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Abstract. Objective: Electroencephalogram (EEG) signals are non-stationary. This could be
due to internal fluctuation of brain states such as fatigue, frustration, etc. This necessitates
the development of adaptive Brain-Computer Interfaces (BCI) whose performance does not
deteriorate significantly with the adversary change in the cognitive state. In this paper, we
put forward an unsupervised adaptive scheme to adapt the feature extractor of motor imagery
(MI) BCIs by tracking the fatigue level of the user. Approach: Eleven subjects participated in
the study during which they accomplished MI tasks while self-reporting their perceived levels
of mental fatigue. Out of the 11 subjects, only 6 completed the whole experiment, while the
others quit in the middle because of experiencing high fatigue. The adaptive feature extractor
is attained through the adaptation of the common spatial patterns (CSP), one of the most
popular feature extraction algorithms in EEG-based BCIs. The proposed method was analyzed
in two ways: offline and in near real-time. The separability of the MI EEG features extracted
by the proposed adaptive CSP (ADCSP) has been compared with that by the conventional CSP
(C-CSP) and another CSP based adaptive method (ACSP) in terms of: Davies Bouldin Index
(DBI), Fisher Score (FS) and Dunn’s Index (DI). Results: Experimental results show significant
improvement in the separability of MI EEG features extracted by ADCSP as compared to that
by C-CSP and ACSP. Significance: Collectively, the results of the experiments in this study
suggest that adapting CSP based on mental fatigue can improve the class separability of MI
EEG features.

Keywords: Motor Imagery, EEG, BCI, Common Spatial Patterns, Adaptation, Mental
Fatigue
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1. Introduction

Brain-Computer Interface (BCI) is a communication
methodology that translates the intent of a user
measured through brain signals into control commands
for devices such as neuroprosthesis or computer
applications. Even though there are a number
of modalities of capturing brain signals for BCIs,
non-invasive electroencephalogram (EEG) for motor
imagery (MI) remains one of the most popular.
Imagination of movements known as motor imagery
(MI) can induce changes in EEG signals and has
attracted the attention of the researchers as a basis
of BCIs. Deterioration of motor function due to
spinal cord injuries, accident or stroke leads to motor
disabilities and to this end EEG-based MI BCI
provides promising solutions.

A lot of issues have been reported on the reliability
of MI tasks and accompanying changes in EEG signals
[1]. One such predicament is the non-stationary nature
of EEG signals. One of the major causes of such non-
stationarity is the change in the cognitive state of the
users like attention, concentration, workload, fatigue,
etc. [2]. In EEG-based MI BCIs, significant mental
effort is required to concentrate on MI tasks. Repeated
accomplishment of MI tasks for a prolonged period can
be tedious. Subjects may experience loss of attention,
drowsiness or fatigue. This change in the cognitive
state may lead to signal fluctuations or variations/
shifts in the statistics of EEG signals from trial to trial
and from day to day. This may cause degradation in
the MI EEG features, declining their class separability.

Different methods have been developed to address
the non-stationary nature of EEG signals. These meth-
ods focused on the adaptation of feature extractors [3–
9], classifiers [10–12] or on post-processing level [13].
Adaptation of feature extractors has been attained in
the literature mostly through adaptation of common
spatial patterns (CSP) [4, 5, 8, 9], one of the most
popular methods of extracting features in MI BCI. It
is a two-class supervised and subject specific method
that constructs spatial filters based on training data
which maximize the variance of one class while min-
imizing the variance of the other [14]. However, due
to non-stationary nature of EEG, the CSP computed
on the training data may not be optimal for the eval-
uation data, which in turn may lead to the significant
shift in the feature space between the training and the
evaluation sessions. Most of the adaptation of CSPs

have been attained in a supervised manner by estimat-
ing the target data’s class label first and adapting the
covariance matrix of the estimated class [3–6]. Taluk-
dar et al. [15] adapted CSP through active learning
which is a semi-supervised approach. Song et al.[7] pro-
posed an unsupervised method of adapting CSP with-
out estimating the target data class labels (named as
ACSP) and portrayed its benefits over the existing su-
pervised methods. Although there exist many methods
for adapting CSP to address the non-stationary nature
of EEG, none of them adapt it by taking the cognitive
state into account.

Myrden et al.[2] have shown the effect of mental
states on BCI performance. Recent work [16] has
reported the inter-relationship between MI and mental
fatigue, i.e., a prolonged session of MI induces mental
fatigue which in turn decreases the separability of
MI EEG features. In such cases, there is an ample
necessity for continuously monitoring the change in
the user’s cognitive state to decide when to initiate
adaptation in a proper manner. Myrden et al.
[17] presented an adaptive BCI based on fatigue,
frustration and attention level where adaptation was
achieved by resampling the training set and retraining
the classifier. Their analysis was made offline.

This study presents a novel methodology to
adapt CSP based on the fatigue state of the user
(abbreviated as ADCSP in this paper). CSP is
updated by updating the covariance matrices of each
class without estimating the target data’s class labels.
Mental fatigue level has been used as a metric to
activate the adaptation. The growth of mental
fatigue was tracked using the Kernel Partial Least
Square method [18]. Talukdar et al. [16] have
presented a detailed formulation of fatigue analysis.
The covariance matrices of CSPs are updated using
adaptive weights. The adaptation is made both
offline and in near real-time and is activated during
high fatigue level. Near real-time processing is when
the speed/rate is important, but processing time in
minutes can be accepted in place of seconds. It
is a processing that is slightly slower than the real
time processing. No classification or estimation of
the target data class labels is needed in the adaptive
scheme. The effectiveness of the ADCSP has been
evaluated in comparison to that of the conventional
CSP (abbreviated as C-CSP in this study) and ACSP
[7] in terms of three separabiltiy metrics: Davies
Bouldin Index (DBI) [19], Dunn’s Index (DI) [20] and
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Fisher Score (FS) [21]. ACSP has been chosen for
comparison since it is also an unsupervised adaptive
scheme.

The rest of the paper is organized as follows:
Section 2 describes the materials and methods used in
the study. Section 3 presents the experimental findings
while Section 4 discusses the results. Finally, Section 5
concludes the paper.

2. Materials and Methods

2.1. Acquisition of Motor Imagery - Mental Fatigue
EEG Data

EEG data was collected from 11 individuals at the
University of Essex, England. Before the experiment,
the subjects gave their informed consent using a form
approved by the Ethics Committee of University of
Essex. The consent form contains information about
the EEG recording procedure and the purpose of the
EEG experiment.

The subjects completed two pre-test self-report
measures: Visual Analogue Scale - Fatigue (VAS-F)
[22] and Chalder Fatigue Scale (CFS) [23]. Thereafter,
the subjects performed 4 different MI tasks: a. left
hand movement (Class 1) b. right hand movement
(Class 2) c. both feet movement (Class 3), and d.
tongue movement (Class 4) for one complete session.
A session consists of 8 runs. Each run lasts 12
minutes and consists of 80 trials. Each trial begins
with a fixation cross that appears on the computer
screen along with a short acoustic warning tone. It
is followed by a cue that appears either left, right,
down or up of the fixation cross indicating the subjects
for the imagination of left hand, right hand, both
feet, or tongue movement respectively. The subjects
accomplished the desired task until the cue and the
fixation cross disappeared from the screen at t = 6
sec. There was a break for 3 secs between trials. No
extra break was there between runs. The experimental
paradigm is illustrated in Figure 1.

The fatigued state at the end of each run was rated
by using a ”fatigue scale” - a subjective scale with a
value from 1 to 5 that extends between two extremes (1
= ”Least fatigued” and 5 = ”Most fatigued”). Subjects
chose a number along the scale to express the fatigue
they were experiencing. This was taken as the fatigue
score of that particular run. The subjects completed
the post-test self-report using a. VAS-F and b. CFS.
Five out of the 11 subjects quit in the middle of the
experiment because of high fatigue level.

EEG data was recorded using Biosemi Active
Two System. Sixty four EEG channels were used
to record the data following the 10-20 international
montage system. The sampling frequency was 256
Hz. EAWICA was used to remove the artefacts

Figure 1: The experimental paradigm

[24]. Thereafter, EEG data were low-pass filtered with
40 Hz as the cut off frequency and then subtracted
by common average reference. The EEG data from
instant t=0 to t=6 were then analysed.

2.2. Monitoring the Growth of Mental Fatigue during
MI

Monitoring of the growth of mental fatigue through
EEG has been carried out on the 6 subjects who
completed all the 8 runs of the experiment. Spectral
power and spectral entropy were used as features and
were computed in four frequency bands, δ (0.1-3.5 Hz),
θ (4-7.5 Hz), α (8-12 Hz) and β (13-30 Hz) from five
different areas of the scalp: frontal (F1, F3, F5, F7,Fz,
F2, F4, F6, AFz, AF3, AF4 and FPz), parietal (P1,
P3, P5, P7, Pz, P2, P4, P6, POz, PO3, PO4 and
CPz), temporal (FT8, T8, TP8, FT7, T7, and TP7),
central (C1, C3, C5, Cz, C2, C4,C6) and occipital
(O1, O2, Oz). The features that exhibit a significant
increase during the last run as compared to that during
the first run were identified as optimum features and
selected for monitoring the growth of mental fatigue.
The Kernel Partial Least Square (KPLS) algorithm
[18] was used for monitoring the growth of fatigue
which is a non-linear regression method based on
the projection of input (explanatory) variables to the
latent vectors (components) [18]. The KPLS algorithm
took as input the optimal feature vector and the two
class labels, low fatigue (-1) and high fatigue (+1) and
predicts KPLS scores as output. The KPLS scores
are the projection of the observations onto the KPLS
regression coefficients. The KPLS score of each trial
can be interpreted as “fatigue score” of that trial. The
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fatigue score has been referred as f in this study. Since,
-1 and +1 are the two classes,-1 for low fatigue state
and +1 for high fatigue state, KPLS scores lies in
the range of [-1 1]. Negative scores represents low
fatigue state and positive scores as high fatigue state.
The mean of the KPLS scores for each run was then
computed which was interpreted as fatigue score of
that particular run. The KPLS model was validated
with respect to the subjective scores obtained through
fatigue scale.

On the basis of the fatigue score obtained through
KPLS, each run was classified as either low or high
fatigue level using the K-means algorithm. MI
EEG feature separability was estimated in terms of
DBI, DI, and FS during each level of fatigue. A
detailed formulation of fatigue analysis can be found
in Talukdar et al. [16].

2.3. Adaptive Common Spatial Patterns (ADCSP)

CSP is the most widely used method for feature
extraction in MI BCI. It uses a spatial filter to
discriminate the spatial patterns for two classes. It
takes as input the amplitudes of N channel EEG
recorded at T consecutive time points and produces as
output an ordered list of distinctive spatial patterns.
A few discriminative patterns are substantial for
differentiating two classes, and are referred to as CSPs.
A detailed formulations of CSP can be found in [14].

CSP computation is based on the covariance
matrix of each class. This study proposes a new
unsupervised adaptive method named as ADCSP
to update CSP during high fatigue level. It
updates the covariance matrices of each class by
adding regularisation parameters without estimating
the target data’s class labels. ADCSP is obtained
through Eq 1 and Eq 2 as follows,

C1 = ((1− γ) ∗R a) +
γ

N
∗ trace(R a) ∗ I (1)

C2 = ((1− γ) ∗R b) +
γ

N
∗ trace(R b) ∗ I (2)

where C1 and C2 are the updated covariance matrices
of class 1 and class 2 respectively, β and γ are two
regularization parameters, I is an identity matrix of N
× N and R a, R b are defined as follows:

R a =
((1− β) ∗ C1) + ((1−K1) ∗ pV ect2 ∗ β)

N a+ 1;
; (3)

R b =
((1− β) ∗ C2) + ((1−K2) ∗ pV ect2 ∗ β)

N b+ 1;
; (4)

where C1 and C2 are the current covariance matrices of
class 1 and class 2 respectively, pVect2 is the covariance
matrix of testing data with unknown class labels,
K1 and K2 are the Kullback-Leibler divergence (KL)

between the testing and training data of class 1 and
class 2 respectively. N a and N b are the number of
training trials of class 1 and class 2 respectively.

KL measures how the probability distribution of
target data diverges from the probability distribution
of testing data and is computed as follows:

Ky(pnew, ptrain) = 0.5(trace(C−1
y Cy,new)−log[

det(Cy,new)

det(Cy)
]−M)

(5)

where, pnew and ptrain are the probability distributions
of new target EEG trial and training data respectively,
det represents determinant of matrix, Cy,new and Cy

are the covariance matrices of new EEG data and
training data respectively, M is the dimension of
covariance matrix and y ∈ {1,2}.

Since, Ky(pnew,ptrain) 6= Ky(ptrain,pnew), Ky can
be symmetrized as follows [7]

Ky = 0.5(Ky(pnew, ptrain) +Ky(ptrain, pnew)) (6)

The idea of using β and γ is derived from the work
of Lu et al.[25]. Large β shrinks the current covariance
matrix towards the testing covariance matrix while
large γ shrinks the current covariance matrix towards
the identity matrix to counter the bias due to small
training set [25]. The values for β was searched in
the range of [0,1] and [1,10] while the values for γ was
searched in the range of [0,1] for all subjects. Two
different ranges were used for β because in case the
high fatigue testing data is quite different from the
training data, larger β value works. The value of β
and γ within the aforesaid ranges that give the best
validation performance (in terms of DBI, DI and FS)
is chosen for analysis. However, unlike Lu et al. [25], in
addition to the two regularisation parameters β and γ,
we also used KL between training and testing data to
update the spatial filter. KL has been used to update
the covariance matrices because based on the KL we
can estimate the difference between the training and
testing data and update the covariance matrix of each
class accordingly.

2.3.1. Implementation of ADCSP: ADCSP can be
implemented for both offline or in near real-time
analysis. The adaptation in near real-time is done on
trial basis while offline adaptation is done on all the
runs that come under high fatigue level. In Fig 2 we
show when the adaptation is activated. The EEG data
were divided into training and evaluation data. The
training data (T) comprises of first two runs while the
evaluation data (E) comprises of runs 3-8 for the offline
analysis and runs 3-7 runs for near real-time analysis.
For offline analysis, evaluation data were clustered into

Page 4 of 15AUTHOR SUBMITTED MANUSCRIPT - JNE-102935.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



5

two levels based on the fatigue score using the K-means
clustering: low fatigue (L) and high fatigue (H). No
adaptation of the spatial filter was carried out during
low fatigue level, but adaptation was performed during
high fatigue level. While for near real-time analysis,
the trial with positive fatigue score is classified as high
fatigue trial and negative fatigue score as low fatigue
trials. Adaptation is activated when a high fatigue trial
is found.

The detailed implementation of ADCSP for offline
analysis (named as ADCSP-I) is shown in Algorithm 1
and implementation of ADCSP in near real-time
(named as ADCSP-II) is shown in Algorithm 2.

Figure 2: Conceptual overview of when to adapt. The
adaptation is activated during high fatigue level, no
adaptation is carried out during low fatigue level

(i) ADCSP-I: ADCSP-I relies on fatigue score (f) of
a particular run based on which the fatigue level
of the user during that run can be estimated. f
is estimated as illustrated in Section 2.2. Hence,
ADCSP-I starts by performing fatigue analysis
on the evaluation data to compute f of each
run. ADCSP-I then categorises the runs of the
evaluation data into two levels of fatigue: low
fatigue and high fatigue based on the fatigue score
using the K-means clustering algorithm. The
adaptation is done on the runs that come under
high fatigue level. The detailed algorithm is shown
in Algorithm 1.

The fatigue score f is calculated by the following
function namely Fatigue Analysis.

• Fatigue Analysis (i, E): For any run i of
evaluation data E, this module performs the
fatigue analysis of a subject during the ith run
and compute the fatigue score f. Based on f,
the fatigue level during ith run is estimated

Algorithm 1: ADCSP-I - ADCSP for offline
analysis

Input: Y=EEG data with the 8 runs, Tcsp=training
set to compute CSP projection matrix (first
two runs), E=evaluation data (3rd to 8th
runs), N1 = no. of runs in E

Output: Wo = CSP projection matrix,
Wnew=updated CSP projection matrix

r=1, i=3;
Low Fatigue =[], High Fatigue = [] ;
Compute C1 and C2 on Tcsp;
Compute Wo on Tcsp ;
while r ≤ N1 do

level fatigue (r) = Fatigue Analysis (i,E);
if level fatigue (r) == L then

Low Fatigue = [ Low Fatigue, i ];
i ← i+ 1
r ← r + 1

end
else if level fatigue (r) == H then

High Fatigue = [ High Fatigue, i ];
i ← i+ 1
r ← r + 1

end

end
for all runs ∈ Low Fatigue
Extract features on Wo;
Select features ;
end
for all runs ∈ High Fatigue
Compute K1 and K2;
Update C1 and C2 as in Eq. 1 and Eq. 2 respectively;
Compute Wnew on the updated C1 and C2;
Extract features with Wnew and select features;
end

function Fatigue Analysis(i, E)
Perform fatigue analysis on ith run of E to compute

fatigue score (f);
Estimate the level of fatigue during the ith run of E

using K-means algorithm;
if low fatigue level then

level fatigue ← L
end
else if high fatigue level then

level fatigue ← H
end
return(level fatigue);
end function

using the K-means clustering algorithm.

(ii) ADCSP-II: ADCSP-II adapts the CSPs in near
real-time on trial basis. To explain how this
algorithm works, some other parameters, such as
the length of the adaptation window and the initial
time when the adaptation should start are used
and explained as follows:

(a) Fatigue score (f) : This gives the score of
fatigue level of the user during a particular
trial. The fatigue score is estimated through
EEG as illustrated in Section 2.2. The
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Algorithm 2: ADCSP-II - ADCSP in near
real-time

Input: Y=EEG data with the 8 runs, Tf=training set
to estimate fatigue score (first and last runs),
Tcsp=training set to compute CSP projection
matrix (first two runs), E=evaluation data
(3rd to 7th runs), i=1, t=0, β, γ, p = window
length, nt = number of contiguous high fatigue
trials

Output: Wnew=final CSP projection matrix

t=p;
Compute C1 and C2 on Tcsp;
Compute Wo on Tcsp ;
foreach trial i ∈ E do

level fatigue = Fatigue Analysis (i,E);
if level fatigue == L then

Extract features on Wo of ith trial;
Select features ;
i ← i+ 1

end
else if level fatigue == H then

Extract features on Wo of ith trial;
i← i+ 1
(i, Wo, t)= Adapt CSP(i, E, Wo, t, C1, C2);
i ← i+ 1
t ← t+ p

end

end

function Fatigue Analysis(i, E)
Perform fatigue analysis on ith trial of E to compute

fatigue score (f);
Estimate the level of fatigue during the ith trial of E

using K-means algorithm;
if low fatigue level then

level fatigue ← L
end
else if high fatigue level then

level fatigue ← H
end
return(level fatigue);
end function

KPLS score of each trial was computed
and interpreted as the fatigue score of that
particular trial.

(b) Length of the adaptation window : The length
of the adaptation window is the time period
when the adaptation starts till it reaches the
stopping criteria as defined in Eq. 7

|f2(k)− f2(k − 1)| < φ, (7)

where, φ is a pre-determined positive con-
stant, k is the kth iteration and

f2(k) =
N∑
i=1

|
(W

(k)
i )TS

(k)
L (W

(k)
i )

(W
(k)
i )TS

(k)
R (W

(k)
i )
| (8)

where W
(k)
i is the ith column of the spatial

function Adapt CSP(i, E, Wo, t, C1, C2)
Compute K1 and K2;
Update C1 and C2 as in Eq. 1 and Eq. 2 respectively;
Compute Wnew on the updated C1 and C2;
Extract features with Wnew of ith trial and select

features;
(i, Wo, t) = Check (Wnew,Wo, E, t, i, C1, C2);
return(i, Wo, t);
end function

function Check (Wnew,Wo, E, j, t, i)
Evaluate the criterion as in Eq. 7;
i=i+1;
if the criterion is satisfied then

Adaptation stops;
(i,Wo,t) = After adapt ( i, E, t, Wnew);
return(i, Wo, t);

end
else

Wo = Wnew;
(i, Wo, t) = Adapt CSP(i, E, Wo, t, C1, C2);

end
end function

function After adapt(i, E, t, Wnew)
Wo = Wnew;
while i ≤ t do

n2= nt + i;
foreach i<=n2 do

level fatigue = Fatigue Analysis (i,E);
Extract features of ith trial with Wo and select

features;

end
if level fatigue of all theses n trials == H then

i← n2 + 1
(i, Wo, t) = Adapt CSP(i, E, Wo, t, C1, C2);
Wo ←Wnew;

end
else

i ← n2 + 1
end

end
return(i,Wo,t)
end function

filter, S
(k)
L and S

(k)
R are computed as follows

S
(k)
L = C1 − C2, S

(k)
R = C1 + C2 (9)

with C1 and C2 being the covariance matrices
of Class 1 and Class 2 respectively.
Eq. 8 computes the sum of Rayleigh coef-
ficients. Since the advantage of CSP fea-
ture extraction has been demonstrated in the
paradigm of maximization of Rayleigh co-
efficients, the improvement in the sum of
Rayleigh coefficients leads to better class sep-
arability of the features [26]. Hence, this
study uses this concept as the stopping cri-
terion of the adaptive scheme.

(c) Initial time (init) : Is the initial time when
the adaptation starts which is updated based
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on the fatigue score estimated through EEG.
When fatigue level is high, we hypothesize
that adapting the trial with high fatigue level
would yield better performance and hence the
adaptation starts. The updating of init is
described in Algorithm 2.

Both ADCSP-I and ADCSP-II rely on fatigue
score as well as values of β and γ. ADCSP-II depends
on four major modules namely Fatigue Analysis,
Adapt CSP, Check, and After adapt. The evaluation
data E is divided into different windows of length ’p’
so as to perform the monitoring of the fatigue level
efficiently. Hence, ADCSP-II also relies on the values of
’p’ and ’nt’. nt is a variable used to denote the number
of contiguous high fatigue trials. Different values of
p (p=50,100,200,300, 400) and nt (nt ∈ [1 10] is an
integer) have been tested and the best one (p=200,
nt=10) were used for the study. The range of p and nt

is same for all the subjects.

• Fatigue Analysis (i, E): Unlike Fatigue Analysis
of ADCSP-I, this module computes the fatigue
score of each trial. For any trial i of evaluation
data E, the module performs the fatigue analysis
of a subject during the ith trial and compute
the fatigue score f. Based on f, the level of
fatigue during ith trial is estimated using K-means
algorithm.

• Adapt CSP (i, E, Wo, t): This module updates
the existing CSP projection matrix (Wo) to
compute new CSP projection matrix (Wnew)
considering the ith trial of the evaluation data E.

• Check (Wnew, Wo, E, t, i): The stopping criterion
of the adaptive process is checked in this module.

• After adapt(i,E, t, Wnew): This module is
activated when adaptation stops. It checks for ’nt’
contiguous high fatigue trials. If ’nt’ contiguous
high fatigue trials are found, then the module
starts adapting the subsequent trials, otherwise no
adaptation is performed. This process continues
for a specific window length ’p’.

2.4. MI EEG Feature Separability Evaluation

Separability of extracted features can be computed
directly by using certain metrics like DBI, FS, etc.or
indirectly in terms of classification accuracy [27].

In object classification, one needs to predict the
class of an unseen object by identifying the class-
distribution pattern. This is only possible when
the diction ”similar objects tend to cluster together”
is true [28]. Due to the high dimensionality of
the dataset, it cannot be immediately visualized to
identify the class-distribution [28]. Hence, using a
method that can give information on the separability of

features without using multiple sets of computationally
expensive classifiers would be advantageous [28]. And
there comes the role of separability indices. Since
classification performance depends on the separability
of the classes, it can be deduced that the higher
separability of features leads to the increase in
classification performance [27].

This study uses three such separability indices,
DBI, DI and FS to evaluate the separability of features.
Lower value of DBI and higher value of DI and FS
indicates higher MI EEG feature separability. Unlike
using classifiers, no pre-training is required when using
separability indices. They are independent of the
number of groupings and the grouping algorithm used
[29] and hence are simple, feasible and time saving
[30]. Friedman statistical test has been carried out
to examine statistical significance. The significant
difference between the separability of MI EEG features
extracted with C-CSP and ADCSP and that with
ACSP and ADCSP is shown by X.

3. Experimental Results

3.1. Monitoring the Growth of Mental Fatigue during
MI

The growth of fatigue was tracked on the 6 subjects
who completed the whole experiment using the KPLS
algorithm that consists of two key steps: i. KPLS
model selection and ii. KPLS model prediction. KPLS
model is subject-specific. During the KPLS model
selection, the optimal number of KPLS components
(KPLS latent vectors) for each subject that provides
the maximum classification accuracy with Linear
Discriminant Analysis (LDA) was identified. For
estimating the optimal number of components, the
first and the last runs were used as training as well
as testing data, with the first run as active state and
the last run as fatigue state. The KPLS components
were evaluated in the range of 1 to 10. During KPLS
model prediction, the KPLS scores of each trial of
all the runs were predicted. In our work [16], the
analysis of EEG spectral power and spectral entropy
from different frequency bands in different areas of the
scalp showed that spectral power increases during the
last run as compared to that of the first run. δ, θ and α
power from frontal region, α power from parietal lobe,
δ, θ and α power from temporal lobe and θ power from
occipital lobe has been considered as optimal features
since they show significant increase during the last run
as compared to that of the first run; while β power
from all the lobes shows insignificant change between
the first and last runs. The KPLS score of each trial
can be interpreted as the fatigue score of that trial.
The mean of the KPLS scores of each run was then
computed and interpreted as the fatigue score of that
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Figure 3: Means of KPLS scores for each run with 6
subjects

Table 1: Correlation between the trends of KPLS
scores and subjective scores

ID Runs 1-8 Runs 2-7

Corr. Coeff p-value Corr. Coeff p-value

S1 0.9825 1.32e−5 X 0.92 0.025 X
S2 0.891065 0.001418 X 0.66 0.21 ×
S3 0.917 0.0004 X 0.88 0.048 X
S5 0.960346 0.29e−5 X 0.95 0.005 X
S6 0.89 0.0032 X 0.82 0.065 ×
S11 0 1 × 0 1 ×

particular run. For each of the 6 subjects, the fatigue
scores were plotted in a graph as shown in Figure 3.

The KPLS model was validated with respect to
the subjective scores obtained through fatigue scale.
Table 1 shows the correlation between the KPLS model
and the subjective scores. The first column shows the
Subject id, 2nd and 3rd column shows the correlation
between KPLS model and the subjective scores taking
runs 1-8 and 2-7 into account respectively. This is
because, runs 1 and 8 were used for training the KPLS
model and hence training may find some combination
of input features to maximise the separability between
runs 1 and 8. Hence, correlation was also found for
runs 2-7.

The result shows that five subjects showed a
strong correlation (> 0.5) between the KPLS scores
and the subjective scores. In case of Subject 11 no
correlation was found. Hence the rest of the analysis
was carried out on the 5 subjects. Talukdar et. al. [16]
has detailed formulation for fatigue analysis.

Based on these computed fatigue scores, each
run of the evaluation data was then categorized as
either low or high fatigue state by using the K-means
algorithm [16]. Table 2 shows the runs categorized
as low and high fatigue level based on the computed
fatigue score. The first column shows the subject id
while the second and the third columns show the runs

Table 2: Runs categorized as low or high fatigue level

Subject id Low fatigue High fatigue

S1 3,4 5,6,7,8
S2 6,7 3,4,5,8
S3 3,5,6 4,7,8
S5 3,4,7 5,6,8
S6 3,7 4,5,6,8

categorized as low and high fatigue level respectively.

3.2. Evaluation of the Separability of MI EEG
Features

3.2.1. Feature Extraction and Selection To evaluate
MI EEG feature separability, this study performs op-
timal spatio-temporal filtering by employing ADSWIN
[31], an adaptive sliding window approach that auto-
matically segments the EEG trials and selects the best
segment to give the optimal spatio-temporal patterns.

CSP was employed for extracting features of each
segment obtained through ADSWIN. DBI was used as
a cost function to identify the optimal segment. The
EEG segment with minimum DBI was then selected
as optimal EEG segment. CSP projection matrix
was computed based on the selected optimal time
segment to create a spatio-temporal profile. A detailed
formulation of the method can be found in [31].
ADSWIN adapts two parameters, default segment
length (ωd) and overlapping region (δ) to compute the
optimal spatio-temporal patterns. In this study, two
different ranges of ωd were analyzed ([3.6 4.5] seconds,
i.e., [922 1152] time points and [2.99 3.5] seconds,
i.e., [767 896] time points) because ωd lower than 2.99
seconds would be too small to find the optimal number
of time points and ωd higher than 4.5 seconds may be
too large. The best values of both ranges were chosen
for ωd. Two different values of δ (1 sec, i.e., 256 time
points and 0.5 sec, i.e., 128 time points) were examined.
The values of δ were chosen in such a way that it
maintains even distributions along the trial. Also, it
was set such that the larger value of δ would keep
more historic information rather than new information.
Different bandpass filter banks were examined and the
best two (FB1: 4-9 Hz, 9-17 Hz, 15-30 Hz, 30-40 Hz and
FB2 :4-9 Hz, 9-16 Hz, 15-32 Hz, 30-40 Hz) were chosen
for the study. Based on the different combinations of
ωd and δ, four segments were then investigated for each
filter bank. The spatio-temporal filter was then used
to extract the features and KPLS-mRMR [32] selects
the features. The number of selected features was set
to 25.
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Table 3: DBI score from offline analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I

S1 15 13 12 17 19 14 13 14 12 20 20 15
S2 15 12 12 15 13 13 15 15 11 15 15 11
S3 26 21 19 27 23 18 23 21 15 25 21 18
S5 15 15 12 13 11 11 15 15 12 14 13 13
S6 17 19 16 17 19 16 17 20 14 17 20 14

Avg 17.6 16 14.2 17.8 17 14.4 16.6 17 12.8 18.2 17.8 14.2

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I
S1 16 16 13 17 18 14 15 15 12 21 16 15
S2 15 12 12 13 12 11 18 13 11 18 13 11
S3 28 21 20 25 20 18 32 25 18 28 23 17
S5 12 14 10 15 15 12 12 10 10 14 13 13
S6 18 19 15 20 22 14 18 20 14 18 20 14

Avg 17.8 16.4 14.2 18 17.4 13.8 19 16.6 13 19.8 17 14

3.2.2. ADCSP-I: ADCSP for Offline Analysis

(i) Training and Testing Sessions: To carry out
the offline analysis, the first two runs were used to
compute the optimal spatio-temporal filter. The
last 6 runs were used as evaluation data . Eval-
uation data were categorized as low and high fa-
tigue level by K-means algorithm as described in
Section 2.2. Table 2 shows the runs of the exper-
iment that have been categorized as low or high
fatigue level. The CSPs during high fatigue level
were then adapted using Algorithm 1. ACSP for
offline analysis is implemented in the same way as
ADCSP-I.

(ii) Results: ADCSP-I has been tried on the runs
that have been categorized as high fatigue level.
Table 3, Table 4 and Table 5 show the separabil-
ity of MI EEG features extracted with ADCSP-I
in terms of DBI, FS and DI respectively. In these
tables, the top half show the results for FB1 while
the bottom half show the results for FB2. The first
column shows the Subject id, 2nd to 13th columns
present the DBI/FS/DI values of C-CSP, ACSP
and ADCSP-I for the four segments (ω1,δ1;ω1,δ2;
ω2,δ1; ω2,δ2) respectively. The results of the Fried-
man statistical test are shown in Table 6 which
demonstrate that ADCSP-I significantly outper-
formed C-CSP and ACSP in about 80% of the
tests. Fig. 4 shows the class distributions of each
task for Subject 1. The other subjects have sim-
ilar distribution pattern. The center of each el-
lipse represents the class mean under that condi-

tion while the size of the ellipse represents the 95%
confidence interval for the class, oriented along the
eigenvectors of the covariance matrix. It is seen
that all the four classes are more separable in case
of ADCSP while in case of C-CSP, the classess are
inseparable.

3.2.3. ADCSP-II: ADCSP in Near Real-time

(i) Training and Testing Sessions:
To evaluate the performance of ADCSP-II, the
first two runs were used for training to compute
the optimal spatio-temporal filter. The first and
the last run were used for training the KPLS
model for fatigue analysis while the 3rd to 7th
runs were used for evaluation. CSP was adapted
on trial basis. ACSP for near real-time analysis is
implemented in the same way as ADCSP-II.

(ii) Results:
Table 7, Table 8 and Table 9 show the separability
of MI EEG features extracted with ADCSP-II in
terms of DBI, FS, and DI respectively. In these
tables, the top half show the results of FB1 while
the results of FB2 are shown in the bottom half.
The first column shows the Subject id, the 2nd to
13th columns present the DBI/FS/DI values of C-
CSP, ACSP and ADCSP-II for the four segments
((ω1,δ1;ω1,δ2; ω2,δ1; ω2,δ2) respectively. The re-
sults of the Friedman statistical test are shown
in Table 10, which demonstrate that ADCSP-II
significantly outperformed C-CSP and ACSP in
about 98% of the tests.
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Table 4: Fisher score from offline analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I

S1 0.04 0.074 0.21 0.05 0.05 0.17 0.007 0.097 0.14 0.02 0.097 0.19
S2 0.58 0.29 1.01 0.41 0.87 1.03 0.3 0.83 1.01 0.3 0.83 1.01
S3 0.004 0.01 0.027 0.003 0.03 0.067 0.009 0.04 0.068 0.004 0.03 0.067
S5 0.27 0.14 0.35 0.23 0.24 0.38 0.27 0.12 0.35 0.21 0.12 0.26
S6 0.06 0.049 0.09 0.07 0.06 0.12 0.06 0.07 0.16 0.06 0.07 0.16

Avg 0.19 0.26 0.47 0.15 0.25 0.35 0.13 0.23 0.35 0.12 0.23 0.34

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I

S1 0.07 0.11 0.24 0.04 0.052 0.35 0.02 0.09 0.13 0.01 0.04 0.32
S2 0.49 0.93 0.83 0.79 0.87 1.54 0.3 0.82 0.99 0.3 0.81 0.99
S3 0.005 0.01 0.03 0.001 0.02 0.04 0.003 0.03 0.07 0.007 0.01 0.02
S5 0.22 0.32 1.32 0.16 0.24 0.41 0.22 0.32 1.32 0.15 0.25 0.25
S6 0.06 0.05 0.1 0.06 0.05 0.09 0.06 0.1 0.13 0.06 0.1 0.13

Avg 0.17 0.28 0.51 0.21 0.25 0.49 0.13 0.27 0.53 0.11 0.24 0.34

Table 5: DI score from offline analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I

S1 0.07 0.1 0.09 0.08 0.07 0.11 0.1 0.08 0.12 0.07 0.06 0.09
S2 0.13 0.14 0.16 0.11 0.12 0.14 0.1 0.11 0.17 0.1 0.11 0.17
S3 0.08 0.08 0.09 0.07 0.08 0.09 0.07 0.09 0.11 0.07 0.08 0.09
S5 0.1 0.13 0.14 0.11 0.15 0.16 0.1 0.12 0.14 0.1 0.13 0.14
S6 0.1 0.097 0.12 0.1 0.094 0.11 0.1 0.014 0.13 0.1 0.01 0.13

Avg 0.09 0.11 0.12 0.09 0.1 0.12 0.09 0.09 0.13 0.09 0.08 0.12

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I CSP ACSP ADCSP-I
S1 0.07 0.08 0.09 0.1 0.07 0.11 0.07 0.08 0.12 0.07 0.08 0.09
S2 0.11 0.14 0.14 0.07 0.14 0.17 0.08 0.12 0.16 0.08 0.13 0.16
S3 0.06 0.07 0.08 0.09 0.09 0.1 0.05 0.07 0.09 0.05 0.08 0.09
S5 0.16 0.12 0.17 0.1 0.12 0.14 0.16 0.12 0.17 0.1 0.13 0.14
S6 0.09 0.09 0.12 0.08 0.07 0.13 0.09 0.09 0.13 0.09 0.09 0.13

Avg 0.09 0.1 0.12 0.09 0.1 0.13 0.09 0.1 0.14 0.08 0.1 0.13

Table 6: Statistical significance test of ADCSP-I vs C-CSP and ACSP for offline analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I
DBI 0.045 (X) 0.05 (×) 0.045 (X) 0.13 (×) 0.045 (X) 0.045 (X) 0.045 (X) 0.06 (×)

Fisher Score 0.03 (X) 0.06 (×) 0.045 (X) 0.045 (X) 0.03 (X) 0.045 (X) 0.045 (X) 0.045 (X)
DI 0.045 (X) 0.045 (X) 0.045 (X) 0.03 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.07 (×)

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I CSP vs ADCSP-I ACSP vs ADCSP-I
DBI 0.045 (X) 0.06 (×) 0.045 (X) 0.13 (×) 0.045 (X) 0.045 (X) 0.03 (X) 0.06 (×)

Fisher Score 0.06 (×) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.03 (X) 0.045 (X)
DI 0.045 (X) 0.045 (X) 0.045 (X) 0.06 (×) 0.045 (X) 0.045 (X) 0.045 (X) 0.03 (X)
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Table 7: DBI score from near real-time analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II

S1 12 20 11 13 21 12 9 25 11 17 23 16
S2 19 31 18 18 25 16 21 20 18 21 41 18
S3 33 27 25 37 22 26 34 26 26 30 26 24
S5 17 30 16 17 21 16 17 30 16 16 27 15
S6 25 30 20 20 29 19 26 29 17 26 27 17

Avg 21.2 27.6 18 21 23.6 17.8 21.4 26 17.6 22 28.8 18

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II
S1 16 25 12 12 27 11 16 25 12 21 30 16
S2 19 31 17 20 30 18 19 25 18 19 25 18
S3 35 28 27 37 24 25 28 27 25 35 30 24
S5 19 27 16 19 28 16 19 29 16 17 27 16
S6 24 30 17 24 26 21 22 24 16 22 23 16

Avg 22.6 28.2 17.8 22.4 27 18.2 20 26 17.4 22.8 27 18

Table 8: Fisher score from near real-time analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II

S1 0.06 0.024 0.25 0.14 0.002 0.2 0.12 0.003 0.34 0.06 0.01 0.07
S2 0.14 0.01 0.22 0.17 0.007 0.34 0.14 0.005 0.3 0.14 0.05 0.3
S3 0.005 0.003 0.18 0.004 0.008 0.009 0.005 0.01 0.01 0.005 0.003 0.01
S5 0.15 0.007 0.28 0.15 0.006 0.28 0.15 0.002 0.28 0.25 0.04 0.33
S6 0.02 0.001 0.08 0.03 0.005 0.05 0.02 0.003 0.16 0.02 0.004 0.16

Avg 0.07 0.01 0.17 0.09 0.006 0.18 0.09 0.004 0.22 0.09 0.021 0.17

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II
S1 0.12 0.03 0.15 0.12 0.02 0.26 0.1 0.01 0.3 0.07 0.002 0.11
S2 0.14 0.08 0.24 0.15 0.09 0.34 0.20 0.09 0.21 0.2 0.07 0.21
S3 0.005 0.005 0.02 0.004 0.006 0.02 0.009 0.003 0.018 0.005 0.006 0.011
S5 0.03 0.006 0.51 0.03 0.002 0.51 0.03 0.006 0.51 0.24 0.007 0.25
S6 0.06 0.002 0.1 0.06 0.06 0.23 0.03 0.01 0.08 0.03 0.01 0.08

Avg 0.07 0.025 0.21 0.09 0.04 0.27 0.08 0.02 0.3 0.11 0.02 0.13
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Table 9: DI score from near real-time analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II

S1 0.11 0.06 0.13 0.11 0.04 0.13 0.19 0.05 0.15 0.09 0.05 0.11
S2 0.1 0.03 0.11 0.09 0.08 0.12 0.08 0.03 0.11 0.08 0.03 0.11
S3 0.05 0.07 0.07 0.04 0.08 0.06 0.05 0.07 0.06 0.06 0.06 0.07
S5 0.11 0.06 0.13 0.11 0.06 0.13 0.11 0.07 0.13 0.11 0.06 0.12
S6 0.08 0.05 0.09 0.09 0.05 0.1 0.06 0.002 0.09 0.06 0.06 0.09

Avg 0.09 0.05 0.11 0.09 0.06 0.11 0.09 0.04 0.11 0.08 0.07 0.10

FB2

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

Subjects CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II CSP ACSP ADCSP-II

S1 0.08 0.05 0.14 0.13 0.05 0.14 0.08 0.05 0.14 0.07 0.03 0.11
S2 0.1 0.01 0.09 0.11 0.03 0.10 0.09 0.03 0.12 0.09 0.03 0.12
S3 0.04 0.06 0.07 0.04 0.08 0.06 0.05 0.07 0.06 0.05 0.07 0.06
S5 0.10 0.06 0.11 0.1 0.06 0.11 0.1 0.06 0.11 0.11 0.06 0.12
S6 0.07 0.04 0.1 0.007 0.006 0.09 0.08 0.07 0.11 0.08 0.01 0.11

Avg 0.09 0.04 0.1 0.07 0.06 0.1 0.08 0.06 0.1 0.08 0.04 0.11

Table 10: Statistical significance test of ADCSP-II vs C-CSP and ACSP for near real-time analysis

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II
DBI 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.06 (×)

Fisher Score 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X)
DI 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X)

FB1

ω1,δ1 ω1,δ2 ω2,δ1 ω2,δ2

CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II CSP vs ADCSP-II ACSP vs ADCSP-II
DBI 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X)

Fisher Score 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X)
DI 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X) 0.045 (X)

Figure 4: Class distributions for Subject 1 (FB1, Segment: ω1,δ2). (a) shows the separability of features in
extracted by C-CSP while (b) shows separability of features extracted by ADCSP. Classes are inseparable when
C-CSP is used and more separable when ADCSP is used. Blue colour represents Class 1, Orange Class 2,
Magenta Class 3and Violet Class4
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4. Discussion

4.1. ADCSP-I and ADCSP-II vs C-CSP

Tables 3-5 show that the average separability of MI
EEG features extracted with ADCSP-I across all the
5 subjects is higher in terms of DBI, FS, and DI than
that with C-CSP. Similarly, Tables 7-9 portray that the
average separability of MI EEG features extracted with
ADCSP-II across all the 5 subjects is higher in terms of
DBI, FS, and DI than that with C-CSP. The Friedman
statistical test as shown in Table 6 and Table 10 reveals
that the separability of MI EEG features extracted
with ADCSP-I and ADCSP-II increases significantly in
terms of DBI, FS, and DI when compared to that with
C-CSP. The improved separability of MI EEG features
with ADCSP over C-CSP demonstrates clear benefits
of adapting CSP during high fatigue level. Therefore,
the adaptation based on cognitive state provides a
means to improve the separability of MI EEG features.

4.2. ADCSP-I and ADCSP-II vs ACSP

Tables 3-5 show that the average separability of MI
EEG features extracted with ADCSP-I across all the 5
subjects is higher in terms of DBI, FS and DI than that
with ACSP in almost all the cases except in the case of
S2 with ω1,δ1, FB1 and ω1,δ1, FB2 where ACSP shows
better performance in terms of FS, while in the case of
S2 with ω1,δ1, FB1, ω1,δ2, FB1 and ω1,δ1, FB2, S5 with
ω1,δ2, FB1, ω2,δ2, FB1, ω1,δ2, FB2 and ω2,δ2, FB2,
ACSP shows equal performance to that with ADCSP-I
in terms of DBI. The Friedman statistical test as shown
in Table 6 shows the significantly improved separability
of MI EEG features with ADCSP-I as compared to that
with ACSP except for the aforesaid cases.

However, in the case of near real-time analysis, as
shown in Tables 7-9, ADCSP-II outperformed ACSP
in all the cases except in the case of S3 with ω2,δ2,
FB1. Friedman statistical test as shown in Table 10
shows significant improvement of the separability of MI
EEG features extracted with ADCSP-II as compared
to that with ACSP except in the case of ω2, δ2, FB1.
The performance of ACSP is even worse than that of
C-CSP in the near real-time analysis.

The poor performance of ACSP as compared to
that of ADCSP-I and ADCSP-II may be because of
two reasons: First, ADCSP uses the regularisation
parameter γ to update the covariance matrices of each
class. The use of γ counters the bias due to the
small training set. Second, ADCSP uses β to counter
the dissimilarity between the training and testing data
during high fatigue level which is not used by ACSP.

4.3. Limitations and Future Work

It can be concluded that the separability of MI EEG
features can be significantly improved through ADCSP.
However, there are some limitations of the proposed
method. First, the method needs to estimate an
optimal value for β and γ to update the covariance
matrices causing some computational drawbacks. The
study does not include any automatic way to estimate
optimal β and γ for a particular problem.Future work
would include an automatic method of estimating β
and γ using gradient descent algorithm.

Second, the effect of mental fatigue on MI EEG
feature separability is subject-specific and is highly
individualized. The term “one size fits all” may not
be applicable in implementing an adaptive approach
by tracking such user’s cognitive state. Therefore,
parameters such as the size of the training set, range
of β and γ, the range of ’p’ and ’nt’ need to be set
individually, causing some computational drawbacks.

Third, the ’init’ in case of ADCSP-II is based
on high fatigue level instead of the fatigue score. It
may happen that a slight increase in fatigue score
will activate adaptation , but in reality, the subject
may not be experiencing much fatigue and adaptation
is actually not required. Hence accurate and robust
estimation of the point where fatigue enters high
fatigue level and the adaptation process is activated
is substantial.

Fourth, although, the proposed methodology
works well on the 5 samples, applying this model to a
larger number of subjects of all ages, gender etc. would
reinforce the study.

Fifth, this study used class separability metrics
like DBI, DI, and FS for evaluating the separability of
MI EEG features. In practice, the adaptive methods
need various evaluation metrics specially because of the
issue of unreliable labels. Information based methods,
classification accuracy, true-false difference can also be
used for such evaluation. However, these were not
explored as the thrust of the study was to enhance class
separability. Future work would include validation of
all the aforesaid approaches using different evaluation
metrics.

5. Conclusion

This study proposes an unsupervised adaptive scheme
called ADCSP to update CSP by tracking the fatigue
state of the user. The proposed method improves
the class separability of MI EEG features during
high fatigue level. Based on the two regularization
parameters β and γ and KL between the training
and testing data, the method updates the CSP
both in offline mode and in near real-time as
well. Experimental results demonstrate that the class
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separability of MI EEG features increases significantly
with the adaptive approach as compared to that with
C-CSP and ACSP. The results collectively portray the
benefit of adapting CSP by tracking the fatigue state
of the user.
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