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Abstract

This thesis is concerned with the automation of human rights violation recognition in images.

Solving this problem is extremely beneficial to human rights organisations and investigators,

who are often interested in identifying and documenting potential violations of human rights

within images. It will allow them to avoid the overwhelming task of analysing large volumes of

images manually. However, visual recognition of human rights violations is challenging and

previously unattempted. Through the use of computer vision, the notion of visual recognition

of human rights violations is forged in this thesis, whilst this area is addressed by strongly

considering the constraints related to the usability and flexibility of a real practice. Firstly,

image datasets of human rights violations which are suitable for training and testing modern

visual representations, such as convolutional neural networks (CNNs) are introduced for the

first time ever. Secondly, we develop and apply transfer learning models specific to the human

rights violation recognition problem. Various fusion methods are proposed for performing

an equivalence and complementarity analysis of object-centric and scene-centric deep image

representations for the task of human rights violation recognition. Additionally, a web demo

for predicting human rights violations that may be used directly by human rights advocates and

analysts is developed. Next, the problem of recognising displaced people from still images is

considered. To solve this, a novel mechanism centred around the level of control each person

feels of the situation is developed. By leveraging this mechanism, typical image classification

turns into a uniform framework that infers potential displaced people from images. Finally,

a human-centric approach for recognising rich information about two emotional states is

proposed. The derived global emotional traits are harnessed alongside a data-driven CNN

classifier to efficiently infer two of the most widespread modern abuses against human rights,

child labour and displaced populations.
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Chapter 1

Introduction

Computer vision is undergoing a period of massive expansion. This is not because

computers have achieved human-like perception, but because of advances in large

scale deep learning, where computers learn from massive image databases how to

classify new data. At the cutting edge are the neural networks that have learned

to recognise objects or optical characters, a small core of computer vision goals

aimed at replicating human abilities. One activity that currently seems distant

from computer vision is human rights advocacy where little empirical research has

documented the influence images can have in bringing human rights topics to life

in a way that mere description and texts cannot. This chapter offers reflections on

some of the key challenges of visual recognition in illuminating gross violations of

human rights. The major contributions made by this thesis in an attempt to bridge

these research gaps are also highlighted. A snapshot of each chapter is presented

to illustrate the structure of the thesis. Finally, publications that were made during

the course of this research are listed at the end of the chapter.
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1.1 Objectives and Motivations

Violations of human rights have been unfolding during the entire human history, while nowadays

they appear in many different forms around the world. In the era of social media and big data,

publicly available footage is becoming an increasingly important aspect of conflict monitoring

and the documentation of war crimes and human rights abuse [75]. Human rights organisations,

advocates, journalists, international institutions, and ordinary people find themselves drowned

in massive amounts of visual testimony of suffering and misconduct. The ubiquity of such

visual data may deluge those accountable for analysing and preserving them. Currently, the

workflow followed by humanitarian and human rights professionals is to seek out, verify and

edit the most disturbing and traumatic raw images captured by consumer cameras ‘in the wild’

and posted online. This involves manual sifting through massive volumes of eyewitness media

images and videos and looking at, or watching footage over and over again in order to extract

useful information [50, 89]. Such analysis most of the time is utterly expensive (when people

must be paid to do the work), time consuming, and emotionally traumatic [15]. Furthermore,

the number of researches or volunteers who are capable of carrying out such work can be

limited by language skills, geographic awareness, and cultural knowledge.

Visual recognition of events where human rights are potentially being violated plays a

crucial role in human rights advocacy and accountability efforts. While, manual processing is

sufficient for small-scale visual data, the circulation of human-rights-related content has largely

outclassed the ability of researchers to keep pace. Hence, automatic perception of human

rights violations will enable researchers to discover content that may otherwise be concealed by

massive volume of images and videos. These automated systems are not producing evidence,

but are instead narrowing down the amount of material that must be examined by human

analysts to improve their reporting, operations, storytelling, investigations, prosecutions and

advocacy.

The research into computer vision and machine learning have seen tremendous progress

in recent years, due to the advances in deep learning. However, the vast majority of research

conducted covers broad areas such as object recognition, image classification and semantic

segmentation; progress related to visual recognition of human rights violations has been non

existent, somewhat due to the insufficient availability of training data. The objective of this

thesis is to bridge this gap and help improve the efficiency and effectiveness of human rights

practitioners who analyse imagery as a significant dimension of their work.

In this thesis, we aim to automate the process of recognising potential human rights viola-

tions from images which would entail in developing a purpose-built human rights technology

well suited for sifting through large-scale image collections and outputting action-provoking

samples, specifically designed for modern human rights practice. This automated visual
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(a) (b)

Figure 1.1: Ambiguities in visual recognition of human rights violations.

recognition system would aid advocates in dealing with a large amount of visual evidence.

An additional asset of this system is considered the standardised definition of human rights

violations; images of human rights violations have been gathered by verified sources. Such

an automated system could be deployed by different organisations and advocates around the

world, thus eliminating a significant concern associated with human rights technology [78];

processing large imagery collections tends to be limited to institutions with large staffs or

access to expensive, technologically advanced tools and techniques. Specific contributions are

described in Section 1.3.

1.2 Key Challenges

Ambiguities in visual recognition of human rights violations. Visual recognition of human

rights violations is considered to be a particularly challenging task, and it is understood that

even experienced analysts find it difficult to tell the entire story of an event or present an

issue ‘as it really is’ even with high volume of visual data [3]. Ambiguity of static images can

often lead to different interpretations. For example, Figure 1.1 can be interpreted in different

ways: (a) can swiftly be interpreted as a boy wandering in countryside carrying some personal

possessions. At the same time, one might put that in different context and claim that the young

boy is carrying those belongings because he is actually forced to sell them (child labour).

Similarly, (b) might be interpreted as a group of children commonly posing for a picture, while

someone else might interpret it as members of displaced populations that were recorded in

a refugee camp. This presents two challenges: the first is how to gather structured visual

knowledge, and the second is how to break down such complex dependencies into simpler tasks.

Variability in places and events. Automated recognition of potential human rights violations

is challenging because of high intra- and inter-class variability. For example, regarding refugee

rights, there is a vast number of events behind this variability, including: (i) asylum seekers,
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(a) (b) (c)

Figure 1.2: Intra-class variability for violations against refugee rights. Source: Human Rights

Watch [83].

such as peoples’ access to asylum is blocked, and depriving asylum seekers of rights to fair

hearings of their refugee claims; (ii) internally displaced people including the forcible return

of people to places where their lives or freedom would be threatened; (iii) migrants, who

are treated without dignity and regard for the basic human rights. An example of intra-class

variability for violations against refugee rights is depicted in Figure 1.2: (a) a wooden boat

carrying 29 people, mainly Syrians, just before their rescue and transfer to the Aquarius. (b)

asylum seekers and migrants, mostly from Syria and Iraq, try to warm themselves after a

freezing night near the Greek border with Macedonia. (c) a young Egyptian man in the main

room at the Pozzallo Hotspot, Italy.

Lack of training data. Many notable applications of computer vision and machine learning

in recent years have been in the area of supervised learning, thanks to the availability of large

datasets such as ImageNet [12] and Places [119]. However, such readily available image

datasets do not exist in the field of human rights. This raises two challenges: (i) how to generate

a collection of labelled data from existing sources (e.g. from social media images, videos or

non-governmental organizations (NGO)) with minimum human intervention; (ii) how to verify

those data.

Incorporate contextual reasoning. In computer vision, context is viewed as a way of struc-

turing knowledge and modelling its usage in problem solving tasks. It is generally accepted

that the surroundings of an object may have a huge influence on, and in some cases, may be

necessary for, visual recognition of an object [67]. The human ability of inferring information

about a scene that is then useful for interpreting other parts of the image, is a remarkable trait of

our visual system, one that is required to be modelled by computer vision techniques in order

to advance automated recognition of potential human rights violations.
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Figure 1.3: An overview of the main contributions presented in this thesis. Firstly, we

introduce the first ever image datasets in the context of human rights violations. Then, using

various transfer learning methods we introduce the first benchmark for visual recognition

of human rights violations. After that, we combine features from object-centric and scene-

centric convolutional neural networks for predicting human rights violations. In Chapter 6 we

move to recognising displaced people by exploiting their dominance level with an integrated

model called DisplaceNet. Lastly, global emotional traits–a powerful approach capable of

characterising an image based on the emotional states of all people in a scene–is introduced in

the recognition pipeline with a clean end-to-end system, called GET-AID.

1.3 Contributions

The main contributions of this thesis are fivefold and are summarised in the following list.

Figure 1.3 may also be consulted for a condensed overview.

• We construct the first-ever image datasets containing instances of human rights violations,

captured in real world situations and surroundings. These datasets signify an attempt

to establish a comprehensive set of benchmarks for visual recognition in the context of

human rights violations within the vision community for the first time ever. They also

lay the foundation for training deep visual representations with the objective to expose

human rights violations over large-scale data that may otherwise be impossible.
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• Although the latest generation of Convolutional Neural Networks (CNNs) have achieved

impressive results in challenging benchmarks on image recognition and object detection,

it remains still unclear whether those image representations can be utilised with the same

efficiency for complex tasks. With our novel image datasets we tackle the unattempted

task of predicting human rights violations from still images, while we quantitatively

and qualitatively show by what means deep image representations can be used for

this task. We conduct a rigorous evaluation of these image representations exploring

different deep architectures and comparing them on a common ground, identifying and

disclosing important implementation details. We also propose a two-phase transfer

learning framework that can be tailored in an end-to-end image classification system,

resulting in the first benchmark for visual recognition of human rights violations.

• Predicting potential human right violations principally consists of more basic tasks, such

as object and scene recognition. In this context, we investigate whether features emerging

from models that have been trained on objects (object-centric CNNs) and features

emerging from models that have been trained on scenes (scene-centric CNNs) can be

effectively combined for recognising potential human rights violations. We analyse and

empirically clarify their complementarity, conducting a large set of experiments. We also

propose various mechanisms for different early and late fusion strategies. We found that

recognition of human rights violations poses a challenge at a higher level for the well

studied representation learning methods.

• We develop DisplaceNet, a novel framework for recognising displaced people from

images. Our hypothesis is that the control level of a situation by the person, ranging

from submissive / non-control to dominant / in-control, is a powerful cue that can help

our baseline models make a distinction between displaced people and non-displaced

people. As a result, we propose a novel method to delineate an image on the basis of

all people’s dominance level. The apparent dominance level of each person is predicted

by jointly processing the window of the person and the whole image. We apply this

method to evaluate our framework using a specially adapted image dataset. Results show

a significant improvement over our baseline system.

• Our findings indicate that emotional states of people can be closely related with certain

abuses against human rights. This discovery served as the basis of our next method called

global emotional traits (GET). We define global emotional traits as two different scores–

they derive from arousal and dominance emotional states–that characterise an entire

image. We integrate this method with a data-driven CNN classifier and we introduce an

end-to-end system called GET-AID. This system results in a significant improvement
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over fine-tuned models for two of the most reported modern human rights violations,

child labour and displaced people.

1.4 Thesis Outline

Literature Review. (Chapter 2) We review the existing relevant literature that serves as

background for the research conducted in this thesis. We start by examining the role of

images in the context of human rights and humanitarian communication, how and why visual

knowledge shapes human rights technology, and a variety of studies related to human rights

violations. Then we review the literature related to image representation learning which is

fundamental in visual recognition, and how it has advanced throughout the years. Finally, we

provide a literature review for large-scale image datasets, object detectors, emotion recognition

systems, and transfer learning.

Datasets & Verification. (Chapter 3) We introduce the first-ever image datasets suitable for

training and testing modern deep CNNs for the task of human rights violation recognition

(HRVR). Also, we develop a multi-stage pipeline for fully verified large-scale image collection

from NGO repositories. With this, we generate a dataset with over 3K instances of various

human rights violations captured in real world situations and surroundings. This allows for

more realistic, and thus more reliable comparisons in different application scenarios. This data

is used in various experiments throughout this thesis.

A new benchmark for predicting human rights violations from images. (Chapter 4) Given

the nature of the target task, this chapter particularly investigates inner working behind transfer

learning for human rights violation recognition. To this end, we examine the transfer learning

problem of applying classifiers trained on everyday objects/scenes to human rights violations, by

comparing their performance to HRVR-trained classifiers (which do not experience any transfer

learning) at the same task. We show that there is a notable performance gap between everyday

objects/scenes image-trained and HRVR-trained classifiers, and that the visual recognition of

human rights violations poses a challenge at a higher level for the well studied representation

learning methods.

Analysis of equivalence of various CNN image representations. (Chapter 5) We explore

whether two representations, for example two different parametrizations of a CNN, two different

CNN architectures, or CNNs trained to classify objects and scenes, share the same visual

information or not. This allows us to see how well object-centric and scene-centric CNN

features can be combined for solving the task of predicting potential human rights violations.

We show that even though object-centric and scene-centric CNNs do not share the same

informative regions relevant to their predictions, their feature fusion trail their individual
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counterparts in most testing scenarios. Additionally, a practical application of this research, a

web demo for predicting human rights violations that may be used directly by human rights

advocates and analysts, is developed.

Recognising displaced people from images by exploiting their dominance level. (Chapter

6) This chapter studies the problem of labelling real-world images as either displaced

people or non-displaced people. This is a challenging binary classification problem

in the context of human rights investigations, as methods that are based solely on object

detection or scene recognition regularly fail to discriminate the encoded visual content of an

image that depicts a non-violent situation and the encoded visual content of an image displaying

displaced people. We introduce a new method for recognising displaced people by exploiting

the overall dominance level of people inside an image.

Harnessing emotional traits for human rights violation recognition in images. (Chapter

7) In this chapter, we demonstrate that classification of certain human rights violations can be

improved by integrating the emotional states of persons with a data-driven CNN classifier. To

achieve this we propose a novel mechanism capable of characterising an entire image based

on all people’s emotional states, termed global emotional traits (GET), by utilising two of the

continuous dimensions of the Valence, Arousal, and Dominance (VAD) emotional state model

[69] that can be associated with human rights content.

Open source development. During the work on this thesis, we have developed and made

publicly available multiple open-source projects. Among those are MatDeepRep1, Human

Rights UNderstanding (HRUN) CNNs2, Human Rights Archive (HRA) CNNs3, DisplaceNet4,

and GET-AID5. Furthermore, several reference implementations 6,7 for Keras framework [8]

have been made during the work of this thesis.

1https://github.com/GKalliatakis/MatDeepRep
2https://github.com/GKalliatakis/Human-Rights-UNderstanding-CNNs
3https://github.com/GKalliatakis/Human-Rights-Archive-CNNs
4https://github.com/GKalliatakis/DisplaceNet
5https://github.com/GKalliatakis/GET-AID
6https://github.com/GKalliatakis/Keras-VGG16-places365
7https://github.com/GKalliatakis/Keras-Application-Zoo

https://github.com/GKalliatakis/MatDeepRep
https://github.com/GKalliatakis/Human-Rights-UNderstanding-CNNs
https://github.com/GKalliatakis/Human-Rights-Archive-CNNs
https://github.com/GKalliatakis/DisplaceNet
https://github.com/GKalliatakis/GET-AID
https://github.com/GKalliatakis/Keras-VGG16-places365
https://github.com/GKalliatakis/Keras-Application-Zoo
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1.5 Publications

The research conducted in this thesis has resulted in several peer-reviewed publications listed

below in chronological order:

• Kalliatakis, G., Ehsan, S., Fasli, M., Leonardis, A., Gall, J. and McDonald-Maier, K. D.

(2017). Detection of Human Rights Violations in Images: Can Convolutional Neural

Networks help? In Proceedings of the Joint Conference on Computer Vision, Imaging

and Computer Graphics Theory and Applications, VISAPP 2017. [41]

• Kalliatakis, G., Stamatiadis, G., Ehsan, S., Leonardis, A., Gall, J., Sticlaru, A. and

McDonald-Maier, K.D. Evaluating deep convolutional neural networks for material

classification. In Proceedings of the Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications, VISAPP 2017. [45]

• Kalliatakis, G., Ehsan, S. and McDonald-Maier, K.D. A Paradigm Shift: Detecting

Human Rights Violations Through Web Images. In Proceedings of the Human Rights

Practice in the Digital Age Workshop, 2017. [44]

• Kalliatakis, G., Sticlaru, A., Stamatiadis, G., Ehsan, S., Leonardis, A., Gall, J. and

McDonald-Maier, K.D. Material Classification in the Wild: Do Synthesized Training

Data Generalise Better than Real-World Training Data? Evaluating deep convolutional

neural networks for material classification. In Proceedings of the Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP

2018. [46]

• Kalliatakis, G., Ehsan, S., Leonardis, A., Fasli, M. and McDonald-Maier, K.D., 2019.

Exploring object-centric and scene-centric CNN features and their complementarity for

human rights violations recognition in images. IEEE Access, 2019. [43]

• Kalliatakis, G., Ehsan, S., Fasli, M. and McDonald-Maier, K.D. DisplaceNet: Recognis-

ing Displaced People from Images by Exploiting Dominance Level. In Proceedings of

the Computer Vision for Global Challenges Workshop, CVPR 2019. [40]

• Kalliatakis, G., Ehsan, S., Fasli, M. and McDonald-Maier, K.D. GET-AID: Visual

recognition of human rights abuses via global emotional traits. Under review, 2019. [42]



Chapter 2

Background

While the use of digital images among human rights advocates is becoming more

common, innovations are being taken up unevenly, and advocates admit that they

tend to utilise opportunistic and adaptive approaches to problem solving instead

of purpose-built human rights technology. In this chapter, we review the existing

relevant literature that serves as background for the research conducted in this

thesis. In order to motivate the uncharted task of visual recognition of human rights

violations, we start by examining the role of images in the context of human rights

and humanitarian communication. We also explore how and why visual knowledge

shapes human rights technology, and a variety of studies related to human rights

violations, each of which has benefited from computer vision techniques. Next, we

review the literature related to image representation learning which is fundamental

in visual recognition, and how it has advanced throughout the years. Finally, we

provide a literature review for large-scale image datasets, object detectors, emotion

recognition systems, and techniques on transfer learning.
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2.1 Introduction

This chapter provides a general introduction to human rights technology as a field, and intro-

duces the previous work that is most pertinent to this thesis. This is followed by an overview of

the literature on deep image representations, large-scale image datasets, and transfer learning.

Specifically, the structure of the review is the following: We begin, in Section 2.2, with a

discussion of the interplay between visuals and human rights advocacy/accountability efforts.

Then, in Section 2.3 we briefly present the progression of deep image representations and

more specifically Convolutional Neural Networks (CNNs), which are more suitable for dealing

with vision problems. We follow up by describing the two most prevalent large-scale image

datasets for modern representation learning tasks, ImageNet [12] and Places [119] in Section

2.4, modern object detectors in Section 2.5, and emotion recognition approaches in Section

2.6. Finally, we review literature on transfer learning in Section 2.7. This is of particular

relevance to us, as in this thesis we are often concerned with the task of learning in the domain

of everyday objects/scenes, and transferring this knowledge to the domain of human rights.

2.2 Images and Human Rights

Images, moving and still, are undoubtedly powerful, and yet we really do not know exactly how

they affect us. The visual shift has been having colossal consequences in the many practices

related to the definition and implementation of crucial aspects for human rights. Different

individuals–human rights activists, journalists, eye witnesses, practitioners and supporters–as

well as various institutions–governments, courts, NGOs, donors and the media–all have been

adapting their efforts to consider the visual element in ways that surpass its symbolic objective

in human rights practice. Images have been revolutionized from a bare vehicle for advocacy to

a vital evidentiary tool and a form of information. Despite this immense interest in the role

of visual imagery in human rights advocacy, relatively limited research has documented its

influence, while we are left with many questions about how images educate, communicate and

relate to the issues of human rights [62].

2.2.1 Human Rights Technology

Over the past decade, the growing use of the term ‘human rights technology’ indicates a field

of practice–understood as fact-finding, advocacy, and litigation toward accountability, trans-

parency, and justice–that has gathered attention across multiple disciplines. The origin of this

multidisciplinary interest commenced in 2009, at the University of California, Berkeley where

an international conference with a diverse mix of academics, practitioners, and technologists
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(a) (b) (c)

Figure 2.1: Examples of structure detections in Doro settlement with remote sensing data.

Left: ground truth locations of structures; centre: detected structure polygons with adapted

network; right: detected structure polygons with basenet. Reprinted from [79].

was held, and debated about the uses of technology for human rights practice as described by

Enrique Piracés in [78]. Since then, various foundations, like the MacArthur Foundation, the

Ford Foundation, the Oak Foundation, Humanity United, and the Open Society Foundations

have adjusted their portfolios to help create the human rights technology field. Currently

there are numerous annual workshops on international, regional, and national level which

accommodate analysis on the usage of technology for human rights [111]. However, today the

vast majority of human rights practitioners utilise technologies which are based on creative or

opportunistic variations of general-purpose technologies. There are only a few solutions of

purpose-built human rights technology mainly due to the open source nature of the software

behind them.

2.2.2 Remote Sensing

Remote sensing, the science of obtaining information about objects or areas from a distance,

typically from aircraft or satellites, is a technology which is increasingly being used to monitor,

mitigate and guide humanitarian responses to conflict, human rights violations, and man-made

or natural disasters [103, 101]. The use of this technology for studying violent conflict and

human rights has increased noticeably over the last decade, and is particularly valuable in

difficult-to-reach or dangerous conflict zones where field observations are sparse or non-existent

[108]. Recently, Quinn et al. presented a case study of experiments using deep learning methods

to count the numbers of different types of structures in a refugee or internally displaced people

(IDP) settlements in Africa and Middle East [79], which in practice is currently routinely

done by human expert analysts. They used annotated, high resolution imagery from thirteen

IDP settlements, which were collected by different satellites and/or at different time. Object
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detection and region selection was conducted through a Mask-RCNN model [30], by first

connecting the input layer to a feature extraction stage of a pre-trained network. Some structure

detection examples are shown in Figure 2.1. Their results demonstrate that it is possible to

detect a large proportion of structures within settlements. However, the considerable variation

in the characteristics of the imagery was also evident in their results. Finally, in order to achieve

applicable levels of accuracy when translating generally trained models to specific locations, a

semi-automated interactive learning approach has to be followed.

Another system that uses computer vision to analyse images obtained from distance is the

ARtillery Crater Analysis and Detection Engine (ARCADE) [29]. This prototype scans satellite

imagery drawn from Google Maps for signs of artillery bombardment, geocodes artillery blast

craters, and calculates the inbound trajectory of projectiles to help automate the process of

determining their origin of fire, as illustrated in Figure 2.2a. First, using the Viola-Jones

detection algorithm [102]–trained on positive (images containing the craters) and negative

(images that do not contain craters) samples–the system flags areas of interest by passing a

small-scale window over every part of the image. Then, the system creates a different version

of the input images which contain the boxes from the previous step. ARCADE uses active

contour segmentation [49] to provide an outline of potential craters. After that, the system uses

feature extraction to provide useful data on the latitude and longitude of a crater and estimate

its trajectory. Finally, by utilising template matching ARCADE tries to estimate the inbound

trajectory of the projectile that created the crater before creating two separate image files which

display the areas of the image that appear to correspond with its data on what a crater is, and

the image segmentations and outlines of the craters, as seen in Figure 2.2b.

2.2.3 Event Detection in Human Rights Investigations

Several studies are concerned with the detection of particular objects that are of interest to

human rights researchers, including tanks, missiles, helicopters, aeroplanes, military vehicles,

soldiers, and large crowds [4]. Event detection is another common task within human rights

investigations, although it is computationally demanding because of the semantic concept

detection involved in a dynamic environment. Another challenge is that the videos relevant to

human rights investigations are significantly more complex, while the camera is most of the

times unconstrained in time and space. One system that attempts to address these challenges is

the Event Labeling through Analytic Media Processing (E-LAMP) [98]. An operator provides

the system with a set of training videos that depict a specific event alongside a set of videos that

depict irrelevant actions. Then, E-LAMP analyses these videos for various different features

which can be combined into a computational machine learning (ML) model of the relevant

event. Then, the system examines a larger collection of videos for additional potential examples
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(a) (b)

Figure 2.2: Automating the detection of artillery craters by using the Artillery Crater Analysis

and Detection Engine (ARCADE). (a) Automated process of geolocating and obtain trajectory

data from suspected blast craters near Amvrosiivka, Donetsk Oblast, Ukraine. Image date

14 September 2014. Reprinted from Google ©2015 DigitalGlobe. (b) Output by ARCADE

on crater field at Savur Mohyla, Donetsk Oblast, Ukraine. Image date 14 September 2014.

Imagery via Google © 2015 CNES / Astrium, Cnes Spot Image, DigitalGlobe.

of this particular model, and returns a set of videos that it anticipates match the event in question.

Finally, in order to establish a classifier for the particular action, the operator has to confirm

whether the suggested matches are correct or not, and the system goes through the collection

again after taking into consideration the operator’s verdict. The classifier can be used to detect

duplicates or near-duplicates, as illustrated in Figure 2.3, but needs to be adjusted before being

deployed to different context. Results are returned with probability calculations–the higher the

score, the more confident the system is for its prediction.

2.2.4 Event Reconstruction

Reconstructing events in time and space using computer vision, is one more area which

computer scientists are increasingly interested in. Event reconstruction can help investigators

decipher what happened during an event alongside in which context the event occurred. Initial

work has focused on developing tools for displaying several synchronised videos of an event

at the same time, allowing event observation from diverse angles. For instance, Forensic

Architecture [107] makes use of diverse sources including photos, cell phone audio and video,

satellite imagery, digital mapping, and security camera and broadcast television footage, to

carefully reconstruct the scene of a violation as a virtual three-dimensional architectural model.
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Figure 2.3: Event Labeling through Analytic Media Processing (E-LAMP) search results

returned from classifier. Top 100 Mortar Launcher Videos out of 476 total. Reprinted from

E-LAMP [4].

2.2.5 Facial Recognition Systems

One more area of computer vision that potentially has a plethora of potential uses in the human

rights domain is facial recognition. Over the past decade, researchers have developed sound

methods that make face detection relatively standard even though all human faces are unique.

A much more complicated task that can lead to issues in lower-resolution images is face

recognition; determining if faces from different images belong to the same person. One could

imagine human rights investigators using those facial detection and recognition methods to

identify perpetrators, victims from recorded violent conduct, or even eyewitnesses who could

provide testimony in an investigation [24]. However, in practice there are great ethical concerns,

negative applications, and various technical limitations that make its use in the human rights

domain less feasible. First, the low resolution nature of most videos retrieved from social media

cannot produce enough fine-grained data for facial recognition systems to estimate sufficient

facial characteristics in order to provide relevant matches. Second, the majority of the available
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facial recognition systems underperform when identifying people of African ancestry compared

to European descendants, mainly as a consequence of the training data attributes. Third, for

many videos in the human rights context, faces are obscured (head coverings etc. ) leaving

only a small portion of the face visible [37], while damage from blunt force trauma, drowning,

burns, and other factors significantly alter the characteristics of the face to the point that visual

recognition even by family members becomes difficult [71].

2.3 Deep Image Representations

Image representations have been a primary focus of computer vision research for many years

[68]. Most image understanding methods rely on various image representations such as

histogram of oriented gradients (SIFT [64] and HOG [11]), sparse [112] and local coding [104],

bag of visual words [10], super vector coding [121], textons [57], VLAD [35], Fisher Vectors

[77], and, lately, deep neural networks, notably of the convolutional family [54, 115, 86]. For

local invariant feature detection and matching, SIFT gained huge popularity before deep image

representations due to its strong detector and highly distinctive descriptor. The algorithm is

divided into four main stages: scale-space extrema detection, keypoint localisation, orientation

assignment and keypoint descriptor computation. The intuition behind SIFT relies on finding

‘keypoints’ in an image and then computing a 128-dimensional descriptor around that point to

summarise local gradient histograms information in a scale and rotational invariant way. HOG

has been applied extensively in object recognition areas. HOG captures features by counting

the occurrence of gradient orientation. Traditional HOG divides the image into different cells

and computes a histogram of gradient orientations over them. However, these points are based

on photometric considerations (e.g. gradients), and are not semantically consistent, they do not

consistently detect parts of objects.

An image x is associated with an image representation φ that encodes the visual content of x

in a way that the predictor ψ performs a prediction of a label ŷ which can be discrete/categorical

for classification or continuous for regression problems. Typically, both the encoder φ and

predictor ψ are parametrised by σφ and σψ respectively, as shown in Figure 2.4. Essentially,

the aim of the prediction pipeline is to have an encoder which reflects the prior knowledge of

the input domain, either by hand-crafting it, or by reusing an encoder trained on different tasks,

also known as transfer learning.

It is possible to categorise image representations based on different aspects, but one of the

most accepted categorisations is between ‘handcrafted’, such as SIFT and HOG for which σφ

is constant, and end-to-end trained image representations, where σφ is trained. These modern

image representations are produced by feed forward artificial neural networks (Deep Neural
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Figure 2.4: A typical image prediction pipeline. An input image x is encoded by the encoder φ

to obtain a representation φ(x) which is used by the predictor ψ to predict the label ŷ. σφ and

σψ parametrise the encoder and predictor respectively in case of a trained feature representation.

Networks DNNs), hence referred to as ‘deep representations’. In the context of an image

classification task, deep image representations are usually trained using the maximal likelihood

method. For a given dataset D = {(xi,yi)}
N
i=1 for set of image xi and its label yi, the ML trained

parameter vector σ∗ = (σ∗φ ,σ
∗
ψ) is estimated as follows:

σ∗ = argmin
1

N
∑

(xi,yi)∈D

− logP(yi|xi,σ) (2.1)

where the probability is estimated as follows:

P(y|x,σ)∼ P(y|ψ(φ(x;σφ );σψ)) (2.2)

In the context of this thesis, we have heavily used Convolutional Neural Networks (CNNs),

which is why we only focus on literature concerning deep image representations as background.

2.3.1 Convolutional Neural Networks (CNNs)

One of the first neural networks in computer vision is ‘Neocognition’ which dates back to

the 1980s [23]. This hierarchical network consists of many layers, and variable connections

between nodes in nearby layers. Initially the lower level nodes extract the local features of the

input, and are progressively unified with more general features. At that time, this model was

influenced by the groundbreaking studies of the visual cortex of cats by Hubel and Wiesel [33].

The network becomes robust to deformation scales and translations in the position of the inputs,

thanks to the pooling layers. After training, the network is ready to perform simple pattern

recognition.

Nine years later, influenced by Neocognition, the convolutional model was re-established

by LeCun et al. [55] and was successfully applied to handwritten digit recognition. This

network was made up of two convolutional layers with 12 filters each, and two fully connected

layers with 30 hidden units (not present in the Neocognition model). It was trained with the

back-propagation algorithm on 7291 training samples of resolution 16×16 pixels having 9760

free parameters overall.



18 | Background

Figure 2.5: Architecture of LeNet deep convolutional neural network, figure reprinted from

the original paper [56].

2.3.2 LeNet

Throughout the years, the network was further upgraded to the LeNet model illustrated in

Figure 2.5. The main advancement in LeNet is the establishment of max pooling–at that time

it was parametrised with a limited number of learnable parameters–which advances spatial

sub-sampling and allows more filters to be used. Following this approach, more hidden units in

the fully connected layer were feasible alongside a classifier on top. This network processed

input images of 32×32 pixels with 60 ·103 free parameters and was trained on 60 ·103 training

samples. Although LeNet has achieved state-of-the-art results on the Modified National Institute

of Standards and Technology (MNIST) dataset, generalising to real-world vision problems was

hampered by two severe limitations. First, it required thousands of iterations to converge with

stochastic gradient descent (SGD), while the computational power was limited at that time, and

second due to millions of parameters of a typical CNN that lead to overfitting of the small-scale

MNIST dataset.

2.3.3 AlexNet

The first showcase of the power of CNNs in computer vision happened in 2012 when Krizhevsky

et al. [54] trained AlexNet for the ImageNet challenge [84]. Their network architecture–

reproduced in Figure 2.6–consists of five convolutional layers, followed by three fully con-

nected layers1. The non-linear operation used between layers is the rectifier f (x) = max(0,x),

frequently referred to as rectified linear unit (ReLU), while max-poolings are used to downsam-

ple the feature maps and gradually add negligible invariance. In order to avoid overfitting, data

augmentations are applied during training (colour jitterings, rotations, random croppings), as

well as dropout–the activation of each neuron is zeroed stochastically with 50% probability

[93]. Dropout is used for the first two fully connected layers and must be noted that without it,

1A fully connected layer is simply a convolutional layer where each filter is the same size as the input
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Figure 2.6: Architecture of AlexNet deep convolutional neural network reproduced from [54]

for classification of the ILSVRC 2012 dataset.

the network exhibits significant over-fitting. The output of the network is a 1000-D softmax

vector corresponding to the probability of an image belonging to each class. The network

was trained with the trainval set of ILSVRC-2012 [84] which consists of over 1 million single

labelled images corresponding to one of 1,000 object classes. The network is trained on two

graphic processing unit (GPU) cards by putting batches of images through the network, while

their soft-max vectors are used in conjunction with the correct labels in a logistic loss. The

filters are being updated by back-propagating the gradient of this logistic loss. AlexNet contains

61 ·106 free parameters and training with randomly initialised weights took around a single

week. This network achieved a top-5 error rate of 15.3% on the test set of ILSVRC-2012,

compared to 26.2% using a shallow Fisher Vector representation. Compared to other deep

models, this network significantly increases the number of free parameters while it is trained

in a fully supervised manner. It is believed that the main reason behind its large performance

boost compared to previous approaches is the increased size of the training set and application

of new regularisation methods.

2.3.4 VGGNet & GoogLeNet

Since AlexNet, more powerful network architectures have emerged to further advance image

classification with CNNs. In 2014, VGGNets [90] and GoogLeNet [95] achieved considerable

performance improvement by creating deeper representations–CNNs with more layers. Specif-

ically, Simonyan and Zisserman [90] achieved state-of-the-art performance at the ILSVRC

localisation challenge by introducing VGGNet. This network replaces large kernel-sized filters

(11 and 5 in the first and second convolutional layer, respectively) with multiple 3×3 kernel-

sized filters one after another. Reducing volume size is handled by max pooling, while all

hidden layers are equipped with the rectification (ReLU) non-linearity. Three fully connected

(FC) layers follow a stack of convolutional layers: the first two have 4096 channels each, the



20 | Background

Figure 2.7: Architecture of VGG16 network [90]. In this network all filter kernels have size of

3×3 and max pooling layers are placed after each 2 convolutions.

third performs 1000-way ILSVRC classification and thus contains 1000 channels, as illustrated

in Figure 2.7.

In Google Inception network (frequently referred to as GoogLeNet) Szegedy et al. [95]

propose to use inception blocks, the core concept of a sparsely connected architecture, where

several kernels with multiple receptive field sizes for convolution (5×5, 3×3, and 1×1) are

concatenated into a single output vector forming the input of the next stage, similar to Network

in Network (NIN) [59]. In order to overcome the gradient vanishing issue–as the gradient is

back-propagated to earlier layers, repeated multiplication may make the gradient infinitely

small–auxiliary supervisions are applied on several intermediate layers. They essentially

applied softmax to the outputs of two of the inception modules, and computed an auxiliary loss

over the same labels. The total loss function is a weighted sum of the auxiliary loss and the real

loss. Also, in comparison to the AlexNet architecture, GoogLeNet has only one fully connected

layer (the classifier) after average pooling, to go from a 7×7×1024 volume to a 1×1×1024

volume, as seen in Figure 2.8. Although GoogLeNet uses 9 inception modules in the whole

architecture, and over 100 layers in total, it drastically reduces the number of free parameters

by 12 times compared to AlexNet, while it achieves 6.7% top-5 error rate on ILSVRC-2014.

2.3.5 ResNet

Following the establishment of VGGNet and GoogLeNet, researchers soon discovered that

increasing network depth by simply stacking layers together saturates the performance due to

vanishing gradient problem, despite a clear interrelation between network depth and image

classification performance. A network that solves the vanishing gradient problem is the

Residual Network (ResNet) [31] architecture which held state-of-the-art results on ILSVRC in

2015. This ‘ultra-deep’ architecture significantly increases the number of convolutional layers;
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Figure 2.8: Architecture of GoogLeNet reproduced from the original paper [95]. The network

uses combinations of inception modules, each including some pooling, convolutions at different

scales and concatenation operations.

Figure 2.9: Architecture of ResNet reprinted from the original paper [31]. Residual units are

extensively used in this network, while at the end average pooling is used to aggregate global

feature representations.

training this deep network is possible thanks to skip connections and heavy batch normalisation.

Each ‘residual unit’ can be expressed in a general form:

yn = h(xn)+F(xn,Wn)

xn+1 = f (yn)
(2.3)

where xn and xn+1 are the input and output of the nth unit respectively, and F is a residual

function. The model is trying to learn this residual function which keeps most of the information

and produces only slight changes. Consequently, patterns from the input image can be learned

in deeper layers, while no additional parameters are added and the computational complexity

does not increase. ResNet consists of 152 convolutional layers with 3x3 filters using residual

learning by block of two layers, as shown in Figure 2.9. He et al. showed that ResNet with

50/101/152 layers were more accurate than a 34 layers plain network.

2.3.6 DenseNet

Another network that was proposed to solve the vanishing gradient problem is DenseNet

[32]. DenseNet was developed by Gao et al. in 2017, and consists of densely connected

convolutional layers. The output of each layer is connected with all subsequent layers in a

dense block. DenseNet consists of several dense blocks and transition blocks, which are placed
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Figure 2.10: Architecture of DenseNet reproduced from the original paper [32]. A 5-layer

dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

between two adjacent dense blocks. The proposed architecture is shown in Figure 2.10. While

ResNet explicitly preserves information through additive identity transformations, DenseNet

connects each layer to every other layer in a feed-forward fashion, thus feature maps of all

preceding layers are used as inputs into all subsequent layers. As DenseNet concatenates

previous layers features instead of adding them, it manages to explicitly differentiate between

information that is added to the network and information that is preserved.

2.3.7 Interpreting Deep Visual Representations

As deep neural networks surpass humans on various visual tasks, the need for deeper un-

derstanding of the underlying mechanisms of these representations became apparent. Deep

neural networks are often criticised as being black boxes that lack interpretability due to their

large amount of model parameters. This absence of interpretability can considerably limit the

usage of complex models for wider computer vision applications. Recently, there has been a

growing number of works on understanding deep visual representations. The related work can

be categorised as following two main aspects: visualising deep representations and analysing

the properties of deep representations.

The behaviour of CNNs can be visualised either by sampling image patches that maximize

activation of hidden units [27, 115, 117] or by using modified backpropagation to generate or

identify salient image features [7, 66, 88]. Mahendran and Vedaldi have shown that backprop-

agation along with a natural image prior can be used to invert a CNN activation [66], while



2.4 Notable Datasets | 23

an image generation network can be trained to invert deep features by synthesising the input

images [14]. These particular visualisations expose the learned image patterns in a deep visual

representation, as well as provide a qualitative sign to the interpretability of units. In [117],

Zhou et al. introduced a quantitative measure of interpretability to determine which individual

units behave as object detectors within a network trained to classify scenes.

Much research has also focused on studying the power of CNN layer activations to be

utilised as generic visual features for classification tasks [2, 87]. Other authors have noted

interesting properties of deep representations. Another notable work, by Szegedy et al. [96]

discovered that it is easy to fool deep neural networks by making small adjustments to the

input image. Another interesting observation made in [58] is that many units converge to the

same set of representations after training. Finally, the question of how visual representations

generalise has been explored by showcasing that a CNN can successfully fit a random labelling

of training data even under explicit regularisation [116].

2.4 Notable Datasets

As digitisation of society increases, more and more of people’s activities are being recorded.

While our computers are increasingly networked together, it has become easier to centralize

these records and curate them into a dataset appropriate for deep learning applications, as stated

by Goodfellow et al. in [28]. In the first decade of the 2000s, sophisticated datasets containing

tens of thousands of examples, such as the CIFAR-10 dataset [53] (shown in Figure 2.11a)

started to be constructed. Towards the end of that decade and throughout the first half of the

2010s, significantly larger datasets, containing hundreds of thousands to tens of millions of

examples, completely changed what was possible with deep learning. These datasets included

the public Street View House Numbers dataset [72], and the Sports-1M dataset [48], shown in

Figure 2.11b and Figure 2.11c respectively.

2.4.1 ImageNet

The ImageNet database [12], is the result of a collaboration between Stanford University and

Princeton University and has become the standard benchmark for large-scale object recognition

since its first appearance in 2009. ImageNet consists of over 15 million labelled high-resolution

images, belonging to roughly 22,000 categories, which are collected from the web and labelled

by human workers using Amazon Mechanical Turk (MTurk), a crowdsourcing marketplace

that makes it easier for individuals and businesses to outsource their processes and jobs to

a distributed workforce who can perform these tasks virtually. One of the most common
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(a) CIFAR-10 (b) SVHN (c) Sports-1M

Figure 2.11: Example inputs from different modern datasets. (a) The CIFAR-10 dataset

consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. (b) Street View

House Numbers (SVHN) dataset consists of over 600,000 digit images in 10 classes. (c) The

Sports-1M dataset contains 1,133,158 video URLs which have been annotated automatically

with 487 Sports labels using the YouTube Topics API.

tasks on MTurk is labelling photos that are used to train deep learning models. ImageNet

is the backbone of the annual competition called ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) which was established in 2010. ILSVRC uses a subset of ImageNet

with approximately 1000 images in each of 1000 categories. Overall, there are roughly 1.2

million training images, 50,000 validation images, and 150,000 testing images. Examples of

validation images can be seen in Figure 2.12a. ILSVRC follows in the footsteps of the PASCAL

VOC challenge [19], established in 2005, which set the criterion for standardised evaluation of

recognition algorithms in the form of yearly competitions. Before long, it became increasingly

common within the computer vision community to treat image classification on ImageNet as an

intermediate procedure for training deep CNNs to learn proper general-purpose features. This

practice of first training a CNN on ImageNet (i.e., pre-training) and then adapting these generic

features for a new target task (i.e., fine-tuning) has become the de facto standard for solving a

wide range of computer vision problems such as image classification, object detection, action

recognition, image segmentation, image captioning, human pose estimation, and others.

2.4.2 Places

Similar to ImageNet object-centric dataset, Places database [119] is a scene-centric repository

of scene photographs, labelled with scene semantic categories, comprising about 98% of

the type of places a human can encounter in the world. Places consists of 10 million scene

photographs, labelled with 434 scene semantic categories, making it the other large-scale

image dataset where researchers are able to train CNNs from scratch besides ImageNet. Image

samples from the coast category of Places are shown in Figure 2.12b. Places follows in the

footsteps of the SUN database [110], which has a rich scene taxonomy, by inheriting the
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(a) samples from the ImageNet validation set (b) ‘coast’ category of the Places database

Figure 2.12: Image samples from large-scale image databases. (a) Samples of different

categories from the ImageNet validation set, figure has been reproduced from [47]. (b) Samples

from the ‘coast’ category of the Places database.

same list of scene categories. As part of the ILSVRC challenge, Zhou et al. released the

Places365-Challenge subset for the Places Challenge, which was held in conjunction with the

European Conference on Computer Vision (ECCV) in 2016, with a total of 8 million training

images, 50 images per class for validation and 900 images per class for testing. Since their

introduction, Places-CNNs have been deployed as an intermediate procedure for training deep

CNNs to learn generic visual features for scene-based visual recognition tasks, as a direct

replacement to object-centric ImageNet pre-trained CNNs.

2.5 Object Detection

One of the most improved areas of computer vision in the past few years is object detection,

the process of determining the instance of the class to which an object belongs and estimating

the location of the object. This section is an overview of current object detection methods. This

is of particular relevance to us, as in the last two chapters of this thesis (Chapter 6 and Chapter

7) we are exploiting object detection as a core component of our proposed methods. Object

detectors can be split into two main categories: one-stage detectors and two-stage detectors.

2.5.1 One-Stage Detectors

The OverFeat model [86] which applies a sliding window approach based on multi-scaling for

jointly performing classification, detection and localization was one of the first modern one-

stage object detectors based on deep networks. More recently YOLO[63, 22] and SSD [80, 81]

have revived interest in one-stage methods, mainly because of their real time capabilities,
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although their accuracy trails that of two-stage methods. One of the main reasons being due to

the class imbalance problem [60].

2.5.2 Two-Stage Detectors

The leading model in modern object detection is based on a two-stage approach which was

established in [99]. The first stage generates a sparse set of candidate proposals that should

contain all objects, and the second stage classifies the proposals into foreground classes or

background. Region with CNN Features (R-CNN), a notably successful family of methods

[25, 26] enhanced the second-stage classifier to a convolutional network, resulting in large

accuracy improvements. The speed of R-CNN has improved over the years by integrating

region proposal networks (RPN) with the second-stage classifier into a single convolution

network, known as the Faster R-CNN framework [82].

In the context of this thesis, we adopt the one-stage approach of RetinaNet framework [60]

which handles class imbalance by reshaping the standard cross entropy loss to focus training on

a sparse set of hard examples and down-weights the loss assigned to well-classified examples.

2.6 Emotion Recognition

Recognising people’s emotional states from images is an active research area among the

computer vision community. This is of particular relevance to us, as in the last two chapters

of this thesis (Chapter 6 and Chapter 7) we are exploiting a specific emotion representation

approach as a core component of our proposed methods. One established categorisation of

emotion recognition methods in the literature is to split them into two categories based on how

emotions are represented: discrete categories and continuous dimensions.

2.6.1 Discrete Categories

Most of the research in computer vision to recognise people’s emotional states is explored by

facial expression analysis [20, 17], where a large variety of methods have been developed to

recognise the 6 basic emotions defined in [16]. Many of these methods are based on a set of

specific localised movements of the face, called Action Units, in order to encode the facial

expressions [21, 9]. More recently emotion recognition systems based on facial expressions

use CNNs to recognise the Action Units [20].
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Figure 2.13: Problem solving with deep learning. Problem consists of a task and a context,

and can be observed through annotated data. A solution is learnt from those data throughout a

learning process.

2.6.2 Continuous Dimensions

Instead of recognising discrete emotion categories, this family of methods use the continuous

dimensions of the VAD Emotional State Model [69, 70] to represent emotions. The VAD model

uses a 3-dimensional approach to describe and measure the emotional experience of humans:

Valence (V) describes affective states from highly negative (unpleasant) to highly positive

(pleasant); Arousal (A) measures the intensity of affective states ranging from calm to excited

or alert; and Dominance (D) represents the feeling of being controlled or influenced by external

stimuli. In recent times the VAD model has been utilised for facial expression recognition [92].

In the context of this thesis, we adopt the tridimensional model of affective experience

alongside a joint analysis of the person and the entire scene in order to recognise rich information

about emotional states, similar to [52].

2.7 Transfer Learning in Computer Vision

In deep learning context, problems are abstract concepts observed through the data which

consists of instances and associated labels to learn from, while the solutions are considered to

be the parameters of the model that will be learned for solving the problem. An example can be

seen in Figure 2.13 for the dog classification task in the context of everyday images. The data

consists of image samples together with their corresponding ground truth labels relevant to the

existence or absence of dogs in images. Image instances can be named as positive or negative

and are mainly utilised in the form of extracted features. The solution refers to a computational

model capable of discriminating the positive instances from the negative ones by assigning a

label to test instances.

Transfer learning and domain adaptation refer to the situation where a model is learnt in

one setting (i.e., distribution P1), and is exploited to improve generalization in another setting

(say distribution P2). The transfer process begins with a (a) target task to be learnt in a target



28 | Background

Figure 2.14: The key elements of traditional machine learning and transfer learning, reproduced

from [76].

Figure 2.15: The benefits of transfer learning reproduced from [73]. The three types of

performance improvement aspirations from transfer learning. The x-axis is the number of

training instances for the target problem.

context; (b) a set of solutions to the source tasks (already learnt in the source contexts); (c)

the transfer of knowledge based on the similarity between the target and source tasks. Figure

2.14 illustrates the difference between the traditional machine learning process and the transfer

learning technique. This is commonly understood in a supervised learning context, where the

input is the same but the target may be of a different nature. If there is significantly more data

in the first setting (sampled from P1), then that may help to learn representations that are useful

to quickly generalize from only very few examples drawn from P2. This happens because many

visual categories share low-level notions of edges and visual shapes, changes in lighting, etc.

There are extensive literature reviews on the topic [76, 106].

Recent works have focused on incorporating transfer learning into deep visual representa-

tions, to combat the problem of insufficient training data. Pre-training CNNs on ImageNet or

Places has been the standard practice for other vision problems. However, features learnt in

pre-trained models are not perfectly fitted for the target learning task. Using the pre-trained
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network as a feature extractor [87, 13, 119] or fine-tuning the network [26, 74] have become a

frequently used method to learn task-specific features, while extensive efforts have been made

to perceive transfer learning itself [5, 34, 94, 114].

It is possible to define three measures by which transfer might improve the effectiveness of

learning as discussed in [73, 97]. We list them below referring to Figure 2.15

Higher start. Knowledge transfer approach performs much better compared to learning from

scratch, even with very few target instances.

Higher slope. The performance of transfer learning grows faster when additional target

instances are introduced to the learning process.

Higher asymptote. Final performance of the transfer method is preferable to the learning

target problem alone.

2.8 Summary

In this chapter, after introducing advancements of vision-based technology in the field of

human rights, we have provided an overview of computer vision systems which are being used

today by human rights practitioners and investigators. Then, the state-of-the-art deep image

representations that are prevalent in most modern computer vision systems are thoroughly

discussed. After that, we have discussed the two main large-scale image datasets that will

be used throughout this thesis namely the ImageNet and Places, before looking at relevant

work on object detection and emotion recognition. Finally, we have discussed how we can

transfer knowledge learnt in one context to another context for problem solving with image

representations. In the next chapter, Chapter 3, we describe the image datasets that we have

developed for recognising human rights violations ‘in the wild’.



Chapter 3

Datasets for Human Rights Violation

Recognition

Large, labelled image datasets are the driving force for novel visual recognition

models and progress made for various visual recognition tasks. But what is nec-

essary to achieve expert-level recognition with a deep learning algorithm? In the

case of supervised learning, the problem is two-fold. First, the algorithm must

be suitable for the task at hand–such as CNNs for large-scale visual recognition,

described in Section 2.3.1. Second, the algorithm must have access to a training

dataset of appropriate coverage and density. In all cases, a dataset is a collection of

examples, which are in turn collections of features. Whereas most image datasets

have focused on object or scene categories, a human rights-specific image dataset

does not currently exist. This limits the application of powerful deep learning

technology on specific domains like the human rights advocacy field. We strive

to reconcile this gap by developing the first ever image datasets for human rights

violation recognition. We also discuss the challenges encountered during this pro-

cess compared to standard image collection procedures presented in the literature.

We believe our image datasets will facilitate future research on practical visual

recognition tasks related to human rights, fine-grained visual classification, and

imbalanced learning fields.
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3.1 Introduction

In this chapter we present the construction of the image datasets that will be used in the

subsequent chapters of this thesis, and the human rights violation recognition benchmarks in

detail. We construct three novel image datasets for human rights-specific purposes: (i) Human

Rights UNderstanding (Section 3.2); (ii) Human Rights Archive (Section 3.3);

(iii) HRA-Binary (Section 3.3.5). Though they are all datasets containing human-rights-

violation-related images, they were obtained from different sources and thus contain variations

in the acquisition procedure which we will look into.

3.2 The Human Rights UNderstanding (HRUN) Dataset

We introduce the Human Rights UNderstanding Dataset which is the first-ever

dataset of images and annotations regarding human rights violations. Our objective is to

construct a well-sampled image database in the domain of human rights violations, which will

be used to assess classification performance of CNNs.

First, the keywords, with a view to formulate the query terms, were collected in collaboration

with specialists in the human rights domain, such as United Nations High Commissioner for

Refugees (UNHCR) and Office of the High Commissioner for Human Rights (OHCHR). This

happens in order to include multiple query terms for every ‘targeted class’. For instance, for

the class police violence the queries ‘police violence’, ‘police brutality’ and ‘police

abuse of force’ were all used for retrieving image samples. Work commenced with the

Flickr photo-sharing website, but in a short time, it became apparent that its limitations

resulted in a huge number of irrelevant results returned for the given queries, as discussed in

[44]. This happens because Flickr users are authorised to tag their uploaded images without

restriction. Subsequently, there are situations where the given keyword was ‘armed conflict’

and the majority of the returned images showcased military parades. Another similar example

was with the keyword ‘genocide’ where the returned results included protesting campaigns

against genocide, something that may be consider close to the keyword, but it can not serve

our purpose. Another shortcoming was the case when people massively tagged an image

deliberately incorrectly in order to acquire an increased number of hits on the photo-sharing

website.

Consequently, Google and Bing search engines were chosen as better alternatives. Images

were downloaded for each class using a python interface to the Google and Bing application

programming interfaces (APIs), with the maximum number of images permitted by their

respective API for each query term. All exact duplicate images were eliminated from the
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(a) Child Labour

(b) Police Violence

(c) Child Soldiers

(d) Refugees

Figure 3.1: Example class images retrieved from Google and Bing search engines for different

human rights violation keywords. From top to bottom row: child labour, police violence, child

soldiers, refugees. Notice that finding relevant instances is challenging: returned samples

principally are related to the corresponding human right violation, however they do not depict

the particular action or situation that causes the violation.

Google

Bing

Downloaded

Image Set

manual

manual addition of images

keyword

queries
HRUN 

DATASET

python interface

image 

filtering

Figure 3.2: Human Rights UNderstanding (HRUN) pipeline overview. We construct a new

dataset by combining image samples from Google and Bing search engines with manually

added images.

downloaded image set, alongside images regarded as inappropriate during the filtering step

as illustrated by Figure 3.1. Nonetheless, the number of filtered images generated was still
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query
retrieved relevant ratio

Google Bing Google Bing Google Bing

child labour 99 137 18 5 18% 3.64%

child soldiers 176 159 31 13 17.61% 8.17%

police violence 149 232 10 16 6.71% 6.89%

refugees 111 140 10 39 9.00% 27.85%

aeroplane 170 137 150 135 88.23% 98.54%

car 145 128 123 124 84.82% 96.87%

dog 105 132 101 129 96.19% 97.72%

Table 3.1: The statistics for the image collection procedure of the Human Rights UNderstanding

(HRUN) Dataset from search engines. First column corresponds to the query term used for the

search. The following four columns correspond to the number of retrieved images which contain

that particular class and analysed as relevant respectively, while the last column corresponds to

the quantitative relation between those two set of images.

query
retrieved relevant

HRUN
Google Bing Google Bing manually

child labour 99 137 18 5 77 100

child soldiers 176 159 31 13 56 100

police violence 149 232 10 16 74 100

refugees 111 140 10 39 51 100

Total 535 668 69 73 258 400

Table 3.2: The statistics for the HRUN dataset. Each number corresponds to how many images

contain that particular class were retrieved, analysed as relevant, and manually added.

insufficient as shown in Table 3.1. For this reason, there were manually added other suitable

images in order to reach the final structure of the HRUN dataset. We finally ended up with

a total of four different categories, each one containing 100 distinct images of human rights

violations captured in real world situations and surroundings. These are split at random into

training, validation and test sets. The entire pipeline used for constructing HRUN dataset is

depicted in Figure 3.2. The statistics for this dataset are given in Table 3.2, and example class

images are shown in Figure 3.3. Raw data for the images in this dataset are provided at the

public repository [38].

3.3 The Human Rights Archive (HRA) Dataset

Although the development of HRUN dataset signals the first ever attempt to produce a high

quality image dataset in the context of human rights violations, it quickly become apparent that
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(a) Child Labour

(b) Child Soldiers

(c) Police Violence

(d) Refugees

Figure 3.3: Example class images from the HRUN Dataset. From top to bottom row: child

labour, child soldiers, police violence, refugees.

the origin and the verification of those images are considered to be of the utmost importance

for human rights practitioners and advocates. For this reason, we revisit the development

process of image datasets in the context of human rights violations, by addressing the main

drawbacks of our first attempt. We introduce the Human Rights Archive Database,

a verified-by-experts repository of approximately 3K human rights violation photographs,

labelled with human rights semantic categories, comprising a list of the types of human rights

abuses encountered at present.
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Figure 3.4: Human Rights Archive (HRA) pipeline overview. We construct a new dataset by

combining image samples from video clips and image essays, before filtering out all images

that do not correspond to the definition of the human right violation category.

3.3.1 Challenges

Human rights violation recognition is closely related to, but radically different from the tasks of

object and scene recognition. As an example, one would easily correlate child labour with the

task of recognising manual-labour-related tools (e.g. hoe and hammer). However, this would

clearly be problematic for frequent cases such as adults working with those tools. The same

applies for correlating a human right violation with the task of visual place recognition. For this

reason, following a conventional image collection procedure is not appropriate for collecting

images with respect to human rights violations.

The first issue encountered is that the query terms for describing different categories of

human rights violations must be provided by experts in the field of human rights and not by

quasi-exhaustively searching a dictionary. The next obstacle concerns online search engines

such as Google, Bing or even dedicated photo-sharing websites like Flickr, which returned a

huge number of irrelevant results for the given queries of human rights violations as discussed

in our study [44], and shown in Table 3.1. The final and most important matter of contention

is the ground truth label verification of the images, which commonly is accomplished by

crowd-sourcing the task to MTurk. However, in the case of human rights violations, human

classification performance cannot be measured by utilising MTurk for the reason that workers

are not qualified for such specialised tasks.
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3.3.2 Building the Human Rights Archive Dataset

A key question with respect to visual recognition of human rights violations from real-world

images arises: how can this structured visual knowledge be gathered? The crucial aspects of

such unique image database are the origin and the verification of image samples. For this reason,

and in order to obtain an adequate number of verified real-world images depicting human rights

violations, we turn to non-governmental organizations (NGOs) and their public repositories.

The first NGO considered is Human Rights Watch [83] which offers an online media platform1

capable of exposing human rights and international humanitarian law violations in the form of

various media types such as videos, photo essays, satellite imagery and audio clips. Their online

repository contains 9 main topics in the context of human rights violations (arms, business,

children’s rights, disabilities, health and human rights, international justice, LGBT, refugee

rights, and women rights) and 49 subcategories. In total, we download 99 available video

clips from their online platform. After that, preliminary image samples are being recorded

for every video clip with a ratio of 10–one image out of ten frames is recorded. This is done

in order to obtain images distinctive enough on a frame to frame basis. Next, all the images

that do not correspond to the definition of the human right violation category (mostly the

interview parts of the clips) are manually removed. Images with low quality (very blurry or

noisy, black-and-white), clearly manipulated (added text or borders, or computer-generated

elements) or otherwise unusual (aerial views) are also removed. One considerable drawback in

the course of that process is the presence of a watermark in most of the video files available

from that platform. As a result, all the recorded images that originally contained the watermark

had to be cropped in a suitable way. Only colour images of 600 x 900 pixels or larger were

retrieved after the cropping stage. In addition to those images, all photo essays available for

each topic and its subcategories are added, resulting in 342 more images to the final array. The

entire pipeline for collecting and filtering out the images from Human Rights Watch is depicted

in Figure 3.4.

The second NGO investigated is the United Nations which presents an online collection2 of

images in the context of human rights. Their website is equipped with a search mechanism

capable of returning relevant images for simple and complex query terms. In order to define a

list of query terms, we utilise all main topics and their respective subcategories from Human

Rights Watch and combine them with likely synonyms. For example, in order to acquire images

depicting the employment of children in any work that deprives children of their childhood

and interferes with their ability to attend regular school, ‘child labour’, ‘child work’ and ‘child

employment’ were provided as queries to the database. In total, we download 8550 preliminary

1http://media.hrw.org/
2http://www.unmultimedia.org/photo/

http://media.hrw.org/
http://www.unmultimedia.org/photo/
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(a) arms

(b) child labour

(c) child marriage

(d) detention centres

(e) disability rights

Figure 3.5: Example class images from the HRA Dataset. From top to bottom row: arms,

child labour, child marriage, detention centres, disability rights.

image samples by utilising the list of query terms. We follow the same approach as Human

Rights Watch in order to filter out the images. First, we manually remove all the images that

do not correspond to the definition of the human right violation category. In the case of the

United Nations online repository, the majority of the returned images showcased people sharing

their testimony at various presentations or panel discussions. We also remove images that are
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(a) displaced populations

(b) environment

(c) no violation

(d) out of school

Figure 3.6: Further example class images from the HRA Dataset. From top to bottom row:

displaced populations, environment, no violation, out of school.

black-and-white or otherwise unusual (aerial views). Finally, we add applicable high-resolution

images to the database.

3.3.3 Data Analysis

The final dataset contains a set of 8 human rights violations categories and 2847 images, that

cover a wide range of real-world situations. 367 ready-made images are downloaded from

the two online repositories representing 12.88% of the entire dataset, while the remainder

(2480) images are recorded from videos coming out of Human Rights Watch media platform.
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(a) mining
(b) tobacco workers (c) garment workers

(d) Hungary (e) Greece (f) Central Africa

(g) mercury
(h) tanneries (i) contaminated water

Figure 3.7: Image samples from the human rights violation categories of HRA grouped by

different situations to illustrate the diversity of the dataset. For each violation category we show

3 labelled images. Top row: child labour. Middle row: displaced populations.

Bottom row: environment.

The categories are listed and defined in Table 3.3. Furthermore, 203 instances which are not

considered as human rights violations, such as children playing and adult workers mining,

have been incorporated into the database in order to assess the classification performance more

precisely. Example images in this dataset are given in Figure 3.5 and Figure 3.6. Our human

rights-centric dataset differs from our first attempt of Human Rights UNderstanding (HRUN)

dataset presented in Section 3.2. That dataset was created by collecting images available on

the Internet using online search engines for different manually crafted terms, but the HRA

database was created by collecting human rights violations categories from verified sources.

Note that, in order to increase the diversity of visual appearances in the HRA dataset, images

from different situations or places are gathered, as illustrated in Figure 3.7. Because some

violations are reported and documented more than others, the distribution of images is not
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(a) Sorted distribution of image number per category in the HRA Dataset. HRA contains 3,320

images from 9 categories.
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(b) Comparison of the number of images per violation category for the common two violation

categories in HRUN and HRA datasets.

Figure 3.8: Sorted distribution of image number per category in the HRA Dataset and compar-

ison between the common two violation categories in HRUN and HRA datasets.

uniform between the classes of the database, as seen in Table 3.4. Examples of human rights

violations categories with more images are child labour, displaced people, and



3.3 The Human Rights Archive (HRA) Dataset | 41

1. Arms
Weapons systems that put civilians at high risk of armed conflict

and violence

2. Child Labour

Work that deprives children of their childhood, their potential

and their dignity, and that is harmful to physical and mental

development

3. Child Marriage

A formal marriage or informal union before age 18. Child mar-

riage is widespread and can lead to a lifetime of disadvantage

and deprivation

4. Detention Centres

The right to health and a healthy environment, the right to

be free from discrimination and arbitrary detention as critical

means of achieving health

5. Disability Rights

People with disabilities experience a range of barriers to ed-

ucation, health care and other basic services, while they are

subjected to violence and discrimination

6. Displaced Populations

Abuses against the rights of refugees, asylum seekers, and dis-

placed people (block access to asylum, forcible return of people

to places where their lives or freedom would be threatened, and

deprive asylum seekers of rights to fair hearings of their refugee

claims)

7. Environment

A lack of legal regulation and enforcement of industrial and

artisanal mining, large-scale dams, deforestation, domestic wa-

ter and sanitation systems, and heavily polluting industries can

lead to host of human rights violations

8. Out of School

Discrimination of marginalized groups by teachers and other

students, long distances to school, formal and informal school

fees, and the absence of inclusive education are among the main

causes of children staying out of school

Table 3.3: Proposed human rights violation categories with definitions from the Human Rights

Archive (HRA) Dataset.

environment. Examples of under-sampled categories include child marriage and

detention centres. Figure 3.8a shows the number of images per category, sorted in

decreasing order, while Figure 3.8b illustrates the differences among the number of images per

violation category for the common 2 violation categories HRUN and HRA.

3.3.4 Visualising HRA

CNNs can be interpreted as continuously transforming the images into a representation in

which the classes are separable by a linear classifier. In order to obtain an estimation about the

topology of the Human Rights Archive space, we examine the internal features learned by a
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train val trainval test

arms 149 37 186 30

child labour 756 189 945 30

child marriage 69 18 87 30

detention centres 149 37 186 30

disability rights 218 55 273 30

displaced populations 487 122 609 30

environment 326 82 408 30

no violation 162 41 203 30

out of school 123 30 153 30

Total 2439 611 3050 270

Table 3.4: Statistics of the HRA Dataset. The data is divided into two main subsets: train-

ing/validation data (trainval), and test data (test), with the trainval data further divided

into suggested training (train) and validation (val) sets.

Figure 3.9: t-SNE embedding of the HRA Dataset images based on their extracted features.

Images that are nearby each other are also close in the CNN representation space, which implies

that the CNN ‘sees’ them as being very similar. Notice that the similarities are more often

class-based and semantic rather than pixel and colour-based.
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train val trainval test

child labour 945 25 970 25

non-child labour 945 25 970 25

displaced populations 609 25 634 25

non-displaced populations 609 25 634 25

Total 3108 100 3208 100

Table 3.5: Statistics of the HRA–Binary Dataset. The data is divided into two main subsets:

training/validation data (trainval), and test data (test), with the trainval data further

divided into suggested training (train) and validation (val) sets. Note that each violation

category is treated as an independent use case for our subsequent experiments.

CNN using t-SNE (t-distributed Stochastic Neighbour Embedding) [65] visualisation algorithm,

by embedding images into two dimensions so that their low-dimensional representation has

approximately equal distances as their high-dimensional representation. To produce that

visualisation, we feed the HRA set of images through the well studied VGG-16 convolutional-

layer CNN architecture [90], where the 4096 dimensional visual features are taken at the output

of the second fully-connected layer (i.e., FC7) including the ReLU non-linearity by using Caffe

[36] framework. Those features are then plugged into t-SNE in order to project the image

features down to 2D. Principal component analysis (PCA) preprocessing is used prior to the

t-SNE routine to reduce to 10D to help optimize the t-SNE runtime. We then visualise the

corresponding images in a grid as shown in Figure 3.9, which can help us identify various

clusters. Every position of the embedding is filled with its nearest neighbour. Note that since

the actual embedding is roughly circular, this leads to a visualisation where the corners are a

little ‘stretched’ out and over-represented.

3.3.5 HRA–Binary Dataset

In order to find the main test platform for the evaluation of the extensions of the base method

presented in the following chapter, we use HRA to construct a task-specific, two-class subset

termed HRA-Binary Dataset. We maintain the verified images intact for the two classes

with the highest number of samples, child labour and displaced populations.

The HRA–Binary dataset contains 1554 images of human rights violations in total, and the

same number of no violation counterparts for training, as well as 200 images collected from the

web for testing and validation. Note that each violation category is treated as an independent

use case for our subsequent experiments. The dataset is made publicly available for future

research [39].
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3.4 The Role of Human Rights-Specific Image Datasets

In this chapter, we have discussed all the datasets that were created and will be used throughout

this thesis namely the HRUN, HRA, and HRA–Binary datasets. These datasets are used for a

range of experiments in this thesis–in Chapter 4 for predicting human rights violations from

images, Chapter 5 for comparing object-centric and scene-centric deep image representations,

Chapter 6 for recognising displaced people, and Chapter 7 for exploiting emotional traits for

human rights violation recognition. We have also highlighted the potential of real-world images

in human rights context including the opportunities and challenges they present. The fact that

expert verification of image samples is required to ensure their validity, is considered to be of

the utmost importance for human rights practitioners. The datasets discussed in this chapter

do not represent an exhaustive compilation of image collection procedures that will shape

the future of automated analysis of human rights violations, but rather are a starting point to

expand our understanding of how an ecosystem of visual context could guide progress on

HRVR problems. Next, in Chapter 4 we look at predicting human rights violations from images

using the HRUN and HRA datasets.



Chapter 4

Predicting Human Rights Violations from

Images: A New Benchmark

Categorisation of potential human rights violations plays a crucial role in hu-

man rights advocacy and accountability efforts, which is vital for human rights

organisations, advocates, journalists, and international institutions. Due to the

vast number of human rights violations and the subtle differences among places

and events, human rights violation recognition heavily relies on the professional

knowledge of humanitarian and human rights experts, meaning it is expensive and

time consuming, while the number of researchers or volunteers who are capable of

carrying out such work can be limited by language skills, geographic awareness,

and cultural knowledge. With the development of deep learning and computer

vision techniques, automated HRVR will enable researchers to discover content

that may otherwise be concealed by massive volume of visual data. We announce

the notion of human rights violation recognition as an area of practice within

computer vision, by developing the first ever purpose-built human rights violation

classification schemes based on deep image representations. To our knowledge, the

results presented in this chapter are the first attempt to tackle the HRVR problem

using deep visual representations. This chapter can be broken down into two

main sections, describing different contributions in classifying human rights viola-

tions using deep representations: (i) linear, one-vs-rest, Support Vector Machines

(SVMs); (ii) end-to-end learning.
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4.1 Introduction

In this chapter, we discuss two different featured-based approaches to create the first ever

benchmarks for visual recognition of human rights violations from real-world imagery. We are

particularly interested in the domain shift problem of learning such classifiers from images of

everyday objects/scenes and applying them to human rights violations, and to what extent this

can be rectified with a good feature representation. Our early method is trained, validated and

tested on the HRUN dataset (see Section 3.2) utilising a combination of deep representations

and a linear Support Vector Machine (SVM). Next, the HRA dataset (see Section 3.3) is used

for training, validating and testing our end-to-end approach. This chapter can be broken down

into two main sections; the first one focuses on methods to construct image representations,

i.e., encoding functions φ mapping an image I to a vector φ(I) ∈ R
d suitable for analysis with

a linear classifier, in Section 4.2. The other section focuses on end-to-end training with the

larger HRA dataset. Each section consists of details of the respective models, experiments, and

results.

4.2 Combining Deep Representations with a Linear SVM

Our goal is to train a system that recognises different human rights violations from a given

input image using the HRUN dataset. One primary issue in this effort is how to find a good

representation for instances in such a unique domain. Our deep representations are inspired

by the success of the CNN of Krizhevsky et al. [54]. As shown in [13, 115], the vector of

activities φCNN(I) of the penultimate layer of a deep CNN, learnt on a large dataset such as

ImageNet [12] or Places [119], can be used as a powerful image descriptor applicable to other

datasets. This method, referred to as transfer learning (see Section 2.7), is implemented by

taking a pre-trained CNN, replacing the fully-connected layers, and consider the rest of the

ConvNet1 as a fixed feature extractor for the relevant dataset. By ‘freezing’ the weights of the

convolutional layers, the deep ConvNet can still extract general image features such as edges,

while the fully connected layers can take this information and use it to classify the data in a way

that is applicable to the problem. Here we adopt a single learning framework and experiment

with architectures of different complexity exploring their performance-complexity trade-off.

1‘ConvNet’ is used interchangeably with the term ‘CNN’
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Figure 4.1: Overview of the human rights violation recognition pipeline using a linear SVM

classifier. Different deep convolutional models are plugged into the pipeline one at a time,

while the training and test samples taken from the HRUN dataset remain fixed. Mean average

precision(mAP) metric is used for evaluating the results.

4.2.1 Implementation

The entire pipeline used for combining deep image representations with a linear SVM is

depicted in Figure 4.1, and detailed further below. In this pipeline, every block is fixed except

the feature extractor as different deep convolutional networks are plugged in, one at a time, to

compare their performance utilising the mean average precision (mAP) metric.

Given a training dataset Tr consisting of m human rights violation categories, a test dataset

Ts comprising unseen images of the categories given in Tr, and a set of n pre-trained CNN

architectures (C1,...Cn), the pipeline operates as follows: The training dataset Tr is used as

input to the first CNN architecture C1. The output of C1, as described above, is then utilised to

train m SVM classifiers. A one-vs-rest SVM classifier for each class is learnt and evaluated

independently and the performance is measured as mAP across all classes. The training and

testing procedures are then repeated after replacing C1 with the second CNN architecture C2

to evaluate the performance of the human rights violation recognition pipeline. For a set of n

pre-trained CNN architectures, the training and testing processes are repeated n times. Since

the entire pipeline is fixed (including the training and test datasets, learning procedure and

evaluation protocol) for all n CNN architectures, the differences in the performance of the

classification pipeline can be attributed to the specific CNN architectures used.

For comparison, 10 different deep CNN architectures were selected, grouped by the common

paper which they were first made public: a) 50-layer ResNet, 101-layer ResNet and 152-layer

ResNet presented in [31]; b) 22-layer GoogLeNet [95]; c) 16-layer VGG-Net and 19-layer

VGG-Net introduced in [90] ; d) 8-layer VGG-S, 8-layer VGG-M and 8-layer VGG-F displayed

in [6]; and e) 8-layer Places [120]. To ensure a fair comparison, all the standardised CNN
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dimensional
model

representation
mAP child labour child soldiers police violence refugees

ResNet50 100K 42.59 41.12 43.69 43.81 41.73

ResNet101 100K 42.07 40.48 44.78 42.56 40.48

ResNet152 100K 45.80 44.27 44.11 48.08 46.73

GoogLeNet 50K 48.62 42.72 40.71 61.91 49.16

VGG16 4K 77.46 70.79 77.71 83.46 77.87

VGG19 4K 47.01 31.69 50.98 73.79 31.57

VGG M 4K 67.93 59.52 62.96 81.45 67.80

VGG S 4K 78.19 80.17 64.46 87.46 80.68

VGG F 4K 64.15 45.42 63.20 84.78 63.21

Places 4K 68.59 55.67 65.60 93.17 59.92

Table 4.1: Human rights violation classification results on the test set of HRUN using a 70/30

split for training and testing images. Mean average precision (mAP) accuracy for different

CNNs. Bold font highlights the leading mAP result for every experiment.

models2 used in our experiments are based on the open source Caffe framework [36] and

are pre-trained on 1000 ImageNet [12] classes with the exception of Places CNN which was

trained on 205 scenes categories of Places database [120]. For the majority of the networks,

the dimensionality of the last hidden layer (FC7) leads to a 4096× 1 dimensional image

representation. Since GoogLeNet and ResNet architectures do not utilise fully connected

layers at the end of their networks, the last hidden layers before average pooling at the top of

the ConvNet are exploited with 7×7×1024 and 7×7×2048 feature maps respectively, to

counterbalance the behaviour of the pool layers, which provide downsampling regarding the

spatial dimensions of the input.

The evaluation process is divided into two different scenarios, each one making use of an

explicit split of images between the training and testing samples of the pipeline. For the first

scenario, a split of 70/30 was utilised, while for the second scenario the split was adjusted to

50/50 for training and testing images respectively. Additionally, three distinct series of tests

were conducted for each scenario, each and every one assembled with a completely arbitrary

shift of the entire image set for every category of the HRUN dataset. This approach ensures

an unbiased comparison with a rather limited dataset like HRUN at present. The compound

results of all three tests are given in Table 4.1 and Table 4.2 and analysed below.
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dimensional
model

representation
mAP child labour child soldiers police violence refugees

ResNet50 100K 70.94 73.15 68.07 70.44 72.09

ResNet101 100K 68.46 69.50 66.90 68.34 69.09

ResNet152 100K 76.20 80.60 73.07 72.00 79.12

GoogLeNet 50K 55.92 41.48 60.21 55.52 66.48

VGG16 4K 84.79 79.15 87.94 89.47 82.59

VGG19 4K 60.39 35.72 72.67 83.10 50.08

VGG M 4K 78.94 68.71 82.32 89.99 74.74

VGG S 4K 88.10 84.84 88.14 91.92 87.50

VGG F 4K 73.46 53.57 78.78 90.41 71.08

Places 4K 81.40 62.04 89.97 95.70 77.90

Table 4.2: Human rights violation classification results on the test set of HRUN using a 50/50

split for training and testing images. Mean average precision (mAP) accuracy for different

CNNs. Bold font highlights the leading mAP result for every experiment.

4.2.2 Results and Discussion

It is evident from Table 4.1 and Table 4.2 that the Slow CNN architecture performs the best for

the child labour category for both scenarios. VGG with 16 layers performs the best in the case

of child soldiers within scenario 1, while scenario’s 2 best performing architecture is Places

with VGG16 coming genuinely close. Places was also the best performing architecture for the

category of police violence for the two scenarios. Lastly, regarding the refugees category, the

Slow version of VGG was the dominant architecture for both scenarios. The best performing

architectures can achieve up to 88.10% mean average precision when recognising human rights

violations. On the other hand, some of the regularly top performing deep ConvNets, such as

GoogLeNet and ResNet, fell short for this particular task compared to the others. Such weaker

performance occurs primarily because of the limited dataset size, whereby learning millions

of parameters of those very deep convolutional networks is usually impractical and may lead

to over-fitting. Another interpretation could be due to the inadequate structure of the image

representation deduced from the last hidden layer before average pooling compared to the FC7

layer of the others.

Surprisingly, a 50/50 split of images in the course of scenario 2 provides a considerable

boost in performance of the HRVR pipeline as compared to the first scenario when a split of

70/30 was employed for training and testing images respectively. Figure 4.2 depicts the effect

of two varying training data sizes (scenario 1 vs scenario 2) on the performance of different

deep convolutional networks. Remarkably, scenario 2 where the 50/50 split was applied,

accomplishes a notable improvement on mean average precision which spans from 4.03% up to

2Available at https://github.com/GKalliatakis/Human-Rights-UNderstanding-CNNs

https://github.com/GKalliatakis/Human-Rights-UNderstanding-CNNs
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(a) child labour (b) child soldiers

(c) police violence (d) refugees

Figure 4.2: Comparison of deep convolutional networks performance, with reference to mAP,

for the two different scenarios appearing in our experiments. The number on the left side of the

slash denotes the training proportion of images, while the name on the right implies the testing

percentage.

36.33% across all four HRUN categories which were tested. Only on two occasions scenario 2

was outperformed by scenario 1, both of them while GoogLeNet was selected for the categories

of ‘child labour’ and ‘police violence’. This observation strengthens the point discussed above

with respect to over-fitting.

Deep CNNs will generally perform best when their capacity is appropriate in regard to

the true complexity of the task they need to perform and the amount of training data they are

provided with. Models with insufficient capacity are unable to solve complex tasks, while

models with high capacity can solve complex tasks, but when their capacity is higher than

needed to solve the present task they may overfit. Overfitting refers to a model that represents

the ‘training data’ extremely accurately. Overfitting occurs when a model learns the detail and

noise in the training data to the extent that it negatively impacts the performance of the model

on new data. An indication of overfitting may be seen in the classification accuracy on the
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training data. If the training accuracy is exceeding the test accuracy, it means that our model

is learning details and noises of training data and specifically working of training data. In the

next section, we will try to prevent our models from learning misleading or irrelevant patterns

found in the training data, by applying some regularization techniques in practice to improve

the human-rights-violations-classification model and create a new benchmark.

4.3 End-to-End Image Classification of Human Rights Vio-

lations

In this section, we use features extracted from networks trained on objects and scenes as a

generic image representation to tackle the unique task of human rights violation recognition

similar to Section 4.2. However, the classifiers examined here follow an end-to-end approach,

while they are trained and fine-tuned on features from the training set of the latest and larger

HRA dataset. A typical structure of an end-to-end system for image classification using

representation learning methods is depicted in Figure 4.3.

4.3.1 Implementation

Given the impressive classification performance of the deep convolutional neural networks, we

choose three popular object-centric CNN architectures, ResNet50 [31], VGG 16 convolutional-

layer CNN, and VGG 19 convolutional-layer CNN [90], then fine-tune them on HRA to create

baseline CNN models. Additionally, given the nature of the task at hand, we further fine-tuned

a scene-centric CNN architecture, VGG16-Places365 [119] and compared it with the object-

centric CNNs for human rights violation recognition. We also trained a small CNN on the HRA

training samples from scratch to set a baseline for what can be achieved. The baseline model

is a simple stack of 3 convolution layers with a ReLU activation, followed by max-pooling

layers. This is very similar to the architecture that LeCun et al. [56] advocated in the 1990s for

image classification (with the exception of ReLU). Finally, we employed the above CNNs as

fixed feature extractors by removing their classification block and computing a vector for every

image in the HRA dataset, before training a nearest neighbour classifier with those extracted

features. All the HRA-CNNs 3 presented here were trained using the Keras package [8] on

Nvidia GPU Tesla K80.

The baseline CNN contains 3.2 million parameters, while the other selected CNN architec-

tures contain 138 million parameters for VGG16, 143 million parameters for VGG19 and 26

3Available at https://github.com/GKalliatakis/Human-Rights-Archive-CNNs

https://github.com/GKalliatakis/Human-Rights-Archive-CNNs
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Figure 4.3: Typical structure of an end-to-end system for image classification using represen-

tation learning methods.

million parameters for ResNet50. VGG16-Places365 and VGG16 have exactly the same net-

work architecture, but they are trained on scene-centric data and object-centric data respectively.

Directly learning so many parameters from only a few thousand training images is problematic.

4.3.2 Transferring CNN weights

A conventional approach to enable training of very deep networks on relative small datasets is

to use a model that has already been trained on a very large dataset, and then use the CNN as an

initialization for the task of interest. This method, referred to as ‘transfer learning’ [76, 13, 115]

injects knowledge from other tasks by deploying weights and parameters from a pre-trained

network to the new one [45] and has become a commonly used method to learn task-specific

features. The key idea is that the internal layers of the CNN can act as a generic extractor of

image representations, which can be pre-trained on one large dataset, the source task, and then

re-used on other target tasks [74]. Considering the size of our dataset, a reasonable approach is

to try and reduce the number of free parameters. In order to achieve this, the first filter stages

can be trained in advance on different tasks–object or scene recognition–and held fixed during

training on HRVR. By freezing the earlier layers (preventing the weights from getting updated

during training), overfitting can be avoided. We initialize the feature extraction modules using

pre-trained models from two different large scale datasets, ImageNet [12] and Places[119].

ImageNet is an object-centric dataset which contains images of generic objects including

person, and therefore is a good option for understanding the contents of the image region

comprising the target person. On the contrary, Places is a scene-centric dataset specifically

created for high level visual understanding tasks such as recognising scene categories. Hence,

pretraining the image feature extraction model using this dataset ensures global, high level

contextual support. We treat the target task of human rights violation recognition as a single-
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Figure 4.4: Network architecture used for high-level feature extraction with the HRA Dataset.

Pre-trained parameters of the internal layers of the networks are transferred to the target task. To

compensate for the different nature of the source and target data we add a randomly initialised

adaptation layer (fully connected layer) and train them on the labelled data of the target task.

label, multi-class classification problem. We design a network that will output scores for the

eight target categories of the HRA dataset or no violation if none of the categories are

present in the image.

Feature extraction

Transfer is achieved in two phases. First, we start by using the representations learned by a

previous network in order to extract interesting features from new samples. Feature extraction

consists of taking the convolutional base of a pre-trained network, running the new data of

HRA through it and training a new, randomly initialised classifier on top of the semantic image

output vector Yout , as illustrated in Figure 4.4. We intentionally utilise only the convolutional

base and not the densely-connected classifier of the original network. The reason is that the

representations learned by the convolutional base are likely to be more generic and therefore

more reusable. On the other hand, the representations learned by the classifier will inevitably

be specific to the set of classes on which the model was trained. Additionally, representations

found in densely connected layers no longer contain any spatial information, these layers

eliminate the notion of space, whereas the object location is still described by convolutional

feature maps. Note that Yout is obtained as a complex non-linear function of potentially all

input pixels and captures the high-level configurations of objects or scenes. Note that in

our experiments, the operation applied on the frozen convolutional base just before the new

classifier can be either a global average/max pooling operation for spatial data or simply a

flattening layer. The FCHRA layer compute YHRA = σ(WHRAYout +BHRA), where W, B are

the trainable parameters. In all our experiments, the last convolutional layer of the pre-trained

base have sizes of 7×7×512.
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Figure 4.5: Network architecture used for fine-tuning with the HRA Dataset. It marginally

alters the more abstract representations of the model being utilised, in order to make them more

relevant for the problem at hand.

Fine-tuning

The second phase required for transferring CNN weights, complementary to feature extraction,

is fine-tuning. It consists of unfreezing few of the top layers of a previously frozen convolutional

base for feature extraction, and jointly training both the newly added fully-connected classifier

and these top layers as illustrated in Figure 4.5. It is only beneficial to fine-tune the top layers

of the convolutional base once the classifier on top has already been trained (see Figure 4.4).

If the classifier is not already trained, then the error signal propagating through the network

during training will be too large, and the representations previously learned by the layers being

fine-tuned will be destroyed. We choose to fine-tune only the last two convolutional layers

for two reasons. First, earlier layers in the convolutional base encode more-generic, reusable

features, whereas layers higher up the network encode task-specific features. It is more useful

to fine-tune the task-specific features, because these are the ones that need to be repurposed on

our new problem. There would be fast-decreasing returns in fine-tuning lower layers. Second,

the more parameters we are training, the more we are at risk of overfitting. The convolutional

base has million of parameters, so it would not be sensible to attempt training it on our small

dataset.

For all of our experiments, we use the HRA dataset (Section 3.3) exclusively for the training

process, while we obtain other representative images for each category from the Internet in order

to compose the test set, producing a total of 270 valid images. Thus, we eliminate the presence

of bias in our experiments while our models are tested in the wild with real-world images. For

the purposes of our experiments, the data is divided into two main subsets: training/validation

data (trainval), and test data (test) as illustrated in Table 3.4. To compensate for the imbalanced

classes in HRA, we utilise cost-sensitive training to weight the loss function during training by

an amount proportional to how under-represented each class is. This is useful to tell the model
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to ‘pay more attention’ to samples from an under-represented class. The maximum number of

epochs was set to 40 iterations for each epoch and a learning rate of 0.0001, using the stochastic

gradient descent (SGD) optimizer for cross-entropy minimization. The parameters were chosen

empirically by analysing the training loss.

4.3.3 Performance Metrics

An important consideration in deep learning is the choice of which performance metric to use.

Several different performance metrics may be used to measure the effectiveness of a complete

application that includes deep learning components. These performance metrics are usually

different from the cost function used to train the model. For tasks such as image classification

we often measure the accuracy of the model. Accuracy is just the proportion of examples for

which the model produces the correct output, while we can obtain equivalent information by

measuring the error rate, the proportion of examples for which the model produces an incorrect

output. Usually we are interested in how well a deep learning model performs on data that has

not seen before, using the top-1 accuracy, which is when the model’s prediction with highest

probability is exactly the correct answer (ground truth label).

In some applications it is possible for the system to reject a prediction. This is suitable

when the model can estimate how confident it should be about a decision, particularly if a

wrong decision can be harmful and if a human operator is supposed to take over. Human rights

violations present an example of this situation. The value of the recognition system deteriorates

considerably if the prediction is inaccurate. Therefore, it is important to point out images that

potentially depict human rights violations only if the confidence of the prediction is above

a threshold. Of course, an automated system is only useful if it is able to effectively reduce

the amount of photos that a human rights investigator must process. A realistic performance

metric to use in scenarios in which deep learning models can often produce no response is

coverage. This metric qualifies the fraction of examples for which the system is able to produce

a response/prediction. It is possible to trade coverage for accuracy. For example, one can

always obtain 100% accuracy by refusing to process any example, but this reduces the coverage

to 0%. In order to create a criterion from which an overall optimum can be easily envisaged

when comparing different models and settings, we also compute a weighted sum of the two

performance metrics, weighted_sum = 0.25(top-1 acc.+ coverage).

4.3.4 Results

After fine-tuning the various CNNs, we used the final output layer of each network to classify

the test set images of the HRA dataset. The classification results, using the cost-sensitive
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Operation on

Conv. Base
Top-1 acc. Coverage

Weighted

Sum

Train

Params.

Baseline-CNN 12.59% 61% 18.39 3,240,553

VGG16

avg-pool

34.44% 45% 19.86 4,853,257

VGG19 35.18% 42% 19.29 4,853,257

ResNet50 25.55% 55% 20.13 4,992,521

VGG16-places365 30.00% 32% 15.5 4,853,257

VGG16

flatten

31.85% 55% 21.71 8,784,905

VGG19 31.11% 50% 20.27 8,784,905

ResNet50 30.00% 44% 18.5 4,992,521

VGG16-places365 28.51% 52% 20.12 8,784,905

VGG16

max-pool

28.14% 64% 23.03 4,853,257

VGG19 29.62% 61% 22.65 4,853,257

ResNet50 25.55% 61% 21.63 4,992,521

VGG16-places365 26.66% 51% 19.41 4,853,257

VGG16 L2 22.59% 37% 14.89 -

VGG19 L2 24.44% 42% 16.61 -

ResNet50 L2 11.11% 18% 7.27 -

VGG16-places365 L2 18.51% 34% 13.12 -

Table 4.3: Classification accuracy on the test set of HRA using our proposed fine-tuned

CNNs alongside two other baseline models, a CNN trained from scratch (first row) and a

nearest neighbour classifier for the extracted features (last four rows). ‘Weighted Sum’ refers

to the derived criterion for finding the overall optimum. Bold font highlights the dominant

performance across the same metric.

training, for top-1 accuracy and coverage are listed in Table 4.3. For the sake of completeness,

we also provide classification results without weighting the loss function during training as

illustrated in Table 4.4 and with real time data augmentation during training in Table 4.5. Not

weighting the loss function during training results in a significant drop of 4.23 points in the

best reported weighted sum. This rather weak score suggest that our initial intuition of training

imbalanced classes equitably by increasing the importance of the under-represented classes

has indeed a positive effect on both accuracy and coverage. Although on paper applying a

number of random transformations in order to augment our training samples will help the

models generalise better, as revealed by lower weighted sum scores, data augmentation does

not improve the accuracy and coverage of the models for most of the cases. Note that for

all the remaining experiments presented in this paper, results concerning only the superior

cost-sensitive training are indicated. Given that a system capable of recognising human rights

violations from visual content is only useful if it achieves high coverage, it was important to

set a strong coverage requirement for this task. Specifically, the network refuses to classify
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Operation on

Conv. Base
Top-1 acc. Coverage

Weighted

Sum

Train

Params.

Baseline-CNN 15.55% 34% 12.38 3,240,553

VGG16

avg-pool

25.92% 23% 12.23 4,853,257

VGG19 24.07% 32% 14.01 4,853,257

ResNet50 17.40% 2% 4.85 4,992,521

VGG16-places365 26.66% 16% 10.66 4,853,257

VGG16

flatten

27.40% 41% 17.1 8,784,905

VGG19 28.88% 41% 17.47 8,784,905

ResNet50 18.50% 4% 5.62 4,992,521

VGG16-places365 25.55% 49% 18.63 8,784,905

VGG16

max-pool

28.51% 38% 16.62 4,853,257

VGG19 22.22% 53% 18.80 4,853,257

ResNet50 10.74% 2% 3.18 4,992,521

VGG16-places365 25.55% 40% 16.38 4,853,257

Table 4.4: Classification accuracy and coverage on the test set of HRA using our proposed

fine-tuned CNNs without weighting the loss function during training. ‘Weighted Sum’ refers

to the derived criterion for finding the overall optimum. Bold font highlights the dominant

performance across the same metric.

Operation on

Conv. Base
Top-1 acc. Coverage

Weighted

Sum

Train

Params.

Baseline-CNN 13.70% 17% 7.67 3,240,553

VGG16

avg-pool

33.70% 37% 17.67 4,853,257

VGG19 32.59% 33% 16.39 4,853,257

ResNet50 24.81% 59% 20.95 4,992,521

VGG16-places365 25.18% 26% 12.79 4,853,257

VGG16

flatten

34.07% 34% 17.01 8,784,905

VGG19 34.07% 27% 15.26 8,784,905

ResNet50 24.44% 64% 22.11 4,992,521

VGG16-places365 26.29% 37% 15.82 8,784,905

VGG16

max-pool

32.22% 43% 18.80 4,853,257

VGG19 27.40% 60% 21.85 4,853,257

ResNet50 22.96% 54% 19.24 4,992,521

VGG16-places365 24.07% 43% 16.76 4,853,257

Table 4.5: Classification accuracy and coverage on the test set of HRA using our proposed

fine-tuned CNNs and real-time data augmentation during training. ‘Weighted Sum’ refers

to the derived criterion for finding the overall optimum. Bold font highlights the dominant

performance across the same metric.
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GT: arms

top-1: arms (0.960)

top-2: no violation (0.028)

top-3: child labour (0.006)

GT: child labour 

top-1: child labour (0.699)

top-2: disp. populations (0.206)

top-3: child marriage (0.065)

GT: child marriage 

top-1: child marriage (0.980)

top-2: disp. populations (0.015)

top-3: no violation (0.003)

GT: detention centres

top-1: detention cen. (0.452)

top-2: disp. populations (0.351)

top-3: child labour (0.124)

GT: disability rights

top-1: disability rights (0.426)

top-2: environment (0.173)

top-3: disp. populations (0.127)

GT: displaced populations 

top-1: disp. populations (0.999)

top-2: child marriage (0.002)

top-3: child labour (0.001)

GT: environment 

top-1: environment (0.933)

top-2: child labour (0.024)

top-3: disp. populations (0.018)

GT: no violation

top-1: no violation (0.999)

top-2: disp. populations (0.002)

top-3: detention cen. (0.001)

GT: out of school

top-1: no violation (0.960)

top-2: disp. populations (0.014)

top-3: out of school (0.011)

Figure 4.6: The predictions given by the best performing HRA-VGG19 for the images from

the HRA test set. The ground-truth label (GT) and the top 3 predictions are shown. The number

beside each label indicates the prediction confidence.

an input x, whenever the probability of the output sequence p(y|x) < t for some confidence

threshold t. For all the experiments in this thesis, we set the confidence threshold at 0.85 in

order to report the coverage performance.

Figure 4.6 shows the responses to examples predicted by the best performing HRA-CNN,

VGG19 with max pooling. Broadly, we can identify one type of misclassification given the

current label attribution of HRA: images depicting the evidence which are responsible for a

particular situation and not the actual action, such as schools being targeted by armed attacks.

Future development of the HRA database, will explore to assign multi-ground truth labels or

free-form sentences to images to better capture the richness of visual descriptions of human

rights violations. Figure 4.7 illustrates the normalised confusion matrices of the best performing

CNNs. The diagonal elements represent the number of points for which the predicted label

is equal to the true label, while off-diagonal elements are those that are mislabelled by the

classifier. The higher the diagonal values of the confusion matrix the better, indicating many

correct predictions. This kind of normalisation can be beneficial in case of class imbalance to

have a more visual interpretation of which class is being misclassified. These results indicate

that predictions relying solely on object-based information are likely to misinterpret visual

samples that belong to the class of disability rights as displaced populations. Other examples

where the CNNs make mistakes are: predicting detention centres as displaced populations, and

out of school as no violation. This is not surprising because these pairs share similar properties,

e.g. numerous people gathered at one place.

We can see from Table 4.3 that both VGG architectures surpass the scene-centric architecture

of VGG16-Places365 by a significant margin of at least 4.44% for top-1 accuracy and 10%

for coverage–using the average pooling which is their best performing operation–even though
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(a) Baseline-CNN (b) VGG16-avg

(c) VGG19-avg (d) ResNet50-flatten

(e) VGG16-places365-avg

Figure 4.7: Normalised confusion matrices of the best performing HRA-CNNs. A row

represents an instance of the actual class, whereas a column represents an instance of the

predicted class. The values of the diagonal elements represent the degree of correctly predicted

classes. Results indicate that predictions relying solely on object-based information are likely to

misinterpret visual samples that belong to the class of disability rights as displaced populations.
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(a) input image (b) object-centric CNN (c) scene-centric CNN

Figure 4.8: Given an input image, we visualise the class-discriminative regions of different

CNNs using Grad-CAM [85] for the output classes child labour and child marriage.

Note that the object-centric model (b) focuses on the tool used by a child or the clothing, while

the scene-centric model (c) focuses on the vegetation or a sign in the background.

the number of trainable parameters remains exactly the same. On the other hand, VGG16-

Places365 outperforms the object-centric ResNet50 for two of the operations applied on the

frozen convolutional base. We have also tried to change the number of layers which were

fine-tuned in our training set-up. Increasing the number of layers to three results in about 7%

drop in classification performance.

4.3.5 Interpreting the Deep Neural Networks

In order to interpret which parts of a given image led a CNN to its final prediction, we produce

heatmaps of ‘class activation’. Class Activation Mapping (CAM) [118] and its generalisation

Gradient-weighted Class Activation Mapping (Grad-CAM) [85] visualise the linear activations

of a late layer’s activations with respect to the class considered. To generate Grad-CAM visual

explanations, we followed the approach presented in [85]. An image is fed into the fine-tuned

network and the output feature maps of the last convolutional layer are extracted. Convolutional

features are capable of retaining spatial information compared to fully-connected layers where

that information is lost. The gradient of the score associated with a specific output class is

computed, with respect to the extracted feature maps of the last convolutional layer. Then, the

gradients are global-average-pooled to obtain the importance weights. Finally, the Grad-CAM

is obtained by performing a weighted combination of forward activation maps followed by
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a ReLU. Figure 4.8 shows an example of Grad-CAMs for the output class of output classes

child labour and child marriage.

4.4 Summary

In this chapter we have examined the transfer learning problem of classifying human rights

violations using classifiers learnt from images of everyday objects/scene using deep features.

First, we have observed that a combination of deep representations and a linear SVM over the

small-scale HRUN image dataset suffers from overfitting. To prevent a model from learning

misleading or irrelevant patterns found in the training data, the best solution is to get more

training data. A model trained on more data will naturally generalize better. The reason is that,

as we add more data, the model becomes unable to overfit all the samples, and is forced to

generalize to make progress.

Following this observation, we fine-tuned end-to-end models for object classification (object-

centric) and scene classification (scene-centric), over the training set of the larger HRA image

dataset. Unsurprisingly, each object-centric and scene-centric CNN has different strengths and

weaknesses, as shown in Table 4.3 and Figure 4.8. Motivated by this observation, we then look

to capture robust representations from the perspectives of object and scene. In Chapter 5, our

aim is to develop an ensemble of object-centric and scene-centric CNNs, investigate different

network architectures on the task of HRVR and also explore their complementarity by fusing

them.



Chapter 5

Objects and Scenes: Combining Features

for Human Rights Violation Recognition

One would think that the meaningful parts of an image depicting a potential viola-

tion against human rights are the tools, weapons, and humans. However, those are

simply functional parts, with words associated with them; the object parts that are

important for visual recognition might be different from their semantic counterparts,

making it difficult to evaluate how efficient a representation is. In fact, the strong

internal structure of objects makes the definition of what is considered a useful part

inadequately constrained: an algorithm can find different and arbitrary part config-

urations, all giving similar recognition performance. Learning to classify human

rights violations (i.e., labelling an image as potentially being child labour,

no violation, displaced populations, etc. ) using features extracted

from a Places-CNN gives the opportunity to study the internal representations

learned by a CNN on a task other than object recognition. Scene categories are

defined by the objects they accommodate and by the spatial configuration of those

objects. For instance, the meaningful parts of a dinning room are the table, the

chairs, as well as the dinnerware set. Therefore, objects represent a distributed

code for scenes (i.e., object classes are shared across different scene categories).

The main contribution of this chapter is to investigate whether image features

from pretrained ImageNet-CNN and Places-CNN can complement each other for

predicting human rights violations and how the differences between these networks

can impact the classification performance.
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Figure 5.1: Illustration of a typical high-level CNN early feature fusion and image classification

workflow. The model consist of two feature extraction modules (may originate from different

CNN architectures), a fusion network, and a classifier module for making predictions.
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Figure 5.2: Illustration of a typical high-level CNN late feature fusion and image classification

workflow. The model consist of two feature extraction modules (may originate from different

CNN architectures), and a module to ensemble classifiers before making predictions.

5.1 Introduction

Information fusion can be a crucial component in image classification schemes, where in-

creasing the overall accuracy of the system is regarded as one of its most integral aspects.

Merging different information is not only meaningful because of the accuracy improvement it
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might offer in a system, but also for allowing the system to be more robust against changing

dynamics. Since scenes are composed in part of objects, accurate recognition of human rights

violations requires knowledge about both. By visualising the class-discriminative regions of

object-centric-CNNs and scene-centric-CNNs previously (Figure 4.8) we have found that each

model focuses on different aspects of the image in order to classify it. Inspired by this obser-

vation we want to investigate whether feature fusion–accommodating features coming from

different sources into a single representation–which has resulted in increased performances in

recent works [105, 109], would have similar effects on predicting human rights violations.

Single modality CNN features do not capture higher order feature interactions that are

pivotal in many visual classification and recognition tasks. Thus, an applicable solution is to

fuse multi-modal CNN features. Suppose, the high-level features from different ConvNets

have complementary cues, then the fusion layer must learn the correspondence between these

features in order to be able to discriminate between the different classes. As indicated by

[91, 18], feature fusion approaches can be grouped into two main categories: early and late

fusion. Typical workflows of early and late fusion schemes are depicted in Figure 5.1 and

Figure 5.2 respectively.

5.2 Proposed Fusion Schemes

5.2.1 Early Fusion

Suppose we are given two CNNs. Let feature set F = { f1, f2} be extracted features of the last

convolutional layer from each network, where each feature is a high-dimensional feature vector

represented with fi ∈ R
di . Every distinct feature may have different cardinality according to

the particular CNN architecture, such that di = {d1,d2}. Then the feature fusion function φ

can be defined as the mapping operator on F such that φ(F) 7→ Rd .

The first strategy we exploit in our proposed early fusion scheme is the concatenation

method, where discrete feature vectors of different sources are concatenated into one super-

vector f f = { f1, f2} which will represent the final image feature. The final vector size is the

summation of all feature dimensions d = ∑
n
i=1 di .

The second fusion strategy we employ is averaging, also known as sum pooling in the

context of neural networks. In this strategy, the feature set F is averaged in order to form the

final image descriptor f f =
1
n ∑

n
i=1 fi. All features in F should either have the same cardinality

or the feature dimensions must be normalised prior to the fusion operation.

The last fusion strategy utilised is maximum pooling. It involves the same preprocessing

in terms of the final feature cardinality, however it varies in the way features are merged.
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Figure 5.3: Illustration of our proposed object-centric high-level CNN early feature fusion

and image classification system. The model consist of two different object-centric feature

extraction modules, a fusion network, and a classifier module for making predictions. Grey

colour indicates the frozen convolutional layers, while the light green colour indicates the

layers that will be differently randomly initialised.

Maximum pooling selects the highest value from the corresponding features instead of taking

the average of all features elements’ in sum pooling. If the final feature representation is

f f 7→ Rd , then max pooling selects each member of f f as f i
f = maxd

i=1( f i
1, f i

2).

5.2.2 Late Fusion

In late fusion, also known as decision fusion, extracted features are processed separately and

only the results are combined. The output of each classifier is combined to arrive at a final

result. Given multiple classifiers trained with different features, late fusion tries to combine

the prediction scores of all classifiers (the prediction score of each sample generated by a

classifier indicates the confidence of classifying the sample as positive). Such fusion method

is expected to assign positive samples higher fusion scores than the negative ones so that

the overall performance can be improved. Although very simple, this method has proved to

be effective in improving performance of each individual classifier and also produces highly

comparative results to multi-feature early fusion methods [91, 113]. Our late fusion scheme

consists of pooling together the predictions of a set of different fine-tuned end-to-end models,
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Figure 5.4: Illustration of our proposed object-centric high-level CNN late feature fusion

and image classification system. The model consist of two different object-centric feature

extraction modules, and a module to ensemble classifiers before making predictions. Grey

colour indicates the frozen convolutional layers, light green colour indicates the layers that will

be randomly initialised, and light yellow colour indicates the ensemble of classifiers used to

make the final prediction.

to produce more accurate predictions. This kind of assemblage relies on the assumption that

independently trained models are focusing on slightly different aspects of the data to make

their predictions. The easiest way to pool the predictions of a set of classifiers is to average

their predictions at inference time as illustrated by Figure 5.2.

5.3 Object-Centric Feature Fusion

After evaluating feature extraction and transfer learning schemes on the test set of HRA, we

turn our attention to the problem of combining those features for the same task. First, we start

by transferring CNN weights as described previously, this time combining the outputs of the

last convolutional layers of two different object-centric CNNs before randomly initialising

a new fully-connected classifier. Note that in this approach only the last convolutional layer

of each network is fine-tuned in order to keep equal number of trainable parameters with

the previous set-up introduced in Chapter 4. The processing pipeline of our early fusion

scheme for predicting human rights violations is depicted in Figure 5.3. We also employ a
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Operation on

Conv. Base

Fusion

Strategy
Top-1 acc. Coverage

Weighted

Sum

Train

Params.

VGG16

+

ResNet50

avg-pool

average 32.59% 7% 9.89 2,494,473

concatenate 24.81% 16% 10.20 2,625,545

maximum 32.59% 17% 12.39 2,494,473

flatten

average 28.14% 40% 17.03 8,785,929

concatenate 28.14% 51% 19.78 15,208,457

maximum 30.00% 51% 20.25 8,785,929

max-pool

average 26.29% 34% 15.07 2,494,473

concatenate 30.37% 41% 17.84 2,625,545

maximum 22.59% 32% 13.64 2,494,473

VGG19

+

ResNet50

avg-pool

average 35.55% 16% 12.88 2,494,473

concatenate 36.29% 20% 14.07 2,625,545

maximum 29.62% 22% 12.90 2,494,473

flatten

average 29.62% 50% 19.90 8,785,929

concatenate 29.25% 52% 20.31 8,785,929

maximum 30.74% 48% 19.68 8,785,929

max-pool

average 29.25% 37% 16.56 2,494,473

concatenate 24.44% 43% 16.86 2,625,545

maximum 27.77% 50% 19.44 2,494,473

VGG16

+

VGG19

avg-pool

average 31.11% 15% 11.52 4,853,257

concatenate 31.48% 22% 13.37 4,984,329

maximum 32.22% 18% 12.55 4,853,257

flatten

average 32.59% 51% 20.89 11,144,713

concatenate 29.25% 48% 19.31 17,567,241

maximum 33.33% 52% 21.33 11,144,713

max-pool

average 31.11% 45% 19.02 4,853,257

concatenate 25.92% 47% 18.23 4,984,329

maximum 26.66% 43% 17.41 4,853,257

Table 5.1: Performance comparison in terms of top-1 accuracy and coverage on the test set

of HRA using various object-centric feature extractors and early fusion strategies.‘Weighted

Sum’ refers to the derived criterion for finding the overall optimum. Bold font highlights the

dominant performance across the same metric.

late fusion scheme where each ConvNet performs image recognition on its own and for final

classification, softmax scores are combined by a mechanism which averages the prediction

outputs, as illustrated in Figure 5.4.
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Operation on

Conv. Base
Top-1 acc. Coverage

Weighted

Sum

VGG16+ResNet50

avg-pool

32.12% 30% 15.53

VGG19+ResNet50 32.45% 29% 15.36

VGG16+VGG19 30.88% 26% 14.22

VGG16+ResNet50

flatten

27.88% 41% 17.22

VGG19+ResNet50 26.14% 39% 16.28

VGG16+VGG19 27.88% 27% 13.72

VGG16+ResNet50

max-pool

29.13% 42% 17.78

VGG19+ResNet50 27.89% 43% 17.72

VGG16+VGG19 27.98% 31% 14.74

Table 5.2: Performance comparison in terms of top-1 accuracy and coverage on the test set

of HRA using various object-centric feature extractors and late fusion strategies. ‘Weighted

Sum’ refers to the derived criterion for finding the overall optimum. Bold font highlights the

dominant performance across the same metric.

5.3.1 Results and Discussion

We compare results of three fusion and pooling operations and their combinations regarding

object-centric features below.

Early fusion. Integrating different sources of information before they are processed by the

target classier performs well in terms of top-1 accuracy, when compared to our two-phase

transfer learning scheme1 proposed in Chapter 4. The highest performing combination with

respect to top-1 accuracy is VGG19 + ResNet50–utilising average pooling with concatenation

strategy–which yields 36.29% as shown in Table 5.1, an absolute gain of 1.11% compared to

the overall best performing HRA-CNN over the same pooling method reported in Table 4.3.

This is mostly attributed to the fact that the combination of VGG19 + ResNet50 has 2,494,473

trainable parameters, almost half of VGG16 fine-tuned model which has 4,853,257 trainable

parameters. Similarly, we observe that the best performing combinations of the other two

pooling methods, also outperform their individual counterparts as illustrated in Figure 5.5a.

Interestingly, this is not the case when early fusion schemes are compared to their individual

counterparts with respect to coverage performance metric introduced in section 4.3.3. This

is a clear indication that although combination of object-centric features can improve top-1

accuracy, individual models consistently produce more robust predictions due to their simplistic

design. The best performing combination of VGG19 + ResNet50 reaches 52% coverage, which

is an absolute drop of 12% from the best performing VGG16 reported previously, as seen in

Figure 5.5b. Detailed results are reported in Table 5.1.

1denoted as HRA-CNN
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(a) Top-1 accuracy on the test set of HRA using our early fusion scheme of object-centric features.
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(b) Coverage on the test set of HRA using our early fusion scheme of object-centric features.

Figure 5.5: Comparative results in terms of top-1 accuracy and coverage for the three operations

applied on the frozen convolutional base in our early fusion scheme of object-centric features.

Only the best performing fusion strategy between average, concatenation, and maximum is

illustrated alongside the best performing HRA-CNN for every operation applied on the frozen

convolutional base during fine-tuning. Also, the best performing HRA-CNN for each pooling

method is shown.

Late fusion. In contrast to early fusion, late fusion of object-centric features constantly trail

their individual counterparts in most of the evaluations for both performance metrics as reported
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(a) Top-1 accuracy on the test set of HRA using our late fusion scheme of object-centric features.
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(b) Coverage on the test set of HRA using our late fusion scheme of object-centric features.

Figure 5.6: Comparative results in terms of top-1 accuracy and coverage for the three operations

applied on the frozen convolutional base in our late fusion scheme of object-centric features.

in Table 5.2. The highest performing combination with respect to top-1 accuracy is VGG19 +

ResNet50–utilising average pooling–which yields 32.45%, an absolute drop of 2.73% compared

to the overall best performing HRA-CNN over the same pooling method reported in Table

4.3. Figure 5.6a suggests that for the best performing combinations of the other two pooling

methods, HRA-CNN surpasses the combined models in the same way. This is due to the

fact that concept learning precedes feature fusion in our late fusion scheme. Consequently,
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Figure 5.7: Illustration of our proposed object-centric and scene-centric high-level CNN

early feature fusion and image classification system. The model consist of an object-centric

feature extraction module (highlighted with blue border), a scene-centric feature extraction

module (highlighted with orange border), a fusion network, and a classifier module for making

predictions. Grey colour indicates the frozen convolutional layers, while the light green colour

indicates the layers that will be randomly initialised.

classifiers are provided with information from diverse modalities, or features in a different way.

For this reason correlations between those modalities might not be reflected in the classifier

output scores. The same pattern of reduced performance compared to individual counterparts

is observed for coverage. The best performing combination of VGG19 + ResNet50 reaches

43% coverage, which is a significant drop of 21% from the best performing VGG16 reported

previously, as seen in Figure 5.6b. Our late fusion scheme appears to have some evident

weaknesses compared to our early fusion schemes in the case of object-centric features.

5.4 Fusion of Object-Centric and Scene-Centric Deep Fea-

tures

We showed that fusion of object-centric CNN features appears to have a negative effect on

the performance of our HRA-CNN models, particularly in relation to coverage performance

metric. This can be ascribed to the failure of ImageNet trained CNNs to effectively learn the
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Figure 5.8: Illustration of our proposed object-centric and scene-centric high-level CNN

late feature fusion and image classification system. The model consist of an object-centric

feature extraction module (highlighted with blue border), a scene-centric feature extraction

module (highlighted with orange border), and a module to ensemble classifiers before making

predictions. Grey colour indicates the frozen convolutional layers, light green colour indicates

the layers that will be randomly initialised, and light yellow colour indicates the ensemble of

classifiers used to make the final prediction.

correspondence between these features or capture complementary cues. Recognition of human

rights violations requires knowledge about both scenes and objects. As identified by visualising

the class-discriminative regions of object-centric and scene-centric CNNs (see Figure 4.8) each

ConvNet focuses on different aspects of the image in order to classify it. Based on that, we

now investigate fusion of object-centric and scene-centric features for recognising potential

human rights violations. We follow the same approach described in the previous section.

However, this time instead of combining two different object-centric CNNs, for each test we

combine an object-centric CNN with the scene-centric VGG16-Places365 [119]. Our proposed

object-centric and scene-centric feature fusion and image classification systems are depicted in

Figure 5.7 and Figure 5.8 for early and late fusion respectively.

5.4.1 Differences and Complementarities

Early fusion. Remarkably, results indicate that early fusion of object-centric and scene-centric

features trail their individual counterparts in most of the experiments both for top-1 accuracy
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Operation on

Conv. Base

Fusion

Strategy
Top-1 acc. Coverage

Weighted

Sum

Train

Params.

VGG16

+

Places365

avg-pool

average 31.48% 14% 11.37 4,853,257

concatenate 30.37% 25% 13.84 4,984,329

maximum 30.74% 19% 12.43 4,853,257

flatten

average 27.40% 57% 21.1 11,144,713

concatenate 27.77% 58% 21.44 17,567,241

maximum 29.25% 54% 20.81 11,144,713

max-pool

average 25.18% 45% 17.54 4,853,257

concatenate 27.40% 49% 19.1 4,984,329

maximum 24.44% 56% 20.11 4,853,257

VGG19

+

Places365

avg-pool

average 27.03% 14% 10.25 4,853,257

concatenate 27.77% 25% 13.19 4,984,329

maximum 28.88% 28% 14.22 4,853,257

flatten

average 25.55% 64% 22.38 11,144,713

concatenate 28.88% 50% 19.72 17,567,241

maximum 28.14% 51% 19.78 11,144,713

max-pool

average 27.03% 37% 16 4,853,257

concatenate 26.29% 47% 18.32 4,984,329

maximum 26.29% 48% 18.57 4,853,257

ResNet50

+

Places365

avg-pool

average 27.03% 5% 8 2,494,473

concatenate 28.51% 14% 10.62 2,625,545

maximum 31.85% 16% 11.96 2,494,473

flatten

average 27.77% 41% 17.19 8,785,929

concatenate 27.03% 50% 19.25 15,208,457

maximum 24.81% 50% 18.70 8,785,929

max-pool

average 25.92% 34% 14.98 2,494,473

concatenate 25.55% 41% 16.63 2,625,545

maximum 31.11% 30% 15.27 2,494,473

Table 5.3: Performance comparison in terms of top-1 accuracy and coverage on the test set of

HRA using using various object-centric and scene-centric feature extractors and early fusion

strategies. ‘Weighted Sum’ refers to the derived criterion for finding the overall optimum. Bold

font highlights the dominant performance across the same metric.

and coverage, as illustrated in Figure 5.9. The highest performing combination with respect to

top-1 accuracy is ResNet50+Places365–utilising average pooling and maximum fusion strategy–

which yields 31.85%, a significant drop of 3.33% compared to the overall best performing

HRA-CNN over the same pooling method reported in Table 4.3. Also the overall optimum of

object-centric and scene-centric early fusion is 22.38, an absolute drop of 0.65 when compared

to the overall optimum of HRA-CNNs. This came as a surprise, particularly if we consider

the positive impact early fusion mechanism had in the case of object-centric-only features
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(a) Top-1 accuracy on the test set of HRA using our early fusion scheme of object-centric and

scene-centric features.
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(b) Coverage on the test set of HRA using our early fusion scheme of object-centric and scene-

centric features.

Figure 5.9: Comparative results in terms of top-1 accuracy and coverage for the three operations

applied on the frozen convolutional base in our early fusion scheme of object-centric and scene-

centric features. Only the best performing fusion strategy between average, concatenation, and

maximum is illustrated for every pooling method. Also, the best performing HRA-CNN for

each pooling method is shown.

as depicted in Figure 5.5a. This is a clear indication that object-centric and scene-centric

features, despite the fact that they focus on different visual cues, do not seem to complement
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Operation on

Conv. Base
Top-1 acc. Coverage

Weighted

Sum

VGG16+Places365

avg

32.92% 31% 15.98

VGG19+Places365 32.22% 29% 15.30

ResNet50+Places365 28.88% 25% 13.47

VGG16+Places365

flatten

28.88% 42% 17.72

VGG19+Places365 28.14% 38% 16.53

ResNet50+Places365 28.88% 26% 13.72

VGG16+Places365

max

28.51% 41% 17.37

VGG19+Places365 27.40% 44% 17.85

ResNet50+Places365 28.51% 33% 15.37

Table 5.4: Performance comparison in terms of top-1 accuracy and coverage on the test set of

HRA using using various object-centric and scene-centric feature extractors and late fusion

(ensemble of classifiers) strategies. ‘Weighted Sum’ refers to the derived criterion for finding

the overall optimum. Bold font highlights the dominant performance across the same metric.

each other nearly as well as their individual counterparts. This can be attributed to the fact

that merging features from object-centric and scene-centric CNNs results in more trainable

parameters compared to object-centric fusion. Detailed results are reported in Table 5.3. One

more interesting observation is that negative effects seem to occur mostly when combining very

similar models like VGG16, VGG19 and VGG16-places365 which are all based on the same

architecture. The best performing combination of VGG19 + Places365 reaches 64% coverage,

which is on par with the best performing HRA-CNN, while the rest of the best performing

combinations trail their counterparts as seen in Figure 5.9b. Through the visualisation of the

class-discriminative regions in Figure 5.11, we can have a better understanding of what has

been learned inside the CNNs for the early fusion scheme.

Late fusion. Similar to object-centric features, late fusion of object-centric and scene-centric

features constantly trail their individual counterparts in most of the evaluations for both

performance metrics as reported in Table 5.4. Even the highest performing combinations report

an absolute drop of 2.26% with respect to top-1 accuracy, illustrated in in Figure 5.10a. The

same pattern of reduced performance compared to individual counterparts is observed for

coverage. The best performing combination of VGG19 + Places365 reaches 44% coverage,

which is a significant drop of 20% from the best performing VGG16 reported previously, as

seen in Figure 5.10b. The late fusion scheme appears to have weaknesses analogous to early

fusion schemes of object-centric features.
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(a) Top-1 accuracy on the test set of HRA using our late fusion scheme of object-centric and

scene-centric features.
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(b) Coverage on the test set of HRA using the late fusion scheme of object-centric and scene-centric

features.

Figure 5.10: Comparative results in terms of top-1 accuracy and coverage for the three

operations applied on the frozen convolutional base in our late fusion scheme of object-centric

and scene-centric features.

5.4.2 Web-demo for Human Rights Violation Recognition

Based on our trained HRA-CNNs, we created a web-demo for HRVR accessible through

computer or mobile device browsers. It is possible to upload photos to the web-based software



5.5 Summary and Limitations | 77

(a) object-centric (b) scene-centric (c) fusion

Figure 5.11: Informative regions for predicting the category child labour for CNNs

pre-trained on different datasets using early fusion. Given an input image, we visualise the

class-discriminative regions using Grad-CAM [85] for the output class. The object-centric

models focus on the tools used by the young boys, the scene-centric models focus mostly on

the head of the young boys, while the early fusion of the two CNNs focuses more on what the

boys are holding (interaction with objects).

to identify if images depict a human right violation, while the system suggests the 3 most

likely semantic categories from the HRA dataset. A screenshot of the prediction result on a

web browser is shown in Figure 5.12. The Keras [8] python deep learning framework over

TensorFlow [1] was used to train the back-end prediction model in the demo. With this system,

those combating abuse will be able to go through images very quickly to narrow down the field

and identify pictures which need to be looked at in more detail. Furthermore, with the extensive

use of this software, we aim to collect an expanded range of images depicting human rights

violations, in order to enhance the accuracy of our CNN models with larger data sets. Future

directions for this work will include the capacity to receive feedback from people regarding the

result.

5.5 Summary and Limitations

In this chapter we have presented a thorough investigation on the relevance of features extracted

from CNNs trained on different image datasets, for predicting potential human rights violations.

Based on two main fusion strategies, early and late, we have proposed various, complete visual

human rights violation recognition systems. First, we combine CNN features from fine-tuned
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Figure 5.12: A screenshot of the human rights violation recognition demo based on our fine-

tuned HRA-CNN. The web-demo predicts the type of human right that is being violated for

uploaded photos.

models on object-centric databases. Early fusion in this case operates well for top-1 accuracy,

achieving higher performance in some instances compared to their individual counterparts.

However, this is not the case for the coverage metric, where combined features constantly trail

the individual models by a large margin. This shows that for the HRVR task robust predictions

are essential, while it is possible to trade coverage for accuracy by refusing to process some

examples. Performance gap between individual models and fusion schemes increases even

further when late fusion is tested. Following this observation, we turned our attention to

combining features from models pretrained on different datasets, ImageNet (object-centric)

and Places (scene-centric), in order to learn those complementary cues required for the task of

visual recognition of human rights violations. Remarkably, experimental results revealed that

even refined combination of features fails to outperform the simplistic design of their individual

counterparts for both fusion strategies. These results reinforce the view that although prediction
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of human rights violations consists of underlying tasks such as object and scene recognition, it

poses a challenge at a higher level for the representation learning methods. Observations made

in this chapter clearly reflect that recognising individual objects or scenes is just a first step for

machines to comprehend human rights violations in the visual world.



Chapter 6

Recognising Displaced People from

Images by Exploiting their Dominance

Level

The displacement of people refers to the forced movement of people from their

locality or environment and occupational activities, and it is seen as a form of social

change due to a number of factors such as armed conflict, violence, persecution,

and human rights violations. Globally, there are now almost 68.5 million forcibly

displaced people–roughly equivalent to the entire UK population–while today 1 out

of every 110 people in the world is displaced. Despite those figures, human rights

analysts and advocates still rely on manual labour to analyse human rights-related

imagery and then act accordingly. Computer vision can help automate parts of this

process and turn recognition of displaced populations into a potent service that

could improve humanitarian responses. Our intuition is that a person’s control level

of a situation can be a notifying difference between the encoded visual content of

an image that depicts a non-violent situation and the encoded visual content of an

image displaying displaced people. In this chapter, after introducing a score that

can describe an entire image based on all individuals’ control level of the situation,

typical image classification is extended within a novel, uniform framework which

infers potential displaced people from images.
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6.1 Introduction

The previous two chapters were focused on the multiclass classification problem of human

rights violations. In this chapter we change direction and study one of the most reported modern

violations against human rights, displaced people. We will explore the task of labelling still

images as either displaced people or non-displaced people. This is challenging

as classification schemes based on object detection or scene recognition regularly fail to

discriminate the encoded visual content of an image that depicts a non-violent situation and

the encoded visual content of an image displaying displaced people, as discussed in previous

chapters. We make the following contributions: (i) depending on the deep visual representations

used we show that performance can be improved by exploiting dominance level of people. (ii)

we introduce a new method for interpreting the overall dominance level of an entire image

sample based on the emotional states of all individuals on the scene; (iii) we introduce a

dataset for learning and evaluating this problem; We compare our method with fine-tuned CNN

representations for this task.

6.2 Motivation and Approach

The motivation of this work comes from the official figures concerning forcibly displaced people

published by the Office of the United Nations High Commissioner for Refugees (UNHCR) in

their statistical yearbooks. The displacement of people refers to the forced movement of people

from their locality or environment and occupational activities1. It is a form of social change

caused by a number of factors such as armed conflict, violence, persecution and human rights

violations. Every year millions of men, women and children are forced to leave their homes

and seek refuge from wars, human rights violations, persecution, and natural disasters. The

number of forcibly displaced people came at a record rate of 44,400 every day throughout 2017,

raising the cumulative total to 68.5 million at the year’s end, overtaken the total population

of the United Kingdom [100]. Up to 85% of the forcibly displaced people find refuge in

low- and middle-income countries, calling for increased humanitarian assistance worldwide.

To reduce the amount of manual labour required for human-rights-related image analysis,

we introduce DisplaceNet, a novel model which infers potential displaced people from

images by integrating the control level of the situation and conventional CNN classifier into

one framework for binary image classification.

1A distinction is often made between conflict-induced and disaster-induced displacement, yet the lines between

them may be blurred in practice.
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(a) Child playing (b) Displaced people

Figure 6.1: Inferring potential displaced people only from object detection and/or scene

recognition is condemned to failure. Displaced people recognition poses a challenge at a higher

level for the well-studied, deep image representation learning methods. Regularly, emotional

states can be a notifying difference between the encoded visual content of an image that depicts

a non-violent situation and the encoded visual content of an image displaying displaced people.

In the era of social media and big data, the use of visual evidence to document conflict

and human rights abuse has become an important element for human rights organisations and

advocates. However, the omnipresence of visual evidence may deluge those accountable for

analysing it. Currently, information extraction from human-rights-related imagery requires

manual labour by human rights analysts and advocates. Such analysis is time consuming,

expensive, and remains emotionally traumatic for analysts to focus on images of horrific events.

In this work, we strive to reconcile this gap by automating parts of this process; given a single

image we label the image as either displaced people or non displaced people. Figure 6.1

illustrates that naive schemes based solely on object detection or scene recognition are doomed

to fail in this binary classification problem. If we can exploit existing smartphone cameras,

which are ubiquitous, it may be possible to turn recognition of displaced populations into

a powerful and cost-effective computer vision application that could improve humanitarian

responses.

6.3 Implementation Details

Two-stage fine-tuning of deep CNNs has shown the potential to address the multi-class classifi-

cation problem of HRVR, but only to a certain extent as shown in Chapter 4. In this chapter, we

introduce DisplaceNet, a novel method designed with a human-centric approach for solving

a sought-after, binary classification problem in the context of human rights image analysis;

displaced people recognition. As reported by Kosti et al. [51], distribution of dominance values

across emotion categories of their EMOTIC dataset shows that people are not in control when
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they show emotion categories like Suffering, Pain, Sadness whereas when the Dominance is

high, emotion categories like Esteem, Excitement, Confidence occur more often. Additionally,

places where people usually show high Dominance are sport-related places and sport-related

attributes. On the contrary, low Dominance is shown in Jail Cell or attributes like Enclosed

Area or Working, where the freedom of movement is restricted. This resonates well with our

own common sense in judging potential displacement cases. Accordingly, our hypothesis is

that the control level of the situation by the person, ranging from submissive / non-control to

dominant / in-control, is a powerful cue that can help our network make a distinction between

displaced people and non-violent instances.

First, we develop an end-to-end model for recognising rich information about people’s

emotional states by jointly analysing the person and the whole scene. We use the continuous

dimensions of the VAD Emotional State Model [69], which describe emotions using three

numerical dimensions: Valence (V); Arousal (A); and Dominance (D). In the context of this

work, we have focused only on dominance–measures the control level of the situation by the

person–because it is considered as the most relevant for the task of recognising displaced

people. Second, following the estimation of emotional states, we introduce a new method for

interpreting the overall dominance level of an entire image sample based on the emotional

states of all individuals on the scene. As a final step, we propose to assign weights to image

samples according to the image-to-overall-dominance relevance to guide prediction of the

image classifier.

6.4 Method

Our method enables recognition of displaced people by exploiting the dominance level of an

entire image. Our goal is to label challenging everyday photos as either ‘displaced people’ or

‘non displaced people’.

First, in order to detect the emotional traits of a given image, we need to accurately localise

the box containing a human and the associated object of interaction (denoted by bh and bo,

respectively), as well as identify the emotional states e of each human using the VAD model.

Our proposed solution adopts the RetinaNet [60] object detection framework alongside an

additional human-centric branch that estimates the continuous dimensions of each detected

person and then determines the overall dominance level of the given image.

Specifically, given a set of candidate boxes, RetinaNet outputs a set of object boxes and a

class label for each box. While the object detector can predict multiple class labels, our model

is concerned only with the ‘person’ class. The region of the image comprising the person

whose feelings are to be estimated at bh is used alongside the entire image for simultaneously
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Figure 6.2: DisplaceNet architecture. Our model consists of (a) an object detection branch, (b)

human-centric branch, and (c) a displaced people branch. The image features and their layers

are shared between the human-centric and displaced people branches (blue boxes).

extracting their most relevant features. These features, are fused and used to perform continuous

emotion recognition in VAD space. Our model extends typical image classification by assigning

a triplet score sDP
img,d to pairs of candidate human boxes bh and the displaced people category a.

To do so, we decompose the triplet score into three terms:

sDP
img,d = sh · s

d
h,img · s

DP
img (6.1)

We discuss each component next, followed by details for training and inference. The overall

architecture of DisplaceNet is shown in Figure 6.2.

6.4.1 Model components

Object detection branch. The object detection branch of DisplaceNet is identical to that of

RetinaNet [60] single stage classifier. First, an image is forwarded through ResNet-50 [31],

then in the subsequent pyramid layers, the more semantically important features are extracted

and concatenated with the original features for improved bounding box regression.

Human-centric branch. The first role of the human-centric branch is to assign an emotion

classification score to each human bounding box. Similar to [52], we use an end-to-end model

with three main modules: two feature extractors and a fusion module. The first module takes the

region of the image comprising the person whose emotional traits are to be estimated, bh, while
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the second module takes as input the entire image and extracts global features. This way the

required contextual support is accommodated in the emotion recognition process. Finally, the

third module takes as input the extracted image and body features and estimates the continuous

dimensions in VAD space.

The second role of the human-centric branch is to assign a dominance score sd
img which

characterises the entire input image. sd
img is the encoding of the overall dominance score relative

to human box bh and entire image img, that is:

sd
img =

1

n

n

∑
i=1

sd
h,img (6.2)

Figure 6.3a and Figure 6.4a illustrate the three different emotional states over the estimated

target objects locations while Figure 6.3b and Figure 6.4b shows the overall dominance score

proposed here. Note that although all three predicted numerical dimensions are depicted, only

dominance is considered to be the most relevant to the task of recognising displaced people.

Displaced people branch. The first role of the displaced people branch is to assign a classi-

fication score to the input image. Similar to two-phase transfer learning scheme introduced

in 4.3, we train an end-to-end model for binary classification (‘displaced people’ or ‘non

displaced people’) of everyday photos. In order to improve the discriminative power of our

model, the second role of the displaced people branch is to integrate sd
img in the recognition

pipeline. Specifically, the raw image classification score is readjusted based on the inferred

dominance score. Each dominance unit, that is deltas from the neutral state, is expressed as a

numeric weight varying between 1 and 10, while the neutral states of dominance are assigned

between 4.5 and 5.5 based on the number of examples per each of the scores in the continuous

dimensions reported in [52]. The adjustment that will be assigned to the raw probability, sDP
img

is the weight of dominance multiplied by a factor of 0.11 which has been experimentally set.

When the input image depicts positive dominance, the adjustment factor is subtracted from the

positive displaced people probability and added to the negative displaced people probability.

Similarly, when the input image depicts negative dominance the adjustment factor is added to

the negative displaced people probability and subtracted from the positive displaced people

probability. This is formally written in Algorithm 1. Finally, in instances where no bh are

detected from the object detection branch, (6.1) is reduced into plain image classification as

follows:

sDP
img,d = sDP

img (6.3)
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(a) Continuous emotion recognition in VAD space

(b) Our proposed overall dominance score

Figure 6.3: Example of estimating continuous emotions in VAD space vs the proposed overall

dominance score that characterises an entire image based on all individuals’ control level of

the situation from the combined body and image features. (a) shows the predicted emotional

states and their scores from the person region of interest (RoI), while (b) shows the same

images analysed with our proposed overall dominance score. The dominance score will be

later integrated with the standard image classification scores sDP
img to identify displaced people.
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(a) Continuous emotion recognition in VAD space

(b) Our proposed overall dominance score

Figure 6.4: Further example of estimating continuous emotions in VAD space vs the proposed

overall dominance score that characterises an entire image based on all individuals’ control

level of the situation from the combined body and image features.

6.4.2 Training

Due to different datasets, convergence times and loss imbalance, all three branches have been

trained separately. For object detection we adopted an existing implementation of the RetinaNet

object detector, pre-trained on the COCO dataset [61], with a ResNet-50 backbone.
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Algorithm 1: Calculate sDP
img,d

Require: bh > 0

spos← s
d p
img {d p: positive displaced people}

sneg← s
nd p
img {nd p: negative displaced people}

if weight ≥ 4.5 and weight ≤ 5.5 then

Return spos,sneg

else if weight > 5.5 then

di f f = weight−5.5

ad j = di f f ∗0.11

spos = spos−ad j

sneg = sneg +ad j

else if weight < 4.5 then

di f f = 4.5−weight

ad j = di f f ∗0.11

spos = spos +ad j

sneg = sneg−ad j

end if

Return spos,sneg

For emotion recognition in continuous dimensions, we formulate this task as a regression

problem using the Euclidean loss (L2 loss). The Euclidean loss relies on the Euclidean distance

between two vectors - the prediction and the ground truth. The distance is calculated by

taking the square root of the sum of the squared pair-wise distances of every dimension,
√

∑
n
i=1(xi− yi)2. The two feature extraction modules are designed as truncated versions of

various well-known CNNs and initialised using pretrained models on two large-scale image

classification datasets, ImageNet [54] and Places [119]. The truncated version of those CNNs

removes the fully connected layer and outputs features from the last convolutional layer in order

to maintain the localisation of different parts of the images which is significant for the task at

hand. Features extracted from these two modules (red and blue boxes in Figure 6.2b are then

combined by a fusion module. This module first uses a global average pooling layer to reduce

the number of features from each network and then a fully connected layer, with an output of a

256-D vector, functions as a dimensionality reduction layer for the concatenated pooled features.

Finally, we include a second fully connected layer with 3 neurons representing valence, arousal

and dominance. The pipeline of the model is shown in Figure 6.5. The parameters of the three

modules are learned jointly using stochastic gradient descent with momentum of 0.9. The batch

size is set to 54 and we use dropout with a ratio of 0.5.
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Body feature extraction

(pre-trained on ImageNet)

Conv1 Conv2

Conv(n)Conv(n-1)

Image feature extraction

(pre-trained on Places365)

Conv1 Conv2

Conv(n)Conv(n-1)

Continuous 

Dimensions
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Global
Average 
Pooling
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(256-D)
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Average 
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Figure 6.5: End-to-end model for emotion recognition in context. The model consists of two

feature extraction modules and a fusion network for jointly estimating the discrete categories

and the continuous dimensions, similar to [52].

We formulate displaced people recognition as a binary classification problem. We train an

end-to-end model for classifying everyday images as displaced people-positive or displaced

people-negative, based on the context of the images. We fine-tune various CNN models for this

two-class classification task. First, we conduct feature extraction utilising only the convolutional

base of the original networks in order to end up with more generic representations as well

as retaining spatial information similar to emotion recognition pipeline. The second phase

consists of unfreezing some of the top layers of the convolutional base and jointly training a

newly added fully connected layer and these top layers. All the CNNs2 presented here were

trained using the Keras Python deep learning framework [8] over TensorFlow [1] on Nvidia

GPU P100.

6.5 Experiments

Our emotion recognition implementation is based on the emotion recognition in context

(EMOTIC) model [52], with the difference that our model estimates only continuous dimensions

in VAD space. We train the three main modules on the EMOTIC database, which contains a

total number of 18,316 images with 23,788 annotated people, using pre-trained CNN feature

2Available at https://github.com/GKalliatakis/DisplaceNet

https://github.com/GKalliatakis/DisplaceNet
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(a) Top-1 accuracy on the test set of HRA–Binary

with one layer of the backbone network fine-

tuned.
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(b) Top-1 accuracy on the test set of HRA–Binary

with two layers of the backbone network fine-

tuned.

Figure 6.6: Comparative results in terms of top-1 accuracy for fine-tuned models (vanilla

CNN) and our proposed method, DisplaceNet, over various backbone networks.
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(a) Coverage on the test set of HRA–Binary with

one layer of the backbone network fine-tuned.
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(b) Coverage on the test set of HRA–Binary with

two layers of the backbone network fine-tuned.

Figure 6.7: Comparative results in terms of coverage for fine-tuned models (vanilla CNN)

and our proposed method, DisplaceNet, over various backbone networks. Note that in some

instances vanilla CNNs achieve a coverage of 0%.

extraction modules. We treat this multiclass-multilabel problem as a regression problem by

using a weighted Euclidean loss to compensate for the class imbalance of EMOTIC.

For the classification part, we fine-tune our models for 50 iterations on the HRA subset

with a learning rate of 0.0001 using the stochastic gradient descent (SGD) [55] optimizer for

cross-entropy minimization. These vanilla models will be examined against DisplaceNet. Here,
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backbone

CNN

layers

fine-tuned

vanilla CNN DisplaceNet

Top-1 acc. Coverage
Weighted

Sum
Top-1 acc. Coverage

Weighted

Sum

VGG16

1

58% 0% 14.5 54% 3% 14.25

VGG19 69% 3% 18 60% 6% 16.5

ResNet50 60% 0% 15 55% 4% 14.75

VGG16

2

63% 43% 26.5 63% 49% 28

VGG19 77% 54% 32.75 74% 68% 35.5

ResNet50 42% 1% 10.75 38% 5% 10.75

mean - 61.5% 16.83% 19.58 57.33% 20.83% 19.54

Table 6.1: Detailed results on displaced people recognition using DisplaceNet. We show the

main baseline and DisplaceNet for various network backbones. ‘Weighted Sum’ refers to the

derived criterion for finding the overall optimum. We bold the leading entries on coverage.

vanilla means pure image classification using solely fine-tuning without any alteration. To

enable a fair comparison between vanilla CNNs and DisplaceNet, we use the same backbone

combinations for all modules described in Figure 6.2.

The main test platform on which we could demonstrate the effectiveness of DisplaceNet

and analyse its various components is the HRA-Binary Dataset (Section 3.3.5). The

displaced population category of that dataset contains 609 images of displaced people and the

same number of non displaced people counterparts for training, as well as 50 images collected

from the web for testing and validation, as described in Section 3.3.5. We evaluate DisplaceNet

with the same two metrics utilised before, top-1 accuracy and coverage, and compare its

performance against the sole use of a CNN classifier.

Quantitative Results

We report comparisons in both top-1 accuracy and coverage metrics for fine-tuning up to two

convolutional layers in order to be consistent with the implementation introduced in Chapter

4.3. The per-network results are shown in Table 6.1. The implementation of vanilla CNNs is

solid with mean accuracy of 61.5% accuracy, and mean coverage of 16.83%. Interestingly,

some models yield a 0% coverage, which proves yet again that it is possible to trade coverage

with accuracy in the context of human rights image analysis. In any case, vanilla CNNs provide

a strong baseline to which we will compare our method.

DisplaceNet has a mean accuracy of 57.33% which is a minor drop of 4.17 points over the

strong baselines of 61.5% achieved by vanilla CNNs. This indicates a relative loss of only 6.7%.

Comparative results for all cases are illustrated in Figure 6.6. We believe that this negligible

drop in accuracy is mainly due to the fact that the test set is not solely made up of images with
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(a)

(b)

Figure 6.8: Examples of recognising displaced people with DisplaceNet. In this instance,

DisplaceNet overturns the initial-false prediction of the vanilla CNN.

people in their context, it also contains images of generic objects and scenes, where only the

sole classifier’s prediction is taken into account. Concerning coverage performance metric,

DisplaceNet achieves a mean percentage of 20.83%. This is an absolute gain of 4 points over
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the baseline of 16.83%. This is a significant relative improvement of 23.76%. It is evident from

Figure 6.7 that DisplaceNet constantly improves the coverage performance of the system, even

for extreme cases where vanilla CNNs fail to produce robust predictions at all (VGG16 and

ResNet 50 in Figure 6.7a). In order to reach this level of coverage, DisplaceNet sacrifices top-1

accuracy. Coverage thus became the main performance metric optimised during this task, with

mean top-1 accuracy held at 57.33%.

Qualitative Results.

We show our displaced people recognition results in Figure 6.8 and Figure 6.9. Each image

shows two predictions alongside their probabilities. Top prediction is given by DisplaceNet,

while the bottom prediction is given by the respective vanilla CNN classifier. Green colour

implies that no displaced people were detected, while red colour signifies that potentially

displaced people were detected. Our method can successfully classify displaced people by

overturning the initial-false prediction of the vanilla CNN (Figure 6.8). Moreover, DisplaceNet

can strengthen the initial-true prediction of the sole classifier (Figure 6.9). Finally, our method

can be incorrect, because of false dominance score inferences. Some of them are caused by a

failure of continuous dimensions emotion recognition, which is an interesting open problem for

future research.

6.6 Summary

In this chapter we have presented a human-centric approach for recognising displaced people

from still images. This two-class labelling problem is not trivial, given the high-level image

interpretation required. Understanding a person’s control level of the situation from his frame

of reference is closely related with situations where people have been forcibly displaced. Thus,

the key to our computational framework is people’s dominance level, which resonates well

with our own common sense in judging potential displacement cases. We introduce the overall

dominance score of the image which is responsible for weighting the classifier’s prediction

during inference. We benchmark performance of our DisplaceNet model against sole CNN

classifiers. Our experimental results showed that this is an effective strategy, which we believe

has good potential beyond human rights related classification. We hope this work will spark

interest and subsequent work along this line of research.
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(a)

(b)

Figure 6.9: Further examples of recognising displaced people with DisplaceNet. In this

instance, DisplaceNet strengthens the initial-true prediction, resulting in higher coverage.



Chapter 7

Harnessing Global Emotional Traits for

Two-Class Human Rights Abuse

Classification

Modern deep learning systems can learn to detect many of the kinds of objects that

are of interest to human rights researchers, including tanks, missiles, helicopters,

aeroplanes, military vehicles, particular styles of building, and large crowds. They

can also detect visually distinct geographic locations like bridges over water, moun-

tainous terrain, or a desert. From a computer vision perspective, human rights

violation recognition from a given image is computationally complex because it

involves the detection of numerous semantic concepts (i.e., objects, and scenes)

taking place in a dynamic environment. The kinds of images relevant to human

rights investigations are significantly more complex, making it hard to identify

potential violations only by properties of the surrounding scene or the related

objects. We have shown that people’s emotional states are a contributing factor

to the automated understanding of visual information of human rights violations

in a binary classification context. Taking this into account, we introduce a robust

image characterisation mechanism that will help us tackle the two most widespread

human rights violations in the era of social media and big data, child labour, and

displaced populations.
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7.1 Introduction

In the previous chapter, we investigated binary image classification of real-world images for

recognising displaced people using the dominance level of the identified people in a scene. In

this chapter, we expand on those findings by establishing and addressing two different human

rights-related, visual recognition scenarios, in challenging everyday photos: child labour,

and displaced populations. We make the following contributions beyond those described in

Chapter 6 : (i) we show that coverage performance can further be improved by exploiting two

emotional states instead of a single one; (ii) we introduce a more robust mechanism capable of

characterising an image based on two emotional states of all people in a scene; (iii) we present

a human-centric, end-to-end model for recognising two types of human rights violations; (iv)

we introduce a dataset for learning and evaluating those two different tasks. We compare our

method both with the fine-tuned CNN representations (Chapter 4) and DisplaceNet (Chapter 6),

for overlapping categories.

7.2 Motivation and Approach

The motivation of this work comes from the promising results of DisplaceNet reported in

the previous chapter. Experiments with DisplaceNet revealed that people’s dominance level

resonates well with our common sense in evaluating certain situations as potentially displaced

populations or non-displaced populations. Here, we want to build on those findings and further

exploit emotional traits this time employing and combining two at the same time, before testing

them in two different settings. This chapter attempts to address the problem of human rights

abuse prediction from a single image, for two independent scenarios. Note that naive schemes

based on object detection or scene recognition are doomed to fail in these binary classification

problems as illustrated in Figure 7.1.

7.3 Method

We now describe our supplementary method for predicting two types of human rights abuses

based on people’s emotional traits. Our goal is to label challenging everyday photos as either

human-rights-abuse positive (‘child labour’ or ‘displaced populations’) or human-rights-abuse

negative (‘no child labour’ or ‘no displaced populations’ respectively).

We first introduce a new mechanism capable of characterising an image based on two

emotional states of all people in the scene, termed global emotional traits (GET).

This mechanism exploits two of the continuous dimensions of the VAD emotional state model
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(a) children playing (b) child labour

(c) camping (d) displaced populations

Figure 7.1: In many cases, two of the most sought-after modern human rights abuses, child

labour and displaced populations, cannot be identified only by properties of the

surrounding scene and its related objects in a binary classification setting. This happens because

a non-violent action like camping consists of specific objects (tents) that are resembling in

camps with displaced populations or in the case of children playing in a non-urban area which

can be visually very similar to the surrounding scene of child labour activity.

which are relevant to human rights image analysis. As will be explained in the following, global

emotional traits are learned by jointly analysing each person and the entire scene. To detect

GET of an image, we need to accurately localise the box containing a human and the associated

object of interaction (denoted by bh and bo, respectively), as well as identify the emotional

states e of each human using the VAD model. Our proposed solution adopts the RetinaNet [60]

object detection framework followed by an additional emotional traits branch that estimates

the continuous dimensions of each detected person and then determines the global emotional

traits of the given image.

Specifically, given a set of candidate boxes, RetinaNet outputs a set of object boxes and a

class label for each box. While the object detector can predict multiple class labels, our model

is concerned only with the ‘person’ class. The region of the image comprising the person

whose feelings are to be estimated at bh is used alongside the entire image for simultaneously
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Figure 7.2: GET-AID model architecture. Our model consists of (a) an object detection branch,

(b) an emotional traits branch, and (c) an abuse branch. The image features and their layers are

shared between the emotional traits and abuse branches (blue boxes).

extracting their most relevant features. These features, are fused and used to perform continuous

emotion recognition in VAD space. Our model extends typical image classification by assigning

a triplet score sa
img,GET to pairs of candidate human boxes bh and an abuse category a. To do so,

we decompose the triplet score into three terms:

sa
img,GET = sh · s

GET
h,img · s

a
img (7.1)

We discuss each component next, followed by details for training and inference. Figure 7.2

illustrates each component in our full framework.

7.3.1 Model components

Object detection branch. The object detection branch of our network, shown in Figure 7.2a,

is identical to that of RetinaNet [60] single stage classifier. First, an image is forwarded through

ResNet-50 [31], then in the subsequent pyramid layers, the more semantically important

features are extracted and concatenated with the original features. For each proposal box b, we

perform object classification and bounding-box regression to obtain a new set of boxes, each of

which has an associated score so (or sh if the box is assigned to the person category).

Emotional traits branch. The first role of the emotional traits branch is to assign a valence

classification score sv
img that measures how positive or pleasant an emotion is, ranging from

negative to positive, and a dominance classification score sd
img that measures the control level
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of the situation by the person, ranging from submissive / non-control to dominant / in-control,

to each human box bh. Similar to [52], we use an end-to-end model with three main modules:

two feature extractors and a fusion module. The first module takes the region of the image

comprising the person whose emotional traits are to be estimated, bh, while the second module

takes as input the entire image, img, and extracts global features. This way the required

contextual support is accommodated in the emotion recognition process. Finally, a third module

takes as input the extracted image and body features and estimates the continuous dimensions

in VAD space. The complete pipeline of the model is shown in Figure 6.5, while Figure 7.3

shows qualitative results of the method.

The second role of the emotional traits branch is to assign a two-dimensional emotion

classification score sGET
h,img which characterises the entire input image, based on the two afore-

mentioned emotion classification scores for each human. GET score, is the first attempt to

establish a method for summarising the overall mood of a situation depicted in a single image.

We decompose the two-dimensional GET score into two terms:

sGET
h,img = sv

img · s
d
img (7.2)

In the above, sv
img is the encoding of the global valence score relative to human box bh and

entire image img, that is:

sv
img =

1

n

n

∑
i=1

sv
h,img (7.3)

Similarly, sd
img is the encoding of the global dominance score relative to human box bh and

entire image img, that is:

sd
img =

1

n

n

∑
i=1

sd
h,img (7.4)

In Figure 7.4a and Figure 7.5a the three different emotional states over target objects location

are estimated, while Figure 7.4b and 7.5b illustrate the GET proposed here. For the sake of

completeness all three predicted numerical dimensions are depicted. However, only valence

and dominance are considered to be relevant to the two human rights violation recognition

scenarios since the agitation level of a person, denoted by arousal, can be ambiguous for several

situations. For example, both Figure 7.4a and Figure 7.5a depict people with arousal values

close to 5.5, but the activities captured are utterly different from a human rights perspective.

Abuse branch. The first role of the abuse branch, shown in Figure 7.2c, is to assign an

abuse classification score to the input image. Just like in the two-phase transfer learning

scheme deployed previously for HRA-CNNs in Chapter 4, we train an end-to-end model for
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(a)

(b)

Figure 7.3: Continuous emotion recognition in VAD Space. Examples of people marked with

the red bounding box that have been labelled with different scores of Valence, Arousal and

Dominance.
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(a) Continuous emotion recognition in VAD space

(b) Our proposed global emotional traits

Figure 7.4: Example of estimating continuous emotions in VAD space vs our proposed global

emotional traits (GET) from the combined body and image features. (a) shows the predicted

emotional states and their scores from the person region of interest (RoI), while (b) shows the

same image characterised by GET proposed here. The GET score will be later integrated with

the standard image classification scores sa
img to identify two types of abuses.

classifying everyday photos as either human-rights-abuse positive (‘child labour’ or ‘displaced

populations’) or human-rights-abuse negative (‘no child labour’ or ‘no displaced populations’).
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(a) Continuous emotion recognition in VAD space

(b) Our proposed global emotional traits

Figure 7.5: Further example of estimating continuous emotions in VAD space vs our proposed

global emotional traits (GET) from the combined body and image features.

In order to improve the discriminative power of our model, the second role of the abuse

branch is to integrate sGET
h,img in the recognition pipeline. Specifically, the raw image classification

score sa
img is readjusted based on the recognised global emotional traits. Each GET unit, that is

deltas from the neutral state, is expressed as a numeric weight varying between 1 and 10. We
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empirically set the numeric values of neutral emotional states between 4.5 and 5.5 using the

number of examples per each of the scores in the continuous dimensions reported in [52]. The

GET feature of each input image can be written in the form of a 2-element vector:

d̄ = (D1,D2) (7.5)

where D1 and D2 refer to the weights of valence and dominance, respectively. The adjust-

ment, ad j, that will be assigned to the raw classification probability, sa
img is the weight of

valence/dominance multiplied by a factor of 0.11 which has been experimentally set. We treat φ

as a hyperparameter that we empirically set to φ = 0.11 using the EMOTIC test set. When the

input image depicts positive valence or positive dominance, the adjustment factor is subtracted

from the positive human-rights-abuse probability and added to the negative human-rights-abuse

probability. Similarly, when the input image depicts negative valence or negative dominance

the adjustment factor is added to the negative human-rights-abuse probability and subtracted

from the positive human-rights-abuse probability. This is formally written in Algorithm 2.

Finally, when no bh were detected from the object detection branch, (7.1) is reduced into plain

image classification as follows:

sa
img,GET = sa

img (7.6)

7.3.2 Training

We approach human rights abuse classification as a cascaded, multi-task learning problem.

Due to different datasets, convergence times and loss imbalance, all three branches have been

trained separately. For object detection we adopted an existing implementation of the RetinaNet

object detector, pre-trained on the COCO dataset [61], with a ResNet-50 backbone. Specifically,

RetinaNet-50 achieves 32.5 accuracy (AP) with a speed of 73ms on COCO test-dev.

For emotion recognition in continuous dimensions, we formulate this task as a regression

problem using the Euclidean loss. The two feature extraction modules described in emotional

traits recognition section, are designed as truncated versions of various well-known CNNs and

initialised using pretrained models on two large-scale image classification datasets, ImageNet

[54] and Places [119]. The truncated version of those CNNs removes the fully connected layer

and outputs features from the last convolutional layer in order to maintain the localisation of

different parts of the images which is significant for the task at hand. Features extracted from

these two modules (red and blue boxes in Figure 7.2b) are then combined by a fusion module.

This module first uses a global average pooling layer to reduce the number of features from

each network and then a fully connected layer, with an output of a 256-D vector, functions
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Algorithm 2: Calculate sa
img,GET

Require: bh > 0

spos← sv
img {v: human-rights-abuse positive}

sneg← snv
img {nv: human-rights-abuse negative}

φ ← 0.11

if D1 ≥ 4.5 and D1 ≤ 5.5 then

spos = s
pos
img

sneg = s
neg
img

else if D1 > 5.5 then

ad j = (D1−5.5)∗φ

spos = spos−ad j

sneg = sneg +ad j

else if D1 < 4.5 then

ad j = (4.5−D1)∗φ

spos = spos +ad j

sneg = sneg−ad j

end if

if D2 ≥ 4.5 and D2 ≤ 5.5 then

Return spos,sneg

else if D2 > 5.5 then

ad j = (D2−5.5)∗φ

spos = spos−ad j

sneg = sneg +ad j

else if D2 < 4.5 then

ad j = (4.5−D2)∗φ

spos = spos +ad j

sneg = sneg−ad j

end if

Return spos,sneg

as a dimensionality reduction layer for the concatenated pooled features. Finally, we include

a second fully connected layer with 3 neurons representing valence, arousal and dominance.

The parameters of the three modules are learned jointly using stochastic gradient descent with

momentum of 0.9. The batch size is set to 54 and we use dropout with a ratio of 0.5.

For human rights abuse classification, we formulate this task as a binary classification

problem. We train an end-to-end model for classifying everyday images as human-rights-

abuse positive or human-rights-abuse negative, based on the context of the images, for two

independent scenarios, namely child labour and displaced populations. Following the two-

phase transfer learning scheme proposed in 4.3, we fine-tune various CNN models for the

two-class classification task. First, we conduct feature extraction utilising only the convolutional
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Body Feature Backbone Mean error rate

VGG16 1.59

VGG19 1.57

ResNet50 1.69

VGG16 + ResNet50 1.40

VGG16 + VGG19 1.36

VGG19 + ResNet50 1.48

VGG19 + ResNet50 + VGG16 1.36

Table 7.1: Emotion recognition results using the continuous dimensions emotion representation

in the form of mean error rate (average of all three VAD dimensions) for different body feature

backbone CNNs. The image feature backbone CNN was kept constant for all cases, namely

VGG16-Places365 [119].

base of the original networks in order to end up with more generic representations as well

as retaining spatial information similar to emotion recognition pipeline. The second phase

consists of unfreezing some of the top layers of the convolutional base and jointly training a

newly added fully connected layer and these top layers. All the CNNs presented here 1 were

trained using the Keras Python deep learning framework [8] over TensorFlow [1] on Nvidia

GPU P100.

7.3.3 Inference

Object Detection Branch: We first detect all objects (including the person class) in the input

image. We apply a threshold on boxes with scores higher than 0.5, which is set conservatively

to retain most objects. This yields a set of n boxes b with scores sh and so. These boxes are

used as input to the emotional trait branch.

Emotional Traits Branch: Next, we apply the emotional traits branch to all detected objects

that were classified as human. We feed each human box bh alongside the entire input image

img to the VAD emotion recognition model. For each bh, we predict valence sv
img and arousal

sa
img scores, and then compute the global emotional traits sGET

h,img that describes the entire input

image img.

Abuse Branch: If no human box bh has been detected, for example when a plain beach without

people or kitchen appliances was given as input image, the branch predicts the two abuse scores

sv and snv directly from the binary classifier. On the other hand, when one or more people have

been detected, the branch weights the raw predictions from the binary classifier based on the

computed global emotional traits of the input image according to Algorithm 2.

1Available at https://github.com/GKalliatakis/GET-AID

https://github.com/GKalliatakis/GET-AID
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7.4 Implementation Details

Our emotion recognition implementation is based on the emotion recognition in context

(EMOTIC) model [52], with the difference that our model estimates only continuous dimensions

in VAD space. We train the three main modules on the EMOTIC database, which contains a

total number of 18,316 images with 23,788 annotated people, using pre-trained CNN feature

extraction modules. We treat this multiclass-multilabel problem as a regression problem by

using a weighted Euclidean loss to compensate for the class imbalance of EMOTIC.

We evaluate the continuous dimensions using error rates - the difference (in average)

between the true value and the regressed value. Table 7.1 shows the results for the continuous

dimensions using error rates. The best result is obtained by utilising model ensembling, which

consists of pooling together the predictions of a set of different models in order to produce better

predictions. We pool the predictions of classifiers (ensemble the classifiers) by conducting

weighted average of their prediction at inference time. The weights are learned on the validation

data - usually the better single classifiers are assigned with a higher weight, while the worst

single classifiers are assigned a lower weight. However, ensembling the classifiers results in

prolonged inference times, which causes us to turn our focus onto single classifiers for the

remainder of the experiments.

Following the two-phase transfer learning scheme proposed in Chapter 4, we fine-tune our

human-rights-abuse classification models, Figure 7.2 (c), for 50 iterations on the HRA—Binary

trainval set, introduced in section 3.3.5, with a learning rate of 0.0001 using the stochastic

gradient descent (SGD) [55] optimizer for cross-entropy minimization. These vanilla models

will be examined against GET-AID. Here, vanilla means pure image classification using solely

fine-tuning without any alteration. Also, for the displaced populations scenario, GET-AID will

be compared with DisplaceNet presented in Chapter 6.

7.5 Quantitative Results

To enable a fair comparison between vanilla CNNs2 and GET-AID, we use the same backbone

combinations for all modules described in Figure 7.2. We report comparisons in both top-1

accuracy and coverage metrics for fine-tuning up to three convolutional layers. The per-

network results for child labour and displaced populations are shown in Table 7.2 and Table

7.3 respectively.

Vanilla CNNs. The implementation of vanilla CNNs is solid: it has up to 67% top-1 accuracy

on the child labour classification and up to 82% top-1 accuracy on the displaced populations

2Here, vanilla means pure image classification using solely fine-tuning without any alteration
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backbone

CNN

layers

fine-tuned

vanilla CNN GET-AID

Top-1 acc. Coverage
Weighted

Sum
Top-1 acc. Coverage

Weighted

Sum

VGG16

1

62% 73% 33.75 56% 78% 33.5

VGG19 65% 30% 23.75 57% 55% 28

ResNet50 51% 0% 12.75 50% 24% 18.5

Places365 59% 71% 32.5 54% 81% 33.75

VGG16

2

61% 77% 34.5 59% 78% 34.25

VGG19 61% 64% 31.25 59% 76% 33.75

ResNet50 52% 0% 13 49% 33% 20.5

Places365 54% 44% 24.5 52% 65% 29.25

VGG16

3

56% 83% 34.75 56% 84% 35

VGG19 55% 87% 35.5 55% 82% 34.25

ResNet50 50% 99% 37.25 48% 91% 34.75

Places365 67% 0% 16.75 53% 30% 20.75

mean - 58% 52.33% 27.58 54% 64.75% 29.68

Table 7.2: Top-1 accuracy and coverage obtained on test set of HRA—Binary for the child

labour scenario using GET-AID. We show the main baseline and GET-AID for various network

backbones. We bold the leading entries on coverage.

backbone

CNN

layers

fine-tuned

vanilla CNN GET-AID

Top-1 acc. Coverage
Weighted

Sum
Top-1 acc. Coverage

Weighted

Sum

VGG16

1

58% 0% 14.5 56% 24.4% 20.1

VGG19 69% 3% 18 59% 33% 23

ResNet50 60% 0% 15 53% 29% 20.5

Places365 64% 3% 16.75 54% 32% 21.5

VGG16

2

63% 43% 26.5 60% 58% 29.5

VGG19 77% 54% 32.75 70% 59% 32.25

ResNet50 42% 1% 10.75 44% 33% 19.25

Places365 80% 49% 32.25 73% 58% 32.75

VGG16

3

72% 69% 35.25 67% 71% 34.5

VGG19 82% 64% 36.5 77% 68% 36.25

ResNet50 53% 0% 13.25 51% 22% 18.25

Places365 81% 66% 36.75 71% 66% 34.25

mean - 66.75% 29.37% 24.03 61.25% 46.11% 26.84

Table 7.3: Top-1 accuracy and coverage obtained on test set of HRA—Binary for the displaced

populations scenario using GET-AID. We show the main baseline and GET-AID for various

network backbones. We bold the leading entries on coverage.
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(c) 3 layers fine-tuned

Figure 7.6: Comparative results in terms of top-1 accuracy for fine-tuned models (vanilla

CNN) and our proposed method, GET-AID, over various backbone networks for the child

labour scenario.

classification. That is 29.82 and 46.82 points higher than the best performing multiclass

classification HRA-CNNs presented in section 4.3, which achieved an accuracy of 35.18%

across all 9 categories. Note that only cases with a single or two layers fine-tuned were

considered for calculating these numbers in order to be consistent with the implementation of

HRA CNNs reported in Chapter 4. Regarding coverage, vanilla CNNs achieve up to 99% for

child labour classification and up to 69% child displaced populations classification, which is in
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Figure 7.7: Comparative results in terms of coverage for fine-tuned models (vanilla CNN) and

our proposed method, GET-AID, over various backbone networks for the child labour

scenario.

par with the 64% maximum coverage reported in Chapter 4. We believe that this accuracy gap

is mainly due to the fact that Human Rights Archive CNNs deal with a multiclass classification

problem, whereas in this work we classify inputs into two mutually exclusive classes.

Scenario 1: Child labour. GET-AID obtains a mean accuracy of 54%, which is marginal

decrease over the strong baselines of 58% achieved by vanilla CNNs. In relation to coverage,

GET-AID, achieves a mean coverage of 64.75% on the HRA—Binary test set. This is a
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Figure 7.8: Comparative results in terms of top-1 accuracy for fine-tuned models (vanilla CNN)

and our proposed method, GET-AID, over various backbone networks for the displaced

populations scenario.

significant increase of 12.42 points over the strong baselines of 52.33% achieved by vanilla

CNNs. This indicates a relative gain of 23.73%. Comparative results for all three fine-tuned

layers are illustrated in Figure 7.6 and Figure 7.7 respectively. It is evident that GET-AID

constantly improves the coverage performance of the system, even for extreme cases where

vanilla CNNs fail to produce robust predictions at all (ResNet50 in Figure 7.7a and Figure 7.7b,
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Figure 7.9: Comparative results in terms of coverage for fine-tuned models (vanilla CNN)

and our proposed method, GET-AID, over various backbone networks for the displaced

populations scenario.

and Places in Figure 7.7c). In order to reach this level of coverage, GET-AID sacrifices top-1

accuracy for all instances only by a small margin as seen in Figure 7.6.

Scenario 2: Displaced populations. GET-AID, achieves a mean coverage of 46.11% on the

HRA—Binary test set. This is an absolute gain of 16.74 points over the strong baselines

of 29.37% achieved by vanilla CNNs. This indicates a relative improvement of 57.21%. In

relation to accuracy, GET-AID obtains a mean accuracy of 61.25%, which is marginal decrease
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backbone

CNN

layers

fine-tuned

DisplaceNet GET-AID

Top-1 acc. Coverage
Weighted

Sum
Top-1 acc. Coverage

Weighted

Sum

VGG16

1

54% 3% 14.25 56% 24.4% 20.1

VGG19 60% 6% 16.5 59% 33% 23

ResNet50 55% 4% 14.75 53% 29% 20.5

VGG16

2

63% 49% 28 60% 58% 29.5

VGG19 74% 68% 35.5 70% 59% 32.25

ResNet50 38% 5% 10.75 44% 33% 19.25

mean - 57.33% 20.83% 19.54 57% 39.4% 24.1

Table 7.4: Top-1 accuracy and coverage obtained for the displaced populations scenario using

GET-AID and DisplaceNet. GET-AID achieves higher coverage by a considerable margin of

18.57 points. Note, that we show results only for the settings that are common amongst the two

approaches. We bold the leading entries on coverage.
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(a) Top-1 accuracy on the test set of HRA–Binary

with one layer of the backbone network fine-

tuned.
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(b) Top-1 accuracy on the test set of HRA–Binary

with two layers of the backbone network fine-

tuned.

Figure 7.10: Comparative results in terms of top-1 accuracy for the displaced

populations scenario using GET-AID and DisplaceNet over various backbone networks.

over the strong baselines of 66.75% achieved by vanilla CNNs. Comparative results for all

three fine-tuned layers are illustrated in Figure 7.8 and Figure 7.9. Results follow the same

pattern as in scenario 1. GET-AID constantly improves the coverage performance of the system,

even for extreme cases where vanilla CNNs fail to produce robust predictions at all (VGG16,

ResNet50 in Figure 7.9a and ResNet50 in Figure 7.9c). Again, in order to reach this level of

coverage, GET-AID sacrifices top-1 accuracy for all instances only by a small margin as seen

in Figure 7.8.
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(a) Coverage on the test set of HRA–Binary with

one layer of the backbone network fine-tuned.
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(b) Coverage on the test set of HRA–Binary with

two layers of the backbone network fine-tuned.

Figure 7.11: Comparative results in terms of coverage for the displaced populations

scenario using GET-AID and DisplaceNet over various backbone networks.

For this scenario, we further compare GET-AID and DisplaceNet (Chapter 6) on the same

subset of HRA—Binary test, to examine whether two emotional traits can further improve the

robustness of the predictions made by our system. DisplaceNet achieves a mean coverage of

20.83%, while GET-AID significantly improves mean coverage by 18.57 points, achieving

39.4%. Again, for a fair measurement, only two fine-tuned layers were included in the results

presented in Table 7.4. Comparative results for the two fine-tuned layers for top-1 accuracy

and coverage are illustrated in Figure 7.10 and Figure 7.11 respectively.

We believe that the negligible drop in top-1 accuracy for both scenarios is mainly due to the

fact that the HRA—Binary test set is not solely made up of images with people in their context,

it also contains images of generic objects and scenes, where only the sole classifier’s prediction

is taken into account.

7.6 Qualitative Results

We show our human rights abuse detection results in Figure 7.12 and Figure 7.13. Each subplot

illustrates two predictions alongside their probability scores. The top of the two predictions is

given by GET-AID, while the bottom one is given by the respective vanilla CNN sole classifier.

Our method can successfully classify human rights abuses by overturning the initial-false

prediction of the vanilla CNN as shown in Figure 7.12. Moreover, GET-AID can strengthen the

initial-true prediction of the sole classifier as shown in Figure 7.13.
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(a)

(b)

(c)

Figure 7.12: Human rights abuses detected by GET-AID for the displaced

populations scenario.
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7.6.1 Failure Cases

Figure 7.14 shows some failure detections. Our method can be incorrect, because of false global

emotional traits inferences. Some of them are caused by a failure of continuous dimensions

emotion recognition, which is an interesting open problem for future research.

7.7 Summary

In this chapter we have presented a remodelled, human-centric approach for classifying two

types of human rights abuses from everyday, challenging photos. This two-class human rights

abuse labelling problem is not trivial, given the high-level image interpretation required. As

shown in Chapter 6, emotion perception based on people’s frame of reference is closely related

with situations where human rights are being violated. In this chapter, we have introduced

a novel mechanism, termed global emotional traits, which is responsible for weighting the

classifiers prediction during inference, based on all people’s emotional traits. We benchmark

performance of our GET-AID model against sole CNN classifiers as well as DisplaceNet.

Experimental results of two diverse scenarios, have showed that global emotional traits are a

powerful strategy for analysing and interpreting human rights related imagery.
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(a)

(b)

(c)

Figure 7.13: Human rights abuses detected by GET-AID for the child labour scenario.
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(a)

(b)

Figure 7.14: False detections of GET-AID. For (a), GET-AID overturns the initial-true predic-

tion of the vanilla CNN, while for (b) GET-AID strengthens the initial-false prediction.



Chapter 8

Conclusion

We conclude this thesis by providing a summary of our achievements and impact as

a result of this work. We also outline some potential future directions for building

on this work.
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8.1 Achievements and Impact

Images bring human rights violations to life in a way that mere description and texts cannot. The

use of technologies like computer vision can mitigate inequalities in the human rights domain.

However, the approach of human rights practitioners to technology will be a determining

factor in their ability to advance accountability, transparency, and justice in the years to come.

This thesis is an effort to conceptualise the future of the intersection of computer vision and

human rights practice by establishing the frontier of automated visual recognition of human

rights violations along with gaining a deeper understanding of how this unexplored level of

recognition can be accomplished in the wild.

In this thesis we have examined the domain shift problem of learning from images of

everyday objects/scenes and applying this knowledge to real-world imagery in the context of

human rights. We have also contributed several datasets for further research in the field, and

have built a web demo allowing our research to be directly utilised. A brief account of the

major contributions of this thesis is given below.

In Chapter 3, we introduce the first ever image datasets of human rights violations. This

data has formed the basis of our research in Chapters 4, 5, 6 and 7, and has led to the release

of three datasets, HRUN, HRA, and HRA-Binary. We also described the various acquisition

procedures and demonstrated the importance of verified imagery in the context of human rights.

We have publicly released all three datasets used in this thesis, so researchers may use this as a

benchmark for evaluating their classifier’s performance on human rights violations.

In Chapter 4 we contributed a thorough examination of the transfer learning approach

for applying natural image-trained classifiers to human rights context. We examined this for

features produced by various neural network architectures both for linear SVM classifier as

well as end-to-end classifiers. As small-scale dataset was seen to suffer from overfitting, we

fine-tuned end-to-end models on more data utilising a novel two-phase technique to develop

the first ever image classification benchmark in the context of human rights.

Chapter 5 showed that the performance of the trained classifiers of Chapter 4 on the HRA

dataset could not be substantially improved by combining features extracted from different

object-centric CNN models. We also combined deep features from models pretrained on objects

and scenes in order to learn complementary cues. Interestingly, various combinations of these

two pretrained networks was not seen to perform better than the sum of its parts, illustrating

that objects or/and scenes are just a first step for machines to interpret human rights violations

in the visual world. In this chapter we also presented a practical application of this research.

We developed a web demo for predicting human rights violations that may be used by human

rights advocates and analysts.
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We then moved away from multi-class classification of human rights violations to explore

the task of recognising displaced people from images. Displacement of people is a form of

social change that results in millions of men, women and children to leave their homes every

year, making it one of the most crucial issues that human rights investigators are targeting. In

Chapter 6 we developed an emotion-based approach to infer potential displaced people from

images by integrating their dominance level and CNN classifiers into one framework. One

impact of this work was the improvement in coverage–the proportion of a data set for which

a classifier is able to produce a prediction–of our fine-tuned CNNs by 4%. Furthermore, this

method revealed that understanding people’s emotional states from their frame of reference can

be closely related with situations where human rights are being violated.

In Chapter 7 we build on findings from Chapter 6, and we develop a human-centric approach

that exploits two powerful cues–how positive or pleasant an emotion is, and the control level of

the situation–in order to recognise two of the most sought-after modern human rights violations,

child labour and displaced populations. To achieve this, we introduce a new mechanism

capable of characterising an input image based on the emotional states of all people in the scene,

termed global emotional traits (GET). We showed that the proposed GET-AID system further

improves the coverage up to 23.73% for child labour and 57.21% for displaced populations.

Furthermore, we have designed GET in a generic way, making it a plug-and-play unit without

the need of changing network architectures or requiring hyperparameters tuning.

Finally, it is important to remember that the technological systems described in this thesis

are best thought of as tools–they cannot document human rights violations on their own, but

can increase the efficiency and effectiveness of human analysts when used properly.

8.2 Extensions and Future Work

We believe this work opens up more questions and avenues to explore than it closes off. There

is much potential for automated visual recognition of human rights violations. Here, we discuss

possibilities for future research in this context.

Improving image datasets. While our image datasets are of sufficient realism to enable gen-

eralisation of representation learning methods, they can be improved further. An interesting

extension to consider is natural image synthesis. Despite recent progress in generative image

modelling, successfully generating high-resolution, diverse samples from complex datasets

such as HRA remains an elusive goal for the computer vision community.
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Interrelation of HRA classes. As seen in Chapter 3, some classes in the HRA dataset are

inevitably associated. For example child labour may result from children being left out of

school or the other way around when being out of school forces children to work. Another

example can be found in displaced populations and environment, where the latter most of

the times plays a key role in people’s movement. Capturing all those interrelationships could

potentially benefit the recognition process. For this, it would perhaps be beneficial to describe

classes using interpretable feature representations that incorporate attributes.

Learning a network from scratch with human rights violations. The CNNs used in this

thesis have been pre-trained using natural images of objects or scenes, largely due to a lack of

annotation in the context of human rights. Therefore, it would be interesting to explore data

generations techniques to construct a large-scale image dataset that potentially could be utilised

to train a network from scratch.

Action recognition in human rights context. Future work on human rights violation recogni-

tion could explore whether this task can be improved by utilising a network that can recognise

different actions or models capable of recognising human-object interactions.

Story-telling of an image. For most of us, a picture can be interpreted as a rich amount of

semantically meaningful information. This kind of semantic interpretation of the visual world

is called high-level visual recognition. This is one of the most fundamental and important

functionalities of an intelligence system which is required for improving the effectiveness of

HRVR. Much work remains to be done on this field within from the computer vision community.

Multimodal integration. Another interesting direction for future research could be information

integration from different systems such as video, and text. However, this presents some

difficulties: (i) there are still far fewer videos than still images typically used to train a network;

(ii) training and deploying algorithms trained on videos will be much more intensive in terms

of computational power; (iii) we cannot assume complete annotation for text reports; (iii) there

is a serious imbalance in the number of languages used for reporting human rights violations.
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