate the learning of peculiar
characteristics of a system by tuning its inherent parameters.
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Fig. 6: A flowchart of the algorithm for predicting EC in fNIRS signals using the proposed E-FCM model.

In this work, the values of these parameters were empirically
determined such that the resultant connectivity matrix, E,
depicted the inherent structure of the 16 synthetic fNIRS
signals as close as possible. The population size of the GA
is set to 1000, the maximum number of generations is defined
as 1000 x the population. The maximum fitness is set to 0.99
and the tolerance criterion is set to 1e−1. The genetic operator
used is crossover and the selection is made by tournament. A
detailed description of the GA parameters can be found in
[14], and [46].

The flowchart in Fig. 6 outlines the steps for the generation
of a resultant connection matrix, E�Z, by GA using historical
data to be incorporated in the E-FCM simulation. The E-FCM
builds the next state vector, C(t+1), of a given system using
the resultant connection matrix, E�Z, and the historical data,
C(t), till a chosen tolerance criterion is achieved.

The GA learning is driven by the fitness of the predicted
state ˆC(t) with respect to the original state C(t). The fitness
of the predicted state ˆC(t) is evaluated according to the fitness
function (9), f .

f =
1

10(T − 1)N
error (9)

where T is the length of each of the total N signals and
the error is computed using (5).

The fitness of each predicted state ˆC(t) is gauged against
an apriori termination criterion, and if achieved, the weight
matrix E(t)�Z(t) is updated accordingly, see Fig 6. In case
the termination criterion is not met, the GA will try to look
for new offsprings using selection, crossover, and mutation, to
generate a new predicted state ˆC(t) which will then again be
compared with the termination criterion, and the process will

continue to repeat itself till the chosen termination criterion is
satisfied.

D. E-FCM Fusion

The fNIRS channels locations, which are concepts/nodes
for an E-FCM simulation, are identical for both oxy-Hb and
deoxy-Hb, therefore the only facet that needs conformation for
E-FCM combination is the connections between the concepts.
Within the connections realm, the details that need assimilation
are the presence/absence, positive/negative relation, and the
strength (weight) of the fuzzy degrees of relationship between
the channels. In this work, the strength of the fuzzy degrees
of relationship in combined E-FCM for the case where a
connection of the same polarity (negative or positive) is present
in both oxy-Hb and deoxy-Hb E-FCMs is computed by taking
the average of their respective fuzzy degrees of relationship in
individual E-FCMs. For the case where a connection is present
only in one of the parent E-FCMs, oxy-Hb or deoxy-Hb,
it is included in the combined E-FCM with the same fuzzy
degree of relationship as in the parent E-FCM. The last case
where a connection is present in both E-FCMs albeit with
different polarities, the overall E-FCM does not include it, the
conflicting connection. A similar work for combining FCMs
in group decision making is done by Hanafizadeh et al. in [12]
where individual FCMs originating from different experts are
consolidated to arrive at a FCM that represents the decisions
of all the experts involved.

Owing to the absence of any established direct link between
oxy-Hb and deoxy-Hb that confers the presence of brain
activity [33] [43] [44], the approach of a merger E-FCM
that reads from both oxy-Hb and deoxy-Hb E-FCM offers
a greater accuracy into establishing the overall EC within
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TABLE II: Total Error Values for different orders of E-FCM

TOTAL ERROR Order, k, of E-FCM
1 2 3 4 5

Error 1 30.89 41.28 21.59 37.92 28.10
Error 2 60.15 93.97 50.42 82.43 61.07

different regions of the brain. Hence, connections with the
same polarity in the parent E-FCMs are corroborated, and
connections present in any one of the parent E-FCM are
retained, to bespeak the significance of EC transpiring between
the corresponding channels. However, the connections which
have opposing effective connections in the parent E-FCMs
are inconclusive, and consequently removed from the overall
E-FCM.

V. EXPERIMENTS AND RESULTS

A. EC Computation on Synthetic fNIRS data

In order to assess the efficacy of the proposed E-FCM
technique for evaluating the EC between 16 synthetic
fNIRS signals, the reconstructed signals generated by third
order E-FCM are compared with the reconstructed signals
generated from standard FCM, the reconstructed signals from
general linear model (GLM) parameters based on canonical
hemodynamic response function (DCM-GLM) [47] [48],
the reconstructed signals from bivariate linear autoregressive
model [40] [49] that drives GC (GC-AR), and the original
signals. A plot of the reconstructed signals from E-FCM
(red) with reconstructed signals from standard FCM (green),
GC-AR (cyan), and DCM-GLM parameters (black) are
shown along with the original signals (blue) in Fig. 7. The
Multivariate Granger Causality Toolbox (MVGC) [50] has
been used to compute GC-AR parameters and DCM-GLM
parameters are estimated using SPM-fNIRS toolbox [51].

A visual assessment of Fig. 7 indicates that the third order
E-FCM is able to discern well the characteristic peaks, i.e.
the true HR stimulus, for most of the synthetic fNIRS signals
with effective connections. In contrast, as can also be seen in
Fig. 7, a total of four predicted signals from standard FCM
technique (shown in green) had no HR stimulus (Row (R) 1,
Column (C) 4; R2, C1; R3, C4; R4, C2) at all. This is owing
to overfitting in the absence of a weight regularizer Z in the
standard FCM formulation (1) to find the optimum weights
whilst satisfying the set of constraints imposed on it. Likewise,
the reconstructed signals from DCM-GLM parameters are
unable to predict the second HR stimulus for almost all 16
signals.

The order, k, of the E-FCM is empirically chosen, third in
this case, such that minimum possible values are attained by
Error 1(4), and Error 2(5). The total error value, i.e. the sum
of error for all 16 synthetic fNIRS signals, for Error 1 and
Error 2 for different orders of E-FCM are reported in Table
II. As can be seen in Table II, the total error values for both
Error 1 and Error 2 are the least for E-FCM order k = 3.

A quantitative assessment of the third order E-FCM results
is also done by computing values for Error 1(4), and Error
2(5), and comparing them with those obtained for standard

FCM, GC-AR, and DCM-GLM results. The error values for
all methods are tabulated in Table III. Since Error 2 also factors
in the differences in the rate of change of the predicted values
with the original values when computing the error hence Error
2 values are considerably larger than their corresponding Error
1 values. The average error values for E-FCM are the least
when compared with GC-AR, DCM-GLM, and standard FCM
average error values.

The performance of the proposed third order E-FCM is also
gauged against the equivalent results obtained from GC. GC is
a statistical tool and the de facto standard for evaluating future
values of a time series variable (Y ) from past values of both
itself and another time series variable (X), if it is established
that X Granger causes Y [40] [49]. The Multivariate Granger
Causality Toolbox (MVGC) [50] has been used to compute
the values of GC for the 16 synthetic fNIRS.

Fig. 8 shows a comparison of established EC using GC (Fig.
8 (b)) and proposed third order E-FCM (Fig. 8 (c)) with the
true effective connections (Fig. 8 (a)). A filled black square
connecting two signals indicates the presence of an effective
connection between them, and a white square implies that
there is no effective connection between the two connected
signals, both measured at 95% confidence level. For example,
in Fig. 8 (a), signal 4 is influencing signal 5 (connected
with a black square), and signal 5 is not influencing signal
3 (connected with a white square).

The GC results shown in Fig. 8 (b) are not very
representative of the true EC between the 16 synthetic fNIRS
signals (Fig. 8 (a)). The GC results depict many a false
positives, and false negatives. An example of a false positive
amongst GC results is signal 1 influencing signal 5 whereas
signal 9 not influencing signal 10 is a false negative. The
spurious results of GC indicate their inapplicability for the
analysis of a network characterized by non-linear effective
connections such as fNIRS signals.

In contrast, the results from the proposed third order E-FCM
method are able to decode EC for 12 out of 16 signals (Fig. 8
(c)). For the case of E-FCM, a filled black square represents
the acceptance of the t-test null hypothesis, H0: The original
and predicted signals connectivity values have the same mean
at 95% confidence level. Table IV lists the p-values for the
corresponding H0 of E-FCM predicting signals based on its
EC analysis of the 16 synthetic fNIRS signals.

B. EC Computation on real fNIRS Data

The real fNIRS data [36] involving 27 surgeons (9 NVs, 10
TNs, and 8 EXs) performing a LS task is also used to assess
the efficacy of the proposed method of a higher order E-FCM
for delineating the underlying EC. In order to also better gauge
the representation of oxy-Hb and deoxy-Hb in the resulting
neuronal activity within the brain, the oxy-Hb and deoxy-Hb
signals are simulated separately by the proposed E-FCM to
compute their individual EC networks. The EC networks of
the bi-dimensions of fNIRS signals are then used to generate
an overall E-FCM.

The average error values (4) along with corresponding
standard deviations comparing the accuracy in estimating
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Fig. 7: Comparison of EC prediction results using proposed E-FCM (red) with original FCM (green), GC-AR (cyan), and
DCM-GLM (black). The true EC are depicted in blue. On the x-axis are the values of time (sec), and y-axis has normalized
amplitude of the synthetic fNIRS signals.

TABLE III: Error Values for GC-AR, DCM-GLM, original FCM, and third order E-FCM for 16 synthetic fNIRS signals.

METHOD ERROR Signal No. AVG.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ERROR

GC-AR Error 1 2.73 3.41 2.95 4.57 1.26 1.86 1.60 1.46 3.05 1.74 2.75 2.59 1.70 1.97 1.52 1.57 2.30
Error 2 7.75 11.16 9.11 14.39 3.71 5.42 4.70 4.21 8.38 5.30 8.88 7.00 4.75 5.21 4.40 4.34 6.79

DCM-GLM Error 1 2.81 2.52 2.65 2.48 1.84 2.26 1.61 3.44 3.05 2.98 1.27 2.57 3.20 3.05 3.09 2.67 2.59
Error 2 9.10 8.00 9.01 8.61 5.92 7.70 5.66 10.44 8.45 8.82 4.13 7.23 9.80 9.23 9.78 7.99 8.12

FCM Error 1 1.78 0.88 1.91 2.69 2.30 0.95 2.85 2.55 2.83 1.33 1.29 2.36 1.40 2.53 4.13 1.31 2.09
Error 2 4.07 2.29 4.40 6.72 4.06 3.05 6.22 4.68 6.51 3.07 2.90 4.87 3.38 5.36 10.15 3.46 4.70

E-FCM Error 1 4.37 2.92 0.99 1.89 1.40 1.40 2.88 2.11 2.08 1.54 3.14 0.36 1.72 1.38 1.09 1.64 1.93
Error 2 9.10 4.44 2.55 4.85 2.53 3.42 5.26 4.33 4.67 3.00 5.62 0.68 2.48 2.32 2.44 2.46 3.76

TABLE IV: t-test Hypothesis and p-values for EC values of
16 synthetic fNIRS signals at 95% confidence level.

t-TEST Signal No.
1 2 3 4 5 6 7 8

t-test h 0 0 0 0 0 0 0 0
t-test p 0.86 0.05 0.55 0.38 0.43 0.06 0.14 0.58

9 10 11 12 13 14 15 16
t-test h 1 1 1 1 0 0 0 0
t-test p 0.04 0.01 0.02 0.02 0.43 0.25 0.50 0.85

Significance Level α = 0.05, h=0 denotes H0 is accepted.
t-test accepts H0 for 12/16 signals.

fuzzy effective connections between oxy-Hb and deoxy-Hb
by proposed third order E-FCM are listed in Table V.
Essentially, hemoglobin group E-FCM simulation for which
the average error is greater, its weights are scaled down by the
corresponding percentage hence taking forward more of the
accurate EC estimates to contribute to the combined E-FCM.
For example, for NVs, the oxy-Hb weights are scaled down
by 3.1% before mapping into the overall E-FCM.

In order to assess the third order E-FCM results for
statistical significance, Table A.1 lists the number of the t-test
H0 being accepted for all subjects of category NVs, TNs,
and EXs. The null hypothesis is defined as H0: The original
and predicted signals connectivity values have the same mean
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Fig. 8: Comparison of EC estimation for 16 synthetic fNIRS using GC (b), and 3rd order E-FCM (c), with the true effective
connections (a).

TABLE V: Average Error Values for Oxy-Hb and Deoxy-Hb
fNIRS simulation by 3rd order E-FCM

Novices (NVs) Trainees (TNs) Experts (EXs)
Oxy-Hb 120.25 ± 29.85 122.79 ± 32.89 156.38 ± 46.52
Deoxy-Hb 116.62 ± 27.14 119.99 ± 43.44 125.49 ± 73.45
Error Oxy-Hb by 3.1% Oxy-Hb by 2.3% Oxy-Hb by 19.8%

Mean Error 1 (4) of all subjects with standard deviations are presented.

at 95% confidence level. The results indicate that for most
of the channels, across all subjects and expertise levels, the
H0 is accepted indicating the prowess of the proposed higher
order E-FCM for delineating the EC in fNIRS data. However,
the results in Table A.1 indicate that underlying effective
connections in oxy-Hb results are better understood by the
proposed third order E-FCM in comparison to the deoxy-Hb
for less experienced subjects. However, the accuracy of the
predicted signals, for both oxy-Hb and deoxy-Hb signals, can
also be seen to decline as the expertise level increases. This
could perhaps be owing to changes in the memory order of
the EC of the underlying channels on account of increased
experience but needs further investigation since, in this work,
the order of the E-FCM model is not varied with the change
in expertise level.

In order to facilitate the comparison of brain network
evolution as an individual gains a certain degree of expertise
in doing a certain task, LS in this case, Fig. A.1 shows a
plot of the E-FCMs generated from oxy-Hb and deoxy-Hb
fNIRS signals along with corresponding combined E-FCM for
NVs, TNs, and EXs. Please note only the most significant
connections are shown in Fig. A.1 which have fuzzy degrees
of relationship greater than 90th percentile. A noteworthy
observation that can be made from Fig. A.1 is that as
the expertise level increases, the number of significant EC
(strength of fuzzy degrees of relationship greater than 90th
percentile) is more for deoxy-Hb E-FCMs as compared to
oxy-Hb E-FCMs signifying that perhaps deoxy-Hb signals

hold more latent information with regards to channels
underlying EC as compared to oxy-Hb signals if the brain
networks have evolved owing to more experience. The
quiescent EC structure within the deoxy-Hb signals for more
experienced subjects could also explain why a greater number
of t-test H0 got rejected in Table A.1 against corresponding
oxy-Hb channels.

VI. NEUROPSYCHOLOGICAL DISCUSSION

In this work the real fNIRS data [36] used in Experiment 2
entailed subjects which differed in their level of expertise for
performing a pre-defined LS task. The fNIRS data recorded,
whilst the subjects performed LS task, is consequently used
to assess the efficacy of the novel, high order and regularized
E-FCM method presented. In this section, the results obtained
for EC between ROIs from the proposed third order E-FCM
model are gauged against similar works in the literature.

The results from third order E-FCM model indicate network
connections change from random activations to evenly spread
out along with more positive influences as the expertise level
increase as shown in Fig. A.1. This is in agreement with
the current findings [35] [36] that as an individual progress
in learning, their brain networks evolve and optimize their
connections. Another perspective for underpinning the EC
analysis in between ROIs is done by collapsing the weights
according to PFC and MC as shown in Fig. 9. This is done
by first averaging the weights for all subject’s oxy-Hb and
deoxy-Hb of a given expertise level, and consequently finding
the mean of the average values for the individual hemoglobin’s
ROIs weights. The resultant averaged values are then scaled
to unit length for each connection i.e. PFC to PFC, PFC to
MC, MC to PFC, and MC to MC across the three expertise
level. A similar trend can also be seen in Fig. 9, with NVs
relying more on inter PFCs and almost non-dependent on MCs
connections as compared to TNs and EXs. TNs and EXs rely
more on inter MC connections and less on inter PFC with
progression towards a balanced corroboration between ROIs
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as more experience is gained hence spreading the cognitive
load in contrast to NVs [35] [36]. This progression trend with
increased experience is also intercepted well by third order
E-FCM as can be seen in Fig. A.1 with more strong positive
cause-effect relations between PFC and MC for TNs and EXs
as compared to NVs.

The shift in brain activations from PFC to MC on account of
increased experience is also in line with the findings from the
work of Sanes [52] which observed a decrease in EC in frontal
pathway encompassing the regions of inferior frontal gyrus and
precentral gyrus brain as a particular visual-motor coupled task
is learnt. Another distinct work by Kawai et al. [53] focusing
on the particular role that MC takes whilst a certain task is
learnt concludes that MC is critical for learning of a task
but not essential for execution of a previously learnt motor
task. They conclude that MC engages subcortical motor cortex
circuits upon learning of a task and assigns them the execution
of the learnt task. This frees the MC for any new learning
activity and is in coherence with the findings of this work
that brain networks evolve to a more balanced configuration,
on acquisition of a certain level of expertise, without draining
any particular segment of the brain.

The work by Chersi et al. [54] also report a similar trend of
high dependency on PFC when the subject is inexperienced
with the task undertaken and with more experience internal
brain areas such as basal ganglia (BG) are more activated.
The task carried out by the animal in the study [54] was to
switch on flashing lights by pressing corresponding buttons.
Once the animal learnt the task, the button and flashing light
sequence is changed so as to coerce it to suppress its learnt
behaviors. The study concluded that PFC regions are more
involved during the learning of a task whereas BG takes over
when a goal directed behavior is required.

VII. CONCLUSIONS AND FUTURE WORK

This work has demonstrated a novel approach to identify EC
connections between fNIRS data using enhanced higher order
E-FCM model. The significance of accurately deciphering EC
from fNIRS data is paramount for the advancement of research
in the working and evolution of the human brain. In this regard,
the combination of a higher order E-FCM offers a novel, more

robust, and fully automated solution for uncovering the EC
networks between fNIRS data. The strength of the proposed
model is shown by its superior accuracy in identifying the
effective connections for both synthetic and real fNIRS data
at 95% confidence level.

The improvements in FCM framework, along with tuning
of the transformation function parameter, renders the proposed
higher order E-FCM more adaptable to the requirements of a
given complex network. An attempt is also made to study
the individual significance of oxy-Hb and deoxy-Hb signals
while uncovering the underlying EC within the fNIRS signals.
The EC networks determined from individual oxy-Hb and
deoxy-Hb E-FCMs are used in conjunction in a novel approach
to arrive at a combined E-FCM representing the characteristics
from both dimensions of fNIRS signals. The preliminary
results are in line with the current literature that the dual
dimension of fNIRS data are independent however deoxy-Hb
signals might be able to identify more effective relations
based on greater number of significant EC connections in Fig.
A.1 as compared to oxy-Hb signals. Likewise, in Table A.1,
the number of signals for which the t-test H0 is accepted
is greater for oxy-Hb signals with lesser experience (NVs:
H0 = 144, TNs: H0 = 140 , EXs: H0 = 102) than that for
deoxy-Hb signals with greater experience (NVs: H0 = 131,
TNs: H0 = 141 , EXs: H0 = 111) implying the presence
of a more latent EC information in deoxy-Hb signals, which
becomes more pronounced with an increase in experience, that
was not detected by the proposed fixed higher order E-FCM
model. The novel finding of deoxy-Hb signals becoming more
representative of the underlying EC as an individual gains
experience in a certain motor task may help to understand
the evolution of brain networks on acquisition of experience.

The future work aims at exploring the effect of modifying
the order of the E-FCM model as the expertise level increases.
This can be of significance because as the brain networks
evolve the memory order of the underlying EC in brain
network may also increase or decrease. This needs to be
further investigated but an intuitive hypothesis can be that
optimization of brain networks would have a bearing on the
memory order of EC within the ROIs.
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APPENDIX

TABLE A.1: Percentage ratio of No. of t-Test H0 accepted to No. of Subjects (N), H0/N , for oxy-Hb and deoxy-Hb of 9
NVs, 10 TNs, and 8 EXs at 95% confidence level

H0/N
Channel No. NVs Oxy-Hb NVs Deoxy-Hb TNs Oxy-Hb TNs Deoxy-Hb EXs Oxy-Hb EXs Deoxy-Hb
1 100.0% 88.9% 90.0% 90.0% 87.5% 75.0%

2 100.0% 100.0% 90.0% 90.0% 87.5% 100.0%

3 100.0% 100.0% 100.0% 100.0% 100.0% 87.5%

4 100.0% 88.9% 80.0% 90.0% 75.0% 87.5%

5 100.0% 77.8% 100.0% 100.0% 62.5% 87.5%

6 100.0% 100.0% 90.0% 80.0% 75.0% 100.0%

7 100.0% 77.8% 90.0% 100.0% 62.5% 75.0%

8 100.0% 100.0% 70.0% 80.0% 87.5% 100.0%

9 100.0% 100.0% 90.0% 100.0% 75.0% 87.5%

10 100.0% 100.0% 90.0% 80.0% 87.5% 87.5%

11 100.0% 88.9% 90.0% 90.0% 100.0% 100.0%

12 100.0% 77.8% 100.0% 80.0% 50.0% 62.5%

13 100.0% 88.9% 70.0% 80.0% 87.5% 75.0%

14 100.0% 88.9% 80.0% 70.0% 87.5% 87.5%

15 100.0% 88.9% 90.0% 90.0% 87.5% 87.5%

16 100.0% 88.9% 80.0% 90.0% 62.5% 87.5%

Fig. A.1: Averaged oxy-Hb and deoxy-Hb E-FCMs with combined E-FCMs for Novices (NVs), Trainees (TNs), and Experts
(EXs). The signals in PFC region are annotated in pink, and those in MC are in yellow. A green line signifies presence of a
positive causal interaction between the connecting signals, and the presence of a black line denotes a negative causal interaction
between the connecting signals.


