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A B S T R A C T

Education is strongly correlated with health outcomes in older adulthood. Whether the impact of education
expansion improves health remains unclear due to a lack of clarity over the causal relationship. Previous health
research within the social sciences has tended to use specific activities of daily living or self-reported health
status. This study uses a broader and objective health measure – allostatic load (AL) – to take into consideration
the exposures that accumulate throughout the life course. This paper applies a Mendelian Randomization (MR)
approach to identify causality in relation to education on health as measured by AL. Using the Health and
Retirement Study 2008 (N=3935), we adopt a polygenic score built from genetic variants associated with years
of education. To test whether our analyses violate the exclusion assumption, we further run MR Egger regres-
sions to test for bias from pleiotropy. We also explore the potential pathways between education and AL, in-
cluding smoking, drinking, marital length, health insurance, etc. Using this genetic instrument, we find a 0.3 unit
(19% of a standard deviation) reduction in AL per year of schooling. The effect is mainly driven by BMI and
Hba1c. Smoking and marital stability are two potential pathways that also causally influenced by education. If
our main and sensitivity analyses are valid, the results find support that a higher level of education is causally
related to better health in older adulthood.

1. Introduction

The empirical relationship between education and health over the
life course is well-established. The mechanisms linking educational
attainment to health outcomes, however, are not fully understood. One
conceptualisation is that low education, as an indicator of socio-
economic disadvantage, is subject to environmental, psychological and
behavioral characteristics. Such experiences and exposures accumulate
throughout the life course, more often place demands on the biological
system (e.g., immune, cardiovascular and metabolic systems), ulti-
mately leading to more significant system dysregulation, and subse-
quently enhancing the risk for poor health and functioning
(Gruenewald et al., 2012). The concept of allostatic load (AL) has been
proposed as a more comprehensive, multisystem measure of the cu-
mulative biological dysregulation across major physiological systems
resulting from the accumulation of stressful exposures (McEwen and
Stellar, 1993). AL assesses risk across a wide array of biomarkers and
across multiple systems, to capture the cumulative burden that may

have a considerable impact on future health risks.
There are three ways in which educational attainment may be re-

lated to health in the literature (Cutler and Lleras-Muney, 2006; Eide
and Showalter, 2011). The first argues that education causes to better
health. The second holds that the direction of causality is reversed and
runs from poorer health to lower educational attainment. The third
suggests that both schooling and health are affected by third omitted
factors such as family background, parental investment to children,
non-cognitive ability, and time preferences.

A few studies investigate the association between socioeconomic
gradient and AL measured health, but the results remain inconclusive.
Analysing a nationally representative sample of the US, Seeman et al.
(2010) provide evidence of an inverse association between AL and level
of education in all age groups. A recent study by Merkin et al. (2014)
shows that lower socioeconomic attributes are associated with faster
accumulation of AL. Despite the growing body of replications over time
and across different socio-political and economic contexts, evidence for
a causal effect of education on biomarkers is much more limited. To our
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knowledge, the only study attempting to explore the association be-
tween education and AL using a co-twin control design failed to find
causality (Hamdi et al., 2016).

The purpose of this paper is to establish whether additional years of
education have a causal impact on AL. This is particularly relevant for
older individuals since they have not only have been exposed to stres-
sors imposed by the current environment, but also by their survival and
the ever-changing environments they have experienced. One challenge
in the estimation of the causal relationship between education and AL is
that educational attainment is potentially confounded by a broad range
of confounders, including childhood health status, cognitive abilities,
and familial socioeconomic status (Kawachi et al., 2010). We use the
information on a variety of genes known to be related to educational
attainment as an instrumental variable. Such an approach is also re-
ferred to as Mendelian Randomization (MR) (Davey Smith and
Ebrahim, 2003). Genetic variants are randomly allocated at conception,
their effect on the observable exposure of interest, i.e., educational
attainment, are randomly assorted in relation to potential confounders
(Davey Smith and Ebrahim, 2003). For this reason, genetic information
is considered to fulfil the independent assumption. Based on the find-
ings from a recent genome-wide association study (GWAS) of educa-
tional attainment (Okbay et al., 2016), we construct a genetic risk score
to predict educational attainment with data from the Health and Re-
tirement Study (HRS).

Few studies have examined the causal relationship between edu-
cation and health indicators using a genetic instrument (Böckerman
et al., 2017; Nguyen et al., 2016; Tillmann et al., 2017; Viinikainen
et al., 2018). Using genetic score based on 74 genetic variants that have
found to be associated with the years of education, Böckerman et al.
(2017) found a negative causal effect of education and BMI. Tillmann
et al. (2017) reported supportive evidence that low education is a
causal risk factor in developing coronary heart disease. No prior studies
of education and AL have used an MR design. The paper is one of the
first to exploit genetic variants for education in attempt to estimate the
causal effect of schooling on AL in later life.

2. Methods

2.1. Data

The HRS is a national representative study of individuals 50 years of
age or older and their spouses in the United States (Ofstedal et al.,
2011). The survey contains detailed socio-demographic information in
addition to a genetic sample. The first survey wave was collected in
1992, with biennial interviews available through 2010.

In 2006, HRS initiated an enhanced face-to-face (EFTF) interview
that collects biological and genetic information from respondents.
Between 2006 and 2008, the HRS genotyped 12,507 respondents. Our
study uses the 2008 biomarkers. We focus on individuals for whom the
genetic data and biomarker data are available after the quality control.
13,643 non-Hispanic white respondents older than 50 years old were
interviewed in the 2008 wave. Among these people, 4495 have pro-
vided information on biomarkers. 3935 have been genotyped. Our
analyses include the sample weights provided by the HRS. The weights
are produced to adjust for non-random sampling and selective non-re-
sponse to participation, so that the biomarker sample can closely match
the HRS sample composition by age, gender and race. Since the HRS
only collected genomic data for those who lived until 2006, only the
subset of birth cohort members who have survived to the time of data
collection is sampled. To correct the mortality selection, we include
inverse probability weights based on the procedure that Domingue and
colleagues used in their study (Domingue et al., 2017).

2.2. Measures

2.2.1. Exposure
The main exposure of interest was educational attainment, oper-

ationalized as the number of completed years of schooling (ranging
from 0 to 17). Since our genetic instrument for educational attainment
is extracted from the GWAS of Okbay et al. (2016), the same measures
of educational attainment are used as in the GWAS.

2.2.2. Outcomes
The health outcome is measured by an overall summary index of

multi-system risk (AL) based on nine biomarkers, to reflect the cumu-
lative effect of physiological dysregulation across multiple systems. The
nine biomarkers are subsets of five physiological systems: the in-
flammation system includes C-reactive protein; Hba1c, cholesterol
ratio, BMI, and waist circumference are subsets of metabolic system;
diastolic/systolic blood pressure are indicators of cardiovascular system
function; cystatin C belongs to hematopoietic system, and handgrip is a
measure of muscle stress.

For each of the nine biomarkers, a dichotomous indicator was cre-
ated, reflecting those with “high risk” values (assigned a score of “1”)
and “low risk” of values (assigned a score of “0”) based on cut-off values
commonly accepted in clinical practice and the literature (Ding et al.,
2017; Gruenewald et al., 2012; Juster et al., 2010). Respondents who
reported taking medication for hypertension and diabetes are also ca-
tegorised as “high risk” for blood pressure and Hba1c. The indicators
are then summed to create AL. AL is equal to the sum of “high risk”
conditions scaled by the ratio of “number of items in the index” to
“number of non-missing values”. Missing values do not pose a problem
for this study since only 2% of the respondents are missing more than
three biomarkers. Descriptive statistics for biomarkers are reported in
Table 1. The average AL value was 2.14 (SD=1.57, range=0–9).

2.2.3. Instrumental variables
We construct a polygenic score (PGS, also known as a genetic risk

score) derived from a recent GWAS of educational attainment con-
ducted by Okbay et al. (2016), which identified 74 independent SNPs
associated with an individual's total years of schooling. PGS is a single
quantitative summary of an individual's cumulative genetic predis-
position to a specific disease or traits, weighted by effect size on the
trait of interest. A PGS for individual i can be calculated as the sum of
the allele counts aij (0, 1, or 2) for each SNP j=1, …M, weighted by
association strength pj:

=
=

PGS p a
j

M

j ij
1 (1)

Table 1
Descriptive statistics and cut-off points for high risk values of individual bio-
markers.

Biomarkers N M SD Cut-off points

BMI (kg/m2) 3905 0.30 0.46 ≥30 or < 18.5
Waist circumferences (cm) 3862 0.64 0.48 Male > 102; female > 88
HbA1c (%) 3899 0.11 0.31 ≥6.5
Cholesterol ratio 2342 0.09 0.28 Total cholesterol to HDL ≥5.92
SBP (mmHg) 3814 0.20 0.40 > 140 in all three measurements
DBP (mmHg) 3814 0.08 0.26 > 90 in all three measurements
High Cystatin C (mg/L) 2596 0.04 0.20 > 1.55
C-reactive protein (μg/mL) 3858 0.18 0.38 ≥3
Handgrip (kg) 3749 0.32 0.46 Male ≤30; female ≤20
AL (unstandardized) 3935 2.10 1.52 Range: 0–9

Note: N= sample size; M=mean; SD= standard deviation; HDL=high den-
sity lipoprotein.
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Since the HRS was a part of the GWAS sample, we obtained the list
of association results calculated excluding the HRS from the meta-
analysis from the Social Science Genetic Association Consortium. Using
these summary statistics, we selected SNPs that have a statistical as-
sociation of p-value<5×10−8, and excluded the SNPs that have been
found to be associated with BMI and cognitive abilities (Okbay et al.,
2016). This yields a list of 35 SNPs (see Supplementary Materials). We
then constructed a linear PGS weighted for their effect sizes in the meta-
analysis using the software PLINK and PRSice (Euesden et al., 2015;
Purcell et al., 2007).

2.2.4. Covariates
We present the main findings, both with and without adjustment for

covariates. All models control for age, age squared, gender and the first
ten genetic principal components for each individual using genome-
wide principal components that function as ancestry markers (Price
et al., 2006). Controlling for population stratification and focusing on
the white non-Hispanic population would further ensure that the in-
dependence assumption is not violated.

In the analysis that adjusts for covariates, we additionally control
for the area of birth, and parental years of education.

3. Results

3.1. Descriptive statistics

Columns 1, 2 and 3 in Table 2 present the descriptive statistics of the
key variables. Column 4–6 show the raw association between these
measures, the covariates and the genetic variants, obtained from a re-
gression of years of schooling or each covariate on the polygenic allele
score. The top row of these columns presents the relationship between
years of education and the instrument, showing a strong positive re-
lationship for educational attainment (β=0.221, p < .001). This sig-
nificant and substantial effect suggests that there is a non-zero effect of
the genetic IV on education. The remaining rows show no clear patterns
or statistically significant associations in the relationship between the
contextual variables and the genetic instrument, except the parental
educational attainments. The association with parental education im-
plies potential violation of the exclusion assumption (see Supplemen-
tary Materials). We, therefore, include parental education as covariates
in the models.

3.2. OLS versus IV estimates

Table 3 presents OLS estimates of the regression of individuals' years
of education on health in later life. Using 3935 individuals, we found
that a higher level of education was strongly correlated with individuals
with lower AL, indicating better health. Column (1) shows unadjusted
results and column (2) presents the results adjusted for covariates.

Column (1) shows that years of education is negatively correlated with
AL. This estimate indicates that an additional year of schooling reduces
AL by 0.08. After controlling for covariates, the point estimate reduced
to −0.057 (95% CI=−0.080, −0.034).

Table 4 presents the instrumental variable analysis. The IV results
reveal that our instrument is relevant since the first stage F-statistic in
column (1) is 22.94, and the instrument is significant in the first stage.
Genetic IV analyses provided evidence that the association between
education and AL was partly causal. Covariate adjusted estimates in-
dicate similar results showing that years of schooling has a protective
effect on AL. Overall, our results consistently suggest that the actual
impact of education on health maybe underestimated. The hypothesis
that the OLS and the IV estimates are similar to one another cannot be
rejected for the covariate unadjusted model (Durbin Hausman Wu test
p-value= .669). However, this may be due to insufficient power. We
further conduct sensitivity analyses to test the relationship between
highest degree completed and allostatic load. The causal relationship is
robust and can be found in the supplementary material (Table D).

Our operationalization of AL contains more metabolic and cardio-
vascular biomarkers than biomarkers from other physiological system.
In Table 5, we present OLS and 2SLS estimated effects of education on
each of the nine biomarkers that constitute our overall AL. AL findings
are largely driven by the BMI and Hba1c biomarkers. With the excep-
tion of diastolic blood pressure, the OLS estimate is negative for each
high-risk biomarker, the most for waist circumference, and the least for
Cystatin C (indicator for kidney inflammation) and Cholesterol ratio.
The IV analyses implied that educational attainment is causally related
to BMI and diabetes. Education is also a potential determinant for
Hba1c, another indicator for metabolic dysregulation, with each addi-
tional year of schooling decreases Hba1c by 0.06.

Table 2
Descriptive statistics of education and the covariates: column 1, 2 and 3 show
their mean and standard deviation. Columns 4–6 present the coefficients,
standard error and p-value of the variables shown in the first column regressed
on the genetic instrument (polygenic allele score of educational attainment).

(1) (2) (3) (4) (5) (6)

N Mean Std. dev. Coeff. Std. err. p value

Years of education 3935 13.2 2.5 0.221 0.039 < 0.001
Age 3935 70.4 9.9 0.228 0.150 0.128
Male 3935 0.4 0.5 0.008 0.008 0.271
Married= 1 3935 0.6 0.5 0.004 0.007 0.621
Mother years of education 3935 10.3 3.0 0.104 0.048 0.031
Father years of education 3935 9.9 3.5 0.141 0.057 0.017

Table 3
OLS estimates of years of education on AL.

(1) Covariate unadjusted (2) Covariate adjusted

Years of education −0.078 [−0.096, −0.059] −0.057 [−0.080, −0.034]

Observations 3935 3935
R2 0.042 0.044

Note: 95% CI is reported in the bracket. All regressions include respondent's age,
age squared, gender, and top 10 principal components for their respective po-
pulation stratification. The covariates adjusted model additionally includes
mother's year of education, father's years of education, and area of birth.

Table 4
First stage and 2SLS estimates of years of education on allostatic loads.

(1) IV=PGS (2) IV=PGS, covariates
adjusted

First stage 2SLS First stage 2SLS

Years of education −0.308
[−0.573,
−0.044]

−0.583
[−1.220,
−0.019]

Polygenic score 0.184
[0.109,
0.259]

0.097
[0.025,
0.169]

Observations 3935 3935 3935 3935
F statistics 22.94 – 10.89 –
p-Value DWH test – 0.0669 – 0.0395

Note: 95% CI is reported in the bracket. All Regressions include respondent's
age, age square, gender, and top 10 principal component for their respective
population stratification. The covariates adjusted model additionally includes
mother's year of education, father's years of education, and area of birth. DWH
refers to the Durbin-Wu-Hausman test.
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3.3. Potential pathways

As discussed previously, the pathways through which education
affect health are multi-faceted. With better health knowledge, the well-
educated may improve health by adopting a healthier lifestyle.
Education also increases income and wealth since additional economic
resources improve health by investing in health care. More education
also provides individuals with better interpersonal skills and is linked
with higher marital satisfaction and lower levels of stress-related dis-
eases. Thus we performed additional analyses to investigate whether
the factors suggested in health literature can serve as a pathway for the

effect of education on AL(Table 6). Due to lack of good instrument of
the mediators, we did not perform two-step MR to study mediation. Our
tests of potential mechanisms should be treated as suggestive. Our IV
analyses found that education causally reduces the probability of
smoking – each additional year of schooling reduces the probability of
smoking by 4%. Our results is in line with recent findings reported by
Sanderson et al. (2019) who used UK Biobank data to study the edu-
cation-smoking association, adjusting for cognitive ability. We also
found suggestive evidence that education is causally linked with marital
stability and Spouse's educational level. This result is consistent with
the past literature among the US population that spousal education

Table 5
OLS and 2SLS estimates of years of education on single health biomarker.

(1) BMI (2) Hba1c

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.013 −0.080 −0.008 −0.064
[−0.019, −0.007] [−0.161, −0.003] [−0.012, −0.004] [−0.120,-0.008]

Observations 3905 3905 3899 3899
R2 0.034 0.012
First stage F statistics 22.22 23.26
p-Value DWH test 0.0879 0.0300

(3) Systolic blood pressure (4) Diastolic blood pressure

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.006 −0.023 0.010 0.010
[−0.011, −0.001] [−0.091, 0.044] [−0.035, 0.056] [−0.035, 0.056]

Observations 3814 3814 3814 3814
R2 0.034 0.070
F statistics 21.838 21.838***
p-Value DWH test 0.6113 0.6267

(5) Cholesterol ratio (6) Cystatin C

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.057 −0.025 −0.004 −0.024
[−0.078, −0.034] [−0.292, 0.242] [−0.007, −0.001] [−0.075, 0.027]

Observations 2342 2342 2596 2596
R2 0.030 0.001
F statistics 17.28 10.47
p-Value DWH test 0.8174 0.4147

(7) C-reactive protein (8) aist circumferences

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.007 −0.025 −0.016 −0.045
[−0.011, −0.002] [−0.067, 0.059] [−0.022, −0.010] [−0.124, 0.035]

Observations 3858 3858 3862 3862
R2 0.008 0.024
F statistics 22.57 23.31
p-Value DWH test 0.9353 0.4707

(9) Handgrip

(a) OLS (b) 2SLS, PGS

Years of education −0.013 −0.036
[−0.018, −0.007] [−0.109, 0.036]

Observations 3749 3749
R2 0.252
F statistics 19.86
p-Value DWH test 0.5212

Note: All regressions include respondent's age, age square, gender, and top 10 principal components for their respective population stratifi-
cation. DWH refers to the Durbin-Wu-Hausman test.
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attenuates the association between individual's own education and self-
reported health, and highlights the importance of education as it is a
shared resource in marriage for producing health (Brown et al., 2014)
(Table 6.

4. Discussion

The current study made use of genetic instrumental variables to
control for confounders in examining the association between educa-
tion and a direct, biologically-based measure of AL that captures phy-
siological dysregulation across multiple, major regulatory systems. Our
IV analysis with the polygenic score of educational attainment showed
a significant, negative relationship between education and AL, meaning
that a higher level of education leads to better health.

Overall, our results consistently suggest that the actual degree of
higher education on health may be underestimated. The greater

magnitude of 2SLS compared to the OLS estimates is not a rare case
among MR studies (Sanderson et al., 2019; Schmitz and Conley, 2017;
Willage, 2018). One explanation is that the instrumental variable esti-
mates the local average treatment effect (LATE), while OLS tries to
estimate the average treatment effect (ATE) over the entire population.
Genetic predisposition of education may shift the behavior of a sub-
group of individuals for whom the effect of education on health are
larger than average. OLS may underestimate the true effect of education
on health due to omitted variables that are positively related to edu-
cation but negatively related to health, or vice versa. Nevertheless, both
IV and OLS estimates are generally small compared to the standard
deviation of years of education. Measurement error in the explanatory
variable could also result in larger estimates in the IV, as the OLS es-
timation was likely to be biased toward zero. However, there is little
evidence indicating that our results are driven by measurement error.
Moreover, since the DWH test shows that the difference between OLS

Table 6
OLS and 2SLS estimates of years of education on potential mechanisms.

(1) Smoking (2) Drinking

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.018 −0.038 0.085 −0.113
[−0.022, −0.014] [−0.067, −0.086] [0.081, 0.088] [−0.950, 0.724]

Observations 3912 3912 2136 2136
R2 0.052 0.045
F statistics 18.34⁎⁎⁎ 19.74⁎⁎

p-Value DWH test 0.1746 0.8172

(3) Exercise (4) Marital stability

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education −0.095 −0.510 (0.347) 0.237 0.271
[−0.099, −0.091] [−1.190, 1.170] [0.059, 0.415] [0.167, 0.375]

Observations 3565 3565 3841 3841
R2 0.024 0.256
F statistics 13.22⁎⁎⁎ 16.19⁎⁎⁎

p-Value DWH test 0.1762 0.0368

(5) Spouse's education level (6) Life satisfaction

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education 0.505 0.578 0.069 −0.074
[0.472, 0.538] [0.153, 1.003] [0.065, 0.073] [−0.174, 0.026]

Observations 2554 2554 3629 3629
R2 0.266 0.027
F statistics 13.41⁎⁎⁎ 14.35⁎⁎⁎

p-Value DWH test 0.0693 0.4251

(7) Household wealth (8) Health insurance

(a) OLS (b) 2SLS, PGS (a) OLS (b) 2SLS, PGS

Years of education 0.251 0.273 0.028 0.038
[0.210, 0.292] [−0.121, 0.667] [0.022, 0.034] [−0.042, 0.118]

Observations 3841 3841 3841 3841
R2 0.046 0.058
F statistics 13.42⁎⁎⁎ 16.91⁎⁎⁎

p-Value DWH test 0.1562 0.7648

Significance level: * p<0.05, ** p< 0.01, *** p< 0.001
Note: All regressions include respondent's age, age squared, gender, and top 10 principal components for their respective population strati-
fication. Smoking is measured by whether the respondent smokes at wave 9 (yes= 1, M=0.12 SD=0.33); drinking is measured by number
of days per week the respondent drinks alcohol (M=2.44 SD=2.59); exercise is measured by how often the respondent walks for 20 min
(daily 1 – not in last month 6, M=3.46 SD=1.94); Marital stability is measure by length of longest marriage in years (M=35.86,
SD=16.53); Spousal educational attainment is measure by current spouse's years of education completed (M=13.25, SD=2.56); life
satisfaction is measure by “I am satisfied with my life” (strongly disagree 1= strongly agree 7, M=5.47, SD=1.68); household wealth is
measure by natural log transformed household total wealth (M=11.41, SD=3.35); health insurance is measured by the level of health
insurance the respondent has (M=0.72, SD=0.58). DWH refers to the Durbin-Wu-Hausman test.
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and IV estimates are insignificant, it is also possible that the IV esti-
mates are imprecise.

Compared to other IV used in traditional sociological studies, such
as compulsory schooling laws and quarter of birth, which capture a
LATE (i.e. the estimated return to education for whose behavior is af-
fected by the policy), the MR IV works across the whole distribution of
education leaving ages. It may be able to recover effects closer to an
ATE rather than a LATE. The MR is likely to estimate compliers with
“intention to treat” or “genetic endowment of education”, as not ev-
eryone will attain increased education given these genetic variants. Our
results should be interpreted with caution because our sample only
focused on older adults in the US. The genetic predisposition may in-
teract with environmental changes and have different effects on the
average US population. In addition, genetic variants may operate
through different biological mechanisms and may have different LATEs
on individuals (Böckerman et al., 2019).

This study uses a multisystem measure of AL as the outcome since a
comprehensive indicator of health is preferred. Our analyses showed
that years of education were significantly associated with reduced risk
for BMI and Hba1c, which are indicators for metabolic dysregulation
(2SLS p < .05). This finding aligns with previous research that edu-
cation has a protective effect on BMI (Brunello et al., 2013; Kemptner
et al., 2011). We found no consistent evidence of a causal relation be-
tween higher education and a lower value of biomarkers. One possi-
bility is that the effect size of a single physiological measure is too small
to detect, making the genetic IV a weak instrument in these analyses.
Research with larger sample sizes on separate biomarker may provide a
more accurate estimation. Exploring possible pathways suggests that
education may affect AL via smoking, marital stability, and spousal
educational level.

5. Limitation and conclusion

Our paper contributes to both the substantive and methodological
literature of health research, but also has several limitations. First,
while previous studies employing neurotransmitter genes often suffer
from unconvincing exclusion restrictions, the polygenic score employed
here satisfy the exclusion assumption based on the current knowledge
of the gene's function. However, there is still a possibility that the ge-
netic instrument may be correlated with other factors besides education
that may also affect AL. One source of violation is pleiotropy, which
means the genetic IV may have direct effects on both educational at-
tainment and health (Ding et al., 2019), we applied MR-Egger,
weighted median and weighted mode approaches (Bowden et al., 2016;
Hartwig et al., 2017) to test for causality even when the genetic IV is
invalid. The sensitivity analyses found no evidence for pleiotropic effect
in our models (Supplementary Materials, Table E).

Second, another concern on the validity of this study comes from
the dynastic effects or bias due to assortative mating. Tests of such
violation require parental genotype, or via sibling designs, which is
unfortunately not available in HRS genotypic data. However, Okbay
et al. (2016) found little evidence that the effects of the polygenic score
for education attenuated after controlling for family structure. After
controlling for parental education and childhood health status, our IV
results are still robust. These findings all suggest that parental educa-
tion have little contribution to the causal pathway between participants'
education and health in old age.

Third, genetic variants may not be powerful enough to identify
causal effects. While the IVs are not weak in a statistical sense, the IV's
effect may be too small to impact the biomarkers and on the possible
pathways to health. In other words, a 1–2 year increase in education
may not lead to a large drop in morbidity. Hence, it is not surprising
that we find no significant effect on most of the biomarkers and some
potential pathways. Future research needs to use larger samples to test
the relationship between education and a specific pathway or disease.

Finally, our study is based on mostly homogeneous groups of non-

Hispanic Caucasian older adults in the U.S. Including other racial and
ethnic groups may lead to weak instrument problem (Martin et al.,
2017). Past literature has shown that the education-AL association
differs by ancestral groups, and the pathway in which biomarkers at-
tribute to the accumulation of AL differs by ancestral origins and by
educational level (Howard and Sparks, 2015). The findings may not
extend to individuals of other ethnic or cultural backgrounds, or later-
born cohorts. Moreover, the HRS genetic and biomarker sample weights
did not adjust the bias that education may be correlated with re-
spondents' willingness to be genotyped. If less educated individuals are
more likely to opt-out genotyping, this might result in well educated
individual's responses being over-emphasized. Future studies with
larger samples may be useful to generalize the conclusion to people
from different ancestral and socioeconomic groups (Mills and Rahal,
2019).

In summary, our findings support the hypothesis that education
reduces the risk of poor health in older adults. This would support
potential preventive interventions based on educational attainment.
Policymakers should also bear in mind that this recommendation has
the assumption that the education induced by genetic variants have the
same biological and psychological effects as the education induced by
policy intervention, which is not necessarily true. The mechanisms of
how genetic variants work remain largely unknown. More years of
education induced by genetic variants may work through different
biological pathways compared with education resulting from policy
change (Tillmann et al., 2017). In addition, due to population stratifi-
cation, policymakers should be cautious when generalizing our results
to different ancestral groups (Mills and Rahal, 2019). Nevertheless,
even though our results do not directly lead to clear policy interven-
tions, we are discreetly optimistic that education-promoting policy
could lead to better health in older adults. Future research on genetic
variants as IVs needs to be used and interpreted with care. This paper is
the first to exploit genetic variation in education to examine the causal
effects of education on AL. We instrument education with educational
polygenic score and find that education has a protective effect on
health. This study also provides promising evidence that genetic factors
seem to be useful instruments for studying behavioral effects.

Acknowledgement

Open access funding is provided by University of Oxford. The re-
search leading to this project was funded by the European Research
Council Consolidator Grant SOCIOGENOME, awarded to M. Mills
(Grant no. 615603). The authors would like to thank Yanchun Bao, Ben
Domingue, John Ermisch, Christiaan Monden, Cecilia Potente, Felix
Tropf, Matthias Qian, the PM editors, and anonymous reviewers for
their helpful comments and suggestions. N. Barban received funds from
the ESRC through the Research Center on Micro-Social Change MiSoC
at the University of Essex, grant numbers ES/L009153/1 and ES/
S012486/1.

Ethics approval

This paper uses secondary data. Data usage has been approved by
the Health and Retirement Survey. We did not directly work with any of
human subjects in our data.

There is no conflict of interest in this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ypmed.2019.105866.

References

Böckerman, P., Viinikainen, J., Pulkki-Råback, L., Hakulinen, C., Pitkänen, N., Lehtimäki,

X. Ding, et al. Preventive Medicine 129 (2019) 105866

6

https://doi.org/10.1016/j.ypmed.2019.105866
https://doi.org/10.1016/j.ypmed.2019.105866
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0005


T., Raitakari, O.T., 2017. Does higher education protect against obesity? Evidence
using Mendelian randomization. Prev. Med. 101, 195–198.

Böckerman, P., Cawley, J., Viinikainen, J., Lehtimäki, T., Rovio, S., Seppälä, I., Raitakari,
O., 2019. The effect of weight on labor market outcomes: an application of genetic
instrumental variables. Health Econ. 28 (1), 65–77.

Bowden, J., Davey Smith, G., Haycock, P.C., Burgess, S., 2016. Consistent estimation in
Mendelian randomization with some invalid instruments using a weighted median
estimator. Genet. Epidemiol. 40 (4), 304–314.

Brown, D.C., Hummer, R.A., Hayward, M.D., 2014. The importance of spousal education
for the self-rated health of married adults in the United States. Popul. Res. Policy Rev.
33 (1), 127–151.

Brunello, G., Fabbri, D., Fort, M., 2013. The causal effect of education on body mass:
evidence from Europe. J. Labor Econ. 31 (1), 195–223.

Cutler, D.M., Lleras-Muney, A., 2006. Education and Health: Evaluating Theories and
Evidence. National Bureau of Economic Research.

Davey Smith, G., Ebrahim, S., 2003. Mendelian randomization’: can genetic epidemiology
contribute to understanding environmental determinants of disease. International
journal of epidemiology 32 (1), 1–22.

Ding, X., Barban, N., Tropf, F.C., Mills, M.C., 2019. The relationship between cognitive
decline and a genetic predictor of educational attainment. Social Science & Medicine
239, 112549.

Ding, X., Billari, F.C., Gietel-Basten, S., 2017. Health of midlife and older adults in China:
the role of regional economic development, inequality, and institutional setting. Int.
J. Publ. Health 62 (8), 857–867.

Domingue, B.W., Belsky, D.W., Harrati, A., Conley, D., Weir, D.R., Boardman, J.D., 2017.
Mortality selection in a genetic sample and implications for association studies. Int. J.
Epidemiol. 46 (4), 1285–1294.

Eide, E.R., Showalter, M.H., 2011. Estimating the relation between health and education:
what do we know and what do we need to know? Econ. Educ. Rev. 30 (5), 778–791.

Euesden, J., Lewis, C.M., O’Reilly, P.F., 2015. PRSice: polygenic risk score software.
Bioinformatics 31 (9), 1466–1468.

Gruenewald, T.L., Karlamangla, A.S., Hu, P., Stein-Merkin, S., Crandall, C., Koretz, B.,
Seeman, T.E., 2012. History of socioeconomic disadvantage and allostatic load in
later life. Soc. Sci. Med. 74 (1), 75–83.

Hamdi, N.R., South, S.C., Krueger, R.F., 2016. Does education lower allostatic load? A co-
twin control study. Brain Behav. Immun. 56, 221–229.

Hartwig, F.P., Smith, G.D., Bowden, J., 2017. Robust inference in summary data
Mendelian randomization via the zero modal pleiotropy assumption. Int. J.
Epidemiol. 46 (6), 1–14.

Howard, J.T., Sparks, P.J., 2015. The role of education in explaining racial/ethnic allo-
static load differentials in the United States. Biodemograp. Soc. Biol. 61 (1), 18–39.

Juster, R.P., McEwen, B.S., Lupien, S.J., 2010. Allostatic load biomarkers of chronic stress
and impact on health and cognition. Neurosci. Biobehav. Rev. 35 (1), 2–16.

Kawachi, I., Adler, N.E., Dow, W.H., 2010. Money, schooling, and health: mechanisms
and causal evidence. Ann. N. Y. Acad. Sci. 1186 (1), 56–68.

Kemptner, D., Jürges, H., Reinhold, S., 2011. Changes in compulsory schooling and the
causal effect of education on health: evidence from Germany. J. Health Econ. 30 (2),
340–354.

Martin, A.R., Gignoux, C.R., Walters, R.K., Wojcik, G.L., Neale, B.M., Gravel, S., Kenny,
E.E., 2017. Human demographic history impacts genetic risk prediction across di-
verse populations. Am. J. Hum. Genet. 100 (4), 635–649.

McEwen, B.S., Stellar, E., 1993. Stress and the individual: mechanisms leading to disease.
Arch. Intern. Med. 153 (18), 2093–2101.

Merkin, S.S., Karlamangla, A., Roux, A.V.D., Shrager, S., Seeman, T.E., 2014. Life course
socioeconomic status and longitudinal accumulation of allostatic load in adulthood:
multi-ethnic study of atherosclerosis. Am. J. Public Health 104 (4).

Mills, M.C., Rahal, C., 2019. A scientometric review of genome-wide association studies.
Communications biology 2 (1), 1–11.

Nguyen, T.T., Tchetgen, E.J.T., Kawachi, I., Gilman, S.E., Walter, S., Liu, S.Y., Glymour,
M.M., 2016. Instrumental variable approaches to identifying the causal effect of
educational attainment on dementia risk. Ann. Epidemiol. 26 (1), 71–76.e3.

Ofstedal, M., Weir, D., Chen, K., Wagner, J., 2011. HRS Documentation Report: Updates
to HRS Sample Weights. University of Michigan, Arbor, MI.

Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … &
Oskarsson, S. (2016). Genome-wide association study identifies 74 loci associated
with educational attainment. Nature, 533(7604), 539.

Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., Reich, D.,
2006a. Principal components analysis corrects for stratification in genome-wide as-
sociation studies. Nat. Genet. 38 (8), 904–909.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Sham,
P.C., 2007. PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81 (3), 559–575.

Sanderson, E., Davey Smith, G., Bowden, J., Munafò, M.R., 2019. Mendelian randomi-
sation analysis of the effect of educational attainment and cognitive ability on
smoking behaviour. Nat. Commun. 10 (1), 2949.

Schmitz, L.L., Conley, D., 2017. The effect of Vietnam-era conscription and genetic po-
tential for educational attainment on schooling outcomes. Econ. Educ. Rev. 61,
85–97.

Seeman, T., Epel, E., Gruenewald, T., Karlamangla, A., McEwen, B.S., 2010. Socio-eco-
nomic differentials in peripheral biology: cumulative allostatic load. Ann. N. Y. Acad.
Sci. 1186 (1), 223–239.

Tillmann, T., Vaucher, J., Okbay, A., Pikhart, H., Peasey, A., Kubinova, R., … Holmes, M.
V. (2017). Education and coronary heart disease: Mendelian randomisation study.
BMJ (Online), 358.

Viinikainen, J., Bryson, A., Böckerman, P., Elovainio, M., Pitkänen, N., Pulkki-Råback, L.,
Pehkonen, J., 2018. Does education protect against depression? Evidence from the
Young Finns Study using Mendelian randomization. Prev. Med. 115, 134–139.

Willage, B., 2018. The effect of weight on mental health: new evidence using genetic IVs.
J. Health Econ. 57, 113–130.

X. Ding, et al. Preventive Medicine 129 (2019) 105866

7

http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0005
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0005
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0010
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0010
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0010
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0015
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0015
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0015
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0020
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0020
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0020
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0025
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0025
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0030
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0030
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf4800
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf4800
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf4800
http://refhub.elsevier.com/S0091-7435(19)30342-1/optQilEn5ydL1
http://refhub.elsevier.com/S0091-7435(19)30342-1/optQilEn5ydL1
http://refhub.elsevier.com/S0091-7435(19)30342-1/optQilEn5ydL1
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0035
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0035
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0035
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0040
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0040
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0040
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0045
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0045
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0050
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0050
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0055
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0055
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0055
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0060
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0060
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0065
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0065
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0065
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0070
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0070
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0075
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0075
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0080
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0080
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0085
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0085
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0085
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0090
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0090
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0090
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0095
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0095
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0100
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0100
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0100
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf5200
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf5200
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0105
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0105
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0105
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0110
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0110
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0115
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0115
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0115
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0125
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0125
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0125
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0130
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0130
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0130
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0135
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0135
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0135
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0140
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0140
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0140
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0145
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0145
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0145
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0150
http://refhub.elsevier.com/S0091-7435(19)30342-1/rf0150

	Educational attainment and allostatic load in later life: Evidence using genetic markers
	Introduction
	Methods
	Data
	Measures
	Exposure
	Outcomes
	Instrumental variables
	Covariates


	Results
	Descriptive statistics
	OLS versus IV estimates
	Potential pathways

	Discussion
	Limitation and conclusion
	Acknowledgement
	mk:H1_17
	Ethics approval
	mk:H1_19
	Supplementary data
	References




