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Abstract

The ability to produce accurate mortality forecasts, accompanied by a set of represen-
tative uncertainty bands, is crucial in the planning of public retirement funds and various
life-related businesses. In this paper, we focus on one of the drawbacks of the Poisson
Lee-Carter model (Brouhns et al., 2002) that imposes mean-variance equality, restricting
mortality variations across individuals. Specifically, we present two models to potentially
account for overdispersion. We propose to fit these models within the Bayesian framework
for various advantages, but primarily for coherency. Markov Chain Monte Carlo (MCMC)
methods are implemented to carry out parameter estimation. Several comparisons are made
with the Bayesian Poisson Lee-Carter model (Czado et al., 2005) to highlight the impor-
tance of accounting for overdispersion. We demonstrate that the methodology we developed
prevents over-fitting and yields better calibrated prediction intervals for the purpose of mor-
tality projections. Bridge sampling is used to approximate the marginal likelihood of each
candidate model to compare the models quantitatively.
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1 Introduction

Mortality forecasting is becoming an increasingly important issue especially recently in a wide
variety of areas: funding of public retirement systems, planning of social security, medical health
care systems, and actuarial applications (pricing and reserving of annuity portfolios). It is well
established that mortality has been improving over the years. This poses an immediate threat
to the government and various institutions because calculation of the expected present values
of numerous life-related products using life annuities functions relies on an accurate projection
of the mortality rates (longevity risk). Hence, development of appropriate models to model and
forecast mortality is crucial to avoid adverse costs.

Stochastic models have gained a lot of popularity in mortality projection due to their abil-
ity to produce probabilistic intervals that encapsulate uncertainties associated with the fore-
casts, thereby facilitating informed decision making within an acceptable risk margin. The first
stochastic mortality model was pioneered by Lee and Carter (henceforth LC) in 1992, and has
since then become the focus of most of the subsequent research in this regard. This model
has gained worldwide acceptance too and is often applied in the context of stochastic mortality
forecasting (Tuljapurkar et al., 2000). For instance, it is used by the US census Bureau as a
benchmark in their population forecasts. Lee and Miller (2001) demonstrated that the LC based
forecasts led to a systematic underestimation of future life expectancies in the United States
(see Girosi and King, 2008 for more criticisms). Various modifications of the LC approach
began to emerge thereafter. Brouhns et al. (2002) proposed a Poisson-equivalent version of the
LC model by introducing Poisson random variation for the number of deaths rather than an
additive error term for the logarithm of mortality rates. Cairns et al. (2006) developed the CBD
mortality model, which is a simple two-factor model that imposes a log-linear relationship be-
tween the death probabilities (in their definition) and age-time covariates. They demonstrated
that the CBD model fits UK mortality data for ages above 60 and years 1961-2002 substantively
well. For a comprehensive review of the recent development of mortality forecasting, readers
are referred to Booth and Tickle (2008).

In this paper, we focus on one of the drawbacks of the Poisson LC model in Brouhns et al.
(2002) that the mean and variance are restricted to be the same. This problem has been
considered by several papers, which mainly recommend using mixed Poisson models. Renshaw
and Haberman (2005) introduced a single dispersion parameter into the quasi-Poisson likelihood
to increase the flexibility of their model specification, but made no attempt to assess the impact
of this parameter on the prediction intervals. Their approach also suffers from the issue that
the relationship between the expectation, variance and probability function of death data under
the model are internally inconsistent (see Li et al., 2009). Delwarde et al. (2007) then proposed
a direct extension of the Poisson LC model to form the Poisson gamma/negative binomial LC
model (again, they did not consider the construction of prediction intervals). In addition, Li
et al. (2009) attempted to account for mortality variations by introducing an age-specific latent
variable that accounts for heterogeneity of individuals, which upon marginalisation, leads to the
negative binomial LC model as well. They also extended the parametric bootstrap approach in
Brouhns et al. (2002) for the generation of prediction intervals. All these approaches considered
model fitting within the classical framework, which suffers from issues of the inconsistent two-
stage model fitting procedure (see Section 4 for more details) and the inability to account for
multiple sources of uncertainties coherently. Czado et al. (2005) partially solved these issues
by implementing a fully integrated Bayesian approach of fitting the Poisson LC model, but
did not consider the presence of overdispersion. Therefore, our main aim is to combine their
methodologies, that is to fit the mixed Poisson LC models within a Bayesian paradigm, which
has the primary advantage of producing properly calibrated uncertainty bands that incorporate
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various sources of uncertainties. More advantages of Bayesian mortality modelling/forecasting
will be discussed in detail in Section 4. Bayesian mortality forecasting has generated some
literature in its own right. For instance, Girosi and King (2008) introduced Bayesian modelling
of mortality data in the presence of some exogenous covariates. On the other hand, Pedroza
(2006) innovatively performed mortality forecasting using a Bayesian state-space model (treating
ages as “space”) using Kalman’s filtering estimation procedure, with a built-in ability to handle
missing data. Li (2014) applied Bayesian methods in their mortality projections for countries
with limited data by appropriately modifying the original LC method. For more, see Antonio
et al. (2015), Wísniowski et al. (2015), Raftery and Chunn (2013) etc.

On top of fitting the Poisson gamma LC model (Delwarde et al., 2007) to deal with overdis-
persion, we also consider another mixed Poisson LC model, the Poisson log-normal LC model,
as a possible alternative candidate model. This is because we would like to investigate which
of these two distributions better describes the variability due to overdispersion, that clearly de-
pends on the underlying shape of the tail distributions (unknown a priori). This is apparently
a classic dilemma in the specification of error distributions within the generalised linear model
framework. For instance, Firth (1988) investigated the efficiency of the modelling procedure
under reciprocal misspecification of the multiplicative errors. Cox (1961) discussed the appli-
cation of Neyman-Pearson maximum likelihood ratio test to compare between the two models
(see also Cox, 1962 and Atkinson, 1970). For more on gamma versus log-normal errors, see
Wiens (1999), Dick (2004), Alzaid and Sultan (2009), Cho et al. (2004) etc.

We begin this paper by briefly reviewing the Poisson LC model in Section 2. The existence of
overdispersion in the England and Wales female mortality data is also illustrated through a heat
map. In Section 3, two extensions of the Poisson Lee-Carter model to account for overdispersion
are presented. Section 4 discusses a coherent modelling approach by implementing the Bayesian
methodology. The prior distributions of each of the unknown parameters are then provided. In
Section 5, approaches to computation are given. In particular, we describe the Markov Chain
Monte Carlo (MCMC) algorithm for posterior sample generation by deriving the conditional
posterior distributions. Some numerical results, including the fitted/projected parameters and
Bayesian model determination, are presented in Section 7.

2 The Poisson LC (PLC) Model

Let Dxt denote the number of deaths of age group x in year t, where x = x1, x2, . . . , xA and
t = t1, t2, . . . , tT represent a set of A different age groups and T years respectively. Also let ext
and µxt be the corresponding central exposed to risk and central mortality rate of age group x
in year t.

Then, as proposed by Brouhns et al. (2002), the PLC model is given by

Dxt ∼ Poisson(extµxt) with logµxt = αx + βxκt. (1)

For model identifiability, the constraints∑
x

βx = 1 and
∑
t

κt = 0

are adopted as the model parameters are invariant to the following transformations:

βx 7→ βx
b

κt 7→ b(κt − k)

αx 7→ αx + kβx,
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for any b ∈ R\{0} and k ∈ R. After imposing the constraints, the parameters can be interpreted
as follows:

αx : is the average of the logarithm of mortality rates over time (i.e. αx =
∑

t logµxt
T ).

βx : is the age-specific pattern of mortality improvement, measuring the sensitivity of the

mortality at each age to overall changes in the mortality on the log scale.

κt : captures the overall time trend of mortality change (after being appropriately modulated

by βx).

To fit this model, weighted least squares (with Dxt as the weights) or Newton’s iterative
updating scheme can be used to obtain the maximum likelihood estimates α̂x, β̂x and κ̂t (see
Renshaw and Haberman, 2005 for details). The ordinary generalized regression method does
not work here due to the bilinear terms in Equation (1). One can, however, fit this model within
the generalized linear model framework by iteratively conditioning on one of beta or kappa (so
the parameters are now log-linear with respect to µxt) and estimating the remaining parameters
until convergence. Note that there is no need to perform second stage estimation of κt to match
the fitted deaths with observed deaths as in the original LC approach because Poisson variations
automatically adjust for these discrepancies by modelling Dxt directly instead of µxt.

The key advantage of LC based models is that age and time components are partitioned such
that the age components remain constant through time, while the time component intrinsically
forms the stochastic part of the model to be projected forward in time. Hence, in terms of
projection, the time parameter, κt, is simply modelled and projected using an appropriate
autoregressive integrated moving average (ARIMA) model (e.g. random walk with drift).

2.1 Data

The data chosen for illustrative purposes are the female death data and the corresponding
exposures of England and Wales, extracted from the Human Mortality Database (HMD)1. They
are classified by single year of age from 0 to 99, and years ranging from 1961 to 2002. Hence,
here we have {x1, . . . , xA} = {0, . . . , 99} and {t1, . . . , tT } = {1961, . . . , 2002} with A = 100 and
T = 42. We intentionally held back the data for years 2003 − 2013 as the validation set, see
Section 7.

2.2 Overdispersion

The PLC model induces mean-variance equality (E[Dxt] = Var[Dxt] = extµxt), which implies a
rigid model structure with strong assumption of homogeneity within each age-period cell. In
other words, individuals born in the same year (same x at any given time) are assumed to have
the exact same mortality experience. This is an undesirable mortality assumption in reality since
it is well established that other factors such as smoking prevalence, income, ethnicity, genetic
backgrouds etc. have significant impacts on mortality (see Brown, 2003), thereby causing extra
mortality variations across the individuals, a phenomenon known as overdispersion.

To further illustrate this point, we monitor the square of Pearson residuals under the PLC
model given as:

r2
xt =

(dxt − E[Dxt])
2

Var[Dxt]

∣∣∣∣
µxt=µ̂xt

=
(dxt − ext exp(α̂x + β̂xκ̂t))

2

ext exp(α̂x + β̂xκ̂t)
, (2)

1See http://www.mortality.org.
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Figure 1: Heat map of r2
xt for the PLC model, accompanied by the corresponding colour code.

Green/yellow rectangular cells indicate areas with good fit, while orage/red coloured cells indi-
cate areas with significantly poor fit.

where dxt is the observed number of deaths at age x in year t and µ̂xt = exp(α̂x + β̂xκ̂t) is
the maximum likelihood estimate (MLE) of the underlying mortality rate. A colour-coded heat
map of r2

xt can then be constructed to visualise the lack of fit of the PLC model to our mortality
data, as depicted in Figure 1.

Under the null hypothesis that the PLC model is the true underlying model (and some
mild conditions), each r2

xt has an approximate chi-squared distribution with degrees of freedom
one (χ2

1) asymptotically. Ideally, we should expect only around 5% of the rectangular cells
(AT × 0.05 = 210) to have poor fit (defined as r2

xt > 3.84, where 3.84 is the 95th precentile of
χ2

1). However, it is evident from Figure 1 that the heat map is scattered with more than the
expected amount of orange/red cells (about 25%), and is especially obvious for the infants and
ages above 40, suggesting model inadequancy in accounting for extra variations in the data.
Additionally, we can also perform the Pearson’s chi-squared overall goodness of fit test. In
particular, the model deviance computed as the sum of r2

xt,

r2 =
∑
x,t

r2
xt =

∑
x,t

(dxt − ext exp(α̂x + β̂xκ̂t))
2

ext exp(α̂x + β̂xκ̂t)
,

has a value of 15378.73. Again, under the null hypothesis that this model is a good fit to the
data, the r2 should follow an approximate chi-squared distribution with degrees of freedom
(df) given as df = (A − 1)(T − 2) = 3960 (see Renshaw and Haberman, 2005). Since the
model deviance of 15378.73 is substantially larger than the critical value of the conventional
chi-squared statistics (i.e. the 95th percentile of χ2

(A−1)(T−2) is 4107.51), this clearly suggests
that the PLC model does not provide a satisfactory fit to the data. Note that the obvious
red/orange diagonal lines displayed in Figure 1 correspond to possible cohort effects which we
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do not attempt to address in this paper, but will do so in our future work. Setting aside the
lack of fit of the PLC model as evidenced by the systematic pattern of orange/red cells in the
heat map (mainly due to the uncaptured cohort effect), there is still a considerable amount of
orange/red cells scattering around various regions in the heat map, particularly at older ages,
indicating the presence of overdispersion.

In general, failure to account for overdispersion typically leads to under-smoothing, where
the variance imposed by a model that ignores overdispersion forces the fitted values to adhere
more closely to the data. Fundamentally, this is because the likelihood function of a model with
smaller variance heavily penalizes fitted values that are distant from the observed values. This
forces the fitted values to be undesirably close to the observed values which prevents an accurate
description of the underlying process. Ignoring overdispersion also leads to over-optimistic
forecast uncertainty because the extra source of uncertainty due to heterogeneity is effectively
neglected. Appropriately accounting for overdispersion, on the other hand, provides a greater
flexibility for the fitted values to adhere less to the observed data and allow for the possibility of
greater smoothing, potentially resulting in an improved description of the underlying mortality
trend. This prevents over-fitting and offers a better calibration of the unexplained variation,
thereby producing a much more representative prediction interval for the associated mortality
forecast (see Section 7.2 for more details).

3 Overdispersion Models

In this section, we present two models to account for overdispersion, both of which extend
the PLC model in a rather straightforward manner. Both these models introduce a general
dispersion parameter to relax the stringent assumption of a Poisson distribution.

3.1 Poisson Log-Normal Lee-Carter (PLNLC) Model

The first model we introduce is essentially a direct combination of the original LC model with its
Poisson based equivalent, which we refer to as the Poisson Log-Normal LC model. In particular,
a normal perturbation term is added onto logµxt for an extra layer of variability in the model:

Dxt|µxt
ind∼ Poisson(extµxt)

logµxt = αx + βxκt + νxt (3)

νxt|σ2
µ

ind∼ N(0, σ2
µ).

Here, σ2
µ is regarded as the general dispersion parameter, whose role is to capture the global

level of extra variability in the data. The likelihood function now consists of two parts:

i.

f(d| logµ) =
∏
x,t

[
exp(−extµxt)(extµxt)dxt

dxt!

]
∝ exp

(
−
∑
x,t

extµxt

)∏
x,t

µdxtxt ;

ii.

f(logµ|α,β,κ, σ2
µ) =

∏
x,t

1√
2πσ2

µ

exp

[
− 1

2σ2
µ

(logµxt − αx − βxκt)2

]

∝ (σ2
µ)−

AT
2 exp

[
− 1

2σ2
µ

∑
x,t

(logµxt − αx − βxκt)2

]
,
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where α = (α1, α2, . . . , αA)>, β = (β1, β2, . . . , βA)> and κ = (κ1, κ2, . . . , κT )> are vectors of
parameters, while µ and d are matrices of the latent variables, µxt, and the observed death
data, dxt, respectively. Under this model,

E[Dxt] = Eµxt(EDxt [Dxt|µxt]) = ext exp

(
αx + βxκt +

1

2
σ2
µ

)
, (4)

and

Var[Dxt] = E[Dxt]×
{

1 + E[Dxt](exp(σ2
µ)− 1)

}
> E[Dxt]. (5)

Hence, this model possesses a larger variance than its mean in general, with σ2
µ governing

the relative excess spread, providing more flexibility in the model specification. Note that
equation (4) implies that the mean of Dxt under the PLNLC model is slightly different from
the PLC model (due to the extra term σ2

µ/2). Some researchers (e.g. Dick, 2004) apply a
correction by directly subtracting σ2

µ/2 from the rate model in equation (3). However, we chose
to retain a similar model structure between the overdispersion models for easy interpretation
and comparison, since the magnitude of the correction term is small relative to the overall
magnitude of logµxt.

3.2 Negative Binomial Lee-Carter (NBLC) Model

The second model is a classic extension of the Poisson distribution to incorporate overdispersion.
Specifically, it is a gamma mixture of Poisson as follows:

Dxt|µxt
ind∼ Poisson(extµxt)

logµxt = αx + βxκt + log νxt (6)

νxt|φ
ind∼ Gamma(φ, φ),

where φ is regarded as the general dispersion parameter in this case. Similarly, the expectation
and variance of this model are given by

E[Dxt] = ext exp(αx + βxκt) (7)

and

Var[Dxt] = E[Dxt]×
[
1 +

E[Dxt]

φ

]
> E[Dxt]. (8)

Therefore, this model possesses the same mean as the PLC model (as opposed to the PLNLC
model), while at the same time has a larger variance depending on the value of φ. In particular,
the smaller the value of φ, the larger the variance, and hence the stronger the evidence of
overdispersion; while the larger the φ, the more this model approaches the PLC model, with
exact resemblance when φ → ∞. In other words, 1/φ represents the overall magnitude of
overdispersion in the data.

One attractive feature about this model is that the latent variables, µxt, can be conveniently
integrated out, producing its equivalent version, which we call the NBLC model. That is,

Dxt|αx, βx, κt, φ ∼ Neg-Bin

(
φ,

φ

ext exp(αx + βxκt) + φ

)
. (9)
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The likelihood function now consists of only 1 part:

f(d|α,β,κ, φ) =
∏
x,t

{
Γ(dxt + φ)

Γ(φ)Γ(dxt + 1)

[
ext exp(αx + βxκt)

ext exp(αx + βxκt) + φ

]dxt [ φ

ext exp(αx + βxκt) + φ

]φ}

∝ φATφ

[Γ(φ)]AT

∏
x,t

Γ(dxt + φ) exp[dxt(αx + βxκt)]

[ext exp(αx + βxκt) + φ]dxt+φ
.

The prominent advantage of the marginalisation is that we avoid the need to simulate the
high-dimensional µxt (dimension=AT=4200 in our case), at the expense of having a slightly
more complicated likelihood function. In particular, we found in our preliminary study that
the computational gain from marginalising µxt substantially outweighs the burden of dealing
with the more complicated negative binomial likelihood (by comparing the effective number
of samples generated per unit time). Note that this model has already been considered by
Delwarde et al. (2007), but within a classical framework. Hence, one of our contributions in
this paper is to fit this model within a Bayesian paradigm for an integrated modelling procedure.

4 Advantages of Bayesian Mortality Modelling/Forecasting

The rationale for considering Bayesian methodology is it provides a natural framework in which
prior knowledge can be incorporated and various sources of uncertainty (due to inherent random
variation, parameter estimation, projection and model misspecification) can be coherently in-
cluded to provide a more representative prediction interval. Classical LC approach often ignores
uncertainty due to parameter estimation. Although it has been shown in Lee and Carter (1992)
that the forecast uncertainty will dominate over parameter uncertainty in long term projection,
the same is not true for short to moderate term projection. Computing parameter uncertainty
within the frequentist framework typically necessitates bootstrapping (see for example Brouhns
et al., 2005). In Bayesian framework, parameter uncertainty is incorporated in the form of
probability distributions through prior specification for each of the unknown parameters. In
addition, we also acknowledge the presence of model uncertainty by performing Bayesian model
determination using posterior model probabilities, instead of assuming in advance, a single
underlying model.

Moreover, a major criticism on the traditional LC approach is the potential inconsistencies
that may arise due to its two-stage model fitting procedures: the parameters are first estimated
using maximum likelihood approach, they are then separately fitted using the ARIMA time
series model solely for the purpose of projection. Technically, the ARIMA model, being part
of the model specification, should have contributed directly in the parameter estimation stage.
Bayesian modelling solves this issue by directly specifying an ARIMA prior on κt, forming a
single framework of a hierarchical model. Parameter estimation then proceeds simultaneously
through the computation of joint posterior distribution. Additionally, this allows for the pos-
sibility of performing smoothing over time (as mentioned in Czado et al., 2005), depending on
the ARIMA model fitted. Projection of mortality then follows naturally within the Bayesian
framework based on the ARIMA model chosen (see Section 5.5).

Furthermore, carefully calibrated percentiles of the posterior predictive distribution carry
valuable information necessary to characterize the uncertainties we encounter during forecasting.
In practice, any percentile can be used as a point estimate other than the posterior mean or
median in the context of probabilistic forecasts (see for example Berger, 2013). This provides
more flexibility to users who are involved in risk-controlled decision making.
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4.1 Prior Distributions

In this section, we provide the prior distributions used for each parameters. Ideally, the prior dis-
tributions chosen should reflect our uncertainty/prior knowledge about mortality (e.g. smooth-
ness of mortality rates across age). However, we do not pursue this matter here. Rather,
we specify some commonly used priors rendered sufficiently diffuse for data-dominated infer-
ence. In addition, we also attempt to be indifferent in terms of prior specification under both
overdispersion models to facilitate model comparison later on. Note that even though our prior
specification differs considerably from that of Czado et al. (2005), this difference should not be
consequential in terms of the parameter estimation, given the size of our mortality data.

4.1.1 Prior Distribution for αx, βx, σ
2
β, σ

2
µ, and φ

From here on, we denote 1n as a length−n vector of ones, while Jn and In as a matrix of ones
and the identity matrix respectively of dimension n× n. For simplicity, we assign independent
normal priors on αx, i.e.

α ∼ N(α01A, σ
2
αIA).

Here, we set α0 = 0, while σ2
α is chosen to be relatively large, say σ2

α = 100 for a vague prior.
Similarly, we impose, a priori

β ∼ N(0, σ2
βIA),

subject to the constraint
∑

x βx = 1. Applying the constraint on the marginal prior of βx,
and using the conditional property of a normal distribution, we obtain the following prior for
β−1 = (β2, β3, . . . , βA)>,

β−1 ∼ N
(

1

A
1A−1, σ

2
β

(
IA−1 −

1

A
JA−1

))
.

That way, the constraint is automatically accounted for by the above prior with β1 determinis-
tically computed from β1 = 1− β2 − . . .− βA. This corresponds to transforming the constraint
into a proper point mass prior on the unidentified β parameters, which automatically yields
proper posterior inference, as stated by Gelfand and Sahu (1999). They also note the issue
of a slower rate of convegence of this constraint-handling approach (due to the correlations
induced), which we propose to solve using the blocking strategy (see Section 5). Moreover, the
hierarchical variance, σ2

β is now treated as a hyperparameter with the conventional prior

σ−2
β ∼ Gamma(aβ, bβ),

where aβ = bβ = 0.001. The result of this is a heavier-tailed Student’s t-distribution on βx a
priori, characterizing our larger uncertainty in βx due to its more erratic behaviour as compared
to αx empirically.

As pointed out in Section 3.1 and 3.2, σ2
µ and φ serve as the dispersion parameter in each

model. Since we have no knowledge on the appropriate extent of overdispersion in our data, we
assign the conditional conjugate (see Gelman, 2006) prior

σ−2
µ ∼ Gamma(aµ, bµ),

with aµ = bµ = 0.0001 for computational purposes under the PLNLC model. In order to specify
a prior with similar amount of information embedded within the distribution for φ, we need
to establish a relationship between the two dispersion parameters. By Using a Taylor Series
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approximation to log µxt under the NBLC model, and ignoring the variabilities due to αx, βx,
and κt, we have

Var(logµxt) = Var(log νxt) ≈
(
d log z

dz

)2
∣∣∣∣∣
z=E(νxt)

×Var(νxt) =
1

φ
.

Knowing that Var(logµxt) = σ2
µ (conditional upon αx, βx and κt) under the PLNLC model,

this implies that a sensible prior for φ could be

φ ∼ Gamma(aφ, bφ),

where aφ = bφ = 0.0001.

4.1.2 Prior Distribution for κt

For reasons mentioned in Section 4, an ARIMA time series model is imposed on κt, which can
then be straightforwardly extrapolated forward in time for mortality projection. On various
occasions, a random walk with drift was empirically found to provide an adequate fit for κt (see
Tuljapurkar et al., 2000). Following Czado et al. (2005) though, we fit a first order autoregressive
(AR(1)) model with linear drift. Specifically,{

κt − ηt = ρ(κt−1 − ηt−1) + εt, for t = 2, 3, . . . , T,
κ1 = η1 + ε1,

(10)

where ηt = ψ1 + ψ2t denotes the linear drift and εt
ind∼ N(0, σ2

κ) are random errors. Note that
Equation (10) includes random walk with drift as a special case when ρ = 1, provided that
it is not ruled out a priori. In other words, we allow the data to choose either an AR(1) or
random walk with drift instead of specifying beforehand the appropriate model since it is entirely
possible that random walk with drift fits our data poorly. We also adopt a different constraint
for κt, κ1 = 0 as compared to the conventional

∑
t κt = 0. This changes the interpretation of αx

slightly, where αx now represents log mortality rates in the base year. Fixing κ1 = 0 also has the
effect of setting the first year as the baseline year, where values of κt for the remaining years are
estimated relative to the value of κ1. In other words, κt should be interpreted as the parameter
that represents the overall mortality trend with respect to the baseline year. Elsewhere, the
impact of this is purely computational, the posterior distribution of logµxt will not be affected.

This model can be equivalently expressed in its multivariate form (with the constraint) as{
κ−1 ∼ N(Y −1ψ − ρR−1Y 1ψ, σ

2
κQ
−1)

κ1 = 0
, (11)

where

P =



0 0 · · · · · · 0

ρ 0
...

0 ρ
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 ρ 0


(T−1)×(T−1)

, Y −1 =


1 2
1 3
...

...
1 T


(T−1)×2

, Y 1 =


1 1
0 0
...

...
0 0


(T−1)×2

,

R = IT−1 − P , Q = R>R, ψ = (ψ1, ψ2)>, and κ−1 = (κ2, κ3, . . . , κT )>. For complete specifi-
cation of the model on κt, the unknown parameters ρ, σ2

κ and ψ are treated as hyperparameters
with the following standard vague priors:

ρ ∼ N(0, σ2
ρ), σ−2

κ ∼ Gamma(aκ, bκ), ψ ∼ N(ψ0,Σψ),
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where σ2
ρ = 100, aκ = bκ = 0.001, ψ0 = (0, 0)>, and Σψ =

(
1000 0

0 10

)
. These priors are

chosen to be conditionally conjugate with respect to the AR(1) model, which ease the subsequent
computation of the conditional posterior distributions as we shall see later in Section 5.

5 Computation

5.1 MCMC Method

The MCMC method we propose is the variable-at-a-time Metropolis-Hastings (MH) algorithm
as described in O’Hagan and Forster (2004), where each component of the parameters are
updated sequentially through MH algorithm in each iteration, conditional on the rest of the
parameters. In the case where the conditional posterior distributions are tractable, typically
where conditional conjugate priors are used, the Gibbs algorithm is undertaken (MH algorithm
with acceptance probability equals to 1).

In addition, we will be adopting the idea of blocking of parameters wherever possible within
our MCMC updating scheme. The motivation of considering blocking is the fact that it enables
the MCMC algorithm to acknowledge the correlation structure of the parameters in order
to make informed movements/jumps across the parameter spaces, facilitating the exploration
of posterior distributions. For instance, Roberts and Sahu (1997) suggest that blocking, if
done efficiently, is capable of improving the convergence rate of the resulting MCMC sampler
substantially. However, the efficacy of performing blocking is clearly dictated by the dimensions
of parameters involved and the resulting complexity of the conditional posterior distributions of
the respective blocks. Therefore, our general strategy of blocking is to allocate highly-correlated
parameters in a single block such that the correlations between blocks are reduced (rather than
allocating all in one block).

5.2 MCMC Scheme for the PLNLC Model

Suppose we allocate the αx, βx and κt each in one separate block, and the rest of the parameters
updated univariately. Due to the model structure, the conditional posterior distributions of
all of the parameters can be conveniently recognized as standard distributions (Appendix A),
except for the log µxt. Hence, the MCMC updating scheme for the PLNLC model can be easily
implemented by iterating through a series of Gibbs steps, together with some MH steps for
the remaining log µxt. We describe in detail the MH step for the remaining logµxt in the next
subsection.

5.2.1 MH Step for logµxt

We forfeited the concept of blocking here due to the immense dimensionality involved. Instead,
each logµxt is updated univariately using random walk MH algorithm (see for example O’Hagan
and Forster, 2004). In particular, using the assumption that D are mutually independent given
logµ, and logµ are independent elementwise given (α,β−1,κ−1, σ

2
µ), the conditional posterior

density of logµxt can be expressed as

f(logµxt|α,β−1,κ−1,d, logµ−xt, σ
2
κ, σ

2
β, ρ,ψ, σ

2
µ) ∝ µdxtxt exp

[
−extµxt −

1

2σ2
µ

(logµxt − αx − βxκt)2

]
,

where µ−xt = (µ11, µ21, . . . , µx−1 t, µx+1 t, . . . , µAT )> is a vector of all the mortality rates ex-

cluding the xtth component. Next, we propose a value at the ith iteration,

logµ∗xt ∼ N(logµi−1
xt , σ

2
µxt),

11



where logµi−1
xt is the current value of log µxt, and σ2

µxt are the proposal variances to be specified
deterministically. The proposal is then accepted according to the following probability,

a(logµ∗xt| logµi−1
xt ) = min

{
1,

(
µ∗xt
µi−1
xt

)dxt
exp

[
−ext(µ∗xt − µi−1

xt )

− 1

2σ2
µ

((logµ∗xt − αx − βxκt)2 − (logµi−1
xt − αx − βxκt)2)

]}
.

The choice of σ2
µxt is arbitrary, but has a direct impact on the speed of convergence of the

constructed chain. In practice, σ2
µxt are carefully chosen such that the acceptance rates of

logµxt are within the recommended range 0.15-0.45 (Roberts and Rosenthal, 2001). Following
Czado et al. (2005), we develop a simple automatic trial and error search algorithm for tuning
σ2
µxt , which starts off with a crude search:

i. Set initial values of σ2
µxt = 0.01 for all x and t.

ii. A pilot run of 100 iterations is executed.

iii. Proposal variances that correspond to acceptance rates smaller than 0.15 are halved.

iv. Proposal variances that correspond to acceptance rates exceeding 0.45 are doubled.

v. Repeat steps ii-iv until a predefined threshold is achieved (e.g. when 4000 of the acceptance
rates are within 0.15-0.45).

The search can then be further refined by shrinking the increments (or decrements) of the
adjustments within the above algorithm, so instead of a multiplicative factor of two, we can
add (or subtract) a small amount, say 0.001, during the tuning of the proposal variances. As a
result, the σ2

µxt can be numerically determined and are depicted in Figure 2.
Interestingly, σ2

µxt exhibit a consistent age pattern across the years. It turns out that the
rough pattern of posterior variances of logµxt in a given year can potentially be deduced from
this set of approximate optimal proposal variances, which can be verified by referring to Ap-
pendix C. This can be attributed to the finding in Roberts and Rosenthal (2001) that the
optimal proposal variance for a MH algorithm with a univariate normal distribution as its
target is proportional to the posterior variance (with 2.382 as the proportionality constant).

5.3 MCMC Scheme for the NBLC Model

Here, we apply the random walk MH algorithm on α, β−1 and κ−1 instead because the normal
priors are no longer conditionally conjugate. Nevertheless, the Gibbs steps for ρ, σ2

κ, σ
2
β,ψ are

unaffected (refer to Appendix A) because they belong to the lower part of the hierarchical model,
hence their conditional posterior distributions remain the same conditional upon α,β−1, and
κ−1. Note that our preliminary study also revealed that performing the sequential updating
scheme univariately without blocking is more efficient here in terms of the effective number of
posterior samples generated per unit time.

5.3.1 MH Steps for αx, βx, κt, and φ

The conditional posterior densities and expressions for the MH acceptance probabilities are
displayed in Appendix B. Using obvious notation, a set of numerically determined proposal
variances for the random walk MH algorithm (derived from similar search algorithm as in
Section 5.2.1), σ2

αx
, σ2

βx
, and σ2

κt are illustrated in Figure 3.

12
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Figure 2: Plots of proposal variances, σ2
µxt (left panels) and the corresponding acceptance rates

of µxt (right panels) for years 1961, 1970 and 1980 under the PLNLC model.

According to Figure 3, σ2
αx

demonstrates a rather similar age pattern to σ2
µxt at any given

time as before. This is perhaps not so surprising since αx represent the log mortality rates in
the base year. However, the age pattern exhibited by σ2

βx
is less sensitive to age than those

of the σ2
µxt as well as σ2

αx
, albeit still having a rather similar pattern. On the other hand, the

σ2
κt derived from the search algorithm, are strikingly identical across the years. This signifies

that the marginal posterior variances of κt are very similar, in contrast to αx and βx, where
their proposal variances vary substantially across ages. To verify that the marginal posterior
variances of these parameters do exhibit similar shapes as the chosen proposal variances, please
refer to Appendix C.

A proposal variance of σ2
φ = 0.08 will return an acceptance rate of approximately 0.30 for

φ.

13



●

●

●●●

●●●●●●●●

●

●

●●

●

●●

●●●●●●●●●●●

●●

●

●●●●●●●●●

●

●

●●●●●●●●●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●

●●●

●●

●

●

●

●●●●●●●●●●●●●●●●

●

0 20 40 60 80 100

0
.0

0
0

0
.0

0
4

0
.0

0
8

σαx

2

Age

P
ro

p
o

sa
l V

a
ri

a
n

ce

●

●
●

●

●●

●●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

0 20 40 60 80 100

0
.0

0
.4

0
.8

Age

A
cc

e
p

ta
n

ce
 R

a
te

●

●●●

●

●●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●

●●

●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●

0 20 40 60 80 100

0
2

4
6

8
1

0

σβx

2

Age

P
ro

p
o

sa
l V

a
ri

a
n

ce
 (1

×
1

0
−7

)

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●

●●●
●

●●
●

●●
●

●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

0 20 40 60 80 100

0
.0

0
.4

0
.8

Age

A
cc

e
p

ta
n

ce
 R

a
te

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40

0
1

2
3

4
5

6

σκt

2

Year

P
ro

p
o

sa
l V

a
ri

a
n

ce

●
●

●

●
●

●
●

● ● ●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

●
● ●

●

●
●

●
●

●

●
●

●

●

10 20 30 40

0
.0

0
.4

0
.8

Year

A
cc

e
p

ta
n

ce
 R

a
te

Figure 3: Plots of the proposal variances (top panels), σ2
αx

, σ2
βx

, σ2
κt , and their corresponding

acceptance rates (bottom panels) for the NBLC model.

5.4 Generating µxt under the NBLC Model

Although the mortality rates, µxt, have been integrated out for the NBLC model, it can still
be useful to simulate them to potentially learn about their posterior distributions. The latent
variables can be retrieved by noting that for any x = 1, . . . , A and t = 1, . . . , T ,

f(µxt|d) =

∫
f(µxt|αx, βx, κt, φ,d)f(αx, βx, κt, φ|d)dαxdβxdκtdφ,

where f(αx, βx, κt, φ|d) is the joint posterior density of αx, βx, κt, and φ, while f(µxt|αx, βx, κt, φ,d)
can be derived as

f(µxt|αx, βx, κt, φ,d) ∝ µ(dxt+φ)−1
xt exp

[
−
(
ext +

φ

exp(αx + βxκt)

)
µxt

]
,
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implying that

µxt|αx, βx, κt, φ,d ∼ Gamma

(
dxt + φ, ext +

φ

exp(αx + βxκt)

)
. (12)

Therefore, the posterior samples of µxt can be generated by simulating from the expression in
(12), where the joint posterior samples of αx, βx, κt, and φ (which are readily available from
our MCMC outputs) are substituted wherever applicable.

5.5 Mortality Forecast

Projection within the Bayesian framework is particularly natural through the derivation of
posterior predictive distribution. Specifically, the posterior predictive distribution of 1-year
ahead log mortality rates for each age group (with the age parameters held fixed), under the
PLNLC model for instance, can be written as

f(logµxT+1|d) =

∫
f(logµxT+1|αx, βx, κT+1, σ

2
µ)f(αx, βx, σ

2
µ|d)f(κT+1|κT , ρ, σ2

κ,ψ)

×f(κT , ρ, σ
2
κ,ψ|d)dαxdβxdκTdκT+1dρdσ2

κdψdσ2
µ, (13)

where f(αx, βx, σ
2
µ|d) and f(κT , ρ, σ

2
κ,ψ|d) are the joint posterior distributions. Hence, posterior

uncertainties, with respect to the model likelihood, prior distributions and the projection model,
are fully integrated in the posterior predictive distribution. The density in (13) is analytically
intractable, but can be empirically estimated using our MCMC samples. Essentially, generation
of the posterior samples of log µxT+1 proceeds in two steps:

1. Generate κT+1 from the AR(1) model,

κT+1 ∼ N(ψ1 + ψ2(T + 1) + ρ(κT − ψ1 − ψ2T ), σ2
κ),

where joint posterior samples of (κT , ρ, σ
2
κ, ψ1, ψ2) from the MCMC output are substituted

into the expression.

2. Generate log µxT+1 from

logµxT+1 ∼ N(αx + βxκT+1, σ
2
µ),

where κT+1 is from step 1 and (αx, βx, σ
2
µ) are joint posterior samples from the MCMC

output.

By analogy, h-year ahead projections can be obtained by recursive implementation of the above
generation procedures. Having generated a set of posterior predictive samples, a fanplot of
carefully calibrated percentiles (see Abel, 2015) can then be constructed to better visualise the
underlying uncertainty associated with our probabilistic forecast.

Once the future underlying mortality rates, for instance logµxT+h , have been simulated,
we can generate the h-year ahead number of deaths simply through

DxT+h ∼ Poisson(exT+hµxT+h),

where exT+h is the future exposure at age x in year T + h (which we assumed known). The
future crude mortality rates can subsequently be obtained by

µ̂xT+h =
DxT+h

exT+h
.
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The key difference between them is that the projected crude mortality rates include the Poisson
variation in their prediction intervals, whereas the projected underlying mortality rates do not.
The choice of which one to use depends on the users’ preference, whether or not they prefer to
base their policy making on the underlying rates (unobservable), or the crude rates (observable).
We chose to present the projected crude mortality rates in the result section purely because
plots of observable quantities provide a more sensible visualisation in terms of validating the
models against the observed crude death rates (see Section 7.3). Indeed, it should also be noted
that computation of the future crude death rates requires the availability of future exposures,
which can be an unrealistic assumption at times.

6 Initialization and Convergence Diagnostics

For initialization of α, β−1 and κ−1, we use the MLEs obtained using Goodman’s method (see
Renshaw and Haberman, 2005). On the other hand, the initial values of σ2

κ and ρ are obtained
by fitting an AR(1) with linear drift model on κ (using the ‘arima’ function within the ‘forecast’
package in R), while σ2

β is initialised by the empirical variance of the MLEs of β. Finally, ψ is

initialised as (0, 0)>, while the overdispersion parameters, σ2
µ and φ, are initialised by 0.01 and

100 respectively. Under the PLNLC model, the latent parameters, µxt, are initialized using the
empirical death rates, dxt/ext. Note that the initialization is proposed based on values close
to the MLEs to possibly speed up convergence, but should not be impactful in terms of the
parameter estimation. Ideally, multiple chains with different initializations should be run to
ascertain the convergence of the chains. Specifically, Gelman and Rubin (1992) proposed the
use of multiple sequences with starting values initialised from an overdispersed distribution, and
developed a quantity as a function of within and across chains variance to assess convergence.
Instead, we assume here that a burn-in phase of 10000 iterations is sufficiently long to mitigate
the effect of initialization. In addition, we applied 100th posterior sample thinning (collecting
one realization every 100 iterations) for each of the parameters to reduce the autocorrelations of
these series. After discarding the burn-in iterations and applying thinning, we obtain a sample
of size 10000 for each of the paramaters under the NBLC model and a sample of size 100000
for those under the PLNLC model (a larger sample size is required to learn about the posterior
under the PLNLC model due to high-dimensionality).

Before making any inferential comparisons, trace plots and auto-correlation plots (see for
example Lunn et al., 2013) can be used as diagnostic tools for detecting anomalies in the
MCMC generated posterior samples. By referring to Appendix D, the trace plots of some of the
randomly selected parameters emerge as if convergence has been attained, with proper mixing
and no apparent anomaly. The sample auto-correlations also appear to decay fairly quickly
after applying thinning, except perhaps κt, which are relatively more correlated. In summary,
the MCMC generated posterior samples seem to be well-behaved and, thus, are ready to be
used to perform subsequent computations for accurate inferences to be drawn.

7 Numerical Results

In this section, we compare our proposed models with the Bayesian PLC model (i.e. the PLNLC
model or NBLC model without the overdispersion component, νxt) by Czado et al. (2005) to
highlight the importance of accounting for overdispersion. The data used for this purpose are as
described in Section 2.1. The Bayesian PLC model is fitted using Czado’s methodology, except
we adopt the same prior specification as in Section 4.1 (for all the parameters and hyperparam-
eters involved) to facilitate model comparison later on. We also provide a comparison of our

16



proposed models with each other.

7.1 Estimated Parameters

Figures 4 depicts the fitted values (posterior medians) of α, β and κ, accompanied by the
associated 95% credible intervals (computed from the sample quantiles) under the Bayesian
PLC and NBLC models. Also included is the projection of κt, 25 years into the future (until
year 2027), for illustrative purposes. Note that the fitted values under the PLNLC model are
not displayed for some of the plots here because they almost coincide with those of the NBLC
model, and hence are excluded for a better visualisation. According to Figure 4, the fitted
values of α and β under these models are rather similar (because the same vague priors are
specified across the models), with the overdispersion models producing slightly wider credible
intervals in general. This is the general feature of a model which accounts for overdispersion,
where the responses (Dxt) are allowed to have more variabilities due to the extra flexibility
offered by the model likelihood, permitting the parameters to be more volatile, and hence, the
wider credible intervals. Additionally, the width of the credible intervals also appears to be
noticeably different as age increases.

The main difference arises from the parameter κ, where the fitted values are larger and
much smoother under the overdispersion models (with arguably wider credible intervals yet
again). Furthermore, in terms of projection, not only do the overdispersion models forecast
a larger mortality improvement (indicated by more negative values of the projected κt), the
corresponding prediction intervals for the projected κt are also substantially wider. This is
perhaps a little interesting considering that the same AR(1) prior is imposed on κt under all
approaches. An intuitive explanation for this is that the dispersion parameter provides more
flexibility for the model to describe the variabilities present in the data (where the model
likelihood penalizes less on fitted values that are distant from the observed data due to the
larger variance postulated), thereby allowing more priority to be put on fitting the AR(1) prior
during the Bayesian estimation, hence the smoother fitted values. On the other hand, with less
variabilities imposed for Dxt under the Bayesian PLC model, their fitted values are restricted
to stay close to the observed values, implying that less smoothing is applied. The exact reason
behind this finding will be further explored when the marginal posterior distribution of ρ is
examined in the next paragraph.

Kernel estimates of the marginal posterior density of the rest of the parameters, derived from
the posterior samples, are presented in Figure 5. The kernel densities of σ2

β are almost identical.

The most apparent discrepancies occur at the marginal posterior of σ2
κ and ρ. Specifically,

the density of σ2
κ for the Bayesian PLC model concentrates more at higher values, suggesting

larger residuals for κt under this model. Interestingly, the marginal posterior of ρ has the
same characteristics as a two-component mixture distribution under all models, consisting of a
stationary AR(1) component (ρ < 1) and a non-stationary component close to a random walk
(ρ = 1). Closer inspection shows that peaks of the marginal posterior of ρ occur at 0.42 and
1 for Bayesian PLC model, while for the overdispersion models, the peaks are at 0.85 and 1.
This indicates that the projection model fitted on κt, in some sense, resembles a mixture of a
stationary AR(1) model and a random walk with drift model. In addition, the allocation of
proportion is also different, with the overdispersion models allocating a higher proportion for
the peak at around ρ = 1 than the Bayesian PLC model.

The marginal posterior of ρ enables us to justify our earlier findings on κt. Firstly, as the
fitted ρ increases towards larger values for the overdispersion models, the fitted time series
model imposes a stronger smoothing on κt. Hence, the smoother fitted κt for this model as
observed. Secondly, the prediction intervals associated with the projection of κt are wider under
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Figure 4: Plots of the estimated αx, βx and κt with their 95% credible intervals under the
Bayesian PLC model and the NBLC model. The 25-years ahead projection of κt, accompanied
by the corresponding 95% intervals, is also presented.
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these models because their projection model is largely dominated by the values of ρ ≈ 1 that
almost correspond to a random walk model (ρ = 1), and a random walk model is known to
produce relatively wider intervals than a stationary AR(1) model. Note also that this effect
overshadows the fact that the residual variance, σ2

κ, is larger for the Bayesian PLC model.
Nevertheless, the projections of κt into the future under these models are expected to exhibit
less explosive behaviour than what would be obtained if a pure random walk with drift was
used.

There are also slight differences for ψ1 and ψ2 between the models, with the overdispersion
models yielding heavier tails in both cases. Fundamentally, this is directly related to the mixture
posterior distribution of ρ, where when a random walk model (ρ = 1) is used, the model on κt
reduces to

κt = κt−1 + ψ2 + εt,

where ψ2 is now the drift term, and ψ1 becomes a redundant parameter that is non-identifiable
under the model, hence, the large uncertainty. To be more specific, the conditional posterior
distribution of ψ1 reduces analytically to N(0, 1000) when ρ = 1, which does not depend on
the data and other parameters. This implies that its marginal posterior distribution is indeed
N(0, 1000), which is exactly the same as its prior distribution. This happens because ψ1 and
ψ2 are assumed to be independent a priori, so nothing is learned about ψ1 given that it is a
non-identifiable parameter as far as the likelihood is concerned. In other words, the posterior
distribution of ψ1 also behaves like a mixture distribution, formed by mixing its prior distri-
bution (which is relatively vague) and the posterior distribution when ρ < 1. On the other
hand, all the uncertainties regarding the drift of κt are now absorbed by ψ2 since it is the only
remaining drift parameter when ρ is very close to 1, hence a heavier tail for the marginal poste-
rior distribution of ψ2. Therefore, with the overdispersion models highly favouring values of ρ
that are close to 1 (corresponding to a random walk model), the much heavier-tailed posterior
distributions for ψ1 and ψ2 are justified.

Regarding the overdispersion parameters, there is a substantial amount of Bayesian learning
for both σ2

µ and 1/φ, as indicated by the obvious shifts of their posterior distributions (proper
unimodal distributions with 95% quantiles of around [0.00136, 0.00158]) from the arbitrarily dif-
fuse prior distributions (which have close to negligible densities for the region of values presented
in Figure 5). Recall also that the Poisson distribution is the limiting case of a negative binomial
distribution as φ → ∞ (or 1/φ → 0). Based on the MCMC samples generated, the posterior
median of φ is approximately 681 (1/φ = 0.001468), implying that the level of overdispersion is
non-negligible. To further strengthen this argument, we can assess the practical significance of
the magnitude of this value of φ estimated using the expression for the variance of Dxt under the
NBLC model, given in Equation (8). The term E[Dxt]

φ can be interpreted as the relative increase
in the variance of Dxt with respect to its mean, which measures the extent of overdispersion
in the mortality data. For the purpose of a simple illustration of the level of overdispersion
implied, a crude calculation can be carried out by replacing E[Dxt] with observed deaths. For
example, using the mean observed number of deaths and the median of φ, we obtain a value of
2846.945/681 ≈ 4, implying that there is a roughly four times increase in the variance of Dxt

(relative to the mean) on average under the NBLC model. More importantly, for the age and
time with the largest observed number of deaths, the relative increase is 12399/681 ≈ 18, which
is massive. Both these examples indicate that the extent of overdispersion implied by the value
of φ fitted is rather substantial, and hence, should not be ignored. On the other hand, for the
PLNLC model, the Bayesian PLC model can be retrieved when σ2

µ = 0. Since the posterior me-
dian of σ2

µ is around 0.001465, this indicates again the presence of non-negligible overdispersion.
Similar calculation as above can be undertaken for an interpretation of the magnitude of the
σ2
µ estimated. According to Equation (5), E[Dxt](exp(σ2

µ) − 1) represents the relative increase
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Figure 5: Kernel density plots of σ2
κ, σ2

β, ψ1, ψ2, ρ, and φ under the Bayesian PLC (black
dotted), PLNLC (blue solid) and NBLC model (red solid).

in the variance of Dxt over its mean. It is straightforward to see that the variance of Dxt can
easily increase by several folds for this value of σ2

µ (= 0.001465). For instance, replacing E[Dxt]
with max [dxt] = 12399 yields a relative increase of 12399× (exp(0.001465)−1) ≈ 18, suggesting
the practical significance of accounting for overdispersion.

7.2 Fitted Crude Mortality Rates

Figure 6 shows the fitted and projected log mortality rates for ages 30, 55 and 80 plotted against
time, 11 years into the future. According to the figure, there are considerable differences between
the Bayesian PLC model and the overdispersion models in terms of the fitted rates. Firstly, the
median fitted rates for the overdispersion models are slightly smoother than the Bayesian PLC
model across the ages. More crucially, the credible intervals of fitted rates for the overdispersion
models are substantially wider than that of the Bayesian PLC model. These are consistent with
our conjecture before on the failure to account for overdispersion, where the fitted values are
generally under-smoothed due to the model’s rigid structure as evidenced by the zig-zag patterns
of the medians and are accompanied by over-optimistic credible intervals due to the lower
variance by construction. In other words, we witness here that ignoring overdispersion has the
tendency to force the fitted values to adhere more closely to the data due to the smaller variance
imposed by the model (over-fitting), causing under-smoothing and narrower intervals. Both
of these properties, when projected into the future, are detrimental to the resulting mortality
forecasts due to the poor description of underlying trends and variabilities. On the contrary, the
greater flexibility of the overdispersion models allow the fitted values to adhere less to the data
(encouraging more smoothing), where the residuals due to the unexplained variations are then
absorbed into the dispersion parameters, resulting in wider intervals in general. The trade-off
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between adherence to the data and smoothness clearly favours the overdispersion models here,
where their credible intervals provide reasonably good coverages of the observed rates across the
ages, with most points lying within the intervals, while the credible intervals for the Bayesian
PLC model appear to be overly narrow, with a large number of points still lying outside the
intervals (particularly for age 55).

7.3 Projected Crude Mortality Rates and Out-of-Sample Validation

According to Figure 6, the overdispersion models clearly forecast a larger improvement in the
mortality rates, and also produce considerably wider prediction intervals in all cases (and for the
rest of the ages). This is a sensible result as Lee and Miller (2001) illustrated that the original LC
approach has a tendency to underestimate mortality improvement, which may well be inherited
by the Bayesian PLC model. Moreover, the prediction intervals under the Bayesian PLC model
also appear to be implausibly narrow, which is consistent with the findings by Alho (1992). This
can also be explained by the time series model fitted on κt, where the overdispersion models
favour a random walk with drift model (which is known to produce wide prediction intervals).
Hence, the inclusion of dispersion parameters provides a more sensible improvement in the rates
as well as better calibrated probabilistic intervals in terms of the projection.

Then, we validate the candidate models against the holdout data to assess their predictive
abilities. First, this is undertaken based on a disaggregate mortality quantity, the projected
age-specific crude mortality rates as shown in Figure 6, derived using the projected underlying
mortality rates and the holdout exposure data (see Section 5.5). The performances of the models
in terms of their coverages vary across ages. In particular, the median projections of mortality
improvement and the associated 95% prediction intervals for age 30 are rather similar across
all three candidate models, with good predictive properties (appropriately projected past trend
with good coverages for the prediction intervals) when assessed against the holdout samples.
On the contrary, the projected mortality improvements for age 55 are somewhat pessimistic,
especially for the Bayesian PLC model. In particular, the coverage of the 95% prediction
intervals for the Bayesian PLC model is rather low due to the overly narrow intervals, while
the overdispersion models yield prediction intervals that are wide enough to cover most of
the holdout rates. For age 80 (where it is rich in death data), the coverages of all of the
models are satisfactory, with the overdispersion models slightly outperforming the Bayesian
PLC model by having smaller biases and better coverages. Overall, the validation process using
the disaggregate mortality quantity indicates that the overdispersion models outperform the
Bayesian PLC model in terms of predictive ability for this particular dataset.

It is perhaps more useful to perform the validation based on an aggregate mortality quantity
(instead of focusing on a specific age), the life expectancy at birth, derived from the projected
crude mortality rates (where the holdout central exposed to risks are used). As illustrated in
Figure 7, the overdispersion models forecast larger life expectancies at birth consistently and
produce wider prediction intervals than the Bayesian PLC model. Moreover, the holdout life
expectancies at birth all lie well within the 95% prediction intervals of the overdispersion models,
while the Bayesian PLC model clearly underestimates the gains in the future life expectancy at
birth, as well as producing an overly narrow prediction interval. All in all, the overdispersion
models offer a better predictive power than their counterpart for this particular dataset. One
concern is that the overdispersion models seemingly also yield a systematic underestimation of
the life expectancy, even though their prediction intervals provide satisfactory coverages.
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Figure 6: Plots of the observed log crude death rates, log(dxt/ext), fitted log crude death rates
and the associated 11-years ahead projection of the crude log death rates for age 30 (upper
panel), age 55 (middle panel) and 80 (lower panel) under the Bayesian PLC model and the
overdispersion models, accompanied by 95% credible intervals.

22



7
4

7
6

7
8

8
0

8
2

Years

L
ife

 E
xp

e
ct

a
n

cy
 a

t 
B

ir
th

1961 1970 1980 1990 2000 2010

●

●
●

●
● ●

●
●

● ●
●

●

Observed Life Expectancy
Holdout Life expectancy
Median under PLNLC
Median under NBLC
Median under Bayesian PLC
95% PI under PLNLC
95% PI under NBLC
95% PI under Bayesian PLC

Figure 7: Plots of the observed, fitted life expectancy at birth and the associated 11-years
ahead forecast under the Bayesian PLC and the overdispersion models, accompanied by the
95% prediction intervals.

7.4 Model Assessment

We can similarly construct a heat map of the squared Pearson residuals for the overdispersion
models. Expressions of the squared Pearson residuals for the PLNLC and NBLC models are
given respectively as

[dxt − ext exp(αx + βxκt + σ2
µ/2)]2

ext exp(αx + βxκt + σ2
µ/2) + e2

xt[exp(σ2
µ)− 1] exp(2(αx + βxκt) + σ2

µ)
,

and

[dxt − ext exp(αx + βxκt)]
2

ext exp(αx + βxκt)
[
1 + ext

exp(αx+βxκt)
φ

] ,
where now the posterior mean of the parameters αx, βx, κt, σ

2
µ and φ are substituted into the

expression for an estimate. As illustrated in Figure 8, the heat maps of the overdispersion models
are much “greener” than before (Figure 1), indicating an overall improvement in goodness of fit.
The sum of squared Pearson residuals for the PLNLC and the NBLC model are now 4235.24 and
4235.83 respectively, which are considerably smaller than 15378.73 of the original PLC model,
and 15379.91 of the Bayesian PLC model. The improvement is substantial, but is still not ideal
mostly because of the un-captured cohort effects, emerged as yellow/orange diagonal lines in
Figure 8. Nevertheless, it is rather obvious that the overdispersion models outperformed both
the original PLC and Bayesian PLC model by a considerable margin.

Note that the distribution of the sum of squared Pearson residuals, is no longer Chi-squared,
but can be properly calibrated against its empirical distribution to then carry out posterior
predictive checking. Following Gelman et al. (1995), we first generate a set of replicated data,
drep, which has a density representation

fM (drep) =

∫
fM (drep|θM )fM (θM |d)dθM ,
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Figure 8: Heat map of squared Pearson residuals, r2
xt, under the PLNLC model (left panel) and

the NBLC model (right panel), accompanied by the corresponding colour code.

from the posterior samples of θM under each model, whereM is the model indicator, fM (drep|θM )
is the likelihood function, fM (θM |d) is the posterior of θM . Next, we define our test quantity
as

T (d,θM ) =
∑
x,t

(dxt − E[Dxt|θM ,M ])2

Var[Dxt|θM ,M ]
,

which is the usual χ2 discrepancy (that depends on both the data and parameters). An ex-
pression of T (d,θM ) for each of the models under consideration is presented in Appendix E.
The test quantity is then evaluated at the replicated data to yield T (drep,θM ), from which
histograms can be constructed (Figure 9). The sum of squared Pearson residuals (or equiva-
lently T (d, θ̄M ), where θ̄M is the posterior mean under model M) for each model is displayed
in Figure 9 to highlight the magnitude of its discrepancy with the T (drep,θM ). It can be seen
that the sum of squared Pearson residuals for the overdispersion models lies somewhere in the
middle of the histograms; while that of the Bayesian PLC model (15379.91) is completely off
the charts. Moreover, the posterior predictive p-value, defined as

pB = Pr(T (drep,θM ) ≥ T (d,θM )|d),

can be used to assess statistical significance formally. In practice, it is easily computed as the
proportion of the predictive test quantity, T (drep,θM ), which equals or exceeds the realized test
quantity, T (d,θM ). The posterior predictive p-values of the PLNLC, NBLC and Bayesian PLC
models are 0.0161, 0.0156 and 0.00 respectively. Therefore, there is no evidence at 1% level that
the overdispersion models are inadequate in this aspect of the data; while the extreme p-value
of the Bayesian PLC model strongly indicate model inadequacy.
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Figure 9: Histograms of T (drep,θM ) for the PLNLC, NBLC, and Bayesian PLC model, with
their corresponding sum of squared Pearson residuals, r2 included as the vertical solid lines.

7.5 Bayesian Model Determination

Most of the previous results suggest that the two overdispersion models are very similar. This
prompts the initiative to compare the fitted log mortality rates using sample quantiles-quantiles
(QQ) plots. It is evident from Appendix F (Figure F.1) that all of the sample QQ plots appear
to lie reasonably close to the reference line, with no peculiar behaviour (no U or S-shape). This
suggests that the posterior distributions of logµxt have similar skewness and tail distributions
under both overdispersion models. Furthermore, the QQ plot of σ2

µ against 1/φ is remarkably
close to the reference line as depicted in Appendix F (Figure F.2), suggesting that their posterior
distributions are essentially the same. In other words, the overall level of overdispersion indi-
cated under both models are virtually the same, supporting our conjecture derived from Taylor’s
approximation (Section 4.1). Again, this signifies model similarity. Therefore, Bayesian model
comparison is carried out to ascertain this observation.

Formal Bayesian model comparison proceeds through the computation of posterior model
probabilities (e.g. Kass and Raftery, 1995). For a set of models M ∈ MS under consideration,
the posterior model probability of model M , f(M |d) is given by

f(M |d) =
f(M)fM (d)∑
j∈MS f(j)fj(d)

,

where fM (d) is the marginal likelihood (ML) of model M and f(M) is the prior model prob-
ability of model M . Typically, we assume equal prior model probabilities so that models are
compared directly using their MLs, expressed as

fM (d) =

∫
fM (d|θM )fM (θM )dθM , (14)

which is effectively the normalising constant of the joint posterior distribution. For the compu-
tation of MLs, we use bridge sampling (Meng and Wong, 1996), which is an efficient method
of approximating ratio of normalising constants. In the context of approximating ML, we con-
struct the bridge sampling algorithm such that the second normalising constant is known. In
particular, the asymptotically optimal iterative formula for bridge sampling suggested by Meng
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and Wong (1996) is used,

f̂
(t+1)
M (d) =

1
N2

∑N2
i=1

[
l̃i

N1 l̃i+N2f̂
(t)
M (d)

]
1
N1

∑N1
i=1

[
1

N1li+N2f̂
(t)
M (d)

] , (15)

where f̂
(t)
M (d) is the tth iteration of the estimator, li =

fM (d|θiM )fM (θiM )

gM (θiM )
, l̃i = fM (d|θ̃iM )fM (θ̃

i
M )

gM (θ̃
i
M )

,

{θiM}
N1
i=1 is a sample of size N1 from the posterior distribution with density fM (θM |d), and

{θ̃iM}
N2
i=1 is a sample of size N2 from an arbitrary distribution (normalised) with density gM ().

Starting with an initial guess f̂
(0)
M (d), the bridge sampling estimate, f̂M (d), of the ML can be

obtained by iterating (15) until convergence. The choice of the density gM () is entirely arbitrary,
but we set it to be a normal distribution (of the same dimensionality) with its first two moments
chosen to match those from the posterior distribution under each model M for higher efficiency.
Also, we set N1 = N2 equal to the respective sample size of the posterior under each model
as given in Section 6 for simplicity. Thus, the MLs of each model approximated using bridge
sampling are presented in Table 1.

Table 1: The marginal likelihoods (on logarithmic scale) of each model approximated from
bridge sampling.

Bayesian Poisson LC Poisson Log-normal LC Negative Binomial LC

−26684.10 −23723.65 −23727.48

As expected, the marginal likelihoods of both the overdispersion models are appreciably
larger than the Bayesian PLC model, indicating the superiority of the overdispersion models in
terms of goodness of fit. Recall also that the exploratory analyses using QQ plots suggest that
the PLNLC and the NBLC model are very similar. In particular, the marginal likelihoods of
the overdispersion models are exceptionally close to each other, verifying again the similarity
between them. However, it should be pointed out that we experienced major difficulty during
the computation of bridge sampling estimate of the marginal likelihood for the PLNLC model
due to high dimensionality. Without marginalising the log mortality rates, logµxt, this model
has a dimensionality of 4446, as compared to 246 of the NBLC model. With the MCMC
algorithm only generating dependent posterior samples, it implies that a relatively large sample
size is essential to learn about the posterior distribution of this model. Our hypothesis on the
failure of bridge sampling in accurately estimating the marginal likelihood in this case is the lack
of sufficiently long samples to obtain a good approximation of the posterior moments (especially
the variance matrix). That being said, we were still able to get the bridge sampling estimate to
attain convergence after devoting an immense computational effort.

Our results here agree with Firth (1988) to some extent, where the misspecification due to
gamma or log-normal error is non-impactful in terms of the goodness of fit, other criteria should
be used to discriminate between the two. Hence, even though both the overdispersion models
provide similar fit qualitatively for this dataset, the NBLC model is to be recommended due to
its computational advantage over its counterpart by having a lower dimension after integrating
out the latent variables, µxt.
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8 Conclusion

In this paper, we focused on the importance of accounting for overdispersion in modelling a
mortality data. In particular, we presented two models, the PLNLC and the NBLC models,
both of which extended the original PLC model by introducing a single dispersion parame-
ter. Another main contributions of this paper is fitting these overdispersion models within a
Bayesian paradigm, which offers a natural framework for integrating over various sources of un-
certainty in a coherent manner. Vague priors were used for illustrative purposes, but elicitation
of expert mortality knowledge can be carried out in practice wherever applicable. In general,
we demonstrated that neglecting overdispersion not only leads to over-confident probabilistic
intervals, but in our case also gives rise to overfitting, both of which are detrimental for the
subsequent mortality projection. Specifically, our results showed that both the overdispersion
models produce smoother estimates of mortality rates and forecast larger mortality improve-
ments in the future, as well as yielding much more representative prediction intervals than the
Bayesian PLC model (as indicated by the out-of-sample validation). Moreover, various model
assessment tools suggested that the overdispersion models provide significantly better fit than
the Bayesian PLC model. Choosing between the two overdispersion models is essentially the
classic discrimination problem between the log-normal and gamma multiplicative error distri-
butions. We illustrated that they provide rather similar qualitative fit. Formal Bayesian model
comparison using posterior model probabilities also showed that they are very similar. Hence,
the NBLC model is to be recommended over the PLNLC model mainly due to computational
reasons. Finally, the overdispersion models provide pronounced improvement in fit, but can
be further refined by including the cohort components. The inclusion of cohort effects further
improves the calibration between data signals and errors, which together with the incorporation
of overdispersion, is expected to yield more accurate mortality projections. Until then, the dis-
persion parameters do not represent heterogeneity entirely in the sense that it is contaminated
with the cohort effect.
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