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Abstract

According to the British Heart Foundation, UK, there is a population of

around 7 million living in the UK with heart and circulatory diseases; about

25% of all the deaths in the UK are caused by cardiovascular diseases and

more than 30,000 people a year suffer cardiac arrest out-of-hospital. As people

all over the world, continue to live busy and stressful lives, a vast majority of

people start showing cardiac arrhythmia-related symptoms which, if not treated

in time may lead to a serious heart condition or even sudden cardiac death. To

identify the early-warning signs in cardiac arrhythmia, methods to identify the

precursors to fatal arrhythmia were developed in this research study, using a

wearable kit. To enable accurate classification between arrhythmic beats, novel

feature extraction algorithms using spectral components were developed. Often a

fatal cardiac arrhythmia, or a serious injury, may lead to trauma and in such

situations, it becomes imperative that the critical care teams have adequate

information about the patient’s health status at remote location following an

ambulatory response. A real-time trauma scoring algorithm was developed, and

correlation and regression analyses were performed to arrive at these scores using

the physiological parameters and vital signs. It was found that with appropriate

feature extraction algorithms, supervised learning classifiers could identify the

precursors to arrhythmia in real time and on a resource-constrained device,

regardless of time and location. The trauma scoring algorithm, implemented using

ICU patients’ dataset, produced values that agreed with the patients’ status and

events could be logged to electronic health records using standard clinical coding

systems. It could, therefore, be concluded that regardless of situation and location

of an individual, fatal arrhythmia and trauma events could be identified ahead of

time before reaching a state of emergency.
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Chapter 1

Introduction

1.1 Background

’Keeping your heart healthy, whatever your age, is the most important

thing you can do to help prevent and manage heart disease. There are many

different heart conditions and problems. Together, we call them heart disease ...

Heart conditions include angina, heart attack, heart failure and abnormal heart

rhythms - as well as many other conditions including congenital heart disease and

inherited heart conditions.’

- The British Heart Foundation

’From 1st April 2015 to 31st March 2016, the London Ambulance Service

NHS Trust (LAS) attended 10,116 patients who had suffered an out-of-hospital

cardiac arrest. LAS clinicians attempted to resuscitate 4,389 (43.4%) patients.

Resuscitation efforts were not undertaken on 5,727 (56.6%) patients, the vast

majority of whom (n=4,687) were recognised as deceased on arrival of the LAS.

1,040 patients had a Do Not Attempt CPR (DNA-CPR) order, advanced directive

or similar equivalent in place, or the patient’s death was expected.’ - Cardiac

Arrest Annual Report, 2015/16.

- The London Ambulance Service, NHS Trust, UK

1



2 Chapter 1. Introduction

1.1.1 Arrhythmia Problems and Current Clinical

Pathways

In this section current status of problems related to arrhythmia have

been discussed, with current clinical pathways that exist within a national health

framework; these, however, could be extended to healthcare services worldwide.

An introduction to problems related to arrhythmia detection and a proposed

solution which later became the foundation for the research study has also been

provided.

The prevalence of cardiac arrhythmia problems and clinical

pathways : An abnormal heart rhythm – also called an arrhythmia – means

that the heart is beating too fast, too slow, and/or with an irregular pattern

(NHS 2018). This happens due to the disturbance in the heart’s electrical

system.(NHS 2018) The most common symptoms abnormal heart rhythm are

palpitations in the chest region, dizziness, breathlessness, tiredness and loss of

consciousness. According to the British Heart Foundation, a UK based charity

supporting researches aimed at cures and treatment of cardiovascular diseases,

there is a population of around 7 million living in the UK with the burden of

cardiovascular diseases. About 25% of all the deaths in the UK are caused by

heart and circulatory diseases each year and about 175,000 people are admitted

to the hospitals with a heart attack each year. The British Heart Foundation

also states that about 150,000 deaths due to heart and circulatory diseases over

each year with an average of 420 people each day. (BHF 2014). From 2014 to

2016 it has been estimated that about 750 people per 100,000 population have

premature death rate due to cardiovascular diseases. Atrial fibrillation (AFib)is a

heart condition that causes an irregular and often abnormally fast heart rate. In

particular, about 30% of people with atrial fibrillation remain undiagnosed and

therefore not being offered treatment, which increases their risk of stroke. It is a

known fact that atrial fibrillation can lead to stroke and it is estimated that 5000

strokes could be prevented each year, according to National Institute of Health

and Care Excellence (NICE) Surveillance Report 2017 (NICE 2017), if everyone

diagnosed with atrial fibrillation could be provided with treatment in time. More

than 30,000 people suffer cardiac arrest and a possible sudden cardiac death out
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of hospital.

A heart rhythm is measured as the bio-potential on human body surface

over a period of time as an Electrocardiogram (ECG). Individuals or patients

suffering from arrhythmia show abnormal patterns of ECG charts. Abnormally

fast and random heart rhythms also called Atrial Fibrillation and heart blocks,

which are the heart beats that occur very slowly and with an abnormal rhythm,

are usually monitored using an ECG device. Once the patients approach a General

Practice (GP), a healthcare entity managed by National Health Service (NHS) in

the UK, with complaints related to palpitations, chest pain and unconsciousness,

then depending on the severity of the case, they are either subject to cardiac

arrest protocol at Accidents and Emergencies (A&E) or further referred to

bedside cardiac examination with 12 lead ECG tests. If the high-risk factors

are present, they are referred to a cardiologist. If the ECG findings are suggestive

of paroxysmal atrial fibrillation, which are episodes of abnormal and fast heart

rhythms that come and go intermittently and usually stop within 48 hours without

any treatment, then atrial-fibrillation management pathway is adopted. This

pathway requires patient monitoring for longer duration using Holter monitor

(Hughes et al. 2015); (Bansal and Joshi 2018) or the AliveCor device (NICE

2015) (Halcox et al. 2017). The Holter monitors are portable devices that can

record ECG for as long as 48 hours and AliveCor device can record ECG for even

longer duration and can also detect AFib. If the heartbeats are irregular and the

heart-rate exceeds 120 bpm, then medical admission is called for. If there are

recurrent episodes of symptoms, even if the ECG was normal, longer duration of

monitoring using Holter monitor is offered to initiate a diagnosis.

Currently, the NHS runs Rapid Access Chest Pain Clinic (RACPC)

(UCLH-RACPC 2018) for patients with new onset of chest pain for rapid and

effective assessment of symptoms and investigations for arrhythmia. All patients

are offered an appointment RACPC within two weeks, and the referral letters

are sent out within 24 hours. Patients normally approach a GP with symptoms

like chest pain or blackout, also called transient loss of consciousness. Based on

the symptoms the GP normally decides whether the patient should be referred

further for a thorough examination at RACPC or a consultant cardiologist. The
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British Heart Foundation state a spending of about £9 billion each year by NHS

in treating heart and circulatory diseases. The average cost of care per stroke

patient is currently £23,315.

Currently, there are no monitoring devices at primary care GP level,

which could automatically detect frequently occurring premature arrhythmia or

heart blocks. These can only be monitored, currently, at an RACPC or in a

hospitalised environment where an expert cardiologist could investigate the ECG

readings. Current pathways in diagnosis and treatment of cardiac arrhythmia in

NHS, according to the National Institute for Health and Care Excellence (NICE)

MedTech Innovation Briefing [MIB101] (NICE-Medtech-Zio 2017) the current

methods of arrhythmia detection are:

1. 12 lead ECG,

2. 24- to 48 hour or 7-day continuous ambulatory monitoring, including using

Holter monitors,

3. Long-term continuous monitoring for up to 30 days,

4. External loop recorders,

5. Insertable loop recorders, which can record events for up to 3 years for

arrhythmia that sometimes occur months apart.

The Holter (Katritsis, Siontis, and A. J. Camm 2013) (Hughes et al.

2015) monitor is the method most commonly used in the NHS for detecting atrial

fibrillation. Holter monitors continuously record the heart rhythm using several

electrode patches, which are stuck on the user’s chest. These electrodes detect

and record electrical signals produced by each heartbeat. The signals are recorded

in a portable machine. The user can press a button on the recording device when

they think they are showing any symptoms related to abnormal heart rhythm, or

before going to bed or taking medication. These points can then be easily found in

the continuous monitoring data. The Holter monitoring is used for 24 to 48 hours

for people who have regular symptoms or can be extended for seven days or more

for people with symptoms that happen less often. An expert cardiologist then

analyses the results during an appointment. For long duration monitoring the Zio
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Service (NICE-Medtech-Zio 2017) provides a continuous recording of ambulatory

cardiac monitoring for up to 14 days. The wearer can go about their normal

daily activities during monitoring, including showering or bathing. An expert

cardiologist then analyses the results.

Atrial Fibrillation Prevalence: According to the NICE guidelines MIB35

(NICE 2015) the prevalence of Atrial Fibrillation (E. Burns 2018) was likely to be

close to 2% of total population and the prevalence of AFib is reported to be greater

in men than in women. Atrial Fibrillation can cause morbidity and mortality

and can lead to stroke. The AliveCor Heart Monitor, though effective, focuses

only on Atrial Fibrillation. The Surveillance report 2017 on Atrial fibrillation:

management (2014) and the NICE guideline CG180 (German et al. 2016) (NICE

2017) make recommendations that 12 lead ECGs should be a preferred method of

AFib diagnosis at primary care, due to the sensitivity of the interpreting software.

As the devices like AliveCor make impact due to their portability, identification

and detection of other high-risk arrhythmia is possible along with AFib.

According to NICE Guidelines (NICE-Medtech-MIB152 2018), a referral

to an NHS consultant cardiologist or electrophysiologist can take between 2 and 18

weeks and the patient must travel to hospital. The NICE guidelines state there

are some automated ECG interpretation services as presented in table 1.1 and

related technologies that use algorithms to interpret ECGs that are automatically

uploaded to cloud networks or virtual private networks (VPNs).

The currently available ECG monitoring kits like AliveCor are only

focused on atrial fibrillation while frequently occurring premature ventricular

complexes leading to cardiomyopathy and second-degree branch bundle block

cannot be detected automatically. There are approximately 750 people per 100,000

population suffering premature deaths due to undiagnosed cases of arrhythmia.

Advanced stages of AFib can cause permanent damage to heart muscle and can

lead to stroke. It is estimated that 5000 strokes could be prevented each year if

everyone diagnosed with atrial fibrillation could be provided with early treatment.

The average cost of care per stroke patient in NHS is currently £ 23, 315.

Atrial arrhythmia such as the permanent AFib may lead to stroke if

not treated in time (E. Burns 2018). Frequent occurrences of some premature



6 Chapter 1. Introduction

Examples of some automated ECG diagnostic services according to
NICE MIB152 guidelines
Company Trans-

mission
Interpretation Proposed

reporting
time

Devices Modality

MEOMED NHS email,
dedicated
software
upload.

Instant report
or consultant
cardiologist’s or
electrophysiologist’s
written patient
care plan with
level of urgency.

Under
24 hours;
average
2 hours.

None. 12-lead,
Holter,
loop/
event.

Primary
Diagnostics

NHS email,
dedicated
software
upload.

Technician’s
written report –
if a consultant
cardiologist’s
expertise is
needed, the ECG
can be passed on
to a service such
as MEOMED.

Under
24 hours.

None. 12-lead,
Holter,
loop/
event.

Express
Diagnostics

NHS email. An accredited
data analyst’s
report with
pathway
recommendation.

Same day;
up to
10 days.

Supplies/
leases
third-
party
devices.

12-lead,
Holter.

Smart
Tele
cardiology

Webpage
upload or
dedicated
online
platform.

Technician’s or
the cardiologist’s
downloadable
report.

4 to
48 hours,
depending
on
geographical
location
and depth
of inter-
pretation.

None. 12-lead,
Holter,
loop/
event.

ECG
On-Demand

Automatic
– digitally
with NHS
email or
webpage
upload.

SCST-accredited
cardiac
physiologist’s
written report
with level
of urgency.
Quality control
performed by
consultant cardiac
electrophysiologists.

Within
24 hours or
immediately
on request.
Average
turnaround
2 hours.

Supplies/
leases
third-
party
devices

12-lead,
Holter/
event.

Table 1.1: Comparison of ECG Diagnostic services in NHS UK pathways
according to NICE MIB152 guidelines
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arrhythmia, though not fatal in the beginning, may lead to conditions such as

Cardiomyopathy if not treated in time. (Moses 2018; Baman et al. 2010). In

such cases in order to avoid deterioration, regular monitoring would be necessary.

(Moses 2018)

1.2 Motivation

A significant number of patients admitted to the Accidents &

Emergencies (A&E) are first time admits with fatal arrhythmia, as their

arrhythmia had remained undiagnosed and had occurred while they were at work

or during a commute. Premature Atrial Contractions (PAC) which are sinus

rhythms that occur earlier than the following sinus rhythms of the heartbeat

and Premature Ventricular Contractions (PVC) which are electrical impulses

when ventricular walls contract prematurely, are types or premature arrhythmia

and there is a strong evidence that these can be observed in seemingly healthy

individuals (Baman et al. 2010; Moses 2018; Krasteva et al. 2015; Gomes et al.

2010) , detailed in section 2.2. The premature arrhythmia if not treated in

time may manifest as fatal arrhythmia, especially the ventricular flutter or

the ventricular fibrillation and may lead to cardiac arrest or sudden cardiac

death if not treated in time. In such emergent situations, where the patient

has undergone a traumatic experience, in addition to identifying the type of

arrhythmia, additional trauma-related information related to the patient’s health

condition is normally required by the triage or critical care team that would be

attending the patient on admission (Cooke et al. 2006). A significant number

of patients also suffer from cardiac arrests if they were injured or may have met

with an accident. In such situations, the patient’s health condition has to be

assessed, while the patient is being carried to the hospital. Traditionally, trauma

scores have been used to assess patient’s health and vital signs have been used to

calculate trauma scores (Holcomb et al. 2005), though these are calculated only

in hospitalised or ambulatory settings. The incident response teams, sometimes,

carry a portable vital signs monitor, though this becomes available only after

the ambulatory service has reached the site. The vital signs monitors could be
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portable but are not wearable.

With the large number of Internet of Things (IoT) health monitoring kits

becoming available it has become increasingly difficult to log the real-time patient

monitoring information to healthcare repositories. E.g. With Holter monitors,

although these are wearable, the patients have to wear the device for at least

48 hours and then submit the device to their clinics before they could obtain any

diagnosis on their submitted ECG. Despite the availability of devices like AliveCor,

that can perform AFib detection, the device cannot upload the AFib episodes to

their respective healthcare servers when these actually occur. patients continue

being monitored in real-time, it has become essential that the trauma events

information such as stroke or cardiac arrhythmia be uploaded to the Electronic

Health Records (EHR) in real-time, so that the health care services can provide

effective incidence response and decision support . Health monitoring devices (e.g.

AliveCor) can monitor and analyse an abnormal condition but cannot upload these

events to EHR in real-time, due to absence of telecommunication or internet link

and software interfaces to update the EHR. In case of emergencies related to

injury, cardiac failure and trauma, patient’s health status should raise alerts and

alarms for critical care response.

The key solution to the current problems mentioned in the section 1.1.1

is a wearable health monitoring device which can perform real-time arrhythmia

detection and classification. Along with real-time arrhythmia detection and

classification it could also gather vital signs information and upload the patient

health status information to the EHR when these episodes occur. The kit should

deliver at GP primary care without needing sophisticated hardware or monitoring

equipment at the GP clinic. The primary aim of this research study, therefore, was

to produce a wearable health monitoring kit, that can detect the early warning

arrhythmia such as the premature atrial complexes and the premature ventricular

complexes by carrying out data analysis and compare a patient’s (or an individual

being monitored) heart rhythm with the typically known composite waveforms of

previously diagnosed forms of heart arrhythmia. The proposed kit would detect

arrhythmia in its early stages and could alert medical professionals of a potential

risk as early warning that the patient could be in danger, thereby providing an
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alerting mechanism to the critical care staff. The proposed kit would be able

to detect these undiagnosed cases of arrhythmia and would thereby save several

hundred lives and thousands of NHS funds per patient. Besides, the kit would

also be able to identify and detect the intermittent cardiac arrhythmia if a patient

is monitored for longer duration.

With the advances in micro-fabrication of bio-medical analogue front-end

devices, embedded system technology, data acquisition and signal processing,

it has now become possible to devise a monitoring kit that can perform heart

monitoring and cardiac arrhythmia detection in real time (Duking et al. 2016;

Lerma and Glass 2016; Gradl et al. 2012). Early detection of any form

of arrhythmia will enable monitoring and/or treatment to begin before any

aberration in heart performance leads to a critical condition. The composite,

wearable healthcare monitoring kit can perform arrhythmia detection and

classification in real-time. Such a system can facilitate an emergency response

and can enable the critical healthcare teams to prepare for medical emergencies

ahead of time. Such a system due to its ease of use and ability to detect such

early warning cardiac arrhythmia can enable auxiliary medical staff to draw the

attention of doctors and cardiac specialists to potentially dangerous conditions.

The research study presented in this thesis, at an outset, focused

on the classification and prediction problems whereby an arrhythmia could be

electronically detected before the heart condition would start to deteriorate. The

research focused on identifying patterns of heart rhythms, and on classifying

heartbeats into a categories of ECG abnormalities. MITDB (MIT-BIH Database)

records dataset, discussed in section 3.3 of chapter 3, was used to generate

learning and prediction models using WFDB (Waveform Database) software

package (Ary L Goldberger et al. 2000; Luz et al. 2016; Silva and G. B. Moody

2014). Initially, a review on current state of the research and examples of existing

smart systems for ECG monitoring was conducted. These systems, however, do

not have a predictive analysis component to detect or alert individuals of ECG

abnormalities well in time and before it’s too late for treatment.

Moreover, some of these devices have been implemented on hardware

that restrict mobility, so cannot be used by patients while engaged in their
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day to day activities, which is when they are most likely to suffer a cardiac

arrest or a heart attack. The research study involved developing hardware and

software tools and techniques along with efficient methods to train early warning

ECG arrhythmia classifiers and their predictive aspect. For a case study, a

real-time smart IoT (Internet of Things) health monitoring kit was developed,

to perform ECG signal acquisition and arrhythmia classification tasks. As the

proposed wearable kit was aimed at monitoring individuals regardless of location,

it would present additional benefits if integrated with the Electronic Health

Records (EHR) systems, so that the arrhythmia events could be updated to

the EHR and if required the critical care teams could be alerted of any fatal

cardiac arrhythmia related emergencies. To achieve this task, the monitoring

kit had to be integrated with using widely accepted Health Level 7 (HL7) based

Fast Healthcare Interoperability Resources (FHIR) standard (Raths 2014; Mandel

et al. 2016), discussed in section 6.3 of chapter 6. Such infrastructure is now also

becoming available in many countries across the globe, and the proposed system

could be easily integrated with such infrastructure as it could communicate with

the electronic health records systems using standard protocols and clinical coding

systems. The research study involved using vital signs and other physiological

parameters, to calculate trauma scores (Alam et al. 2014) such as the National

Early Warning Score (NEWS), Revised Trauma Score (RTS), Trauma Score -

Injury Severity Score (TRISS) and Probability of Survival (Ps), presented in

chapter 5 and to log the trauma event to electronic health records using standard

coding schemes such as the Systematized Nomenclature of Medicine-Clinical

Terms (SNOMED-CT) coding system (Richesson, Andrews, and Krischer 2006),

and the trauma information was logged to electronic health records using Fast

Health Interoperability Resources (FHIR) servers. The FHIR servers provided

interoperable web services to log the trauma event information in real time and

to prepare for medical emergencies.
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1.3 Aims and Objectives

1.3.1 Objectives in real-time arrhythmia classification

Although current literature in arrhythmia classification illustrates

methods and technologies of arrhythmia detection and classification, these

remained confined to equipment used in hospitalised and ambulatory settings as

compared to restricted and wearable hardware devices. Also, some arrhythmia

types require monitoring for longer duration as mentioned in section 1.1.1.

To overcome the problem of long-term monitoring, the main aim of research

study presented in this thesis was to focus on real-time methods of arrhythmia

classification and trauma analysis algorithms on restricted hardware. The

important tasks were: real-time ECG signal acquisition, conditioning and

conversion into a digitally encoded format that could be used by the machine

learning algorithms already trained on and arrhythmia dataset with a specific

digital format. The data acquisition filtering and conditioning along with

arrhythmia classification tasks had soft real-time constraints. This problem

was solved by training the arrhythmia classifiers on a widely accepted MITDB

MIT-BIH arrhythmia dataset .

The classifiers that were trained on the training dataset in a desktop

environment were ported to the restricted device that could perform real-time

arrhythmia classification. The most important problem solved in arrhythmia

classification was the development of a real-time classifier that could take as an

input raw ECG samples and by using the WFDB routines and a novel feature

extraction algorithm based on spectral components, could detect the locations of

abnormal arrhythmia types within the ECG signals.

To determine whether a real-time arrhythmia annotator based on

machine learning algorithms could be effective in arrhythmia classification, the

classifier had to be trained on the abnormal annotation types found in the MITDB

database. An ECG waveform related to a particular arrhythmia type exhibits a

specific pattern which could be used in the classification task. Using the feature

extraction algorithm and classification models developed in this research study

it was possible to classify abnormal annotation types with an overall accuracy of
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97.8% presented in section 4.2.2.2 chapter 4.

If the fatal arrhythmia such as atrial fibrillation or ventricular fibrillation

are detected at very late stages the patient could be at a risk of having a cardiac

arrest or similar emergency related situation. Although arrhythmia such as

atrial fibrillation have been detected in past research studies using inter-heartbeat

intervals (Shouldice, Heneghan, and Chazal 2007) and techniques such as Heart

Rate Variability Analysis (HRV) (Ebrahimzadeh, Pooyan, and Bijar 2014) which

are influenced by age and gender (Voss et al. 2015), delays in detection may put

patient at risk as some of these fatal arrhythmia do not show any symptoms in

early stages. To prevent these problems, data mining tasks had to be performed to

detect those arrhythmia types that were a precursor (Gomes et al. 2010) (Katritsis,

Siontis, and A. J. Camm 2013) to fatal arrhythmia. In order to solve this problem,

the precursors to fatal arrhythmia, Premature Atrial Beats (PAB) (also called

Premature Atrial Contractions (PAC)) and Premature Ventricular Complexes

(PVC) had to be detected and classified using a classifier model presented in

chapter 4. A novel feature extraction algorithm was required that could extract

features related to these early signs arrhythmia, as no two heartbeat signals

belonging to the same arrhythmia type or normal heartbeat had exactly the same

morphology, which made it more difficult to extract meaningful features which

could be used to differentiate between the arrhythmia types. A detailed study of

ECG signal was conducted, considering spectral components of the entire ECG

waveform in a heartbeat and its sub-portions i.e. the P-wave, the QRS complex

and the T-wave. A novel feature extraction algorithm based on these spectral

features was proposed which then increased the overall accuracy of classification

to 97% as presented in section 4.4 of chapter 4.

Having developed a successful classification algorithm to classify between

abnormal arrhythmia types, another problem that was required to be solved was

that the fresh ECG samples may contain a mixture of normal heartbeat samples

and abnormal heartbeat samples and the normal samples exceeds the abnormal

samples in large quantities, e.g. the abnormal to normal samples ratio was

approximately 81: 100,000. Even within the abnormal annotation types, the most

represented annotation type is almost ten times the underrepresented annotation
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type, which created a large imbalance in the dataset, and these problems related

to dataset imbalance and classification between normal and abnormal type

annotations were solved using dataset balancing techniques presented in 4.3.3

of chapter 4. The least represented arrhythmia type could then be classified with

an accuracy of 100%. The classifier models had to be ported from the desktop

environment to the IoT device by using persistence package in Scikit-Learn.

The ECG signal acquisition, filtering and signal smoothing had to be

performed in real time under noisy conditions and in real time, as the bio-potential

measurement in a wearable device is susceptible to a great degree of noise and

electrical interference and contains motion artefacts. The raw ECG signal was

filtered using a combination of suitable filters to obtain a denoised signal that

could be digitised according to the MITDB format.An extended feature extraction

algorithm had to be developed for a restricted device that could perform signal

conditioning and MITDB format conversion, section 4.5.

1.3.2 Objectives in trauma analysis and EHR

interoperability

Cardiac arrhythmia can lead to emergencies and trauma situations, which need

to be monitored and the events related to trauma had to be logged to EHR, if

required, while the individual being monitored remains engaged in day-to-day

activities. A trauma scoring mechanism was required that was widely used and

acceptable in clinical and hospitalised environment and the scoring measures

had to be reliable and variables used to calculate the trauma scores should be

easily acquired. The vital signs and certain physiological parameters were used

to calculate reliable trauma scores in real-time which could ascertain the extent

of trauma and if required could produce prediction of survival scores, sections 5.2

and 5.3 of chapter 5. Several problems had to be solved to achieve this task – the

most important being acquiring the physiological parameters that could enable

calculations for vital signs measures in real-time. In a hospitalised environment

vital signs are measured using bedside monitors and such equipment is not

wearable. Some vital signs such as the respiratory rate and the blood pressure

were traditionally obtained using clinical devices such as the spirometer and the
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sphygmomanometer, and in the absence of a wearable device to directly measure

these vital signs, these had to be calculated and approximated. Technically

speaking, the problem was reduced to calculating the respiratory rate and the

blood pressure from the ECG and the PPG signals acquired using the IoT device.

A potential solution had to be tested using the Pulse Transit Time (PTT), which

is the time difference between an QRS wave peak and the PPG wave peak in the

same heartbeat, could approximate the systolic blood pressure which was one of

the vital signs used in trauma scoring algorithm. To extract other vital signs the

unique feature extraction algorithm along with WFDB routines were used. Even

for trauma analysis, the raw signals from the ECG and the PPG sensor had to be

denoised using similar techniques.

The most commonly used trauma scores such as the Revised Trauma

Score (RTS) (Champion et al. 1989), the National Early Warning Signs - NEWS,

the TRauma Injury Severity Score TRISS (Champion 2018; Gary B Smith et al.

2013; Nedea 2017; Boyd, Tolson, and Copes 1987) were calculated from the

physiological parameters and vital signs acquired from the IoT health monitoring

kit in real-time. The severity levels associated with each of these, scores were also

calculated along with the prediction of survival scores.

For the IoT health monitoring device to be useful for individuals wearing

it during their day to day activities, if arrhythmia event or a traumatic event

occurred, the events should have to be logged to EHR automatically for further

referrals and analysis. To enable such a provision standard telemetry protocols

to encapsulate the arrhythmia and trauma event according to standard coding

schemes were adopted. It could be argued that such a provision could trigger

a critical care response in emergent situations. The critical care team would

also have the arrhythmia and the trauma-related information to decide on a

course of treatment enabling real-time decision support. The Fast Healthcare

Interoperability Resources (FHIR) Web services protocol was adopted, and a

FHIR client-side web service was implemented that could transmit the arrhythmia

event and the trauma event related information to the FHIR server to illustrate

the real-time operation of the composite health monitoring kit, section 6.5 chapter

6. The problem was solved by encapsulating the trauma-related information, vital
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signs and physiological parameters along with the location information, according

to the FHIR specification and transmitting the payload to the FHIR server using

appropriate telemetry protocols.

1.4 Thesis Structure

In order to achieve the goal of real-time ECG arrhythmia classification

and trauma analysis, beginning with the steps involved in signal acquisition up to

machine learning classification tasks, followed by the integration with electronic

health records, the problems that were solved as discussed earlier and have been

presented in the subsequent chapters. Each problem solved, with proposed and

developed solutions, along with the discussions that led to the choice of methods

involved in arriving at the respective solutions, have been discussed.

The Literature Review chapter, presents the state-of-the-art and current

research efforts in similar directions in solving the combined problem of cardiac

arrhythmia classification and trauma analysis in real time implemented on an IoT

device. Several past and present research studies have been cited to discuss and

to bring about the importance of the concepts involved in ECG arrhythmia study

and the characteristics of the ECG signals about the normal and abnormal types

section 2.1.1. A primer on ECG cardiology related concepts has been provided to

understand the components of an ECG signal and the structural variations in the

ECG signal due to arrhythmia. Spectral analysis overview has also been provided

as a conceptual framework in early signs arrhythmia detection, section 2.2. The

traditional methods such as the Heart Rate Variability (HRV) and their drawbacks

for an IoT-based solution have been discussed in section 2.6 which largely relate

to the inadequate information in the morphological structure of an ECG signal

to be used as features that could be used for arrhythmia classification. The

important concepts related to signal denoising and filtering tasks used to obtain a

denoised signal from the raw ECG samples have been described 2.5. An overview

of current practices for training arrhythmia classifiers has also been presented,

section 2.4 . TheLiterature Reviewchapter also provides information on a widely
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used trauma scoring mechanisms, triage and use of trauma and injury severity

scores along with assumptions and the calculations involved, section 2.7 sections

2.8.1 and 2.8.2. An introductory section on FHIR interoperable services to model

and integrate patient health status information using a client/server model has

also been provided, section 2.9.

The chapter on Materials provides information on the hardware and

the software used to conduct the experiments in the ECG analysis and

Trauma analysis chapters, section 3.1. An implementation of embedding

location awareness capability has been described in section 3.1.1. A sample

code implementation for encapsulating and modelling a trauma observation is

provided in 3.1.3 As the arrhythmia classification was implemented on a resource

constrained device, the chapter provides information MITDB arrhythmia dataset

used in ECG analysis, section 3.3 and the MIMIC Numerics dataset, section 3.4,

used in trauma analysis.

The chapter on ECG Analysis and Arrhythmia Detection provides

detailed information about the structure of the MITDB dataset and the WFDB

routines that were used for extracting features from the ECG records contained

in the MITDB dataset. The steps involved in developing classification models,

section 4.2.2 to classify the abnormal annotation types have been presented

along with the discussions related to the choice of the methods and routines

in the WFDB library. The rationale behind the use of spectral analysis to

extract features from the ECG heartbeat signal that could be used to adequately

differentiate between normal and abnormal types has been presented, section 4.2.3.

The novel consolidated feature extraction algorithm that considered spectral

energy components, section 4.3, within the sub-portions of the ECG heartbeat

signal has been presented in section 4.3.2. The problems related to dataset

imbalance and regularisation and classification models have been presented along

with discussions related to hyper-parameters tuning, section 4.3.3. In the signal

acquisition section, the methods of real-time ECG signal processing have been

discussed. The design of filters and the parameters associated with the filter
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design and signal smoothing and an algorithm for real-time extraction of features

from an ECG signal acquired from human subject and processing using the WFDB

routines and spectral analysis has also been presented in section 4.5

The Trauma Analysis chapter presents methods of obtaining trauma

scores from vital signs in real-time trauma scoring from within the IoT device. In

the absence of equipment traditionally used in hospitalised settings certain vital

signs had to be approximated and the calculations related to these approximations

have been presented in this chapter. The MIMIC Numerics dataset 3.4 was used

for trauma analysis. As the dataset contains the same set of vital signs that

could be calculated from a real human subject it was considered to be an ideal

choice to model the trauma scoring algorithms. A novel trauma scoring algorithm

5.3 that was developed during the research study, is presented in this chapter

that could extract and approximate, physiological parameters and vital signs

involved in trauma scoring. Discussions related to the interrelationships between

the trauma scores, the physiological parameters and their co-relationships have

been presented using statistical measures, section 5.5. The calculations related to

obtaining systolic blood pressure and respiratory rate that were calculated from

the ECG and the PPG signals are presented in section 5.2.1. As location awareness

had to be included in the composite health monitoring kit with location-aware

implementation has also been illustrated. A regression model for prediction of

survival based on trauma scores as a feature vector is also presented, section 5.6.

In the Electronic Health Records Interoperability chapter the current

in the state-of-the-art standards in implementing software solutions for public

health data management and retrieval have been discussed. An overview of FHIR

standard with clinical and enviable perspective has been provided, section 6.3.

The essential task of encapsulating the cardiac arrhythmia related event and

the trauma related event using relevant coding systems and the interoperability

standards and their implementations in software have been presented and

illustrated in section 6.5. Before encapsulating the arrhythmia and trauma event

data according to FHIR specifications, their information had to be modelled
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in an appropriate format and according to a specific architecture and semantic

structure to enable a client/server application to exchange information payload,

section 6.5.1. An implementation of FHIR client/server system has also been

developed and demonstrated. The tool used to model the arrhythmia and

trauma-related information according to FHIR Resource specifications and to

illustrate inter-relationships between the resources for effective organisation of

entire resource bundle has also been presented in section 6.6. The modelling

resulted in a novel structure involving Patient, Arrhythmia type, Trauma

information and Device FHIR resources which could be used as a template for

real-time arrhythmia classification and trauma analysis applications implemented

on IoT devices.

The chapter on Conclusions presents overall discussion on key novelties

and knowledge generated from the experimental results from ECG analysis,

trauma analysis and the healthcare interoperability chapters. The advantages of

using the novel feature extraction algorithm in real-time on a wearable resource

constrained device are discussed. The advantages and disadvantages of various

classification models used in the ECG analysis chapter and trauma analysis

chapter are discussed. In terms of overall aims and objectives related to real-time

arrhythmia detection, classification, discussion on whether the problems discussed

in literature review were solved and to the extent they were solved, are presented.



Chapter 2

Literature Review

With an aim to research the problems mentioned in the introduction

chapter, a broad literature review was conducted to research problems associated

with real time early warning arrhythmia detection, trauma analysis and electronics

health records interoperability using clinical standards and using standard tools

widely accepted in clinical and biomedical engineering. In this chapter, initially

background information on ECG interpretation has been provided followed by the

clinical conceptual framework to identify characteristics of premature arrhythmia

which could be detected algorithmically and by extracting features that could

identify the premature arrhythmias. An introduction to the MITDB MIT-BIH

arrhythmia database has also been provided. Comparisons of various methods

and techniques used in the past and in recent research studies have been

presented along with the discussions related to the advantages and disadvantages

of these techniques in arrhythmia classification, in order to achieve near real-time

arrhythmia annotator using novel feature extraction algorithms. Advantages and

disadvantages of using heart rate variability analysis and its comparison with

machine learning alternatives have been presented. In the literature review for

trauma analysis, the means and methods of measuring physiological parameters in

order to calculate vital signs from human subjects have been presented. Various

trauma scores and measures to calculate these trauma scores have been compared

along their comparisons and their effectiveness in calculating the prediction of

survival scores. Problems associated with real-time trauma scoring on an IoT

device and integrating the results with the electronic health records along with

19
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location awareness have been discussed.

2.1 Background theory on ECG and arrhythmia

types

The human heart is essentially twin pumps operating side by side and in perfect

synchronisation. The upper chamber (atrium) of the right hand pump receives

de-oxygenated blood from all parts of the body via the superior and inferior vena

cava veins and this blood flows down through a non-return valve (tricuspid valve)

into the right lower chamber during the ‘resting phase’ (diastole) of each heartbeat.

Meanwhile, freshly oxygenated blood flows from the lungs via the pulmonary vein

into the left hand upper chamber (atrium) and down into the left lower chamber

(ventricle) via the non-return mitral valve during the same rest period. In the

second phase (atrial systole) of the heartbeat, a small node (sino-atrial node)

on the inner surface of the right atrium triggers a compression of both upper

chambers, forcing any remaining blood still in the atria down into their respective

lower chambers (ventricles). In the third phase (ventricular systole), a second

node( atrioventricular node) triggers a compression of the two lower chambers

forcing de-oxygenated blood from the right hand ventricle via the pulmonary

valve into the pulmonary artery and thereafter to the lungs. At the same time,

oxygenated blood from the left ventricle is forced via the aortic valve into the aorta,

the main artery of the body and thereafter to all parts of the body. It should be

noted that the sino-atrial node is the heart’s natural pacemaker with a natural

beat of circa 100 beats per minute but this is controlled by the hypothalamus in

the brain via the cardiac centre in the medulla (a part of the brain stem concerned

with automatic vital functions) and the vagus nerve. This slows the heartbeat to

approximately 70 beats per minute when a person is at rest but quicker during

exercise or when adrenaline is released during the ‘fight or flight’ mode.

Background theory ECG interpretation The heart comprises of a muscle

called myocardium that is rhythmically driven to contract and drives the

circulation of blood throughout the body. Before every normal heartbeat, also
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called systole, a wave of electrical current passes through the entire heart and

triggers a myocardial contraction. The pattern of this electrical current and its

propagation is not random, but spreads over the entire structure of the heart in

a coordinated pattern and leads to an effective, coordinated systole and flow of

blood in and out of the heart. This results in a measurable change in potential

difference (voltage) on the body surface of human beings. The resultant amplified

(and filtered) signal is known as an electrocardiogram (ECG, or EKG). (Clifford,

Azuaje, McSharry, et al. 2006) A broad number of factors affect the ECG which

are, but not limited to: abnormalities in cardiac muscles, metabolic abnormalities

(lack of oxygen, or ischemia) of the myocardium, and macroscopic abnormalities

of the geometry of the heart. ECG analysis is a routine part of a complete medical

check-up, due to the heart’s essential role in human health and disease, and the

recording and analysis of the ECG in a noninvasive manner can be done relatively

easily.

It is a well-known fact that the heartbeat rhythms vary depending on

the health of a person, their state of activity and their age. However, it is known

that once the heartbeats exceed or if they fall below a certain count then the

person concerned is in danger of several heart related ailments. The common one

being a cardiac arrest or a heart-attack and other conditions which could be fatal

to humans. The term tachycardia is used to describe a heart rate greater than

100 beats/min. A bradycardia is defined as a rate less than 60 beats/ min (or <

50 beats/min during sleep). (Clifford, Azuaje, McSharry, et al. 2006; Meek and

Morris 2002; Morris, Brady, and J. Camm 2009). The ECG measurements show

that the heart rhythms follow a distinctive pattern and these can be identified

as the P, QRS and the T sub-waves and each of these have a time duration in

humans with minor relative variation. Usually the ECG strip that presents the

charts of the ECG waveform, is 10 seconds long.

As a result of the electrical activity of the heart cells, the current flows

within the body and potential differences are established on the surface of the

skin, which can be measured using suitable equipment, which is the ECG kit. As

in a normal electrochemistry, "when the metal of an electrode comes into contact

with an electrolyte an exchange of ions and electrons takes place, the ions from the
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metal electrode enter the electrolyte and ions from the electrolyte combine with

the metal electrode at the electrolyte–electrode interface. At the skin–electrolyte

interface a similar process occurs with an exchange of ions taking place between the

body and the electrolyte. The graphical recording of these body surface potentials

measured and across a radial multi-polar axis as a function of time produces the

Electrocardiogram (Kocheril and Sovari 2009). A The atrial flow of blood due to

the heart muscles followed by the ventricular activation follows the progression

of the depolarisation occur in some sequence and this sequence keeps repeating.

It starts at the mid portion of the left side of the septum, then progress to the

right and forward: the resulting vector has the same orientation. (Goy et al. 2013;

Morris, Brady, and J. Camm 2009). The distinctive sub-waves are as shown in

table 2.1

2.1.1 Phases in ECG measurement and interpretation

Phase I:

The 12-lead ECG tracing is standard method of measuring an ECG with

leads shown in table 2.2. Six leads are recorded by placing wires on each limb. The

other six leads are recorded by placing wires on the chest in six specific positions.

In total 6 views are obtained due to the leads placement according to Einthoven’s

triangle (Crawford and Doherty 2012; Kocheril and Sovari 2009) as shown in table

2.2 The first three views called Standard Leads I, II and III, also called "bipolar

leads" due to the two sensors placement on the skin surface (a positive and a

negative similar to a battery) to complete the circuit. The other 3 views called

the inferior views are obtained due to augmented leads aVL, aVR and aVF.

The abnormal pattern of heart beats resulting from an abnormal rhythms

in atrial and ventricular muscles is called Arrhythmia. For diagnosis of most

arrhythmias, lead II is most commonly used. Lead II (and the chest leads) most

consistently show the clearest P Wave which can be diagnostic of many common

arrhythmias. (Crawford and Doherty 2012).

Phase II: In order to examine and interpret the ECG signal following steps are

usually carried out:

Step One: Identity the QRS complex.
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Components of an ECG waveform
P wave Represents depolarisation of the right and left atria.
QRS Complex Represents depolarisation of the right and left

ventricles
T Wave Represents ventricular depolarisation
U Wave Represents depolarisation of a small segment of the

ventricular muscles or ventricular septum and this
wave occurs after most of the right and left ventricles
have been repolarized

Source: https://www.medicine.mcgill.ca/physio/vlab/cardio/introECG.htm

Table 2.1: Components of an ECG wave

Step Two: Determine the heart rate.

Step Three: Determine the ventricular rhythm.

Step Four: Identify the P. Waves.

Step Five: Determine the P-R or R-P interval.

Step Six: Determine the pacemaker rate.

Phase III: Determine the Arrhythmia depending on whether the atrium or

the ventricles are affected the arrhythmia could be either Atrial arrhythmia or

Ventricular arrhythmia.

Some types of arrhythmia which depend on the heart rate in beats per
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ECG leads and their placement
Limb Leads are: I, II, III, IV, V and VI where:
Lead IV also called AVR,
Lead V also called AVL,
Lead VI also called AVF
Chest leads are: V1, V2, V3, V4, V5 and V6
The leads and their relationship to areas of the heart muscle are as
follows
V1, aVR Right side of the heart.
V2, V3, V4 Transition between right and left sides of the heart.
V5, V6, I, aVL Left side of the heart.
II, III, aVF Inferior aspect of the heart.

Source: https://www.wikilectures.eu/w/Unipolar_and_bipolar_connection

Table 2.2: ECG Leads and their placements

minute (bpm) can be broadly classified as bradycardia or tachycardia as shown in

table 2.3

A generalised arrhythmia description for bradycardia or tachycardia
sinus
tachycardia

Heart-rate 105 bpm, regular, wide complex,
P-waves with normal morphology, P precedes each
QRS

polymorphic
ventricular
tachycardia

Heart-rate 200 to 250 bpm, irregularly irregular
beats, wide complex, disassociated P-waves are
abrupt and have an onset that is long and RR
intervals are short.

ventricular
tachycardia

Rate 180 bpm, regular beats, QRS wide complex,
disassociated P-waves

Table 2.3: Types of generalised arrhythmia based on heart-rate

Once the abnormal component of the ECG is identified from the

sub-waves that are showing abnormal patterns then name the arrhythmia can

be identified. If the abnormality is in the atria (P wave), then identify the atrial
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arrhythmia and if the abnormality is in the ventricles, then identify the ventricular

arrhythmia. (Kocheril and Sovari 2009)

The classification or arrhythmia type is made first, according to the

site of the arrhythmia and secondly by the type of mechanism responsible for

arrhythmia shown in table 2.4.

Arrhythmia classification based on sites affected
Sites Mechanisms
Sinoatrial Node (sinus
rhythms)

Tachycardia (rate over 100 bpm)

Atrial (atrial rhythms) Bradycardia (rate under 60 bpm)
Atrial Flutter or Fibrillation showing
defects in conduction when the electrical
activity originates from several points in
the atria.

Atrioventricular junction
node (nodal rhythms)

Premature beats

Ventricles (ventricular
rhythms)

Ventricular Fibrillation showing defects in
conduction due to disorganised electrical
activity in the ventricles leading to serious
cardiac arrest, unconsciousness and no
pulse.

Table 2.4: Arrhythmia classification based on sites affected

The ECG measurements show that the heart rhythms follow a distinctive

pattern and these can be identified as the P, QRS and the T sub-waves and each

of these have a time duration in humans with minor relative variation.

The classification is made first, according to the site of the arrhythmia

and secondly by the type of mechanism responsible for arrhythmia. Arrhythmia

can be of following kinds (Stroobandt, Barold, and Sinnaeve 2015):

Atrial Arrhythmia:

It is recognised by a rate of over 140 per minute and shows normal QRS

complexes and abnormally shaped P waves when they are visible and not hidden

by the preceding T wave.

Atrial Flutter: This arrhythmia is similar to Atrial Arrhythmia in origin and

located usually in the lower atrium near the AV node. The rate for flutter,

however, could be 250-350 per minute. Another difference with flutter is that

not all of the P-waves show in individual heartbeats.
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Atrial Fibrillation: This arrhythmia occurs due to multiple electrical impulses

leaving the atrium and can cause scarring of the atrium. This scar tissue becomes

“irritable” and begins to send out many impulses across the atria. The ECG

tracing rate is extremely rapid (350-600 bpm). The patient’s pulse is irregular

and since the P waves are so rapid and at irregular intervals, even the ventricular

response is irregular and so is the pulse.

Premature Atrial Contractions (PAC): PAC’s are discharges from the atrium

causing contraction of the atrium, however these are not followed by ventricular

contraction. The focus of the discharge may be either the right or left atrium.

These could be identified by abnormally shaped P waves due to overlap between

the current P wave and the preceding T wave. This type of arrhythmia is an early

signs arrhythmia, which if untreated and if it remains undiagnosed for longer

periods may result into atrial fibrillation.

Ventricular Arrhythmia:

Defects in conduction due to disorganised electrical activity in the

ventricles result into ventricular arrhythmia.

Premature Ventricular Contractions (PVC): PVC’s are extra beats which occur

from the ventricular walls. There is an irritable spot on the myocardium that

may send out a powerful electrical impulse which spreads across the ventricles,

causing them to contract out of proportion and in random sequence. The ventricles

contract before they have had a chance to completely fill with blood from the

contraction of the atria. The PVC are also an early signs arrhythmia, a highly

frequent occurrence of these contractions over a longer period of time may result

into cardiomyopathy, if a permanent structural damage has been caused to the

ventricular muscles.

Ventricular Tachycardia (V-Tach): This is a very serious arrhythmia. Whenever

three or more consecutive PVS’s are seen, at a rate of 100 bpm or more.

Ventricular Tachycardia (V-Tach) occurs. The ventricles do not have sufficient

time to fill and thus, cardiac output is greatly reduced. This arrhythmia may

also lead to Ventricular Fibrillation (V-Fib) (cardiac arrest) and sudden death.

The blood pressure drops immediately to zero and so does the cardiac output.

The heart is merely quivering due to the rapid multiple electrical discharges in



2.2. Conceptual framework for early signs arrhythmia detection 27

the myocardium. V-Fib is one of the most common causes of cardiac arrest.

It usually occurs in the presence of significant cardiac disease. The literature

points the following conditions that may lead to V. Fib., coronary artery disease,

myocardial ischemia, acute myocardial infarction, and third degree AV Block with

a slow ventricular response. (Cohen 2010; Crawford and Doherty 2012; Kocheril

and Sovari 2009; Stroobandt, Barold, and Sinnaeve 2015)

2.2 Conceptual framework for early signs

arrhythmia detection

The normal sinus rhythm waveform shows all the sub-waves in an ECG

signal as shown in table 2.1. The P-wave, the QRS complex, and the T-wave

show prominent morphological structure in the waveform and it repeats regularly

producing normal heartbeats as could be seen in in a healthy individual. The

research study presented in this thesis however, focuses on early signs arrhythmia

that should be detected before the arrhythmia results into a more complex and

serious cardiac arrhythmia such as the atrial fibrillation or ventricular fibrillation.

The two most common types of early arrhythmia are the Premature Atrial

Contractions (PAC) and Premature Ventricular Contractions (PVC) (Cohen

2010; Stroobandt, Barold, and Sinnaeve 2015). There is a strong evidence that

these two types of arrhythmias also occur in seemingly healthy individuals and

may go unnoticed during an ECG recording due to their intermittent occurrences.

(Baman et al. 2010; Moses 2018; Krasteva et al. 2015; Gomes et al. 2010) It

could therefore be hypothesised that if these two early arrhythmia types could be

identified, serious heart conditions due to arrhythmia could be avoided by medical

interventions ahead of time.

2.2.1 Clinical basis early signs arrhythmia

Premature Atrial Contractions (PAC):

In Premature Atrial Contraction (PAC) as shown in table 2.5, a single

sinus rhythm occurs earlier than the next expected sinus rhythm of the heartbeat.

The pulse originates prematurely and outside of the sinoatrial node. After the
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Premature Atrial Contractions and their characteristics

Heart Rate: Depends on the rate of underlying heartbeat rhythm over a
period of time.
Rhythm: Irregular whenever a PAC occurs.
P waves: Present, though in the PAC these may have different shape as
it overlaps with the next sinus rhythm beat.
PR interval: Varies whenever the PAC occurs, otherwise it is normal (0.12
to 0. 20 seconds)
QRS interval: Normal (0.06 to 0.10 second)

Table 2.5: ECG wave with Premature Atrial Contractions (PAC) characteristics

PAC has passed, sinus rhythm usually resumes as normal. If PACs are not treated

in time, they may lead to atrial fibrillation or even a stroke.

Premature Ventricular Contractions (PVC):

In Premature Ventricular Contractions as shown in table 2.6are extra

beats which occur from the ventricular walls. There is an irritable spot on the

myocardium (heart muscle) that sends out powerful electrical impulses which

spread across the ventricles, causing excessive contractions that may originate

in random sequence. The ventricles, therefore contract before they have had a

chance to completely fill with blood from the contraction of the atria.

Branch Bundle Blocks:

Although only the PACs and the PVCs have been considered in this

research study as early warning arrhythmias, the branch bundle blocks related

arrhythmia may also result into a fatal and serious heart conditions. Although

the research study focuses on identifying the PVCs and the PACs, similar machine

learning models and signal processing tasks could be performed to identify branch

bundle blocks (Ary L. Goldberger, Z. D. Goldberger, and Shvilkin 2018). The

branch bundle blocks however, require monitoring different ECG lead views

in the Einthoven triangle. The branch bundle blocks have been considered
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Premature Ventricular Contractions and their characteristics

Heart Rate: The overall heartrate depends on the rate of underlying sinus
rhythm over a period of time.
Rhythm: Premature ectopic (random) are not really the beat from the
myocardium causes slight irregularity in the ventricular rhythm.
P waves: The ectopic (random) beat is not preceded by a P-wave, i.e.
atrial contraction).
QRS interval: wide and bizarre, different from underlying QRS complexes.
The T-wave is frequently in the opposite direction from the QRS complex.

Table 2.6: ECG wave with Premature Ventricular Contractions (PVC)
characteristics

for arrhythmia classification task in ECG analysis chapter to determine the

effectiveness of classification models to classify between the arrhythmia types.

Branch bundle blocks however, have not been considered for real-time arrhythmia

classification due to their very low frequency and intermittent nature of occurrence

and due to the monitoring requirements through different ECG lead views. The

ventricles of the heart (either left or right) contain a sufficient bundle of muscle-cell

mass to cause effective compression of the ventricles. The bundle branches

(left and right) carry the signal from the atrioventricular node via the ‘Bundle

of His’ conducting fibre. Conduction blocks can occur in either of the two bundle

branches. These can occur as the result of infarction of the tissue, although a

number of otherwise normal people have a bundle branch block due to the invasion

of the conduction pathway with fibrous tissue. It could be observed in rather

healthy looking individuals. Despite the condition, the ventricles will continue to

depolarise (contract), but via a cell-to-cell interaction which is quite a bit slower

than the normal pathway.

The ECG monitoring is normally done when the person in question has

shown symptoms of any of the degenerative heart conditions. However, historically
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as evident from the hospital admissions for heart related ailments and ICU records;

most of the patients, almost 30,000 a year according to BHF, suffer from a

cardiac arrest or failure any time of the day or night outside hospitals and without

showing significant signs of deterioration in heart condition just before they enter

a state of trauma. (BHF 2014; Townsend et al. 2015) Constant monitoring

to detect arrhythmias seem to be the most appropriate solution to heart related

treatments. (Gradl et al. 2012; Leutheuser et al. 2014). With advent of modern

System-on-Chip devices, advanced electrode designs, accurate ECG readings can

be obtained even using wearable ECG kits.

2.3 Wearable ECG kits

There are commercially available wearable 3-Lead ECG kits which can

take ECG sample readings while the person under observation is engaged in day to

day activities (NICE 2015; Tu et al. 2017; Hernandez et al. 2001). However, many

of these kits focus only on data-acquisition and monitoring and provide no analysis

or prognosis information in real-time. Furthermore, with these kits intelligent

aspect of prediction and raising appropriate alarms, before a fatal arrhythmia and

trauma occurs, has not been adequately addressed. Some Internet-of-Things (IoT)

devices (Nguyen et al. 2017) are known of having the capability to encapsulate

health status events in a standard clinical coding system (Richesson, Andrews,

and Krischer 2006) and could transmit the information to the electronic health

records (Bowman 2005) in real-time. Similar efforts have been made for electronic

health records integration (Franz, Schuler, and Krauss 2015; Mandel et al. 2016)

and novel standards such as Fast Healthcare Interoperable Resources (FHIR) have

emerged and are currently being adopted by the healthcare services worldwide.

Ageing populations and working population due to unbalanced work lifestyles has

seen an increase in chronic diseases all over the world have raised the requirement

for efficient healthcare monitoring. There has been a focus on remote health

monitoring systems based on IoT technology and the concept is being accepted

and adopted by hospital monitoring systems and private healthcare providers and

has turned out to be effective in, reducing healthcare costs, and at the same time
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improve healthcare for ageing patients and patients with chronic diseases. The IoT

based healthcare assists in real-time monitoring resulting in continuous monitoring

at the same time remote monitoring reducing the accommodation requirements

in the hospitals and private health care providers. The system results in an

architecture with sensing devices, sensing network, data distribution, ubiquitous

sensor networks, data analysis servers and computing farms and feedback systems.

This approach considers a range of aspects including sensing, data processing,

mining and machine learning mechanisms. Using this approach will help to

develop effective solutions for pursuing systems development in IoT healthcare

applications.

The maturity of Internet of Things (IoT) has led to the rapid

development of connected transport, smart cities, connected homes and

healthcare. IoT is a technology that connects "things" that are embedded with

sensors/actuators and network connectivity to collect and exchange the data over

the internet and cloud systems. The enhanced capabilities of resource-constrained

embedded devices due to advances in microelectronic fabrication have enabled

these devices to collect sensor readings and deliver messages across internet

and telecommunication and ubiquitous networks leaves several avenues. Use

of standard IoT protocols like Message Queuing Telemetry Transport (MQTT)

and Constrained Application Protocol (CoAP) has become common in IoT

environment (Oryema et al. 2017). The problems with these devices mentioned

in this literature is that a complete workflow of real-time signal acquisition,

arrhythmia classification and EHR integration is not available as a single kit.

The functions and services provided by the examples cited here are restricted

only to monitoring, and no real-time arrhythmia classification functions have

been provided on the devices themselves to be used in-situ. With a complete IoT

solution, these devices would be able to monitor patients on a 24/7 basis.
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2.4 Training classifiers on arrhythmia datasets

In the absence of a specific algorithm that could extract characteristics of

abnormal arrhythmia types, especially the PVCs and the PACs, machine learning

models could be used to train the classification models on these pre-existing

arrhythmia type ECG signals and could be used to perform classification

of fresh ECG samples obtained from a real human subject in-situ and in

real-time. Similar efforts have been conducted in the past where non-invasive

abnormal heartbeat classification tasks were performed and Support Vector

Machines (Li, Rajagopalan, and Clifford 2014; Luz et al. 2016) were trained

to perform classification based on the MITDB MIT-BIH arrhythmia database

(G. B. Moody and Mark 2001). Other techniques that were used involved

discrete wavelet transforms (Banerjee and Mitra 2010) and auto assistive and

feed-forward neural networks (Chakroborty 2013; Chakroborty and Patil 2014;

R. G. Kumar and Kumaraswamy 2013). Although these techniques could perform

accurate classification tasks these could not be implemented on an IoT device

with processor and memory constraints. In order to implement arrhythmia

classification models, these had to be trained on the physiological parameters

extracted using the WFDB library provided and maintained by PhysioNet

(Ary L Goldberger et al. 2000; Silva and G. B. Moody 2014) and later port

the models to the IoT device. For the analyses presented in this research,

MIT-BIH Arrhythmia database, described in section 3.3 has been used for data

analysis. MITDB has been used in several research studies to derive feature

sets based on ECG morphology and heartbeat intervals, and have developed

supervised algorithms for detection and classification of arrhythmia (De Chazal,

O’Dwyer, and Reilly 2004). The database consists of ECG recordings that

has wide range and variety of waveforms that could possibly cover most of the

abnormal beat waveforms and which can be used to build a machine learning

model and test it. The MIT-BIH Arrhythmia Database contains 48 half-hour

two-channel ambulatory ECG recordings, obtained from 47 subjects studied by

the BIH Arrhythmia Laboratory. The recordings were digitised at 360 samples

per second per channel with 11-bit resolution over a 10 mV range (G. B. Moody

and Mark 2001). Two or more cardiologists independently annotated each record
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to obtain the computerised reference annotations for each beat (approximately

110,000 annotations in all). The database also happens to be widely used,

referenced and cited, and is considered to be a gold standard for ECG data

analysis. MITDB WFDB also provide ECG analysers that could be used to

test trained models (Silva and G. B. Moody 2014). The trained models were

then used on acquired data samples in real-time to classify arrhythmia. Despite

the availability of ECG WFDB routines to extract information such as heart

rate, respiratory rate and ECG signal characteristics, the library doesn’t contain

methods to annotate and classify the test ECG signal captured from a human

subject in real-time. The research study aims at developing real-time classifier

using machine learning models and novel feature extraction algorithms.

Hidden Markov Model’s (HMM) and Discrete Wavelet Transform

(DWT) have been successfully used in the past to identify N-type and V-type

annotations from MITDB, to detect supra-ventricular arrhythmia and atrial

fibrillation (Gomes et al. 2010). The techniques involved linear segmentation

and wavelet spaced feature extraction. Although the algorithm was successful in

identifying V-type annotations related transitions, the DWT along with HMM

state transitions may not be able to identify abnormalities like the A-type

arrhythmia, as the structure of A-type and the N-type signals is very similar

with very subtle differences in morphology. Furthermore, important features

like the RR interval, heart-rate and PR intervals, which are very important

features in arrhythmia detection, have not been considered in this study. An

ECG QRS detection is an important aspect in ECG analysis and techniques

such as K-Means, PCA (Principal Component Analysis), K-Nearest Neighbours

(K-NN) and Probabilistic Neural Network (PNN) have been successfully in the

past yielding over 99% classification accuracy (Merino, Gomez, and Molina 2015;

Rodriguez et al. 2015; Zadeh, Khazaee, and Ranaee 2010). These techniques

can detect the QRS peaks, though cannot identify abnormal regions within

an ECG waveform to classify these abnormalities into appropriate arrhythmia

types. Another drawback is that these models tend to accept test data in

large samples and perform analysis on entire dataset in a single execution cycle

instead of beat-by-beat samples in real-time. Also, the physiological parameters
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extracted using the WFDB library alone may not be adequate to differentiate

between the two types of early signs arrhythmia, as there is only subtle difference,

especially between normal heartbeats and premature atrial contractions. A novel

feature extraction algorithm was required to extract relevant features to identify

these subtle differences. In ECG analysis chapter such a feature extraction

algorithm has been proposed which uses spectral analysis for a consolidated feature

extraction.

2.5 ECG signal conditioning

An ECG signal is a very noisy signal, especially when captured from human

subject during various motion states (F. Adochiei, Edu, and N. Adochiei 2011;

Ebrahimzadeh, Pooyan, Jahani, et al. 2015). In hospitalised settings the patients

are made to lay down in a supine position for ECG recordings, however for

a wearable kit signal acquisition has to contain with lies related to electrical

interference, muscle movement and errors such as baseline wandering in used

to motion artefacts. Several efforts have been made in the past to denoise

the freshly acquired ECG signal using linear, nonlinear and adaptive filters

(F. Adochiei, Edu, and N. Adochiei 2011; AlMahamdy and Riley 2014; Taouli

and Bereksi-Reguig 2010; Taouli and Bereksi-Reguig 2010) to obtain a signal that

could be used for further analysis. These techniques relied on signal processing

toolboxes which required a high compute power and memory requirements; for a

wearable health monitoring kit however, the filters had to be implemented on a

resource-constrained IoT device.

So far Fourier transform based techniques were used in signal processing

of ECG signals. The Fourier transforms are combination of sine and cosine

wave representation of a signal with the decomposed signal functions localised

in Fourier space, however, in real world and real-time signal processing, it is the

non-localised sudden changes in the signal properties that require identification.

These sudden changes in the waveforms can also characterise a signal in time

and frequency domain. For example, in an ECG signal it was the QRS complex,



2.5. ECG signal conditioning 35

i.e. the QRS peaks that characterised the signal along with the P-wave and

the T-wave. So, in order to correct the noisy ECG signal, the wavelets which

appeared as non-localised sudden changes in QRS, P-wave, and T-wave had

to be identified. There are two types of wavelet transforms, the Discrete

Wavelet Transform (DWT)(Banerjee and Mitra 2010) and the Continuous Wavelet

Transform (CWT). It is the orthogonality that differentiates between these two

wavelet transforms. The DWT decomposes the signal into wavelets that are

orthogonal in translations and scaling such that the orthonormal transformation

preserves lengths of vectors and angles between vectors. The CWT is based

on arbitrary scales and arbitrary wavelets that are not orthogonal and is based

on computing a convolution of a given signal with the scaled arbitrary wavelet.

Considering the orthogonality whereby the scales and angles between the vectors

could be preserved, DWT was chosen as preferred choice for further signal

processing. In MATLAB the MODWT (Maximal Overlap Discrete Wavelet

Transform) was used, because the MODWT was an energy-preserving transform

that computed the energy of the signal and compared it with the sum of the

energies over all scales of the signal. A Multivariate Wavelet Denoising step was

then performed using ‘wmulden’ in MATLAB on the filtered ECG signal with a

‘sym4’ level 5 wavelet, which completely detrended the ECG signal along with

baseline correction while still preserving the properties of the ECG signal, figure

2.1.
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Figure 2.1: A denoised and baseline corrected ECG signal obtained after using
multivariate wavelet denoising filter

2.6 Heart Rate Variability (HRV) analysis

advantages and disadvantages.

The commonly used techniques in arrhythmia detection using WFDB and

PhysioBank tools, relied on frequency domain measures which were calculated

by resampling the original RR-interval (Peltola 2012) or NN interval series, i.e.

distance between two consecutive QRS peaks, and then applying the fast Fourier

transform or auto-regressive spectral estimation (the maximum entropy method),

which caused attenuation in the high frequency components of the ECG signal.

If discontinuities existed, either because of the presence of abnormal beats or

because of extreme noise in the original ECG signal, traditional approaches require

approximation of QRS peak locations which induced approximation errors. The

frequency-domain spectra can be calculated using the Lomb periodogram for

unevenly sampled data, to eliminate the approximation and interpolation errors

(Krafty et al. 2014).
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Heartrate variability (HRV) (Ebrahimzadeh, Pooyan, and Bijar 2014;

Hart 2013) has been widely applied in basic and clinical research studies. The

clinical application of HRV analysis and effectiveness in its adoption are still a

matter of research as the results tend to vary across age, gender, medications,

health status, and physiological variations, among others ((Voss et al. 2015).

Furthermore, outliers due to spurious ectopy and motion artefact can have

major effects on computed HRV values, especially as seen in elderly population

with varying supraventricular rhythm. In order to reduce the effects due to

the approximations, several techniques such as Detrended Fluctuation Analysis,

Multiscale Entropy Analysis, and Information-Based Similarity, among others has

been used to improve on HRV analysis techniques in arrhythmia classification

(Cornforth, Jelinek, and Tarvainen 2015).

There also exists a high degree of correlation between Heart Rate

Variability (HRV) and arrhythmia. The problem, however, is that HRV analysis

depends on the morphology of the ECG waveform and QRS detection, which

depends on the accuracy of the ECG equipment and accurate 12-lead ECG

equipment may not be portable and certainly not wearable. HRV analysis is also

influenced by age and gender-specific information (Voss et al. 2015). The same

feature extraction algorithm and machine learning models developed in methods

section could be used with other databases from Physionet e.g. the Creighton

University ventricular tachycardia database, MIT-BIH atrial fibrillation database

and Holter database which are records of patients who suffered sudden cardiac

death during recordings and can be used for ECG pattern recognition of extreme

conditions and quite a few efforts have been made in the past. (Ebrahimzadeh,

Pooyan, and Bijar 2014; Lerma and Glass 2016; Rajskina 1999). It is worth

noting that an arrhythmia is non-linearly dependent on P, T, QRS waves and

on individual features like RR interval, heart rate, signal strength and arterial

blood pressure, or a combination of these, so a Principal Component Analysis

was used to reduce the dimensionality in such a way that the variance of data in

lower dimensions could be maximised to visualise the data in lower-dimensional

space. Other techniques in identification of normal versus abnormal individual

heartbeats, and their correct used deep convolutional neural network (CNN) to
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automatically identify 5 different categories of abnormalities in ECG signals with

an accuracy of 94.03% (Acharya et al. 2017). Many of these and other techniques

consider the morphological structure of the ECG waveform where RR interval

values are commonly used for comparative analysis. However, the morphological

structure of the QRS waveform and past pattern from the individual’s waveform

to use for a comparison to detect abnormal from normal waveform presented

challenges, which were overcome using a unique feature extraction algorithm that

relied on spectral features of the ECG signal and its sub-waves, rather than HRV

analysis.subsectionLiterature review Trauma scoring

Commonly available health monitoring kits focus on a single

physiological parameter e.g., Electrocardiogram (ECG) or Photoplethysmogram

(PPG), and a comprehensive analysis comprising of all of the physiological

parameters seems to be missing with these kits. Multi-parameter health

monitoring is available only in hospitalised or ambulatory settings. An individual

sensor module, e.g., an ECG module, can only measure the biopotential, as a

composite sensor; however, with additional modules such as the Pulse Oximeter

sensor, other physiological parameters from a human subject can be measured

simultaneously. These readings, collectively, can be used to calculate trauma

scores in real-time and they can be used to estimate the prediction of survival

in patients. They can also be used to study correlations and regressions

amongst themselves, and they can be used to develop other statistical models

for further analysis. Several wearable health monitoring kits currently exist in

the market that focus on individual physiological parameter monitoring, such

as the Electrocardiograph (ECG), Electromyography (EMG), the Galvanic Skin

Response (GSR), with very common ones being the ‘AliveCor’ and ‘Shimmer’

sensing kits (NICE 2015; Richer et al. 2014; A. Burns et al. 2010). These kits

focus on individual physiological parameters e.g., ECG, and they do not consider

trauma scores that are associated with an emergency that is related to cardiac

arrest. Moreover, the vital signs (Lockwood, Conroy-Hiller, and Page 2004) and

triage information is collected, and preparations are made after the patient has

been carried to the hospital, which in cases like cardiac arrest, could be too late.

These kits don’t measure vital signs such as the blood pressure and respiratory
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rate, and these are measured after the patient is admitted to the ICU after the

trauma episode has occurred, which could cause a delay in treating the patient.

The composite devices in this research not only monitor individual physiological

parameters, but they also calculates related physiological parameters and vital

signs. The device uploads the trauma event information and triage information

to the Electronic Health Records (EHR) in real-time, and it can raise alarms well

in time. Moreover, location awareness is built into the device, which locates the

nearest healthcare service provider and calculates the shortest path to reaching

the healthcare provider.

2.7 Vital signs measurement problems and

challenges

Vital signs (J. Smith and Roberts 2011) are useful in detecting or monitoring

medical problems. Vital signs can be measured in a medical setting, at home, at

the site of a medical emergency, or elsewhere. With more and more wearable kits

that have become easily available, manual intervention in healthcare monitoring

has been reduced in many hospital and pre-hospital settings. With an increasing

number of miniaturised Internet of things (IoT) devices, Analogue Front-End

(AFE) modules and digital signal processing (DSP) devices that have surfaced

recently, vital signs and other physiological parameters can be easily measured

non-invasively; and the readings can be analysed in a networked environment to

provide a managed health monitoring system (Nguyen et al. 2017). Increasing

the use of machine learning algorithms and neural networks on vital sign data can

determine the deterioration of health in a patient, and can help to predict the

health status ahead of time, to prepare for an emergency. Several hospitals and

healthcare service providers use standard trauma scoring mechanisms to ascertain

or at least estimate patient health, though these are restricted to hospital or

ambulatory settings. Scoring measures such as the National Early Warning Score

(NEWS), the Glasgow Coma Scale (GCS), the Injury Severity Score (ISS), the

Trauma and Injury Severity Score (TRISS) and the Simplified Acute Physiologic

Score (SAPS) II/III have been successfully used to identify high health risks and
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the extent of trauma in ICU settings (Aminiahidashti et al. 2017; Long, Bachulis,

and Hynes 1986; Sbiti-Rohr et al. 2016). These scores, in turn, can estimate the

probability of survival (Ps) in a patient and can help the critical care team to

prepare for emergency procedures ahead of time, though due to limitations in

the size of equipment, this has remained restricted to hospitalised settings. The

research focuses on the development of a composite healthcare monitoring device

that a patient can wear in case of emergency. The device would capture vital

signs and other physiological information, and transmit this telemetry data to the

electronic health records, and can raise alarms to prepare for medical emergency.

The problems and challenges related to measuring vital signs are such

that these are commonly measured only in hospitalised settings or require manual

intervention e.g. to measure blood pressure and respiratory rate. The readings

taken from the human subjects are in a time-series format, and they have noise

and motion artefacts. To perform an accurate waveform and statistical analysis,

the data should be clean and accurate. In the trauma analysis section, the

research subsequently illustrates the use of data acquisition, filtering, smoothing,

and quantisation error removal techniques to extract the portion of the signal

that is error-free. The MATLAB Digital Signal Processing toolbox was used to

perform signal conditioning, and the MATLAB Coder tool was used to convert

the MATLAB code to the corresponding C/C++ code, which could be compiled

on the TI AM335x (Beaglebone Black, Texas Instruments). The MATLAB

environment and SPSS statistical tools are largely been used for waveform and

statistical analyses. Since the parameters being measured were medical in nature,

a software library that is widely accepted by the biomedical research community

was used. Physionet provides all of the software tools and dataset from real

patients for data analysis research that was related to physiological parameters

(Lockwood, Conroy-Hiller, and Page 2004; Saeed et al. 2011). The composite

sensing device could measure vital signs in real-time; however, in order to perform

data analysis, to calculate trauma scores based on vital signs and physiological

parameters, the device would have to be tested on real trauma patient. In

the absence of patient availability, a database of vital signs and physiological

parameters of patients admitted to ICU under trauma conditions had to be
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considered. The Physionet MIMIC II Numerics database (Ary L Goldberger

et al. 2000; Daniel J. Scott et al. 2013a) was used to develop the correlation

and regression models to a establish relationship between the trauma scores and

the prediction of survival. The NEWS, RTS and TRISS scores were found to

be quite useful in estimating the probability of survival in the patients. There

is enough evidence in more recent studies that these trauma scores have a direct

correlation with the prediction of survival of the patient (Burnham, McKinley,

and Vincent 2006; Long, Bachulis, and Hynes 1986). Following the trauma scores

calculations, adding location awareness features to the sensor kit was illustrated by

using Quantum GIS and Global Positioning System (GPS) tools and techniques,

in order to calculate the shortest route from the subject’s current position, to the

nearest healthcare provider using GIS tools and techniques.

For a composite healthcare monitoring kit to be useful to patients,

as well as the healthcare service providers, the readings and trauma scoring

have to be transmitted to the healthcare service providers using a standard

telemetry protocol. Furthermore, the readings and the trauma experience has

to be encoded in a standard coding system that is widely accepted within the

medical community. Health Level 7 (HL7) based Fast Health Interoperability

Resources (FHIR) interoperable software components have been used to encode

the events related to trauma as observations that can be logged to the electronic

health record databases in real-time. The research demonstrates the use of

the FHIR servers (HL7.org, 2018a), and the development and generation of the

trauma event context and observation models for EHR interoperability. Due to

the importance of trauma scoring in emergent situations and for the prediction

of survival calculations, it became necessary to derive relationship between the

trauma scores and physiological parameter. In the discussion and results section,

the correlation and regression relationship between the vital signs and trauma

scores has been discussed.

There has been a focus on remote health monitoring systems based on

the Internet of things (IoT) technology, and this concept is being accepted and

adopted by private and public healthcare service providers. This has resulted

in the reduction of healthcare costs and at the same time an improvement in
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healthcare for ageing patients and patients with chronic diseases. It also assists

in reducing accommodation requirements in hospitals and private healthcare

providers. This continuously monitored information, however, would have

limitations in terms of diagnosis if there were no emergency-related trauma scores

available to the critical care team ahead of time. The research endeavours

to bridge this gap between the monitoring, diagnosis, and timely treatment in

trauma-related events. The IoT-based healthcare system results in an architecture

with sensing and analytical IoT devices, ubiquitous sensor networks, standard

coded data distribution, FHIR servers, and incident response systems

2.7.1 Obtaining blood pressure and respiratory rate as

vital signs from the health monitoring kit

The most important aspect of any biomedical device is data acquisition and the

techniques involved in signal filtering, smoothing, and signal processing whilst

making sure that no information has been lost in acquiring the samples. In the

section 4.5 of the chapter on ECG Analysis, the hardware and the software used to

obtain vital sign readings from the human subjects is discussed. The parameters

such as sampling frequency and the filtering (passbands) parameters, had to be set

in order to ensure that the required amplitude peaks were captured while making

sure that the outliers were detected and eliminated. Another important aspect in

biomedical instrumentation is the removal of motion artefacts and noise due to

muscular movements, and the effect of environmental conditions on the sensors.

The blood pressure and the respiratory rate can be calculated from the

readings from the ECG and SpO2 sensors using the pulse transit time (PTT), the

pulse arrival time (PAT), and the pulse delay time (PDT) (Heartisans - How it

works 2017). These are estimated blood pressure values, which can be used in

the absence of proper digital blood pressure kits. The external BP sensor kits

can provide accurate blood pressure readings, though it may not be possible to

integrate and synchronise these readings with the ECG and SpO2 sensor readings.

Since the readings from the individual sensors have to be sampled in a single sweep

and timestamped and importantly all the sensors must be synchronised. The RR

and BP calculated using the PTT can be accurate, and they may serve as a good
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starting point. The RR and BP can then be used as features that are extracted

from the waveforms, and they can be used for further statistical analysis and

trauma value calculations (Ahmad et al. 2012; S. Kumar and Ayub 2015; Park

et al. 2006).

2.8 Physiological parameters for health status

determination

Vital signs have been widely used as performance indicators of a person’s health.

The four main vital signs that are routinely monitored by health care providers

are body temperature, pulse rate/heart rate, respiration rate (rate of breathing),

blood pressure (non-invasive systolic).(Lockwood, Conroy-Hiller, and Page 2004;

J. Smith and Roberts 2011)

The pulse rate and heart-rate are correlated. As the heart pumps blood

in and out of the body, this action puts pressure on the arteries, which could

be felt as a pulse. Taking a pulse on the wrist measures the heart-rate and

can indicate heart rhythm and health. The normal pulse for healthy adults

ranges from 60 to 100 beats per minute. The pulse rate can fluctuate, and it

may increase with exercise, illness, injury, and emotions. As it is the heartbeats

that cause the pulse, the heart rate can be used just as effectively as the pulse

rate. Pulse rate, however, can use used in heart rate variability measurement

(Hart 2013). The respiration rate is the number of breaths taken by a person per

minute. It is usually measured when a person is at rest, sometimes in a supine

position, and it simply involves counting the number of breaths for one minute.

Respiration rates also vary, and can it increase with fever, sickness, and with

other medical conditions that influence respiration. The normal respiration rates

for an adult person in resting position range from 12 to 20 breaths per minute,

and may depend on age. Traditionally, in intensive care units and ambulatory

settings, a spirometer has been used to measure the respiration rate; however,

there has been a range of modern respiration rate sensing devices that have

emerged, even in the consumer market, which are non-invasive in nature (Duking

et al. 2016). This research uses the ECG signal to calculate the respiratory rate,
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also called the ECG-derived respiratory (EDR) rate. Thus, all of the sensors

mentioned in this research are ubiquitous, wearable, and accurate, as compared

to the traditionally used sensing devices and manual interventions (Holcomb et al.

2005). Blood pressure is the force of the blood pressurising the artery walls during

the contraction and relaxation of the heart. Each time the heartbeats, it pumps

blood into the arteries, resulting in an increase and peak in blood pressure as

the heart contracts, and when the heart relaxes, the blood pressure falls. Two

measures have been traditionally recorded when measuring blood pressure using

an instrument called sphygmomanometer. The higher measure, called the systolic

pressure, refers to the arterial pressure when the heart contracts and pumps blood

through the body. The lower measure, called the diastolic pressure, refers to the

arterial pressure due to the heart when it comes to rest and is filled with blood.

Both the systolic and diastolic pressures are recorded as “mm Hg” (millimetres of

mercury). The research revolves around using modern state-of-the-art measuring

methods, and this means that blood pressure is a vital sign (Staessen et al. 2000).

High blood pressure (or hypertension) increases the risk of cardiac arrest, heart

failure, and stroke, and its measurement is used as an important vital sign. Blood

pressure can be categorised as normal, elevated, or stage 1 or stage 2 high blood

pressure: Normal blood pressure is a systolic pressure of less than 120, and a

diastolic pressure of less than 80, which is generally recorded as 120/80. Elevated

blood pressure is systolic pressure with a range of 120 to 129, and diastolic pressure

of less than 80. Stage I hypertension: Systolic blood pressure (BP) range 130–139

or diastolic BP range 80–89 mm Hg; Stage II hypertension: Systolic BP >= 140

or diastolic BP >= 90 mm Hg. Pulse oximetry, though not usually considered as

a vital sign, can be a very important measure to ascertain an individual’s health

status, and hence it is called the fifth vital sign (Mower et al. 1998).

Experiments to determine the use of pulse oximetry as a vital sign

have been conducted in the past, for example, in an emergency in geriatric

assessments using pulse oximetry to measure the oxygen saturation in geriatric

patients, which has led to improved diagnosis and treatment. Gas measurements

in blood provide critical information regarding the oxygenation, ventilation, and

acid-base concentration in blood; however, these measurements are not frequent.
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It is well known that oxygenation can change very quickly, and in the absence of

continuous oxygenation measurements, these changes may go undetected until it

is too late. Pulse oximeters measure the blood oxygen saturation continuously

and non-invasively using SpO2 (Mower et al. 1998) sensors. The blood-oxygen

saturation indicates the haemoglobin concentration, due to the haemoglobin

affinity to oxygen in the arterial blood, which becomes saturated with oxygen. In

healthy adults, the saturation range can vary from 94% to 100%. The SpO2 sensor

has a pair of light-emitting diodes (LEDs) and a photodiode on a probe element

that is clipped to the patient’s body (usually a fingertip or an earlobe). The red

LED has wavelength of 660 nm, the other is an infrared element with wavelength

of 910 nm. Absorptions on each wavelength differs significantly with changes

in oxygenated and de-oxygenated concentrations of blood; therefore, from the

differences in absorption due to red and infrared light, the oxy/deoxyhemoglobin

ratio can be calculated. As the amount of blood in the capillaries depends on the

actual blood pressure on the capillary wall (due to heartbeats), the heartbeat rate

can be measured as well with the pulse oximeter.

2.8.1 Injury severity and trauma scoring for survival

prediction using physiological parameters

The scoring measures, such as the NEWS, the GCS, the RTS, the TRISS,

the SAPS II/III, and Ps have been successfully used to identify high health risks

in patients that have suffered injury and trauma, and who have been admitted to

ICU (Champion et al. 1989; Moore et al. 2006; Schluter 2011; G. B. Smith

et al. 2013). The trauma scores used in this research, and the physiological

parameters involved, have been presented in table 5.1 for comparison. In the case

of emergency, it would be a great advantage if the early warning scores could be

calculated in time, and if the healthcare units could be made aware of these scores

as soon as possible, to prepare for emergency, even before the patient arrives.

NEWS, RTS, and TRISS scoring schemes used in the research:

The NEWS score is based on an aggregate scoring system in which a score is

calculated using physiological measurements, recorded in a routine check-up in a
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hospital or under pre-hospital settings. Six simple physiological parameters that

are used for NEWS calculations are the respiration rate, the oxygen saturation, the

systolic blood pressure, the pulse rate, the level of consciousness or confusion, and

the body temperature. In the case that the patient is in a confused state of mind

or disoriented, where the patient may respond to the questions, but is confused, a

score of 3 or 4 is assigned to the GCS scale (Teasdale and Jennet 2019; Teasdale

and Jennett 1974). The normal GCS score equals 5 for a verbal response. NEWS

scoring takes the GCS score into consideration, and in the case of trauma, the GCS

scores can be very low, which can affect the NEWS scoring. A score is allocated to

each measured parameter, with the magnitude reflecting how the parameter varies

from the normal values. These act as weights for each measured parameter. Two

additional points are added for people requiring supplemental oxygen to maintain

oxygen saturation in blood. There is also an AVPU score (Alert, Voice, Pain,

Unresponsive) that can be added to the calculation, depending on the alertness

of the patient.

The interpretation of the NEWS score (G. B. Smith et al. 2013): A low

score (NEWS 1–4) would ideally require assessment by a competent registered

nurse who would further decide how often clinical monitoring would be required,

and whether the case should be referred to the next level of diagnosis. A medium

score (i.e., NEWS of 5–6 or a RED score) would prompt an urgent review by

a clinician that was skilled with the relevant competencies for the assessment of

the kind of illness that the patient is suffering from, which would usually be a

ward-based doctor or an acute team nurse, who would further assess the patient’s

health, and if required, would refer the patient to the critical care team. A RED

score refers to an extreme condition in one of the physiological parameter (e.g.,

a score of 3 on the NEWS chart in any one physiological parameter). A high

NEWS score (NEWS ≥ 7) should prompt an emergency assessment by a critical

care staff with critical-care skills and competencies, and in such cases, the patient

has to be transferred to higher critical care settings for diagnosis and treatment.

The use of physiologic scoring systems for identifying high-risk patients

for mortality detection has been considered using the Acute Physiology and

Chronic Health Evaluation II (APACHE II) and Simplified Acute Physiologic



2.8. Physiological parameters for health status determination 47

Score (SAPS II) (Aminiahidashti et al. 2017) models and they are currently used

in a large number of hospitals worldwide. Although these scores are not very

exact or perfect, they do enable the estimation of the health status of a patient

who has had a recent episode of trauma or a similar condition.

Patients brought to the accident and emergency wards may have suffered

multiple injuries, in which case the Injury Severity Score (ISS) (S. Baker 2018;

Beverland and Rutherford 1983) is used to assess the trauma levels. Such

patients who have been injured may have one or multiple injuries, and the

ISS (S. P. Baker et al. 1974) is an anatomical scoring method that provides

estimates and measures of the overall severity of injured patients. All injuries

are assigned an Abbreviated Injury Scale (AIS) (Garthe, States, and Mango

1999) score, and the codes of injuries have been derived from an internationally

recognised and accepted dictionary that describes over 2000 injuries and ranges

from 1 (minor injury) to 6 (an extreme life-threatening injury). Patients with

multiple injuries are scored by adding the squares of the three injuries with the

highest AIS scores in predetermined regions of the body and in the order of the

severity of injuries. The ISS score can range from 1 to 75, and a score of 75

represents an extreme condition. The maximum score is 75 (25 + 25 + 25), as

the maximum severity is 5 for each anatomical part. By convention, a patient

with an AIS 6 in one body region is given an ISS of 75. The injury severity

score is non-linear, and scores of 9 and 16 are common, while scores of 14 and

22 unusual. The AIS grades are 0—no injury, 1—minor, 2—moderate, 3—severe

(not life-threatening), 4—severe (life-threatening, survival probable), 5—severe

(critical, survival uncertain), 6—maximal, possibly fatal.

ISS > 15 has been associated with a mortality of 10%. The advantage

of using ISS is that it uses anatomical areas of injury to help in formulating a

prediction of survival, though at the same time it is difficult to calculate this

during the initial evaluation when the patient arrives at the emergency ward,

and during resuscitation. In addition, it is difficult to predict the outcomes for

patients with a severe single body area injury, though the New Injury Severity

Score (NISS), which takes the three highest scores regardless of anatomic area,

overcomes this deficit (Linn 1995; Stevenson et al. 2001; I. Y. Whitaker, Gennari,
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and A. L. Whitaker 2003). The injury severity scoring can be classified as the

following:

1. Physiologic: RTS, APACHE, Emergency Trauma Score

2. Anatomical: AIS, ISS, NISS

3. Combined: TRISS, A Severity Characterisation of Trauma (ASCOT), the

International Classification of Diseases Injury Severity Score (ICISS)

The restricted hardware device used in the research study presented in

this thesis can calculate the early warning scores and injury severity scores in

real-time, when the individual has had an episode of trauma. The NEWS, RTS,

and TRISS (Schluter 2011) models have been considered in this research presented

in table 5.1. In the Trauma Analysis chapter 5, these scores have been calculated

and discussed, along with the severity levels that are associated with these scores.

The statistical scores associated with these scores have been compared, and the

analytical results have been presented in table 5.2. The correlation and regression

scores between the NEWS and RTS scores have been studied and are later

discussed 5.6. The measurements of the physiological parameters associated with

these trauma scores have been measured in real-time, and the scores have been

calculated and presented in real-time.

In the calculation of injury severity, the TRISS score remained the most

commonly used tool for benchmarking trauma fatality outcome. The survival

prediction power of TRISS could be substantially improved by re-classifying

the measured physiological parameters and altering the coefficients for the

environmental conditions, the demographics or the situations (e.g., combat)

(Barnard et al. 2017; Penn-Barwell, Bishop, and Midwinter 2018). Despite

some variations in the scoring mechanism in TRISS, due to the influence of

demographics and environmental conditions on the patients, it remains a widely

used model (Skaga, Eken, and Sovik 2018). Anatomic injury, age, injury

mechanism and pre-injury comorbidity are well-founded predictors of trauma

outcome and for calculating the TRISS score. Statistical prediction models may

have some inaccuracies, though these may be due to inaccurate calibration and
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inaccuracy due to applications of these models with influence on the environmental

conditions.

Early warning scores have largely been used in cardiac emergencies, as

these patients, along with other fatal injuries, require medical attention and

lead to the emergent incident response. Recognising the early signs of clinical

deterioration of patients is thought to improve patient treatment outcomes. The

Early Warning System (EWS) scores and the impact of EWS (Alam et al. 2014;

Gary B Smith et al. 2013) outcomes were studied on the 48 hr. mortality rate for

respiratory failure and cardiac arrest patients (Riordan et al. 2009). It was found

that the early warning system scores performed well for predicting cardiac arrest

and death within 48 hr. For ailments like cardiac arrests, early warning scoring

mechanisms become relevant and applicable as these patients may enter trauma

at any time, and healthcare service providers need to prepare ahead of time with

readiness to attend to this trauma.

For patients admitted to ICU and facing deterioration of health,

physiological parameters such as pulse rate, blood pressure, temperature, and

respiratory rate could be used to assess mortality, and serious adverse events

(SAEs) such as cardiac arrest could be prevented. The EWS is a scoring system

which assists with the detection of physiological changes, and it may help to

identify patients who are at risk of further deterioration (Gary B Smith et al.

2013). In cardiac ailments, reduced heart rate (HR) is an established predictor of

trauma and further mortality. However, the relationship between the predictors

and trauma scoring is poorly understood, hence it becomes important to establish

the relationship between heart rate variability and trauma scores (Achten and

Jeukendrup 2003; Liddell et al. 2016).

The importance of using injury severity, co-morbidity, and

prediction-of-survival scores becomes paramount in military operations when

troops who engaged in combat may require medical attention. The situation

aggravates when the location of the troops is not known and a soldier requires

medical attention if the time frame of the arrival to the base camp is uncertain.

In such cases, predicting survival and the measures related to injury severity

scores become very important, and the wearable vital signs and physiological
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measurement kits that can calculate and perform further analysis becomes a very

crucial instrument.

The TRISS methodology has been used in both the UK and US Military

trauma registries. The method relies on dividing the casualties according to their

survival probability (penetrating (Ps_Penetrating) or blunt (Ps_blunt)), though

the use different weighing mechanisms based on experiences in combat-related

environments. The UK Military Joint Theatre Trauma Registry (JTTR) and the

US Military use the same scoring mechanism with some variations in coefficients

for soldiers who have been injured in explosions (Barnard et al. 2017). This

study aimed to use the UK Military JTTR to calculate new TRISS coefficients

for contemporary battlefield casualties who were injured by either gunshot or

explosive mechanisms. The secondary aim of this study was to apply the revised

TRISS coefficients to examine the survival trends of UK casualties from recent

military conflicts. Such systems and early warning scoring kits can be very useful

to forces who are deployed in combat zones where the scores can be calculated

in real-time in the event of an emergency (Mackenzie and Sutcliffe 2000). The

composite sensor kit in this research enables the measurement of physiological

parameters that can determine the injury and trauma scores.

These studies mentioned above emphasise the importance of using

trauma scores in predicting the mortality and in calculating the probability of

survival in injury and trauma situations.

2.8.2 Tables for trauma scoring

In the absence of a real trauma patient, the MIMIC database was used to calculate

the trauma scores and it was used to calculate the survival prediction. Since the

trauma scores were calculated using the vital signs (Numerics) and physiological

parameters, it could be hypothesised that there may be a relationship between

the trauma scores, the related physiological parameters and the prediction of

survival. Statistical analysis was performed to derive the significance values for

this relationship (Domingues et al. 2015).

Once the relationship between the trauma and physiological parameter variables

was confirmed, the readings from composite sensors could be used to calculate
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trauma scores and the prediction of survival in real time. This is imperative

for patients who are under continuous monitoring for chronic illnesses, as

they may suffer from episodes of trauma at any time. In order to perform

multi-parameter analysis using parameters like heart rate, pulse rate, temperature,

oxygen saturation, and respiratory rate sensor readings from multiple sensors were

gathered, and trauma related scores were calculated. Initially, NEWS (G. Smith

2017) calculations were performed using the following variables and range of values

according to table 2.7:

1. Respiratory Rate (breaths per minute) score

2. PPG (%) score

3. Any Supplemental Oxygen score (Yes/No)

4. Temperature in ◦C (◦F) scale

5. Systolic BP score

6. HR (beats per minute) score

7. AVPU score

In a real patient, the Heart Rate and Respiratory Rate (RespR) would be

derived from the ECG and the PPG sensor would provide an oxygen saturation

reading. It was assumed that ‘No’ supplemental oxygen was provided, as the

kit would be worn in non-hospitalised conditions. All the scores required to

calculate the NEWS score (G. Smith 2017), could be obtained by the physiological

parameters captured by the CHM sensor kit. Following the NEWS score, the RTS

was calculated using additional parameters. The RTS (Champion et al. 1989;

Champion 2018) is the most widely used prehospital field triage tool, and it was

calculated using the variables: The GCS score, the systolic blood pressure score,

and the respiratory rate score. RTS requires the Glasgow Coma Scale (GCS)

scores (Teasdale and Jennet 2019; Teasdale and Jennett 1974), table 2.9 and table

2.8. The GCS scores quantifies the severity of injuries using eye/verbal/motor

responses, and response values listed in the table were used:
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The GCS score is indicative of how critically ill a patient is. The trauma

scores are merely an indication of deterioration and are suggestive of critical

care readiness to a decision support, though should not replace first-hand clinical

presentation and diagnosis by an expert. The clinical management decisions with

regards to critical illness should not be based solely on the GCS score in the acute

setting. If there is a rapid waxing and waning in GCS scores then intubation

should be considered in the context of the patient’s overall clinical picture.

NEWS calculations with physiological parameters showing a range of
values
Respiratory
Rate

Oxygen
Saturations

Temperature Systolic
Blood
Pressure

≤8 +3 ≤91% +3 ≤35◦C / 95◦F +3 <90 +3

9-11 +1 92-93% +2 35.1-36◦C /
95.1-96.8◦F

+1 91-100 +2

12-20 0 94-95% +1 36.1-38◦C /
96.9-100.4◦F

0 101-110 +1

21-24 +2 ≥96% 0 38.1-39◦C /
100.5-102.2◦F

+1 111-219 0

≥25 +3 ≥39.1 ◦C /
102.3◦F

+2 ≥220 +3

Any Supplemental Oxygen: No = 0, Yes = +2
AVPU Score
(Alert, Voice, Pain,
Unresponsive)

A = 0
V, P or U = +3

Calculations:
NEWS score = Respiratory Rate score + Oxygen Saturation (%) score +
Supplemental Oxygen score + Systolic BP score + Temperature scale + Heart
Rate score + AVPU score
Interpretation: A low score (NEWS 1–4) requires a competent registered nurse
to decide if a next level clinical monitoring or an escalation of clinical care is
required. A medium score (i.e. NEWS of 5–6) requires an urgent review by
a competent clinician, skilled in the assessment of acute illness – to assess
whether escalation to a critical-care team is required. A high score (NEWS
≥7) should prompt immediate emergency assessment by a critical care team
with critical-care competencies and usually transfer of the patient to a higher
dependency care area such as the ICU. (G. Smith 2017)

Table 2.7: NEWS calculations and interpretation
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GCS calculations with reference values
Best Eye Response
(values: 0 - 5)

Best Verbal
Response
(values: 0 - 5)

Best Motor Response
(values: 0 - 6)

4—Spontaneous
3—To speech
2—To pain
1 – No eye opening
0 – Not assessable

5—Oriented
4—Confused
conversation
3—Inappropriate
words
2—Incomprehensible
sounds
1 – No verbal
response
0 – Not assessable

6—Obeys command
5—Localizes pain
4—Normal withdrawal
(flexion)
3—Abnormal
withdrawal (flexion):
decorticate
2—Abnormal
withdrawal (extension):
de-cerebrate
1 – No motor response
0 – None (flaccid)

Calculations:
GCS = Eye opening (E) + Verbal response (V) + Motor response (M)
= 4
E.g. E1V1M2 E1: No eye opening, V1: No verbal response, M2:
Abnormal withdrawal (extension)
Interpretation: The trauma patients with a GCS of less than 15
require close attention and reassessment. A rapidly declining GCS
is concerning and may require immediate critical care intervention.
Conversely, a GCS of 15 or more should not be taken as an indication
that a patient is not critically ill. If an individual is having a trauma
episode with a score of GCS less than or equal to 8 and there is clinical
concern of further deterioration based on exam or imaging findings,
then intubation can be considered. (Teasdale and Jennet 2019)

Table 2.8: GCS calculations and interpretation

Following the NEWS and RTS scores, the Injury Severity Score (ISS)

(S. Baker 2018) had to be calculated according to table 2.10. ISS is the first

scoring system to be based on anatomic criteria, which defines the injury severity

for comparative purposes. It standardises severity of traumatic injury based on

worst injury of 6 body systems.

Trauma is measured using the TRauma and Injury Severity Score

(TRISS) (Boyd, Tolson, and Copes 1987; Schluter 2011; Nedea 2017) scores

calculated using ISS and RTS scores according to table 2.11. An important aspect

of measuring trauma is to calculate the probability of survival. The Ps scores

are measured as Ps blunt or Ps penetrating. Ps blunt indicates the probability

of survival if the patient has suffered internal injuries. Ps penetrating scores
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RTS calculations with reference values:
Physiological parameters required: Systolic BP, Respiratory Rate and
the GCS values according to the following reference table. The GCS
Value, the SBP Value and the RR Value would be assigned the
numerical values depending on the GCS, Systolic Blood Pressure and
the Respiratory Rate
Numerical
Value Assigned

Glasgow Coma
Scale

Systolic Blood
Pressure

Respiratory
Rate

4 13-15 >89 10-29
3 9-12 76-89 >29
2 6-8 50-75 6-9
1 4-5 1-49 1-5
Calculations:
RTS = (0.9368 * GCS Value) + (0.7326 * SBP Value) + (0.2908 * RR
Value)
Interpretation: A lower RTS score indicates a higher severity. RTS <
4 was proposed for transfer to a critical care trauma center. An RTS
score of 1 is indicative of ‘Almost Dead’ or ‘No Chance of Survival’
If (RTS >= 12) Severity RTS = 4
Else if (RTS == 11) Severity RTS = 3
Else if (RTS > 3 && RTS <=10) Severity RTS = 2
Else if (RTS <= 3) Severity RTS = 1
(Champion 2018)

Table 2.9: RTS calculations and interpretation

indicate the patient has suffered injuries which has resulted in blood loss; e.g. Ps

penetrating would mean that a person has fallen and has bruises; for example, a

soldier wounded in war. Ps scores, along with TRISS scores give an indication

of how serious the injuries have been. A similar experiment has been performed

in the past, with logistic regression analyses being performed using 412 cases

with scores on all severity measures. A trauma injury severity score of more

than 11.13 indicated more than a 95% probability of survival (Barnard et al.

2017; Penn-Barwell, Bishop, and Midwinter 2018). The TRISS score provides

an estimate of Ps blunt and Ps penetrating trauma scores based on the patient’s

age, RTS, and ISS results. It is possible to modify TRISS scores depending

on the situation, the environmental conditions, and the sample population under

consideration, by altering the TRISS coefficients. (Alencar Domingues et al. 2018)

There are severity levels associated with NEWS and the RTS scores, e.g.,

an RTS of less than 3 would mean that the probability of survival of the patient
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Calculating ISS score with AIS score values for organs in various body
regions.
Organs affected Abbreviated Injury Scale

(AIS) Score
Head, Face, Chest, Abdomen,
Pelvis or External

No injury 0

Minor 1
Moderate 2
Serious 3
Severe 4
Critical 5
Un-survivable 6

Calculations:If the 3 most severe injuries in the body are A, B, and C,
then
ISS = A2 +B2 + C2

If a patient has an AIS of 6 in any body system, they are automatically
assigned an ISS of 75. (S. Baker 2018)

Table 2.10: ISS calculations and interpretation

is almost nil, or that the patient is already dead. The RTS and NEWS scores,

along with probability of survival scores can be transmitted to the healthcare

service provider in real-time using commonly available telemetry communication

media, and the healthcare service providers can use these scores to ascertain the

extent of injuries and/or trauma, and they can get ready with their emergency

procedures. Such a mechanism can save valuable time whilst the patient is being

taken to the emergency ward. If the Ps scores start falling below 4 or start

approaching 0, alarms could be raised, indicating an emergency. These scores

could also be transmitted wirelessly over the Internet to the healthcare service

provider. In the absence of human subjects under trauma or severe injury, MIMIC

II Numerics records were used to demonstrate the function of the composite sensor

kit. Statistical analysis of the NEWS and RTS scores, along with the probability of

the survival scores, showed that the NEWS and the RTS scores were correlated, as

shown in the results section. In addition, the severity of injuries and the resulting

health status using NEWS and the RTS scores were calculated using the vital signs

as parameters. Vital signs were used as individual and independent variables, and

NEWS and the RTS values were dependent variables, as were the Ps blunt and

Ps penetrating scores.
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Calculating TRISS scores using ISS and RTS scores
Blunt Penetrating

b0 -0.4499 -2.5355
b1 0.8085 0.9934
b2 -0.0835 -0.0651
b3 -1.7430 -1.1360
AgeIndex is 0 if the patient is below 54 years of age or 1 if 55 years and
over
Calculations:
The TRISS determines the Ps score of a patient from the ISS and RTS
using the following formulae:
Ps = 1/(1 + eb), where, b = b0 + b1(RTS) + b2(ISS) + b3(Age)
and, the coefficients b0 = −0.4499, b1 = 0.8085, b2 = −0.0835, and
b3 = −1.7430 for Ps (blunt), assuming that the patient has suffered no
external injury. (Nedea 2017)

Table 2.11: TRISS calculations using ISS and RTS scores and interpretation

2.9 Integration of EHR with injury and trauma

scores

Injuries and disease can be classified according to the International

Classification of Diseases (ICD) classification codes, and it can be used

with clinical classification codes like the Systematized Nomenclature of

Medicine-Clinical Terms (SNOMED-CT) (Richesson, Andrews, and Krischer

2006), and Logical Observation Identifiers Names and Codes (LOINC)

(Bodenreider, Cornet, and Vreeman 2018; Forrey et al. 1996). Injury can be

described in two ways using ICD-10: the external cause of injury and the nature

of the injury. As an example of ICD coding, if death and the causes of death

for a particular patient have to be coded according to ICD-10, then the external

cause of injury and the nature of Injury have to be determined (Fingerhut and

Warner 2006). The External Cause codes describe the mechanism or the cause

of the injury (e.g., motor vehicle crash), and the manner or intent of the injury

(e.g., unintentional). The Nature of Injury codes describe the body region or the

site of the injury (e.g., hip) and the diagnosis (e.g., fracture) (Injury Data and

Resources - ICD Injury Matrices 2015) The ICD injury matrices are frameworks

that are designed to organise ICD-coded injury data into meaningful groupings

that are agreed upon by the global medical community. The matrices were
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developed specifically to facilitate national and international comparability in the

presentation of injury statistics (Fingerhut and Warner 2006).

Once the early warning and trauma scores have been calculated, the

EHR with the public healthcare service provider can be updated using ICD and

SNOMED/LOINC classification codes using Health Level 7 (HL7) standards.

FHIR is an HL7 standard that provides interoperability specifications for web

services and EHR databases (Westra et al. 2018).

A very important application for wearable IoT healthcare monitoring

devices is the ability to locate the individual when the trauma-related events take

place. With the availability of low-cost wearable GPS and Global System for

Mobile Communication/General Packet Radio Service (GSM/GPRS) receivers,

which can be embedded into the wearable kits, such a provision can made

available. The GPS receiver can provide the location-specific information, and

the composite sensor can provide the physiological information and trauma scores.

This composite payload can be transmitted to the healthcare service provider and

can enable them to get ready for an emergency. It can also help the ambulance

critical care team can get ready for the emergency procedures while they are on

their way to the incident location. Several GPS/GNSS systems already exist in

mobile service vans tracking systems; e.g., an efficient vehicle tracking system

has been implemented for tracking the movement of vehicles using a smartphone

application with a micro-controller interfaced with GPS/GNSS technology to

track the location in real-time. The vehicle tracking system uses the GPS module

to obtain geographic coordinates at regular time intervals. The system also uses

Google Maps Application Programming Interface (API) to display the vehicle on

the map in the smartphone application, and it can estimate the distance and time

for the vehicle to arrive at a given destination (Lee, Tewolde, and Kwon 2014).

2.9.1 Integration with EHR and location awareness

Integrating Trauma and Injury Scores with Electronic Health

Records. The calculation of trauma and injury scores may not be adequate

to address the emergency response, and the trauma information should be

transmitted to the healthcare repository in real-time, and the incidence response
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should be generated by the sensor kit itself. The problem, however, is that the

description of the injury has to conform to a standard coding system that is

recognised by the healthcare service provider’s information systems; e.g., if the

processed heart rate readings from the ECG sensors identify arrhythmia, then

this event has to be logged into the EHR records according to a standard coding

system. The methods section 6.5 of the chapter Electronics Health Records

Interoperability describes the standard coding scheme and a sandbox server that

conforms to the FHIR standards that are accepted worldwide. In the methods

chapter on trauma analysis, a FHIR server implementation has been discussed

and a sample observation of the RTS trauma score has been shown encapsulated

in XML file format.

Location Awareness to Trigger a Real-Time Incident Response

In order to implement a prompt and real-time incident response, the use

GPS/GNSS and Geographical Information Systems (GIS) tools were required to

locate the nearest healthcare service provider. One such tool is the Quantum GIS

(QGIS), which is an open-source software that can align and map geographical

maps to GPS coordinates. In the Methods section it was used to create layers of

information covering a geographical area; e.g., an area with contours for plains

at same altitude, or areas in a map that have the same demographic information

about healthcare centres in vicinity. This information was modelled as layers,

and it was overlaid over the GPS coordinates. The tool can be used to load road

and rail route information into the environment, and it can be used to identify

the shortest path between two points in a network based on either distance or

time (Albrecht 2007). Various filtering mechanisms have been used to overcome

the problems related to noise using stationary wavelet transforms, a Chebyshev

second-order filter, and a Savitzky-Golay filter for signal conditioning. The

algorithms were implemented in MATLAB and could be ported to the embedded

hardware. Comprehensive trauma scoring could be performed in real-time, and

the scores could be uploaded to the FHIR servers if required. The location

awareness built into the kit using GPS modules could be used to locate the nearest

healthcare centre, and a shortest path could be calculated to reach the destination.
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Materials

3.1 Health Monitoring kit for real-time signal

acquisition

The Composite Health Monitoring (CHM) kit, as shown in figure 3.1,

consisted of an ECG, PPG sensors, a GPS module and a 3-Axis accelerometer

interfaced with a Texas Instruments AM335x based Beaglebone Black (BBB)

small board computer running Debian Linux 7.9. The SciPy and Scikit-Learn

packages along with MATLAB Embedded Coder Hardware Support packages

support Debian Linux 7.9 to interact with BBB for General Purpose Input Output

(GPIO) and serial communication. The software libraries were used to acquire

signals in real time from human subject and denoise and filter the signal according

to MITDB format. As mentioned earlier Arduino Micro clocked at 16 MHz was

interfaced with the PPG and the ECG analogue front-end AD8233 from Analog

Devices Inc. directly. The Arduino sampled the ECG and PPG sensor with

a sampling frequency of 1 kHz. The raw ECG signal acquired from human

subject has noise due to motion artefacts and baseline wandering. The noisy

signal was filtered using a Chebyshev Type II filter order = 2, sampling frequency

= 1 KHz, with a passband (Wp) of between 1 Hz and 100 Hz, and a stopband

(Ws) of between 0.5 Hz to 100 Hz. The signal was further smoothed using a

Savitzky–Golay filter with order = 3 and frame length = 101. The MITDB

arrhythmia records in digitised form have three files ‘dat’ file containing the

59
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digitised waveform ‘atr’ or ‘qrs’ file containing the annotations that describe the

file ‘hea’ file containing the information related to digitisation of the record, it

is also called the header file. The header file for each record contains fields that

describe the Analogue to Digital Conversion (ADC) used to digitise it. These

fields include the signal type (such as ECG, ABP, or SpO2), the physical units

of the original analogue signal (such as mV, mmHg, or degrees Celsius, the gain,

the baseline (the sample value that would correspond to a physical value of zero

for that particular record, which is often but not always the centre of the ADC

range. It may even lie outside of the ADC range), the adczero (the sample value

at the centre of the ADC range, which is 0 for ADC at 0 origin and a non-zero

value for ADC offset), and the number of bits of ADC precision (most of the

PhysioBank records were sampled at 12 bit resolution). These values specified

for the digitisation of a particular record help in determination parameters of

the analogue to digital conversion process which may help to convert between

digital to analogue and analogue to digital formats if required. These parameters

provide raw ADC units which were helpful in signal filtering, baseline-correction

and further conversion between digital and analogue formats.

The CHM kit captured signals in real time from the following sensor modules, as

shown in the figure 3.1 containing following modules.

1. ECG Sensor module

2. PPG (SpO2) sensor module

3. GPS module

ECG sensor breakout board based on an Analog Devices AD8232 The

AD8232 analogue front end was used to measure the electrical bio-potential

activity of the heart through electrodes attached (glued/taped) to the skin.

The ECG sensor board was interfaced with a Texas Instruments AM335x-based

Beaglebone Black (BBB) through GPIO ports. The AD8233 is an integrated

signal conditioning block for bad potential measurement applications. It can

acquire, amplify and filter potential signals in noisy conditions which are present in

ECG signals due to motion or electrode misplacement. It can be easily interfaced
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Figure 3.1: The CHM kit block diagram showing all the data acquisition, signal
processing, and computing components. Figure also showing the ECG sensor,
SpO2, and the GPS/GNSS (positioning) sensor boards, to capture vital signs
from human subjects. Breathing rate (BR) or the respiratory rate (RR) are
key physiological parameters that are used in calculating trauma scores, and
they are still widely measured by counting the breaths manually. The PTT was
used to estimate the RR from the electrocardiogram (ECG) and pulse-oximetry
(Photoplethysmogram, PPG) signals. These RR non-invasive methods of RR
estimation are applicable in both healthcare and fitness monitoring (George B.
Moody, 1985)
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with an analogue to digital converter on a microcontroller to acquire bio-potential

signals. It has a high pass filter for eliminating motion artefacts and filter is tightly

coupled with instrumentation amplifier for large gain and high pass filtering in a

single stage. Using proper electronic design with active and passive components,

the cut-off frequency for the internal filter could be set for a suitable application.

To improve the common mode rejection of the line frequencies and undesired

interference, a right leg drive (RLD) amplifier has also been provided. The

important feature of AD8233 is the fast restore function that reduces the duration

of long settling tails of high pass filters. If there is an abrupt signal change due to a

leads off condition (when the silver-chloride - AgCl electrode patch comes off), the

AD8233 automatically adjusts to a higher filter cut-off, which helps quick recovery

and enables acquisition of accurate measurements. The DFRobot Gravity heart

rate monitor sensor (Heart Rate Monitor Sensor DFRobot 2017) that embeds the

AD8233 chip was used to acquire ECG samples from human subject in real time.

The sensor was interfaced with Arduino micro analogue pin A1. The timer task

interrupt service routine was set to capture the ECG samples at 1 kHz sampling

frequency. The ECG signal acquisition block is the same as described in the

chapter of ECG signal analysis. The steps involved in ECG signal acquisition,

signal filtering, signal conditioning and signal smoothing are similar as well.

The PPG (SpO2) sensor module hosted a MAX30101 high-sensitivity pulse

oximeter from Maxim Integrated. It was designed to run on either 3.3 V or

5 V power supply, and it communicated with BBB over an Inter-Integrated

Circuit (I2C) interface. The MAX30101-based board included internal LEDs,

photo-detectors, and optical elements, and it could remove noise by low ambient

light rejection. The MAX30101 integrated red, green, and IR (infrared) LED

drivers to modulate the LED pulses for SpO2 and heart rate measurements. As

a principle, it is known that the oxygen-saturated blood absorbs light differently

than unsaturated blood. Pulse oximeters measure the oxygen saturation, giving

an indication of the percentage of haemoglobin concentration in blood that is

saturated with oxygen. In a healthy adult, these readings can range from 94% to

100%. Since oxygen-saturated blood absorbs more infrared light than red light,

and unsaturated blood absorbs the opposite, the SpO2 readings are calculated
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by the comparison of the amount of absorption of these two types of light, as

quantified by the current generated by the photo-detectors.

The GPS breakout board hosts the u-blox NEO-6 series GPS module and interacts

with the BBB through the serial interface.

3.1.1 Location Awareness Additions to the Wearable

Sensor Kit Using the GIS Application and the GPS

Module

A very important application for any wearable IoT healthcare monitoring

kit is to be able to locate the individual when the trauma related events take

place. With the availability of low cost wearable GPS/GNSS, or the GSM/GPRS

receivers, the location awareness could be embedded in the kit itself (Lee, Tewolde,

and Kwon 2014). The GPS receiver could provide location-specific information,

and the composite sensor could provide physiological information and trauma

scores. This composite payload could be transmitted to the healthcare service

provider, which could enable them to get ready for emergency. With the

pre-loaded GIS information, related to the rail and road routes and the traffic

conditions, the shortest path/route between current location and the nearest

healthcare centre could be calculated using QGIS network analysis tools.

The ‘u-blox’ NEO-6M GPS receiver and positioning engine was used

to acquire position-specific information from GPS satellites. The power save

mode (PSM) allows for a reduction in system power consumption by switching

between acquisitions and tracking mechanisms. The GPS position is obtained

using a mechanism called ‘triangulation’ (GPS.js, 2018). The format of incoming

data from the GPS satellite is specified by the National Marine Electronics

Association (NMEA) definitions, and each complete line of transmission is called a

‘sentence’, and multiple sentence data is called a ‘transmit’. Some of the sentences

are: GLL—latitude/longitude data, GSA—overall satellite data, ZDA—date and

time, WPL—waypoint location information, XTE—measured cross track error,

RMB—recommended navigation data for GPS, GSV—detailed satellite data
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amongst others. Each one of these abbreviated sentences has specific information

related to the location. As characters (sentences) arrive from in the GPS receiver,

these are buffered, and the parser will detect when a complete sentence has

been provided, and the sentence gets broken down into its respective elements to

retrieve the required values such as position coordinates. The kind of information

that can be extracted from the parser depends on the GPS/GNSS receiver module.

Almost all GPS/GNSS modules on the market support basic sentences, which are

GGA (GPS Fix Data), RMC (Recommended Minimum Data), GSA (Overall

Satellite data), GSV (Detailed Satellite data), GLL (Latitude/Longitude data),

and VTG (Vector Track and Speed over the Ground). These are the standard

structures that are commonly used in an application, and most of the information

related to location, speed, direction, time, and navigation could be retrieved.

It is also possible to use the GPS coordinates to gather all the terrestrial and

demographic information using an open-source library like RTKLIB (Takasu

2011). The GPS information only provides the location coordinates, though these

have to be mapped and aligned according to the geographical mapping system.

RTKLIB OSM is an open source GNSS toolkit for performing precise positioning.

It was possible to determine the position, using a GNSS receiver. The software

supports all major satellite constellations (GPS, GLONASS, Galileo, and others)

and it uses standard file exchange formats. The toolkit can be used on Windows

and Linux platforms. A number of GPS receivers provided raw measurements

(carrier phase and code pseudo range), which were compatible with RTKLIB

(Tomoji Takasu and Yasuda 2009). The library was then used to calculate precise

positioning to centimeter-level accuracy positioning. The most affordable were

the single frequency receivers. The dual frequency receivers were more expensive,

but they had higher accuracy, especially for baselines that were longer than about

50 km; the advantage was much less pronounced in sub-km baselines.

The GPS coordinate information, along with the GIS mapping tools, was

used to locate the nearest healthcare service provider. The following steps were

carried out to achieve this: The road graph plugin in QGIS was used for this task

to load road layers for a geographical area in UK. Using the coordinates of the
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healthcare service providers in the nearby area, these were overlaid as layers. The

start point layer became the current GPS coordinates and the end-point layers

were the coordinates to the nearby healthcare service providers. Then, using the

network analysis tool in QGIS, the shortest path to the nearest healthcare service

provider was calculated, and the center information was retrieved. The shortest

route to the center was traced according to the road graph-mapping layer.

The GIS data was provided by Geofabrik (Geofabrik OpenStreetMap data

for region: Essex 2018). The GPS/GNSS-based current position location, and the

network analysis tool were used to calculate the shortest path between the current

location and an end-point, which could potentially be a healthcare center. For

calculating the shortest path from within an application, the following steps were

carried out:

1. To match geographical maps with GPS coordinates;

2. To generate a heatmap of the roads traveled, based on GPS track recordings;

3. To download road map data from an online repository of shapefiles and

transform it into a network of roads;

4. To store the road network in a database;

5. To generate own records of journeys using a GPS tracking device log of the

route traversed;

6. To implement a map-matching algorithm to match GPS track recordings to

an existing road network using shapefiles.

Matching GPS data against a map: A GPS receiver/logger captures a series

of latitude and longitude coordinates over time and traces the path of someone

moving from place to place. The GPS coordinates are recorded and stored

according to the person’s movements. Commonly available GPS devices enable

the recording of a journey that is taken on foot or by a vehicle, by recording a

series of coordinates. The GPS device does not know which roads on the route

map were followed during the journey. Map matching is the process for taking a

GPS recording of the coordinates that are followed during a journey, and matching
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it against a database of roads on road map to identify the set of roads that were

used on a particular journey.

For the map-matching task, three artefacts were required:

1. An accurate GPS track recording of the journey containing a log of GPS

coordinates which would identify the roads that were followed on the journey.

2. An accurate database of road maps mapped to global geographical

coordinates.

3. A suitable algorithm to match the GPS coordinates against the road map

database.

For the current task using GPS coordinates, a road map and a suitable algorithm,

the heatmap of commonly used roads to reach a potential healthcare center, was

generated.

A set of road map data in shapefile format was downloaded from OpenStreetMap

(OSM) (Recording GPS tracks - OpenStreetMap Wiki 2018), and converted into a

network of directed road segments. A collection of GPS traces for the journey from

the start location to an end location was generated using OSM and GPS traces

utility online, which could identify the commonly traveled roads. The traces

are normally exported as GPS Exchange Format (GPX) file. A GPS heatmap

based on commonly used roads from a start point to an end-point, and captured

by GPS devices and available on OSM GPS traces was generated. OSM is a

widely used source of GIS/GPS data, and for road map data, www.geofabrik.de

was used to download the relevant files in ‘osm’ format. In order to calculate

the shortest path between two points, the starting and ending points were to

be selected, and the shortest available path between those two points would be

automatically calculated and suggested in real time. The track data was made

persistent in a SpatiaLite database, and the Basemap was a GeoTIFF raster image

downloaded from OSM. Along with track data and Basemap layers, additional

layers to display the temporary information on top of the map were created. The

temporary information was: the currently selected starting point obtained by

current GPS coordinates from the GPS/GNSS receiver device. The end-point
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selected, which was the location of the healthcare center. The shortest available

path between the two points traced using line geometry.

Obtaining the Basemap: The GeoTIFF raster image downloaded from OSM was

passed through the GDAL utility in QGIS, which aligns the raster image and

makes corrections according to GPS coordinates, to generate a basemap that can

be used in an application. Alternatively, the GeoJSON utility could be used to

obtain maps from GPS coordinates.

Defining the map layers: A separate map layer was created for each of the

following: Basemap, Track, Start Point, End Point, shortest path. The Basemap

layer was overlaid with the track layer stored in the SpatiaLite database. The map

layers could also display additional attribute information e.g., healthcare centre

information stored in the database.

Defining the map renderers: Appropriate symbols and renderers from QGIS were

used to draw the vector data onto the map. The Start Point and End Point

actions allowed the user to set the start- and end-points in order to calculate the

shortest path between these two points.

To calculate Find Shortest Path action: The QGIS network analysis library was

used to perform the actual calculation to find the shortest path between the start-

and the end-points. The shortest path algorithm was run on the tracklayer in the

memory-based map layers (Start Point and End Point).

3.1.2 Shortest Route Calculation Using GNSS/GIS

Algorithms

Calculating the shortest distance between two points is a very common

spatial problem related to Geographical Information Systems (Albrecht 2007),

which was solved using the Network Analysis tool in QGIS (Network Analysis

2016). The Road Graph plugin of QGIS with network analysis algorithms was used

to calculate the shortest path distance or time, by calculating the cumulative cost

between two points in a network. The plugin provided a measure of the cumulative

cost based on the length between two nodes of a network. The measurements took

into consideration the first case, when the speed limit was the same for all the

roads (the edges of our network) or the second case, when the speed limit differs
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for some selected roads. The “Roads” and “Routes” information was downloaded

from Geofabrik (Geofabrik OpenStreetMap data for region: Essex 2018) repository

in the form of shapefiles. The shortest path algorithm in Figure 6 showed that a

distance of 4.15 km could be covered in 0.6 hr at 40 km/hr.

3.1.3 FHIR application for the CHM kit

Physiological parameters such as heart rate, oxygen saturation, and pulse

rate can be modelled according to HL7 FHIR specifications as observations, and

the events of trauma could be modelled as ‘assessment scales’. The assessment

scales, scoring systems, or indexes are observations with specific characteristics.

They have severity-points calculations that can make a quantitative statement

on the severity and prognosis of a disease or injury. The scores in FHIR context

are used to convert ‘soft’ observations into ‘hard’ data and evidence. Typically,

assessment scales combine the individual values into a total score, which can

be calculated for a reference population. The assessment scale can either be

a single value, it can consist of several dozen values, which can be calculated

using a complex mathematical calculation or a statistical technique. According

to the SNOMED-CT classification, TRISS is an assessment scale with SCTID:

273886002; and RTS has a SCTID: 273885003 (SNOMED International Browser

2018). The entire context of the patient, observations of physiological parameters,

and assessment scales can be encapsulated as a resource bundle and can be

uploaded to the FHIR sandbox server using RESTful Web-services, as shown

in code listing 3.1.

// Create a FHIR Observation object .

Observation observ = new Observation ();

// Assign a randomly generated Universal ID (UUID).

observ .setId(uuid)

// Set the Observation code according to a Coding System

// Coding System refers to RTS trauma score in SNOMED CT

observ . getCode ()

. addCoding ()

. setSystem ("http :// snomed .info/sct")



3.1. Health Monitoring kit for real-time signal acquisition 69

. setCode (" 273885003 ")

. setDisplay ("RTS Trauma Assessment ")

observ . setValue (new QuantityDt ()

. setValue (3)

// Set the Date and Time stamp for the observation

observ . setIssued (

new InstantDt ("2017 -05 -05 T15 :30:10+01:00 "))

Listing 3.1: FHIR-specific code to encapsulate an observation of RTS trauma

score that can be uploaded as a Resource Bundle in XML or JSON format to the

FHIR Server sandbox

Figure 3.2: SMART FHIR server architecture showing the RESTful Web services
that could be accessed from an embedded system hardware (Beaglebone Black).

In order to demonstrate the real-time integration and interoperability

of the sensor kit and EHR, a FHIR sandbox was developed, which hosted the

EHR functionality and the trauma episodes were modelled as FHIR resources of

‘bundles’, ‘observations’ and ‘assessment scales’. The readings from the sensor

kit were encapsulated as observations, and trauma scores were encapsulated

as ‘assessment scales’ according to FHIR specifications. SMART on FHIR
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(Mandel et al. 2016) is a well-known interoperability project with the distinctive

goal of developing a platform to enable interoperability between the healthcare

application and the FHIR servers, as shown in figure 3.2. The project was

called Substitutable Medical Applications and Reusable Technologies (SMART),

and it adopted web standards application programming interface transport,

authentication/authorisation, user interface, and standard medically coded data.

The system helped specify a clinical description of an ailment in a patient.

SMART FHIR provides an interoperable interface to develop web services to

integrate end user application with the FHIR servers. A HAPI FHIR (Agnew

2016) client server application based on RESTful Web-services was developed

that could encapsulate the trauma resource bundle and upload to HAPI FHIR

JPA server. A detailed description of the HAPI FHIR client server application

has been detailed in chapter EHR interoperability sections 6.4 and 6.5.

3.2 Arrhythmia datasets

To perform an extensive data analysis of ECG samples and to identify

patterns of abnormalities present in an ECG waveform, an ECG dataset

containing adequate number of samples representing arrhythmia was required,

especially the early warning arrhythmia types containing beat waveforms related

to PACs and PVCs. Traditionally, ECG waveforms are read in a 10-second period.

According to Einthoven’s triangle (Crawford and Doherty 2012), as explained in

the Literature Review subsection 2.1.1 and Cardio-physiology, Limb Leads I, II

and III are used as standard limb leads and very commonly used in wearable

kits with three or five electrodes. The three Einthoven bipolar limb leads are

determined by the pairwise potential differences between electrodes placed on the

Left Arm (LA), Right Arm (RA), and Left Leg (LL). The Lead II is the potential

difference between LL and RA. Out of these three leads, the Lead II is widely used

as it provides significant electrical signal strength for better signal acquisition. It

also produces high amplitude normal QRS complexes in most human subjects.

Also, in long term ECG recordings, physical activity causes significant interference

in these limb leads. To circumvent this problem, the modified leads were used and
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the term “modified leads” suggest that the electrode placement on torso are in

positions chosen such that the signal closely match the Limb Leads signals. Such a

modification is possible because the cardiac electrical field produces time-varying

dipole approximation that is generally sufficient to produce same projections with

minor changes in positions in the placement of the electrodes along the same axis.

The wearable kit described in this chapter uses Limb Lead II for ECG signal

acquisition.

Several ECG datasets hosted by the American Heart Association (AHA)

and PhysioNet were considered for the research study. In addition ECG

dataset samples related to cardiac arrhythmia, software routine libraries to

query these datasets were also required to extract physiological parameters and

clinical information from the dataset. As the ECG waveform records would be

electronically examined using software algorithms, digitisation information was

also required to convert signals from raw analogue samples to a digitised format

compatible with the dataset.

3.3 MITDB arrhythmia dataset

The MITDB dataset from MIT BIH arrhythmia database maintained by

PhysioNet considered for this research study has ECG samples gathered from

lead II (ML2 according to MITDB) and V2. The ML2 and the V2 signals are

the ECG signals to refer to the electrode placements on the human body. Since

the recordings in the dataset were digitised at 360 samples per second at 11 bit

resolution, the real-time ECG acquisition described in the subsection 4.5.2 had

to sample the ECG readings and digitise the samples using the same sampling

frequency, to conform to the MITDB data conversion format for further analysis.

Within 11 bit resolution over +/-5 mV range, the sampling value range from 0 to

2047 could be obtained. The MITDB dataset contains signals that were originally

filtered using anti-aliasing filter with the pass-band of 0.1 to 100 Hz and notch

filter 60 Hz, which was achieved using common digital signal processing libraries

in SciPy and MATLAB, which are commonly used in signal processing related
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Figure 3.3: The PhysioNet LightWAVE applications showing ECG signals and
annotations in an MITDB record. Source: https://PhysioNet.org/lightwave/

research. Since the MITDB database maintainers have already provided the

sampling frequency and filter specifications, the same specifications were used for

signal acquisition and filtering of ECG signals from human subjects as described

in section 4.5 on signal acquisition.

The MITDB Arrhythmia database considered for this research study has

48 patient records of ECG waveforms with all the possible variations of arrhythmia

that could be found in a human subject suffering from abnormal heart rhythm

conditions. Each record in the MITDB dataset has been manually annotated

by physicians and cardiologists identifying events of abnormal heart function.

Annotations are labelled at each point in the waveform at specific locations where

certain abnormalities were found at those locations. All the ECG recordings have

annotations that indicate time of occurrence of the normal and abnormal beats for

each heartbeat, also called as beat-by-beat annotations. These limitations could

be observed by using tools like LightWAVE provided by PhysioNet. The normal

beats appearing as ‘blue’ coloured dots labelled as ‘art’ in the LightWAVE plot

are shown in figure 3.3.

The beat type annotations are the locations in an ECG signal with
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clinical and physiological significance indicating normal sinus rhythm or an

abnormality found in signal at a particular location. For example, the N indicates

the normal beats and V,A,L,R annotations indicate abnormalities found in an

ECG signal at corresponding locations. As shown in table 3.1, the non-beat

annotation types provide structural information and morphological significance,

e.g. the start ‘(’ and stop ‘)’ points in a heartbeat waveform for each of the

PR, QRS, ST segments and p, t annotations indicate the peak of P and T waves

respectively. To perform extensive data analysis on ECG samples from all the

MITDB records, adequate number of samples were required for each of the beat

annotation types. As discussed in the literature review section 2.2, premature

ventricular complexes and premature atrial beats along with left and right Branch

bundle blocks are an indicator of fatal arrhythmia that may occur if not treated in

time. To identify these abnormalities, ECG samples in the datasets should have

these beat annotations. Having examined the records using the LightWAVE tool

it was found that these beat annotations were present in ample quantity in the

MITDB records.

The most common beat annotations found in the ECG of all the
MITDB records are:
N Normal beat
L Left bundle branch block beat
R Right bundle branch block beat
V Premature Ventricular Contraction
A Premature Atrial Beats
The non-beat type of annotations are as follows:
( Waveform onset
) Waveform end
p Peak of P-wave
t Peak of T-wave

Table 3.1: The common beat and non-beat type annotations for ECG signals in
PhysioNet MITDB records

Each of the successive annotations is equivalent to RR-interval, and each

RR-interval is made up of approximately 250 samples. On average each annotation

covers about 360 samples and a single record is approximately 650,000 samples.

The data was obtained by downloading the ATR, DAT, HEA files

for each record from the PhysioNet website for MITDB dataset. Source:
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http://PhysioNet.org/physiobank/database/mitdb/.

Each record consists of at least three files i.e. the ATR, DAT, HEA

files. The ATR files are binary files that consist of all the beat and non-beat

annotations at particular positions in a signal for each of the MITDB records.

The DAT files consist of the binary digitised samples of a signal of the record.

Each sample in MIT-BIH record is represented by a 16-bit two’s complement

amplitude stored as least significant byte first. Any unused high-order bits are

sign-extended from the most significant bit. This format is known as Format 16.

It is also the format that the freshly acquired signal would have to be converted

to, in order to conform to MITDB record format. The HEA files are short text

files that describe the contents of associated signal files. The header information

consists of the sampling rate, age gender and the medication related information

for a particular patient.

3.3.1 PhysioNet WFDB library

PhysioNet also provides PhysioToolkit (Silva and G. B. Moody 2014;

Ary L Goldberger et al. 2000) which is a library of software for physiologic signal

processing and analysis and detection of physiologically significant events within

the signals using statistics and quantitative analysis, digital signal processing and

nonlinear dynamics. It is also used for interactive display and characterisation of

signals, creation of new databases, and simulation of physiologic and other signals.

The focus of this research study was on the extraction of ’hidden’ information

from biomedical signals, such that information that may have diagnostic value in

medicine could be obtained and transformed into mathematical domain for further

analysis. The WaveForm DataBase (WFDB) library (G. Moody 2019) provided

by PhysioNet was used to extract features from the MITDB dataset.

The PhysioToolkit provides the WFDB (WaveForm DataBase) software

package which is used for viewing analysing and creating records for physiologic

signals. The WFDB software package has three components:

• WFDB library which is an application program interface to access PhysioNet

data sets.
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• WFDB routines or applications are online tools or C/C++

subroutines/functions for signal processing and automated analysis.

• WAVE is a software for viewing annotation analysis of signals.

The following primitives were used extensively in chapters 4 and 5 for

extracting features from MITDB and MIMIC Numerics datasets.

• rdsamp reads ECG signal files for the specified record and outputs the

samples as decimal numbers. rdsamp starts at the beginning of the record

and outputs all samples line by line containing the sample number and

samples from each signal, beginning with channel 0, separated by tabs.

• wrsamp reads text input (e.g. comma separated file) and outputs the

specified columns in WFDB signal file Format-16, either to the standard

output or to a disk file. Format-16 sample is represented by a 16-bit two’s

complement amplitude stored as least significant byte first. Any unused

high-order bits of the sample are sign-extended from the most significant

bit.

• gqrs attempts to locate QRS complexes in an ECG signal in the specified

record. The output of gqrs is an annotation file (with annotator extension

qrs) in which all detected peaks are labelled normal ’N’. The fields of each

annotation indicate: (a) the detection pass (0 or 1) during which the QRS

complex was detected, (b) the signal number on which it was detected, and

(c) the peak amplitude of the annotation detector filter during the QRS

complex.

• rdann reads the annotation file specified by record, and outputs a text

format, one annotation per line. The output contains (from left to right)

the timestamp of the annotation as hours, minutes, seconds and milliseconds

or sample number where the difference between two consecutive samples is

(0.00277 corresponding to 360 Hz as most of the datasets, especially MITDB

sampled at 360 Hz.); a mnemonic for the annotation type (, ), p, N, V,

A, N, L, R corresponding to the annotations in the ECG signal.
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• ecgpuwave analyses an ECG signal from the specified record, detects the

QRS complexes and locates the start and end locations of the P, QRS,

and T sub-waves. The output of ecgpuwave is a standard WFDB-format

annotation file associated with the specified annotator e.g. qrs and epu in

chapters 4 and 5. This annotation file can be converted into text format

using rdann.

• ann2rr is typically used to obtain list of RR-intervals from ECG annotation

file e.g. qrs file. By default, the intervals are listed in units of sample

intervals (corresponding to 360Hz for MITDB records) to determine the

sampling frequency of the input record if necessary.

3.4 MIMIC Numerics dataset

The Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC)

Numerics database(Ary L Goldberger et al. 2000), maintained by Physionet

and used for trauma analysis in chapter 5 is a collection of 121 records that

contain periodic measurements of physiologic vital signs variables obtained from

bedside Intensive Care Unit (ICU) monitors. The database is called Numerics

(Ary L Goldberger et al. 2000) because these measurements typically appear

in numeric form on the ICU bedside monitors. The physiologic parameters

are the heart rate, blood pressure (mean, systolic, diastolic), respiration rate,

oxygen saturation. The records vary in length from about an hour to more

than 77 hours; most are about 35-40 hours in length. The total length of

the records is approximately 4658 hours. The physiological parameters were

sampled at sampling interval of 1.024 seconds. The records contain patient

status alarms which refer to the events that required medical intervention or

observation for example observation of heart rate, blood pressure exceeding preset

limits. The records also contain monitoring condition alarms which refer to

the events that interfered with the function of the monitor for example device

malfunction or signal saturation. The MIMIC Numerics database has records

for the clinical classes of respiratory failure, congestive heart failure/pulmonary

edema, myocardial infarction/cardiogenic shock, post-operative health conditions.
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From these clinical classes the trauma situations of patients related to respiratory

failure, congestive heart failure, and myocardial infarction, may have occurred in

the absence of bedside or ambulatory health monitoring devices. These trauma

conditions could be life-threatening and require immediate medical attention and

critical care and in such cases where medical attention is required from the time

the trauma situation occurred, up to the time these patients were examined by

critical care or triage experts, the vital signs and physiological parameters required

close monitoring. In such life threatening situations automated trauma scoring

and prediction of survival estimation becomes essential for the critical care team

to assess the patient’s health.

Initially, however, the CHM kit was trained on an existing vital signs

database such as MIMIC Numerics which enabled to perform trauma scores

and prediction survival tasks. For the purpose of analysis only the physiologic

parameter readings were required. The trauma scoring and prediction of survival

algorithm, section 5.3 was developed for the MIMIC Numerics database and later

tested on freshly captured ECG and PPG samples.

The fresh ECG and PPG signals were filtered and then converted to a

format that was recognised by the WFDB routines (Daniel J Scott et al. 2013b;

Silva and G. B. Moody 2014). The WFDB library was installed on BBB, and

software utilities from the library were used to convert the ECG waveforms to a

WFDB format. The MIMIC II Waveform Database is one of the two MIMIC II

Databases. The waveform database contained several thousands of records of time

series that have been digitised using physiological waveforms and simultaneously

recorded Numerics (vital signs) signals of physiologic measurements. Some records

also contain alarm annotations and signal quality indexes. The waveforms could

be visualised online or by using a WAVE toolkit (Vest et al. 2018) . PhysioNet

is a widely used resource for complex physiologic signals, which was created for

the ’Research Resources’ of the National Institutes of Health (NIH), to instigate

the study of cardiovascular and other complex biomedical signals. WFDB is

a major component in the PhysioToolkit, and it has about 75 applications for

signal processing and automated analysis (Saeed et al. 2011). For the current

research experiment and data analysis however, the MIMIC II waveform and
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Numerics database was used. The database contained physiologic signals and

vital signs in a time series format that were captured from patient monitors

for tens of thousands of ICU patients. Data were collected from a variety of

ICU admissions varying from (medical, surgical, coronary care, and neonatal)

related admissions. The MIMIC II Clinical Database contains clinical data from

bedside monitors, and written notes taken by doctors and nurses. The MIMIC

II Waveform Database included records of high-resolution physiologic waveforms

and minute-by-minute numeric (vital signs) time series (trends) of physiologic

measurements. Waveform Database records were matched to the corresponding

clinical database (Vest et al. 2018; Pirracchio 2016). The recorded waveforms

and Numerics (vital signs) included ECG signals, and often included Arterial

Blood Pressure (ABP) waveforms, fingertip PPG signals, and respiration rate

signals depending on the patient condition that was being monitored. Numerics

(vital signs + physiological signals) typically included heart and respiration rates,

SpO2, and systolic, mean, and diastolic blood pressures. The recording lengths

also vary from a few days in, to several weeks long. Waveform signals in MIMIC

II/III were captured at 125 samples/second and consisted of ECG, PPG, RESP

(Respiratory Rate), and SysBP (Systolic Blood Pressure) signals (Saeed et al.

2011; Pirracchio 2016), amongst others. For calculating the trauma and injury

severity scores, Heart Rate (HR), Respiratory Rate (RR), Systolic Blood Pressure

(SysBP), Oxygen Saturation (SpO2) values were used. In the next section a

method to acquire vital signs from ECG and PPG signals captured from human

subject is described, which includes the method to convert the samples to WFDB

format such that the samples could be passed through the WFDB routines, which

require the samples to be sampled at a particular sampling frequency and gain

and should be within signal amplitude threshold.

3.5 Scikit-Learn machine learning package

The trained models were persisted using the method pickle.dumps() in the

Scikit-Learn package ‘pickle’. This method dumped the persistence version of

the classifier model as a binary file that could be recognised by Scikit-Learn. The
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file was copied to BBB which already had Python and Scikit-Learn installed on

it. The Python program running on BBB could load the persisted model using

the method pickle.loads(). Once the model was loaded in the memory, it could be

used for classification tasks on the fresh test ECG waveforms using the predict()

method of that particular classifier. By using the pickle package the classifier was

not required to be trained again on a different target machine, especially if the

target device is a resource constrained like BBB, with less memory and processing

power as compared to a desktop.

The feature vectors were extracted from the fresh ECG signal over a 10 seconds

interval as it is a common practice with standard ECG signal acquisition in clinical

environment. A single ECG strip is 10 seconds in duration. As the classifier

model was already trained and persisted, it could be loaded back in the memory

using the pickle.loads(file) function in the pickle package. The classification task

was performed using the predict method on the classifier. The classification

accuracy was analysed using metrics.accuracy_score, metrics.confusion_matrix

and classification-report from sklearn.metrics package.

Classifier = pickle.loads(file)

Classifier.predict(feature_vectors)
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ECG Analysis and Arrhythmia

Detection

4.1 Introduction

A very important aspect of personalised healthcare is to monitor an

individual’s health using wearable biomedical devices continuously and essentially

to analyse and if possible to predict potential health hazards ahead of time. The

prediction aspect embedded in the system helps in avoiding delays in providing

timely medical treatment, even before an individual reaches a critical condition.

This chapter focuses on early signs cardiac arrhythmia detection and

classification using the ECG samples obtained from a wearable 3-lead ECG kit.

Also, the state-of-the-art research shows extensive use of Heart Rate Variability

(HRV) analysis for arrhythmia classification, which depends largely on the

morphology of the ECG waveforms and the sensitivity of the ECG equipment,

induces errors in classification. The wearable 3-lead ECG kits are susceptible

to calibration and measurement errors, so the accuracy of classification has

to be dealt with at the machine learning phase. The clinical application of

HRV analysis and effectiveness in its adoption are still a matter of research

and the results tend to vary across age, gender, medications, health status,

and physiological variations, among others (Voss et al. 2015). Furthermore,

outliers due to spurious ectopy and motion artefact can have major effects on

computed HRV values, especially as seen in elderly population with varying

80
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supra-ventricular rhythm. HRV analysis is based on the RR-intervals of the

waveform, so the analysis can only provide time and frequency domain measures

of the waveforms, however the subtle differences in the waveforms as observed

in the normal sinus rhythm and Premature Atrial Comtractions (PAC), due to

overlapping P-wave and QRS complex, do not produce significant time/frequency

variations to provide a clear classification boundary between PACs, PVCs and

normal sinus rhythm. With an aim to detect early warning to arrhythmia, the

objective during this research study was to identify beats containing PACs and

PVCs and separate these from the normal beat waveforms. The differentiating

factor between the PACs, Premature Ventricular Contractions (PVC) from the

normal sinus rhythm was the PR-interval portion of the waveform and the

abnormal QRS complex. So, in addition to RR-interval other features had to be

identified which could increase the accuracy of classification. As an ECG waveform

is a power signal, power spectral analysis provided the Power Spectral Density

(PSD) measures of the sub-waves in the ECG waveform, which provided the

required features along with RR-intervals to improve the arrhythmia classification

accuracy into the two early signs arrhythmia classes (PVCs and PACs), which

was the key hypothesis during the research experiments described in this chapter.

To derive these spectral estimates a unique feature engineering algorithm was

developed during this research study and is presented in this chapter. The

algorithm implements a finite state machine that takes as input the start and

stop locations of the P-wave, QRS-wave and the T-wave and the respective

peak locations of these sub-waves and calculates their power spectral densities.

The P-waves, PR-intervals and QRS complexes were considered and the power

spectral densities of these sub-waves were included in the feature vector that

was used for arrhythmia classification. Once the power spectral densities were

included as a feature vector, the accuracy of classification increased to 97%

with the PSD of PR-interval alone, contributed in excess of 35% of total feature

importance. The consolidated feature extraction algorithm was used to extract

the following features: PR_Interval, PR_PSD (PR-Interval Power Spectral

Density), QRS_Interval, QRS_PSD (QRS_Interval Power Spectral Density),

RR_Interval, PowerSpectralDensity (PQRST waveform Power Spectral Density),
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SignalToNoiseRatio. The class labels were the annotation set AnnotationType:V,

A, N with V representing PVCs, A representing PACs and N representing normal

sinus rhythm.

As the heart-rate depends on RR-interval, these two were found to

be negatively correlated (Pearson) amongst themselves (r = -0.359, p < 0.001)

and F (2, 24187) = 1125.58, p < 001 R2 = 8.5%, table 4.2. From each of

the 48 records in MITDB database about 650,000 (pre-filtered and denoised)

samples per record were used to train the classifiers to classify a heartbeat

sample as belonging to a category label (AnnotationType) of an abnormal beat

annotation. The MITDB dataset had adequate number of samples to enable

classification between four major annotation types V,A,L,R representing PVC,

PAC, left branch bundle block, right branch bundle block respectively, so the

initial classification task involved classification for these abnormal annotation

types only. The feature vector for V,A,L,R classification consisted of feature

set: age, gender, RR-Interval, ECG signal value mV. From the experiments

performed using several classifiers, k-Nearest Neighbours (k-NN ) classifiers yielded

99.4% accuracy. The feature extraction algorithm extracted features for 24,190

annotations representing the abnormal V,A,L,R annotation types. Due to the

disproportionate number of abnormal annotation types, which were approximately

81 abnormal beats per 100,000 beats, the dataset had imbalance in classification

labels. The problems related to dataset imbalance was solved using the SMOTE

(Synthetic Minority Oversampling Technique) imbalance reduction technique as

the A-type and V-type annotations were only 5% and 25% of total annotation

count. As the A-type and V-type annotations represented early signs arrhythmia,

these two were considered for classification purpose along with the normal N-type

annotation. Considering the dataset imbalance and spectral components of

PR-Interval and QRS complex a consolidate feature extraction algorithm was used

to extract the features. A classification model was developed using GridSearchCV

and RandomForestClassifier with balanced-accuracy scoring, 500 estimators and

StratifiedKFold cross validation with 5 splits and a ’balanced’ class-weight as

parameters. An overall classification accuracy score of 97% was observed. The

precision accuracy for classification of both V-type and A-type annotations was
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100% and for N-type annotation the precision accuracy was 91%. The recall scores

were 90%, 100% and 100% for A, V and N type annotations. As the aim of the

research was to implement the early signs arrhythmia detection algorithm on a

wearable device, the freshly captured ECG samples had to be filtered, denoised

and baseline corrected using Chebyshev 2nd order and Savitzky-Golay filter. An

extended feature extraction algorithm was used for signal conditioning and for

extracting features from the samples collected in real time using the wearable

ECG kit. As the classification algorithm trained on the ECG samples from

MITDB dataset was to be used on the real-time ECG samples, these had to

be converted in accordance with the MITDB dataset digitisation format using

WRSAMP utility found in the WFDB software library provided by PhysioNet.

The WRSAMP routine, takes the raw ECG sample along with gain and scaling

factor as an input and converts it to MITDB compatible sample, represented by

a 16-bit two’s complement amplitude stored least significant byte first.

4.2 Methods: Feature extraction and data

analysis for MITDB records

The Class 1 MITDB waveform database is considered the gold standard

in ECG analysis and is widely used, referenced and more importantly it is

manually annotated by medics and is quite reliable as there are samples of various

types of arrhythmia, that are representative of an arrhythmia type, found in

patients suffering from heart related conditions. In order to classify arrhythmic

beats, MITDB waveform records were used to prepare datasets to train classifiers.

The most essential aspect of data analysis is feature extraction and selection

following which the models are usually trained.

4.2.1 Feature extraction using WFDB for V,A,L,R

arrhythmia types

In order to extract features from the ECG waveforms the WFDB library was

extensively used initially to achieve the following functions:
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• To select the database records and to open and read signal files

• To set the input sampling frequency and the input/output read/write modes

• To read annotations of the signals for further analysis.

• To carry out time and frequency conversions and to carry out calibration of

signals.

The problems related to HRV analysis were that there was significant

attenuation in high-frequency ECG signals as in the case of tachycardia and

abnormal beat rhythms. As an alternative, frequency domain spectrum analysis

using Lomb periodogram was performed, and the spectral density was used

as a feature (Silva and G. B. Moody 2014). The Heart rate variability

(HRV) (Achten and Jeukendrup 2003) has been widely applied in basic and

clinical research studies, however, due to the side-effects of effects of age,

gender, drugs, health-status measures among others, it is prone to erroneous

calculations, especially for real-time arrhythmia detection. Furthermore, outliers

due to ectopy and motion artefacts can have major effects on computed HRV

values. As an alternative to HRV analysis, frequency domain analysis of signals,

especially containing the abnormal heartbeats, was conducted separately for each

arrhythmia type used in this research as a precursor to more fatal arrhythmia.

Features were extracted for each abnormal heartbeat that indicated an arrhythmia

type. As the annotation symbols represented each of the arrhythmia types in the

MITDB records, the feature vectors were extracted for these four annotation type

symbols: V (Premature Ventricular Contraction: PVC), A (Atrial Premature

Beat: APB), L (Left bundle branch block beat: LBBB) and R (Right bundle

branch block beat: RBBB) (Ary L Goldberger et al. 2000; G. B. Moody and

Mark 2001). In addition to these abnormal annotation type symbols, the MITDB

database records are annotated with N annotation type at locations where normal

heartbeats were found. The V-type and the A-type annotations do occur in

ECG recordings of healthy human subjects as well and can go unnoticed without

showing any symptoms (Katritsis, Siontis, and A. J. Camm 2013; Russo 2015).

It may take as many as three consecutive PVCs before a ventricular tachycardia

is detected or confirmed (Lerma and Glass 2016; Russo 2015) and frequent APBs
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may lead to atrial fibrillation over a period of time (E. Burns 2018; Di Marco

et al. 2014; German et al. 2016). Similarly, LBBB and RBBB may lead to

1st or 2nd-degree heart block. Similar argument could be made for A-type

annotation which refers to Premature Atrial Complexes (PAC) and though it can

go undetected without showing any symptoms, it may lead to atrial fibrillation.

For all the records, the feature vectors that attributed to abnormal heart

rhythm were identified. The important features were: Age, Gender, the ECG

signal amplitude for each sample (millivolts), RR-Interval (inter-beat interval

in milliseconds) in ECG recording. These features were used for classifying

four annotation types V,A,L,R (G. B. Moody and Mark 2001). Initially, the

classification tasks only focused on classifying abnormal annotation types V,A,L,R

into their respective class labels (Walinjkar and Woods 2017a). For each record in

MITDB there are files with the following extensions: dat, atr, hea, qrs. E.g.

for record number 100, MITDB provides files such as 100.dat containing digitised

samples, 100.atr file containing locations of annotations, 100.hea file containing

information about the record file (ECG leads used, sampling frequency, age,

gender, and medications). Initially, the ’RDSAMP’ (READ SAMPLES) utility

was used to convert the samples to WFDB compatible format in MATLAB (Silva

and G. B. Moody 2014). This utility could read all the samples within a record

with the default sampling frequency of 360 Hz. Approximately 650,000 samples

per record were read as sample values in millivolts against sample timestamps

expressed as sample numbers where sampling interval between two consecutive

samples was 0.00277 seconds (1/360 Hz). RDSAMP returned sample numbers

(tmSamples) and signal value (sigmV) in mV.

[tmSamples,sigmV]=rdsamp(recordNumber)

Normal beats were removed from the samples and only the abnormal beat

annotations were read by the ‘RDANN’ (READ ANNOTATIONS) utility in WFDB

library. The default annotation file with ’atr’ extension corresponding to the

MITDB record was used to locate the annotations. This annotation file contained

information about the annotation locations within the waveform. The function

returned annotation locations as sample numbers for annotation types V,A,L,R

and sub-types. The annotation types are an indicator of abnormal events within
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an ECG waveform. The annotation sub-types point to locations that provide

more information about the waveform at a particular instance in time. e.g. the

symbols ‘(’ and ‘)’ indicate the start and stop locations of P-wave, QRS wave or

the T-wave. For values of ann = {V| A | L | R}, all the annotations and their

locations in the waveform for these abnormal arrhythmia types could be obtained.

[annotationtype,annotationsubtype]=rdann(recordNumber,‘atr’, ann)

For each annotation-type with value N, which corresponded to the QRS

peak locations, the ANN2RR (ANNOTATION to RR Interval) utility was

used to extract the duration between two consecutive R peaks within an

ECG waveform. The function took ‘atr’ file as the annotator and returned

the RR-interval at a particular sample number location corresponding to

annotation-type N. The RR-intervals by were obtained in terms of number

of samples (rrIntervalInSamples) which were multiplied by 0.00277 seconds to

obtain RR-Intervals in milliseconds (rrTmSampleNumber).

[rrIntervalInSamples,rrTmSampleNumber]=ann2rr(recordNumber,‘atr’)

The normal annotation type expressed as ‘N’ was not considered for

analysis as it contributed to dataset imbalance and noise as the number of normal

waveforms exceeded any of the abnormal annotation types by a very large quantity.

The abnormal ECG waveforms corresponding to annotation types V,A,L,R have

their own properties (e.g. Regularity, P-waves present/absent, QRS interval

Heart-rate) that could be used to identify these abnormalities as shown in table

4.1. These properties corresponding to the annotation types are shown in a tabular

form. It could have been possible to separate the normal beats from abnormal

beats based on the normal range of values of these properties alone. As these

properties of the abnormal annotation types, especially V, A, N annotation types,

had subtle variations, additional properties had to be measured and extracted

using spectral analysis methods. E.g. The A-type and the N-type waves are

similar in morphology though the T-wave and the P-wave in two consecutive

heartbeats overlap and there is no fixed time duration to identify and ascertain

this duration, so instead of time domain analysis frequency domain analysis

was required. For classifying heartbeats into abnormal types only, the N-type

annotations were not considered. In all 24,190 samples were extracted for the
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annotation types V,A,L,R . (Walinjkar and Woods 2017a; Walinjkar and Woods

2017b)

V,A,L,R sample quantities : The following quantities of V,A,L,R

annotations were found in the entire MITDB dataset when RDANN was executed

on all the records in the MITDB dataset:

• Premature Ventricular Contractions (PVC): 9130

• Premature Atrial Contractions (PAC): 1546

• Left Branch Bundle Block (LBBB): 7075

• Right Branch Bundle Block (RBBB): 6259

In clinical practice, heart-rate is measured in beats per minute (bpm)

and is mostly computed by extrapolation. In HRV analysis, however, heart-rate

is modelled as as a quasi-continuous signal, and the RR-interval series is used

to obtain samples of that signal at frequent intervals the reciprocal of each

interval in minutes is used to calculate the instantaneous heart-rate. To determine

whether the extracted features adequately represented the classification labels,

it was essential to determine whether they independently contributed to the

classification. The heart-rate and the RR-interval were negatively correlated

(Pearson - parametric) to each other (r = -0.359, p < 0.001), figure, 4.2, with a low

degree of regression F(2, 24187) = 1125.58, p < .001 R2 = 8.5%. The RR-intervals

and heart-rate followed a normal distribution in the dataset, so either of these

two could be chosen as one of the primary features. As heart-rate depended on

RR-interval, the RR-interval was chosen as one of the primary features.

4.2.2 Data analysis for classification of V,A,L,R

arrhythmia types

In this subsection classification models that could accurately classify the

samples as V,A,L,R annotation types has been presented. The objective of the

machine learning based data analysis was to train a machine learning model on

datasets comprising of V,A,L,R annotation types, such that, when a fresh set
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ECG waveform clinical properties
Annotation
types

Normal
sinus
rhythm

Premature
ventricular
complex

Premature
atrial
contractions

Left
bundle
branch
block

Right
bundle
branch
block

Annotation
symbols as
represented
in MITDB
database

N V A L R

Regularity Regular Irregular Irregular Irregular Irregular
P-waves Present Absent Present

though
premature
and may
distort
previous
T-wave

Present Present

PR interval 0.12
to 0.20
seconds

Zero
seconds

0.12 to 0.20
seconds

0.12
to 0.20
seconds

0.12
to 0.20
seconds

QRS
interval

Less
than 0.12
seconds

Greater
than 0.12
seconds
wide and
bizarre

Less
than 0.12
seconds

Greater
than 0.12
seconds
though
inverted
QRS
complex.

Greater
than 0.12
seconds
though
biphasic
with
inverted
T-wave

Heart-rate 60 to 100
bpm

60 to
100 bpm
though
depends
on the
underlying
sinus
rhythm

60 to
100 bpm
frequently
higher
though
depends
on the
underlying
sinus
rhythm

60 to
100 bpm
though
depends
on the
underlying
sinus
rhythm

60 to
100 bpm
though
depends
on the
underlying
sinus
rhythm

Table 4.1: ECG waveform clinical properties with their normal value range
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Correlation RR-Interval, HeartRate
HeartRate RR-Interval

HeartRate Pearson Correlation 1 -.359∗∗
Sig. (2-tailed) .000
N 24190 24190

RR-Interval Pearson Correlation -.359∗∗ 1
Sig. (2-tailed) .000
N 24190 24190

**. Correlation is significant at the 0.01 level (2-tailed).
Regression Summary - RR-Interval, HeartRate
R R

Square
Adjusted
R
Square

Std.
Error
of the
Estimate

Change Statistics

R
Square
Change

F
Change

df1 df2 Sig. F
Change

.292a .085 .085 1.143 .085 1125.587 2 24187 .000
a. Predictors: (Constant), RR-Interval, HeartRate
b. Dependent Variable: AnnotationType
ANOVAa

Model Sum of
Squares

df Mean
Square

F Sig.

1 Regression 2942.851 2 1471.425 1125.587 .000b

Residual 31618.500 24187 1.307
Total 34561.351 24189

a. Dependent Variable: AnnotationType
b. Predictors: (Constant), RR-Interval, HeartRate, F(2, 24187) =
1125.58, p < .001, R2 = 8.5%

Table 4.2: Correlation and Regression scores between RR-Interval and HeartRate

of test ECG samples were input to an algorithm, it could detect the abnormal

annotation types. The problem was essentially a supervised learning task as the

response variable, AnnotationType, was a categorical variable with class labels

V,A,L,R and the samples had to be classified into one of these class labels

(Walinjkar and Woods 2017a). A multi-class supervised learning classification

model was used with the feature set: {age, gender, RR-Interval, signalValue}

with distribution shown in table 4.3.
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The samples distribution of extracted features in 24,190 samples for
abnormal V,A,L,R annotation types in MITDB records
Age
Int16

Gender
Categorical

RR-Interval
Double

SignalValue
Double

AnnotationType
Categorical

Min
23
Median
64
Max
89

0 Male
1 Female

Min
90
Median
288
Max
2114

Min
-3.955
Median
1.03
Max
3.635

1 6638
2 2443
3 7091
4 8018

Table 4.3: Samples distribution descriptive statistics for V,A,L,R type annotations

4.2.2.1 Supervised-learning classification models for V,A,L,R

annotations

For initial exploratory analysis using supervised learning classification

models, only the abnormal annotation types V,A,L,R were considered. The

normal beats annotation represented by the annotation type symbol N was

not considered as the proportion of abnormal V,A,L,R type annotations to the

normal N type annotations in the MITDB records in total, was in the order of:

24,190 / (650,000 x 48) which is approximately 81 abnormal beats per 100,000

beats. The feature extraction algorithm could identify 24,190 samples in the

entire MITDB dataset that had V,A,L,R annotation types. The disproportionate

samples quantity presented a problem of dataset imbalance which was solved using

Scikit-Learn imbalance reduction method presented in later subsection 4.3.3. For

the purpose of classifying samples into V,A,L,R annotation types, only abnormal

beat samples were considered and the normal N type annotations were filtered.

The most important features were the RR-interval along with signalValue and the

AnnotationType was one-hot-encoded from a categorical variable type into four

class labels.

The classification learner application in MATLAB was used to train

the samples considering all the four features as predictors and parameters shown

in table 4.4. Due to the sparsely scattered nature of the predictors, k-Nearest

Neighbours (k-NN ) classifier was chosen. The parameters used for k-NN
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classifiers to enhance the performance of the classifier provided in table 4.4. A

total of 24,190 samples in all of the 48 records in MITDB database were used to

train the classifiers to classify a heartbeat sample as belonging to a category (or

label) of an abnormal beat type.

The supervised learning classifiers used with corresponding parameter
values used in MATLAB classification learner
Feature vector: Age, Gender, RR-interval, signalValue
Class labels: V,A,L,R
Bagged Trees classifier

Ensemble method:
Bag Learner Type: Decision tree
Number of learners: 30
10-fold cross-validation

Weighted k-NN classifier

Number of neighbours: 10
Distance metric: Euclidean
Weight: Squared inverse
Standardised data: true
10-fold cross-validation

Table 4.4: Supervised-learning classifiers for training samples to classify V,A,L,R
annotations

4.2.2.2 Results: Supervised-learning classification of V,A,L,R

annotations types

The k-NN classifier and bagged tree classifier produced higher percentage

of overall accuracy in classifying the test samples in all the four types of arrhythmia

as shown in figure 4.1 and 4.2 confusion matrix. As the tree based models

tend to have overfitting, especially near the hyper-planes for densely populated

samples, 10 fold cross-validation was used in MATLAB Classification Learner

which produced 97.8% and 98.5% overall classification accuracy for k-NN and

Ensemble Bagged Tree classifiers, respectively. The dataset did not contain a

large number of features, however features like age, gender produced a bias in

the classifier towards a certain age group, as the maximum number of patients in

the dataset happened to be in a higher age group. As RR-interval was the single

most important feature used in the list of predictors, and only 48 records were

available within a certain age group, the classification model may have biased

towards identifying a record rather than the classification of arrhythmia.
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Figure 4.1: k-NN with Number of neighbours: 10; Distance metric: Euclidean;
Distance weight: Squared inverse; Accuracy of 97.8% for classifying 4 annotation
types of Arrhythmia in MITDB database. Ensemble Bagged Tree classifier
produced classification accuracy of 98.5%. The MATLAB classification learner
was set to cross-validate at 10-fold cross-validation

4.2.2.3 Methods: Neural-network classification for V,A,L,R

annotation types

It was argued that the k-NN classifier and the bagged tree based

classifiers produced overfitted models, so a neural-network pattern recognition

model was also developed. The neural networks are very good at solving

pattern recognition problems and are not prone to overfitting as the number of

neurons and their weights can be altered in the hidden layer. They are also

good at solving problems where complex decision boundary decisions have to

be made. The two-layer feed forward neural-network, with one hidden layer,

can learn any input-output relationship given enough neurons in the hidden

layer. In order to test the dataset and extracted features and to discover

patterns in the ECG samples for all the four types of arrhythmia neural-networks

pattern recognition models were developed. Similar experiments have been

performed in the past where patterns of ECG recordings were analysed in

order to extract patterns using artificial neural-network models, and QRS wave
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Figure 4.2: Confusion matrix for k-NN classifier model for classifying from a
total of 24190 samples across all 47 MITDB records where all the feature vector
elements (age, gender, signalValue, RR-Interval, ) were used for V=1, A=2, R=3,
L=4 class label type of annotations.

characteristics of abnormal beats were compared with normal beats to classify

and predict arrhythmia (Adams and Choi 2012; El-Khafif and El-Brawany 2013).

Similar techniques exist which use multi-layer feed-forward perceptron models to

analyse the waveform for prediction and analysis (Adams and Choi 2012). The

MATLAB Neural Net Pattern Recognition model with 25 hidden neurons and

Levenberg-Marquardt (back-propagation) training algorithm was used to train

the model on the dataset. Different combinations of training-validation-test

(70-15-15) %, (60-20-20) % and (60-25-15) % data split percentage were

experimented with to generate cross-entropy and classification percentage error.

E.g. For (70-15-15)% combination, the input vectors and target vectors were

randomly divided into three sets as follows: 70% used for training, 15% used

to validate whether the network was generalising and if necessary to stop
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training before overfitting occurred and 15% used for a completely independent

test of network generalisation. The cross-entropy error to evaluate network

performance of the neural-network was obtained. The cross entropy error

calculated a network performance score given observed and expected outputs,

with optional performance weights and other hyper-parameters. The model

penalised outputs that were extremely inaccurate, with very little penalty for

fairly correct classifications; minimising cross-entropy error and leading to good

classifiers. For optimally performing neural-network pattern recognition models,

with cross-entropy error of less than 10 and classification errors of less than

2.1% were obtained for several combinations of training-validation-test split as

shown in table 4.5. Confusion matrices for the neural-network pattern recognition

classification tasks are provided in subsection 4.2.2.4

MATLAB Neural Net Pattern Recognition for V,A,L,R classification
with different combinations of Training-Validation-Test data
percentages.
Type of
Neural
Network

Number
of Hidden
Nodes

Percentage
(%) Training-
Validation-Test
data

Mean-squared
error (MSE) and
Regression R for
test data.

Neural Net
Pattern
Recognition

25 70-15-15 Cross-Entropy Error for
test data: 7.6
Percent Error: 1.2

25 60-20-20 Cross-Entropy Error for
test data: 9.9 and
Percent Error: 2.1

25 60-15-25 Cross-Entropy Error for
test data: 8.7 and
Percent Error: 1.7

Table 4.5: Neural-Network Pattern Recognition results for V,A,L,R annotations

4.2.2.4 Results: Neural-network classification for V,A,L,R annotation

types

Confusion matrices for neural-network pattern recognition in MATLAB with the

three combinations of data split, as described in section 4.2.2.3 are as shown in

figure 4.3 and 4.4. Classification accuracy scores of 96.7%, 95.7% and 96.7% were
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obtained for combinations of training-validation-test (70-15-15) %, (60-20-20) %

and (60-25-15) splits respectively.
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Figure 4.3: Confusion matrices for MATLAB Neural Net Pattern Recognition
yielded 1.3%, 2.5% and 1.7% classification error for training, validation, test
data sets in following configuration: (70%,15%,15%), (60%,20%,20%) and
(60%,15%,25% split - continued in figure 4.4). Scaled Conjugate Gradient
back-propagation algorithm was used as available default in MATLAB pattern
recognition tool with the neuron network depth set to 25.
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Figure 4.4: Confusion matrices for MATLAB Neural Net Pattern Recognition
continued for (60%,15%,25%) split. Scaled Conjugate Gradient back-propagation
algorithm was used as available default in MATLAB pattern recognition tool with
the neuron network depth set to 25.
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4.2.3 V,A,L,R classification problems when N-type

annotations considered

Having performed supervised learning based classification using k-NN

and neural-network pattern recognition with a higher level of overall accuracy,

the effectiveness of using classification models could be ascertained, however

these models could not be used in real-time ECG samples classification and

cardiac arrhythmia detection and classification as the N-type annotations which

represented the normal type samples were not considered in this classification

task. In the real time cardiac arrhythmia detection and classification scenario,

the ECG samples captured from the human subject would be a mixture of normal

and abnormal type of heartbeats. Also, since features such as age and gender

were used for classification along with RR-interval, the models could be biased

in classifying MITDB records rather than generalising to classify any random

V,A,L,R dataset. So a classification model that can generalise and that has been

trained on a mixture of all types of normal and abnormal beats was required to

perform the classification task in real-time. Also as the research study focused

on premature arrhythmia the left and the right branch bundle blocks were not

considered for further data analysis tasks.

To briefly examine how a classification model would perform under

a mixture of samples of V, A, N annotation types a GridSearchCV with

RandomForestClassifier classification was performed to obtain a classification

report with precision, recall, f1-score metrics in Scikit-Learn, shown in table 4.6.

The GridSearchCV best parameters used were criterion=gini, max_depth=8,

max_features=auto, number of estimators=200, class_weight=balanced and

10-fold cross-validation. Although it could be observed that the overall accuracy of

93% was obtained, the classification accuracy of A-type annotation was less than

40%. This was largely due to the imbalance in the dataset where the abnormal

samples were only 81 per 100,000 samples. Even amongst the abnormal types

i.e. the V-type and the A-type annotations, the V-type annotations samples were

more than five times in number.

An alternate feature extraction model was therefore required which could

extract more appropriate features that would enable an accurate classification. In
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Table 4.6: Less accurate classification due to dataset imbalance when N-type
annotation included

order to identify features to enable accurate classification, a more detailed study

of the ECG signal was carried out, especially considering the V-type and A-type

annotations. The V, A, N type signals had peculiar waveform characteristics. The

QRS width and the absence of PR interval in the V type waveforms differentiates

it from other waveform types. Similarly, there is an overlap in two consecutive

waves in an A-type abnormality. These clinical differences manifest in the ECG

waveforms for the respective annotation types and features could be extracted

which would enable an accurate differentiation in these annotation types and

may enable accurate classification. In the next subsections spectral analysis of

ECG waveforms has been illustrated followed by a consolidated feature extraction

algorithm that could extract more meaningful and accurate features. Similar

experiments have been conducted in the past such: frequency domain analysis

and Fourier Transform (Lin 2008) methods to classify abnormal beats based on

the morphology, though the method doesn’t provide any classifier models with

prediction accuracy scores. (Surda et al. 2007) have recognised the fact that due

to irregularity in ECG signals, which may contain normal or abnormal beats,

the spectral components in a signal can vary, though can be modelled to provide

measures to characterise the signal.

4.3 Methods: Spectral Analysis of V, A, N

annotation types

If a single normal heartbeat waveform is examined, with a clinical

perspective, it consists of the P-wave, the QRS complex and the T-wave and
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compare the normal sinus rhythm with the abnormal waveforms a noticeable

difference could be found. From the clinical literature concerning premature

ventricular contractions, i.e. the V-type annotations, the QRS width of this type

of abnormality is wider than the other abnormal annotations. The PR interval

may or may not be present. So the PR interval and the QRS interval could be

considered as important features in classification tasks. The problem however is

that these two features depend on the morphology of the waveforms and since

there is a lot of additive noise in the ECG waveforms collected from the human

subject using a three lead ECG kit, the correctness and the accuracy of PR and

QRS intervals could not guarantee an accurate classification.

Alternate measures were required that could be used reliably as features

to train the classification model. There are only subtle and minor variations

between the abnormal annotation types (V,A,L,R ). Hence, if only the clinical

properties such as regularity, PR interval, QRS interval and RR interval were

considered it would have been difficult to classify between abnormal annotation

types or even to differentiate between normal and abnormal annotation types.

In order to facilitate this differentiation signal processing approach was chosen

and signal properties were extracted. If an ECG signal is closely examined with

signal processing perspective, considering the time and frequency properties of

the ECG signal, it can be observed that despite being a signal that repeats in

pattern, there is an element of randomness, especially with signals with events

related to arrhythmia. The signal pattern of P-wave-QRS wave-T-wave may

repeat, though in time domain the inter-beat intervals show variations (Surda

et al. 2007). These variations exaggerate when abnormal events occur. It was

difficult to determine the periodicity of the ECG waveform, especially when

V,A,L,R types of abnormalities occurred. An alternate method was therefore

adopted to represent features like the PR interval, QRS interval and the power

in the signal in frequency domain. Properties such as auto-correlation within

the same signal or cross correlation between two signals with same annotation

type could have been used, however, the correlation and covariance matrices

would only provide coefficients and residual factors explaining the degree to which

the signals exhibit randomness. It would have been difficult then to obtain a
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definitive value to express randomness as a feature value when the abnormal

heartbeat occurred. This problem of ineffective representation using correlation

and covariance matrices was due to the time domain representation of the signal.

In order to circumvent the problem of representation, frequency domain analysis

of the abnormal heartbeat was performed. In the frequency domain, the power

spectrum of each abnormal heartbeat type was derived, which was followed by the

spectral analysis of the abnormal heartbeat, using periodogram and spectrograms

associated with the abnormal heartbeat. It was observed that a unique value

could be calculated to express the power spectral density in a signal with abnormal

heartbeat. There was a power spectrum associated with each of the four types of

arrhythmia, figure 4.5. E.g. the figure 4.5 showing the samples plot along with

the power spectrum associated with the V-type annotation (PVC). The power

spectrum was generated using MATLAB routine spectrogram with a Hamming

window (Harris 1987) of one segment and segment length containing total number

of samples in the signal. A Lomb-Scargle periodogram (Delane et al. 2016) was

generated for the V-type annotation normalised by scaling the variance of the

sample values by a factor of two with normalised power spread from 10dB to

-30dB, produced due to dominant frequencies over the wide QRS complex and

absence of P-wave in V-type annotation. The spectrogram showed strong spectral

densities (35dB and higher) between samples 40 and 60, due to a wider QRS

complex. Also, due to absence of PR interval, less or no spectral densities from

samples 10 to 25 were observed.

4.3.1 Power spectrum computations

ECG a power or an energy signal : ECG signal waveforms, either normal or

abnormal, are continuous over a given window of observation and possess infinite

energy over that window, such signals are called power signals. A window of

observation could be tens of seconds as in an ECG strip or a lifetime, during

which it is assumed the signal never dies. For power signals, power is expressed

only as average power and for such signals Fourier transform may not exist as they

may not have a finite integral, so a single measure of power cannot be obtained
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Figure 4.5: Power spectrum content in a single QRS complex in a single V-type
heartbeat in an ECG waveform
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and spectral densities of the power signal have to be considered instead.

Average power (Pa) of signal x (t) : 0 < Pa < ∞

Average power (continuous, time : T ) Pa = lim
T→∞

1
2T

∫ T

−T
|x (t) |2dt

Average power (discrete, length : N)Pa = lim
N→∞

1
2N + 1

n=N∑
n=−N

|x[n]|2
(4.1)

Non-stationary nature: The ECG signals regardless of their annotation types are

non-stationary signals as their statistical properties vary with time, i.e. statistical

measures e.g. mean, variance and deviation of all the samples in a single heartbeat

change over time and no two heartbeats have the same values for these statistical

measures (Paithane and Bormane 2014).

Auto-correlation: Auto-correlation is a measure of correlation of a signal with its

own delayed instance, expressed as function of delay. For non-stationary signals

however, the auto-correlation property of the signal could not be calculated as the

expected value E {X (t)} of the signal at a given point in time will not be equal

to the original value of the signal x(t) (with Fourier transform X (t)) displaced by

‘k’ intervals.

For an ECG signal x (t) with discrete equivalent x [n]

E {X (t)} 6= 〈x(t+ k)〉

E {X (n)X(n+ k)} 6= 〈x (n) x(n+ k)〉

(4.2)

It then followed that instead of using auto-correlation and average power

as features, the power spectral density could adequately represent the annotation

types and could be used as a feature. The ‘power spectral density is a vector of

coefficients of power spectrum of the signal, so ‘bandpower ’ was calculated which

took PSD coefficients as input and produced a measure of band power in the

signal, which was used as a feature value.

Also, in order to emphasise the advantage of using power spectral

density as compared to using the QRS intervals in time domain, the bandpower
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values associated with the power spectrum of some ECG heartbeat samples were

calculated. The comparison of PSD estimates against corresponding QRS intervals

for V-type and N-type signals is presented in figures 4.6a and 4.6b. It was

observed that despite minor or no variations in QRS intervals there were significant

variations in corresponding bandpower values equation 4.3.

E.g. Let QRSN and QRSV be QRS intervals for N − type and V − type

signals with Bandpowers BPN and BPV respectively.

QRSN = {36, 36} <corresponds to>=⇒ Band Power BPN= {−0.75983, −0.46278}

QRSV = {64, 63} <corresponds to>=⇒ Band Power BP V = {2.0481, −0.36251}

(4.3)

The Welch periodogram (Welch 1967) is a Fast Fourier Transform based

computing method used for estimating power spectra in a signal and is carried out

by dividing the time-domain signal into successive blocks, forming the periodogram

for each block, and averaging over these blocks. For calculations used in pwelch

method to compute power spectral density in an ECG signal:

Divide the available sample sequence of p overlapping sample sequences of D

samples each, shifting S samples between consecutive segments. If original

sequence is x[k] the pth segment can be expressed as:

xp[n] = x[pS + n] (4.4)

Apply the data window w[n] to each segment:

Yp[n] = w[n]xp[n]p = 0, 1, ..., p− 1 (4.5)

The Hamming window, also called a tapering function, is a smoothing function

used to rectify discontinuities at the beginning and end of the sampled signal

(Harris 1987)The Hamming window function w(n) series considered with N
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samples:

w(n) = 0.54− 0.46 cos 2πn
N − 1 (4.6)

Compute the discrete frequency sample spectrum for each of the p windowed

segments.

Sp[m] = T

UD
|Yp[m]|2 (4.7)

where,

U =
p−1∑
n=0
|w[n]|2

Compute the arithmetic average of the p different sample spectra at each

frequency:

Sw[m] = 1
p

p−1∑
p=0

Sp[m],where m =0, 1, ..., D − 1 (4.8)

Root-Mean-Square level of a vector x[n] is:

XRMS =

√√√√ 1
N

N∑
n=1
|xn|2

Bandpower = |XRMS|2
(4.9)

A generic periodogram could only generate power spectrum of a

waveform, though could not generate consistent power estimates for a

non-stationary process like an ECG. A modified Welch’s technique was used

instead to reduce the variance of the periodogram by breaking the time series

into segments. No overlaps were considered as it was a single heartbeat under

consideration. The Welch’s method computed a modified periodogram for a single

Hamming window and segment length containing all the samples in the V-type

or the N-type heartbeat, to produce the PSD estimates. The pwelch function in

MATLAB signal processing toolbox returned the power spectral density (PSD)

estimate, ’pxx ’, of the input signal sample.

[pxx, fn] = pwelch(samplesV type,Hamming(samplesV type))

bandpower = 10log10(bandpower(pxx, fn)
(4.10)
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The reduced time interval between two consecutive RR intervals, due to

premature atrial ectopic beat is an indicator of premature atrial contraction. The

P-wave, in this case, could be distorted as compared to the normal P-wave in

a heartbeat and frequently occurring premature atrial contractions may increase

heart rate as the R peaks occur more frequently in a given time-frame. Hence,

the factors RR interval, presence or absence of P-wave and its distortion were an

important indicator of premature atrial contractions and were used as features

at the data analysis stage. The RR interval has been widely used in HRV

analysis (Peltola 2012) in bedside monitors and wearable ECG kits, though due

to the variability and complex non-linear dynamics of HRV analysis, it has been

found difficult to identify patterns corresponding to particular heart arrhythmia.

Although HRV analysis has been used to identify presence or absence of heart

arrhythmia, it has been difficult to classify the types of heart arrhythmia solely

based on HRV analysis.

4.3.2 Methods: A novel feature extraction algorithm

using spectral analysis and finite state machines

The ECGPUWAVE utility from WFDB library was extensively used to

determine the time intervals for the P-wave, the QRS interval and the T wave.

The ECGPUWAVE utility takes a QRS detector annotator file (‘qrs’ annotator –

GQRS or SQRS annotators from MITDB) as input which has already annotated

an ECG signal with the locations of the QRS peaks. The utility then returns an

annotation file with extension ‘epu’, containing the locations of the onset and end

locations of the P, QRS and T wavelets. The utility uses the sub annotation type

symbols to denote these locations, shown in table 4.7. So the P-wave interval

would be the interval in the symbols sequence ( p ). Similar sequence could be

obtained for the QRS and the T wavelets. According to the sampling frequency

for MITDB records: 1 interval = 0.00277 seconds. So the time interval for the

P-wave denoted by the symbols sequence ( p ) with ‘n’ interval, equals n * 0.00277

seconds. Similarly the time interval for QRS and T-wavelets could be obtained.

For calculating the differentiating factor between the N-type and the

A-type annotation waveforms, figure 4.7a and 4.7b, instead of considering the PR
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(a) V-type annotation.

(b) N-type annotation.

Figure 4.6: Power spectral density and bandpower in a QRS wave in normal N
type and an abnormal V type annotation in an ECG wave in an MITDB sample
record.
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(a) N-type annotation. (b) A-type annotation.

Figure 4.7: Power spectral density content in an abnormal A-type annotation,
with Q-wave and P-wave overlap, as compared to N-type annotation in an MITDB
record

interval (i.e. the P-wave duration) the T-wave sequence ”( t )” was added to

the P-wave sequence of “( p )” resulting into a sequence of the form “( t ) ( p

)” or “( t p )” or a string consisting of a combination of (, t, p, ) annotation

sub-type symbols showing an overlap between the P-wave and the T-wave. It

should be noted that the T-wave from the preceding heartbeat and the P-wave

from the following heartbeat were considered to detect the PR interval of the

A-type annotation and to ascertain whether there has been an overlap between

the P-wave and T-wave of these two consecutive heartbeats. The total time

interval for the “t” and the “p” annotation sub-types provided the required and

the extended PR interval for the A-type annotation. Considering the spectral

contents of the V, A, N type annotations and the ECGPUWAVE annotations and

the locations of the beat and non-beat type annotations a consolidated feature

extraction algorithm was proposed as shown in algorithm 4.1.

Each MITDB record has files with extensions: dat (binary signal), atr

(annotation locations), hea (record information), qrs (QRS peaks locations)

The algorithm required to pre-process the MITDB records using WFDB

library routines to output intermediate file with extension epu and also to extract
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The non-beat type sub annotations at their respective locations in a
P-QRS-T wave in an ECG signal
P-wave p ( p )
T wave t ( t )
QRS wave N ( N )

Table 4.7: The non-beat type ECGPUWAVE annotations at their respective
locations in a P-QRS-T wave in an ECG signal

RR-interval information. The epu file contained the start and stop locations of

the P-wave, QRS complex and the T-wave.

ECGPUWAVE routine provided by WFDB analysed the ECG signal

from the specified record, detecting the QRS complexes and locating the

beginning, peak, and end of the P, QRS, and T waveforms. The output

of ECGPUWAVE was written as a standard WFDB-format annotation file

associated with the specified annotation extension epu. The routine took the

signal dat file and a qrs file as input and generated the epu file. The QRS detector

in the routine was based on the Pan and Tompkins (Pan and Tompkins 1985)

algorithm which used the qrs annotation file provided by MITDB. The GQRS

routine provided by WFDB could have been used as well, however it would have

produced the same qrs annotator.

E.g. ECGPUWAVE (recordNumber, epu) outputs recordNumber.epu file

containing annotations according to table 4.7 and their locations at various

sampling intervals starting from zero.

RDSAMP routine provided by WFDB read the MITDB record signal

file (.dat extension) for the specified record and generated the samples as decimal

numbers on the standard output. The RDSAMP routine starts at the beginning of

the record and prints all samples containing the sample number (tm) and sample

values (signal) beginning with channel zero. In this experiment only the MLII
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(Modified Limb II) channel was chosen corresponding to channel zero.

E.g. [signal, tm] = RDSAMP(recordNumber) returns sample values

and sample number starting from zero.

RDANN routine provided by WFDB read the annotation file (e.g. epu, qrs,

atr files) specified by record or the routine call statement, and generated

a plain text translation to the standard output, one annotation per line.

The output contained (from left to right) the time of the annotation in

sample number corresponding to the timestamp of the annotation; a mnemonic

for the annotation type (V, A, N) and the auxiliary information string, if

any. E.g. [atrannsamplenums, atranntype] = RDANN (recordNumber,’atr’)

returns the sample number atrannsamplenums at the atranntype annotation type

(V, A, N) locations. The annotations in atr file could be all possible annotations

found in the MITDB records e.g. V, A, L, R, N, AFib etc., though the annotations

in epu file could locate: ‘(‘, ‘)’, ‘p’, ‘N’, ‘t’ annotations as shown in table 4.7. For

the purpose of the experiment the V, A, N locations in atr file coincided with the

N location in the epu file; this was due to ECGPUWAVE which annotated the

V, A, N locations with N annotation corresponding to the QRS peak, regardless

of normal (N) beat or PVC (V) or PAC (A) type beats.

ANN2RR routine provided by WFDB extracted a list of RR-intervals,

in plain text format, from the specified annotation file (e.g. atr, qrs files). The

intervals were listed in units of sample intervals (sample interval of 0.00277 sec =

360 Hz sampling frequency)

4.3.2.1 The Finite State Machines (FSM) for V, A, N annotations

The FSMs for V, A, N annotation types are shown in figure 4.8. Each

FSM shows the input annotation string that is acceptable by corresponding state

machine and is based on the symbols listed in table 4.7. Every FSM is made up

of a tuple

F = {Σ, Q, q0, F,∆}

where Σ is a set of symbols of an input string, Q is a set of states that the machine

would transition on receiving an input symbol, q0 S is the initial start state S of the

machine, F is the set of final states that the machine might end-up when the input
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string is entirely processed and ∆ is the transition function between the Q states

on processing the input symbols Σ. The FSMs for the V-type and the A-type

annotations are variants of the N-type state machine. The V-type state machine

does not have the ’p’ state as there is no P-wave in the V-type arrhythmia and

the state R in N-type state machine is replaced by R’ in the V-type state machine

to denote a wide QRS complex, an abnormal QRS sub-wave. The A-type state

machine looks similar to the N-type state machine, though due to the overlap

of the ’p’ and the ’t’ sub-waves in consecutive heartbeats, additional transitions,

especially the premature ’p’ input symbol appear in the transition shown from

the T state to the A state of the FSM. The state machines were implemented

within the feature extraction algorithm presented in the next subsection 4.3.2.2.

The P, R, T states correspond to the P-wave, QRS wave and T-wave. The S

state is the initial state which accepts the input string from Σ set of input strings.

The V, A, N states correspond to the final states when the FSMs accept the

input annotation strings to represent the arrhythmia types. The FSM models are

presented in expressions 4.11, 4.12 and 4.13.

N-type FSM model:

Input symbols

Σ = {(, ), p, n, t}

Start state S, Transition states P, R, T and Final state N

Q = {S, P,R, T,N}

Initial state S

qo = {S}

Final state N - Normal beat

F = {N}

Transition function between Q and Σ to Q states

∆ = Q ∗ Σ→ Q

(4.11)
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Figure 4.8: Finite State Machines for V, A, N annotation types
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V-type FSM model:

Input symbols

Σ = {(, ), n, t}

Start state S, Transition states R’, T (no P state present)

and Final state V

Q = {S,R′, T, V }

Initial state S

qo = {S}

Final state V - V-type arrhythmia

F = {V }

Transition function between Q and Σ to Q states

∆ = Q ∗ Σ→ Q

(4.12)

A-type FSM model:

Input symbols

Σ = {(, ), p, n, t}

Start state S, Transition states P, R, T

and Final state A

Q = {S, P,R, T,A}

Initial state S

qo = {S}

Final state A, A-type arrhythmia

F = {A}

Transition function between Q and Σ to Q states

∆ = Q ∗ Σ→ Q

(4.13)



114 Chapter 4. ECG Analysis and Arrhythmia Detection

4.3.2.2 Consolidated feature extraction algorithm for V,A,N

annotations

A consolidated feature extraction algorithm is presented in this

subsection based on the theory presented in the this subsection 4.3.2 and

paragraph 4.3.2.1 considering the annotation sub-type sequence symbols ‘(‘,

‘)’, ‘p’, ‘N’, ‘t’. The algorithm is a finite state machine implemented as a

sub-routine that calls actions based on the input sequence symbol when an ECG

signal with annotated sub-types is parsed by the algorithm. The state machines

represented by 4.12, 4.12 and 4.11 were implemented in the algorithm. The feature

vector generated from the feature extraction algorithm was as follows:

{PR_Interval, PR_PSD, QRS_Interval, QRS_PSD, RR_Interval,

PowerSpectralDensity, SignalToNoiseRatio}

The classification target variable with possible values (V, A, N) was:

{AnnotationType}
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Algorithm 4.1 Algorithm for extracting features from MITDB records for
arrhythmia classification
1: function WelchSpectrum(x[n])
2: W [n] = Array[n], Y [n] = Array[n]
3: S[n] = Array[n], Sw[n] = Array[n]
4: N = length(x[n])
5: W [n]= 0.54 + 0.46.cos(2πn/(N-1)) . /*Hamming window length N*/
6: Y [n] = W [n] x[n]
7: U = ∑

W [n]2
. /* D = Number of Overlapping samples*/

8: D = 1
. /* P = Three segments: P-wave, QRS and T-wave one sample apart*/

9: P = 3
. /* 1/T : 1/360 Hz sampling frequency */

10: T= 0.00277
11: m = N - D
12: S[m] = T/UD (∑Y [m]2)
13: Sw[m] = 1/P (∑S[m])
14: return Sw[m]
15: end function

16: function BandPower(Sw[n])
17: N = length(Sw[n])
18: bandpower = 1/N (∑Sw[n]2)
19: bandPowerdB = 10.log10 (bandpower)
20: return bandPowerdB
21: end function

22: function SignalNoiseRatio(Sw[n])
23: N = length(Sw[n])
24: snr = 10.log10 (Sw[n]2)
25: return snr
26: end function

27: procedure ExtractFeaturesMITDB
28: mitdbrecordsV AN = record[1:47]
29: for recordNumber = 1: length(mitdbrecordsV AN) do

. /*generates epu annotations file for each record containing : (, p, N, t and
) annotations*/

30: ECGPUWAVE (recordNumber, ’epu’)
31: end for
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Algorithm 4.1 Algorithm for extracting features from MITDB records for
arrhythmia classification (continued)
32: for recordNumber = 1: length(mitdbrecordsV AN) do
33: [signal, tm]=RDSAMP(recordNumber) . /*tm = sample number*/
34: ML2signal = signal[:,1]
35: totalsamples = length(tm); . /*atranntype takes values (V, A, N)*/
36: [atrannsamplenums, atranntype] = RDANN(recordNumber,’atr’);
. /*epuAnnotType takes values: (, p, N, t, ) with corresponding sample number
epuAnnotSampNumbers at the annotation location*/

37: [epuAnnotSampNumbers, epuAnnotType] =
RDANN (recordNumber, ’epu’)

. /*rrIntervals at corresponding sample locations annotated in atr file*/
38: [rrIntervals, rrSampleNumbers] = ANN2RR($recordNumber$,’atr’)

39: [rrIntervalAndSampleNumbers] = [rrIntervals rrSampleNumbers]
. /*features initialised*/

40: featureAnnotationType = ’N’; featurePRinterval = 0;
41: featureQRSinterval = 0;
42: featureRRinterval = 0;
43: featurePowerSpectralDensity = 0;
44: featureSNR = 0; featurePRpsd =0; featureQRSpsd =0;

. /*Iterate all epu annotations: (,), p, N, t */
45: for iEPUannot = 0 : length(epuAnnotSampNumbers) - 1 do
46: if epuAnnotType(iEPUannot) == ’N’) then
. /*sample number at N-type annotation enter R-state of the state machine */

47: epusampnum = epuAnnotSampNumbers(iEPUannot);
. /*iterate all atr annotations (V, A, N)*/

48: for iATRann = 1 : length(atrannsamplenums) - 1 do
. /*check if atr annotations and epu annotations coincide*/

49: if (atrannsamplenums(iATRann) >=
50: epuAnnotSampNumbers(iEPUannot - 1))
51: &&
52: (atrannsamplenums(iATRann) <=
53: epuAnnotSampNumbers(iEPUannot + 1)) then
. /*Assign the featureAnnotationType values V or A or N */

54: featureAnnotationType = atranntype(iATRann);
55: break For loop;
56: end if
57: end for
. /*calculate featurePRinterval and featureQRSinterval*/

58: k = iEPUannot - 1;
. /*iterate epu annotations to locate start/end of P-wave, QRS wave and
T-wave for input string (p)(N)(p) to the Finite State Machine (FSM)*/

59: while epuAnnotType(k) != ’N’ do
. /*check if P-wave precedes QRS peak - enter P-state of the FSM*/

60: if epuAnnotType(k) == ’p’ then
. /* Locate the PR segment on either side of the P-wave peak*/
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Algorithm 4.1 Algorithm for extracting features from MITDB records for
arrhythmia classification (continued)
61: prsamplefrom = epuAnnotSampNumbers(k - 1);
62: prsampleto = epuAnnotSampNumbers(k + 1);
63: featurePRinterval = prsampleto - prsamplefrom; .
/*featurePRinterval*/

64: Xp[n] = prsamplefrom:prsampleto
65: [psd1] = Cal WelchSpectrum(Xs[n]);
66: featurePRpsd = Call BandPower(psd1);
. /* locate QRS interval segment on either side of QRS peak - enter R-state of
the finite state machine*/

67: qrssamplefrom= epuAnnotSampNumbers(iEPUannot
- 1);

68: qrssampleto = epuAnnotSampNumbers(iEPUannot +
2);
. /* featureQRSinterval*/

69: featureQRSinterval = qrssampleto - qrssamplefrom;
70: Xq[n] = qrssamplefrom:qrssampleto
71: [psd2] = Call WelchSpectrum (Xq[n] );
72: featureQRSpsd = Call BandPower(psd2));
73: break While loop;
. /* check if P-wave absent in which case T-wave from previous beat precedes
QRS peak - enter R-state and then the T-state */

74: else if epuAnnotType(k) == ’t’ then
. /* featurePRinterval set to zero if P-wave absent*/

75: featurePRinterval = 0;
76: featurePRpsd = 0;
. /*QRS interval when P-wave absent, has wide QRS complex */

77: qrssamplefrom= epuAnnotSampNumbers(iEPUannot
- 1);

78: qrssampleto = epuAnnotSampNumbers(iEPUannot +
2);

79: featureQRSinterval = qrssampleto - qrssamplefrom;
80: Xq[n] = qrssamplefrom:qrssampleto;
81: [psd3] = Call WelchSpectrum (Xq[n]);
82: featureQRSpsd = Call BandPower(psd3));
83: break While loop;
84: end if
85: k = k - 1;
86: if k == 0 then
87: break While loop;
88: end if
89: end while
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Algorithm 4.1 Algorithm for extracting features from MITDB records for
arrhythmia classification (continued)
90: for iRRann = 0 : length(rrSampleNumber) - 1 do . /*
calculate featureRRinterval*/
. /*check if RR-interval sample numbers coincide with epu sample numbers*/

91: if (rrSampleNumber(iRRann) >=
92: epuAnnotSampNumbers(iEPUannot - 1))
93: &&
94: (rrSampleNumber(iRRann) <=
95: epuAnnotSampNumbers(iEPUannot + 1)) then
96: featureRRinterval = rrIintervals(iRRann); Refer line
38

97: break For loop
98: end if
99: end for . /* for iRRann iteration ends*/
. calculate Signal-Noise-Ratio and Power Spectral Density

100: samplespsdsnrfrom = epuAnnotSampNumbers(iEPUannot
- 4);

101: samplespsdsnrto = epuAnnotSampNumbers(iEPUannot +
4);

102: Xsnr[n] = samplespsdsnrfrom: samplespsdsnrto
103: [psd4] = Call WelchSpectrum (Xsnr[n]);
104: featurePowerSpectralDensity = Call BandPower(psd4));

105: Ssnr[n] = samplespsdsnrfrom:samplespsdsnrto
106: featureSNR = Call SignalNoiseRatio(Ssnr[n]) ;
107: end if . /*end if iEPUannot == ’N’ */
108: featureAnnotationType = atranntype(iEPUannot);
109: if featureAnnotationType not in (’V’,’A’,’N’) then
110: iEPUannot ++ ; . /*next iteration */
111: end if
112: newSampleRow = [featureAnnotationType,
113: featurePRinterval, featurePRpsd,
114: featureQRSinterval,
115: featureQRSpsd, featureRRinterval,
116: featurePowerSpectralDensity, featureSNR]
117: end for . /*end for all iEPUannot annotations */
118: end for . /* end iterating all MITDB records*/
119: end procedure
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4.3.3 Methods: Data analysis pipeline for V, A, N

classification

The Python Scikit Learn toolkit with Anaconda distribution was used

for the following data analysis steps. The Python Pandas data frames were

used to import the tables containing the target and predictor variables. The

AnnotationType variable being the target variable. As there were three classes for

target variables, with annotation types V, A, N, one-hot encoding was performed

to obtain a binary denotation of the annotation types. Data analysis steps for

machine learning based classification were as follows:

The Data analysis pipeline:

• Step 1: Since the scale of the feature values in the feature vectors affected

the bias and the variance of the classifier, the feature vectors had to be

scaled and normalised accordingly. The Scikit StandardScaler could have

been used on the data such that its distribution would have a mean value 0

and standard deviation of 1. StandardScaler works well when normalisation

is required where all the features are scaled within a normalised range of

values e.g. {-1, +1} though more than normalisation, since the predictor

variables had outliers with RR-intervals in excess of 1.1 sec, PR-intervals in

excess of 300 ms and QRS intervals greater than 190 ms, standardisation

to remove outliers was required. RobustScaler based standardisation was

performed so that the outliers would have no effect on the classification

tasks by using quantile_range between (15, 85) and scaling set to true. The

RobustScaler removed the outliers and limited the QRS PSD and PR PSD

in the following ranges: (-15, 10) and (-15, 15) dB respectively as shown in

figure 4.9

• Step 2: Having performed robust scaling, since some features attributed to

the least amount of variance only the first ‘k’ best features were considered

for a classification task. SelectKBest feature selector was used to identify

first six features (k=6) that attributed to maximum variance in the feature

values, figure 4.10. The selector uses the f_classif scoring function which is

essentially the Analysis Of Variance (ANOVA) F-value score.
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Figure 4.9: Standard and Robust scalers distribution and scatter plot of QRS vs
PR intervals power spectral densities over RR-Interval
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Figure 4.10: Feature importance after extended feature extraction algorithm
considering power spectral densities and using RandomForestClassifier

• Step 3: A RandomForestClassifier with 500 estimators (number of trees in

the forest), and ‘balanced’ class weight was used only to determine feature

importance (not for classification task). The “balanced” mode uses the

values of the features to automatically adjust weights inversely proportional

to class frequencies in the input data. Due to the novel feature extraction

algorithm which considered power spectral densities instead of intervals,

the PR_PSD (power spectral density of PR-interval) alone contributed

to the maximum variance (41%) in the input dataset. The QRS_PSD

(power spectral density of QRS-interval) was almost as important as the

QRS-interval. Despite PR-interval being most important features in any

ECG classification task to differentiate between PVC, PAC and Normal

sinus rhythm, its power spectral density turned out to be more important

feature to differentiate between these arrhythmia types.

• Step 4: Dataset imbalance removal: The target response class variable

AnnotationType, had the following distribution from a total of 38371

samples: A 2132, N 26362, V 9877. Considering a 70-30% training-test

dataset split, the training set was 24,941 samples and validation-test set
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was 13,430 samples. In order to eliminate or at least reduce the imbalance

of the dataset, over and under sampling along with regularisation techniques

were applied to the dataset. There were several techniques available,

like adding more samples to the less represented class, resampling, using

penalised models, using a variety of performance metrics and generating

synthetic samples or by using a combination of these techniques. It was

not possible is to add more samples for the A-type annotation, as the

entire MITDB database had no more than 2132 samples. The N-type

annotation had the maximum number of samples. A complete oversampling

of the underrepresented class variable or under sampling of most-represented

class variable may have been possible, though these may have introduced

synthetic values to just one of these class types. As a solution and to

impart balance between under an oversampling the Synthetic Minority

Oversampling Technique (SMOTE) type balancing was performed. The

SMOTE balancing technique not only oversamples the underrepresented

class but it also under samples the overrepresented class. The fit_sample()

transformed the feature set to {Training Set } = { 51405} from an original

{Training Set } = { 24941} samples.

• Step 5: Classification based on SMOTE balancing: Initially,

LogisticRegression with Lasso regularisation was attempted by setting

the penalty attribute to ‘penalty=l1’. The Lasso technique was used as it

shrinks the less important feature’s coefficient to zero thus, removing or at

least eliminating the effect of less important features altogether.

LogisticRegression(penalty=’l1’, multi_class = ’ovr’, solver =

’liblinear’)

The multi_class = ’ovr’ option was set for multiclass classification

using One-vs-Rest classifier and a ‘liblinear’ solver was chosen as

it is most suitable for multiclass classification for LogisticRegression

models. Even with SMOTE type balancing and Lasso regularisation

the LogisticRegression model with GridSearchCV cross validation showed

an overall balanced_accuracy score of 90%, table 4.8 using 10-fold cross

validation.
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Hyper-parameters:

C = [0.1, 10, 100, 1000, 10000]

Gamma = [0.001, 0.0001]

Scoring = ’balanced_accuracy’

Cross validation (cv) = 10

It was observed that the precision, recall, f1-score metrics showed significant

improvement from the previous classification after SMOTE balancing was

performed as shown in table 4.8 . The classification accuracy for A-type

annotation increased from 39% to 87% after SMOTE balancing was

performed; the A-type annotation beats being the most underrepresented

response class type in the entire dataset.

Comparison of accuracy scores before and after SMOTE balancing

Table 4.8: Comparison of classification accuracy scores before and after SMOTE
balancing using LogisticRegression

A ‘balanced_accuracy’ score seemed more appropriate instead of just the

‘accuracy’ scoring, as it would take into consideration the class imbalance

of the feature dataset. This was largely due to the linear separation due to

the LogisticRegression models.

• Step 6: LogisticRegression works well with linear classifications, however,

it may not be the most appropriate model for nonlinear feature sets.

As the feature importance calculations were already performed in Step3,

a classification model based of feature importance was chosen with the

RandomForestClassifier which was used, in this step, as a classifier along

with GridSearchCV to perform a hyper-parameter tuning, table 4.9.

In addition, StratifiedKFold with 5 splits was used for cross validation



124 Chapter 4. ECG Analysis and Arrhythmia Detection

(cross_val_score ) with balanced_accuracy scoring, which increased the

overall balanced_accuracy for all the target response class variables and for

the A-type response class variable to more than 95%.

A similar experiment was performed usingKNeighborsClassifier (k-NN) with

k=5 and an overall balanced_accuracy of more than 95% was obtained.

Both RandomForestClassifier and k-NN are prone to overfitting. In order to

circumvent the problem of overfitting, cross validation with StratifiedKFold

and balance_accuracy scoring was used. Rather than relying only on

the precision accuracy score, the scores such as balanced_accuracy, recall,

f1-score metrics were obtained as a classification report. The Scikit Learn

cross_val_score cross validation was used on training as well as test data

sets with StratifiedKFold cross validation with 5 splits which made sure that

all the classes were equally represented in the cross validation process.

4.4 Results: Data analysis pipeline for V,A,N

classification

On executing the data analysis pipeline from section 4.3.3 an overall

classification accuracy score of 97% was observed. The training and the test

accuracy scores were more than 97% and the prediction accuracy score was more

than 96%. The precision accuracy for classification of V-type and the A-type

annotations was 100% and for N-type annotation the precision accuracy was 91%

as shown in table 4.9.

The k-NN classifier and the RandomForestClassifier are known to be

quick learners and are quite accurate when the data is skewed. Having reduced

the dataset imbalance and as the classification models could obtain classification

accuracy of more than 97%. In previous experiments, due to dataset imbalance

it wasn’t possible to obtain higher accuracy of classification, especially for the

A-type annotation. As could be observed in the feature importance table

obtained earlier using RandomForestClassifier, the classification models could

obtain 90% precision recall in classifying the A-type annotation which was the

most under-represented class type before SMOTE imbalance reduction.
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GridSearchCV and RandomForestClassifier based classification parameters and
results
Parameter grid for
GridSearchCV {

’n_estimators’: [200, 500],
’max_features’: [’auto’],
’max_depth’ : [4,8],
’criterion’ :[’gini’],
’n_jobs’:[2]
}

RandomForestClassifier n_estimators=500
class_weight="balanced"

GridSearchCV estimator=
RandomForestClassifier
scoring=’balanced_accuracy’

Cross validation using
cross_val_score and
StratifiedKFold validation

scoring=’balanced_accuracy’,
cv=StratifiedKFold(n_splits=5)

GridSearchCV RandomForestClassifier best params:
{‘criterion’: ‘gini’, ‘max_depth’: 8, ‘max_features’: ’auto’, ‘n_estimators’:
200
Results: GridSearchCV RandomForestClassifier training accuracy: 0.974 +/-
0.001
GridSearchCV RandomForestClassifier test accuracy: 0.974 +/- 0.001
GridSearchCV RandomForestClassifier Prediction Accuracy: 0.967378346158

Table 4.9: GridSearchCV and RandomForestClassifier based classification
parameters and classification report following SMOTE imbalance reduction for V,
A, N annotation types using the features extracted from the consolidated feature
extraction algorithm.

The classification model was persisted in binary format using the

Scikit-Learn package, section 3.5, and deployed on the target device for prediction.

In the following section signal acquisition and conditioning of fresh ECG samples

have been discussed. The denoised and filtered ECG samples were converted to a

recognisable MITDB format as described in section 4.5.3. It was this MITDB
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compatible signal that was provided as an input to the classification model

persisted on the target device. The model could then classify between the V,

A, N annotation types in real time. As the research focused on implementing the

classification and prediction of arrhythmia on the wearable resource constrained

device, it was essential that the trained model could be ported and persisted to the

target device to only make predictions without having to train the classifier model

on the training set again on the resource constrained device. As the classification

model could be ported and executed on the target device, the feature-set fitting

and transformation methods, which normally required greater processing power

and had larger memory requirements, were not required to be executed on the

target device, nor were any of the regularisation, dataset balancing or cross

validation tasks performed again on the target device. Since the model was

already trained, tested and cross-validated, it performed its classification tasks

on the target device with optimal accuracy, section 4.7 . In order to perform the

classification tasks on the test ECG waveforms, feature vectors had to be extracted

from ECG signals captured in real time, using the same feature extraction

algorithm that was used to extract features from the MITDB arrhythmia database.

In order to run the feature extraction algorithm on the test ECG waveforms, these

test ECG waveforms had to be converted to a WFDB compatible records and prior

to that the signal had to be filtered and denoised. The method of real time signal

acquisition is presented in the next subsection 4.5 with the details of the signal

processing algorithms and input output parameters.

4.5 Methods: ECG signal acquisition from

human subject

The objective of the research study was to detect arrhythmia type in

real-time and in order to facilitate monitoring cardiac health, the samples had

to be collected from human subjects in real-time and regardless of position

and motion and over longer duration. The raw ECG signal acquired from

the human subject is a very noisy waveform. This is due to the bio-electric

interference, muscular contraction and environmental conditions. The waveforms
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also has problems related baseline wander and noise due to motion and bio-electric

interference. The baseline wander is a problem in waveforms where the signals

stray from their baseline with an upward or a downward trend due to electrical

interference. The signals, therefore, had to be denoised and filtered in real-time

using appropriate signal processing algorithms on a resource constrained device

like the Beaglebone Black (BBB). Initially, however, the raw ECG signal was

studied and analysed to derive an appropriate filtering mechanism and to identify

filter parameters and subsequent signal conditioning methods were implemented to

generate a resulting ECG waveform that was denoised and was WFDB compliant.

The general idea was to denoise and detrend the signal abnormalities and yet

preserve the features of the ECG signal by minimising the modifications to the

morphological structure of the signal.

4.5.1 ECG signal filtering, denoising and wavelet analysis

In order to analyse the raw ECG signal, MATLAB was used for signal

processing. The raw samples were captured at 1 KHz 12 bit resolution with

Arduino Micro and the samples were normalised and extended to 2n samples.

Eventually the samples had to be digitised according to a format acceptable by

MITDB database such that the WFDB routines in MATLAB could be used on

these sampled waveforms. The 3-lead ECG kits samples noisy due to bio-electric

interference of the external environmental conditions, the body posture and

motion. The signal was normalised and denoised using MATLAB with the

parameters shown in table 4.10:

Chebyshev II second order filter was used in MATLAB with a sampling

frequency of 1 KHz, followed by zero-offset signal conditioning and removing

the baseline wandering. For further baseline wandering correction and for signal

smoothing Savitzky-Golay filter with order N=3 and frame length of 11 was

applied to smooth the signal without destroying the original signal properties

in digital format. The detrended signal is just the baseline corrected signal

subtracted from the original ECG signal, figure 4.11 and table 4.10. The

Chebyshev filter has a steep roll-off and is good at removing high-frequency

noise and Savitzky-Golay filters (AlMahamdy & Riley, 2014) are optimal filters
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such that they minimise the least-squares error in fitting a polynomial to

frames of noisy data, hence were chosen as most appropriate choice for the

task. A relatively denoised signal was obtained, figure 4.11 after Chebyshev and

Savitzky-Golay filtering, though a detrended and baseline corrected signal was

required which would conform to MITDB WFDB requirements, such that when

WFDB routines like RDANN, WRANN, and ANN2RR were used these could

read and write the annotations and generate annotations files for the denoised

and detrended signal. (Walinjkar and Woods 2017b; Walinjkar 2018a)

Chebyshev II and Savitzky-Golay filter parameters for freshly captured
ECG signal.
Chebyshev II, second order filter parameters :
E.g. cheb2ord in MATLAB;
Sampling Frequency (Fs) 1 KHz
Nyquist Frequency (Fn) = Fs/2
Passband Frequency (Normalised) (Ws) = [1.1 100]/Fn;
Stopband Frequency (Normalised) (Wp) = [0.1 101]/Fn;
Passband Ripple (dB) Rp = 1;
Stopband Ripple (dB) Rs = 150;
Savitzky-Golay filter parameters for signal smoothing:
Filter-order=3 and Frame-length=11
E.g. sgolayfilt in MATLAB
ECGSignal[n] = Array[n] (ECG samples of length ’n’)
BaselineCorrectedSignal[n] = sgolayfilt(ECGSignal[n], 3, 11)
DetrendedSignal[n] = ECGSignal[n] - BaselineCorrectedSignal[n]

Table 4.10: Chebyshev II and Savitzky-Golay filter parameters for denoising and
conditioning of fresh ECG signal acquired from human subject.

4.5.2 Results: ECG Signal processing on resource

constrained device in real-time

Although a detrended and denoised ECG waveform was obtained

using Chebyshev and Savitzky-Golay filters and wavelet analysis in a desktop

environment with four core processor and 12GB system memory, the same method

had to be implemented on a resource constrained device such as the BBB with

ARM Cortex-A9 processor and 1 GB system memory; the analysis had to be

performed on the raw ECG signal acquired from human subject in real time.
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Figure 4.11: The raw ECG signal obtained from human subject after denoising,
filtering and baseline correction using Chebyshev 2nd order and Savitzky-Golay
filter

The discrete wavelet transform version of PyWavelet ‘pywt.Wavelet(’sym4’)’ was

used to obtain ’Symlet 4’ wavelet which was used to identify the P-QRS-T

sequence in an ECG signal, figure 4.12. The pywt.wavedec method was used

for multilevel decomposition of the ECG signal and the pywt.waverec method was

used for reconstruction of the filtered signal, figure 4.13. Although the wavelets

in the ECG signal could be identified, these could not be effectively filtered and

more importantly these could not be effectively baseline-corrected, so the entire

signal filtering had to be performed using Chebyshev and Savitzky-Golay filter

(AlMahamdy and Riley 2014).
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Figure 4.12: A Symlet 4 wavelet in PyWavelet toolbox in Python equivalent to
MODWT in MATLAB

Figure 4.13: Signal reconstruction of a noisy ECG signal using Discrete Wavelet
Transform utility pywt.wavedec in PyWavelet toolbox
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The Chebyshev II and Savitzky-Golay filters were designed with

parameters in table 4.11 and the filtfilt() method was used for phase correction.

The noisiest portion of the signal is shown in the figure 4.14, after filtering, signal

conditioning and baseline correction.

Having designed the required filters, the signals had to be captured

from the ECG sensor interfaced with Arduino micro. The Arduino was in turn

interfaced with BBB to the serial port at 115200 baud, parity: none, start and

stop bits: none. The signals were captured from human subject in real time

where each of the ECG sample was of the format ‘E: <ECG Sample>’ and

the PPG signal was of the format ‘P: <PPG Sample>’. The Python program

running on the BBB received the samples over the serial port and resampled the

signal at 1 KHz. The BBB has a 16 bit resolution analogue to digital converter.

The signal was then passed through the filters that had been designed followed

by the baseline correction, which essentially removed the baseline wander. Once

the signal was filtered, it had to be converted to an appropriate WFDB format

such that the WFDB routines could be executed on the samples to obtain the

feature vectors that would then become the test data sets. These test feature

sets would then be passed through the classification models already trained

generated from the previous data analysis tasks. The models that were trained

in the data analysis tasks, were persisted on a resource constrained device which

could be reloaded in the memory to perform classification tasks on the freshly

acquired ECG waveforms. In order to perform the classification tasks on the

freshly acquired ECG waveforms, feature vectors had to be extracted from these

filtered ECG waveforms, using the same feature extraction algorithm that was

used to extract features from the MITDB arrhythmia database. In order to run

the feature extraction algorithm on the test ECG waveforms, these test ECG

waveforms had to be converted to a WFDB compatible records.

An effectively denoised baseline corrected signal could be obtained in

MATLAB using discrete wavelet transform, however this task was performed

in a desktop environment with a powerful processor and adequate memory to

perform the compute intensive tasks. In the real time ECG signal acquisition
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and processing however, the same task had to be performed on a resource

constrained IoT device like the Beaglebone black. The SciPy Python, PyWavelet

toolbox was used with ‘Symlet 4’ wavelet which could help in the construction

and reconstruction of the ECG signal with adequate filtering, though could not

eliminate the baseline wander. The same combination of Chebyshev II 2nd order

filter and Savitzky-Golay filter was used in SciPy Python with minor variations

in the parameters as compared to the MATLAB version as shown in table 4.11.

A normalised, filtered, denoised and baseline corrected signal was obtained as

shown in the figure 4.14.

Filter parameters for resource constrained device Texas Instruments
Beaglebone black.
A Chebyshev II band stop filter was designed with following parameters:
Bandstop:
Passband wp = [0.2, 0.7],
Stopband ws = [0.3, 0.6]
The maximum loss in the passband: 5(dB)
The minimum attenuation in the stopband: 60 (dB).
The Savitzky-Golay filter parameters for a resource constrained device :
Window_length: 101 It is the length of the filter window (i.e. the number of
coefficients).
Filter_order: 3 It is the order of the polynomial used to fit the samples.
ECGSignal[n] = Array[n] (ECG signal of length ‘n’)
Sig_cheby2_filtered[n] = signal.filtfilt(ECGSignal[n])
Y_savitzky_golay[n] = signal.savgol_filter(Sig_cheby2_filtered[n])
BaselineCorrected = Sig_cheby2_filtered[n] - Y_savitzky_golay[n]
(The baseline correction is merely a difference between the Chebyshev II and
Savitzky-Golay filtered signal)

Table 4.11: Chebyshev II second order filter and Savitzky-Golay filter parameters
for resource constrained device Texas Instruments Beaglebone black.
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Figure 4.14: Filter parameters for Chebyshev II second order filter and
Savitzky-Golay filter implemented in SciPy Python for denoising, conditioning
and baseline correction on Beaglebone black.
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4.5.3 Methods: ECG signal conversion to WFDB format

The steps for ECG signal conversion to WFDB compatible record were

as follows:

The samples from the ECG and PPG sensor were acquired by Arduino

Micro clocked at 16MHz and transmitted to BBB over the serial port at 115200

baud and received by BBB using the Adafruit GPIO library for BBB with a

sampling frequency of 1 KHz. The ECG signals were resampled at 360 Hz similar

to the sampling frequency of the records in MITDB arrhythmia database. The

signal had to be resampled and filtered using Chebyshev II and Savitzky-Golay

filters as explained in section 4.5.2, in order to obtain an ECG signal that could

be converted to a record compatible to the MITDB database. This step had

to be performed as the WFDB routines that were used to extract features from

MITDB records, could be used for freshly acquired ECG signal as well as used

in the pre-processing stage of algorithm 4.2. Also, the classification model that

was trained on MITDB record would then execute the prediction task on this

converted and WFDB compatible signal. The inter-sample interval between two

consecutive samples in the MITDB record was 0.00277 seconds (1/360 Hz)

The ‘wrsamp -F 360 -G 1000 –i <denoised_ecg_samples_file>’

command from WFDB was used to convert these samples to a WFDB-compatible

record where ‘1000’ was the gain. The WFDB record conversion sampling

frequency is 360 Hz, which was different from the data acquisition sampling

frequency of 1 KHz. It is a common clinical practice that the ECG strips are

analysed in batches of 10 second intervals, as each ECG strip is 10 seconds in

duration.

The ‘gqrs -r ecg_samples_file -m 1.5’ command was used to obtain the

QRS complexes from the samples. The threshold was set to 1.5 millivolts, and a

qrs annotation file was generated. The QRS annotations are the locations in the

ECG waveforms where the QRS peaks occur. This ‘qrs’ annotation file would be

used by the other WFDB routines to extract features.

The ‘rdann -a qrs -r ecg_samples_file’ command, which uses the ‘qrs’

annotation file, was used to detect the R-peaks in the ECG waveform.

The ‘ann2rr –a qrs –r ecg_samples_file’ command, which uses the ‘qrs’
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annotation file, was used to detect the RR intervals between consecutive QRS

peaks in the ECG signals. The RR interval is one of the important features in

the feature extraction model.

The ‘ecgpuwave –a qrs –r ecg_samples_file –o epu’ command, which

uses the ‘qrs’ annotation file, was used to generate another annotation file with

‘epu’ extension. This annotation file contained the locations of the start ‘(‘, stop

‘)’ , P-wave ‘p’, QRS complex ‘N’ and T-wave ‘t’ sub annotation type locations

in the fresh ECG signal.

The ‘rdann -a epu -r ecg_samples_file -p <annotation_subtype>’

command, which used the ‘epu’ annotation file from the previous ecgpuwave

command, was used to locate the annotation subtypes ‘p’ and ‘t’ which are

essentially P-wave and T waves with their onset and stop boundaries, the N

type annotation being the QRS wave. The ‘rdann’ command was executed thrice

for detecting the locations of P-wave, T-wave, QRS complex and their start and

stop locations. The command generated a file for each of these annotation types

and sub-types each containing a column of sample numbers which represented the

locations of P-wave, T-wave and the QRS complex along with their start and stop

positions.

4.6 Methods: Feature extraction and V,A,N

classification on restricted device

A feature extraction algorithm 4.2 similar to algorithm 4.1 was

developed, though this algorithm contained the WFDB format conversion

pipeline described in section 4.5.3 which used WFDB routines to convert ECG

samples acquired in real-time to a record compatible with WFDB and MITDB

arrhythmia database. As the model trained on MITDB database would predict

on the freshly acquired test signal, it was required that the signal was MITDB

compatible. The classifier model was persisted and deployed on a restricted

target device described in sections 3.1 and 3.5.
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Algorithm 4.2 Real-time feature extraction algorithm for a resource constrained
device
1: procedure ECGPreprocessor
2: WRSAMP -F 360 -G 1000 -i ecgSamples.txt -o dat
. The routine generated the WFDB compatible ecgSamples.dat file

3: GQRS -r ecgSamples.dat -m 1.5
. The routine generated the ecgSamples.qrs file containing the locations for
QRS peaks as compared to Algorithm 4.1 where the atr annotation file was
used to extract feature annotations to train V, A, N classifier.

4: [qrsannsamplenums, qrsanntype] = RDANN -r ecgSamples -a qrs
. The routine read the QRS peaks annotations from the qrs file, qrsanntype
took value N as compared to Algorithm 4.1 where the values were V, A, N

5: [rrintervals, rrsamplenumbers] = ANN2RR -a qrs -r ecgSamples
. The routine calculated the RR intervals from the qrs annotation file

6: [rrintervalsandsampnums] = [rrintervals rrsamplenumbers]
7: ECGPUWAVE -a qrs -r ecgSamples -o epu
. The routine generated the annotations file with extension epu containing
the locations of (,), N, p, t annotations from the corresponding qrs file.

8: [epuAnnotSampNumbers, epuAnnotType] =
9: RDANN -a epu -r ecgSamples -p (, ), N, p, t
. The routine read the epu annotations file to return
[epuAnnotSampNumbers, epuAnnotType] corresponding to the (, p,
N, t,) annotations. return [epuAnnotSampNumbers, epuAnnotType]

10: end procedure
11:
12: procedure FeatureExtractionRealTime [epuAnnotSampNumbers,

epuAnnotType] = Call ECGPreprocessor
. /*features initialised*/

13: featurePRinterval = 0; featurePRpsd =0;
14: featureQRSinterval = 0; featureQRSpsd =0;
15: featureRRinterval = 0;
16: featurePowerSpectralDensity = 0;
17: featureSNR = 0;

. /*Iterate all epu annotations: (,), p, N, t */
18: for iEPUannot = 0 : length(epuAnnotSampNumbers) - 1 do
19: if epuAnnotType(iEPUannot) == ’N’) then

. /*sample number at N-type annotation */
20: epusampnum = epuAnnotSampNumbers(iEPUannot);

. /*iterate all atr annotations (V, A, N)*/
21: for iQRSann = 1 : length(qrsannsamplenums) - 1 do

. /*iterate all N-type annotations obtained from qrs annotator file only to
obtain N-type annotation locations, as compared to Algorithm 4.1 where the
class labels were obtained using the atr annotation file*/
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Algorithm 4.2 Real-time feature extraction algorithm for a resource constrained
device (continued)
22: if (qrsannsamplenums(iQRSann) >=
23: epuAnnotSampNumbers(iEPUannot - 1))
24: &&
25: (qrsannsamplenums(iQRSann) <=
26: epuAnnotSampNumbers(iEPUannot + 1)) then
. /*iterate all N-type annotations and if epu annotations and qrs annotations
do not match break the loop and proceed to next epu N-type annotation.
In Algorithm 4.1 FeatureAnnotationType class label was assigned a value
from (V, A, N). As this algorithm only generated feature vector samples,
featureAnnotationType was not required */

27: break For loop;
28: end if
29: end for
. /*calculate featurePRinterval and featureQRSinterval*/

30: k = iEPUannot - 1;
. /*iterate epu annotations to locate start/end of P-wave and T-wave*/

31: while epuAnnotType(k) != ’N’ do
. /*check if P-wave precedes QRS peak*/

32: if epuAnnotType(k) == ’p’ then
. /* locate the PR segment on either side of the P-wave peak. WelchSpectrum
and BandPower routines from Algorithm 4.1 */

33: prsamplefrom = epuAnnotSampNumbers(k - 1);
34: prsampleto = epuAnnotSampNumbers(k + 1);
35: featurePRinterval = prsampleto - prsamplefrom; .
/*featurePRinterval*/

36: Xp[n] = prsamplefrom:prsampleto
37: [psd1] = Cal WelchSpectrum(Xs[n]);
38: featurePRpsd = Call BandPower(psd1);
. /* locate QRS interval segment on either side of QRS peak*/

39: qrssamplefrom = epuAnnotSampNumbers(iEPUannot -
1);

40: qrssampleto = epuAnnotSampNumbers(iEPUannot + 2);
. /* featureQRSinterval*/

41: featureQRSinterval = qrssampleto - qrssamplefrom;
42: Xq[n] = qrssamplefrom:qrssampleto
43: [psd2] = Call WelchSpectrum (Xq[n] );
44: featureQRSpsd = Call BandPower(psd2));
45: break While loop;
. /*Check if P-wave absent in which case T-wave from previous beat precedes
QRS peak */

46: else if epuAnnotType(k) == ’t’ then
. /* featurePRinterval set to zero if P-wave absent*/

47: featurePRinterval = 0;



138 Chapter 4. ECG Analysis and Arrhythmia Detection

Algorithm 4.2 Real-time feature extraction algorithm for a resource constrained
device (continued)
48: featurePRpsd = 0;
. /* locate QRS interval when P-wave absent*/

49: qrssamplefrom = epuAnnotSampNumbers(iEPUannot -
1);

50: qrssampleto = epuAnnotSampNumbers(iEPUannot + 2);
51: featureQRSinterval = qrssampleto - qrssamplefrom;
52: Xq[n] = qrssamplefrom:qrssampleto;
53: [psd3] = Call WelchSpectrum (Xq[n]);
54: featureQRSpsd = Call BandPower(psd3));
55: break While loop;
56: end if
57: k = k - 1;
58: if thenk == 0
59: break While loop;
60: end if
61: end while
62: for iRRann = 0 : length(rrSampleNumber) - 1 do . /* calculate
featureRRinterval*/
. /*check if RR-interval sample numbers coincide with epu sample numbers*/

63: if (rrSampleNumber(iRRann) >=
64: epuAnnotSampNumbers(iEPUannot - 1))
65: &&
66: (rrSampleNumber(iRRann) <=
67: epuAnnotSampNumbers(iEPUannot + 1)) then
68: featureRRinterval = rrIintervals(iRRann); Refer line 5
69: break For loop
70: end if
71: end for . /* for iRRann iteration ends*/
. /*calculate Signal-Noise-Ratio and Power Spectral Density over the entire
heartbeat*/

72: samplespsdsnrfrom = epuAnnotSampNumbers(iEPUannot - 4);
73: samplespsdsnrto = epuAnnotSampNumbers(iEPUannot + 4);
74: Xsnr[n] = samplespsdsnrfrom: samplespsdsnrto
75: [psd4] = Call WelchSpectrum (Xsnr[n]);
76: featurePowerSpectralDensity = Call BandPower(psd4));

77: Ssnr[n] = samplespsdsnrfrom:samplespsdsnrto
78: featureSNR = Call SignalNoiseRatio(Ssnr[n]) ;
79: end if . /*iEPUannot == N ends */
80: newSampleRow = [featurePRinterval, featurePRpsd,
81: featureQRSinterval,
82: featureQRSpsd, featureRRinterval,
83: featurePowerSpectralDensity, featureSNR]
84: end for . /*iEPUannot iteration ends*/
85: end procedure
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The feature vectors generated were according to the following tuple:

{PR_Interval, PR_PSD, QRS_Interval, QRS_PSD, RR_Interval, Heart rate,

PowerSpectralDensity, SignalToNoiseRatio} where,

PR_Interval: PR interval in a heartbeat waveform

PR_PSD: the power spectral density in the PR interval

QRS_Interval: the QRS duration in the QRS complex

QRS_PSD: the power spectral density in the QRS complex

RR_Interval: the RR-interval at a given location in the waveform

PowerSpectralDensity: the power spectral density of the entire P QRS T wave

SignalToNoiseRatio: the signal-to-noise ratio of the entire P QRS T wave.

Target class variables: V, A, N annotations representing PACs, PVCs and Normal

sinus rhythm

Having obtained the filtered signal it could be passed through the feature

extraction algorithm implemented using WFDB routines and ported and deployed

to the Beaglebone black. The algorithm used WFDB routines along with power

spectral estimation methods in SciPy package to obtain the features from the test

ECG signal acquired from human subject in real time. It was this ECG signal

(converted to an MITDB compatible record) that was used by the classification

model that was persisted on the Beaglebone black. The model could then classify

between the V, A, N annotation types in real-time. The Algorithm 4.2 could

extract WFDB compatible features, though only N-type annotations could be

tested when used for healthy patients. A clinical trial would be required to test

the algorithm on patients who are known to be suffering from cardiac arrhythmia

to extract V-type and A-type annotations. Due to the scope of the research and

limitations related to running clinical trials, the algorithm was tested only on

an existing MITDB record MITDB/223 which was completely omitted from the

training and test samples set. The record was chosen as it contained both the

V-type and A-type annotations and the samples from the records were read into

a test ecgSamples.txt text file and passed through algorithm 4.2 followed by

the classifier model that was serialised and stored on the resource constrained
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Beaglebone Black device.

4.7 Results: Real-time V,A,N classification on

restricted device

The record MITDB/223 that was completely omitted from the training

phase was used as the test record to test the data analysis pipeline on the target

device. The record contained 2029 N-type, 72 A-type and 473 V-type annotations

(total 2574 samples). The statistical distribution of the record is shown in figure

4.15 and as could be seen throughout the MITDB records, the A-type samples

occurred in extremely smaller quantities as compared to the V-type and the

N-type annotations. The data analysis pipeline, based on subsection 4.3.3, that

was persisted and copied to the target device, produced an overall classification

accuracy of over 91% and the precision, recall and f1-scores were 100%, 73%

and 84% respectively for the most under-represented class of A-type annotations,

figure 4.16

Figure 4.15: Descriptive statistics for samples obtained from human subjects in
real-time for feature vector extracted using Algorithm 4.2
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Figure 4.16: Arrhythmia classification (V, A, N) on a resource constrained device
for samples obtained from human subjects in real-time for feature vector extracted
using Algorithm 4.2

4.8 Discussion: Early warning arrhythmia

detection and signal processing

The main objective of the research study was to detect, identify and

classify early warning ECG signs in real-time using a wearable device and upload

the abnormal observations along with trauma information to an EHR database

using standard coding schemes. Such a provision would avoid delays in providing

timely medical treatment, even before an individual reaches a critical condition.

Certain devices like the Holter monitor and the AliveCor ECG monitoring kit,

mentioned in the literature, can perform long-term monitoring, though these

kids cannot detect early warning arrhythmia. The AliveCor uses HRV analysis

and adaptive regression based techniques to detect atrial fibrillation which is a

much fatal arrhythmia condition. The aim of the research study was to detect

and identify early stage arrhythmia given fresh test ECG samples acquired from

human subject in real time. The main problem solved in this research study

is the real-time detection, identification and classification of test ECG samples

into early warning arrhythmia annotation types similar to those found in the

MITDB arrhythmia database. In the arrhythmia detection methods mentioned

in the literature and also in the WFDB library that is widely in this and other

research studies mentioned in the literature, it was the real-time arrhythmia

annotator component that was missing. After investigating the research problem,

it was found that annotating a fresh ECG signal by classifying it into normal
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and abnormal annotation types and sub-types, was not a computational task

that could be solved by linear logic or statistical methods. Even though the

statistical measures of waveform characteristics change over waveform belonging

to the same type, patterns of the waveform remained the same. The machine

learning approach was therefore chosen initially to train the models on a widely

used MITDB arrhythmia database and then present the model with fresh test

ECG samples.

4.8.1 ECG Arrhythmia detection and classification

After studying the ECG signal it was observed that the signal

is non-linear and random so despite having same pattern, the waveform

characteristics and their statistical measures differ even in the same type of

waveform, belonging to normal or abnormal sub-types. Due to the randomness

in the signal and intermittent nature of the V and the A type annotations,

regression based prediction and adaptive auto-regressive models could not produce

accurate classification results, especially when the model is presented with a fresh

test ECG signal. So supervised classification and pattern recognition methods

seemed like a more appropriate choice. By the successful implementation of the

V,A,L,R classifier with a classification accuracy of more than 97% using supervised

learning and cross-entropy of less than 10 and best-case classification percent

error on test-set of 1.2% (dataset split - 70-15-15%) and worst case classification

percent error on test set of 2.1% (dataset split – 60-20-20%), the hypothesis

that supervised classification and neural network pattern recognition algorithms

could be successfully trained on features extracted from the dataset of ECG

records with abnormal annotation types, could be accepted. As the Scikit-Learn

classification models could be persisted and ported to a wearable and resource

constrained IoT device, the classification models could be executed on fresh ECG

samples obtained from a human subject in real-time. The QRS detection is

an important aspect in ECG analysis and techniques such as K-Means, PCA

(Principal Component Analysis), K-Nearest Neighbours (K-NN) and Artificial

Neural Network (ANN) have been successfully used in the past yielding over 99%

classification accuracy (Adams and Choi 2012; El-Khafif and El-Brawany 2013).
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The drawback with some of these was that these models tend to accept test data

in large samples and perform analysis on entire dataset in a single execution cycle

instead of beat-by-beat samples in real-time on multi-core machines adequate

system memory. Although, this may help to develop analytical models, they

remain isolated from monitoring equipment and could not be be used in real-time

monitoring in order to generate alarms and alerts related to arrhythmia in real

time. In methods section an illustration to overcome this limitation has been

demonstrated by combining the data acquisition with machine learning servers in

real time. By transmitting the JSON (JavaScript Object Notation) encapsulated

ECG readings in real time to the server that is already trained on ECG data

from MITDB the analytical server performs the analyses and classification tasks.

There also exists a high degree of correlation between Heart Rate Variability

(HRV) and arrhythmia and HRV has been used in the past to detect sudden

cardiac deaths (Ebrahimzadeh, Pooyan, and Bijar 2014). Techniques such as

k-Nearest Neighbours (k-NN) and Multilayer Perceptron Neural Network (MLP)

(Ebrahimzadeh, Pooyan, and Bijar 2014) have been previously used with some

success to predict sudden cardiac deaths with a high degree of accuracy (about

99.73%, 95%. .96.52%) The problem however is that HRV analysis depends on

the morphology of the ECG waveform and QRS detection, which depends on the

accuracy of the ECG equipment and accurate 12-lead ECG equipment may not be

portable and certainly not wearable. The same feature extraction algorithm and

machine learning models developed in methods section could be used with other

databases from PhysioNet e.g. the Creighton University ventricular tachycardia

database, MIT-BIH atrial fibrillation database and Holter database which are

records of patients who suffered sudden cardiac death during recordings and can

be used for ECG pattern recognition of extreme conditions. Other techniques exist

which use multi-layer feed-forward perceptron models to analyse the waveform

for prediction and analysis (Adams and Choi 2012). Many of these and other

techniques consider the morphological structure of the ECG waveform where

RR interval values were commonly used for comparative analysis. However,

the morphological structure of the QRS waveform and past pattern from the

individual’s own waveform to use for a comparison to detect abnormal from
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normal waveform had presented challenges related to adaptive and auto-regressive

analysis.

Despite of the accurate classification algorithms, practical arrhythmia

classification in real-time was not possible due to size and processing power

constraints related to the IoT device and the requirement of the accurate 12-lead

ECG equipment and also due to the non-real time batch processing nature of

the algorithms, which taken together are not portable or wearable. The feature

extraction method illustrated in this research study, without completely relying

on the morphology of ECG waveforms, produced almost as accurate results

as produced by machine learning and feature extraction models that relied on

HRV analysis. Furthermore, HRV analysis is susceptible to be influenced by

the age and gender specific information (Voss et al. 2015) physical state of

the individual like running, climbing and dormant and sleeping states (Padulo

et al. 2013). The problem with V,A,L,R arrhythmia classification, mentioned

earlier, was that it did not consider the N-type arrhythmia annotations. In

theory the N-type heartbeat and the A-type heartbeat appeared very similar

in structure and morphology; the difference being that with A-type abnormality

the two consecutive heartbeats overlap showing a very subtle difference between

the N-type and the A-type annotation beats, which were very difficult to

capture using basic feature vectors that considered Heart-rate and RR interval in

V,A,L,R arrhythmia classification. The inclusion of PR interval in the extended

feature extraction algorithm that considered spectral components in the ECG

waveform, produced accurate measures for spectral characteristics of the ECG

waveform and its sub portions: the P-wave, QRS wave and the T-wave. The

spectral characteristics - power spectral density, bandpower and signal to noise

ratio, that were used as feature values enabled accurate classification. The PR

interval and its power spectral density turned out to be an essential feature

which amongst themselves contributed to 65% (37% PR_PSD and 28% PR

interval) of explained variance as ascertained by feature importance values derived

using RandomForestClassifier. There was a large imbalance in the dataset

where the abnormal samples were only 81 per 100,000 normal samples. Even
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amongst the abnormal types i.e. the V-type and the A-type annotations, the

V-type annotations samples were 10 times the A-type annotations, which would

result into only 39% classification accuracy for the A type annotation. After

SMOTE balancing, a One-vs-Rest LogisticRegression with Lasso regularisation

with L1 penalty and a ‘liblinear’ solver, balanced_accuracy score for the A type

annotation classification alone increased from 39% to 87%. With GridSearchCV

and RandomForestClassifier and StratifiedKFold, with 5 splits, cross validation in

Scikit-Learn, following SMOTE balancing, the accuracy of classifying the A-type

annotation increased to 100% and overall prediction accuracy increased to more

than 97%. The StratifiedKFold cross validation helped to minimise overfitting.

Prior to the novel feature extraction algorithm based on spectral analysis and

data analysis using imbalance reduction, the classification models were not able to

produce accurate results due to subtle differences in the V, A, N type annotations.

After having established the feature importance and by choosing PR_PSD, PR

interval, QRS_PSD, QRS interval and RR Interval as top five features out of

the total 8, which explained 95% of total explained variance, the classification

accuracy increased to more than 97%. The major factor contributing to higher

classification accuracy was the spectral analysis study of the ECG signal and its

sub-portions. In the absence of power spectral density measure of the sub portions

of the ECG wave, e.g. P-wave and the T-wave of the once the heartbeats, the

PR interval duration itself would not contribute to the variance in the predictor

feature variable. It was confounding that the PR interval remaining same the

power spectral density could be different. The trained models could be persisted

and deployed on a restricted hardware (CHM kit 3.1) using Scikit-Learn pickle

package.

By combining the real-time data acquisition, signal processing and

arrhythmia classification, the early stage arrhythmia classifier could analyse

and classify arrhythmia continuously in real time and could raise appropriate

alarms. With the further integration with electronic health records and other

ubiquitous platforms, the method could be extended to monitor and to respond to

emergencies related to health monitoring of individuals while they remain engaged
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in day to day activities (Nguyen et al. 2017).

4.8.2 ECG signal acquisition and an extended feature

extraction algorithm

The problems associated with ECG signal acquisition have always been

related to electrical interference, body motion and its effect on the waveform

that manifests as baseline wander. The raw ECG signal is noisy and the ECG

waveform characteristics such as PR interval, QRS interval and the RR interval

could not be accurately calculated from this noisy signal. If the signal was

not appropriately filtered and conditioned, these errors would have manifested

as approximation errors and could have affected further analysis. The 3 lead

ECG sensor AD8233 from Analog Devices interfaced with Arduino Micro and

Beaglebone black could effectively sample the ECG signals at 1 kHz and 10 bit

ADC resolution. The samples acquired by Beaglebone black over the serial port

contained ECG, PPG signals and the ECG signals were separated and resampled

at 360 Hz to be converted to an appropriate WFDB format. The signal was

de-noised and filtered and errors due to motion artefacts were minimised using

appropriate filtering techniques and baseline wander corrections. The Chebyshev

II 2nd order filter along with Savitzky-Golay filter (window length 101 and order

3) were effective in noise removal and baseline correction. These filters could be

effectively implemented using SciPy on Beaglebone black with Debian Linux 7.9

and could filter the noisiest portion in the ECG signal. The WFDB routines

WRSAMP, GQRS, ANN2RR, TACH and ECGPUWAVE were very effective in

converting the filtered ECG samples into an MITDB compatible record that could

be used for feature extraction. The advantage of converting the ECG signal to

an MITDB compatible record was that all the routines in the WFDB library

could be used on this converted ECG signal the characteristics of the ECG signal.

The WFDB routines, along with reading and writing annotations related to QRS

locations and start and stop positions of P-wave, QRS wave, T-wave, can also

extract physiological parameters such as ECG derived respiration rate, power

spectral density, heart rate, arterial blood pressure amongst others. The extended

feature extraction algorithm that extracted power spectral densities related to
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PR interval, QRS wave and the signal-to-noise ratio in a heartbeat belonging to

normal or abnormal type, significantly increased the classification accuracy, even

for the underrepresented abnormal A-type annotation.

The limitation of the MITDB dataset was that, not more than 38,371

samples could be obtained for the V, A, N type annotations out of which only

2132 represented the A-type annotations. So the SMOTE balancing technique

had to be applied to the feature set, which introduces synthetic samples while

over-sampling the underrepresented response variables and under-sampling the

over-represented response variables. This introduction of synthetic samples

may increase the classification accuracy though the model may not respond as

intended when presented with fresh ECG test samples. This limitation could

be overcome if an extended dataset with adequate samples, which represented

all response class type variables could be obtained. The same feature extraction

algorithm could be used to extract relevant features from an extended dataset

with adequate samples. Due to the non-linearity in the feature vector space and

their non-standard distribution a clear decision boundary could not be obtained

using linear models like the Support Vector Machines and Logistic Regression. To

avoid overfitting Lasso regularisation technique was used with LogisticRegression

which showed a balanced accuracy score of 90% and less for the underrepresented

A-type annotation. Lasso, Ridge, Elasticnet regularisation techniques could have

been used, though due to non-linearity in the feature vector space, these could

not be effectively used in the classification models. The biggest advantage of

Chebyshev filters is a steeper roll-off at cut-off frequency, though have problems

related to passband ripple and ringing effect. Although signal denoising was

performed effectively even in the noisiest portion of the signal, motion artefacts

introduced due to different states of body motion such as walking or running and

sleeping states were not adequately characterised and may require approximation

of errors handling using adaptive filters and 3-axis accelerometer. Although these

complex classification tasks have been implemented on an IoT device, the power

requirement if a concern for 24/7 operation of such a device, especially in cases

like detection of PVC and PAC beat annotations, which could appear less than 30
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times in 24 hours or even a week, so energy harvesting techniques could be used

to manage power consumption.

4.9 Summary: Early warning arrhythmia

detection and classification

With an aim to recognise the abnormal patterns in long-term ECG

monitoring, the chapter initially described the experiments that were performed

using data analysis pipelines for V,A,L,R classification. A preliminary feature

extraction algorithm for the MITDB MIT-BIH arrhythmia database has been

described giving consideration to the digital format of the records along with

the annotations related to the normal and abnormal heart beats that were

used in ECG analysis to detect cardiac arrhythmia. The PhysioNet Waveform

Database (WFDB) library which provided software routines to query and analyse

the MITDB records using these annotations, was used for feature extraction.

Currently, there exists no software library in literature that could take an ECG

recording in real-time, extract features and annotate the beat samples as belonging

to a certain arrhythmia class types. The methods of feature extraction using

WFDB routines is presented to determine the effectiveness of using k-Nearest

Neighbours (k-NN) and RandomForestClassifier models and pattern recognition

for arrhythmia detection. Initial exploratory analysis was performed on the

MITDB records using a reduced feature set (Age, Gender, RR-Interval, signal

value (mV)) and class labels containing only the abnormal beat rhythms V,A,L,R

representing PVCs, PACs, Left Branch Bundle Blocks (LBBB) and Right Branch

Bundle Blocks (RBBB) as adequate number of samples for these arrhythmia types

were found in MITDB dataset. The data analysis for V,A,L,R classification is

presented in the subsection 4.2.2 Once the effectiveness of using machine learning

classification models was established a detailed feature extraction algorithm was

developed by extracting features from physiological parameters of the ECG

waveform. As was argued that an ECG signal is a non-stationary signal, the

statistical properties of the signal could vary over time. Also, no two normal

heartbeats or abnormal heartbeats could belonging to the same class type can
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have the same waveform, so it was difficult to obtain feature values that were

consistent in describing and classifying the waveform into a specific arrhythmia

type 4.2.3. This problem was resolved by performing wavelet and spectral analysis

over the sub-wave portions of the ECG waveform. The methods of spectral

analysis of an ECG wave belonging to a class type and it’s comparative analysis

to differentiate between class types are presented in section on spectral analysis

section 4.3. The data analysis section 4.3.3 describes in detail the pipelines

used for features transformation (standardisation, normalisation, scaling and

dataset imbalance removal) used in data analysis preprocessing tasks prior to

generating and fine-tuning the classification models. The rationale behind using

a particular supervised learning classification model has also been discussed to

explain the choice of a particular model. The results obtained from the data

analysis using the classification models are presented in detail in results section

using classification report containing accuracy, precision, recall and f1-scores. The

classification models were serialised and deployed on a wearable target device, so

that the classification of arrhythmia types could be done in real-time in-situ.

In the ECG signal acquisition and processing section 4.5 the method of signal

acquisition is described, followed by detailed signal processing techniques for signal

denoising, filtering and conditioning. The freshly acquired ECG signal is noisy

due to electrical interference and motion artefacts, several filtering techniques

and wavelet transforms are described along with the rationale of using these

techniques. The signal filters were developed in MATLAB signal processing and

wavelet toolboxes initially, to model the filter parameters, though since the filter

was deployed on the wearable target device a SciPy model was developed using

the parameters similar to the MATLAB models. The detailed specification of the

digital filter is presented in the filter design subsections 4.5.1 and 4.5.2 Once the

ECG samples were filtered, they were digitised according to MITDB compatible

data format so that the classification models trained on MITDB dataset could

be used on the ECG samples captured in real-time. In order to achieve this

task, the WFDB routines were used to transform fresh ECG samples to digitised

MITDB format, subsection 4.5.3. A digitisation pipeline along with the feature

extraction pipeline provided a unique method of achieving the real-time ECG
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signal acquisition, transformation and extraction objectives in real-time signal

acquisition phase, presented in 4.6 subsection. An extended feature algorithm

was developed and is presented as Algorithm 4.2 to achieve the real-time feature

extraction pipeline.



Chapter 5

Trauma Analysis

5.1 Introduction

The fatal cardiac arrhythmia can lead to emergencies and trauma

conditions, and at any time and location and whilst the individuals remain

engaged in their day-to-day activities. As the objective of the research study was

to predict early signs of arrhythmia and to produce early warning signs and to

predict survival, a reliable trauma scoring measure or measures were required to

ascertain patient’s health status when an emergency occurred. The vital signs

(Holcomb et al. 2005; Lockwood, Conroy-Hiller, and Page 2004) and certain

physiological parameters could help in calculating trauma scores to indicate the

trauma condition of the patient. In order to perform trauma scoring a health

monitoring kit was required to perform arrhythmia classification and trauma

analysis simultaneously in real-time. The challenges in performing trauma scoring

tasks were that bedside monitors and equipment in hospitalised settings are

normally used in trauma scoring and some vital signs such as the respiratory rate

and the blood pressure, are normally obtained using clinical instruments such

as the Spirometer and the Sphygmomanometer, which are not wearable. Also,

trained staff is normally required to attend triage emergencies to interpret the vital

signs and to manually calculate and interpret the trauma scores. In the absence

of direct measurements, these measures had to be calculated and approximated

so that all the vital signs became available for calculations. A solution has been

proposed in this chapter to acquire and calculate intermediate vital signs and

151
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intermediate trauma scores from ECG and Photoplethysmogram (PPG) signals

(Dinh, Luu, and Cao 2017) using the MITDB WFDB libraries (Ary L Goldberger

et al. 2000) and signal processing techniques on a wearable resource constrained

device. A PPG is an optically obtained plethysmogram that can be used to

detect blood volume changes in the micro-vascular bed of tissue. Furthermore, the

arrhythmia and trauma related information had to be integrated with Electronics

Health Records (EHR) if a trauma event occurred. In order to make this provision

the challenge was to encapsulate the trauma related scores, the vital signs profile

and the cardiac arrhythmia related information, along with location information,

in a standard format and according to clinical terminology acceptable by EHR

globally. The trauma and arrhythmia related information could be transmitted

in real time and could be shared across multiple EHR repositories and Decision

Support Systems (DSS) worldwide for further consultation with medics having

diverse skill-sets and for research.

In this chapter operation of the Composite Health Monitoring (CHM)

kit (Walinjkar 2018a) explained in section 3.1 is presented in a form of a unique

pipeline for ECG and PPG signal acquisition and processing tasks, followed by

machine learning based prediction and classification along with the encapsulation

of trauma scores, vital signs profile and location information to be transmitted

to EHR servers using standard telemetry protocols. A novel trauma scoring

algorithm is also presented in this chapter that could aggregate a combination

of trauma scores that could determine the prediction of survival of an individual

under trauma condition. To determine the efficacy of this algorithm, it was

tested on the MIMIC Numerics dataset, which is essentially a vital signs dataset

of patients admitted to the ICU. The National Early Warning Signs (NEWS),

Revised Trauma Scores (RTS), and TRauma Injury Severity score (TRISS) and

Prediction of Survival (Ps) scores were calculated using the vital signs extracted

from the dataset (Champion et al. 1989). The vital signs and physiological

parameters are usually obtained in a hospitalised environment or from ambulatory

equipment, however, the CHM kit presented in this chapter, could calculate these

scores in real-time and could provide trauma and prediction survival scores to

the critical care team ahead of emergencies. For trauma scoring, the proposed
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algorithm could approximate and extract respiratory rate and systolic blood

pressure from ECG and PPG signals. The MITDB WaveForm DataBase (WFDB)

library 3.3.1 was used to extract vital signs from the MIMIC Numerics dataset.

The WFDB library is a collection of primitive routines to extract information from

any time-series waveform signal. From the physiological parameters extracted

using WFDB routines, along with the Pulse Transit Time (PTT) calculated using

the ECG and PPG samples (Dinh, Luu, and Cao 2017), the algorithm was able

to approximate the respiratory rate and systolic blood pressure, which were used

to calculate the trauma scores.

5.2 Methods: Vital signs and conversion to

WFDB format

This section describes a unique pipeline of WFDB routines, which when

executed in particular order on ECG and PPG samples produced vital signs

and physiological parameters that were used in trauma scoring. The WFDB

routines required that the samples were in a particular format as described in the

pipeline. The steps for obtaining vital signs from fresh ECG and PPG samples

and conversion to WFDB compatible format were as follows:

1. The samples from the ECG and PPG sensor were acquired by Arduino Micro

clocked at 16MHz and transmitted to BBB over the serial port at 115200

baud and received by BBB using the Adafruit GPIO library for BBB with

a sampling frequency of 1 KHz. (Analogue-to-Digital Converter in Arduino

Micro has 10-bit resolution counter) The ECG signals were resampled at 360

Hz similar to the sampling frequency of the records in MITDB arrhythmia

database. The signal had to be resampled and filtered using Chebyshev

II and Savitzky-Golay filters as explained in previous sections, in order to

obtain an ECG signal that could be converted to a record compatible to the

MITDB database. This step had to be performed as the WFDB routines

that were used to extract features from MITDB records, could be used for

freshly acquired ECG signal as well. The inter-sample interval between two

consecutive samples in the MITDB record was 0.00277 seconds (360 Hz)
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2. The WRSAMP -F 360 -G 1000 -i ECGPPGSamples.txt -o dat command

from WFDB was used to convert these samples to a WFDB-compatible

record where 1000 was the gain. The WFDB record conversion sampling

frequency is 360 Hz, which was different from the data acquisition sampling

frequency of 1 KHz. The routing generated the ECGPPGSamples.dat file

containing the WFDB compatible samples. It is a common clinical practice

that the ECG strips are analysed in batches of 10 second intervals, as each

ECG strip is 10 seconds in duration.

3. The GQRS -r ECGPPGSamples.dat -m 1.5 command was used to obtain

the QRS complexes from the samples. The threshold was set to 1.5 Volts,

and a qrs annotation file was generated. The QRS annotations are the

locations in the ECG waveforms where the QRS peaks occur. This qrs

annotation file was used by the other WFDB routines to extract features.

4. The RDANN -r ECGPPGSamples -a qrs command, which uses the qrs

annotation file, was used to detect the R-peaks in the ECG waveform. The

command generated file containing timestamps (as sample numbers) and

R-peak locations at these timestamps.

5. The TACH -a qrs -r ECGPPGSamples command, which uses the qrs

annotation file, was used to detect the instantaneous heart rate in the freshly

captured ECG signals. Heart rate was another important physiological

parameter in trauma scoring.

6. The ECGPUWAVE -a qrs -r ECGPPGSamples -o epu command generated

the epu annotations file with extension epu containing the locations of (,),

N, p, t annotations from the corresponding qrs file.

7. The RDANN -a epu -r ECGPPGSamples -p k where k = {(, p, N, t,)}

routine read the epu annotations file to return (, p, N, t,) annotation

type/sub-type values with corresponding sample number values at the

annotation location corresponding to annotation types/sub-types which

were essentially P-wave and T-wave with their onset and stop boundaries

and the N-type annotation being the QRS wave. The command was
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executed thrice for detecting the locations of P-wave, T-wave, QRS

complex and their start and stop locations. The command generated a file

for each of these annotation types and sub-types each containing a column

of sample numbers which represented the locations of P-wave, T-wave and

the QRS complex along with their start and stop positions.

The following additional steps were performed to obtain all the vital signs

related information. The two additional physiologic parameters required for

vital signs based trauma analysis were the Systolic Blood Pressure (SysBP)

and the Respiratory Rate:

(a) The number of samples between an R-peak (i.e. the sample number

at the location of N type annotation) and the next available PPG

peak was determined, and the time duration corresponding to these

samples was calculated, which provided the Pulse Transit Time (PTT)

value that was used to determine the systolic blood pressure. At 360

Hz, the WFDB sampling frequency interval between two consecutive

samples would be approximately 0.00277 seconds. The systolic blood

pressure and the respiratory rate were calculated from the readings

from the ECG and PPG sensors using the PTT, the Pulse Arrival

Time (PAT), and the Pulse Delay Time (PDT). (Dinh, Luu, and Cao

2017; Heartisans - How it works 2017)

(b) The EDR -r ECGPPGSamples -i ECGPPGSamples -f 0 -t 10

command was used to generate the ECG Derived Respiratory

Rate (EDR) samples for 0 to 10 second time frames and corresponding

to the qrs annotation file. This provided the average respiratory

rate over a 10 seconds interval. Traditionally, in a hospitalised or

ambulatory patient monitoring situation a Spirometer would be used

to obtain respiratory rate. For a wearable kit however, the ECG

derived respiratory rate was used instead.

5.2.1 Respiratory Rate and Blood Pressure Calculations

The Respiratory Rate was calculated using the Physionet Waveform
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Database (WFDB) library using the EDR routine, and the derived value had

a high correlation to the measured values, as found by the authors of the library

(Ahmad et al. 2012). Since the ECG waveforms were available, Respiratory Rate

was calculated from the ECG waveform itself. Usually, to obtain a respiration

signal from an ECG kit, the transthoracic impedance is measured between the

ECG electrodes, so the respiration signal is obtained from ECG electrode contacts

rather than from the ECG waveform. This method required special-purpose

hardware and it was not possible to obtain respiratory rate from a recorded ECG

signal. Another method was to obtain the respiratory signal using beat-to-beat

variations in RR intervals or their reciprocals, which were primarily due to

Respiratory Sinus Arrhythmia (RSA). As this method worked best in younger

population, in whom RSA is most pronounced, it could not be used widely as a

large number of patients being monitored were an elderly population.

The ECG-Derived Respiration (G. B. Moody, Mark, et al. 1985)

technique was based on the observation that the changing ECG electrode position

induces transthoracic impedance variations, as the lungs fill and empty. Thus the

lead axes vary at different points in the respiratory cycle, and measurement of

signals across a cardiac electrical axis showed variations that were correlated with

respiration. The EDR could be obtained even if the RSA was absent. The EDR

method is an approximation method and not as accurate as Spirometry, however

it is effective in the absence of a Spirometer. The WFDB toolkit provided the

EDR routine that could extract RR from an ECG signal given a QRS annotation

file. The EDR routine is a C program and it was compiled on the BBB with

GNU/Unix/Linux target platform.

The Blood Pressure (BP) is also an important vital sign used in trauma

scoring, and in the absence of an integrated sensor, there were challenges to

measure BP, and to remove motion artefacts. Researchers have tried to overcome

these challenges by analysing oscillometric pulses after amplitude modulation and

amplification of the ECG signal (S. Kumar and Ayub 2015; Park et al. 2006)

The Pulse Transit Time (PTT) feature, which was calculated from ECG and

PPG signal, could be used for BP estimation. A prototype was developed and

tested, which achieved a mean absolute difference of less than ’5’ mm Hg for
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estimating the BP with the reference Omron BP monitor. It was assumed that in

the absence of Respiratory Rate and BP sensors that could be readily integrated

with the composite wearable sensor kit, the estimated values of Respiratory Rate

and BP derived from ECG waveforms could be used to calculate the trauma and

injury scores. PTT was measured as the time interval between the R-peak in an

ECG wave and a characteristic point at predetermined peak of the PPG signal in

the same cardiac cycle(Dinh, Luu, and Cao 2017; Park et al. 2006). The PTT was

the difference in the timestamps between the R-peak and PPG-peak as shown in

figure 5.1. By using PTT, the Systolic Blood Pressure (SysBP) was calculated as

follows:

PTT = TP P Gpeak − TRpeak

SBP = 4.8008600358 ∗ 104 ∗ PTT + 1.308532932
(5.1)

The PTT and SysBP expressions 5.1 are used in the next section for

real time trauma scoring and prediction of survival. The section also presents the

Algorithm 5.1 for real time data acquisition to obtain physiological parameters

from human subjects.

5.3 Methods: Algorithm for trauma scoring and

survival prediction

As trauma analysis and scoring was performed on MIMIC Numerics

dataset an algorithm (Algorithm 5.1) was proposed to derive physiological

parameters from the dataset in order to calculate the intermediate trauma scores

that could be used in calculation and approximation of prediction of survival.

As the dataset belonged to a category of clinical class admitted to the hospital

in ICU ward, the prediction of survival values calculated by the algorithm had

to agree with the health status of the patients. In addition, the same algorithm

was supposed to extract the same physiological parameters that occur in the

MIMIC Numerics dataset. As a wearable IoT device, the CHM kit, was used,

which had no Spirometer or Sphygmomanometer, the respiratory rate and systolic
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blood pressure had to be approximated rather than be measured on the human

subject. These extracted parameters were then used in the proposed trauma

scoring and prediction of survival algorithm. The WFDB routines were used to

extract physiological parameters from the ECG and PPG signals acquired from

human subject in real time. The WFDB routines were used after converting the

raw ECG and PPG signal to a WFDB compatible record. This task involved

resampling and denoising of the signals as recommended by MITDB.

As explained in section 5.2.1, the respiratory rate was obtained using

the EDR routine from WFDB toolkit and systolic blood pressure was obtained

using PTT that was calculated from ECG and PPG samples. An algorithm

had to be developed to calculate all the vital signs and physiological parameters

from the ECG and PPG readings from a human subject in real time. As the

ECG and PPG samples were gathered with a sampling frequency of 1 kHz,

these had to be resampled to convert the samples to a WFDB format. As

the entire analysis was to be performed within a 10 seconds interval, after

which the next batch of samples became available in a Comma Separated

Variables (CSV) file generated after sampling the ECG and PPG signals over

a 10 seconds interval and the trauma scoring and prediction of survival scoring

was performed every 10 seconds. Also, since the ECG strips are normally

read over a 10 second interval by cardiologists, the same convention was

followed. The samples transmitted by Arduino Micro to BBB in the CSV string

format E:<ecgsamples>, P:<ppgsamples>, S:<spo2readings> were parsed to

split into the ECG samples, the PPG samples and the SpO2 readings. The

SpO2 calculations, were performed on Arduino Micro from the PPG samples

gathered from the PPG sensor, before they were transmitted to BBB. The SpO2

calculations implemented on Arduino Micro for MAX30100 PPG sensor used the

expressions 5.2 , 5.3 and 5.4 provided by the manufacturer and Oxullo Interscans

Ltd.(Oxullo 2019). The infra-red sensor reading (irVal) and the red LED reading

(redVal) from the PPG sensor were used, over XirV al[n] and XredV al[n] samples

with 1 KHz sensor sampling frequency.
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InfraRed2 =
n∑
0

(XirV al[n])2

Red2 =
n∑
0

(XredV al[n])2

Ratio2 = 100.
loge

InfraRed2

n

loge
Red2

n

(5.2)

if(Ratio2 > 66) index = Ratio2 − 66

if(Ratio2 > 50 and Ratio2 < 66) index = Ratio2 − 50
(5.3)

spO2LUT [43] = {100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98,

98, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 95,

95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93}

spO2 = spO2LUT [index]

(5.4)

The following WFDB routines were used in Algorithm 5.3 to extract physiological

parameters from the ECG signal captured from human subject:

The WRSAMP routine in WFDB toolkit was used to generate the

digitised WFDB compatible ECG record file sampled at 360 Hz.

The GQRS routine in WFDB toolkit was used to generate the QRS

annotator file with the R peaks locations for the ECG samples gathered.

The FindPeaks routine in Python SciPy package which finds all local

maxima by simple comparison of neighbouring values, was used to obtain the

PPG peak locations in the PPG samples file.

The RDANN routine in WFDB toolkit was used to detect the R-peaks

locations using the QRS annotation file.

The PTT value or a cardiac cycle was determined by calculating the

difference between the R-peak and the PPG peak locations in the same cardiac

cycle, as shown in figure 5.1. The number of samples between these two peaks

locations multiplied by a factor of 0.00277 seconds would obtain the PTT value in
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Figure 5.1: ECG and PPG signal for calculating PTT and SysBP

a cardiac cycle. The PTT value was used to calculate the systolic blood pressure.

The PTT value calculated from the ECG and the PPG signals may have

contained outliers and noise. A moving average filter with frame length of 3 was

used to eliminate the effects of noise, which may have occurred due to noise in

ECG and PPG signals. The outliers were eliminated using a Gaussian filter and

by providing a filtering condition, e.g. the elimination condition of SysBP > 140.

The moving average filter could adequately smooth the data points and provided

minimal filtering as shown in figure 5.2.

The TACH routine in WFDB toolkit was used to detect heart rate using

the QRS annotation file. The vital signs were thus obtained from a human subject

in real time using the PPG and the ECG samples. Depending on whether the

samples were obtained from the sensors or from the MIMIC Numerics database,

a record tuple was generated for further trauma analysis.

The following steps were carried out on the MIMIC Numerics dataset as

no trauma patient was available to demonstrate the trauma scoring in real time:

For the purpose of illustration, considering that the MIMIC Numerics

dataset was used, where the patients were admitted to the ICU, GCS score of

4 was assumed. The AVPU score of 3 was assumed as the patient may not be

alert and not fully conscious in the ICU. The NEWS score was calculated based



5.3. Methods: Algorithm for trauma scoring and survival prediction 161

Figure 5.2: Systolic blood pressure (SysBP) (Normalised) calculated using PTT
with sample interval 0.00277 (360 Hz) and the expression 5.1. The figure also
shows the approximated values using moving average filter
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on the NEWS table 2.7 reference values for Respiratory Rate SpO2, supplemental

oxygen, temperature, Systolic BP, Heart Rate and alertness AVPU.

The severity levels were associated with the NEWS scores where the

severity equals 1 for NEWS if the NEWS ≤ 4, severity equals 2 if 5 ≤ NEWS ≤

6 and severity equals 3 if NEWS ≥ 7. The similarity scores could be used to raise

alarms and alarms remotely to the critical care team responsible for the patient.

Trauma scores and corresponding physiological parameters.
NEWS RTS TRISS

Parameters
used

Respiratory Rate
Oxygen Saturations
Supplemental
Oxygen (Y/N)
Temperature
Systolic Blood
Pressure
Heart Rate
AVPU Score

Glasgow Coma
Scale (GCS): Eye
+ Verbal + Motor
response score
Systolic BP
Respiratory Rate

Uses RTS and
ISS
ISS:
(Anatomical
injury scores
for Head +
Face + Chest
+ Abdomen
injury)
Severity of
injury

Interpretation NEWS of 1 to
4: escalation of
clinical care
NEWS of 5 to 6
or a RED score:
escalation to
critical care
NEWS ≥ 7:
escalation to
critical care
with maximum
competency

GCS < 15 warrants
close attention
GCS <8 is of
clinical concern
RTS ≤ 2: critical
care situation with
less than 15%
chance of survival

ISS of 75 and
higher is critical
with less chance
of survival.
Ps (blunt or
penetrating)
values (0 to 1):
Values less than
0.15: less chance
of survival

Table 5.1: Interpretation of trauma scores and physiological paramters

There were severity levels for the RTS scores as well. If RTS greater

than or equal to 12 then the severity score for RTS was assigned a value of 4.

Appropriate alerts and alarms could be raised depending on the severity levels

according to the reference table values for RTS 2.9.

Following the RTS score, the ISS score was required as for the final

trauma score both RTS and ISS scores were required. The AIS scores were

assigned based on the severity of injury according to the ISS reference table
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2.10. For the MIMIC Numerics data analysis, since the patients were admitted

to the ICU, the AIS score of 4 corresponding to injury level SEVERE was assumed,

resulting in ISS = 48.

Since the trauma was measured using the TRauma and Injury Severity

Score (TRISS), all the values pertaining to trauma score were calculated

beforehand along with the necessary assumptions according to the RTS, ISS and

the TRISS reference table 2.11 and value reference table 5.1. In addition to severe

cardiac arrhythmia, the trauma could have also been due to an internal injury or

a condition or it could be due to an external injury due to penetration from an

external foreign object.

Denoted as blunt or penetrating, the TRISS trauma scores are essentially

coefficients calculated using the RTS and ISS scores. These interim scores along

with measuring the extent of trauma, are also used in prediction of survival in

the individual being monitored and suffering from a traumatic experience. The

Probability of Survival (Ps) scores, denoted as Ps_blunt and Ps_penetrating were

calculated from these interim scores. A prediction of survival score close to 0 is

presumed to indicate certain death and the prediction of survival score close to 1

is indicative of better chances of survival in a critical health situation.

The following algorithm was proposed that could obtain the physiological

parameters from human subjects in real time and was used to perform real time

trauma calculations.
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Algorithm 5.1 Algorithm for extracting physiological parameters from human
subject for Trauma Scoring calculations
1: procedure ExtractPhysiologicalParameters(

) . /*The timer routing to accept samples in batches of 10 seconds */
2: ClinicalClass← Respiratory_Failure
3: File.open(ECGPPGSamples.txt)
4: Timer ← 10 seconds
5: Timer.start: Call TimerStartRoutine
6: On Timer.end: Call TimerEndRoutine
7: end procedure

8: procedure TimerStartRoutine
9: while Timer 6= 0 do
10: ECGPPGsamplesLine = Serial.readline(ECGPPGsamples)
11: csvSamples = parse(ECGPPGsamplesLine, separator = ",")
12: ecgSample = csvSamples(E:)
13: ppgSample = csvSamples(P:)
14: spo2Sample = csvSamples(S:)
15: File.writeline(ecgSample + \tab +ppgSample + \tab + spo2Sample + \newline )
16: end while
17: end procedure

18: procedure TimerEndRoutine
19: SysBPvalues = Array[]
20: SysBPssamplenumbers = Array[]
21: [PPGpeaks, PPGpeakssamplenumbers] =

SciPy.signal.findpeaks(PPGSamples360Hz, height = 1800)
. 1800mV threshold for PPG

22: SysBP = Call ExtractSystolicBloodPressure(PPGpeaks, PPGpeakssamplenumbers)

23: Window = 3
24: cumsum, movingavgSysBP = [0], []
25: for counter, element = 0 : length(SysBP ) - 1 do
26: cumsum.append(cumsum[counter-1] + element)
27: if counter ≥ Window then
28: movingavg = (cumsum[counter] - cumsum[counter-Window])/Window
29: movingavgSysBP .append(movingavg)
30: end if
31: end for
32: SysBPsvalues = movingavgSysBP . corrected SysBP values
33: [HeartRatesamplenumbers, HeartRatesamplevalues] =

TACH -a ECGSamples360Hz.qrs -r ECGSamples.dat
34: [RespiratoryRatesamplenumbers, RespiratoryRatesamplevalues] =

EDR-r ECGSamples.dat -i ECGSamples360Hz.qrs
35: File.open(PhysiologicalParameters.txt)
36: for i = 0 : length(Rpeakssamplenumbers do
37: if Rpeakssamplenumbers[i] ==

SysBPssamplenumbers[i] == HeartRatesamplenumbers[i] ==
RespiratoryRatesamplenumbers[i] == Spo2samplenumbers[i] then

38: File.writeline(SysBPsvalues[i]+ \tab + HeartRatesamplevalues[i] + \tab +
RespiratoryRatesamplevalues[i] + \tab + Spo2samplevalues[i])

39: end if
40: end for
41: Timer.start: Call TimerStartRoutine
42: end procedure
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Algorithm 5.2 Algorithm for calculating Systolic Blood Pressure from ECG and
PPG readings and Pulse Transit Time (PTT)
1: procedure ExtractSystolicBloodPressure(Rpeakssamplenumbers,PPGpeakssamplenumbers

)
2: for ( doecgPeakSampleNumber = 0 : length(Rpeakssamplenumbers) - 1)
3: for ( doppgPeakSampleNumber = 0 : length(PPGpeakssamplenumbers) - 1)
4: if ( thenppgPeakSampleNumber > ecgPeakSampleNumber &&

ppgPeakSampleNumber < ecgPeakSampleNumber + 1)
5: PTTSampleDiffernce =

ppgPeakSampleNumber - ecgPeakSampleNumber
6: PTT = PTTSampleDiffernce * 0.00277
7: SBP = 4.8008600358 * 10^4 * PTT + 1.308532932
8: SysBPsvalues.append(SBP )
9: SysBPssamplenumbers.append(ecgPeakSampleNumber)
10: end if
11: end for
12: end for
13: return SysBPsvalues

14: end procedure

Algorithm 5.3 Algorithm for Sampling ECG and PPG Signals using WFDB
routines
1: procedure SampleECGPPGWithWFDBRoutines
2: WRSAMP -F 360 -G 1000 -I ECGPPGSamples.txt -o ECGSamples.dat 1 0

. (1 0) indicating only one column with column index = 0 containing ECG samples selected;
the other two columns were for PPG and SpO2 readings

3: WRSAMP -F 360 -G 1000 -I ECGPPGSamples.txt -o PPGSamples.dat 1 1 . (1 1)
indicating only one column with column index = 1 containing PPG samples selected

4: WRSAMP -F 360 -G 1000 -I ECGPPGSamples.txt -o spo2Samples.dat 1 2 . (1 2)
indicating only one column with column index = 2 containing spo2 samples selected

5: RDSAMP -r spo2Samples.dat -pS > spo2Samples360Hz.txt
6: Spo2samplenumbers = Array[]
7: Spo2samplevalues = Array[]
8: Spo2sample = Array[2]
9: File.open(spo2Samples360Hz.txt)
10: while ! File.EndOfFile do
11: Spo2SampleLine = File.readline()
12: Spo2sample = parse(Spo2SampleLine, separator = "�")
13: Spo2samplenumbers.append(Spo2sample[0])
14: Spo2samplevalues.append(Spo2sample[1])
15: end while
16: GQRS -r ECGSamples.dat -o ECGSamples360Hz.qrs -m 1.5
17: [Rpeaks, Rpeakssamplenumbers] = RDANN -a ECGSamples360Hz.qrs -r ECGSamples.dat
18: RDSAMP -r PPGSamples.dat > PPGSamples360Hz.txt
19: PPGSamples360Hz = Array[]
20: File.open(PPGSamples360Hz.txt)
21: while ! File.EndOfFile do
22: ppgSample = File.readline()
23: PPGSamples360Hz.append(ppgSample)
24: end while
25: end procedure
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5.4 Results: Trauma Analysis

When the Algorithm 5.1 was executed on the MIMIC Numerics database

a total of 368,721 samples from eight patients admitted to ICU for the clinical class

Respiratory_Failure were obtained. It was observed that since the patients

were admitted into ICU wards, the NEWS and the RTS scores agreed with their

health status as the NEWS and the RTS severity scores less than 4 indicated

the patients were under severe trauma. The MIMIC Numerics database, being a

critical care database, is widely accepted database of vital signs related analysis.

In this chapter however, the Numerics physiological parameters were used for

prediction of survival as well. The waveforms for a sample record 033n in MIMIC

Numerics dataset is shown in figure 5.3 and the power spectrum of the Respiratory

Rate signal associated with the record is shown in figure 5.4.

Once the trauma scores were generated for the MIMIC Numerics

database, relationship between NEWS and RTS scores and the prediction

of survival scores was determined. Given a set of physiological parameters

(heart rate, respiratory rate, blood pressure and oxygen saturation (SpO2))

it was possible to determine which trauma scoring mechanism would be most

appropriate for a clinical class of trauma. For illustration, a clinical category

of Respiratory_Failure was considered for trauma calculations. The NEWS

and RTS scores were calculated along with TRISS and Ps scores. In order to

determine the degree of correlation between NEWS and RTS scores such that one

of these could be used for prediction of survival, correlation analysis was performed

between these two feature variables. Although the correlation was derived for

clinical class Respiratory_Failure, the same task could be performed for other

clinical classes such as congestive heart failure and myocardial infarction which

are the other two clinical classes represented by the MIMIC Numerics database.

The correlation between RTS, NEWS, and the Ps scores was obtained. (Walinjkar

2018a)

As a clinical class where no external injury was considered from the

MIMIC Numerics database only the Ps_blunt score was considered for Ps values,

with statistical distributions as shown in table 5.2. The NEWS and RTS scores

consider different physiological parameters and assumptions with regards to the
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Figure 5.3: MIMIC Numerics record 033n with physiological parameters and
NEWS, RTS trauma scores

Figure 5.4: The signal waveforms for respiratory rate for Record 033n of the
MIMIC Numerics database. Spectral image of the respiratory rate (RR) waveform
showing two episodes of respiratory rate failure for Record 033n
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patient’s health status at a given point in time during the trauma episode. The

NEWS score relies mainly on the physiological parameters while the RTS score

considers the GCS value involving the sensory response system of an individual.

Descriptive Statistics for Physiological parameters
N Minimum Maximum Mean Std.

Deviation
SysBP 368721 -3 360 135.70 26.049
HeartRate 368721 3.85 206.00 63.6646 41.88845
RespiratoryRate 368721 -20 350 20.39 10.448
SpO2 368721 -20 355 77.47 29.424
N (listwise) 368721
Descriptive Statistics for trauma scores

N Minimum Maximum Mean Std.
Deviation

NEWS 368721 3 15 6.88 3.417
RTS 368721 1.9602 5.0304 4.956928 .1815849
PsBlunt 368721 .00979 .40351 .18683 .13184
PsPenetrating 368721 .00777 .34004 .19102 .08811
N (listwise) 368721

Table 5.2: Descriptive statistics for physiological parameters and trauma scores

The hypothesis to be tested was that given NEWS and the RTS score,

will just one of these scores be able to adequately represent the trauma severity

and prediction of survival of a patient in trauma situation. It was then required

to determine whether there is any correlation between the NEWS and the RTS

scores. Also, since Ps score depended on these two scores, how much would the

change in either of these two scores affect the Ps scores, so regression analysis was

performed for NEWS, RTS and Ps scores. As NEWS is an early warning score, it

is normally used to prepare for a trauma situation, while the RTS score provides

a measure of the extent of trauma.

Another hypothesis to be tested was that, given the physiological

parameters (Heart-rate, Respiratory Rate, SpO2, SysBP), will it be possible

to predict the survival of the patient under trauma condition. To test the

hypothesis correlational analysis was required between physiological parameters

and Ps scores. Also, to what extent would the Ps score change if any of the
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physiological parameters changed, which required regression analysis between

physiological parameters and the Ps scores. The dataset extracted using the

algorithm proposed in this chapter with the relevant trauma scores and prediction

of survival scores was used with MATLAB and IBM SPSS tools to generate

correlation and regression models to discover the relationship between these three

scores in trauma analysis. (Walinjkar 2018a)

Correlation: RTS, NEWS and Ps: Would either the RTS or the

NEWS score be able to provide measure of trauma for the patient and also

predict patient survival?

Assumptions: As RTS and NEWS scores used similar physiological parameters

it was assumed that were correlated so either of these would have adequately

predicted patient survival. It was assumed that the RTS and the NEWS scores

had a strong positive relationship amongst themselves given a trauma condition.

A GCS value of 4, corresponding to severe trauma, was assumed as the dataset

belonged to patients admitted to the ICU. An AVPU value of 3 was assumed

as the patients were in the ICU in an unresponsive state. A clinical class of

Respiratory_Failure was assumed for 8 human subjects.

Steps: the RTS, NEWS and Ps_blunt scores for all the 8 human subjects were

extracted. The descriptive statistics of all the variables were analysed. The

Pearson‘s (parametric – assuming normal distribution) correlation coefficients

(two-tailed) were calculated for the RTS and NEWS scores, using the bi-variate

correlation statistical tool. Linear regression was performed on the NEWS and

RTS variables using PS_blunt as the dependent variable to assert predictive

capability of NEWS and RTS with regards to prediction of survival.

Correlation: physiological parameters and Ps: Could the

physiological parameters SpO2, Heart Rate, Respiratory Rate, systolic Blood

Pressure and Age be used to predict patient survival without having to calculate

NEWS and RTS? There may be some correlation between the physiological

parameters themselves, as some parameters may be interdependent on the others

for a particular type of trauma condition.

Assumptions: As a measure for prediction of survival was to be predicted (Ps or
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Ps_blunt), regression analysis was required to be performed on the physiological

parameters to ascertain the extent of effect the physiological parameters would

have on patient survival. Correlational analysis was also performed to figure

out relationships amongst the physiological parameters. Age was considered

as a factor for regression analysis as a large number of trauma patients,

especially, related to respiratory failure and cardiac illnesses belonged to the

elderly age group. It was assumed that the physiological parameters may be

correlated for a given trauma condition, however, merely having a correlation

amongst the parameters may not adequately represent the co-relationship between

the parameters (taken collectively) and the dependent variable Ps_blunt. It

was therefore assumed that regardless of correlations between the physiological

parameters, it was a linear regression analysis that was more important than the

correlation. A non-parametric distribution was assumed with the physiological

parameters.

Steps: Correlations analysis, table 5.3, was performed on the physiological

parameters SysBP, Heart rate, Respiratory Rate, SpO2 and no significant positive

co-relationship amongst the parameters was found. Regression analysis was

chosen to ascertain predictive capability of physiological parameters. Linear

regression analysis was performed on the physiological parameters SpO2, Heart

Rate, Respiratory Rate, systolic Blood Pressure and Age with PS_blunt as

dependent variable.
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Correlations – Physiological parameters
SysBP Heart

Rate
Respiratory
Rate

SpO2 PsBlunt

SysBP Pearson
Correlation

1 .396∗∗ -.015∗∗ .497∗∗ -.476∗∗

Sig.
(2-tailed)

.000 .000 .000 .000

N 368721 368721 368721 368721 368721
HeartRate Pearson

Correlation
.396∗∗ 1 -.269∗∗ .863∗∗ -.878∗∗

Sig.
(2-tailed)

.000 .000 .000 .000

N 368721 368721 368721 368721 368721
Respiratory
Rate

Pearson
Correlation

-.015∗∗ -.269∗∗ 1 -.213∗∗ .338∗∗

Sig.
(2-tailed)

.000 .000 .000 .000

N 368721 368721 368721 368721 368721
SpO2 Pearson

Correlation
.497∗∗ .863∗∗ -.213∗∗ 1 -.942∗∗

Sig.
(2-tailed)

.000 .000 .000 .000

N 368721 368721 368721 368721 368721
PsBlunt Pearson

Correlation
-.476∗∗ -.878∗∗ .338∗∗ -.942∗∗ 1

Sig.
(2-tailed)

.000 .000 .000 .000

N 368721 368721 368721 368721 368721
**. Correlation is significant at the 0.01 level (2-tailed).

Table 5.3: Correlation between physiological parameters and Probability of
Survival

5.5 Results: Relationship of trauma scores with

their predictors

In order to validate the hypothesis that there is a correlation between

RTS, NEWS, and the Ps blunt or Ps penetrating scores, the statistical analysis

had to be performed with an existing dataset. The MIMIC 2 Numerics dataset

hosted by PhysioNet was used to perform the statistical analysis. The dataset

was cleaned to extract features relevant to the NEWS and the RTS calculations

according to patients admitted to the ICU and belonging to a clinical class

category Respiratory_failure. Once the vital signs samples of all the patients
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belonging to a clinical category was extracted, columns for each of the vital signs

were used for statistical analysis. The analysis was performed on 368,721 samples

from eight patients admitted to ICU for the clinical class Respiratory_failure.

The samples were known to be taken at the interval of 1 second. It was observed

that since the patients were admitted into ICU wards, the NEWS and the RTS

scores agreed with their health status. The NEWS and the RTS severity scores

less than 4 indicated the patients were under severe trauma, and this helped

to accept the hypothesis. The MIMIC II (Saeed et al. 2011; Pirracchio 2016;

Daniel J. Scott et al. 2013a) database is widely accepted, and some experiments

of similar nature have been performed on the dataset, so that it can be used for

trauma score calculations. (Walinjkar 2018a)

The vital signs and physiological parameters from PhysioNet and

the MIMIC II Numerics (mimicdb/numerics) database were used to calculate

NEWS and RTS, and to generate correlation and regression models using

the vital signs/physiological parameters for a clinical class of patients with

Respiratory_failure and admitted to ICU.

NEWS and RTS scores showed no significant correlation (r = 0.25, p <

0.001) amongst themselves; however together, NEWS and RTS showed significant

correlations with Ps (blunt) (r = 0.70, p < 0.001). RTS and Ps (blunt) scores

showed some correlation (r = 0.63, p < 0.001) and the NEWS score showed

significant correlation (r = 0.79, p < 0.001) with Ps (blunt) scores, as shown in

table 5.4.

Regression: Considering the age, heart rate, systolic BP, respiratory rate

and SpO2 as predictors to PS_blunt, the predictors showed significant positive R

for regression at F (5,368715) = 1098725, p < 0.001, total R2 = 93%, as shown

in table 5.5.

Both RTS and NEWS that were considered as variables to predict Ps

had significant positive relationship with R for regression that was significant at

F (2, 368,718) = 442,679.9, p < 0.001, total R2 = 70% as shown in table 5.6

There was no significant correlation between NEWS and RTS (r = 0.25,

p < 0.001), which was due to the limitations of the sample space belonging to a

particular clinical class. An extensive regression analysis over the entire ’Numerics’
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Scores and Correlation Measure PsBlunt NEWS RTS
PsBlunt Pearson

Correlation
1 0.7950 ** 0.0630 **

Sig. (2-tailed) 0.000 0.000
N 368721 368721 368721

NEWS Pearson
Correlation

0.795 ** 1 −0.252 **

Sig. (2-tailed) 0.000 0.000
N 368721 368721 368721

RTS Pearson
Correlation

0.063 ** −0.252 ** 1

Sig. (2-tailed) 0.000 0.000
N 368721 368721 368721

**Correlation is significant at the 0.01 level (2-tailed).

Table 5.4: Correlation between RTS, NEWS and PsBlunt scores

Model R R Square Adjusted R
Square

Std. Error of the
Estimate

1 0.968 a 0.937 0.937 0.03306513230
a Predictors: (Constant), SpO2, RespiratoryRate, SysBP, HeartRate

Table 5.5: Regression score between SpO2, RespiratoryRate, SysBP, Heart rate
to predict PsBlunt

dataset would be necessary to establish an affirmative correlation between NEWS

and RTS scores. There may not be a higher degree of correlation between NEWS

and RTS scores themselves, which was due to the sample space considered from

a single ’clinical class’ for analysis. If the most recent MIMIC II/III Numerics

dataset, which contains more than 22,200 records, each record covering 72 hrs,

a positive significant relationship between RTS and NEWS could potentially be

observed as shown in table 5.6

There was, however, a significant positive relationship between NEWS

and PsBlunt (r = 0.79, p = 0.01) and a moderate positive relationship between

the RTS and PsBlunt (r = 0.63, p = 0.01). Correlation and regression between

Age, Heart rate, SpO2, SysBP and PsBlunt: There were positive significant

relationships between Age (r = 0.91, p = 0.01), Heart rate (r = 0.87, p = 0.01), and

SpO2 (r = 0.94, p = 0.01) with PsBlunt. There were weak positive relationships

between SysBP (r = 0.47, p = 0.01) and Respiratory Rate (r = 0.33, p = 0.01)

with PsBlunt.
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Parametric Correlations
NEWS RTS

NEWS Pearson
Correlation

1 -.252∗∗

Sig.
(2-tailed)

.000

N 368721 368721
RTS Pearson

Correlation
-.252∗∗ 1

Sig.
(2-tailed)

.000

N 368721 368721
**. Correlation is significant at the 0.01 level (2-tailed).
Regression Model Summary
Model R R

Square
Adjusted
R Square

Std. Error
of the
Estimate

1 .840a .706 .706 .071489738500000
a. Predictors: (Constant), RTS, NEWS
ANOVAa

Model Sum of
Squares

df Mean
Square

F Sig.

1 Regression 4524.882 2 2262.441 442679.903 .000b

Residual 1884.438 368718 .005
Total 6409.319 368720

a. Dependent Variable: PsBlunt
b. Predictors: (Constant), RTS, NEWS

Table 5.6: Correlation and Regression between NEWS and RTS scores

5.6 Methods: Regression model for survival

prediction using trauma scores

As the vital signs and the RTS and NEWS scores were significantly

correlated to the probability of survival Ps, a regression model was used to

determine the prediction efficacy related to the vital signs and trauma scores. So

that the regression model generalises and does not cause overfitting, regularisation

tasks were performed and ElasticNet model was chosen as the regression model.

The ElasticNet regularisation applies both L1-norm and L2-norm regularisation to

penalise the coefficients in a regression model. The L1-norm (Lasso regularisation)

adds a constraint to the loss-function that penalises the model by the absolute

weight coefficients and L2-norm (Ridge regularisation) adds a constraint to the
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Figure 5.5: Regression chart for Ps_blunt for MIMIC record 033n using trained
ElasticNet predictor model

loss-function that is a linear function of the squared coefficients. ElasticNetCV

model was chosen so that the model could be cross-validated as well to avoid

overfitting and to achieve bias-variance trade-off.

Following parameters were chosen for the regression task:

Features variables: ’SysBP’,’HeartRate’,’RespRate’,’SpO2’,’NEWS’,’RTS’

Response variable: Ps_blunt

ElasticNetCV alpha values = [0.0001, 0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1]

Cross-validation value cv = 10 fold

Optimal alpha value returned by cross-validation α = 0.0001
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Figure 5.6: Regression coefficients for ElasticNet predictor model

5.7 Results: Probability of survival using

trauma scores

The ElasticNetCV regression model produced the following regression

scores:

Mean Absolute Error: 0.01447

Mean Squared Error: 0.00106

Root Mean Squared (RMS) Error: 0.0326

The regression model trained on the vital signs extracted from the

MIMIC Numerics dataset could predict the Probability of Survival (Ps) with RMS

error of less than 3.3% on a test sample MIMIC Numerics record MIMIC/033n.

A bar-chart showing actual vs predicted values of Ps are shown in figure 5.5 and

the ElasticNet regression coefficients are shown in figure 5.6

5.8 Discussion: Real-time trauma analysis using

vital signs

The research began with the questions and the hypothesis of being

able to calculate trauma scores for patients under trauma, using wearable

sensor kits, non-invasively in real time and importantly, under no ambulatory
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or hospitalisation settings. It was also hypothesised that given the vital signs

plus physiological information about the patient and the corresponding trauma

scores, the prediction of survival scores could be estimated, which, could help

the critical care team at a remote location to prepare for the emergency

procedures. To enable such a system to function without key infrastructural

changes, location information had to be garnered, and the information payload

had to be transmitted in real time and using standard telemetry protocols and

clinical coding standards. The four main vital signs like temperature, pulse

rate/heart rate, respiration rate (rate of breathing), blood pressure (non-invasive

systolic) and oxygen saturation were adequate to calculate the trauma scores

and prediction of survival (Clifton et al. 2011; Holcomb et al. 2005; Lockwood,

Conroy-Hiller, and Page 2004)

From the results obtained, Chebyshev Type II order 2 passband and

Savitzky-Golay filter, turned out to be effective in removing signal noise, motion

artefacts, and baseline wandering in ECG and PPG and PPG waveforms, yielding

a better signal-to-noise ratio. The respiration rate and blood pressure as vital

signs were important physiological parameters, and in the absence of a sensor

that can directly and non-invasively measures these parameters, it was found

that the ECG-derived measures could be used. Respiratory rate was calculated

using the PhysioNet WFDB library using the EDR utility, and the derived value

has a high correlation to the measured values, as found by the authors of the

library.(G. B. Moody, Mark, et al. 1985) The EDR WFDB routine is a C program

and it could be compiled on Beaglebone black target GNU C++ compiler.

Systolic blood pressure, was an important vital sign used in trauma

scoring, and in the absence of an integrated sensor; there were challenges in

measuring the BP and in removing motion artefacts. The PTT calculations

turned out to be very effective in approximating systolic blood pressure using

the findpeaks methods on ECG and PPG waveforms. Pulse-oximetry, as the fifth

vital sign (Mower et al. 1998) was also used in calculating trauma scores, and it

was required in trauma calculations and in the prediction of survival assessment.

The Oxulllo library for Arduino Micro, discussed earlier in this chapter and in

methods chapter, could calculate SpO2 readings non-invasively.
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The correlation and regression scores between NEWS, RTS, and Ps

scores were studied, and a high degree of regression was observed between the

NEWS and RTS, taken together with the Ps. There may not be a higher degree

of correlation between the NEWS and RTS themselves, though this may have

been due to the limited samples trauma considered from a single ‘clinical class’

for analysis. A positive significant cor-relationship between RTS and NEWS could

potentially be observed, if the most recent MIMIC II/III Numerics dataset, which

has more than 22,200 records could be used for regression task.

When an ElasticNet regression model trained on the vital signs extracted

from the MIMIC Numerics database was executed on a test sample, it could

generalise and predict probability of survival score with a root mean squared

error of less than 3.3%, actual vs predicted values of Ps are shown in figure 5.5

and the ElasticNet regression coefficients are shown in figure 5.6.

In the calculations for injury severity scores, TRISS (Boyd, Tolson, and

Copes 1987) remains the most commonly used tool for benchmarking trauma

fatality outcome. The predictive power of TRISS could be substantially improved

by re-classifying the measured parameters, and by altering the coefficients for the

sample space belonging to a particular clinical class. The TRISS scores formed the

basis for calculation of prediction of survival scores, and for predicting mortality

and estimating mortality rate.

Once the early warning and trauma scores were calculated, the EHR

with the public health care service provider could be updated using the

International Classification of Diseases (ICD) and SNOMED/LOINC (SNOMED

International Browser 2018; Injury Data and Resources - ICD Injury Matrices

2015; Richesson, Andrews, and Krischer 2006) classification coding system using

HL7 standards. Fast Health Interoperability Resources FHIR is a HL7 standard

that provides interoperability specifications for web services and EHR databases,

and by modelling the trauma scores into FHIR ‘Observations’ and ‘Bundles’ of

information payload the trauma-specific information could be logged into EHR

databases for future decision support, and to prepare for emergency procedures

ahead of time (Benson and Grieve 2016a; Raths 2014)

It was observed that since the analysis was performed on datasets of
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patients that were admitted to the ICU wards, the NEWS score, the RTS scores,

and the prediction of survival scores agreed with their health status. The NEWS

and the RTS severity scores of less than 4 indicated the patients were under

severe trauma, and this helped to accept the hypothesis. The MIMIC II Numerics

database is a widely accepted database, and the trauma scoring hypothesis could

be effectively tested with the datasets in the database as it contained all the vital

signs required for calculating trauma scores.

By putting the data acquisition, signal processing tools and techniques

along with the trauma scoring and standard clinical coding practices together and

by embedding location awareness into the composite healthcare monitoring kit, it

could be concluded that a real-time incident response system for trauma related

events could be implemented. Such a system would prepare the critical care team

in healthcare units to prepare for emergencies well ahead of time, and can reduce

the mortality rates for severe injuries and trauma.

5.9 Summary: Trauma analysis

The chapter began with an argument that fatal cardiac arrhythmia

episodes can lead to traumatic conditions which may occur any time whilst the

individuals being monitored remain engaged in their day-to-day activities. In

order to perform trauma analysis wider signs and certain physiological parameters

were required. As the CHM kit using this research study could obtain ECG and

PPG signals from human subject, the signals had to be used to calculate the

intermediate physiological parameters and vital signs. A novel trauma analysis

algorithm was developed which used the PhysioNet WFDB library to generate a

novel pipeline to extract physiological parameters from the ECG and PPG signals

and to convert the signals to an WFDB recognised format.

The major challenge was to calculate blood pressure and respiratory rate

using the ECG and PPG signals obtained from human subjects, usually these

are obtained using sphygmomanometer and spirometer respectively. The systolic

blood pressure was calculated using PTT, which is the time interval between

the R-peak in an ECG wave and a pre-determine peak of the PPG wave. The
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Respiratory Rate was obtained using WFDB routine called EDR, which provided

and approximated measure of the Respiratory Rate.

The algorithm on trauma analysis also calculated the RTS, NEWS,

TRISS scores, severity levels and prediction of survival scores associated with

a trauma condition, in case of an emergency. The trauma scores along with

their associated severity levels, are normally calculated after the patient has been

admitted to the hospital under triage conditions, however in doing so, currently,

valuable time in providing treatment to the patient is being lost. As the CHM

kit could also upload the trauma information to the critical care team from a

remote location, the team could prepare in readiness for when the patient arrived

at accidents and emergencies. The physiological parameters, the vital signs and

various trauma scoring mechanisms were studied and analysed as explained in the

Literature Review section 2.8.2.

The MIMIC Numerics database was used to derive correlation between

RTS and NEWS trauma scores and to derive correlation between vital signs

and probability of survival scores. It was found that, though NEWS and RTS

scores were not significantly correlated amongst themselves, individually, they

had significant correlation with probability of survival scores. All the vital signs

were significantly correlated to the probability of survival scores.

As the objective of developing the trauma analysis algorithm was to be

able to predict survival of a patient under trauma condition, a linear regression

model was trained on vital signs and trauma scores as predictors. The regression

model when used on an isolated record in the MIMIC Numerics database, could

predict the probability of survival values with a root mean squared error of 2.5%.

The trauma analysis algorithm and the ElasticNet regression model could be easily

ported to a restricted hardware such as the BBB to enable real time trauma scoring

and survival prediction.

The CHM kit aimed to offer more than the Holter and AliveCor

(NICE 2015) monitors in function, with advanced features like early arrhythmia

detection and classification, trauma analysis and prediction of survival along with

a provision to integrate with the EHR databases.
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Electronic Health Records

Interoperability

6.1 Introduction

Electronic Health Records (EHR) is an essential element in human

healthcare monitoring these days. As a large amount of data continues being

archived and uploaded to healthcare repositories, virtually every second across

the globe, vast amount of data mining tasks continue being modelled and

modified to extract valuable decision support information. The Health Level

7 (HL7) consortium provides the framework and related standards for the

exchange, integration, sharing, and retrieval of electronic health information that

supports clinical practice, management and delivery. With the large number

of Internet of Things (IoT) health care kits becoming available it has become

increasingly difficult to log the real-time patient monitoring information to

healthcare repositories. As patients continue being monitored in real-time, it has

become essential that the trauma events information such as a stroke or an episode

of fatal cardiac arrhythmia be uploaded to the EHR in real-time. Currently

available monitoring devices can monitor and analyse an abnormal condition

but may not be able to upload these events in real-time. This research study

focused on developing real-time interoperability tools and services which could

enable wearable IoT devices to interact with an EHR that can provide a standard

query and update interface through web-services. As the queries and updates

181
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could be performed in real-time a prompt decision support could be obtained

in the case of an emergency. The Fast Healthcare Interoperability Resources

(FHIR) specification was used to develop the query and update interface and to

encode trauma related information in terms of FHIR (Agnew 2016; Braunstein

2018; Raths 2014; Mandel et al. 2016) resources, conceptual and logical models

using clinFHIR (Braunstein 2019; Hay 2017) tools. The study did not focus on

EHR database modelling as such, rather a novel service model interface to EHR

databases based on FHIR standard was researched and developed. This model

that could encapsulate the real-time trauma and arrhythmia information, could

be reused in any IoT device that required to update the EHR through standard

FHIR interfaces. A HAPI FHIR (Agnew 2016) interface was implemented on

an IoT device which could upload real-time ECG, PPG and relevant trauma

information on a test FHIR server. The HAPI FHIR application code could

encapsulate ECG arrhythmia, vital signs and trauma events in a single observation

and could upload it to the HAPI FHIR server (Braunstein 2018; Hussain, Langer,

and Kohli 2018). Several such observations could be linked to a patient context

and could be observed in real time in EHR. The ECG, the PPG, vital signs and

trauma events were encoded according to Systematized Nomenclature of Medicine

- Clinical Terms (SNOMED-CT) and Logical Observation Identifiers Names and

Codes (LOINC) specifications. The alerts and alarms mechanism could assist the

emergency response teams at the hospitals to prepare for an emergency well in

time. An analogue front-end biomedical device was used for data acquisition and

signal processing and the IoT devices were networked over wireless network to

upload the events and observations to the FHIR server in real time. The system

focussed on ‘preventive care’ to enable timely critical care response.

In this chapter, as referred in publication (Walinjkar 2018b) Appendix

A in order to demonstrate that a wearable IoT device could be able to update the

EHR records in real time, the hardware and software architecture was extended to

accommodate the provision of formatting and encapsulating the ECG analysis and

trauma analysis related information in a standard format, such that it could be

uploaded to EHR in real-time. Initially, in this chapter, a brief overview of FHIR
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healthcare interoperability framework has been provided to outline the content

and purpose of FHIR resources, models and services that are covered by the

FHIR specifications. A brief description of the FHIR resources along with their

interrelationships the format of data exchange has been provided. An abstraction

of the usability of EHR data across all 5 levels (foundation, implementation,

administration, record-keeping and clinical reasoning) has been provided with

technical and clinical perspectives. As the research study focused on real time

updates, a method of encapsulating health status related information, in standard

format, from within the wearable device and using standard telemetry protocol

had to be devised. As information being transmitted was of clinical nature, it was

encoded using standard coding terminologies using SNOMED CT and LOINC

coding systems. In order to demonstrate the use of the coding systems, an

overview of SNOMED-CT coding schemes along with interrelationships between

clinical codes has been provided. An Oracle Java based FHIR test server

and HAPI FHIR client based implementation has been explained. In the

methods section a detailed implementation of a HAPI FHIR client has been

explained. Before encoding the health status using clinical parameters these had

to be modelled using FHIR recording and quotable concepts as FHIR resources,

observations and device specific elements. A FHIR modelling tool clinFHIR

(Hay 2017) was extensively used for modelling coding concepts and deriving

interrelationships between the quotable concepts and medical scenarios. Currently

in hospitalised and general practices in NHS UK and several countries across

the globe, the cardiac arrhythmia and trauma specific information could only

be uploaded in hospitalised or general practice settings, i.e. the primary or

the tertiary critical care settings. As the research study aimed at providing

real-time solutions in preventive care a provision had to be made within the

proposed Composite Health Monitoring (CHM) kit itself to update the EHR

as and when emergencies would arise. The usage of clinFHIR tool which

modelled codable concepts, resources, and elements, components using scenario

modeller, logical modeller and conceptual modelling tools. SNOMED-CT is

a coding system that describes clinical concepts, vocabulary, descriptions and

inter-relationships between clinical codes. The results and discussions section
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discusses the advantages of using the FHIR based client application and FHIR

modelling tools to develop an IoT-based real-time decision health support system.

6.2 EHR Preview

There are commercially available health monitoring kits for example the

Holter ECG kit which is capable of monitoring a patient to record heart’s rhythms

for 24 to 48 hours during normal human activity (Hughes et al. 2015). The kit

however only records the ECG and it does not analyse the heart rhythm to detect

heart arrhythmia. The ECG recordings have to be manually analysed by an expert

cardiologist. There are several such kits like the Alivecor (Bansal and Joshi 2018)

and the Shimmer Sensing kits(A. Burns et al. 2010) which effectively monitor

heart conditions though do not upload the traumatic events related information

that a patient may have undergone. The system proposed in this research consists

of a software implemented on the wearable IoT device which could encapsulate

the sample readings in a standard XML or JSON format and could transmit the

samples to the analytical server that could upload the FHIR payload to the FHIR

server after performing the trauma analysis task in real-time. Attempts have been

made in the past to make real time updates to electronic health records using

internet client server technologies. To develop such an infrastructure covering the

entire state or country could be a complex process and may involve government

policy decision making. Even if such an implementation does exist, it may be

difficult to integrate an existing system with health records in geographically

diverse conditions across the globe, and a standard may be required to bring the

management of resources under a single canopy or at least have the resources and

services interoperability through standard interfaces. The HL7 (Health Level-7)

is a standards agency that develops standards for electronic health resources

and FHIR is one such standard that enables electronic health records (EHR)

interoperability through web-service interfaces is HL7 FHIR Web services (Raths

2014).
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6.3 Overview of FHIR Healthcare

Interoperability workflow

FHIR is an emerging standard in healthcare interoperability and it is

widely used in tertiary care and hospitalised environments in the presence of

critical care staff. The research study focused on applications of early warning

cardiac arrhythmia and trauma analysis, it was deemed imperative that the

results of data analysis be made applicable to the critical care team ahead of

an emergency. For such a system to work efficiently the data analysis results had

to be made applicable to the critical care team regardless of time and location

of the patient or an individual being monitored. In the literature review chapter

is it has been argued that arrhythmia and trauma related episodes often occur

when medical help is not available in the vicinity. In such cases the health status

related information had to be transmitted to the EHR and the critical care team

electronically and in real time using telemetry protocols. A complete workflow of

the process from data acquisition to signal conditioning, followed by data analysis

and abnormal event classification and further followed by upload of the real time

health monitoring information to FHIR server is illustrated in Figure 6.1. A

typical situation where such a system could be used would be general practices,

care homes, rehabilitation centres and in residences where elderly, disabled and

individuals taken ill due to a medical condition have been accommodated and

are being monitored. Such a system, due to its wearable nature, can also be

used by individuals during their day to day activities. In order for such a system

to be effective, the electronic record-keeping algorithms had to be ported and

implemented on the proposed IoT CHM kit.
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Figure 6.1: Health Monitoring in a typical IoT based wearable kit demonstrating
data-acquisition to FHIR observation upload to FHIR Server

6.4 FHIR Interoperability

Fast Healthcare Interoperability Resources (FHIR) defines a set of

“Resources” that represent clinical concepts. The resources can be coded and

managed in isolation, or aggregated into complex structures and documents which

could be archived and queried as and when required. FHIR specifications have

been designed for the web; the resources are based on simple XML or (JavaScript

Syntax Notation) JSON structures, with an http-based RESTful protocol and each

resource is encapsulated and identified by a Uniform Resource Locator (URL). An

overall FHIR framework overview(Benson and Grieve 2016b; Benson and Grieve

2016a; Agnew 2016) is shown in table 6.1

6.4.1 FHIR interoperability: A clinical perspective

The FHIR (Mandel et al. 2016) specification was designed to enable the

exchange of healthcare-related clinical data and manage public health data and

provide data sets for research and was intended to be usable world-wide in a

wide variety of contexts, such as in-patient, ambulatory care, acute long-term

critical care, community and allied healthcare services. The FHIR specification

was chosen to develop software architecture to enable development of interoperable
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The FHIR framework overview
Level I
Basic framework

Foundation (data types, extensions and data
formats)

Level II
Supporting
implementation

Terminology
(code system,
value set,
concept map)

Conformance
(structure
definition,
capability
statement)

Security
(Security,
provenance)

Exchange
(RESTful
API,
messaging
services)

Level III
Linking to
real-world

Administration (Patient, Practitioner, Care
team, Device)

Level IV
Record-keeping

Clinical (Allergy, Problem, Procedure, Risk
assessment)
Diagnostics (Observation, Report, Specimen)
Medications (Medication, Request, Dispense,
Statement)
Workflow (Introduction, Task, Appointment,
Schedule)
Financial (Claim, Account, Invoice)

Level V
Reasoning
healthcare
process

Clinical reasoning (Library, Measure,
Measurement report)

Table 6.1: FHIR specification framework across levels of EHR service delivery

solutions using FHIR. The FHIR specification does not attempt to specify good

or best clinical practices and does not define workflows or medical pathways for

patients or clinicians. In fact it garners existing medical pathways and best

practices and device specifications to enable development of digital services to

acquire healthcare data to drive research and decision support. In this section

only those portions of the specification has been highlighted that are likely to be

of an interest to the clinical community.

Resources: From a clinical and enviable perspective, the FHIR resources

are the most important elements of the FHIR specification. They could be

thought of as the building blocks that reflect different types of clinical and

administrative information that can be captured and shared. The resources

are templates for individual allergies, prescriptions, referrals, test observations

and medical reports. These debits may contain resource instances that

may describe patient-related information (health conditions, prescriptions and

procedures) as well as administrative information (practitioners, health care
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service, location). Some resources are infrastructure components that enable

record-keeping, pharmacy, medical reports and other allied systems which can

form bases for effective clinical decision-making and clinical decision support

engines. Each resource template contains a highly-focused and articulated data,

though combined with other resource templates, creates a useful clinical record.

The resource maps contain information related to the actions that a user (patient,

practitioner, ancillary staff) may take e.g. to look up patient records, to make a

note in their history or similar such actions.

The resource templates may also have "extensions" to add information

to existing resource templates of a particular type. E.g. a "prescription" form

might have extension elements added to support tracking of restricted medications

depending on allergies of patients. A FHIR resource may not always exist for a

patient or a type of medical treatment though due to internal references between

the FHIR resources, some information could be calculated.

For the amount of information encapsulated by a FHIR resource, some

resources are very broad in terms of the amount of information it may encode,

like the all-important Observation resource to encapsulate vital signs, laboratory

results, psychological assessments and a variety of other things. FHIR is intended

for sharing medical data and visualising only contextual information relevant to

the user profiles concerned with the resource. E.g. a plain narrative resource

instance containing information such as their phone numbers, their date of birth,

their residence address or similar may not be of importance to the practitioner

treating the patient, while it may be of relevance to the administrative staff who

may want to post referral letters, pathology reports, etc. to the patient’s residence.

6.4.2 FHIR interoperability: A developer’s perspective

The FHIR resources are exchanged via a RESTful interface, such

as active service that can encapsulate relevant information and shared the

information across user profiles at remote locations. In this type of RESTful API,

the actual interface could be defined by some organisation and different vendors

then implement that interface – i.e. provide an actual software that works in

the way that the specification describes in order to access and perform tasks on
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the EHR data to enable decision support. The FHIR RESTful API can enable

following actions:

• search: search for existing patient information

• read: read only specific portion of information as allowed or abstracted for

a user profile

• create: add new information about the patient related to prescriptions and

procedures

• update: add a new page (version) to the contents of a specific folder

• delete: remove a piece of patient information for administrative purposes

• history: review past history of the patient procedures, prescriptions,

medications

• transaction: replicate information and shared with multiple user profiles

• operation: perform tasks related to updates, modifications and deletion of

the records

6.5 Methods to implement FHIR on IoT devices

Even before the RESTful FHIR client and the server were developed

the health status information pertaining to a patient being monitored had to be

modelled before being encapsulated according to a resource bundle using FHIR

specifications. The clinFHIR tool was used effectively to generate the models to

bundle the resources generated from data acquisition, arrhythmia classification,

trauma analysis related scores. The CHM kit generates physiological parameters

from the data acquisition stage, the ECG and trauma analysis stages along with

intermediate results in between these stages. The entire FHIR resource bundle

is a composite resource that is output by the CHM kit pertaining to arrhythmia

and trauma situation.(Walinjkar 2018b) Such a resource bundle has never been

generated in past researches mentioned in the literature review. Currently the

FHIR Resources focus only on atomic observations related to ECG such as the
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ECG samples and ECG diagnostic reports as examined by an expert cardiologist

or a cardiac nurse. Currently the encoding systems such as SNOMED CT

or LOINC can encode ECG readings and certain arrhythmia types, though

currently no research study exists that is suggestive of encoding early warning

arrhythmia and real-time trauma analysis information into a FHIR Resource

bundle. In this research not only the ECG readings have been bundled as FHIR

Observation, but the early warning arrhythmia such as denoted by the V-type

and the A-type arrhythmias, representing the premature ventricular complexes

and premature atrial beats respectively, have been encoded and bundled as FHIR

Observation. Furthermore, if the cardiac arrhythmia is a fatal kind or if the

patient has suffered an accident or has undergone trauma due to a medical health

condition, the trauma specific information have also been encoded and bundled

as FHIR Resource observations. All the physiological parameters and analytical

information generated from the intermediate calculations have been encoded

using standard clinical terminologies coding system such as SNOMED-CT and

LOINC. Such a wearable system which provides an all-in-one solution from signal

acquisition to EHR updates can find application in trauma and triage situations.

6.5.1 FHIR observations encoded according to standard

coding systems

The implementation of interoperable component on IoT devices requires

modelling FHIR resources, codes and if required codable concepts based on FHIR

specifications. As a typical healthcare monitoring kit an analogue front-end device

such as the 3-lead ECG sensor was used for data acquisition which in turn was

interfaced with their intelligent processor like the Texas Instruments Beaglebone

black. The readings obtained from an analogue front-end was de-noised filtered

and conditioned to obtain a smooth waveform. In order to classify, detect

and separate abnormal signals from the normal ones classification models were

developed and trained in existing datasets targeting a particular abnormality.

The WFDB was used to extract features from ECG and PPG samples. Once

the features were obtained machine learning models were developed to train on a

given set of features in order to predict abnormality in test samples. Along with
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detecting ECG arrhythmia trauma analysis scores were also generated. A JSON

(JavaScript Object Notation) structure that encapsulated the sample readings

was adopted which passed the samples to the HAPI FHIR test server(Agnew

2016)) to be logged to EHR if anomalies were detected or if the patient’s health

deteriorated as reflected by the trauma and prediction survival scores. The ECG

and PPG samples encapsulated with JSON data structures were transmitted

over 10 seconds’ intervals to a HAPI FHIR sandbox test server (Agnew 2016)

which is a Java implementation of FHIR RESTful Web services. The observation

object that encapsulated an instance of observation was coded according to

SNOMED-CT coding system as shown in code listing 6.5.1 . An observation

object was bundled with information related to an event of abnormal heartbeat

or a trauma event with trauma scores and was uploaded to the sandbox test server.

The sandbox test server could be a FHIR based data store like GP-Connect from

NHS UK (NHS-Digital 2018). Once abnormal beats or waveforms were detected

appropriate alarms could be raised and potentially be passed on to the healthcare

agency entrusted with the patient care. The FHIR specification on security also

supports OAuth authentication and authorisation service which the consumer

services can embed in their FHIR servers.

Observation getObservationBundle (){

Observation obsTrauma = new Observation ();

obsTrauma

. getCode ()

. addCoding ()

. setSystem (’http :// loinc.org ’)

. setCode (’74291 -6 ’)

. setDisplay (’Trauma Comorbidity ’);

obsTrauma . addComponent (new Observation . Component ())

. setValue (

new QuantityDt ()

. setValue (Float. parseFloat (

arrstrECGDerivedObs [4])))

. getCode ()

. addCoding ()

. setSystem (’http :// snomed .org/sct ’)
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. setCode (’273885003 ’)

. setDisplay (’Revised Trauma Score ’);

obsTrauma . addComponent (new Observation . Component ())

. setValue (

new QuantityDt ()

setValue (Float. parseFloat (

arrstrECGDerivedObs [5]))

)

. getCode ()

. addCoding ()

. setSystem (’http :// snomed .org/sct ’)

. setCode (’445416009 ’)

. setDisplay (’Early Warning Score ’);

obsTrauma . addComponent (new Observation . Component ()).

setValue (

new QuantityDt ()

. setValue (Float. parseFloat (

arrstrECGDerivedObs [6]))

)

. getCode ()

. addCoding ()

. setSystem (’http :// snomed .org/sct ’)

. setCode (’273886002 ’)

. setDisplay (’Trauma Injury Severity Score ’);

return obsTrauma ;

}

Listing 6.1: Example code to encapsulate a trauma observation

6.6 FHIR Resource modelling using clinFHIR

tool

As mentioned earlier the clinFHIR tool was used to model observation

resources for the physiological parameters captured and the intermediate results

that were generated as a part of analysis tasks. Central to using the clinFHIR

tool is the scenario builder, which bills a scenario between interacting FHIR User
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profiles and FHIR Resources. The scenario builder is an easy-to-use tool that uses

graphical interface and graphical models to generate graphical representation of

FHIR Resources. In the very least for an example FHIR Appointment resource,

the following user profiles and resources could be created using scenario builder.

It should be noted that a patient resource created by one organisation may not be

similar to the one modelled by another organisation (hospital, healthcare service

provider, pharmacy etc.). The FHIR resources and user profiles communicate

by exchanging messages, where even if the abstracted data content varies, the

operations contracted by RESTful interface remain the same. E.g. the search

operation for patient, where the patient information modelled by a general

practice would be different from the patient information modelled by another

general practice. An example scenario may contain Patient resource who is

the subject of the list, the Practitioner resource that created the Patient list,

a List of Patient resources and MedicationStatement resources for the individual

medications prescribed during individual Appointment resources. An example

Patient resource as modelled by clinFHIR tool and the associated JSON structure

generated by the tool is shown in figure 6.2. Once the FHIR resources have been

modelled and generated in an XML or JSON format they could be exchange

between other resources using FHIR Exchange modules and RESTful APIs.

To generate the resource bundle from within the CHM kit following a

sequence of events such as cardiac arrhythmia being detected and generation of

trauma scores associated with it for a patient resource the following models were

generated as shown in figure 6.4.

A Patient resource contained the patient specific information such

as name, address, communication contact information etc. For the cardiac

arrhythmia related information ECG Observation type and arrhythmia type

Observation resources were created.

Following the arrhythmia type detection if a trauma event was generated,

a list of vital signs containing the physiological parameters that constitute the vital

signs was generated using the List FHIR resource. The vital signs list contained a

list of Observations for physiological parameters such as systolic Blood Pressure,

Respiratory Rate, Heart rate, SpO2, Temperature. Along with these observations
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the ECG and the PPG readings at the instance when the arrhythmia and trauma

event occurred were also captured as FHIR Observations containing a list of values

for a predefined set of intervals.

From the list of observations related to the physiological parameters,

an event to calculate trauma scores was generated that created the list of

Observations for trauma scores. The trauma scores list of observations contained

the RTS, NEWS, TRISS trauma scores that could be used to calculate prediction

of survival score in real-time.

The FHIR specification provides a resource classification for medical

devices. The CHM kit was modelled as Device resource called composite. The

device had a reference to the list of vital signs, a reference to the patient resource,

figure 6.3. The patient had a reference to the list of trauma scores there was a

direct reference from list of vital signs to the Device resource as the physiological

parameters that constituted the vital signs could be directly captured from within

the CHM kit.

The clinFHIR tool enables creation of nested resources, where multiple

resources and sub- resources can be bundled as a single resource. Each resource

could be observed at a lower level of abstraction where relationships between other

resources, amongst themselves and also with the main resource could be observed.

The composite device resource shown in figure 6.3 has relationships with and

references to other resources such as the Patient resource and the List of vital

signs resource. An inward directed arrow indicates a resource contained within

the main resource e.g. the individual observations such as the PPG readings,

the ECG readings, heart rate, arrhythmia type etc. have been shown as being

encapsulated within the composite Device resource. The outward directed arrow

indicates that only a reference to an external resource has been stored in the

current resource. E.g. figure 6.3 shows a reference to the Patient resource from

within the Device resource wherein only the resource locator as a reference would

be stored in the composite Device resource

Similarly, the List trauma scores resource contains references to the

observations pertaining to trauma score calculations for RTS, NEWS and TRISS

scores as shown in figure 6.5. As explained earlier that a search query for a
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Figure 6.2: FHIR interrelationship between patient, observation, device resources
modelled using clinFHIR
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Figure 6.3: clinFHIR model for Device that can capture ECG, PPG readings and
can calculate vital signs and provide trauma scores when required
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Figure 6.4: A clinFHIR model for Trauma score observation components
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Figure 6.5: clinFHIR model relationship between patient and trauma scores
observation

patient resource traverses through all the resources contained within the main

resource and also the references to external resources contained within the main

resource. E.g. if a read RESTful command is executed on a particular Patient

resource using a resource identifier, all the observation bundles contained within

the patient resource could be obtained, but also all the other resource bundles

such as List trauma scores, Device composite and List vital signs, figure 6.6 can

also be read using the read query. The query traverses through all the reference

tree structure to acquire information about the resource bundles contained within

the resource and also to acquire information related to the resource bundles from

their stored references.

If the Patient resource and its relationship with all the bundled

Observations and references to List of other observations and the composite Device

could be observed, figure 6.4. The clinFHIR can be used as an essential tool to

model and observe interrelationships between resources and is a very easy-to-use

tool. The tool also helps to allow abstraction and visualisation to only limited

level of granularity if constraints have been imposed on a particular resource. E.g.

the Administrative staff resource may not have access to information related to
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Figure 6.6: A clinFHIR observation resource for vital signs calculated from
physiological parameters

Medication resource as it may only be accessible to the Practitioner resource and

user profile.

The List vital signs resource in figure 6.6 showing interrelationship

between the list of vital signs, the Patient resource and the Device resource. The

JSON message generated from clinFHIR tool representing the Patient resource is

shown in figure 5.8

6.7 Discussion

One of the objectives of the research study was to develop methods on

extracting health status related information and related trauma, if any, in real

time and be able to update the EHR repository is using standard protocols and

data formats. The major problem associated with such a task was to identify

standard telemetry protocols and specifications that have been widely accepted
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and are currently being used in clinical research and clinical and medical pathways

existing within healthcare services worldwide. Although any solution provider can

develop bespoke solution for storing and maintaining healthcare, especially public

health care data, the data could be used for more productive research purposes

only 8 the public health data could be used for research purposes in clinical,

research environment. In order to enable sharing of public health data HL7 FHIR

specifications has provided a standardised means to access and share suitable

information in a controlled manner to enable decision support.

For the purpose of this research study it was not adequate, to only

model and encapsulate patient and health status information, as it will required

to generate the health status information from within the CHM kit and be able

to update the EHR in real-time. The challenge was overcome using the HAPI

FHIR client and server RESTful API and a client/server application could be

demonstrated from within the CHM kit. The HAPI FHIR client deployed on the

CHM kit could create resource bundles pertaining to the physiological parameters

acquired from human subject along with the calculated trauma scores could be

uploaded to the server if trauma event was detected. The trauma scores and

their severity levels could algorithmically detect probability of survival and could

raise an event to upload the trauma specific information to FHIR server. The

ECG, PPG, Vital Signs and Trauma observations encoded according to a standard

coding system (SNOMED-CT or LOINC) would ensure that the FHIR resource

bundles could be stored in the EHR in a structured manner for further analysis and

research. This system should assist critical care teams to prepare for an emergency

ahead of time and may prevent or reduce hazardous situations. The clinFHIR

tool turned out to be an effective tool to model FHIR Device and Observation

resources. The tool allowed to build a scenario for real time data acquisition

and upload of observations. With further consolidation and standardisation of

FHIR the same device and observations model could be extended to monitor

patients and to upload trauma related information to FHIR serves hosted by

public health services in an automated fashion. The device manufacturers can

extend the Observation and Device models to encapsulate FHIR resources.
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Conclusions

7.1 Summary

This research study began with an intent to identify and solve problems

related to early cardiac arrhythmia detection and classification using a wearable

device, which could be worn by an individual regardless of their location and

whilst engaged in their day-to-day activities. Cardiac arrhythmia and emergencies

associated with accidents and injuries could lead to trauma, so a real-time trauma

analysis provision had to be implemented on the wearable health monitoring kit

which could assess the trauma severity levels in a patient ahead of an emergency

leading to critical care triage situation. The methods chapters ECG Analysis

and Arrhythmia Detection and Trauma Analysis provided solutions and proposed

algorithms and devices that solved the problems associated with data acquisition

from real human subjects, data analysis in early warning cardiac arrhythmia

detection and classification and trauma analysis in real time. These chapters

also illustrated the implementation of the algorithms e.g. 4.1, 5.1, 5.3 and the

hardware architecture of the wearable monitoring kit with location awareness and

electronic health records integration is presented in chapter Materials sections 3.1,

3.1.1 and 3.1.3. This chapter presents conclusions drawn from results obtained

against aims and objectives as enumerated in the Aims and Objectives section in

the Introduction chapter. The limitations of the results obtained due to tools,

techniques and the materials used are also presented.

201



202 Chapter 7. Conclusions

7.2 Challenges in early warning arrhythmia

detection

In the Introduction chapter, the current state of art and the problems

related to real-time arrhythmia detection were studied and discussed, sections

1.1.1 and 1.3. Although current research in arrhythmia detection illustrates

methods and technologies of arrhythmia detection and classification, this has

remained confined to machine learning tools and techniques, Literature Review

section 2.4, which relied on higher compute and memory requirements as compared

to the resource constrained IoT devices. The research study presented in

this thesis focused on implementing the arrhythmia detection and classification

algorithms on a wearable device with restricted hardware. In order to accomplish

this task, certain challenges had to be overcome, the most important of which

were: training classifier models on arrhythmia datasets, real-time ECG signal

acquisition, conditioning and conversion into a format that could be used by

the machine learning algorithms that were already trained on a widely used

arrhythmia dataset. The real-time constraints associated with the data acquisition

and analysis considered in this research study were soft real-time constraints.

Having trained the models, these had to be ported to a wearable device

implemented on restricted hardware. With regards to the ECG signal acquisition,

filtering and signal smoothing had to be performed in real time under noisy

conditions as the bio-potential measurement using a wearable device is susceptible

to a great degree of noise especially due to external signal interference, muscle

movement and motion.

7.3 Challenges in trauma analysis

The Introduction chapter sub-section 1.3.2 also mentioned that several

cardiac arrhythmia can lead to emergencies and trauma conditions, which need

to be monitored and that the emergencies can occur even when the individual

being monitored is engaged in day to day activities. A trauma scoring mechanism

was required that was widely used in clinical and hospitalised environment and
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the scoring measures had to be reliable and were required to provide adequate

information to ascertain the health status of an individual being monitored. Vital

signs and certain physiological parameters were going to provide this information

to calculate trauma scores which could be calculated in real-time to produce a

measure which could ascertain the extent of trauma and in extreme cases should

also be able to provide probability of survival scores. The vital signs required

to perform trauma analysis were traditionally obtained from bedside monitors in

hospitalised or ambulatory services. Some vital signs such as the respiratory

rate and the blood pressure were traditionally obtained using clinical devices

such as the spirometer and the sphygmomanometer, which were not easy to use,

required calibration, had to be interfaced externally to a measuring device and

were not wearable. In the absence of means to directly measure these vital signs,

these had to be calculated and approximated so that all the vital signs related

information could be produced along with the required physiological parameters

that could be used in calculation of trauma scores, section 2.8.2. Technically the

challenges were reduced to ECG and the PPG signals analysis in order to extract

the intermediate vital signs information using the MITDB WFDB routines and

signal filtering/conditioning tools and techniques. For the proposed composite

wearable device to be useful to an individual being monitored, the arrhythmia

detection and trauma analysis information had to be relayed to the electronic

health records where these could be accessed by the general practitioners and the

critical care team responsible for the health of the individual. Since the individual

being monitored can suffer from a trauma episode regardless of their location, the

CHM kit had to be location aware and was supposed to transmit the trauma

information in a globally accepted format.

7.4 Contributions against aims and objectives

for arrhythmia classification

As discussed in Literature Review chapter, section 2.1, the ECG

recordings in traditional ECG data acquisition spans over a 10 second interval in a

single ECG strip. It was assumed that enough samples covering at least 10 seconds
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should become available to the arrhythmia classifiers to enable ECG and the

trauma analysis tasks presented in this research study. For the samples acquired in

real-time, arrhythmia classification tasks were performed on a restricted hardware

to classify those arrhythmia types that were a precursor to fatal arrhythmia.

To perform these classification tasks, machine learning models were trained on

the MIT-BIH MITDB arrhythmia dataset, section 3.3, in order to classify the

samples data into the types of arrhythmia that were essentially early warning

signs (PACs and PVCs) that may lead to a serious heart condition, section 2.2.

In order to train the models feature extraction tasks were carried out using the

WFDB routines, section 4.2 and it was argued that though HRV analysis is

effective in detecting arrhythmia, it was not the most appropriate technique to

detect premature arrhythmia due to their subtle differences in their waveforms

and due to maximum reliance of HRV analysis on the morphological structure

and heart-rate variance requiring patient monitoring over longer duration. The

feature extraction using WFDB routines and data analysis models such as k-NN

and RandomForestClassifier for V,A,L,R arrhythmia classification (Walinjkar and

Woods 2017a), presented in sections 4.2.2 and 4.2.2.2 could classify premature

arrhythmia with an overall accuracy of more than 97%. Several neural network

pattern recognition models with various combinations of training –validation- test

data sets were experimented which showed more than 95% overall classification

accuracy and it was found that the RR-interval was the most essential feature

in V,A,L,R arrhythmia classification task. Although heart-rate could have been

used as a feature, since it was found that it was significantly negatively correlated

with RR-interval, only RR-interval was considered in the feature vector leading

to V,A,L,R classification.

As age and gender were also included as features, the V,A,L,R

classification models may have been biased in identifying MITDB records in a

certain age group, rather than generalising to classify fresh V,A,L,R samples,

these models may only be limited classification tasks for MITDB records, section

4.2.3. The V,A,L,R classification, however, was only aimed at identifying models

for arrhythmia classification and to explore the use of WFDB routines extracting

features from MITDB datasets. Also, for real time classification of arrhythmia
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using a wearable device, where the ECG signals could be a mix of normal sinus

rhythm and premature arrhythmia, an alternate approach based on spectral

analysis (Surda et al. 2007), section 4.3, was chosen as there were subtle differences

between the normal sinus rhythm (N-type beats) and premature arrhythmia types

(V-type and the A-type). As the power spectral densities were collection of

coefficients, bandpower that used the spectral coefficients to estimate power was

chosen as feature for each of the sub-waves (P-wave, QRS-wave, T-wave). The

power spectral density over sub-waves turned out to be a significant features

in V,A,N classification, rather than the interval themselves, as even though

there were minor differences in same sub-wave types their bandpower over their

respective spectral densities showed significant variance, figure 4.6. The power

spectral density over the PR interval alone contributed to more than 35% of

feature importance using RandomForestClassifier, figure 4.10. A novel feature

extraction algorithm based on spectral densities was then developed to extract

features from the MITDB records. A unique pre-processing pipeline consisting

of WFDB routines RDSAMP, RDANN and ECGPUWAVE was used to extract

(,), p, N, t annotation sub-types from an ECG wave. The finite state machines

for each of the V, A, N annotation types, section 4.3.2.1 and figure 4.8, based on

annotation sub-type transitions were modelled and were implemented in the novel

feature extraction algorithm. The finite state machines ensured that only a unique

set of input annotation sub-type sequence be accepted to reach the final state

corresponding to each of the V, A, N annotation types. Each sub-type sequence

e.g. ’(, p,)’ marked the boundaries of the sub-wave which also helped in

determining whether a sub-wave is present or absent and also helped in calculating

the spectral densities and bandpower of that sub-wave. The algorithm extracted

the relevant features that could be used to differentiate and identify V-type and

A-type annotations related to the early warning arrhythmia PVCs and PACs,

respectively.

From the nature of the dataset and classification tasks at hands k-NN

or tree based models e.g. RandomForestClassifier seemed like an appropriate

choice (Krasteva et al. 2015). A six stage pipeline was developed with a

unique pre-processor stage pipeline from section 4.3.3 which produced an overall



206 Chapter 7. Conclusions

classification accuracy score of 97%, section 4.4. A dataset imbalance was observed

prior to data analysis task with samples for A-type = 2132, N-type = 26362

and for V-type = 9877. After the SMOTE imbalance removal technique the

precision accuracy for classification of most under-represented A-type annotation

improved to 90% recall score and for N-type annotation the precision accuracy

was 91% as shown in table 4.9. As the k-NN classifier and the tree based models

are susceptible to overfitting, StratifiedKFold cross-validation with five splits was

performed such that these models could generalised and could be used on the

freshly acquired ECG samples. As the data analysis pipeline could be persisted

and deployed on the target device to execute the prediction tasks on fresh ECG

samples, the training tasks were not required to be executed on the target device,

nor were any of the regularisation, dataset balancing or cross validation tasks

performed again on the target device. Since the model was already trained,

tested and cross-validated, it performed its classification tasks on the target

device with overall precision of 91% and A-type classification precision, recall

and f1-scores of 100%, 73%, 84% respectively, section 4.7, A-type being the most

under-represented annotation type in the MITDB arrhythmia dataset. The test

record was the MITDB/223 record which contained both V-type and A-type

annotations and which was completely isolated from training and test data when

the classifier was trained.

The ECG signal acquisition phase had to deal with problems related to

signal filtering due to body posture, motion and environmental conditions and the

signal had to be normalised and denoised using appropriate filtering and signal

conditioning techniques on the target device. The Chebyshev and Savitzky-Golay

filters were designed (Walinjkar 2018a) to obtain a denoise, detrended and baseline

corrected ECG signal from human subject, figure 4.14 section 4.5.2.

As the classification model trained on MITDB dataset that was deployed

on a target device would run prediction tasks on freshly acquired signal, these test

signals had to be MITDB compatible. A conversion pipeline using WFDB routines

4.5.3 was implemented that would further convert the test ECG signals to WFDB

MITDB compatible record. This step ensured that the classifier encountered the

same feature values that were used when the model was trained. The classifier
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when executed the prediction task on this converted signal on target device,

produced an overall classification accuracy of over 91%, section 4.7.

This essentially completed the real-time arrhythmia classification

workflow from signal acquisition, signal filtering, WFDB format conversion to

premature arrhythmia classification, which was the aim of the ECG analysis task

at the start of the research study.

7.5 Contributions against aims and objectives

for trauma analysis

As discussed in the Introduction chapter, section1.3.2 cardiac arrhythmia

or severe injury could lead to a trauma situation and the provision was required

within the monitoring device to perform trauma scoring tasks in real-time and

upload the trauma scores and vital signs to electronic health records in real time.

The chapter Trauma Analysis focused mainly on solving the problems related to

extracting vital signs information (Holcomb et al, 2005) using the CHM kit that

performed the signal and data acquisition tasks, followed by machine learning

based prediction and classification and encapsulation of trauma scores along with

location aware scores transmission to EHR using FHIR Web services. Vital

signs MIMIC Numerics database maintained by PhysioNet MITDB (Saeed et al.

2011) was used to extract vital signs related features to calculate the trauma

related scores, section 2.8.2: National Early Warning Signs (NEWS), Revised

Trauma Scores (RTS), TRauma Injury Severity score (TRISS) and Probability

of Survival (Ps) (Boyd, Tolson, and Copes 1987; S. Baker 2018; G. Smith 2017;

Champion 2018). These scores are usually calculated using bedside monitoring

devices in a hospitalised or ambulatory equipment, though the proposed CHM

kit, which is a wearable restricted device, could calculate these scores in real-time

and could provide trauma and probability of survival scores to the critical care

team in real-time to enable them to prepare for emergencies. In order to achieve

this task, the CHM kit had to approximate and extract respiratory rate and

systolic blood pressure from ECG and PPG signals, section 5.2.1, which are

traditionally captured by spirometer and sphygmomanometer in hospitalised or
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ambulatory settings. The algorithm to extract vital signs from ECG and PPG

signals was tested on the vital signs MIMIC Numerics dataset. The MITDB

WFDB library was used to extract vital signs from the MIMIC Numerics dataset.

Based on the WFDB routines and the evidence that systolic blood pressure

could be approximated using the Pulse Transit Time (PTT) (Ahmad et al. 2012;

S. Kumar and Ayub 2015; Dinh, Luu, and Cao 2017) algorithms 5.1, 5.2 could

approximate the respiratory rate and systolic blood pressure which along with

other physiological parameters were used to calculate the trauma scores.

In the absence of availability of a patient with signs of trauma, the

MIMIC Numerics dataset, section 3.4, which contained the vital signs related

samples of patients admitted to the ICU, was used to develop and test the

effectiveness of the algorithm for trauma scoring and probability of survival. The

algorithm on trauma analysis also calculated the severity levels associated with

a trauma, which provided the vital information in assessing the critical health

status of the patient under a given trauma condition. The trauma scores and

their associated severity levels are normally obtained after the patient has been

admitted to the hospital under triage conditions. This assessment of trauma

only after admitting the patient using bedside monitors and under an expert

practitioner’s supervision is highly subjective and vital time could be lost in

arranging the equipment and staff to handle the emergency. As the CHM kit

could calculate the trauma scores in real-time and could provide this information,

ahead of time, the critical care team could prepare for emergency response well

in time. This provision of assessing the health status in real-time and ahead of an

emergency, ubiquitously and regardless of location, makes the CHM kit (an IoT

device) an essential tool that could be used in hospitalised and non-hospitalised

settings (Duking et al. 2016). The Trauma Analysis chapter also focused on

deriving relationships between the calculated trauma scores and the dependent

probability of survival score, section 5.5. As RTS and NEWS scores were

significantly correlated to probability of survival score, one of these could be used

in a regression task, section 5.6, to predict the survival score for the patient

experiencing trauma.

The chapter Electronic Health Records Interoperability focused on
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developing client-server interface models and data structures to interface with

electronic health records using the FHIR protocol and Web-services (Mandel et al.

2016; Agnew 2016). The FHIR Web services was a preferred choice as it has

gained substantial prominence in recent years and is currently the most widely

used specification for healthcare interoperability. FHIR resource models were

created using a FHIR resource modelling tool clinFHIR to derive relationships

between vital signs and trauma scores, section 6.6. The challenge was then reduced

to encapsulating the trauma, physiological parameters according to the FHIR

specification and transmitting the payload according to appropriate web-service

interfaces implemented using a HAPI FHIR implementation, section 6.5.1.

The CHM kit aimed to offer more than the Holter and AliveCor (Hughes

et al. 2015; NICE 2015; Bansal and Joshi 2018), section 1.1.1 monitors in function,

with advanced features like early arrhythmia detection and classification, trauma

analysis and prediction of survival along with a provision to integrate with the

electronic health records.

7.6 Limitations and recommendations

7.6.1 Limitations and recommendations: ECG analysis

The ECG analysis chapter focused on real-time signal acquisition and

data analysis. The major limitation of the research study was the absence of

clinical-trials of the CHM kit on a patient diagnosed with premature or fatal

arrhythmia. Although the premature arrhythmia classifier was tested on a

completely isolated MITDB record that was not included in the training and

validation of the classifier, it couldn’t be tested on a human subject suffering

from premature arrhythmia. The signal processing and filtering stage focused on

noise removal and baseline wander removal of the freshly acquired ECG signal and

obtain a noise free WFDB compatible signal, though motion artefacts related to

random motion of the CHM kit according to various degrees of freedom could not

be adequately addressed due to absence of datasets that contained both cardiac

arrhythmia annotations and motion artefact annotations. Due to unavailability

of such a dataset the classifier models couldn’t be trained on waveforms that
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contained both abnormal beats and noise due to motion artefacts. Although there

exists a dataset on PhysioNet repository for ECG signals with motion artefacts,

the dataset does not contain cardiac arrhythmia related annotations. In addition,

the effects of motion artefacts on premature arrhythmia related to motion state

E.G.standing running climbing could not be studied due to absence of a dataset

annotated with these motion states and arrhythmia annotations.

The preliminary V,A,L,R classification tasks, which focused on

identifying machine-learning and neural-network models for arrhythmia

classification, considered all 48 records in MITDB dataset for training the

classifiers. Although the classifier was cross validated, it was not tested on a

record which was not part of the training dataset which may lead to possible

contamination of the training – test split of the dataset. As the classifier model

included age, gender as features, the model may only be classifying V,A,L,R

arrhythmia subjective to the MITDB records and may not have generalised when

used on fresh ECG samples. The use of V,A,L,R classification task was only

restricted to exploring classification models for V,A,L,R arrhythmia types and

was not intended to be used for further analysis in premature cardiac arrhythmia

detection and classification. A more elaborate and detailed feature extraction

model based on spectral analysis focusing on spectral components of sub waves

in an ECG signal was hence developed and implemented as an algorithm, both

for MITDB records and for feature extraction from an ECG signal from a human

subject.

The V,A,N annotation classifier that was tested on aMITDB/223 record

was completely isolated from the training and test data during the training phase,

produced recall and f1-scores of 73% and 84% respectively, though this was due to

the lack of adequate number of samples; A-type samples were only 2,132 (5.5%)

out of a total of 38,371 samples across all the V,A,N annotations. As the classifier

could predict V-type and N-type with overall accuracy of 91%, the accuracy

could improve if the classifier was trained with adequate samples for V,A,N type

annotations. PhysioNet maintainers now suggest that for further data analysis

MIMIC III (Johnson et al. 2016) dataset should be considered, which has more

than 22,317 waveform records, although these are in the process of being annotated
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with annotations related to arrhythmia.

7.6.2 Limitations and recommendations : trauma analysis

Only eight patients belonging to a particular clinical class were

considered for trauma analysis; with additional samples, the correlation scores

between RTS and NEWS may improve. Also, with additional information related

to blood chemistry using portable blood chemistry analysis kits, it would be

possible to predict mortality and probability of survival using Simplified Acute

Physiology Score (SAPS II) (Aminiahidashti et al. 2017; Pirracchio 2016) scores,

which is the more precise score, as it also considers blood chemistry and urine

samples. In addition, further research may consider the activity monitoring of the

human subject using the accelerometer module, which could give more insights

into the effect of activity on the ECG and PPG readings. The MIMIC Numerics

records were stored in a format that are similar to the waveform records, but since

the sampling rates were far lesser than the MITDB records, the Numerics records

could not be used for ECG and trauma analysis both. In this research study

two separate models for ECG and trauma analysis were developed, though if a

dataset containing both, ECG waveforms and vital signs had become available,

a single feature extraction algorithm along with a data analysis pipeline could

have performed classification and survival prediction tasks in a single sweep.

The Numerics data also contained annotations that were related to the patient

alerts and monitoring device-related alerts with other non-periodic data; e.g.,

electrodes being misplaced or devices being disconnected, etc. Information was

available for some of the ICU monitor alerts, in some cases with additional

observations that were collected from other equipment sources. The copies of

the alarm annotation files containing information about these alerts were linked

to both the waveform and the Numerics records. Since MIMIC II database is

a combination of the waveform and clinical database, a QueryBuilder could be

used to link the waveform, the Numerics (vital signs), and the clinical information

using a Structured Query Language (SQL) could be queried. MIMIC-II was used

for annual PhysioNet/Computing in Cardiology Challenges, including the 2012

Challenge, “Predicting mortality of ICU Patients”. Since the relationship between
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the risk of mortality in the ICU and the physiological variables depends on the

sample space of the dataset, the prediction can be improved by using automated

neural networks or data-mining approaches, to predict hospital mortality in ICU

patients.

7.7 Future Work

The need for continual and long-term monitoring of the patient under

observation has grown in recent years which has led to the growth of wearable

health monitoring devices becoming available in open consumer market. The

impetus in recent years has been towards having to detect and identify early

warning signs pertaining to several health hazards which may cause trauma

situations if not treated in time. The accuracy of classification and identification

of health conditions, especially cardiac arrhythmia, using long-term monitoring

however, depends on the size of the dataset available to train the machine

learning and neural-network models. The research study presented in this thesis

involved commonly used and standard classification models such as the k-NN and

RandomForestClassifier which are supervised learning models that were trained

on datasets with known annotations, e.g. V,A,L,R . Due to limitations in sample

size, other more efficient and adaptive techniques could not be used such as

the semi-supervised algorithms. In long-term cardiac arrhythmia, monitoring

patient’s own ECG samples gathered over longer duration could help in identifying

anomalies and by annotating anomalies with anomaly detection and signal

processing algorithms using wavelet theory. Reinforcement-learning models could

then be used to penalise or incentivise decision nodes that could detect and identify

an anomaly in the patient’s own ECG signal.

With the miniaturisation of IoT devices and analogue front-end devices

containing high precision analogue-to-digital converters it has now become

possible to capture bio-potential signals with a high degree of accuracy. As

the microcontrollers are becoming more powerful, with 32-bit architectures

becoming available, adaptive and reinforced machine learning algorithms could

be implemented on a microcontroller architectures requiring lesser power
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consumption as compared to the microprocessor architectures; something quite

desirable in a wearable device capable of monitoring 24 x 7. As advanced signal

processing libraries are becoming available for microcontroller architectures e.g.

CMSIS-DSP and CMSIS-NN (Lai and Suda 2018) for signal processing and neural

networks respectively on ARM Cortex-M family of microcontrollers it will become

possible to train and annotate bio-potential signals in real time.

Although the research study presented in this thesis focused on cardiac

arrhythmia similar techniques could be used in studying other health conditions

related to Electroencephalography (EEG), Electromyography (EMG) (Mazzetta

et al. 2019) and studies related to Oncology as human body responds by

altering its bio-electric potential when it experiences physiological changes and by

emitting bio-electric distress signals which manifests in the form of fluctuations in

bio-potential on body surface. The combination of features extracted from ECG,

EEG and EMG in response to a certain health condition could help in determining

physiological response to a certain disease and the stage of the illness related to

the disease. Machine-learning and neural-network models could then be trained

on these features to detect physiological disorders at an early stage. Although

a matter of further study and research bio-potential signal processing can lead

to a completely new era of early-stage and early-warning non-invasive detection

systems which can prevent health hazards and severe health conditions ahead of

time.
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Introduction
There are commercially available health monitoring kits for 

example the Holter ECG kit which are capable of monitoring a 
patient patient’s heart rhythms for 24 to 48 hours during normal 
human activity [1]. The kit however only records the ECG and it does 
not analyse the heart rhythm to detect heart arrhythmia. The ECG 
recordings have to be manually analysed by an expert cardiologist. 
There are several such kits like the Alivecor and the Shimmer 
Sensing kits [2,3] which effectively monitor heart conditions 
though do not upload the traumatic events related information 
that a patient may have undergone. The system proposed in this 
research consists of a software implemented on the wearable IoT 
device which encapsulates the sample ECG readings in a standard 
XML or JSON format [4] and transmits the samples to the analytical 
server that uploads the FHIR payload to the FHIR server after 
performing the trauma analysis. Attempts have been made on 
previous occasions to make real time updates to electronic health  

 
records using internet client server technologies [5], though to 
develop such an infrastructure is however, a government policy 
decision rather than an implementation exercise. 

HL7 (Health Level-7) is a standards agency that develops 
standards for electronic health resources and FHIR is one 
such standard that enables Electronic Health Records (EHR) 
interoperability through web-service interfaces is [6] HL7 FHIR 
Web services. An overview of SNOMED-CT coding schemes along 
with interrelationships between clinical codes has been provided 
in this paper. An Oracle Java based FHIR test server and HAPIFHIR 
client based implementation has also been explained. In the 
methods section a detailed implementation of a HAPIFHIR client 
has been explained. The usage of clinFHIR tool which models 
codable concepts, resources, and elements, components using 
scenario modeller, logical modeller and conceptual modelling 
tools has been demonstrated. SNOMED CT is a coding system that 
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Abstract

Electronic Health Records (EHR) is an essential element in human healthcare monitoring systems these days. As a large amount of data continues 
being archived and uploaded to healthcare repositories, virtually every second across the globe, vast amount of data mining tasks continue being 
modelled and modified to extract valuable decision support information. The Health Level 7 (HL7) consortium provides the framework and related 
standards for the exchange, integration, sharing, and retrieval of electronic health information that supports clinical practice, management and 
delivery. With the large number of Internet of Things (IoT) health care kits becoming available it has become increasingly difficult to log the real-
time patient monitoring information to healthcare repositories. As patients continue being monitored in real-time it has become essential that the 
trauma events information such as stroke or cardiac arrhythmia be uploaded to the EHR in real-time. Currently available monitoring devices can 
monitor and analyse an abnormal condition but may not be able to upload these events in real-time. The proposed research focused on developing 
real-time interoperability tools and services, which can enable wearable IoT devices to interact with the EHR in real-time and can provide real-time 
decision support. 

The Fast Healthcare Interoperability Resources (FHIR) specification was used to develop and encode trauma related information in terms of 
FHIR resources, conceptual and logical models using clinFHIR tools. A HAPIFHIR application was implemented on an IoT device which could upload 
real-time ECG, PPG and relevant trauma information on a test FHIR server. The HAPIFHIR application code could encapsulate ECG arrhythmia, 
vital signs and trauma events in a single observation and could upload it to the HAPIFHIR server. Several such observations could be linked to a 
patient context and could be observed in real time in EHR. The ECG, the PPG, vital signs and trauma events were encoded according to Systematized 
Nomenclature of Medicine - Clinical Terms (SNOMED-CT) specifications. The alerts and alarms mechanism could assist the emergency response 
teams at the hospitals to prepare for an emergency well in time. An analogue front-end biomedical device was used for data acquisition and signal 
processing and the IoT devices were networked over wireless network to upload the events and observations to the FHIR server in real time. The 
system focussed on ‘preventive care’ as the next generation personalized health-care monitoring devices continue becoming available.

Keywords: IoT Healthcare; Trauma analysis; HL7; ECG FHIR; SNOMED-CT FHIR; HAPI FHIR; clinFHIR
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describes clinical concepts, vocabulary, descriptions and inter-
relationships between clinical codes. The results and discussions 
section discusses the advantages of using the FHIR based client 
application and FHIR modelling tools to develop an IoT-based real-
time decision health support system.

Overview of FHIR Healthcare Interoperability Workflow
Signal Processing, Dataset Preparation and Analysis

Figure 1: Health Monitoring in a typical IoT based 
wearable kit demonstrating data-acquisition to FHIR 
observation upload to FHIR Server.

Figure 2: A noisy ECG waveform filtered using digital 
signal processing algorithms like Chebyshev II order 
Filter.

A complete workflow of the process from data acquisition to 
signal conditioning, followed by data analysis and abnormal event 
classification, further followed by upload of the real time health 
monitoring information to FHIR server is illustrated in Figure 1. A 
typical signal processing application involves data acquisition in the 
form of ECG signal samples being acquired from a human subject. 
These signals could be acquired from the human subject in noisy 

conditions where there is bioelectric signal interference and noise 
due to other electrical components. To remove the noise, signals 
are filtered using Common filtering techniques using digital filters 
like Butterworth and Chebyshev filters. There is also noise induced 
due to motion artefacts, e.g. due to the motion of the patient being 
monitored and muscular bioelectric signal interference. The filtered 
waveform extracted from the noisy signal after filtration process is 
shown in Figure 2. After the signal has been filtered, samples can 
be acquired to extract features of the waveform for further data 
analysis. The signals have to be acquired according to Nyquist 
criteria, where the sampling frequency should be at least half the 
bandwidth of the signal. The samples prepared are passed to data 
analysis stage. The data analysis stage typically involves training a 
machine learning model based on existing waveform data sets.

HL7 FHIR Interoperability 
Fast Healthcare Interoperability Resources (FHIR) defines a 

set of “Resources” that represent clinical concepts. The resources 
can be coded and managed in isolation or aggregated into complex 
structures and documents which could be archived and queried 
as and when required. FHIR has been designed for the web; the 
resources are based on simple XML or JSON structures, with an 
http-based RESTful protocol and each resource is encapsulated and 
identified by a Uniform Resource Locator (URL).

Methods to Implement FHIR on IoT Devices 
The implementation of interoperable component on IoT 

devices requires modelling FHIR resources, codes and if required 
codable concepts based on FHIR specifications. In a typical 
healthcare monitoring kit an analogue front-end device such as 
the 3-lead ECG sensor (Analog Devices AD8233) [7] is used for 
data acquisition. The data acquisition system is interfaced with 
their intelligent processor like the Texas Instruments (TI) Cortex 
A7 processor (TI Beaglebone Black, Texas Instruments, Digi-key, 
USA). The readings obtained from an analogue front-end was de-
noised filtered and conditioned to obtain a smooth waveform. The 
signal was converted from analogue to digital form and was passed 
to the intelligent processor like the Beaglebone black. Since the 
signals and the samples contained noisy elements due to bioelectric 
interference and external environment conditions they had to 
be filtered. The signals contained noise frequencies and motion 
artefacts induced due to the body posture and motion. The samples 
had to be extensively filtered using filtering mechanisms to remove 
wandering and motion artefacts [8].

In order to classify, detect and separate abnormal signals 
from the normal one’s classification models were developed and 
trained in existing datasets targeting a particular abnormality. In 
this research, the datasets and software utilities, libraries provided 
by Physionet Waveform Database (WFDB) were used as shown in 
Figure 1. The WFDB was used to extract features from ECG and 
PPG samples. Once the features were obtained machine learning 
models were developed to train on a given set of features in order 
to predict abnormality in test samples. A JSON (JavaScript Object 
Notation) structure that encapsulated the sample readings was 
adopted which passed the samples to the HAPI (HL7 API) FHIR test 
server [12] to be logged to EHR if anomalies were detected. The 
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ECG and PPG samples encapsulated with JSON data structures were 
transmitted over 10 seconds’ intervals to a HAPI FHIR sandbox 
test server. HAPI FHIR is Java implementation of FHIR and enables 
development of RESTful Webservices. The observation object that 
encapsulates an instance of observation was coded according to 
SNOMED-CT coding system as shown in Figure 3 [10]. 

Figure 3: A typical FHIR observation resource showing 
sampled PPG data with LOINC code 59408-5.

Figure 4: A Trauma event showing modelled as LOINC 
code 74291-6 with corresponding SNOMED-CT codes for 
RTS (273885003), EWS (445416009) and TRISS (273886002) 
scores.

An observation object could be an event of abnormal signal 
in ECG waveform or a trauma event with trauma scores such as 
National Early Warning Signs (NEWS), Revised Trauma Scores 
(RTS), and Trauma Injury Severity Score (TRISS) [9] as shown in 
Figure 4. The HAPI FHIR data store could be a FHIR based EHR 
like GP-Connect/GP-SoC from NHS UK [11]. Once abnormal beats 
or waveforms were detected appropriate alarms could be raised 
and potentially be passed on to the health-care agency entrusted 
with the patient care. The FHIR specification on security also 
supports OAuth authentication and authorization service which 
the consumer services can embed in their FHIR servers [13]. The 
clinFHIR tool [14] was used to model observation resources. The 
composite IoT device modelled as “Device” resource showing 
reference to observations like ECG, PPG, blood pressure, heart rate 
has been shown in Figure 5. The trauma scores calculated from 
the physiological parameters have been shown in Figures 6 & 7 
showing the vital signs being modelled as observations.

Figure 5: ClinFHIR model for Device that can capture 
ECG, PPG readings and can calculate vital signs and 
provide trauma scores when required.

Figure 6: A clinFHIR model for Trauma score observation 
components. 
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Figure 7: A clinFHIR observation resource for vital signs 
calculated from physiological parameters. 

Conclusions and Discussion
The motivation behind the research was to provide information 

on how a real-time data acquisition and data analysis system could 
be integrated with FHIR client to upload the real time events to 
FHIR cloud server. An implementation of a HAPI-FHIR test server 
demonstrated the real-time logging of ECG, PPG, Vital Signs and 
Trauma observations, according to a Standard Coding System 
(SNOMED-CT or LOINC), to EHR for further analysis by the general 
practitioners and medics. This system should assist critical care 
teams to prepare for an emergency ahead of time and may prevent 
or reduce hazardous situations. The clinFHIR tool turned out to be 
an effective tool to model FHIR Device and Observation resources. 
The tool allowed to build a scenario for real time data acquisition 
and upload of observations. With further consolidation and 

standardization of FHIR the monitoring device and observations 
model could be extended to monitor patients regardless of their 
location or activity, and would enable uploading trauma related 
information to FHIR serves hosted by public health services in 
an automated fashion. The device manufacturers can extend the 
Observation and Device models to encapsulate FHIR resources.

References
1. Douglas L Mann, Douglas P Zipes, Peter Libby, Eugene Braunwald, 

Robert O Bonow (2015) Braunwald’s Heart Disease: A Textbook of 
Cardiovascular Medicine, (10th Edn.). Elsevier Saunders, USA, p. 1943. 

2. Alivecor (2018) Kardiamobile: Peace of mind in your pocket. Leapvault.

3. Shimmer (2018) Individual sensors shimmer.

4. Gackenheimer C (2013) Node.js recipes: A problem-solution approach. 
Apress, p. 376.

5. Hernández AI, Mora F, Villegas G, Passariello G, Carrault G (2001) Real-
time ECG transmission via Internet for nonclinical applications. IEEE 
Trans Inf Technol Biomed 5(3): 253-257.

6. Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB (2016) SMART 
on FHIR: A standards-based, interoperable apps platform for electronic 
health records. J Am Med Inform Assoc 23(5): 899-908.

7. Analog Devices (2017) Heart rate monitor for wearable products.

8. Walinjkar A, Woods J (2017) Personalized wearable systems for real-
time ECG classification and healthcare interoperability: Real-time ECG 
classification and FHIR interoperability. Internet Technolo Applic.

9. Walinjkar A (2018) A composite and wearable sensor kit for location-
aware healthcare monitoring and real-time trauma scoring for survival 
prediction. Appl Syst Innov 1(3): 35.

10. Snomed (2017) Code for 3 lead ECG monitoring.

11. NHS Digital (2016) GP System of choice.

12. James A (2018) HAPI FHIR 3.5.0.

13. FHIR (2016) 6.1.0 FHIR Release 3 (STU).

14. Hay D (2017) Hay on FHIR.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

• Global archiving of articles

• Immediate, unrestricted online access

• Rigorous Peer Review Process

• Authors Retain Copyrights

• Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2018.09.001863 

Mete Özkıdık. Biomed J Sci & Tech Res


	Abstract
	Publications
	Acknowledgements
	Contents
	Introduction
	Background
	Arrhythmia Problems and Current Clinical Pathways

	Motivation
	Aims and Objectives 
	Objectives in real-time arrhythmia classification
	Objectives in trauma analysis and EHR interoperability

	Thesis Structure

	Literature Review
	Background theory on ECG and arrhythmia types
	Phases in ECG measurement and interpretation 

	Conceptual framework for early signs arrhythmia detection
	Clinical basis early signs arrhythmia 

	Wearable ECG kits
	Training classifiers on arrhythmia datasets
	ECG signal conditioning
	Heart Rate Variability (HRV) analysis advantages and disadvantages.
	Vital signs measurement problems and challenges
	Obtaining blood pressure and respiratory rate as vital signs from the health monitoring kit

	Physiological parameters for health status determination 
	Injury severity and trauma scoring for survival prediction using physiological parameters
	Tables for trauma scoring

	Integration of EHR with injury and trauma scores
	Integration with EHR and location awareness


	Materials
	 Health Monitoring kit for real-time signal acquisition
	Location Awareness Additions to the Wearable Sensor Kit Using the GIS Application and the GPS Module
	Shortest Route Calculation Using GNSS/GIS Algorithms
	FHIR application for the CHM kit

	Arrhythmia datasets
	MITDB arrhythmia dataset
	PhysioNet WFDB library

	MIMIC Numerics dataset
	Scikit-Learn machine learning package

	ECG Analysis and Arrhythmia Detection
	Introduction
	Methods: Feature extraction and data analysis for MITDB records
	Feature extraction using WFDB for V,A,L,R arrhythmia types
	Data analysis for classification of V,A,L,R arrhythmia types
	Supervised-learning classification models for V,A,L,R annotations
	Results: Supervised-learning classification of V,A,L,R annotations types
	Methods: Neural-network classification for V,A,L,R annotation types
	Results: Neural-network classification for V,A,L,R annotation types

	V,A,L,R classification problems when N-type annotations considered

	Methods: Spectral Analysis of V, A, N annotation types
	Power spectrum computations
	Methods: A novel feature extraction algorithm using spectral analysis and finite state machines
	The Finite State Machines (FSM) for V, A, N annotations
	Consolidated feature extraction algorithm for V,A,N annotations

	Methods: Data analysis pipeline for V, A, N classification 

	Results: Data analysis pipeline for V,A,N classification
	Methods: ECG signal acquisition from human subject 
	ECG signal filtering, denoising and wavelet analysis 
	Results: ECG Signal processing on resource constrained device in real-time
	Methods: ECG signal conversion to WFDB format 

	Methods: Feature extraction and V,A,N classification on restricted device
	Results: Real-time V,A,N classification on restricted device
	Discussion: Early warning arrhythmia detection and signal processing
	ECG Arrhythmia detection and classification
	ECG signal acquisition and an extended feature extraction algorithm

	Summary: Early warning arrhythmia detection and classification

	Trauma Analysis
	Introduction
	Methods: Vital signs and conversion to WFDB format
	Respiratory Rate and Blood Pressure Calculations

	Methods: Algorithm for trauma scoring and survival prediction
	Results: Trauma Analysis
	Results: Relationship of trauma scores with their predictors
	Methods: Regression model for survival prediction using trauma scores
	Results: Probability of survival using trauma scores
	Discussion: Real-time trauma analysis using vital signs
	Summary: Trauma analysis

	Electronic Health Records Interoperability
	Introduction
	EHR Preview
	Overview of FHIR Healthcare Interoperability workflow
	FHIR Interoperability
	FHIR interoperability: A clinical perspective
	FHIR interoperability: A developer's perspective

	Methods to implement FHIR on IoT devices 
	FHIR observations encoded according to standard coding systems

	FHIR Resource modelling using clinFHIR tool
	Discussion

	Conclusions
	Summary
	Challenges in early warning arrhythmia detection 
	Challenges in trauma analysis 
	Contributions against aims and objectives for arrhythmia classification 
	Contributions against aims and objectives for trauma analysis
	Limitations and recommendations
	Limitations and recommendations: ECG analysis
	Limitations and recommendations : trauma analysis

	Future Work

	References
	Appendices
	Biomedical Journal Sci & Tech Research

