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Abstract 

Objective metrics of technical performance (e.g. dexterity, time and path length) are 

insufficient to fully characterize operator skill level, which may be encoded deep within 

neural function. Unlike reports that capture plasticity across days or weeks, this paper studies 

long-term plasticity in functional connectivity that occurs over years of professional task 

practice. Optical neuroimaging data are acquired from professional surgeons of varying 

experience on a complex bimanual co-ordination task with the aim of investigating learning-

related disparity in frontal lobe functional connectivity that arises as a consequence of motor 

skill level. The results suggest that prefrontal and premotor seed connectivity is more critical 

during naïve versus expert performance. Given learning-related differences in connectivity, a 

least-squares support vector machine with a radial basis function kernel is employed to 

evaluate skill level using connectivity data. The results demonstrate discrimination of 

operator skill level with accuracy ≥ 0.82 and Multiclass Mathew’s Correlation Coefficient ≥ 

0.70. Furthermore, these indices are improved when local (i.e. within-region) rather than 

inter-regional (i.e. between-region) frontal connectivity is considered (p=0.002). The results 

suggest that it is possible to classify operator skill level with good accuracy from functional 

connectivity data, upon which objective assessment and neuro-feedback may be used to 

improve operator performance during technical skill training.   

 

.  
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Acronyms List 

PFC Prefrontal cortex HR Heart rate 

SMA Supplementary motor area ML Machine learning 

PMC Premotor cortex LS-SVM Least-squares support vector machine 

M1 Primary motor OVA One-vs-all 

ROI Region of interest OVO One-vs-one 

OT Optical topography MMCC Multiclass Mathew’s correlation coefficient 

HB02 Oxygenated hemoglobin TP True positive 

HHb Deoxygenated hemoglobin TN True negative 

MIS Minimally invasive surgery FP False positive 

LS Laparoscopic suturing FN False negative 

FLS Fundaments of laparoscopic suturing KW Kruskal wallis  

NHS National Health Services DT Dunn’s Test 

MHR Mean heart rate Tuckey’s HSD Tukey’s honest significance differences 

MHRV  Mean heart rate variability SW Shapiro-Wilk’s test 

   

 Page 3 of 40 

B
ra

in
 C

on
ne

ct
iv

ity
D

is
pa

ri
ty

 in
 F

ro
nt

al
 L

ob
e 

C
on

ne
ct

iv
ity

 o
n 

a 
C

om
pl

ex
 B

im
an

ua
l M

ot
or

 T
as

k 
A

id
s 

C
la

ss
if

ic
at

io
n 

of
 O

pe
ra

to
r 

Sk
ill

 L
ev

el
 (

do
i: 

10
.1

08
9/

br
ai

n.
20

15
.0

35
0)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



4 

4 

 

1 Introduction  

Neuroergonomics captures the study of brain behaviour at work with the goal of improving 

performance, safety and efficiency (Parasuraman et al., 2012; Parasuraman and Rizzo, 2003). 

This is particularly relevant to fields that warrant operator vigilance, technical skill levels and 

decision-making such as command control in aviation (Izzetoglu et al., 2004) and surgery 

(James et al., 2010). Of these, surgery is unique in that the operator’s technical and cognitive 

skill levels have a direct impact on patient safety. In theory, enhanced neuronal efficiency in 

surgeons acquired through practice and training or through improved ergonomics may 

manifest as improved patient safety. Deepening our understanding of operator brain 

behaviour may have value when applied to improve performance, particularly in high-risk 

procedures. Advances in functional neuroimaging technology have made it possible to 

monitor operators in more realistic settings and track evolution in brain behaviour that 

accompanies motor skill levels learning. To this end, there has been an increasing number of 

research studies focused on studying evoked cortical response to complex motor behaviour in 

the context of open and minimally invasive surgery (MIS) (Bahrami et al., 2011; Duty et al., 

2012; Leff et al., 2007a; Leff et al., 2008a; Leff et al., 2008b; Ohuchida et al., 2009; Zhu et 

al., 2011). In this study we used functional near-infrared spectroscopy (fNIRS), which has 

raised increasing interest in recent years for performing less constricted, hence more 

naturalistic neuroscience experiments (Rodrigo et al., 2014).   

Previous studies have exposed skill level-related differences in brain behaviour and 

longitudinal changes in cortical excitation in line with technical skill levels acquisition (Leff 

et al., 2007a; Leff et al., 2007b, Leff et al., 2011). For example, data suggest that cortical 

responses may be skill level-dependent (Leff et al., 2008b). Greater activation within 

executive control centres such as the prefrontal cortex (PFC) has been observed in novices 

and PFC excitation appears to attenuate following practice (Leff et al., 2008a). In a study 

with 18 subjects, decreasing ratios of oxygenated haemoglobin were observed in 

supplementary motor area (SMA) and preSMA when learning a motor skill (Hatenaka et al., 

2007). Similarly, a decrease in cortical activation of the sensorimotor cortex was reported 

during the learning of a multi-joint discrete motor task (Ikegami and Taga, 2008). This is 

commensurate with evidence that re-organisation of brain function (i.e. neuroplasticity) 

accompanies motor skill levels learning, such that operator skill level may be best reflected in 

the magnitude of regional brain excitation or shifts in activation foci (Draganski and May, 
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2008; Halsband and Lange, 2006; Kelly and Garavan, 2005). This notwithstanding, 

investigations of highly complex motor skill levels such as MIS, have failed to demonstrate 

differences between naïve subjects and expert operators (Ohuchida et al., 2009). One theory 

is that for highly complex motor tasks such as MIS that require 2D to 3D perceptual 

transformation and precise inter-manual co-ordination, skill level-related disparity may 

manifest as differences in frontal lobe connectivity rather than changes in activation per se. 

This can be deduced from the cortical network differences reported in Sun et al. (2007) across 

early and late motor learning states, as well as the variations in cortical connectivity 

presented in James et al. (2013) during skill acquisition for a surgical task. 

Whilst longitudinal changes in network topologies have previously been studied in surgical 

learners, cortical interactions have only been tracked over days (James et al., 2013) and not 

months or years. In this study from our group (James et al., 2013), changes in the network 

cost across days of the practice were found amongst subjects of similar skill level.  One 

advantage of evaluations that incorporate master operators is that they facilitate interrogation 

of motor plasticity as a result of repeated practice of a technical skill level over many years. 

Indeed, few studies have investigated learning-related changes in connectivity across such 

timescales, and current reports are restricted to minutes or weeks (Coynel et al., 2010; Dayan 

and Cohen, 2011; Heitger et al., 2013; Heitger et al., 2012; Sun et al., 2007). Nevertheless, 

existing literature seems to suggest greater connectivity between frontal and cortical motor 

regions in ‘early’ versus ‘late’ learning (Sun et al., 2007) and longitudinal attenuation in 

functional integration in motor-related networks following extended practice (Coynel et al., 

2010). Therefore, conceivably functional connectivity between associative and premotor 

regions may be expected to decrease in line with continued practice and increasing operator 

skill level.  

Differences in functional connectivity may help discriminate operators based on their skill 

level. Classification of operator proficiency based on brain behaviour may prove invaluable 

for objective assessment of technical skill levels, evaluation of trainee progress, and if 

“interfaced” to the operator or team, may improve performance or aid patient safety through 

cognitive biofeedback (Nan et al., 2012; Wang and Hsieh, 2013; Zoefel et al., 2011). Whilst 

amplitude of the evoked response has been used for classification of operator states 

previously (Coyle et al., 2007; Naito et al., 2007; Power et al., 2012), there have been no such 

reports in surgeons. Indeed, whilst differences in amplitude signal change in executive 
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control and motor cortical regions related to surgical skill level have been previously 

observed (Leff et al., 2008b; Ohuchida et al., 2009), it has not been possible to discriminate 

operators’ performance based solely on these signal characteristics. Classification of operator 

proficiency based on functional connectivity data represents a non-trivial high dimensionality 

problem for which conventional statistics are ill-posed to solve. Machine learning (ML) 

techniques such as least-squares support vector machine (LS-SVM) generate predictive 

models that can discriminate data based on the complexity of multivariate relationships such 

as those arising from functional connectivity.  

In this study, we aim to investigate and discriminate operator skill level during laparoscopic 

(key-hole) surgical manoeuvres using brain connectivity derived from evoked optical 

imaging responses. Specifically, we employ Optical Topography (OT) to monitor operator 

brain function during a highly complex surgically relevant motor task (i.e. key-hole surgical 

suturing). We hypothesize that frontal lobe connectivity in associative (prefrontal) and 

premotor seed regions will decrease in line with increasing operator experience. Functional 

connectivity computed from one-second epochs of filtered oxygenated and deoxygenated 

haemoglobin signals (HbO2 and HHb, respectively) was used to classify operator skill level. 

Additionally, an analysis of the discriminatory performance of local (within-region) and 

inter-regional connectivity was performed. To facilitate this comparison, a single metric of 

performance named Multiclass Mathew’s Correlation Coefficient (MMCC) (Jurman et al., 

2012) was employed. The results demonstrate that ML-based discrimination of operator skill 

level is feasible and accurate, upon which educators may capitalise in the form of neural 

feedback training.  

2 Materials and methods 

2.1 Experimental set-up and neuroimaging data acquisition  

Local Research Ethical Council approval was obtained (05/Q0403/142). Participants were 

screened for handedness (Oldfield, 1971), gender and neuropsychiatric illness. Participants 

abstained from consumption of alcohol and caffeine for 24 hours before the study date 

(Orihuela-Espina et al., 2010). Thirty-two right-handed male surgeons were recruited from 

the National Health Service (NHS) and Imperial College London to perform a complex 

visual-spatial task, namely simulated laparoscopic suturing (LS) (i.e. key-hole surgical 

stitching), in a box trainer (i-SIM, iSurgicals, UK). The cohort included 12 novices (with no 
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prior experience of MIS, mean age 22.4 ± 1.6 years), 11 trainees (limited MIS experience of 

less than 50 cases involving LS, mean age 33.8 ± 2.9 years) and 9 expert consultants 

(minimum of 50 independent cases requiring LS, mean age 42.7 ± 3.6 years). Participants 

were required to perform the task three times as per the fundamentals of laparoscopic surgery 

curriculum (FLS) (FLS, 2015). Statistical analysis on the FLS was performed using Kruskal 

Wallis (KW), followed by Dunn’s Test (DT) for multi-comparisons. During each of the three 

sessions, the surgical procedure was segregated sequentially into three subtasks, namely 

‘needle insertion’, ‘double-throw knot tying’ and ‘single-throw knot tying’ as highlighted in 

Figure 1.  

 

[INSERT FIGURE 1 HERE] 

 

Prior to recording, the participants were allowed a brief familiarisation session (15 minutes). 

The experimental design consisted of a sequence of continuous episodes of baseline motor 

rest (30 seconds), subtask phases during which given LS manoeuvres were executed (variable 

time i.e. self-paced) and inter-trial recovery periods (40 seconds). During the rest episodes the 

participants were asked to remain still and regard the centre of the monitor. Observable 

technical performance in LS was assessed by adoption of the FLS score [Score = 600 – (time 

in seconds) – (penalties 10)]. Penalties were measured as per needle entry and exit distance 

points from pre-marked points (mms) as well as gap between the edges of wound (mms), i.e. 

an objective quantitative assessment. The derived score based on time and accuracy of 

performance was compared across experience groups using statistical tests of significance. 

Cortical hemodynamic data were recorded at 10 Hz using a 44-channel OT system (ETG-

4000, Hitachi Medical Corp, Japan). To capture functional behaviour relating to motor skill 

levels acquisition, channels were positioned over the PFC, premotor cortex (PMC), SMA and 

motor cortex (M1) regions of the brain according to landmarks of the International 10-10 

system (Jurcak et al., 2007) as illustrated in Figure 2. Optode positions were measured using 

a 3D digitizer. A stand-alone registration method was used to project NIRS probe positions 

into a MNI (Montreal Neurological Institute) coordinate space (Tsuzuki et al., 2012). As OT 

data may be influenced by changes in the systemic circulation (Elwell et al., 1994; Obrig et 

al., 2000), a portable electrocardiogram sensor was attached to the chest of each subject to 

continuously monitor the heart rate (HR) during the course of the experiment. Mean heart 

rate (MHR) and heart rate variability (MHRV) was extracted from the electrocardiogram 
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sensor readings using R-R wave intervals. Statistical significance was computed using 

analysis of variance ANOVA over these measurements. 

 

[INSERT FIGURE 2 HERE] 

2.2 De-noising and filtering 

For each channel of data, an average baseline was computed considering 10s of data prior to 

each task onset to allow for haemodynamic normalisation after task offset. During this 

period, subjects were asked to refrain from any motion prior to task onset and not to engage 

in deliberate cognitive work. For each subtask, the first 6s of data were discarded, thereby 

allowing for the temporal delay between task onset and cortical haemodynamic change. At 

each channel, changes in the concentration of HbO2 and HHb were reconstructed from 

variations in light attenuation using the modified Beer-Lambert law (Delpy et al., 1988). To 

reduce systemic interference, the haemodynamic data were low-pass filtered, detrended for 

eliminating system drift and integrity checked for eliminating noisy channels using Imperial 

College Neuroimage Analysis (ICNA) software (Orihuela-Espina et al., 2010).  

2.3 Between-group differences in functional connectivity 

The methodology for computing the between-group differences consists of the following 

sequential sets: 

1) For every sample of haemoglobin data, the difference between the current value and 

the average baseline is computed. The resultant metrics are denoted by HbO2 or 

HHb.  

2) HbO2 and HHb from channels belonging to the same region of interest (ROI) are 

grouped and averaged, resulting in      
 and      for each ROI.   

3) To obtain a single metric of inter-connectivity, the Rv coefficients (Josse et al., 2008; 

Abdi, 2007) are calculated between the pairs of      
and      from two ROIs. Rv 

coefficients form a metric of multivariate statistical relationship to measure the 

dissimilarity between two sets of data. It is formulated as follows: 

 

  
     (         )

√     ((              ((       
       

  [     

         
     ]

  [     

         
     ]

 

  

(1) 
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where we denote Rv coefficients with the function r taking as inputs the mean-

centered   and   matrices; and the indexes ROI
1
 and ROI

2
 represent two distinct 

regions of interest. Once computed, Rv coefficients return values between 0 and 1 that 

can be interpreted as an approximation of the squared Pearson correlation coefficient 

(Josse et al., 2008; Abdi, 2007).  

4) Fisher transformation is applied to the Rv coefficients yielding the Gaussian 

distributed z scores. In order to obtain a single informational value, the z scores are 

averaged and the inverse Fisher transformation is applied, transforming the average 

back to its original Rv coefficient. The resultant average value is then considered as 

the inter-regional connectivity between two brain areas of a subject performing a 

given LS trial (session).  

Statistical analysis of normalized z-scores for inter-regional connectivity was performed 

using the ANOVA test, followed by post-hoc analysis using Tukey’s honest significance 

difference (HSD).   

 

2.4 Machine learning from functional connectivity for operator skill level 

discrimination  

2.4.1 Functional connectivity datasets for automated discrimination 

Two sub-datasets with different granularity are studied to classify operator skill level from 

fNIRS data: the session based networks and time-course based networks. The former aims to 

classify operators based on data from an entire session while the later from every one-second 

time epoch within a session. Both are derived from the HbO2 and HHb readings of the 

original dataset captured at 10 Hz.   

a) Session based networks: Rv coefficient is a scalar that determines the relationship of 

the joined signals, HbO2 and HHb, between two channels during a session (i.e. the 

duration of one trial). Each correlation matrix represents a session. Each element 

within the matrix corresponds to a scalar that represents the 2D relationship between 

two channels when jointly considering both signals of interest, namely HbO2 and 

HHb. The resulting dimensionality of the correlation matrix is 4444, i.e. one 
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element for each channel, out of which 22 are on the PFC, 10 are on the SMA, 8 are 

on the PMC, and 4 on the M1. 

b) Time-course based networks: Due to the averaging used to construct an exemplar 

network across a whole session, some latent discriminatory information might be 

omitted. A short period connectivity network can be constructed using Spearman’s 

correlations between channels, this time considering HbO2 and HHb separately. To 

increase the granularity, correlations are computed within one-second epochs across 

the whole session. Hence, each correlation matrix corresponds to a single epoch and 

each element within the matrix is a single correlation of either HbO2 or HHb 

between two channels. As a result, two 44x44 correlation matrices are generated, one 

for each haemoglobin species. 

2.4.2 Classifier and parameter settings 

For the analysis of the functional connectivity datasets, a least-squares support vector 

machine (LS-SVM) with a non-linear radial basis function kernel is used.  In LS-SVMs the 

parameters of the separating hyperplane are formulated as a closed-form linear system of 

equations (Gaonkar and Davatzikos, 2013; Suykens et al., 2002). The entire data are first 

divided into 5 cross-validation subsets and one is held out for testing. Before each test, 

optimization of the L2 internal regularization parameter is performed over a 5-fold cross-

validation process using only the training set. This prevents over-fitting over the presence of 

irrelevant features. The optimization algorithm used is simulated annealing (Press et al., 

2007).  

The present study is related to a multiclass problem (with     as the number of classes) 

since we aim to sub-classify operator skill level into one of three groups (novices, trainees 

and experts). Several binary LS-SVM models are trained and their outputs are later combined 

using a voting scheme. These individual binary LS-SVM models can be designed in two 

ways: (1) one class against the rest or one-versus-all (OVA), which requires training   large 

models; (2) one-versus-one (OVO), where one binary LS-SVM is trained for each pairwise 

class and consists of  (       simpler models (via a directed acyclic graph). Both 

methods can lead to similar results although they can be used for different purposes (Galar et 

al., 2011). In Section 3.3 the OVO method is used, while in Section 3.4 both methods are 
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employed. Training and testing sets were separated via randomized 5-fold cross-validation to 

ensure generalization to independent sets. 

2.4.3 Performance measures for classification 

To evaluate the performance of the classifier for each of the two sub-datasets defined in 2.4.1, 

standard metrics are computed from the true/false positive/negative (i.e. TP, TN, FP, FN) 

frequencies. These metrics of performance are: 

         
     

           
             

  

     

            
  

     
                

  

     

 

  

(2) 

Considering the metrics presented in (2), every class would lead to an independent metric of 

performance, which is not desirable for assessing the overall performance. Instead, a practical 

metric of classification performance is the Mathews’ correlation coefficient (MCC), which 

considers all   ,   ,    and    simultaneously. For binary class problems the MCC is 

formulated as:  

   
      

 
(            

√(      (      (      (      
  

(3) 

MCC can be re-formulated to be multiclass and define a global performance metric 

representative of all classes (Gorodkin, 2004; Jurman et al., 2012). In order to make it 

multiclass, the whole multiclass confusion matrix can be used as the reference to compute the 

MCC statistics. The multiclass MCC (MMCC) is obtained from marginalizing the different 

dimensions of the confusion matrix  , which elements include all true/false positive/negative 

frequencies for each class. Each row of   represents a class prediction while each column 

accounts for the true class. Hence, formula (3) becomes: 

    
          

 
∑                    

     

√∑ (∑     
 

)(∑       
       

)
 

√∑ (∑     
 

)(∑       
       

)
 

  

 

(4) 

Where  (  (   is a single element of the confusion matrix and all matrix indexes (     ) start 

with 1 and finish with  , unless when specified. Formula (4) generalises MCC and can be 

used either for multiclass or binary problems. The value obtained with MMCC is always 

between -1 and 1. If the coefficient is -1, the MMCC portrays a total disagreement between 
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predictions and the ground truth, whereas 0 indicates a random prediction and 1 means a 

ground truth match. 

2.4.4 Predicting operator skill level 

After training the classifier using a priori data, operator skill level can then be predicted for 

any new, unseen (i.e. unlabelled) set of fNIRS data. Figure 3 summarises the processing steps 

necessary to obtain these predictions: 

1) A signal processing step is composed of the following tasks: 

a. Signal extraction: 1Hz of haemoglobin data captured by each OT channel is stored 

in an independent buffer. 

b. Signal filtering (section 2.2): Each signal in a buffer is denoised, smoothed and 

baseline-subtracted.  

2) Functional connectivity: coefficients are computed as a proxy for functional 

connectivity for all between-channel signal pairs, thus generating a functional 

connectivity matrix. The elements of the resulting matrix are translated into a sample 

vector, in which each vector dimension corresponds to an element of the matrix. In the 

case where two functional connectivity matrices are generated (one for each 

haemoglobin species), the elements of both matrices are linked together within a same 

sample vector. 

3) Skill level estimation: In advance of testing, a LS-SVM algorithm is trained and 

parameter optimization is performed as described in 2.4.2. The sample vector obtained 

in step 3 is tested against a support vector machine model by using one of the 

multiclass settings described in 2.4.2. New data samples are analysed and a prediction 

is made regarding the likely skill level. 

 

[INSERT FIGURE 3 HERE] 

 

2.5 Evaluating discrimination capabilities by groups of connectivity 

It is valuable to explore the relative importance of each brain area, by considering the 

connectivity within and between brain areas in the frontal lobe, as opposed to solely 

considering classifier performance based on the fully connected adjacency matrix. The 

extended dataset is used in this analysis. In this regard, the classifier is adapted to consider 
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only the within-region (local) or between-region (inter-regional) connectivity for a given 

brain region of interest (ROI). As illustrated in Figure 4, for a given ROI the local, inter-

regional or combined functional connectivity data may be considered and defined as:  

a) Local connectivity (within-region): Considering observed connections within a 

given brain region. In other words, it refers to the internal functional connectivity 

of a particular brain region without considering long-range connections to other 

brain regions. 

b) Inter-regional connectivity: Involves observed connections between channels of 

different brain areas, capturing distant functional relationships between areas of 

the brain, pruning local connections within the region. 

c) Combined (within-region and inter-regional): Includes all possible functional 

connections, both within a given ROI and between that ROI and other brain 

regions, thereby emphasizing all possible functional relations exhibited by a 

specific area. 

Two different classifier strategies are used in this study to analyse the performance of each 

classification for each sub-region: (1) an overall multiclass classification following a one-vs-

one strategy, (2) an independent binary skill level classification based on a one-vs-all 

strategy.  

 

[INSERT FIGURE 4 HERE] 

 

3 Results 

3.1 Behavioural performance and cognitive load  

Table 1 summaries the results of task-related change in MHR, MHRV and assessment of 

motor laparoscopic skill levels (FLS). As anticipated, technical performance was significantly 

different between groups (p<0.001, Chi-square=58, df=2, KW). Experts displayed superior 

performance (lower FLS scores) compared to trainees (p<0.001, z=-32.2, DT) who in turn 

outperformed novices (p=0.002, z=-22.8, DT). No statistically significant differences in task-

related MHR (p=0.87, F-value=0.145, df=2; ANOVA) and MHRV (p=0.83, F-value=0.182, 

df=2; ANOVA) were found between groups. For all groups, the null hypothesis is retained 

under Shapiro-Wilk test of normality for HRV (Novices: p=0.42, Trainees: p=0.42, Experts: 

p=0.50) and MHRV (Novices: p=0.61, Trainees: p=0.21, Experts: p=0.33). 
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[INSERT TABLE 1 HERE] 

 

 

 

 

 

3.2 Learning-related changes in local and inter-regional connectivity  

For all groups, the null hypothesis is retained under Shapiro-Wilk’s (SW) test of normality 

(Novices: p=0.31, Trainees: p=0.11, Experts: 0.09). 

3.2.1 Needle insertion  

Frontal lobe connectivity during needle insertion varied according to surgical skill level 

(Figure 5). Correlations between PFC and PMC seed regions and other frontal motor cortical 

regions were observed to be lower in trainees and experts than novices. Overall, a significant 

main effect of skill level was observed for the interactions PFC-SMA (p<0.01, F-

value=20.06, df=2; ANOVA), PFC-PMC (p<0.01, F-value=16.05, df=2; ANOVA), SMA-

PMC (p<0.01, F-value=36.67, df=2; ANOVA). Upon post-hoc analysis no significant 

differences between trainees and experts were observed (PFC-SMA: p=0.56, PFC-PMC: 

p=0.97, SMA-PMC: p=0.09; Tukey’s HSD). However, comparisons between novices and 

trainees (PFC-SMA: p<0.01, PFC-PMC: p<0.01, SMA-PMC: p<0.01; Tukey’s HSD), and 

novices and experts were statistically significant (PFC-SMA: p<0.01, PFC-PMC: p<0.01; 

SMA-PMC: p<0.01; Tukey’s HSD). No main effect of skill level was observed for M1-PFC 

or M1-SMA seed interactions. However, a main effect of skill level was observed for M1-

PMC interactions (p=0.01; ANOVA). Post-hoc analysis revealed no significant difference 

between trainees and experts while, differences between novices and trainees (p=0.01; 

Tukey’s HSD) and novices and experts (p=0.03; Tukey’s HSD) reached statistical threshold.   

3.2.2 Double-throw knot tying  

The strength of PFC-PMC interactions was not observed to depend on skill level (Figure 5) 

for double-throw knot tying. No significant differences were found for PFC seed interactions. 

However, interactions between the PMC and other frontal lobe seed regions varied with skill 
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level. For example, a main effect of skill level was observed for interactions between the 

SMA and PMC (p<0.01, F-value=8.574, df=2; ANOVA). The interaction strength of this 

connection was significantly lower in experts than novices (SMA-PMC: p<0.01; Tukey’s 

HSD). Of all frontal lobe interactions, differences between trainees and experts were only 

observed in SMA-PMC, the interaction strength being significantly lower in experts (SMA-

PMC: p=0.04; Tukey’s HSD).  

3.2.3 Single-throw knot tying  

A significant main effect of skill level was observed for the interactions PFC-PMC (p<0.01,  

F-value= 11, df= 2; ANOVA), PFC-SMA (p=0.03, F-value= 4.14, df= 2; ANOVA) and 

SMA-M1 (p=0.01, F-value=6.49, df=2; ANOVA). For PFC seed interactions, the strength of 

association was observed to be significantly lower in experts than novices (PFC-SMA: 

p=0.03; PFC-PMC, p<0.01; Tukey’s HSD) and also lower for trainees between PFC-PMC 

(p=0.03, Tukey’s HSD) (Figure 5). Interestingly, differences between experts and trainees 

were only evident in SMA-M1 interactions, the strength of association being significantly 

greater in experts (SMA-M1: p=0.01; Tukey’s HSD). 

 

 

 

[INSERT FIGURE 5 HERE] 

 

 

 

 

3.3 Classification of operator skill level  

Tables 2 and 3 show the results of the classifier using the “session based networks’’ (Table 2) 

and the ‘time-course based networks’ (Table 3).  

 

 

[INSERT TABLE 2 HERE] 

 

 

[INSERT TABLE 3 HERE] 
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Classification using session based networks yields a greater number of true positives than 

false positives in all subtasks, with low MMCC scores (<0.5) for certain trials. In contrast, the 

time-course based networks consistently achieves high MMCC scores (≥ 0.70) across 

subtasks. For this latter case, the classifier appears to perform equally well in each LS 

subtask. Overall, novice identification was highly precise (≥ 0.8 for all three subtasks) and 

sensitive (0.92 for needle insertion, 0.85 for double-throw knot and 0.91 for single-throw 

knot) whilst trainee and expert identification was precise and specific (e.g. precision for 

trainees ≥ 0.83 and specificity ≥ 0.86 across all subtasks). The discrimination of experts also 

exhibits high specificity (≥ 0.95) and precision (≥ 0.76), but with lower sensitivity versus the 

other operator groups (0.63-0.67). These results suggest that the variability in cortical 

haemodynamic responses between groups based on experience is potentially greater than the 

variability in responses across subtasks within a given experience group.  

3.4 Discrimination capability: local versus inter-regional connectivity 

Performance results for each brain area and connectivity type are presented in Table 4 for the 

OVO multiclass setting which summarises the overall classification over the entire set of 

categories, i.e. a combination of three one-vs-one classifiers are used to determine the class of 

each sample (multiclass approach). Tables 5, 6, and 7 display results from the OVA setting 

which summarises the classification of operator skill level, i.e. three one-vs-all classifiers are 

used as three separate classifiers (independent binary classification of a determined skill level 

against the rest). MMCC data were analysed using the Friedman test followed by post-hoc 

analysis using the Wilcoxon signed-rank test with a Bonferroni correction to establish 

statistical significance at p < 0.05. 

 

Analysis from OVO strategy, overall classification. The subset of connectivity (i.e. local vs. 

inter-regional vs. combined) was statistically significant (p<0.001, chi-square=18.167, df=2; 

Friedman). Post-hoc analysis revealed statistically significant differences in MMCC between 

local and inter-regional connectivity (p=0.002, z-score=-3.059; Wilcoxon), combined and 

inter-regional connectivity (p=0.002, z-score=-3.059; Wilcoxon) but not local versus 

combined (p=0.53, z-score: -0.628; Wilcoxon). Statistically significant differences were 

observed in the MMCC between brain ROIs (p=0.001, chi-square=16.6, df=2; Friedman), 

regardless of the type of connectivity considered. Upon post-hoc analysis, MMCC values for 

M1 were significantly lower versus other frontal ROIs for M1 vs. SMA (p=0.008, z-score=-
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2.666; Wilcoxon), M1 vs. PMC (p=0.008, z-score=-2.666; Wilcoxon). However, no other 

significant differences were observed in MMCC data between fontal ROIs. 

 

[INSERT TABLE 4 HERE] 

 

Analysis from OVA strategy, one-skill level-against-the-rest classification. The type of 

network connectivity was compared using a within-skill level approach. Regardless of the 

skill level of the operator, the type of connectivity significantly affected performance of the 

classifier (p<0.001, chi-square=54.056, df=2; Friedman). Indeed, performance was 

significantly poorer when inter-regional rather than local connectivity was considered 

(p<0.001, z-score=-5.232; Wilcoxon). Similar to the results obtain for the OVO model, 

regardless of the connectivity data used, statistically significant differences were observed 

between regions in the performance of the classifier. Specifically, for all skill level groups, 

MMCC values from M1 were significantly lower than several other frontal brain regions for 

novices: M1 vs. PFC (p=0.008, z-score=-2.666; Wilcoxon), M1 vs. SMA (p=0.008, z-score=-

2.666; Wilcoxon), M1 vs. PMC (p=0.008, z-score=-2.666; Wilcoxon); trainees: M1 vs. SMA 

(p=0.008, z-score=-2.666; Wilcoxon); experts: M1 vs. PFC (p=0.008, z-score=-2.666; 

Wilcoxon); M1 vs. SMA, (p=0.008, z-score=-2.666; Wilcoxon).  

 

[INSERT TABLE 5 HERE] 

 

 

[INSERT TABLE 6 HERE] 

 

 

[INSERT TABLE 7 HERE] 

 

4 Discussion and conclusion  

Notwithstanding established models of motor skill levels learning (Hikosaka et al., 2002) and 

evidence supporting learning-related changes in brain function (Coynel et al., 2010; Heitger 

et al., 2012; Sun et al., 2007), disparate technical performance does not necessarily translate 

into differences in functional activations on highly complex bimanual co-ordination tasks 
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(Ohuchida et al., 2009). Our hypothesis is that differences in technical skill level on tasks of 

such complexity may be better reflected in differences in functional connectivity within 

associative and/or sensorimotor brain networks (Bullmore and Bassett, 2011; Coynel et al., 

2010; Heitger et al., 2012; Hikosaka et al., 2002; Rissman et al., 2004). Here, skill level-

related differences in frontal lobe connectivity were revealed, summarised as a reduction in 

connectivity strength between cortical regions involved in the associative network. This 

suggests that frontal lobe cortico-cortical connectivity on a bimanual co-ordination task 

varies according to operator skill level and technical skill level, thereby confirming the 

dynamic nature of coupling in cognitive-motor circuitry. In particular, interaction strength 

between prefrontal and premotor seeds and other motor-related cortical regions were found to 

attenuate with skill level. In other words, novices appear to depend on the interactions 

between associative and motor cortical networks more than experts. Of these frontal lobe 

interactions, PFC-SMA, PFC-PMC and SMA-PMC connections were consistently stronger in 

novice operators whereas SMA-M1 interactions remained stable or even increased in expert 

compared with trainee operators. These data align with models of motor learning implying a 

high level of integration which decreases with practice in the associative/premotor network 

and between this and the sensorimotor network (Hikosaka et al., 2002). Moreover, the results 

are consistent with empirical data that suggest large-scale functional re-organisation 

accompanies motor skill levels learning (Bassett and Bullmore, 2006; Coynel et al., 2010; 

Heitger et al., 2012; Rissman et al., 2004; Sun et al., 2007).  

Among studies investigating spatial and temporal changes in recruitment of brain regions 

involved in motor skill levels learning (Hikosaka et al., 2002; Kelly and Garavan, 2005), few 

have interrogated functional connectivity (Bassett and Bullmore, 2006; Bernardi et al 2013, 

Coynel et al., 2010; Heitger et al., 2012; Rissman et al., 2004; Sun et al., 2007). Whilst 

investigations have explored changes in modularity and allegiance of network nodes (Bassett 

and Bullmore, 2006), variation in functional network econometrics (Heitger et al., 2012) and 

hierarchical integration within associative and sensorimotor networks (Coynel et al., 2010), 

only one study specifically interrogated changes in cortico-cortical connectivity during 

explicit bimanual motor skill level learning (Sun et al., 2007). Commensurate with our 

findings, this study by Sun and colleagues (Sun et al., 2007) demonstrated enhanced cortico-

cortical network connectivity during early phases of explicit bimanual motor sequence 

learning.  Interestingly, connectivity between higher cognitive centres (PFC) and the motor 
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network (PMC) increased only during early learning and subsequently decreased during late 

within-session learning when subjects improved their performance (Sun et al., 2007). Fast 

motor learning is characterised by increased functional connectivity between dorsolateral 

PFC and PMC, possibly related to the heightened attentional demands required at this stage 

of skill levels acquisition (Dayan and Cohen, 2011; Hikosaka et al., 2002).  

 

Consistent with our findings, studies of slow motor learning suggest longitudinal changes in 

functional connectivity in premotor associative networks over extended practice schedules 

(Coynel et al., 2010). Slow learning (weeks) is accompanied by decreased integration, a 

metric reflecting functional interactions amongst several brain regions, in a premotor-

associative-striatum cerebellar network (Coynel et al., 2010). The current analysis both 

supports and extends these findings, suggesting that attenuation in associative cortico-cortical 

network connectivity is durable across many years of practice, i.e. from novice to trainee. 

More importantly, it appears that progression from intermediate (trainee) to advanced 

(expert) phases of skill level execution are potentially independent of further changes in 

connectivity strength within this associative cortico-cortical network. Contrary to variation 

observed in the strength of connectivity between prefrontal and premotor regions associated 

with skill level, SMA-M1 connectivity strength was more stable and skill level-related 

differences were less apparent. Despite models of learning suggesting that integration in the 

sensorimotor network is anticipated to increase (Hikosaka et al., 2002), stability in the 

strength of SMA-M1 integration across motor skill levels learning has been observed 

previously, further supporting the results of the current analysis (Coynel et al., 2010). It is 

plausible that gradual on-going refinements in complex motor skill levels do not require 

sustained or progressive increase in SMA-M1 connectivity even if the representation of the 

trained task continues to gradually expand in these brain regions in association with slow skill 

levels learning (Karni et al., 1998).  

Moreover, correlation data obtained at one-second intervals of the time course were 

subsequently used as an input to a LS-SVM algorithm towards automated discrimination of 

operator skill level. Overall, the approach was found to precisely classify skill level, although 

it was significantly influenced by the subset of connectivity data under consideration. 

Specifically, local (within-region) connectivity significantly improved classifier performance. 

Passive Brain Computer Interfaces (pBCI) offers the potential to feedback implicitly derived 
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information regarding user states. In this regard, through immediate automated categorisation 

of short epochs of brain inputs, optical neuroimaging data if appropriately decoded may be 

interfaced with a learner toward improvements in motor skill levels training (Ros et al., 

2009).  Previous research on fNIRS-BCI has focused on modelling patterns of signal 

amplitude (Coyle et al., 2007; Naito et al., 2007;  Power et al., 2012), failing to incorporate 

functional connectivity data. Here, discriminatory patterns of operator skill level based on 

functional connectivity have been exposed through the multi-class machine learning 

approach, and were not revealed with a conventional analytical framework (Bahrami et al., 

2011; Leff et al., 2008c; Leff et al., 2008d; Ohuchida et al., 2009). The algorithm for 

classification of operator skill level states has proven to be accurate, sensitive and specific for 

detection of operator skill level during LS, regardless of the subtask. This suggests that the 

algorithm is capable of capturing experience-related differences in frontal lobe connectivity 

equally well in each task phase. Whilst each LS subtask has a unique and specific goal, the 

rudimentary bimanual co-ordination required to achieve these goals may be similar and hence 

generic learning-related differences in frontal lobe connectivity may exist, thereby aiding 

discrimination. Moreover, the results highlight the importance of within-region correlations 

in discrimination of operator skill level. Indeed, in comparison to the results obtained with 

inter-regional connectivity data, classification was significantly superior when local 

connectivity was considered. Critically, these results were consistent across models (i.e. OVA 

and OVO). Finally, classification results using M1 connectivity appeared inferior to the 

results obtained from other frontal regions possibly owing to a relative paucity of channel 

information and hence a smaller number of nodes. More importantly, the fact that classifier 

results were not consistently superior for any specific ROI suggests that the entire frontal lobe 

is equally informative.  

When results of the classifier are provided online, these may be used as a pBCI to feedback 

data regarding skill level to the operator in the hope of improving the cognitive abilities 

required to execute the task. Automated classification of skill level based on cortical 

connectivity rather than technical performance or abstracted end-points may serve to improve 

skill levels learning by interfacing decoded brain data to the learner, trainer or team. 

Incorporation of instrument motion tracking in conjunction with brain function may further 

improve workflow segmentation and proficiency detection. Future work will focus on 

measuring the impact of neural feedback training to determine if learning and performance 
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can be improved. In this way, online neural feedback regarding operator skill level may 

minimise the dependency on human assessors allowing learners to rapidly access objective 

assessments, thereby facilitating self-directed training. In addition, we acknowledge potential 

confounds due to individual characteristics that were not controlled for, such as the potential 

influence of intellectual ability (IQ), which could be of interest to consider in future studies. 

Likewise, incorporating electrophysiological signals that overcome some of the limitations of 

optical imaging technology such as inferior temporal resolution may improve performance 

and be more practical for pBCI in surgery. Finally, future research could address the 

limitations associated with a cross-sectional approach by implementing longitudinal studies 

to extend on the present findings. 

In summary, the current study highlights differences in frontal brain connectivity 

underpinning operator skill level on a complex bimanual co-ordination task. Operators well 

versed in bimanual co-ordination appear to depend less on associative and premotor 

connectivity than novices. Moreover, the disparity in learning-related changes in connectivity 

facilitates an algorithmic solution toward online classification of operator skill level which is 

both highly accurate and precise. Automated classification of operator states may facilitate 

interfaces designed to enhance learning, performance and patient safety.  
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Figure captions 
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Fig. 1 (a-b). (a) A participant performing LS in a box trainer with simultaneous recordings of 

cortical brain activity using OT; (b) The three subtasks of the surgical procedure, namely 

‘needle insertion’ (I), ‘double-throw knot’ (II) and ‘single-throw knot’ (III). 
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Fig. 2. Registration of channel positions in MNI space, illustrating the approximate locations 

over the prefrontal cortex (red), supplementary motor area (green), premotor cortex (dark 

blue) and primary motor cortex (soft blue) relative to International 10-10 markers (magenta).  
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Fig. 3. Schematic illustration of the processing steps and classification of the extended 

dataset using a large-margin classifier, i.e. LS-SVM. 
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Fig. 4. Graphical representation of local, inter-regional and combined (inter-local regional) 

connectivity showing channels over the PFC (red), PMC (blue), SMA (green) and M1 

(yellow). Each edge represents a functional connection between channels. Within-region 

connections (colour coded by sub-region) and inter-regional connections (magenta) are 

highlighted.  
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Fig. 5. Sagittal brain views of learning-related changes in connectivity for the needle 

insertion, double-throw knot and single-throw know subtasks. The three sagittal brains at the 

top display the mean Rv connectivity strength, while the following three at the bottom show 

the significance strength of the statistical test. Areas are depicted as PFC (magenta), SMA 

(green), M1 (orange) and PMC (blue). 
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Table 1. Between-group differences in task-related heart rate and technical skill (FLS). 

 

Values 
 Experts [E] 

 

Trainees [T] 

 
Novices [N] 

 

 

Significance 

test 

Heart Rate 

Mean 

beats per 

min. 

80.71 ± 12.03 

(mean ± standard 

deviation) 

84.31 ± 11.2 

(mean ± standard 

deviation) 

82.98 ± 15.66 

(mean ± standard 

deviation) 

p=0.87 

F-value=0.145 

df=2 

Heart 

Rate 

Variability 

Mean R to 

R wave 

interval 

0.76 ± 0.12 

(mean ± standard 

deviation)   

0.72 ± 0.1 

(mean ± standard 

deviation) 

0.75 ± 0.13 

(mean ± standard 

deviation) 

p=0.83 

F-value=0.182 

df=2 

Motor Performance 

&Technical Skill 

(FLS score) 

487 ± 53 

(median ± inter-

quartile range) 

400 ± 90 

(median ±  inter-

quartile range) 

334 ± 76 

(median ± inter-

quartile range) 

p<0.001 

Chi-square=58 

df=2 
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Table 2. Classification results for the session based networks. 

a) Needle insertion Precision Specificity Sensitivity 

Novices 0.66 0.83 0.66 

Trainees 0.65 0.76 0.76 

Experts 0.77 0.92 0.60 

Model accuracy: 0.68                 F-measure: 0.68                  MMCC: 0.52 

a) Double-throw knot Precision Specificity Sensitivity 

Novices 0.71 0.84 0.74 

Trainees 0.65 0.77 0.70 

Experts 0.68 0.89 0.59 

Model accuracy: 0.68                F-measure: 0.68                  MMCC: 0.50 

a) Single-throw knot Precision Specificity Sensitivity 

Novices 0.66 0.85 0.61 

Trainees 0.59 0.70 0.73 

Experts 0.57 0.85 0.45 

Model accuracy: 0.61              F-measure: 0.61                  MMCC: 0.41 
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Table 3.  Classification results for the time-course based networks. 

a) Needle insertion Precision Specificity Sensitivity 

Novices 0.83 0.80 0.92 

Trainees 0.85 0.94 0.78 

Experts 0.8 0.8 0.67 

Model accuracy: 0.83               F-measure: 0.81                  MMCC: 0.71 

a) Double-throw knot Precision Specificity Sensitivity 

Novices 0.83 0.90 0.85 

Trainees 0.83 0.86 0.86 

Experts 0.76 0.95 0.67 

Model accuracy: 0.82                F-measure: 0.81                  MMCC: 0.70 

a) Single-throw knot Precision Specificity Sensitivity 

Novices 0.82 0.82 0.91 

Trainees 0.85 0.92 0.81 

Experts 0.8 0.97 0.63 

Model accuracy: 0.82              F-measure: 0.81                  MMCC: 0.70 

 

  

B
ra

in
 C

on
ne

ct
iv

ity
D

is
pa

ri
ty

 in
 F

ro
nt

al
 L

ob
e 

C
on

ne
ct

iv
ity

 o
n 

a 
C

om
pl

ex
 B

im
an

ua
l M

ot
or

 T
as

k 
A

id
s 

C
la

ss
if

ic
at

io
n 

of
 O

pe
ra

to
r 

Sk
ill

 L
ev

el
 (

do
i: 

10
.1

08
9/

br
ai

n.
20

15
.0

35
0)

T
hi

s 
ar

tic
le

 h
as

 b
ee

n 
pe

er
-r

ev
ie

w
ed

 a
nd

 a
cc

ep
te

d 
fo

r 
pu

bl
ic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 c
op

ye
di

tin
g 

an
d 

pr
oo

f 
co

rr
ec

tio
n.

 T
he

 f
in

al
 p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
if

fe
r 

fr
om

 th
is

 p
ro

of
.



37 

37 

 

Table 4.  Multiclass Mathew’s correlation coefficient and accuracy for the OVO scheme*. 

 PFC SMA PMC M1 

MMCC Accuracy MMCC Accuracy MMCC Accuracy MMCC Accuracy 

Local  
0.63  

± 0.01 

0.78 

± 0.01 

0.63  

± 0.01 

0.78 

± 0.01 

0.62  

± 0.01 

0.77 

± 0.01 

0.58  

± 0.02 

0.75 

± 0.01 

Inter-regional  
0.45  

± 0.02 

0.67 

± 0.01 

0.33  

± 0.02  

0.60 

± 0.02 

0.21  

± 0.01 

0.54 

± 0.02 

0.11  

± 0.01 

0.48 

± 0.02 

Combined 
0.60  

± 0.01 

0.77 

± 0.01 

0.63  

± 0.02 

0.78 

± 0.01 

0.63  

± 0.01 

0.78 

± 0.01 

0.58  

± 0.02 

0.75 

± 0.01 
*Results averaged from all subtasks, means and standard deviations (±) are presented in this table. 
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Table 5.  Multiclass Mathew’s correlation coefficient and accuracy for Novices in OVA scheme*.
 

 PFC SMA PMC M1 

MMCC Accuracy MMCC Accuracy MMCC Accuracy MMCC Accuracy 

Local  
0.69 

± 0.01 

0.85 

± 0.01 

0.66 

± 0.01 

0.83 

± 0.01 

0.66 

± 0.01 

0.83 

± 0.01 

0.61 

± 0.01 

0.81 

± 0.01 

Inter-regional  
0.50 

± 0.01 

0.76 

± 0.01 

0.32 

± 0.01 

0.67 

± 0.02 

0.21 

± 0.02 

0.62 

± 0.03 

0.14 

± 0.04 

0.60 

± 0.03 

Combined 
0.66 

± 0.01 

0.83 

± 0.01 

0.66 

± 0.01 

0.84 

± 0.01 

0.65 

± 0.02 

0.83 

± 0.01 

0.62 

± 0.01 

0.81 

± 0.01 
*Results averaged from all subtasks, means and standard deviations (±) are presented in this table.
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Table 6.  Multiclass Mathew’s correlation coefficient and accuracy for Trainees in OVA scheme*. 

 PFC SMA PMC M1 

MMCC Accuracy MMCC Accuracy MMCC Accuracy MMCC Accuracy 

Local  
0.67 

± 0.03 

0.78 

± 0.09 

0.68 

± 0.01 

0.86 

± 0.01 

0.60 

± 0.09 

0.82 

± 0.06 

0.62 

± 0.02 

0.83 

± 0.02 

Inter-regional  
0.47 

± 0.02 

0.77 

± 0.01 

0.42 

± 0.03 

0.75 

± 0.03 

0.26 

± 0.01 

0.70 

± 0.04 

0.10 

± 0.04 

0.65 

± 0.05 

Combined 
0.62 

± 0.01 

0.83 

± 0.01 

0.67 

± 0.01 

0.85 

± 0.02 

0.66 

± 0.01 

0.85 

± 0.01 

0.63 

± 0.02 

0.84 

± 0.02 
*Results averaged from all subtasks, means and standard deviations (±) are presented in this table. 
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Table 7.  Multiclass Mathew’s correlation coefficient and accuracy for Experts in OVA scheme*.
 

 PFC SMA PMC M1 

MMCC Accuracy MMCC Accuracy MMCC Accuracy MMCC Accuracy 

Local  
0.61 

± 0.02 

0.89 

± 0.01 

0.57 

± 0.01 

0.88 

± 0.01 

0.54 

± 0.01 

0.87 

± 0.01 

0.50 

± 0.02 

0.87 

± 0.01 

Inter-regional  
0.37 

± 0.06 

0.84 

± 0.01 

0.15 

± 0.03 

0.82 

± 0.01 

0.07 

± 0.03 

0.81 

± 0.01 

0.08 

± 0.02 

0.81 

± 0.01 

Combined 
0.57 

± 0.02 

0.88 

± 0.01 

0.57 

± 0.01 

0.88 

± 0.01 

0.55 

± 0.01 

0.88 

± 0.01 

0.52 

± 0.02 

0.87 

± 0.01 
*Results averaged from all subtasks, means and standard deviations (±) are presented in this table. 
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