
Slow- and Fast-Moving Information Content of CDS
Spreads: New Endogenous Systematic Factors

Ming-Tsung Lin, Olga Kolokolova, Ser-Huang Poon∗

September 4, 2019

Abstract

This paper proposes two new Credit Default Swap (CDS) endogenous systematic

factors constructed from peer-CDS information. The factors capture slow-moving

credit risk information, as well as fast-moving newly arrived market information

embedded in the most recent CDS quotes. Using a sample of U.S. non-financial

listed firms from 2002 to 2011, we find that these two endogenous systematic factors

dominate firm-specific factors and other widely known systematic factors in in-

sample and out-of-sample CDS spread predictions.

Key words : CDS spread, credit risk, liquidity risk, systematic factors

JEL: G13, G23

∗Ming-Tsung Lin (ming-tsung.lin@dmu.ac.uk) is at the De Montfort University, UK; Olga Kolokolova
(olga.kolokolova@manchester.ac.uk) and Ser-Huang Poon (ser-huang.poon@manchester.ac.uk) are at the
University of Manchester, Alliance Manchester Business School, UK.

1

 Electronic copy available at: https://ssrn.com/abstract=2398876 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/237700773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Slow- and Fast-Moving Information Content of CDS
Spreads: New Endogenous Systematic Factors

Abstract

This paper proposes two new Credit Default Swap (CDS) endogenous systematic factors

constructed from peer-CDS information. The factors capture slow-moving credit risk

information, as well as fast-moving newly arrived market information embedded in the

most recent CDS quotes. Using a sample of U.S. non-financial listed firms from 2002 to

2011, we find that these two endogenous systematic factors dominate firm-specific factors

and other widely known systematic factors in in-sample and out-of-sample CDS spread

predictions.

Key Words: CDS spread, credit risk, liquidity risk, systematic factors

JEL: G13, G23

1

 Electronic copy available at: https://ssrn.com/abstract=2398876 



1 Introduction

Basel III stipulates that Credit Default Swap (CDS) implied default probability must be

used in the calculation of risk capital attributed to counterparty credit risk.1 CDS is a

credit derivative that offers protection against bond default. CDS prices are affected by

the credit quality of the underlying, the firm default risk, as well as the CDS’s liquidity

risk, as shown empirically in, for example, Tang and Yan (2007) and Corò, Dufour, and

Varotto (2013).

CDS is also used as a hedging tool for the underlying stock or bond, and vice versa,

leading to interlocking relationships between these three markets. Doshi, Ericsson, Jacobs,

and Turnbull (2013) show that bond market conditions affect CDS spreads. Norden and

Weber (2009) examine the co-movements among stock, bond, and CDS markets, and find

that CDS spread is sensitive to stock market information. Hammoudeh, Bhar, and Liu

(2013) study the CDS indices of three financial sectors (i.e. banking, financial services,

and insurance sectors), and find these three indices are interrelated to each other, leading

to the risk of contagion across these sectors. All these studies also suggest the existence

of some systematic pricing factors for CDS spreads that are endogenously embedded in

these related markets. The focus of Hammoudeh, Bhar, and Liu (2013) is on financial

sector CDS indices; our study covers individual CDS spreads of non-financial firms.

To complement the above literature, our paper explores a new set of CDS drivers,

namely two endogenous systematic risk factors derived from individual firms’ CDS spreads;

capturing slow- and fast-moving information affecting CDS spreads. While deriving these

two factors from CDS spreads, we control for the estimation error to increase the informa-

tiveness of the two factors. Using the 5-year CDS spreads for a sample of U.S. non-financial

firms, we show that these new factors alone capture 22% of the monthly variations in the

individual CDS spreads, while individual firm-specific factors and individual illiquidity

1“[When computing CVA (Credit Valuation Adjustment) risk capital charge,] s is the credit spread
of the counterparty [...]. Whenever the CDS spread of the counterparty is available, this must be used.
Whenever such a CDS spread is not available, the bank must use a proxy spread that is appropriate
based on the rating, industry and region of the counterparty.” Basel III: A global regulatory framework for
more resilient banks and banking systems, p.32, http://www.bis.org/publ/bcbs189.pdf, (Basel Committee
2010).

2

 Electronic copy available at: https://ssrn.com/abstract=2398876 



measure only explain 11% and 6%, respectively, of the monthly variations. Moreover,

in the presence of these new endogenous systematic factors, other previously suggested

systematic factors such as VIX and term spread are no longer significant determinants of

changes in CDS spreads.

In this paper, we use a CreditGrades (CG) model to price CDS, and run error-in-

variable regressions to control for model estimation error. We find that the CG model

captures the credit information embedded in the CDS prices rather well, and the cross-

sectional average model spread adjusted for the estimation error thus constitutes our first

endogenous factor representing the slow-moving systematic credit-risk factor.

The CDS market is less transparent than the equity market. CDSs are traded over

the counter with considerable insider information, where the major participants are fi-

nancial institutions (banks) and hedge funds (see. e.g., Acharya and Johnson 2007 and

Bongaerts, Jong, and Driessen 2011). Thus, CDS quotes reflect new, possibly private,

fast changing market information not captured by the slow-moving systematic credit-

risk factor. The CDS quotes can reflect, for example, the latest news on the firm credit

quality, the expectations of the overall market performance, and the current supply and

demand for credit protection. We construct our second endogenous systematic factor as

the cross-sectional average of the absolute difference between the observed CDS spread

and its fitted value from the CG model, all adjusted for estimation errors. This factor

could potentially capture all the new systematic information not already incorporated

into firms’ latest financial statements and historical volatilities. As market CDS spread

responds to market news in a timely fashion, we label the factor constructed from daily

CDS spread the “fast-moving” factor. While Corò, Dufour, and Varotto (2013) and Tang

and Yan (2007) find CDS illiquidity to affect individual CDS spreads, CDS illiquidity only

explains 4% of the changes of our fast-moving factor. As suggested by Collin-Dufresn,

Goldstein, and Martin (2001), there exists an unexplained systematic component in the

monthly changes of credit spreads of the industrial bonds, which is not related to com-

monly known determinants of credit spreads.
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The two endogenous CDS systematic factors proposed in our paper are more powerful

in predicting changes in CDS spreads than all other commonly used systematic factors

for both in-sample and out-of-sample predictions.

2 Related literature

Our paper contributes to the extensive literature on corporate credit and default risk,

and the determinants of CDS spreads. This literature starts with Merton (1974)op-

tion pricing representation of a firm’s default, which was later augmented by more com-

plex creditor-shareholder interactions, e.g., strategic default in Leland and Toft (1996),

creditor-shareholder bargaining in Fan and Sundaresan (2000), or stochastic jumps in

Zhang, Zhou, and Zhu (2009)). Finger, Finkelstein, Lardy, Pan, Ta, and Tierney (2002)

relax many assumptions in Merton (1974) and propose a CreditGrades (CG) model for

CDS pricing, which we adopt in this paper.

The CDS market, being OTC, is more prone to market frictions and deviating from

model predictions. Blanco, Brennan, and Marsh (2005), Ericsson, Jacobs, and Oviedo

(2009), and Ericsson, Reneby, and Wang (2015) use structural models and find the ex-

istence of a non-credit related component in CDS spread, which they link to illiquidity.

Ericsson, Jacobs, and Oviedo (2009), in particular, find that only asset volatility and

leverage have strong effects on CDS spreads. Eom, Helwege, and Huang (2004) and Bao

and Pan (2013) challenge the accuracy of the structural model, and find that structural

models tend to underestimate default risk. Bedendo, Cathcart, and El-Jahel (2011) find

the deviations of actual CDS prices from model prices to be related to liquidity the persis-

tence of deviations suggests possible model mis-specification. Corò, Dufour, and Varotto

(2013) find that the bid-ask spreads of intra-day CDS trades dominate other credit risk

factors in explaining the CDS spreads for 135 European entities. Tang and Yan (2007)

examine trade-to-quote ratio and bid-ask spread of CDS trades, and report a positive

effect of these illiquidity measures on CDS spreads.
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Most studies construct CDS liquidity measures based on daily bid-ask spreads or intra-

day trading data (see Corò, Dufour, and Varotto 2013). Since we do not have bid-ask

spreads for our sample, we have to explore other illiquidity measures.2 Goyenko, Holden,

and Trzcinka (2009) find that low-frequency liquidity measures can capture the high-

frequency liquidity effect in the stock market. Extending their findings to CDS market,

we will use several low-frequency illiquidity measures as controls in all our regressions.

Cespa and Foucault (2014) extend the model of Gennotte and Leland (1990) and argue

that illiquidity interacts between markets, affecting the equilibrium asset prices in different

markets. Such a “cross-learning” forms a feedback loop between assets according to the

level of price informativeness, and could lead to illiquidity spillover across markets. This

corresponds to, for example, Das and Hanouna (2009) and Huang, Huang, and Oxman

(2015), who find a linkage between equity and CDS markets. Das and Hanouna (2009)

find stock illiquidity can explain the changes in the individual CDS spreads, which they

argue is due to traders reverting to equity markets to hedge their exposure to credit risk.

Similarly, Huang, Huang, and Oxman (2015) find that stock illiquidity increases CDS

credit risk premium.

Arora, Gandhi, and Longstaff (2012) highlight the importance of the counterparty

risk of the CDS provider. CDS spreads decrease as this risk rises, as the protection

becomes less valuable when the ability of the CDS provider to offer protection diminishes.

Chen, Chen, Sun, Yu, and Zhong (2013) document that credit risk insurers, who provide

financial guarantee and write CDS contracts, were severely hit during the breakdown of

the financial markets in 2007–2009. This created a profound effect on individual firm

CDS spread.

Market-wide credit and liquidity shocks affect credit risk of firms (see, e.g., Almeida

and Philippon 2007 and Jorion and Zhang 2009). We call these exogenous market factors

for individual firm’s CDS spreads. Doshi, Ericsson, Jacobs, and Turnbull (2013) show

2Our Markit database contains CDS spreads expressed as composite prices, where no bid and ask in-
formation is provided. Other CDS databases, such as Reuters EOD, and Credit Market Analysis (CMA),
also provide composite prices for CDS. See Mayordomo, Peña, and Schwartz (2014) for a comprehensive
comparison of those databases.
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that market variables, including 6-month Treasury yield and the difference between the

10-year and 6-month yields, explain cross-sectional CDS variations. Others reported a

CDS “peer” effect; e.g., Conrad, Dittmar, and Hameed (2011) find that changes in the

CDS spreads of the systematically important financial institutions lead the changes in

the CDS spreads of other firms. Galil, Shapir, Amiram, and Ben-Zion (2014) find that

the median CDS spreads of mixed credit quality have a cross-sectional explanatory power

for individual firm’s CDS spreads. For sovereign CDS, Longstaff, Pan, Pedersen, and

Singleton (2011) show that global factors are more important than country factors in

explaining sovereign CDS spread changes.

3 Methodology

Cespa and Foucault (2014) suggest that the price of an asset can be affected by prices

of other (related) assets. Since CDS contracts are traded over the counter, the price

formation process is less transparent, compared with other exchange-traded products.

Thus, we may expect that peer information (i.e. price movement of other CDSs) will be

more important as compared to, say, equity or bond markets. Previous studies of CDS

systematic risk mainly focus, however, on co-movements with other financial markets

(e.g. Norden and Weber 2009 and Doshi, Ericsson, Jacobs, and Turnbull 2013). Studies

on systematic risk within CDS market are rather few, one example being Galil, Shapir,

Amiram, and Ben-Zion (2014).

In this section, we propose two new endogenous CDS market systematic factors – the

slow-moving credit factor and the fast-moving CDS-market uncertainty factor. We then

present the regression specification to evaluate their relevance for the CDS pricing.

3.1 The credit component of CDS spreads

Every observed CDS spread can be decomposed into a credit-model fitted component and

a residual, which may capture market liquidity, supply and demand for protection, and
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other price relevant news, which may be firm specific or systematic.

We choose the CreditGrades (CG) model, an extended Merton (1974) model, to cal-

culate the credit component of individual CDS spreads. The CG model is developed

collaboratively by Goldman Sachs, JPMorgan, RiskMetircs, and Deutsche Bank. The

model has been widely used in industry since its introduction in May 2002, and has been

endorsed by the largest dealers in credit markets. A full derivation of the model is in Fin-

ger, Finkelstein, Lardy, Pan, Ta, and Tierney (2002). The empirical performance of the

CG model is analyzed in Stamicar and Finger (2006), Yu (2006), and Bedendo, Cathcart,

and El-Jahel (2011). Below we briefly describe the CG model and the computation of the

model-implied CDS spread.

In the CG model, the firm’s asset value per share (V ) evolves as a geometric Brownian

motion as follows:

dVt
Vt

= σdWt, (1)

where W is standard Brownian motion and σ is the asset volatility. The firm’s debt value

per share, denoted by D, is assumed to be constant, but the global recovery rate, denoted

by L, is log-normally distributed with mean L̄ and standard deviation λ. Therefore, the

default barrier, the product of L and D, is a random variable:

LD = L̄DeλZ−λ
2/2, (2)

where Z is a standard Normal random variable, independent of W . In Merton (1974), the

default barrier is just a constant D. Under the CG model, the firm does not default at

time t if its asset value is larger than the default barrier, i.e. V0e
σWt−σ2t/2 > L̄DeλZ−λ

2/2,

where V0 is the firm’s initial asset value per share at time t0. Under the first passage time

framework, the survival probability at time t, denoted by P (t), can be computed by:

P (t) = Φ

(
−At

2
+

log(d)

At

)
− d× Φ

(
−At

2
− log(d)

At

)
, (3)
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where

d =
V0e

λ2

L̄D
and A2

t = σ2t+ λ2,

and Φ is the standard Normal cumulative distribution function (CDF).

The value of CDS spread can be calculated once the survival probability is determined.

Consider a CDS contract with maturity t, the CDS spread, c, can be determined by:

(1−R)

[
1− P (0) +

∫ t

0

dsf(s)e−rs
]

= c

∫ t

0

dse−rsP (s), (4)

where r is the risk-free rate, R is the recovery rate, P (·) is the survival probability, and

f(·) is the probability density function (pdf) for P (·), defined as f(t) = −dP (t)/dt. The

left-hand side of the equation is the CDS seller’s expectation in present value, while the

right-hand side is the CDS buyer’s expectation in present value.

Substituting P (·) from Equation (3), c can be determined by:

c = CGSpread(V,D,R, σ, λ, L̄, r, t)

= r (1−R)
1− P (0) + erζ(G(t+ ζ)−G(ζ)

P (0)− P (t)e−rt − erζ(G(t+ ζ)−G(ζ))
, (5)

where

ζ = λ2/σ2, and

G(u) = dz+0.5Φ

(
− log(d)

σ
√
u
− zσ

√
u

)
+ d−z+0.5Φ

(
− log(d)

σ
√
u

+ zσ
√
u

)
with z =

√
0.25 + 2rσ−2.

Following Finger et al. (2002), we set L̄ and R both as 0.5, λ as 0.3, and r as the (5-

year) swap rate. Debt per share is calculated as Total Liability / Outstanding Common

Shares. Asset value per share is calculated as S + L̄D, where S is share price. Asset

volatility, σ, is calculated as σs× S
S+L̄D

, where σs is the stock volatility over the past year.

The model CDS spread (denoted by CGSpread) is computed for all firms in our sample
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every month. We adjust the model CDS spread for estimation errors (the procedure is

detailed in Section 3.2) to obtain the error adjusted model spread CGSpread∗i,t for each

firm i and month t.

We construct our first endogenous systematic CDS factor as the cross-sectional averages

of the natural logarithms of the CGSpread∗i,t:

MCGSpread∗t =
1

Nt

Nt∑
i=1

logCGSpread∗i,t, (6)

where Nt is the number of available CDS observations at time t.

The key drivers of CGSpread∗i,t are recent accounting data (in particular, the amount

of debt per share), the current share price, as well as stock return volatility estimated

using daily stock returns over the previous year. Firm debt and stock return volatility are

both known to be fairly persistent (see, e.g., Lemmon, Roberts, and Zender (2008) and

Hanousek and Shamshur (2011) for leverage persistence, and Chou (1988) and Choi and

Richardson (2016) for volatility persistence), making CGSpread∗i,t and its cross-sectional

average MCGSpread∗t intrinsically persistent, slow moving. In reality, both leverage

and volatility can change abruptly and frequently. However, the former can be detected

only after the release of quarterly financial statements; and the latter requires a one-year

estimation horizon, i.e., a sufficient number of daily observations from the new volatility

regime are needed to change the estimate. Hence, MCGSpread∗t will always be slow

moving due to general persistence of its drivers, and also due to the frequency of accounting

information releases and data requirements for the reliable estimation of the volatility.

3.2 The uncertainty component of CDS spreads

To understand the extent to which the CG model can explain the actual CDS spreads,

one could estimate a pooled panel OLS regression as follows:

Spreadi,t = α + β CGSpreadi,t + εi,t. (7)
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If the actual CDS spread is fully captured by the CG model, we should get α = 0 and

β = 1.

CGSpreadi,t calculated according to Equation (5) is likely to suffer from an estimation

error (denoted as η), i.e., CGSpread = CGSpread∗ + η, where CGSpread∗ is the model

error adjusted CG-Spread. Ideally, one should test Equation (7) using the model error

adjusted CGSpread∗. To address this issue, we perform the Deming (1943) total least

squares (TLS). TLS regression is a type of error-in-variable regression, under which the

independent variable x and dependent variable y are assumed to have estimation error:

y = y∗ + ε and x = x∗ + η, (8)

where y∗ and x∗ are the true values and ε and η are the residuals. Assuming that x∗ and

y∗ are in a linear relation of the form y∗ = α + β x∗, the the coefficients α and β can be

computed by:

β =
s2
y − δs2

x +
√

(s2
y − δs2

x)
2 + 4δs2

xy

2sxy
, (9)

α =ȳ − β x̄, (10)

where δ is the variance ratio σ2
ε/σ

2
η, set as 1. ȳ (x̄) is the sample mean. s2

x, s
2
y, and sxy

are the sample variances and covariance of the variables x and y.

Given β in Equation (9) and α in Equation (10), x∗ and y∗ can be computed by:

x∗ =x+
β

β2 + δ
(y − α− βx), (11)

y∗ =α + β x∗. (12)

x∗ is the CGSpread∗i,t and y∗ is the Spread∗i,t.

CGSpread∗i,t is the error-adjusted model spread, which is used to calculate CDS credit-

related systematic factor in Equation (6). The model spread is not likely to be completely

identical with the observed spread. Their difference can be driven by the model specifi-
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cation error, and the newly arriving credit and non-credit related information impacting

the current value of the CDS spread. The more important such information is relative

to that already incorporated into the CG spread, the higher the observed deviation is in

absolute term. The deviation (CGDev∗i,t) between the observed and the model spreads

corrected for the estimation errors is computed as follows:

CGDev∗i,t = |Spread∗i,t − β̂ CGSpread∗i,t|, (13)

where β̂ is the estimated TLS β estimated from Equation (7).

This measure is similar to the uncertainty measures of Jurado, Ludvigson, and Ng

(2015), which is defined as the conditional volatility (L2 norm) of a surprise component

relative to the forecast of the future value of interest. In our setting, the forecasted value

is represented by β̂ CGSpread∗i,t, and the absolute value of the deviation is the L1 norm,

which is more robust to outliers than the L2 norm, a property very useful for the less

liquid OTC CDS market.

We construct our second endogenous systematic CDS factors as the cross-sectional

average of the natural logarithms of individual deviation measures CGDev∗i,t:

MCGDev∗t =
1

Nt

Nt∑
i=1

logCGDev∗i,t, (14)

where Nt is the number of available CDS observations at time t.

The values of CGDev∗i,t are primarily driven by daily CDS quotes, reflecting, for exam-

ple, the latest news on the firm credit quality, the expectations of the overall performance

of the market or a given industry, and the current supply and demand for credit protec-

tion. This news will impact CGDev∗i,t immediately, making it a faster-changing variable.

While new information reflected in individual CGDev∗i,t could be firm specific, MCGDev∗t

reflects changes in average market condition only, as the idiosyncratic noise is diversified

away in the cross-sectional averaging process. During periods of intensive news arrival,

the CDS forecasts based on the CG model become less reliable, and MCGDev∗t captures
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the uncertainty in the CDS market, similar to the market uncertainty measure of Jurado,

Ludvigson, and Ng (2015).

3.3 Panel regression with systematic factors

This section explores if the two new endogenous systematic factors help to explain changes

in the individual CDS spreads. We estimate the following pooled panel regression:

∆ logSpreadi,t = α + β ∆Xi,t + γ1 ∆MCGSpread∗t + γ2 ∆MCGDev∗t + εi,t, (15)

where ∆ denotes a monthly difference in the corresponding variable, and X is the set of

firm-specific control variables known to determine CDS spreads (discussed below). We

calculate robust standard errors following Hoechle (2007).

If ∆MCGSpread∗t reflects the changes in the overall credit risk in the economy, then

γ1 will be positive and significant. If individual CDS spreads were driven by the Credit-

Grades model, CGDev∗i,t would contain pure noise. In that case, MCGDev∗t would have no

information content. However, if Credit-Grades is imperfect, CGDev∗i,t will contain firm-

specific and market-wide information, and MCGDev∗t will reflect the uncertainty of the

“surprise” component of the CG model. During periods of high uncertainty, when pricing

models become less reliable, the direction of the CDS spread change depends largely on the

relative bargaining power and sophistication of protection buyers and sellers. Generally,

banks are net buyers of CDS contracts, using them for hedging purposes, while hedge

funds and insurance companies are usually the net sellers (Mengle 2007). Kolokolova, Lin,

and Poon (2019) argue that the protection sellers trade more frequently than protection

buyers, and there seem to be higher demand for protection than supply, leading to CDS

spreads being revised faster upwards. Thus, during periods of higher uncertainty it is the

protection sellers who would demand a higher premium and the CDS spreads are likely

to increase, and thus we expect γ2 to be positive.
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The set X includes credit- and liquidity-related factors. For credit risk factors, we use

the following five variables, most of which capture the ability of a firm to pay its short-

and long-term debt.3

(i) Cash Ratio (CR) determines the firm’s ability to pay its debt due immediately. We

expect a negative relation between firm’s cash ratio and its CDS spread. Individual firms’

cash ratios are calculated as:

CRi,t =
Cashi,t + Short-term Investmenti,t

Current Liabilitiesi,t
.

(ii) Size (Size) is another indicator for firm’s default probability. Larger firms are

less likely to default, as they usually have more capital, better collateral and access to

additional credit, and larger loss buffers. We expect a negative relation between firm size

and its CDS spread. We take the logarithm of the firm’s total asset as a measure for size.

(iii) Firm Leverage (Lev) is expected to be positively related to default risk and, thus,

its CDS spread. A higher leverage indicates that the firm relies more heavily on borrowing

to finance its activities. In this paper, we calculate firm’s accounting leverage as:

Levi,t =
Total Liabilitiesi,t

Total Equityi,t
.

We use the logarithm of Levi,t in our regression.

(iv) Historical Volatility (Vol) is expected to be positively related to a firm’s CDS

spread. Doshi, Ericsson, Jacobs, and Turnbull (2013), for example, show that historical

volatility of the underlying stock predicts changes in CDS spreads. We estimate historical

volatility using the daily stock returns over the previous one year, and use the logarithm

value in our regression.

(v) Recovery Rate (Recovery) also affects CDS spreads. A higher recovery rate results

in a lower CDS spread. Here, we use the reported recovery rate provided in Markit

3The accounting variables are obtained from the firm’s quarterly reports. Since the model is specified
at a monthly frequency, the corresponding accounting variable are held constant during each quarter,
i.e., constant for every three months.
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database.

Several studies including Tang and Yan (2007), Das and Hanouna (2009), and Corò,

Dufour, and Varotto (2013) find that CDS illiquidity risk, measured using CDS bid-ask

spread, is priced in the CDS spreads. CDS bid-ask spread information, however, is not

available in our sample. Goyenko, Holden, and Trzcinka (2009) show that low-frequency

liquidity measures, e.g., those in Roll (1984) and Amihud (2002) based on effective spread

and price impact, capture stock liquidity well, similar to high-frequency liquidly measures.

In light of this evidence, we conjecture that CDS-price based liquidity measures will also

capture CDS liquidity well, comparable to those constructed from CDS bid-ask spreads.

We use these low frequency CDS liquidity proxies as additional controls in the regressions.

(i) Number of Contributors to CDS quotes (#Contributor) proxies for CDS trading

volume4. Trading volume is a useful indicator of the level of market liquidity. Higher

trading volume implies more liquid markets. We therefore expect #Contributor to be

negatively related to the CDS spread.

(ii) Term Slope (CDS Slope) is the price difference between 5-year and 1-year CDSs.

Term slope reflects the liquidity preference of investors.

(iii) High-minus-Low (CDS HL) is the difference between highest and lowest quotes

of CDS spread taken over one month. It is a proxy of a CDS bid-ask spread, and it is

expected to be positively related to the spread itself.

(iv) The Roll (1984) measure (CDS Roll) is the effective bid-ask spread for an asset,

computed using the serial covariance of the asset’s price changes. Following Roll (1984),

we calculate the individual CDS Roll measure over one month as:

CDS Rolli,t =


2
√
−cov(∆CDSt,∆CDSt−1) if cov(∆CDSt,∆CDSt−1) < 0,

0 otherwise

where ∆ is the operator of daily change and CDS is the corresponding CDS spread.

4See Bongaerts, Jong, and Driessen (2011)

14

 Electronic copy available at: https://ssrn.com/abstract=2398876 



(v) Days of Zero Returns (CDS Zeros) is another proxy for illiquidity, proposed in

Lesmond, Ogden, and Trzcinka (1999). The more zero returns a security exhibits, the

less liquid it is. We expect Zeros to be positively related to the CDS spread, and compute

this measure over one month as:

CDS Zerosi,t =
# days with zero returni,t

T
,

where T is the number of trading days in the month of interest.

(vi) The Amihud (2002) measure (CDS Amihud) is one of the most widely used mea-

sures for illiquidity. We follow Bongaerts, Jong, and Driessen (2011) and compute the

CDS Amihud measure as:

CDS Amihudi,t =
1

N

N∑
t=1

(
|rCt |

#Contributort

)
,

where rC is the daily return of the CDS spread, #Contributort is the number of contrib-

utors to the CDS quotes, proxying for trading volume, and N is the number of trading

days in the past year.

In addition to the firm-specific factors discussed above, we include five systematic fac-

tors in previous studies as important determinants for CDS spreads. The factors include:

(i) the VIX index (Diaz, Groba, and Serrano 2013, Doshi, Ericsson, Jacobs, and Turnbull

2013, Galil, Shapir, Amiram, and Ben-Zion 2014), (ii) the U.S. 5-year Treasury bond

yield (Das and Hanouna 2009, Longstaff, Pan, Pedersen, and Singleton 2011), (iii) the

term spread, estimated as the difference between the yields on the 10-year U.S. Treasury

bonds and 3-month US Treasury bills (Galil, Shapir, Amiram, and Ben-Zion 2014,Conrad,

Dittmar, and Hameed 2011,Longstaff, Pan, Pedersen, and Singleton 2011), (iv) Default

Spread, computed as the difference between Moody’s Baa and Aaa yields (Doshi, Erics-

son, Jacobs, and Turnbull 2013, Galil, Shapir, Amiram, and Ben-Zion 2014), and (v) the

overall performance of the equity market measured as the returns on the S&P500 Index

(Norden and Weber 2004, Norden and Weber 2009). Table 1 lists all the factors used in
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the regression.

[Table 1 is around here.]

4 Data

Our U.S. single-name CDS sample is obtained from the Markit database. The sample

period is from 2002 to 2011. We focus on month-end 5-year CDSs and choose only

CDSs on senior unsecured debt. We remove CDS spreads that are more than 10,000

bps, following Bai and Wu (2016) (cf. 16 data points are removed from the sample as

a result). A CDS spread of more than 10,000 bps means that the underlying asset is

likely to default within one year. We also exclude financial firms because of their peculiar

capital structure. The accounting liabilities of these firms are usually much larger than

their equity, resulting in mis-calculations for model spreads.

After name-matching of CDS underlying companies, their equity information from

Compustat (accounting data) and CRSP (stock data), we finally have 286 matched firms

with 16,097 firm-month observations in our sample. Table 2 reports the descriptive statis-

tics for our sample CDS spreads, model spreads, and deviations before any estimation error

adjustment. The sample CDS spread average is 156 bps with standard deviation of 220

bps. The average CGSpread is 161 bps, 5 bps higher than the mean of the actual CDS

spreads. The standard deviation of CGSpread is 293 bps, roughly 33% (293bp/220bp−1)

more volatile than the actual spreads. On other hand, the deviation of the CGSpread

from the actual spread (CGDev) has an average of 121 bps with standard deviation of

206 bps.

[Table 2 is around here.]

The last two panels in Table 2 report the correlation coefficients for CDS spread, model

spread, and the deviation on levels in Panel B and monthly changes in Panel C. In Panel B,

correlation between CGSpread and actual spread (60%) is higher than between CGDev
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and actual spread (50%). Monthly changes in actual spread are slightly more related to

CGDev (38%) than to CGSpread (31%). In both panels, the highest correlation is that

between CGSpread and CGDev.

Figure 1 plots the time-series of the cross-sectional averages of observed CDS spread

(AvgSpread), CG-model spread (AvgCGSpread), and absolute deviations (AvgCGDev).

These three variables clearly co-move. During the 2007–2009 financial crisis, the values of

all three variables increase dramatically. Notably, AvgCGSpread is well above AvgSpread

during 2008 and 2010, but lower during other periods. AvgCGDev is relatively stable

before 2007, but becomes more volatile afterwards.

[Figure 1 is around here.]

Table 3 reports the descriptive statistics for the control variables. The accounting data

are obtained from the quarterly reports of the firms. The average cash ratio is 46.3%

with the standard deviation of 64.6%. The accounting leverage is approximately 29%

(equivalent to exp(-1.23)), with the standard deviation of 1.82 (equivalent to exp(0.60)).

For our low-frequency illiquidity measures, the average difference between 5-year and 1-

year CDS spread (CDS Slope) is 62 bps. The average for CDS HL is 28 bps and for CDS

Roll is just 2 bps. Both CDS HL and CDS Roll are proxies for bid-ask spread, but CDS

Roll is on average smaller than CDS HL. Since CDS Roll is estimated using the daily

CDS spread changes, the low estimated value suggests the absence of big spikes in daily

changes in CDS.

[Table 3 is around here.]
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5 Empirical results

5.1 Estimation-error adjustment

Table 4 reports the estimation results for the regression of the observed CDS spread on

the CG-model values (Equation (7)), in levels and in monthly changes. The left panel is

estimated using simple OLS, whereas the right panel employs the TLS methodology and

corrects for the estimation error.

The slope coefficients for CGSpread and ∆CGSpread are 0.448 and 0.290, respec-

tively, for the OLS estimation. Both reject the hull hypothesis β = 1 at the 1% level.

The R-square is lower when we use the monthly changes in spreads, implying that the

monthly innovations of CDS spreads strongly depend on factors other than model spread.

For the TLS regression, the slope coefficients for CGSpread and ∆CGSpread increase

substantially to 0.625 and 0.836, respectively. The slope coefficients are much closer to 1

after we control for estimation errors, compared to the OLS regression results, however,

the null hypothesis of β = 1 is still rejected at the 1% level for both regressions. The

slope coefficients are still smaller than 1 even for the TLS specification, indicating that the

CGSpread, on average, overestimates the actual CDS spread. Figure 1 suggests that such

overestimation may have resulted from rather higher model spreads during the 2007–2009

financial crisis. The R-squares increase from 36% for the OLS to 64% for the TLS regres-

sions for CDS spread levels, and from 9% to 57% for CDS spread changes. It highlights

the importance of controlling for the estimation error, and further supports the findings in

Bai and Wu (2016), where the authors emphasize the importance of fundamental credit

factors in determining the actual CDS spread. However, even after controlling for the

model estimation error, about 36% of the actual spread level variation and 43% of the

variation in monthly changes in spreads cannot be explained by the theoretical spread.

[Table 4 is around here.]

To evaluate the time series dynamics of our error-adjusted systematic factors, we es-
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timate an AR(1) model for the changes in each of the factors. The AR(1) coefficient

for ∆MCGSpread∗t is 0.343, significant at the 1% level, while that of ∆MCGDev∗t is

only 0.103 and is not statistically significant. Hence, MCGSpread∗t is more persistent

compared to MCGDev∗t .

5.2 Drivers of individual CDS deviations

Next, before moving to our main regression results, we examine the drivers of the individ-

ual deviations of CDS spreads from their model values. We estimate a panel regression

of the monthly changes in the logarithmic deviations (∆ logCGDev∗) on the same set

of firm-specific factors as in Equation (7). The residuals might be autocorrelated, het-

eroscedastic, and cross-sectionally dependent. Hence, we calculate the robust standard

errors of the coefficients’ estimates, following Hoechle (2007).

Table 5 reports the estimation results. Model 1 includes only firm-specific characteris-

tics, whereas Model 2 includes also the two endogenous CDS-market systematic factors.

Model 3 further controls for other five systematic factors. The results indicate that both

credit and liquidity factors contribute to the individual deviations ∆ logCGDev∗. These

factors are, obviously, interrelated as higher credit risk usually leads to lower liquidity (see

Buhler and Trapp 2010). Firms with higher stock return volatility and higher leverage

exhibit larger deviations from the model spread. Similarly, more illiquid firms tend to

have higher deviations. The loadings on ∆CDS Amihud are positive and significant at

the 5% to 10% levels.

As for the two CDS-market systematic factors, systematic deviation MCGDev∗ is

positively related to individual deviations with the coefficient of 0.87 being significant at

the 1% level, whereas systematic credit risk factor MCGSpread∗ is negatively related to

the individual deviations, although not statistically significant. Individual deviations in

CDS spread are not driven by the common drivers of equity and bond markets. Including

other systematic factors (Model 3) does not change the overall conclusion, as only changes

in VIX are positively related to changes in MCGDev∗, significant only at the 10% level.
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The explanatory power of the models is very low, with the adjusted R-square being

between 0.5% and 4%. It indicates that while individual credit and liquidity factors,

and the endogenous systematic factors help to explain the deviation, most of it remains

unexplained by the known factors.

[Table 5 is around here.]

5.3 CDS spread changes and the endogenous systematic factors

Table 6 reports the correlation coefficients among the variables. We find that individual

CDS spread has a rather high correlation coefficients with stock volatility (19%) and its

accounting leverage (19%). Stock volatility, to some degree, reflects the business risk, and

leverage represents debt insolvency risk. We also find that CDS spread is related to the

CDS liquidity measure CDS HL (30%).

There is a clear systematic component in the changes of CDS spreads. The individual

CDS spread changes are positively correlated with several systematic factors, including

the changes in the VIX index (22%), Default Spread (24%), and CDS-endogenous factors

MCGSpread∗ (28%) and MCGDev∗ (14%). The changes in Treasury bond yields, the

term spread, and the returns on the S&P500 index are only mildly correlated with the

changes in the CDS spreads.

[Table 6 is around here.]

However, such a univariate analysis cannot determine which of the systematic factors

the original source of impact is. The reason being that all the systematic factors are

relatively highly correlated with each other. For example, the correlation coefficient of

the returns on the S&P500 index and the VIX index is -59%, and the S&P500 index

and CDS-market endogenous factors of -21% (MCGSpread∗) and -16% (MCGDev∗).

MCGSpread∗ is also positively correlated with changes in the VIX (52%) and the changes

in Default Spread (49%). This is not surprising as on declining markets (expected) return
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volatility usually increases, and so does investor risk aversion, credit risk of individual

companies, and the demand for credit protection. To establish which of the systematic

factors are the original drivers of CDS spread changes, we use the multivariate analysis.

Table 7 reports the regression results for Equation (15). Model 1 reports the results

based on firm-specific credit risk factors only. All the factors (except for cash ratio, CR)

are significant at the 1% level, and the signs of the loadings are as expected: higher V ol and

Lev indicate higher likelihood of a firm’s default, and thus, lead to higher CDS spreads,

while large firms are expected to have lower risk of default than smaller firms. Model 2 is

based on firm-specific liquidity risk factors only. We find positive and significant loadings

on CDS Slope, CDS Amihud, and CDS HL. This indicates that CDS buyers are expected

to pay more for less liquid CDS contracts. In other words, in the CDS market, the seller,

not the buyer, earns the liquidity premium. The explanatory power of these models is,

however, relatively small, with the adjusted R-squares being 11% and 6% respectively.

Model 3 includes both firm-specific credit and liquidity factors, and the adjusted R-square

further increases to 15.7%.5

[Table 7 is around here.]

Models 4 to 6 report the results of the regressions including new endogenous systematic

factors, individually and jointly. We find strong evidence that both our systematic factors

explain the individual CDS spreads. The loadings are always positive and significant at

the 1% level. Moreover, the adjusted R-square increases from 11% in Model 1 (with only

firm-specific credit factors) and 6% in Model 2 (with only firm-specific liquidity factors)

to around 23% in Model 6 (two endogenous systematic factors). Model 7 reports the

results for the full specification of the regression. The estimated coefficients are consistent,

with an exception of CDS Amihud, which looses its significance. The two endogenous

systematic factors are highly significant and the adjusted R-square of the model further

5For comparison, Corò, Dufour, and Varotto (2013) find a similar R-square of 17% for the monthly
changes in CDS spreads of European companies, when using firm-specific credit information and high-
frequency bid-ask spread as liquidity factors. This indicates that the low-frequency liquidity measures
used in our regressions can capture CDS liquidity well, similar to what Goyenko, Holden, and Trzcinka
(2009) concluded for the stock market.
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increases to 28%. The results in Table 7 highlight the importance of the two endogenous

systematic factors within the CDS market. Both systematic factors, capturing slow-

moving credit-related information and fast-moving market uncertaity information, play

equally important roles in determining the individual CDS spreads.6

Model 8 of Table 7includes other non-CDS based competing systematic factors, viz.

the VIX index, the US 5-year Treasury bond yield, the term spread, the default spread,

and the S&P500 return. The estimation result for Model 8 shows that the changes in

the default spread have a positive and significant while impact on changes of individual

CDS spreads while the S&P500 returns exert a negative impact that is significant at the

10% level. Other non-CDS based systematic factors are not statistically significant. The

endogenous CDS-market systematic factors remain highly statistically significant in the

presence of the other systematic factors. Notably, the model explanatory power increases

only marginally from the adjusted R-square of 28% to 30%, after inclusion of other non-

CDS based systematic factors. This further confirms the importance and relevance of our

proposed systematic factors for CDS pricing.

Further in Model 9 we include year fixed effect to control for any possible unobserved

factors, such as business cycle, which could drive the dynamics of individual CDS spreads,

our endogenous systematic factors, as well as other non-CDS based systematic factors.

The results show the findings reported above are robust to year fixed effects as the esti-

mated coefficients changed only marginally.

As a robustness check, we group our individual CDSs into three general sectors: (i)

a “Basic” sector, which includes firms from basic material, energy, and utility sectors;

(ii) a “Consumer” sector, which includes firms from consumer goods, consumer services,

and healthcare; and (iii) an “Industrial” sector, which includes firms from the technology,

telecommunication, and industrial sectors. We re-run the panel regressions from Equation

(15) and find qualitatively similar results for all sectors. Thus, our findings are not driven

6In unreported results, we also used a version of the systematic factors that are not adjusted for the
estimation error. Both of them remain highly significant, but the explanatory power of the model is
slightly lower, with an adjusted R-square 24%.
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by any particular sector.7

6 Out-of-sample prediction

The analysis in the previous section implies that the two endogenous systematic factors

provide cross-sectional predictability. In this section, we test the time-series predictability

of the systematic factors. For all individual firms, we first perform a time-series regression

on a training sub-sample, including only CDS systematic factors:

∆ logSpreadi,t = αi + γi1 ∆MCGSpread∗t−1 + γi2 ∆MCGDev∗t−1 + εi,t (16)

The one-month-ahead prediction for the changes in the individual CDS spread is given

by:

ŷi,t+1 = ∆ ̂logSpreadi,t+1 = α̂i + γ̂i1 ∆MCGSpread∗t + γ̂i2 ∆MCGDev∗t . (17)

The out-of-sample performance is evaluated using the out-of-sample R-square (R2
OOS)

following Welch and Goyal (2008):

R2
OOS = 1−

∑
i

∑
t(yi,t+1 − ŷi,t+1)2 / DFA∑

i

∑
t(yi,t+1 − ȳi,t+1)2 / DFN

, (18)

where yi,t+1 is the actual change in logCDS spreads in month t + 1, ȳi,t+1 is our bench-

mark predicted value, and DF is the degree of freedom for the corresponding hypothesis.

The null hypothesis is that our proposed model (ŷ) does not perform better than the

benchmark (ȳ). Therefore, a positive R2
OOS would indicate that the model prediction has

less prediction error than the benchmark prediction, rejecting our null hypothesis.

7The results are not reported here to save space, but are available upon request.
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We select three different training periods: 1 year, 2 years, and 3 years, to assess

the stability of the predictions over longer training period. For out-of-sample bench-

mark (ȳ), we consider four benchmarks: (1)“Hist Avg”, using the average changes in

logarithm of CDS spreads over the training period (i.e. ȳi,t+1 = ∆ logSpreadi,t =∑t
t=t−n+1 ∆ logSpreadi,t/n, t = 12, 24, or 36 months); (2) “Past 1Mth”, using the latest

changes in logarithm of CDS spread (i.e. ȳi,t+1 = ∆ logSpreadi,t); (3) “CG-Spread”, using

the latest changes in logarithm of CG-model spread (i.e. ȳi,t+1 = ∆ logCGSpreadi,t), and

(4) “Past 12Mth”, using the average changes in logarithm of CDS spreads over the pre-

vious 12 months, which coincides with the historical average for the one-year estimation,

but provides a more “immediate” benchmark when longer estimation periods are used.

Table 8 reports the out-of-sample performance of the CDS systematic factors. Panels

A, B, and C report the results for different training periods. We also report the results

using different factors and sectors. For factor analysis, “MCGSpread∗ + MCGDev∗”

is the original specification, that includes both factors, while “MCGSpread∗ only” (or

“MCGDev∗ only”) uses only ∆MCGSpread∗ (or ∆MCGDev∗) to estimate the coeffi-

cients in Equation (16). By doing so, we evaluate the predictive power of each of the

systematic factors individually. We also report the out-of-sample performance separately

for the three general economic sectors, using the two endogenous systematic factors.

[Table 8 is around here.]

The results depict a consistent picture of a positive OOS R-square for all training

periods, benchmarks, and sectors. Hence the proposed CDS-specific systematic factors

indeed improve time-series predictions for changes in individual spreads. The best results

are achieved for a one-year training period when both MCGSpread∗ and MCGDev∗

factors are used together. At the same time, even taken individually, these factors always

improve predictions relative to the benchmarks and exhibit a positive R-square.

Another notable finding is that ∆MCGSpread∗ has slightly better predictive power

than ∆MCGDev∗, although the individual OOS R-squares are very close. This indicates

that both the credit-related systematic information the CDS market uncertainty measure
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not captured by ∆MCGSpread∗ play equally important role in predicting changes in

CDS spreads.

7 Extensions and robustness

In this section we, first, evaluate the robustness of our results to higher frequency of CDS

spread changes, and then consider a different specification of the CDS deviation factor,

which is adjusted for the effect of various CDS specific and systematic factors.

7.1 Weekly changes of CDS spreads

In the main body of the paper we focus on monthly changes in CDS spreads. In this

section we further check if the effect of CDS-market systematic factors is also pronounced

for weekly changed in CDS spreads. For example, analyzing the lag-lead relations between

CDS, stock, and bond markets, Norden and Weber (2009) found that the direction of the

relations in consistent for monthly, weekly, and daily changes, although the explanatory

power of the model based on monthly changes is higher than that based on weekly or

daily changes. Table 9 reports the panel regression results as specified in Equation (15),

where all changes are weekly. Similar to Norden and Weber (2009), using weekly changes

instead of monthly does not qualitatively affect the results, but the model explanatory

power decreases. The relations between endogenous CDS-market systematic factors and

the changes in the individual CDS spreads remain positive and highly significant, but

the adjusted R-square drops from 30% for monthly changes to 16% for weekly changes in

CDS spreads.

[Table 9 is around here.]
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7.2 Factor adjusted deviation specification

The individual firm deviation measures CGDev∗i,t can be partly explained by firm-specific

credit and liquidity factors as reported in Table 5. The factors, however, explain less than

4% of the variation of the changes in the deviation. In this section, as a robustness check,

we consider a different specification for the individual deviation, namely, factor adjusted

deviations. We start by re-estimating (controlling for estimation errors) Equation (7)

including all the control variables used in Equation (15) Xi,t:

Spreadi,t = α + β CGSpreadi,t + γ Xi,t + εi,t. (19)

We then compute the individual factor adjusted deviation measure as the absolute differ-

ence between the observed error-adjusted spread and its fitted error-adjusted value:

˜CGDev∗i,t = |Spread∗i,t − (β̂ CGSpread∗i,t + γ̂ X∗
i,t)|, (20)

and proceed with computing the systematic deviation measure as the cross-sectional av-

erage of the logarithmic ˜CGDev∗i,t as previously.

Table 10 reports the panel regression results as specified in Equation (15), where the

new ˜MCGDev∗t measure is used.

[Table 10 is around here.]

Overall, the results are robust to the orthogonalization of our CDS deviation factor with

respect to other drivers of CDS spreads, and remain qualitatively unchanged compared to

the ones reported in Table 7. Taken alone, ˜MCGDev∗t becomes even a stronger driver of

CDS spreads, explaining 19% of variation in changes in individual CDS spread, up from

the adjusted R-square of 14% reported in Table 7.
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7.3 Wavelet analysis of the CDS systematic factors

As a robustness check, in this sub-section, we employ wavelet analysis to check if there is

any time series pattern in the two systematic factors. We follow Huang, Shen, Long, Wu,

Shih, Zheng, Yen, Tung, and Liu (1998) to identify orthogonal wavelets – Intrinsic Mode

Functions (IMF ) – for ∆MCGSpread∗ and ∆MCGDev∗. Every time series yt can be

decomposed into a sum of N orthogonal wavelets and a residual term:

yt =
N∑
i=1

IMFi,t +Residualt. (21)

Using this decomposition, we identified five wavelets for ∆MCGSpread∗, and four

wavelets for ∆MCGDev∗. The cross-correlation between these two sets of IMFs is re-

ported in Table 11, indicating some level of dependence between the IMFs, consistent

with the results reported in Table 6. The identified wavelets themselves, however, do not

seem to have any clear structure.

[Table 11 is around here.]

8 Conclusion

In this paper, we study the 5-year CDS spreads for a sample of U.S. non-financial firms

from 2002 to 2011. We construct new endogenous CDS-market systematic factors based

on a widely used in the industry CreditGrades (CG) model, and find that the impact of

these endogenous systematic factors on CDS spreads is stronger than that of firm-specific

variables.

The proposed systematic factors capture two types of information contained in the

CDS spreads: slow-moving credit-risk information and newly arrived market information

which might be unrelated to credit quality and also picks up the CDS market uncertainty.
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We capture the credit-related information though the CreditGrades model, and the newly

arrived information though the absolute deviations of the observed spread from the mod-

eled ones. We use the total least squares regression to control for model estimation error,

and adjust the model spreads and the deviations for the estimation error. Such an adjust-

ment reduces the noise and increases the information content of the two factors, which are

constructed as the cross-sectional averages of the error-adjusted individual firms’ model

spreads and deviations.

These two new factors, capturing peer information in the CDS market, are important

predictors of the changes in the CDS spread and dominate firm-specific variables. The

individual firms’ credit-risk related variables can capture only up to 11% of the variation of

changes in CDS spreads, whereas our endogenous systematic factors alone capture about

23% of the variation. We show that our endogenous systematic factors also dominate

other commonly known systematic factors. The VIX index, the U.S. 5-year Treasury

bond yield, and the term spread, estimated as the difference between the yields on the

10-year US Treasury bonds and 3-month U.S. Treasury bills, are all not significant in

the presence of the two new endogenous factors. The endogenous factors provide good

out-of-sample predictions, and are most powerful with a one-year estimation window.

Financial regulations, such as Basel III, stipulate that CDS spreads must be used

to produce market estimates of the default probability of a counterparty. Our findings

caution this approach as changes of individual firms’ CDS spreads are driven mainly by

systematic factors, rather than by pure individual firm’s default risk. Moreover, since

they are systematic, it suggests that using CDSs in risk management will be pro-cyclical,

creating more instabilities during crisis.

28

 Electronic copy available at: https://ssrn.com/abstract=2398876 



References

Acharya, V. and T. Johnson (2007). Insider trading in credit derivatives. Journal of

Financial Economics 84 (1), 110–141.

Almeida, H. and T. Philippon (2007). The risk-adjusted cost of financial distress. The

Journal of Finance 62 (6), 2557–2586.

Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects.

Journal of Financial Markets 5, 31–56.

Arora, N., P. Gandhi, and F. A. Longstaff (2012). Counterparty credit risk and the

credit default swap market. Journal of Financial Economics 103 (2), 280 – 293.

Bai, J. and L. Wu (2016). Anchoring credit default swap spreads to firm fundamentals.

Journal of Financial and Quantitative Analysis 51 (5), 1521–1543.

Bao, J. and J. Pan (2013). Bond illiquidity and excess volatility. Review of Financial

Studies 26 (12), 3068–3103.

Basel Committee (2010). Basel III: A global regulatory framework for more resilient

banks and banking systems. Basel Committee on Banking Supervision, Basel .

Bedendo, M., L. Cathcart, and L. El-Jahel (2011). Market and model credit default

swap spreads: Mind the gap! European Financial Management 17, 655–678.

Blanco, R., S. Brennan, and I. W. Marsh (2005). An empirical analysis of the dynamic

relationship between investment-grade bonds and credit default swaps. Journal of

Finance 60 (5), 3–32.

Bongaerts, D., F. Jong, and J. Driessen (2011). Derivative pricing with liquidity risk:

Theory and evidence from the credit default swap market. Journal of Finance 66,

203–240.

Buhler, W. and M. Trapp (2010). Time-varying credit risk and liquidity premia in bond

and CDS markets. Working Paper .

Cespa, G. and T. Foucault (2014). Illiquidity contagion and liquidity crashes. Review

of Financial Studies 27, 1615–1660.

Chen, F., X. Chen, Z. Sun, T. Yu, and M. Zhong (2013). Systemic risk, financial crisis,

and credit risk insurance. The Financial Review 48 (3), 417–442.

29

 Electronic copy available at: https://ssrn.com/abstract=2398876 



Choi, J. and M. Richardson (2016). The volatility of a firm’s assets and the leverage

effect. Journal of Financial Economics 121 (2), 254–277.

Chou, R. Y. (1988). Volatility persistence and stock valuations: Some empirical evi-

dence using garch. Journal of Applied Econometrics 3 (4), 279–294.

Collin-Dufresn, P., R. S. Goldstein, and J. S. Martin (2001). The determinants of credit

spread changes. The Journal of Finance 56 (6), 2177–2207.

Conrad, J., R. Dittmar, and A. Hameed (2011). Cross-market and cross-firm effects in

implied default probabilities and recovery values. Working Paper .
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Table 1: Descriptive statistics of CDS spreads and their unadjusted components

This table lists firm-specific and systematic factors used in the regressions together with their brief definitions.

Factor Definition

log Spread The logarithm of the observed 5-year CDS spread.
CR The firm’s cash ratio.
Size The logarithm of firm’s accounting total assets.
Vol The logarithm of the stock return volatility over one previous year.
Lev The logarithm of firm’s accounting leverage ratio.
Recovery The reported CDS recovery rate provided by Markit.
#Contributor the number of contributors to CDS quotes in Markit.
CDS Slope the difference between 5-year CDS and 1-year CDS spreads.
CDS Amihud The Amihud (2002) measure of the CDS spreads over one year.
CDS HL The high-minus-low of the 5-year CDS over one month.
CDS Roll The Roll (1984) measure of the CDS spread over one month.
CDS Zeros The proportion of zero CDS returns over one month.
VIX The value of the VIX index.
Treasury The US 5-year Treasury bond yield.
TermSpread The difference between the yields on the 10-year US Treasury bonds and 3-month US Treasury bills.
DefaultSpread The difference between Moody’s Baa and Aaa yields.
S&P500 The value of the S&P500 Index.
MCGSpread* The first endogenous CDS systematic factor, based on the error adjusted average credit-grade spread.
MCGDev* The second endogenous CDS systematic factor, based on the error adjusted residuals.
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Table 2: Descriptive statistics of CDS spreads and their unadjusted components

This table reports the descriptive statistics and the correlation coefficients for the actual 5-
year CDS spreads (Spread), the CreditGrades model implied CDS spread (CGSpread) and
the difference between the actual and implied CDS spreads (CGDev). The sample period
is from 2002 to 2011. Panel A reports the sample means, standard deviations, maximums,
and minimums. Panel B reports the correlation coefficients of the variables. Panel C reports
the correlation coefficients for the monthly changes (∆) in the variables. The number of the
observations for each variable is 16,097.

Panel A: Descriptive Statistics

Spread CGSpread CGDev

Mean 0.0156 0.0161 0.0121
Std 0.0220 0.0293 0.0206
Max 0.7108 0.5566 0.5188
Min 0.0003 0.0000 0.0000

Panel B: Correlation (Level)

CGSpread CGDev

Spread 0.60 0.50
CGSpread 0.81
CGDev

Panel C: Correlation (Change)

∆CGSpread ∆CGDev

∆Spread 0.31 0.38
∆CGSpread 0.61
∆CGDev
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Table 3: Descriptive statistics of the control variables

This table reports the descriptive statistics for firm-specific control variables, including
sample mean, standard deviation, maximum, and minimum. The sample period is from
2002 to 2011. The variable are defined in Table 1. The number of the observations for each
variable is 16,097.

Mean Std Max Min

CR 0.463 0.646 8.782 0.000
Size 8.953 1.263 12.710 1.740
Vol -1.118 0.449 0.859 -3.067
Lev -1.230 0.602 -0.083 -5.133
Recovery 0.395 0.023 0.750 0.100

#Contributor 6.061 3.264 25.000 2.000
CDS Zeros 0.150 0.251 1.000 0.000
CDS Amihud 0.004 0.003 0.065 0.000
CDS Slope (×10,000) 62 84 1208 -1884
CDS HL (×10,000) 28 82 2982 0
CDS Roll (×10,000) 2 15 884 0
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Table 4: CDS Spread and the CG-model Spread: OLS vs. TLS

This table reports the results for regressing actual spread on CG-model spread, using linear OLS or TLS (total least squares) regressions. The
sample period is from 2002 to 2011. Spread is the observed 5-year CDS spread and CGSpread is the CG-model CDS spread. ∆ is the monthly
change operator. The standard error of the coefficients are reported in ( ). ***, **, * stand for the statistical significance at the 1%, 5%, and 10%
levels, respectively.

Ordinary Least Squares Total Least Squares

Intercept Slope R-sqr Intercept Slope R-sqr

Spread = α + β × CGSpread 0.008*** 0.448*** 0.356 0.005*** 0.625*** 0.638
(0.000) (0.005) (0.000) (0.004)

∆Spread =
α + β ×∆CGSpread

0.000 0.290*** 0.094 0.000 0.836*** 0.571

(0.000) (0.007) (0.000) (0.005)
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Table 5: Panel Regression for Deviations of Individual CDS Spreads from Their Model
Values

This table reports the panel regression results for absolute deviations of individual CDS
spreads from their CG-model values after controlling for the estimation error (CGDev∗).
The sample period is from 2002 to 2011. MCGSpread∗ and MCGDev∗ are the endogenous
CDS-market systematic factors. ∆ is the monthly change operator. The control variables
are defined in Table 1. The standard errors of the coefficients re reported in ( ), where
the robust variance-covariance is used following Hoechle (2007). ***, **, * stand for the
statistical significance at the 1%, 5%, and 10% levels, respectively.

∆ log CGDev*

Model 1 Model 2 Model 3

Constant 0.002 -0.000 -0.000
(0.005) (0.001) (0.001)

∆CR 0.001 0.002 0.003
(0.005) (0.005) (0.005)

∆Size -0.043 -0.041 -0.039
(0.029) (0.025) (0.025)

∆Vol 0.103*** 0.044 0.047
(0.031) (0.029) (0.030)

∆Lev 0.099*** 0.061*** 0.058***
(0.023) (0.017) (0.017)

∆Recovery 0.144 0.254* 0.258*
(0.149) (0.133) (0.133)

∆#Contributor 0.001 0.001 0.001
(0.001) (0.001) (0.001)

∆CDS Slope 1.159*** 0.611** 0.592**
(0.361) (0.273) (0.276)

∆CDS Amihud 5.966* 6.273** 6.424**
(3.430) (2.877) (2.885)

∆CDS HL 0.171 -0.083 -0.126
(0.174) (0.196) (0.194)

∆CDS Roll 0.178 -0.032 0.012
(0.476) (0.349) (0.344)

∆CDS Zeros 0.023 0.025 0.026
(0.016) (0.016) (0.016)

∆MCGSpread∗ -0.028 -0.038*
(0.020) (0.022)

∆MCGDev∗ 0.869*** 0.874***
(0.060) (0.062)

∆VIX 0.001*
(0.000)

∆Treasury -0.604
(0.667)

∆TermSpread -0.427
(0.832)

∆DefaultSpread -0.176
(0.924)

∆S&P500 0.030
(0.030)

Adj. R-sqr 0.005 0.040 0.039
N 15811 15811 15811
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Table 6: Factor Correlation

This table reports factor correlation coefficients. The sample period is from 2002 to 2011. logSpread is the logarithm of the observed 5-year CDS
spread. MCGSpread∗ and MCGDev∗ are the endogenous CDS-market systematic factors. ∆ is the monthly change operator. Other variables are
defined in Table 1.

[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

∆log Spread [1] -0.020 0.010 0.186 0.189 -0.090 -0.006 -0.240 0.074 0.301 0.110 0.006 0.224 -0.120 0.019 0.244 -0.090 0.280 0.141
∆CR [2] 0.010 -0.009 -0.032 -0.025 0.009 0.011 -0.031 -0.019 -0.001 -0.010 -0.022 0.016 0.001 -0.022 0.000 -0.031 -0.012
∆Size [3] -0.050 0.334 0.020 0.009 -0.014 -0.003 0.021 -0.009 -0.008 0.018 0.024 0.005 -0.001 -0.012 -0.012 0.017
∆Vol [4] 0.210 -0.025 -0.015 -0.038 0.150 0.111 0.030 0.022 0.220 -0.244 0.126 0.398 0.020 0.571 0.185
∆Lev [5] -0.021 -0.004 -0.008 0.049 0.069 0.015 0.003 0.315 -0.161 0.043 0.222 -0.192 0.321 0.140
∆Recovery [6] 0.009 0.052 0.015 -0.032 0.023 0.008 -0.018 0.039 0.003 -0.029 -0.003 -0.040 -0.035

∆#Contributor [7] 0.003 -0.017 0.019 -0.007 -0.080 -0.027 0.030 -0.022 -0.017 0.006 0.001 -0.009
∆CDS Slope [8] -0.038 -0.258 -0.327 -0.012 0.005 0.001 -0.016 -0.063 -0.024 -0.017 0.035
∆CDS Amihud [9] 0.183 0.131 -0.035 0.046 -0.063 0.069 0.094 -0.008 0.132 0.033
∆CDS HL [10] 0.443 -0.039 0.136 -0.036 0.021 0.163 -0.015 0.131 0.055
∆CDS Roll [11] -0.013 0.013 -0.011 -0.006 0.044 -0.007 0.029 0.012
∆CDS Zeros [12] 0.009 -0.018 0.022 0.040 -0.011 0.027 -0.003

∆VIX [13] -0.170 0.040 0.343 -0.594 0.523 0.271
∆Treasury [14] 0.305 -0.393 -0.035 -0.360 -0.224
∆TermSpread [15] -0.007 0.023 0.106 0.105
∆DefaultSpread [16] 0.128 0.492 0.181
∆S&P500 [17] -0.207 -0.156

∆MCGSpread* [18] 0.568
∆MCGDev* [19]
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Table 7: CDS Systematic Factor Panel Regression

This table reports the panel regression results for CDS systematic factors. The sample
period is from 2002 to 2011. logSpread is the logarithm of the observed 5-year CDS spread.
MCGSpread∗ and MCGDev∗ are the endogenous CDS-market systematic factors. ∆ is
the monthly change operator. The control variables are defined in Table 1. The standard
errors of the coefficients re reported in ( ), where the robust variance-covariance is used
following Hoechle (2007). ***, **, * stand for the statistical significance at the 1%, 5%, and
10% levels, respectively.

∆log Spread

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Constant 0.006 0.005 0.006 0.002 0.001 0.001 0.002 0.001 0.000
(0.010) (0.011) (0.009) (0.007) (0.008) (0.007) (0.006) (0.005) (0.005)

∆CR -0.011 -0.008 -0.001 -0.002 -0.001
(0.009) (0.009) (0.007) (0.006) (0.007)

∆Size -0.246*** -0.244*** -0.172*** -0.141*** -0.141***
(0.067) (0.064) (0.051) (0.050) (0.051)

∆Vol 0.509*** 0.463*** 0.042 0.036 0.037
(0.106) (0.098) (0.079) (0.061) (0.060)

∆Lev 0.489*** 0.470*** 0.300*** 0.238*** 0.237***
(0.053) (0.052) (0.035) (0.032) (0.033)

∆Recovery -0.616*** -0.654*** -0.460** -0.451** -0.485***
(0.213) (0.225) (0.179) (0.183) (0.182)

∆#Contributor 0.001 0.001 0.001 0.001 0.002
(0.001) (0.001) (0.001) (0.001) (0.001)

∆CDS Slope 6.280** 6.455*** 5.770*** 5.834*** 5.838***
(2.447) (2.344) (2.039) (2.021) (2.021)

∆CDS Amihud 16.168** 8.185 5.962 6.038 7.000
(7.325) (5.668) (5.156) (5.020) (5.012)

∆CDS HL 7.628*** 6.453*** 5.591*** 5.071*** 5.085***
(2.242) (1.841) (1.621) (1.595) (1.572)

∆CDS Roll -3.692 -2.239 -1.815 -1.412 -1.415
(5.498) (4.938) (4.431) (4.334) (4.319)

∆CDS Zeros 0.032 0.021 0.015 0.009 0.007
(0.021) (0.018) (0.019) (0.019) (0.018)

∆MCGSpread∗ 0.545*** 0.431*** 0.327*** 0.195*** 0.201***
(0.046) (0.060) (0.051) (0.055) (0.053)

∆MCGDev∗ 1.468*** 0.661*** 0.709*** 0.759*** 0.733***
(0.173) (0.165) (0.148) (0.145) (0.142)

∆VIX 0.001 0.001
(0.002) (0.002)

∆Treasury -2.921 -2.861
(2.357) (2.598)

∆TermSpread 0.228 0.604
(2.161) (2.092)

∆DefaultSpread 14.645*** 12.992***
(3.821) (4.967)

∆S&P500 -0.266* -0.250*
(0.141) (0.143)

Adj. R-sqr 0.114 0.060 0.157 0.208 0.139 0.227 0.278 0.299 0.261
N 15811 15811 15811 15811 15811 15811 15811 15811 15811
Year FE NO NO NO NO NO NO NO NO YES
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Table 8: Out-of-sample Performance

This table reports the out-of-sample performance (R2
OOS) for the CDS systematic fac-

tors. The calculation of the R2
OOS is described in Equation (18), and the predictive

systematic value is based on Equation (16). Panel A, B, and C reports the R2
OOS for

the 1-year, 2-year, and 3-year training period, respectively. Four benchmarks are used:
(1) “Hist Avg” reports the results using the average over the training period; (2) “Past
1Mth” reports the results using the latest changes in logSpread; (3) “CG-Spread” re-
ports the results using the latest logCGSpread; and (4) “Past 12Mth” reports the re-
sults using the average over 12 months. By Factor reports the out-of-sample for differ-
ent regression specification of Equation (16). “MCGSpread∗ + MCGDev∗” uses both
∆MCGSpread∗ and ∆MCGDev∗, while “MCGSpread∗ only” (or “MCGDev∗ only”)
uses only ∆MCGSpread∗ (or ∆MCGDev∗). “By Sector” reports the out-of-sample per-
formance in different sectors. “Basic” sector includes firms from basic material, energy,
utility, and not-defined; “Consumer” sector includes firms from consumer goods, consumer
services, and healthcare; and “Industrial” sector includes firms from technology, telecom-
munication, and industrials.

∆log Spread Prediction

Hist Avg Past 1Mth CG-Spread Past 12Mth
Panel A: 1Y Training Period

(1) (2) (3) (4)
By Factor

MCGSpread∗ + MCGDev∗ 0.332 0.901 0.615
MCGSpread∗ Only 0.274 0.892 0.582
MCGDev∗ Only 0.223 0.884 0.553

By Sector
Basic 0.343 0.854 0.627
Consumer 0.323 0.922 0.612
Industry 0.333 0.890 0.606

Panel B: 2Y Training Period
By Factor

MCGSpread∗ + MCGDev∗ 0.180 0.869 0.538 0.197
MCGSpread∗ Only 0.154 0.865 0.523 0.171
MCGDev∗ Only 0.119 0.859 0.503 0.136

By Sector
Basic 0.185 0.822 0.542 0.206
Consumer 0.178 0.899 0.540 0.191
Industry 0.178 0.835 0.529 0.195

Panel C: 3Y Training Period

By Factor
MCGSpread∗ + MCGDev∗ 0.130 0.854 0.519 0.170
MCGSpread∗ Only 0.117 0.851 0.512 0.158
MCGDev∗ Only 0.079 0.845 0.491 0.121

By Sector
Basic 0.134 0.802 0.524 0.177
Consumer 0.126 0.889 0.522 0.166
Industry 0.130 0.812 0.510 0.167
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Table 9: CDS Systematic Factor Panel Regression: Weekly Changes

This table reports the panel regression results for CDS systematic factors. The sample
period is from 2002 to 2011. logSpread is the logarithm of the observed 5-year CDS spread.
MCGSpread∗ and MCGDev∗ are the endogenous CDS-market systematic factors. ∆ is
the weekly change operator. The control variables are defined in Table 1. The standard
errors of the coefficients re reported in ( ), where the robust variance-covariance is used
following Hoechle (2007). ***, **, * stand for the statistical significance at the 1%, 5%, and
10% levels, respectively.

∆log Spread

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Constant 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

∆CR -0.004 -0.003 0.005 0.006 0.006
(0.007) (0.007) (0.007) (0.007) (0.007)

∆Size 0.001 0.003 0.026 0.031 0.031
(0.054) (0.052) (0.051) (0.050) (0.051)

∆Vol 0.294*** 0.284*** -0.046 -0.097** -0.099**
(0.054) (0.052) (0.047) (0.044) (0.044)

∆Lev 0.118*** 0.110*** 0.051 0.036 0.036
(0.034) (0.032) (0.031) (0.026) (0.026)

∆Recovery -0.262* -0.274* -0.220** -0.223** -0.227**
(0.137) (0.140) (0.108) (0.108) (0.108)

∆#Contributor 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

∆CDS Slope 3.591*** 3.620*** 3.506*** 3.561*** 3.566***
(0.773) (0.765) (0.709) (0.700) (0.702)

∆CDS Amihud 13.598** 11.284* 9.510* 9.633* 9.787*
(6.561) (5.968) (5.546) (5.608) (5.604)

∆CDS HL 3.529*** 3.443*** 3.007*** 2.964*** 2.955***
(1.079) (1.064) (0.981) (0.968) (0.958)

∆CDS Roll -1.854 -1.815 -1.807 -1.746 -1.763
(3.119) (3.116) (2.914) (2.849) (2.845)

∆CDS Zeros 0.023 0.019 0.007 0.005 0.005
(0.017) (0.016) (0.016) (0.016) (0.016)

∆MCGSpread∗ 0.420*** 0.320*** 0.315*** 0.267*** 0.261***
(0.034) (0.037) (0.036) (0.038) (0.038)

∆MCGDev∗ 1.102*** 0.609*** 0.600*** 0.639*** 0.635***
(0.087) (0.088) (0.084) (0.083) (0.083)

∆VIX -0.000 -0.000
(0.001) (0.001)

∆Treasury -1.427 -1.356
(1.536) (1.568)

∆TermSpread 0.006 0.016
(1.466) (1.472)

∆DefaultSpread 10.115*** 9.370**
(3.906) (4.029)

∆S&P500 0.047 0.058
(0.054) (0.055)

Adj. R-sqr 0.021 0.035 0.054 0.106 0.078 0.124 0.153 0.162 0.152
N 69003 69003 69003 69003 69003 69003 69003 69003 69003
Year FE NO NO NO NO NO NO NO NO YES
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Table 10: CDS Systematic Factor Panel Regression: Adjusted Deviation Measure

This table reports the panel regression results for CDS systematic factors. The sample
period is from 2002 to 2011. logSpread is the logarithm of the observed 5-year CDS

spread. MCGSpread∗ and ˜MCGDev∗ are the endogenous CDS-market systematic factors,
adjusted for the impact of individual credit and liquidity factors. ∆ is the monthly change
operator. The control variables are defined in Table 1. The standard errors of the coefficients
re reported in ( ), where the robust variance-covariance is used following Hoechle (2007).
***, **, * stand for the statistical significance at the 1%, 5%, and 10% levels, respectively.

∆log Spread

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Constant 0.002 0.000 0.000 0.001 0.001 0.000
(0.007) (0.007) (0.006) (0.006) (0.005) (0.005)

∆CR -0.002 -0.002 -0.001
(0.007) (0.006) (0.007)

∆Size -0.163*** -0.134*** -0.136***
(0.051) (0.049) (0.051)

∆Vol 0.025 0.013 0.013
(0.079) (0.062) (0.062)

∆Lev 0.290*** 0.234*** 0.234***
(0.035) (0.032) (0.033)

∆Recovery -0.495*** -0.491*** -0.523***
(0.184) (0.188) (0.185)

∆#Contributor 0.001 0.001 0.001
(0.001) (0.001) (0.001)

∆CDS Slope 5.809*** 5.892*** 5.901***
(2.061) (2.047) (2.046)

∆CDS Amihud 6.283 6.430 7.287
(5.231) (5.083) (5.057)

∆CDS HL 5.590*** 5.077*** 5.092***
(1.621) (1.601) (1.578)

∆CDS Roll -1.737 -1.319 -1.324
(4.451) (4.362) (4.349)

∆CDS Zeros 0.011 0.005 0.004
(0.018) (0.018) (0.017)

∆MCGSpread∗ 0.545*** 0.364*** 0.267*** 0.154** 0.164**
(0.046) (0.072) (0.064) (0.066) (0.065)

∆ ˜MCGDev∗ 0.437*** 0.208*** 0.216*** 0.220*** 0.210***
(0.044) (0.054) (0.049) (0.047) (0.048)

∆VIX 0.001 0.001
(0.002) (0.002)

∆Treasury -2.138 -1.947
(2.466) (2.749)

∆TermSpread -0.298 -0.081
(2.262) (2.243)

∆DefaultSpread 13.900*** 12.348**
(3.836) (4.894)

∆S&P500 -0.218 -0.206
(0.143) (0.143)

Adj. R-sqr 0.208 0.185 0.227 0.277 0.295 0.256
N 15811 15811 15811 15811 15811 15811
Year FE NO NO NO NO NO YES
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Table 11: Correlation Matrix of Wavelets Decomposing CDS-Market Systematic Factors

This table reports the correlation matrix of wavelets – Intrinsic Mode Functions (IMF) –
decomposing MCGSpread∗ and MCGDev∗. The sample period is from 2002 to 2011.

∆MCGSpread∗ ∆MCGDev∗

IMF 1 IMF 2 IMF 3 IMF 4
IMF 1 0.47 0.05 -0.03 -0.05
IMF 2 0.13 0.46 0.16 0.00
IMF 3 -0.08 0.08 0.09 0.44
IMF 4 0.04 -0.07 0.16 0.01
IMF 5 0.00 -0.17 0.06 0.76
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Figure 1: Time series plot for cross-sectional averages of CDS spread and its unadjusted components

This figure plots the time series of the cross-sectional average CDS spread (solid line), the average CreditGrades implied spread (dashed line), and
the average absolute deviation between the two (dashed-dotted line) from 2002 to 2011.
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