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Abstract 

 

Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are two related conditions 

that significantly impair the quality of life. One in ten women will require primary surgery for 

SUI and POP. Surgical treatment of both conditions often necessitates the use of a surgical 

mesh material which is now known to be associated with serious complications in up to 40% 

of women in long term follow- up. Recently, the use of vaginal mesh products in 

urogyneacological procedures have been suspended in NHS hospitals in England. There 

appears to be an unmet and urgent need for better biomaterials to support the pelvic floor 

which are able to better integrate into tissues at the sites of implantation. The aim of this 

thesis was to develop a synthetic, degradable material for use in the female pelvic floor that 

can promote angiogenesis and that can integrate well into tissues.  

As a first step, an in vivo assay has been developed and optimized to allow effective screening 

of constructed biomaterials. Biomaterials were processed with electrospinning of polylactic 

acid (PLA) which is a commonly used, degradable polymer for soft tissue applications. 

Electrospun PLA scaffolds were functionalized by incorporation of Vitamin C and Estradiol 

and were tested for their effects on stimulating new blood vessel formation and extracellular 

matrix production. As a final step, mesenchymal stem cells (MSCs) were also tested for their 

ability to promote angiogenesis. The final biomaterials were always tested for suitability of 

their biomechanical properties for applications in the pelvic floor.  

Both Vitamin C and Estradiol could effectively be incorporated into the electrospun PLA 

scaffolds with desirable ultrastructural and mechanical properties. Vitamin C was released 

from the scaffolds over several weeks whereas Estradiol was released over months. Both 

drugs increased the angiogenic potential of scaffolds and extracellular matrix production. 

Estradiol releasing electrospun PLA scaffolds resulted in the most dramatic increase in new 

blood vessel formation. Also MSCs had a mild stimulatory effect on angiogenesis. Future 

work is underway to test the Estradiol releasing scaffolds in relevant animal models.  
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1.1 Stress Urinary Incontinence (SUI) and Pelvic Organ Prolapse (POP) in Women 

1.1.1. Definitions 

 

Stress urinary incontinence (SUI) is defined as a symptom as  “the complaint of involuntary 

loss of urine on effort or physical exertion (e.g. sporting activities), or on sneezing or 

coughing” [1]. Synonymously SUI also refers to an objective indication of a disease or a 

health problem when it is used as a sign defined as ‘observation of involuntary leakage from 

the urethra synchronous with effort or physical exertion or on sneezing or coughing’.    

The POP is “the descent of one or more of the anterior vaginal wall, posterior vaginal wall, 

the uterus (cervix) or the apex of the vagina (vaginal vault or cuff scar after hysterectomy). 

The presence of any such sign should be correlated with relevant POP symptoms. Most 

commonly this correlation would occur at the level of the hymen or beyond” [1]. 

1.1.2. Prevalance 

 

The prevalence of SUI in the population is studied in several large scale epidemiological 

studies. In a population based prevalence study involving women from four European 

countries and Canada, the overall prevalence of SUI was reported to be 6.4% (95% 

Confidence interval 5.9- 6.9). The prevalence increased with age from 0.1% in women aged 

<39 years old to 8% in women aged >60 years old [2]. In another large cross- sectional study 

conducted in USA, Sweden and UK 31.8% of the women had SUI symptoms ‘at least 

sometimes’ and 14.8% had SUI ‘at least often’ [3]. One of the largest population based 

evaluation of lower urinary tract symptoms to date was conducted in China, reporting a 18.9% 

prevalance of SUI in women >20 years old [4]. Worldwide a total of nearly 153 million 

women were predicted to have SUI by 2018, representing a 20% increase from 2008 to 2018 

[5]. The variability in the prevalence rates of SUI can be due to the definition of SUI used, the 

population studied and the methodologies used in the studies (e.g. design and conduct of 

questionnaires).    
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Similarly the prevalence of POP increases with increasing age. In the UK, prolapse symptoms 

were reported by 8.4% of women in the community [6]. In the large, prospective (n=161 861)  

Women’ s Health Initiative study conducted in 40 centres in the USA 41.1% of women with a 

uterus and 38% of women without a uterus had some form of POP on physical examination, 

respectively. The vast majority of these were cystoceles followed by uterine prolapse and 

rectocele [7].    

 

1.1.3. Impact 

 

SUI has a significant impact on the indivual patients suffering from the condition, family 

members and the health care systems. UI also poses a great economic burden for health care 

systems. In USA over 13 billion USD were spent in 1995 on treatment of SUI [8]. These costs 

include costs of diagnosis and treatment, however many patients find themselves in a position 

to pay for extra amounts for routine care of incontinence (primary care visits and towels/ 

pads) because healthcare providers often impose limits on the maximum number pads etc. In 

the UK the cost of SUI to the NHS is estimated to be £117M per year [9].   

Urinary incontinence has significant impact on physical, psychological and social well- being 

of women. Regardless of the methodology used to measure patients with urinary incontinence  

consistently have lower quality of life scores when compared to continent women [10].  The 

type of UI effects the health related quality of life differently. Patients with urgency UI and 

mixed UI have significantly worse health related quality of life scores compared to patients 

with SUI [11]. Additionally  depression, anxiety and stress levels are known to increase with 

increased severity of UI [12].  

Despite its negative impact on the quality of life of women, less then 25% of women seek 

help for their UI [13].  In a population based cross- sectional study performed in Staffordshire, 

UK, only 17% of women sought professional help for their incontinence. UI is often quoted as 

a stigmatized condition however the relationship between help seeking behaviour and stigma 

associated with UI is not well studied.  
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POP can also effect a women’ s quality of life, psychosocial and sexual well being. Validated 

disease specific questionnaires have been developed and used mainly to assess the effects of 

various treatments on the QoL of women with POP. A few studies have demonstrated an 

impairment of quality of life in women living with POP [14]. Although the relationship 

between POP and health related quality of life is not well studied, POP has been shown to 

have profound effects on the body image of women. Women with POP reported  feelings of 

being ‘less feminine’, ‘self-conscious’ and ‘isolated’ [15]. As the perceived  body image gets 

worse both the disease specific and the generalized quality of life decreases [16].   

 

1.1.4. Risk factors 

 

Childbirth (obstetric) injury is believed to be the principle factor causing pelvic floor 

disorders in female. Although epidemiological evidence shows a clear relationship between 

childbirth and pelvic floor disorders [7] the exact mechanisms of such an injury leading to 

POP is not yet known. The mechanisms investigated constitute direct injury to the nerves, 

muscles and connective tissues. The severity of the injury may vary between compression, 

stretching or tearing. The ability of the tissue remodelling after the injury and co- existing 

morbidities all decide the final outcome.  

The levator ani muscle complex, particularly the pubococygeal muscle, is known to be injured 

during vaginal delivery in 20% of women [17] being more common in forceps assisted 

vaginal delivery [18]. Also levator defects were present in 55% of women seeking treatment 

for POP as opposed to 16% of controls. Therefore, although the long term effects of a levator 

injury during childbirth on development of POP is not completely elucidated in long term 

follow up studies, it is likely to be one of the contributing factors.   
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Injury to the nerves innervating the pelvic floor muscles, particularly the pudental nerve that 

arises from the S2- S4 nerve roots during childbirth has also been suggested as a mechanism 

resulting in injury to pelvic floor muscles. Neurophysiologic studies demonstrated 

significantly prolonged pudental nerve terminal motor latency and reduced anal pressure on 

voluntary contraction 2-3 days after vaginal delivery. Repeat measurements in the same 

patients 2 months after vaginal delivery showed shorter pudental nerve motor latency times 

suggesting a denervation injury of the pudental nerve after vaginal delivery with a subsequent 

reinnervation [19]. Also electromyographic studies demonstrated that in women with SUI and 

POP denervation of pubococcygeus muscle was significantly more compared to normal 

women [20].   The risk of pudental nerve denervation was found to be higher in difficult 

vaginal deliveries such as forceps deliveries, high birth weight and prolonged second stage of 

labour.  

During and after pregnancy there is extensive connective tissue remodelling in the pelvic 

floor. The synthesis and degradation of main components of the extracellular matrix, mainly 

collagen and elastin, are changed and the connective tissue is remodelled. Defects in these 

biochemical processes are proposed as a mechanism for development of POP and SUI. The 

changes in connective tissues of women with SUI and POP are reviewed elsewhere and 

include: increased collagen turnover, decreased elastin synthesis and differential expression of 

candidate genes involved in structural proteins [21].  
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1.2. The pelvic floor support 

 

1.2.1. Anatomical basis of pelvic floor support 

 

Pelvic organs in women are kept in place by ligaments and other connective tissue 

components at three levels in the pelvis (Figure 1.1). Level I is formed by the cardinal and 

uterosacral ligaments providing apical support. The cardinal ligaments attach uterus and upper 

vagina to the pelvic side walls whereas uterosacral ligaments attach it to the sacral bone. Both 

ligaments are composed of thick and strong collagenous fibres extending vertically and 

posteriorly towards the sacrum indicating a function that does not necessarily involve 

flexibility but strength mostly in the vertical direction. Level II support comprises of fascia 

and connective tissues attaching the lateral walls of the vagina to the arcus tendinous fascia 

pelvis which supports the mid- vagina laterally. Biomechanically level II support structures 

are less fibrous than level I. Level III urogenital diaphragm and perineal body supporting 

lower part of the vagina and urethra [22].   

The pelvic floor is the hammock- like structure made up of skeletal and smooth muscles 

surrounded by connective tissues and attached to pelvic bones. Its’ main function is to 

counteract the forces generated by gravity and intra- abdominal pressure. 
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Figure 1.1. The three levels forming the female pelvic floor support (Reproduced with permission 

from DeLancey, John OL. "Anatomie aspects of vaginal eversion after hysterectomy." American Journal of 

Obstetrics & Gynecology 166.6 (1992): 1717-1728.) 
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1.2.2. Biomechanical basis of pelvic floor support 

 

Biomechanics is an interdisciplinary area that applies the principles of engineering and the 

methods of mechanics to biological systems. Mechanics is concerned with the description of 

motion and how forces create motion [23]. Biomechanics help us understand how the forces 

acting on structural elements of our bodies create motion that leads to normal development 

and functioning or to damage tissues in cases where there is an overload. When studying 

bioengineering of the pelvic floor, the biological constitution in relation to the mechanical 

forces acting on it needs to be considered and materials used in pelvic floor reconstruction 

needs to have defined characteristics of material deformation and load bearing as well as how 

it contributes to tissue remodelling once it is implanted in to the body. It is important that 

clinicians/ surgeons have a basic understanding of biomechanical principles so that they can 

define the biomechanics of the tissue to be replaced and select the best material to meet the 

specific needs.   

The available knowledge on the biomechanical properties of the female pelvic floor mainly 

comes from mechanical testing of samples from the pelvic floor from human and animal 

samples. The availability of human samples for mechanical testing is limited due to 

challenges and ethical concerns related to obtaining large tissue samples. Therefore, in 

humans biopsy samples or cadaveric tissues are used to define the biomechanical features of 

the pelvic floor muscles and fascia [24]. Another method was to study whole pelvic floor 

samples of animals that contain all the muscles and the connective tissues of the pelvic floor 

(e.g. ‘vaginal supportive tissue complex’). Such samples obtained from rats demonstrated that 

the ultimate failure in the testing protocol was due to a failure of paravaginal attachments 

[25]. Samples that only contain the connective tissues (e.g. fascia) have also been tested [26]. 

Disruption in the fascial structures is thought to be the main mechanism by which pelvic 

organ prolapse occurs [25].    
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Another factor limiting our ability to have robust definitions of mechanical properties of 

pelvic floor structures is the lack of standardized mechanical testing protocols for biological 

tissue samples. To obtain reproducible results when mechanically testing biological samples 

their unique organization, composition and in vivo functions need to be adapted to the 

mechanical testing protocols. Currently mechanical testing of samples from animal or human 

pelvic floor can mainly be tested by uniaxial and biaxial tensile testing. In uniaxial testing, the 

tissue to be tested is placed between two clamps (clamp-to-clamp testing) and a load is 

applied to the sample in one direction while observing the sample for elongation/ strain. 

Uniaxial testing is most commonly performed in these studies and it gives more reproducible 

results.  

Biaxial testing has the advantage of allowing a more reflective measurement of the in vivo 

loading conditions by applying force from several different directions, not one single 

direction. However biaxial testing is more complex giving highly variable results [27]. In 

addition to this, the preconditioning of the biological samples to be tested, the temperature 

and the level of hydration of the tissues can also potentially affect the test results. With these 

limitations, the mechanical characteristics of healthy vaginal tissue in women have been 

measured to be as follows: the ultimate tensile strength 0.79±0.05 MPa, maximum elongation 

1.68±0.11 mm and elastic modulus 6.65±1.48 MPa [28].   

From a biomechanical point of view, the pelvic floor is a complex structure composed of 

active and passive soft tissue components attached to the pelvic bones (Figure 1.2). Passive 

components of the pelvic floor cannot by themselves generate any force however they can 

resist force when applied to them. These are all together called the pelvic floor connective 

tissues including the fascia. The active components of the pelvic floor are able to 

independently generate force which are mainly the muscular structures such as the levator ani 

muscles and the sphincteric muscles [29]. Muscular structures are mainly striated muscles and 

smooth muscles. Striated muscles of the pelvic floor (levator ani complex, coccygeus muscle, 

external urethral sphincters and external anal sphincters) have a major contribution to the 

biomechanical properties and they play a role in voluntary control of urinary and anal 

continence. The smooth muscles (the smooth muscles in the vaginal wall and internal urethral 

and anal sphincters) are essential in maintenance of continence.   
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Figure 1.2. The main normal support structures forming the female pelvic floor. The sections go from 

surface to deep down in the pelvic cavity as you go from section 1 to 4. The uterus, bladder and rectum 

are removed when necessary for demonstration purposes.      
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The connective tissues of the pelvic floor are an interconnected network of supportive tissues 

including the ligaments, endopelvic fascia and the perineal membrane. They are composed of 

different combinations of extracellular matrix proteins, mainly collagen, elastin and smooth 

muscle, together with blood vessels and nerves. Collagen generally exists in the fibrillar form 

which appears as bundles in cross sectional images. The collagen fibre alignment of the fascia 

is known to directly influence the mechanical properties, with the more aligned the fibres 

towards a particular direction the stiffer the fascia is in that direction (the lower the elasticity/ 

the less distensible) [30]. Another ECM protein is elastin which is an important element in 

those tissues and organs which exhibit resistance and recoil properties. Elastin gives elasticity 

to the structures meaning the structure is stretched when the force is applied and recoil occurs 

when the force is removed.  Abnormalities in the homeostasis of the ECM tissues of the 

pelvic floor and their inability to maintain pelvic floor support have been implied in the 

pathogenesis of pelvic floor diseases [31], [32].  

When defining the biomechanical properties of the pelvic floor it is important to make the 

measurements on specific groups of patients, such as postmenopausal women or women with 

birth trauma. Estimations of the in vivo situation in healthy and diseased subjects has been 

made using computer based modelling methods [29]. Computational models of the pelvic 

floor have the potential to reliably define the normal biomechanical behaviour in the female 

pelvic floor and can predict the mechanisms leading to damage to pelvic floor structures (e.g. 

birth trauma) and pelvic floor disorders. Anatomical, mechanical and biochemical data 

pertinent to pelvic floor muscles and soft tissues are combined mathematically to create 

computational models. Anatomical models demonstrating detailed 3D anatomy of the pelvic 

floor can now be reliably produced thanks to magnetic resonance imaging [33]. The 

remaining considerable challenge seems to be how to integrate the functionality of the 

muscles and other soft tissues into these models. The hope they offer is that once an accurate 

biomechanical model is created, population based data can be applied to these models before 

they are used clinically to predict individual patient/ disease outcomes.  
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1.3. The mechanisms underlying the development of SUI and POP 

 

Both SUI and POP are thought to result from anatomical and/ or functional defects in the 

pelvic floor support structures. The anatomical and functional basis of SUI has been more 

fully investigated than POP.  

1.3.1. SUI 

 

The mechanisms  of female continence are not completely elucidated. It is probably 

multifactorial and complex involving a coordinated functioning of the central and peripheral 

nervous systems, bladder, urethra and the pelvic floor. Urinary incontinence is a problem of 

the storage phase of the voiding cycle and mechanically it occurs when the pressure in the 

bladder, intravesical pressure, overcomes the urethral resistance. During normal bladder 

filling the intravesical pressure remains low despite increasing volumes of urine collected 

inside the bladder. This is due to the viscoelastic properties of the bladder wall (the smooth 

muscle and the connective tissues) called bladder compliance. At the same time spinal reflex 

pathways neurologically inhibit bladder smooth muscle contraction. As a result urine is stored 

inside the bladder at low pressures. Abnormalities in bladder wall, smooth muscle or 

innervation can lead to detrusor overactivity incontinence.  In case of stress UI intravesical 

pressure exceeds that of the outflow pressure when a patient coughs, laughs or strains 

increasing the intravesical pressure. This is thought to be due to a decrease in normal urethral 

resistance.     
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SUI started being systematically evaluated after 1961 when Green devised a classification 

system for SUI based on the radiographic appearance of the bladder neck and urethra. He 

identified two types of SUI: type 1 with a loss of posterior urethro- vesical angle and type 2 

with a rotational descent of the urethra. With the use of urodynamic studies, which at the time 

were reserved to diagnose neurogenic incontinence,  McGuire added a type 3 SUI where a 

low urethral closure pressure and open bladder neck led to SUI. Type 3 SUI is also named as 

intrinsic sphincter deficiency.   With the addition of urodynamic stuies, SUI started to being 

seen as a functional event rather than purely an anatomical defect. The treatment decisions 

also started to be made based on this classification. Types 1 and 2 would be good candidates 

for a retropubic urethropexy procedures which restore the retropubic position of the urethra 

whereas type 3 SUI would best be treated with an autologous fascia sling surgery as many 

patients would have undergone an unsuccessful retropubic urethropexy procedure.   

Urethral support and urethral hypermobility 

The female urethra has an important role in continence. The urethral mucosa and submucoca, 

urethral smooth muscle and periurethral striated muscles all contribute to the generation of 

urethral resistance.    

Historically, SUI was first thought to result from a structural defect in the urethral support 

structures. The female urethra rests on the anterior vaginal wall which constitutes the majority 

of its structural support. Initial theories on the pathophysiology of female SUI emphasized 

that a loss of the retropubic position of the bladder neck and the urethra would lead to SUI. 

Enhorning’ s theory of ‘pressure transmission’ stated that the maintanence of the retropubic 

position of the urethra during states of increased intraabdominal pressure  would lead to 

transmission of the abdominal pressure on to the urethra facilitating urethral compression 

when straining. This theory was confirmed  by the success of operations aiming to restore a 

retropubic position of the urethra (retropubic urethrapexy operations).  
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Intrinsic Sphincter deficiency 

The intrinsic urethral sphincter is formed by the circularly oriented outer fibers of the urethral 

smooth muscle and the detrusor muscle in the bladder base. The intrinsic sphinter mechanism 

contributes to the formation of urethral resistance at rest. Clinically ISD defines a clinical 

condition where the female urethra cannot maintain a watertight seal even at rest. This could 

be a result of laxity in the ISD mechanism or the urethral wall itself can be rigid, fixed or 

scarred. The causes of ISD can be multifactorial involving neurologic, muscular and 

connective tissue dysfunction.   ISD can also be demonstrated urodynamically with lower 

urethral closure pressures (<20 cmH2O) and lower vesical leak point pressures (<60 cmH2O).     

 Although the dichotomy of urethral hypermobility and ISD is still used and constitutes a 

useful framework when starting to evaluate SUI, recently more modern theories have 

provided unified concepts in understanding the pathophysiology of SUI.  Two important 

theories form the basis of the modern understanding of SUI. The ‘integral theory’ suggested 

that urethral closure occurs by the synergistic action of three components of the pelvic floor. 

In the presence of sufficient tension in the pubourethral ligament (PUL), increases in 

intraabdominal pressure lead to contraction of the pubococcygeus muscles (PCM) anteriorly 

and the levator muscles (LM) posteriorly closing the bladder outlet [34].  Overall it is the 

laxity in the anterior vaginal wall that causes SUI. Modern synthetic mid- urethral sling 

surgeries use this principle stating that the placement of the surgical mesh in the position of 

PUL form a backboard against which the urethra can be compressed [35]. This theory takes 

into account structural elements of the urethral support structures as they are dynamically 

acting to maintain continence. 

Similarly the ‘hammock hypothesis’ (Figure 1.3) proposed that the bladder neck and urethra 

normally rest on a hammock of musculofascial structures that enables compression of the 

urethra in cases of increased intraabdominal pressures maintaining the continence [36]. The 

main problem proposed by this model is the structural weakness of the hammock rather than 

the hypermobility of the urethra.   
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All these theories on the pathophysiology of SUI can be seen to have developed together with 

surgical techniques trying to understand how each technique worked. As a result, the surgical 

treatments evolved from urethral compression to restoration of the urethra back to its 

retropubic position and to creating a hammock-like structure where the urethra can be 

compressed when intraabdominal pressure increases.  Additionally, over the years the focus 

has shifted from the bladder neck to the mid- urethra.       

 

Figure 1.3. Illustration explaining the hammock hypothesis (DeLancey, John O.L. Structural 

support of the urethra as it relates to stress urinary incontinence: The hammock hypothesis. 

American Journal of Obstetrics & Gynecology , Volume 170 , Issue 6 , 1713 - 1723) 
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1.3.2. POP 

 

In contrast to SUI, POP has mainly been studied as a structural disease. It is likely that there is 

a functional component because there appears to be major differences in patient defined and 

physician defined treatment outcomes in POP. Current surgical treatments for POP are based 

on identification and repair of anatomical defects that broadly occur at three levels in the 

pelvis. Level I cardinal- uterosacral ligaments providing apical support, level II arcus 

tendinous fascia pelvis supporting middle part of vagina laterally and level III urogenital 

diaphragm and perineal body supporting lower part of the vagina [22]. This anatomical 

description provides the basis of pelvic floor support structures that guides the reconstructive 

surgeon. After the level of the defect is identified it can be repaired by either an abdominal or 

a vaginal approach.  

1.4. Treatment of SUI and POP 

1.4.1. Non- surgical treatment of SUI 

 

Traditionally non- surgical therapies are tried as a first line treatment for management of SUI 

as they usually are associated with least harm to the patient. The main conservative treatment 

option  for women with SUI is pelvic floor muscle training (PFMT). Pelvic floor muscle 

training was first introduced by a gyneacologist, Arnold Kegel, in 1940s. He proposed that 

women with SUI showed evidence of weakness in the muscles  surrounding the bladder neck 

and vagina [37]. PFMT improves SUI by strengthening the pelvic floor and improving 

urethral stabiliy. PFMT is not only used in the treatment of SUI but also to prevent SUI in 

childbearing women or in men before undergoing radical prostatectomy.  
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There is roboust clinical evidence to support the use of PFMT in women with SUI as a first 

line treatment to improve urinary incontinence and quality of life in women with SUI [38]. 

However there is high variability in the administration of PFMT to women. Supervised 

treatment regimes in the form of physiotherapy and schedules with different intensities have 

been used with greater benefit compared to purely self- motivated exercises done by the 

patient. The main limitation of PFMT is the difficulty in maintaining the initial short term 

benefits in the longer term follow up. It has been reported in a 15 year follow up study that 

long- term adherence to treatment with PFMT  was poor and half of patients eventually went 

for a surgical treatment [39]. 

1.4.2. Surgical treatment of SUI 

 

The estimated life- time risk of surgery for either SUI or POP in women was found to be 20% 

by the age of 80 [40]. Surgical treatment for SUI also reduces the money spent on the use of 

protective pads and towels from £3.84 to £1.36 per month [41].  

The surgical treatment of SUI started developing in the early 20th century on three main lines. 

Firstly, SUI was thought to be a result of the loss of the normal retropubic position of the 

urethra. Hence surgical techniques aimed at repositioning the urethra back to its high 

retropubic position. Marshall- Marchetti- Krantz  and Burch colposuspension operations 

where the urethra is secured and fixed in the retropubic area are based on this principle [42]. 

The invention and widespread clinical and surgical use of camera systems to look inside the 

viscus organs allowed cystoscopic assessment of bladder and urethra. This led to recognition 

of the internal urethral sphincter mechanism in the development of SUI. Vaginal plication 

operations such as the Kelly plication procedure, were described to strengthen the urethral 

sphincter [43]. Thirdly, the widespread use of urodynamic studies resulted in the definition of 

intrinsic sphincter deficiency which paved the way for the ‘pubovaginal sling’ operations.  
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The modern autologous fascia sling (AFS) surgeries as described by McGuire [44] and the 

integral theory for female SUI formed the basis for the modern synthetic mesh sling surgeries. 

The placement of the surgical mesh in the position of PUL in a tension free manner would 

induce fibrosis and form a collagenous ‘neoligament’ to replace the PUL forming a backboard 

where the urethra can be compressed [35]. Additionally, the integral theory stated that the 

placement of the fascia sling to the bladder neck was responsible for occurrence of storage 

symptoms after AFS surgeries. Therefore, Ulmsten when defining the synthetic sling 

surgeries suggested an alternative site for placement of the sling, the mid- urethra. The laxity 

of PUL was demonstrated by urodynamic (urethral pressure profile) studies identifying the 

mid- urethra as the most critical location to place the mesh. Importantly, the mid- urethra 

concept was validated by pre and post- operative urethral pressure measurements 

demonstrating improvement in urethral closure pressures after the mid- urethral sling 

surgeries.   

 

1.4.3. Surgical treatment of POP 

 

Historically the treatment of POP relied on pessaries until the 19th century. Advancements in 

the surgical sciences with widespread use of anaesthesia, new suture materials and antibiotics 

led to POP started to being treated surgically. Vaginal hysterectomy was first performed to 

treat uterine prolapse in 1861 by Samual Choppin.  Also obliterative procedures that are still 

being used today for selected cases, such as Le Fort’ s operation (colpocleisis)  was also 

described in second half of the 19th century [45].   

Modern surgical treatments of POP can be grouped as anterior compartment repairs, apical 

repairs and posterior compartment repairs all of which are based on identification and repair 

of anatomical defects. These repairs can be native tissue repairs or augmented repairs where 

biological or synthetic soft tissue support prostheses are used to reinforce the repairs.  

Additionally, the repairs can be performed via a vaginal route (transvaginally) or an 

abdominal route (transabdominally).  
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Anterior compartment repairs involve prolapse of bladder and/ or urethra. The two most 

commonly performed operations for anterior compartment repair are anterior colporrhaphy 

(mostly performed transvaginally) for midline defects and paravaginal repair procedures 

(mostly performed transabdominally) for lateral defects. In both procedures the defective 

pelvic fascia is repaired and sutured to stronger adjacent fascia. Nevertheless, the recurrence 

rates in anterior compartment repair are high which necessitate augmentation of the repair 

site. The first prosthetic  material used to augment an anterior colporrhaphy procedure was 

performed in the mid-20th century to prevent recurrence of prolapse [46].    

Apical compartment repairs when performed transabdominally involve 

sacrocolpo(hystero)pexy operations. Transvaginal approach to fix the vaginal vault to stronger 

ligaments in the pelvic floor are also used involving uterosacral ligament suspension, 

sacrospinous ligament suspension and illiococcygeus fixation.  The posterior vaginal wall 

prolapse involves rectoceles which is mainly treated by posterior colporrhaphy procedures. 

Posterior colporrhaphy is when the rectovaginal fascia is plicated in the midline.   

 

1.5. Biomaterials used in surgical treatment of SUI and POP 

1.5.1.Biological materials 

 

The first biological graft used in 1907 to treat SUI was the autologous gracilis muscle [42]. 

This was followed by use of the pyrimidalis muscle which is a triangular shaped muscle 

attaching to the pubic symphyses ineriorly and the superior margins attach to the linea alba. 

The use of pyrimidalis muscle allowed harvesting the muscle flap through the same incision 

avoiding another incision on the inner thigh (to harvest the gracilis muscle). Muscle flaps 

were taken down and tied together around the bladder neck forming the basis of the first sling 

surgeries. Later on not the muscle but rectus fascia alone started to be used as a sling material. 

The advantage of using fascia alone was that the fascia being an avascular and thin structure 

could  be used as a graft rather than a flap making it easier to transpose from one part of the 

body to another. Another source of autologous fascia was the fascia lata (fascia of the thigh 

muscles).   
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Despite improvements and refinements made to the surgical technique, autologous fascia 

sling procedures  were still associated with significant donor site morbidity. An alternative to 

autologous fascia grafts was obtaining fascia from allogeneic (cadaveric fascia lata, cadaveric 

de- cellularized dermis) or xenogeneic sources (porcine sources of de-cellularized 

extracellular matrix such as dermis and small intestinal submucosa).  Allogeneic and 

xenogeneic sources of ECM can be transplanted after de-cellularization without a significant 

immune response to them. This is due to the conservation of ECM components (such as 

fibrillar collagen and collagen IV) during evolution from the early metazoan ancestor (early 

multicellular organisms)  to human [47].  
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The surgical outcomes of using allogeneic or xenogeneic ECM products in soft tissue 

reconstruction have been reported to be variable due to differences in the source materials and 

processing methods for decellularization and sterilization. For treatment of SUI, biological 

sling materials have been compared with synthetic slings in 12 clinical trials, the meta- 

analysis of which demonstrated equal efficacy in the short term with shorter operative times, 

less perioperative complications  and some evidence of less voiding dysfunction with the use 

of synthetic materials [48]. Additionally on comparison of different biological slings (porcine 

dermis, lyophilised dura mater, fascia lata, vaginal wall, autologous dermis and rectus fascia) 

autologous rectus fascia was found to be associated with better participant reported 

improvement rates within the first year over other biological materials.    

In the case of pelvic organ prolapse repair, a meta- analysis comparing biological grafts with 

native tissue repairs showed no evidence of a benefit with regards to awareness of prolapse 1-

3 years after surgery and prevention in recurrence of the prolapse in women treated with 

biological grafts [49]. Therefore prolapse repair with biological grafts is not any better than 

repair using native tissue repairs.  The use of synthetic materials was proposed  to reduce 

recurrence rates of vaginal POP repair procedures however this is now questioned. In a recent 

randomized controlled trial in the UK, the PROSPECT study, women were randomly 

allocated to vaginal prolapse repair with mesh versus biological graft. In one year follow up 

neither mesh nor the biological graft improved clinical outcomes for patients compared to 

native tissue repairs [50].  Also to be considered is the important potential risk of transmission 

of viral (e.g. Human immunodeficiency virus) and prion diseases and more commonly 

Hepatitis B and C with allografts. All can be reduced by the use of strict tissue banking 

protocols. 
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1.5.2. Synthetic materials 

 

The flow of events show that a prosthetic material would first be used in hernia repair and 

then be transferred to the pelvic floor. The first metallic prosthesis used to treat SUI was a 

‘tantalum’ plate implanted transvaginally, on top of Kelly plication sutures, to induce a 

fibrotic reaction [51].  The main idea here was to form a fixed plane at the posterior part of 

the proximal urethra. No significant adverse events were reported in 8 months follow up.  

Tantalum mesh was then inserted transvaginally to treat cystocele [46]. The logic behind was 

explained by the authors as follows: ‘although there are numerous recognized procedures for 

the correction of cystoceles, there is still a significant rate of recurrence; therefore, a trial use 

of tantalum mesh was considered justifiable’. In four of 10 patients exposure of the tantalum 

mesh was reported.  

Following the advancements in materials science and its application in hernia surgery, the 

first synthetic sling material, a ‘gauze hammock’ made of polyethylene  ((Mersilene®) mesh), 

was used to treat SUI in 1968 [52]. Moir placed the Mersilene mesh hammock to the bladder 

neck and proximal urethra in a tensionless manner and secured the edges of the mesh to the 

rectus fascia. He reported more than 80% success rate in 71 patients at up to 5 years follow 

up. Although no long term follow up data was ever presented tissue damage with dense 

scarring was reported. A few years later, polyethylene was further improved and PPL 

(Marlex®) mesh [53], considered inert and resistant to infection, was used to treat SUI in a  

modified gauze hammock operation where mesh is placed to the bladder neck and attached to 

the Cooper’s ligament. With most patients followed up for 5 years they reported 5% erosion 

rate [54].  

The plastic mesh sling surgeries started to be widely performed only after Ulmsten and Petros 

described the Integral theory of SUI and performed the first intravaginal mesh- sling surgery 

in 1995. Transvaginal POP meshes gained widespread use after the success of MUS surgeries.  
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1.5. Clinical outcomes of mesh repairs for SUI and POP 

 

Currently tension free vaginal tape procedures for SUI have long term subjective cure rates of 

up to 93% [55]. Nevertheless mesh related complications still occur in at least 4% of patients 

[56].  Professional societies and regulatory agencies are stating that the benefits of these 

operations outweigh the risks and that many women would be left without effective 

treatments if the use of mesh was to be banned. 

POP repairs are now being performed in 2 main groups: transabdominal and transvaginal POP 

repair procedures, with most being performed via a vaginal route (transvaginally) [60]. The 

main sites of surgical implantation are demonstrated in Figure 1.4. The safety of mesh 

augmented transvaginal POP repair procedures is widely questioned with a mesh erosion rate 

of 8% in 1-3 year follow- up and can go up to 42% in longer term follow up [57]. There 

appears to be a consensus on lack of safety with transvaginal mesh implantation for POP. In 

contrast abdominal sacrocolpopexy procedures are performed with long term success rates of 

97- 100% [58] and are considered the gold standard surgical treatment for advanced POP 

[59]. Mesh erosion still occurs in these operations in up to 6% in 2 years [60] and 10% of 

cases in 7 years follow up [61] however like synthetic mid- urethral slings the risks of mesh 

augmented abdominal POP repair procedures are considered to outweigh their risks.   
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Figure 1.4. Graphical demonstration of most common sites of surgical mesh implantation in the pelvic 

floor. (a) Transabdominal placement of PPL mesh to treat POP (sacrocolpopexy operations). (b) 

Transvaginal implantation of PPL mesh at the level of mid- urethra to treat SUI. (c) Transvaginal 

placement of PPL mesh for POP repair, 45° lateral view and 45° anterosuperior view. Many variations 

of these operations exist. Here fixation/ anchoring of the mesh to sacrospinous ligament and ATFP is 

demonstrated.  
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1.6. Polypropylene mesh as a material 

The PPL vaginal meshes in current clinical use were never designed or tested specifically for 

use in the treatment of SUI and POP. Instead they were developed for use as a soft tissue 

prosthetic material in the context of abdominal hernia repair. Based on the available clinical 

data on its biocompatibility, the PPL mesh was cleared for use in the female pelvic floor after 

demonstration of the similarity of their textile properties to the existing abdominal hernia 

products via a 510(k) loophole. Therefore, it will be useful to review the context in which the 

PPL mesh developed.   

Three main classes of materials have been used for biomedical applications: metals, ceramics 

and plastics. Plastics (plasticos: capable of being moulded in Greek) are synthetic, high 

molecular weight materials that became available for surgical applications after 1940s. 

Plastics provide unique material advantages over metals and ceramics that make them 

desirable for many biomedical applications.  They have a more advanced performance-to-

weight ratio compared to metals and they can easily be micro fabricated into small and 

complex structures.  Additionally, plastics are versatile materials that can be made into an 

ivory hard object with desired rigidity and strength, a flexible rubbery mass or a porous 

spongy structure. Each of these could be degradable and non- degradable.  

1.6.1.Synthesis and degradation of polypropylene 

PPL ([C3H6]n) is a thermoplastic (that can be processed and re-processed when heated), 

polymer synthesized from propylene monomers by addition polymerization. The resultant 

material is a series of long and flexible linear chains that can be oriented and crystallized. 

After the raw material of PPL is synthesized, it is melted and processed by a technique called 

‘extrusion’ to form the usable end product. Extrusion is the process of injecting a stream of 

molten polymer through a die of constant section. The extrusion process forms continuous 

filaments which are then twisted, knitted and interlocked to form the specific pattern. After 

knitting, the mesh is cleaned of the residuals and stabilized. The finished mesh is than cut into 

shape and sterilized by autoclaving/high pressure steam. The extrusion process is graphically 

demonstrated in Figure 1.5 together with a more modern polymer production method called 

electrospinning. This comparison can give the reader a better understanding of how different 

polymer processing technologies can lead to a significant difference in the final product and 

tissue response to it. A complete comparison is provided in Table 1.    
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Figure 1.5. Demonstration of the industrial process used to produce the monofilament polypropylene  

(extrusion) as compared to the process of electrospinning. The polymer extrusion process to produce 

the monofilament PPL mesh. the end product of the extrusion process gross view and electron 

microscopic view  can be seen in the upper raw. The electrospinning producing micro-nano sized 

fibrous mats are seen in the lower raw.  (yellow and white scale bars represent 200 and 10 µm, 

respectively) 

 

 

Table 2.1.  Comparison of two methods of manufacturing polymers: the extrusion 

process to produce the surgical mesh and the electrospinning process  

 Extruded mesh Electrospun mesh 

Raw material Polymer beads Polymer beads 

Additives Yes No 

Liquifying process Heating Dissolving 

Manufacturing principle Extrusion Electrical field 

Post process Knitting None 

Sterilization Autoclave GMP produced 

Pore size >70 µm 1-10 µm 

Fibre size 300-500 µm 1-10 µm 

Tissue integration Poor Excellent 

Level of technology Industrialized process Tissue engineering process 
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During polymer synthesis a variety of additives are used up to 30% of their  total weight, 

although they are generally much less in medical grade raw materials [62]. Additives are 

essential ingredients that are used to adjust the polymer properties so that they can become 

suitable for industrial processing. Additives can also be used for property enhancement and to 

neutralize the effects of other additives. For example the PPL needs to be  thermally stabilized 

by additives to survive melt processing [63].  Thus the quality of finished PPL surgical mesh 

depends on the quality of the raw materials and additives. 

The manufacturers rely on suppliers of raw materials and components to obtain polymer 

resins. The device manufacturers need to implement supplier qualification procedures that 

include audits, incoming raw material and component specifications and quality metrics. This 

is only required for devices classified as ‘high- risk’ by the FDA. Thus the raw materials 

supplied to manufacturers for PPL mesh production were not strictly controlled by the FDA 

until January 2016, when these vaginal mesh implants were re- classified from class II to III.   

This means the purity, product quality and consistency, molecular weight and additives in the 

PPL mesh can be variable [64]. 

The polypropylene material was traditionally considered as being ‘inert’. Although PPL 

completely degrades over many years, its’ inertness is now questioned after repeated 

demonstrations of surface degradation on the PPL fibres [65], [66].  Synthetic polymers 

degrade by bulk hydrolysis (bulk erosion) and/ or surface erosion after implantation [67]. 

Bulk erosion leads to rapid break down of the material and a decrease in mechanical 

properties whereas surface erosion affects the performance of the material in the long term 

without changing its bulk [68].  PPL does not undergo bulk degradation as it is hydrophobic 

meaning it is not susceptible to hydrolysis.   
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However, PPL can undergo surface degradation after implantation. The biochemical 

environment of the human body represents an aggressive medium with a set temperature (37° 

C), pH (7.4 in blood) and salt concentration [69]. This environment can cause PPL 

degradation by oxidation [70]. Furthermore, this can be considerably facilitated by the 

presence of static or cyclic mechanical forces. A focal site of surface cracking, abrasion or 

wear can induce generation of macroradicals originating from chain rupture leading to 

increased brittleness and deterioration in strength. Data has demonstrated that PPL mesh 

extracted from pelvic floor of women shows surface fissures and cracking due to oxidative 

degradation [71]. Tissue sections of mesh explants also showed signs of PPL degradation 

[65]. Thus PPL mesh is resistant to hydrolytic degradation however it undergoes significant 

chemical and mechanical changes in human body and cannot be considered inert.   

1.6.2. Mechanical properties of polypropylene mesh 

 

In addition to biochemical properties, plastics have unique mechanical properties that are very 

much time dependent, often non- linear and that affect their performance in the long term. 

When a controlled force (stress) is applied to a plastic it causes a change in its size (strain) 

which is initially proportionate to the force applied (linear elasticity) (Figure 1.6). This 

proportionality is lost at some point and the stress- strain curve becomes non- linear. In the 

linear region the material turns back to its exact original size/ shape after the force is removed 

(elastic region). The end of elastic region is marked by the ‘yield point’ in the stress- strain 

curve. The yield strength of a material is the strength after which a material begins to 

plastically deform where permanent and irreversible disfigurement of the material occurs (the 

plastic region) and after the yield point the material does not come back to its original state 

when the force is removed.     
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Figure 1.6. Defining basic mechanical properties of a material by uniaxial mechanical 

testing. The tensiometer setup is demonstrated in (A). The load- elongation curve produced 

by this test is demonstrated in (B) together with the change in appearance of the sample 

loaded to the tensiometer.  

 

 

The biomechanical integration of the implant with the host tissues is fundamental to its long 

term efficacy. The mechanical properties of the material are required to be comparable to that 

of the tissue of implantation. Assuming that the mechanical properties of the PPL mesh is 

stable in vivo over years, the mesh material can be characterized mechanically. Defining the 

engineering requirements for pelvic implants is rather difficult due to the complexity of the 

anatomical structures and the variability of the forces/ loading conditions acting on them in 

health and disease.  The uniaxial testing of the PPL mesh show that the PPL mesh is 5- 10 

times stronger than those of the healthy paravaginal tissues [72].  Thus the PPL mesh is 

probably far too strong to be used in the pelvic floor.  
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1.6.3. In- service failure of polypropylene mesh 

 

Plastic biological implants, can fail in service mechanically and/ or biochemically. 

Mechanical failure of an implanted biomaterial often results from an inaccurate estimation of 

the static and dynamic loads/ forces the material will undergo at the site of implantation 

during its lifetime. Defining the in vivo loading conditions and boundary conditions play a key 

role in the mechanical compatibility of the material and the tissue. For example, if the mesh is 

mainly bearing load, it needs to be tested in a certain direction by uniaxial testing whereas if it 

is working like an abdominal wall mesh it is better tested by its biaxial mechanical properties. 

It has been demonstrated that the same materials when tested by uni and biaxial mechanical 

tests can show significantly different mechanical properties [73]. Thus when defining the 

mechanical requirements of the mesh it has to be defined for a specific surgical application. 

Another possible mechanism for the failure of the PPL mesh can be due to cyclic stress that 

the mesh undergoes over weeks and months. When designing the mesh implant if the yield 

strength of the material is not calculated correctly, the material can start undergoing plastic 

deformation a little each time in response to a force more than its yield strength and this when 

repeated over time causes the material to  ‘strain harden’ [74]. Strain hardening indicates that 

the material will increase in stiffness over time resulting mechanical properties different to its 

original state.   

 

1.6.4. Initial design of the polypropylene mesh and improvements made to the initial 

design   

 

Ventral hernia occurs due to a defect in the fascia covering abdominal muscles and surgical 

treatments aim to repair the structural defect. Prosthetic materials have been used to treat large 

tissue defects that could not be closed with primary suture repairs or to reduce the chances of 

recurrence. It is attributed to Theodore Billroth (1829-1894) that “If we could artificially 

produce tissues of the density and toughness of fascia the secret of the radical cure of hernia 

would be discovered” [75].   
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The first prosthetic material used in hernia repair was made of silver, followed by tantalum 

(Figure 1.7). Tantalum wire mesh became quite popular at that time due to its inertness and 

ability to withstand infection however metals were inherently not suitable for soft tissue 

repairs as they were stiff and could fragment. After the plastics revolution materials made of 

nylon (polyamide) and dacron (polyester [polyethylene terephthalate (PET)]) started to be 

used [76]. Although the plastic meshes offered significant advantages over metallic meshes 

with their ductility and strength, the initial meshes were actually textile fabrics made of 

plastics which were boiled for sterilization before implantation. These plastics induced a 

dense fibrotic reaction and the infection rates were high.  

It was only after Usher, who is a hernia surgeon, started to design a fit- for- purpose material 

that the surgical mesh gained widespread acceptance. He used a high density polyethylene 

and used a new manufacturing method to ‘extrude’ it as a monofilament with a thread count 

of 42 by 42 to the inch [77]. He optimized the porosity, stretch-ability and tensile strength of 

the new mesh to allow fibroplasia while keeping the necessary tensile strength.  He then 

characterized the tissue response to the mesh in animal studies [78]. In 1962 Usher introduced 

an improved version of Marlex mesh made of polypropylene (PPL). PPL had improved 

material properties with higher heat resistance allowing sterilization with less compromise, it 

had high tensile strength with good flexibility and excellent resistance to infection [79]. PPL 

than became the standard of the modern mesh materials [80].  
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Figure 1.7. Milestones in development of the polypropylene mesh (PPL) as a material 

used in pelvic floor repair. (only mesh augmented incisional hernia repair procedures as 

they are related to mesh positioning are included here). 
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Over the next few years heavy weight meshes were replaced by medium to light weight 

meshes that reduced the bulk of the foreign material leading to less inflammation, foreign 

body reaction, fibrosis and the associated pain sensation [94]. Also the pore sizes were made 

larger (macropororus). The first study to demonstrate a relationship between the material 

properties and side effects associated with the mesh when used in hernia repair was published 

by Amid [92]. In this study the porosity of the mesh was suggested as the main determinant of 

biocompatibility of a mesh implant. Later on, animal studies comparing heavy and light 

weight meshes showed that light weight PPL mesh displayed a marked reduction in fibrosis 

and foreign body reaction compared to heavy weight PPL [95]. Also clinical studies 

comparing heavy and light- weight mesh materials implanted for inguinal hernia repairs 

demonstrated less pain and less sensation than of a foreign material with lighter meshes [96]. 

Thus the current PPL mesh has evolved over the years from a metal wire to fabrics of plastic 

and eventually to the current mesh with a range of bulk densities and pore sizes.   

When surgical mesh was first introduced it offered clear advantages over the previous 

prosthetic material made of metals. However, it also came with a new set of complications 

that were predominantly related to the use of plastics such as mesh contraction and 

colonization/ infection of the mesh. Modifications to the surgical technique of implantation 

were then made to avoid these complications (Figure 1.8). For example, the ‘inlay repairs’ 

where the mesh is placed in- between the edges of the fascia defect were replaced with ‘onlay 

repairs’ where the mesh was placed on top of the repaired fascia defect in a tension- free 

manner. Onlay repairs involved extensive subcutaneous tissue dissection and also a large area 

of the mesh implant stayed very close to skin increasing the chances of wound complications 

such as infection and seroma formation.  To overcome this a ‘sublay (retrorectus) technique’ 

was introduced where the mesh is put underneath a thick muscle tissue (retro- rectus) in-

between two fascial layers. Placement of the mesh onto a well vascularized wound bed and 

away from the skin were key factors in the success of this technique [97]. The ideal location 

of mesh in ventral hernia repair remains debatable and different methods are indicated for 

each specific case however it is certain that the surgical technique of implantation is a factor 

that has contributed to mesh related complications in hernia repair surgeries [98]. 
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Figure 1.8. Graphical demonstration of mesh positioning in relation to muscle and fascia in 

incisional hernia repair. (A) A cross section of anterior abdominal wall with a fascia defect 

causing herniation of the intestine.  (B) Inlay mesh implantation where the mesh fills in the 

gap created by the fascia defect. (C) Mesh onlay repairs where the mesh is on top of the 

fascia repair to reinforce it.  (D) In the sublay technique the mesh is placed on a well 

vascularized wound bed underneath the muscle and it is in- between two strong fascial 

layers. (E) The mesh underlay procedures are mainly used in laparoscopic hernia repair 

procedures, in this case a mesh with anti- adhesive properties would be preferable instead of 

a polypropylene mesh to prevent attachment of intra-abdominal organs.  
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Just like new materials necessitated new surgical approaches, developments in the surgical 

technologies also required modifications in material properties in hernia surgery. For 

example, recent widespread use of laparoscopy led to an ‘underlay’ repair technique where 

the mesh is placed on the inside surface of the abdominal wall in direct contact with 

intraabdominal organs. The mesh in these cases needed to have additional anti- adhesive 

properties, such as Teflon based materials, to prevent adhesion of intraabdominal organs [99]. 

Thus the material properties and surgical technique developed hand to hand over many years 

to obtain best outcomes for hernia repairs.    

 

1.6.5. Why did the polypropylene mesh fail in the pelvic floor? 

 

The PPL mesh failed in the pelvic floor both biologically and mechanically. The biological 

response to PPL has mainly been studied histologically in the context of hernia surgery. 

Experimental studies to evaluate the tissue response to PPL in  vaginal surgery started in 2007 

[100], showing that graft related complications (exposure and contraction) occurred more 

when the mesh is implanted to vagina rather than in the abdominal wall [101]. In transvaginal 

mesh implantation the material traverses a clean contaminant area and it is very hard not to 

get the mesh contaminated during insertion. Minutes after mesh is inserted into body a ‘race 

for the surface’ begins and if the host cells cannot win the mesh gets contaminated which can 

remain dormant without causing obvious problems for a long time. Also after mesh 

implantation an inflammatory reaction begins which leads to tissue remodelling or a persistent 

inflammatory response. In the background of chronic inflammation, colonization and 

mechanical failure events leading to chronic pain, mesh contraction and erosion can occur 

[102].   We cannot currently predict which patients will be affected more by mesh 

complications.  

Mechanically, the PPL mesh is now thought to be incompatible with the female pelvic floor. 

Essentially the PPL mesh is too strong and not elastic enough to be used in the pelvic floor 

[103], [104]. Other factors that have contributed to emergence of the vaginal mesh issue as a 

public health problem are listed in Tables 2 and 3.   
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Table 1.2. Problems that have occurred during development of meshes for pelvic floor 

repair 

1. Lack of necessary regulations for approval of medical devices  

a. Devices granted approval with no/ limited clinical data 

2. Lack of understanding of female pelvic floor disorders 

a. The female pelvic floor is structurally and functionally complex 

b. Pelvic floor biomechanics not well studied 

c. Targets for surgical treatment generally poorly defined, particularly in 

transvaginal POP repairs 

3. Problems related to the material  

a. Surgical mesh not designed for use in pelvic floor 

b. Limitations in available technologies and materials at the time 

c. Polypropylene considered inert however it undergoes surface degradation  

4. Factors related to surgical technique 

a. Proximity of large areas of mesh implant to skin wound 

b. Implantation of mesh on to a poorly vascularized wound bed 

5. Lack of relevant animal models of efficacy 

 

Table 1.3. Problems that have occurred after the mesh was made available for 

widespread clinical use. 

1. Lack of implementation of post marketing surveillance  

2. Poor patient selection 

a.  Poorly defined disease subgroups  

b. ‘One size fits all’ approach 

3. Factors related to operating surgeon 

a. Poor subspecialty training on management of all aspects of SUI and POP 

b. Minimally invasive operations perceived as ‘easy to do’ 

4. Extensive marketing  
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1.6.6. Current approaches to improve the polypropylene mesh 

 

Efforts to make further improvements to the current surgical mesh are still ongoing. It is now 

widely accepted that the new generation, light- weight, macroporous meshes with high 

porosities are desirable to ensure a better mesh remodelling and reduce complications such as 

fibrosis, pain and mesh failure. The knit pattern and geometry of the mesh can also be 

modified to obtain desired mechanical properties [105].   Another approach to enhance the 

biocompatibility of PPL is to apply a bioactive coating onto it with more biocompatible 

substances, such as natural extracellular matrix [106]. Titanium coated light weight 

polypropylene meshes was also used in a pilot patient group to improve the biocompatibility 

of the PPL mesh [107].  

There has also been research on degradable and hybrid degradable/ nondegradable mesh 

materials.  The main idea behind a degradable mesh was that it would be absorbed after a 

period of time by which time the patients’ own tissues would have at least partially recovered 

or regenerated and this would avoid the long term complications of permanent mesh like 

infection and fistula formation. The concept of using biodegradable scaffolds or support – 

often combined with patient cells to help regenerate tissues is well accepted in the world of 

tissue engineering and regenerative medicine [108] but has not yet been trialled clinically with 

respect to POP although there are materials in development. 

1.7. Tissue engineering to construct biomaterials for pelvic floor 

 

Advances in materials science and tissue engineering are finally being applied to designing 

novel materials specifically for use in the pelvic floor.  The first tissue engineered approach to 

construct an autologous fascia equivalent for POP repair was reported in 2010. In this study 

human vaginal fibroblasts were seeded on a PLGA knitted mesh before implantation into 

nude mice for 12 weeks and a well- organized new fascia with a high collagen I/III ratio was 

demonstrated [109]. A stronger tissue engineered material was also constructed from knitted 

silk mesh seeded with adipose derived MSCs in 2013 [110]. A gelatine coated- polyamide 

knit mesh seeded with endometrial MSCs that was designed for POP repair was also  shown 

to reduce inflammatory cell infiltration and increase neovascularization in a rat model in 2013 

[111].  
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1.7.1. Previous work from Sheffield group: Choice of material and manufacturing 

technique 

 

Our own group in Sheffield has also been developing biomaterials and tissue engineered 

substitutes to be used in pelvic floor repair over the last 8 years. 

With respect to choice of materials we think it is important to be able to consider a range of 

degradable and non- degradable materials. The Sheffield group has mainly produced work on 

a biodegradable material, Poly-L-lactic acid (PLA) and a nondegradable polymer of 

polyurethane.  PLA is known to have good biocompatibility and is commonly used in drug 

delivery applications [112]. Another promising material was polyurethanes with increased 

elasticity that can withstand cyclic mechanical distension in vitro [113]. The electrospun 

polyurethanes, together with electrospun ureidopyrimidinone- polycarbonate scaffolds,  led to 

a better host response compared to ultra- lightweight  PPL meshes after implantation in to 

sheep vagina  for 6 months [114]. Electrospun materials and ultra- lightweight PPL were 

similar in this model with regards to graft related complications, passive mechanical 

properties and their effects on vaginal contractility.         

Electrospinning is a widely used technique in tissue engineering that allows fabrication of 

scaffolds with micro/ nano sized fibres with different compositions and configurations. This 

technique can effectively be used to build scaffolds with several layers of different polymers 

in order to achieve desired biomechanical properties [115]. For example, transversely, 

obliquely and irregularly aligned  fibres can be electrospun in a tri-layer structure with 

ultrastructural and biomechanical properties similar to native fascia [30].  Also we have 

shown that PLA scaffolds with random fibres have mechanical properties close to those of 

healthy paravaginal tissue [116] while showing successful integration into native tissues in 

short term [117].  
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PLA as a material 

Polylactide (PLA) is a biodegradable polyester synthesized from the monomer ‘lactic acid’ 

which is made by bacterial fermentation of carbohydrates such as corn and potatoes. PLA has 

several chiral forms such as poly (L-lactic acid) (PLLA), poly (D-lactic acid) (PDLA) and 

poly (D,F-lactic acid) (PDLLA). PLLA is most commonly used and studied in biomedical 

applications.  Higher molecular weight PLLA can take more than 5 years to degrade. PLA is 

highly biocompatible and as a degradable polymer it is commonly used as a drug delivery 

material [112].  

Polymers have the obvious advantage of being strong enough and ductile especially for soft 

tissue regeneration.  The word polymer refers to huge macromolecules made of repeating 

structural units called monomers (‘polus’: many and ‘meres’: parts in Greek). For instance, 

polysaccharides are made of single sugar units or polypropylene is a polymer made of 

‘propylene’ monomers. Polymers can be natural or synthetic. Natural polymers can be derived 

from plants or animal sources and they share similar features with the extracellular matrix of 

humans. Therefore, natural polymers are recognized, metabolized and degraded by the tissues. 

Additionally, natural polymers are known to be stimulate less immunological reactions and 

toxicity compared to synthetic polymers. Commonly used natural polymers are chitosan, 

hyaluronic acid, gelatin and cellulose. The main limitations of natural polymers are variability 

in the material properties depending on the source of isolation, the risk of contamination with 

microorganisms, poor mechanical strength and unpredictable degradation pattern.  

Synthetic materials have the main advantages of being available ‘off the shelf’ and being 

synthesized at reproducible quality and purity. Additionally, synthetic materials can be 

produced into various shapes and surface properties. The material properties of synthetic 

polymers are continuously being improved in the last half of the century to tailor the 

degradation times and improve the tissue response to these materials. The chemical properties 

of the material are the main determinant of its’ biocompatibility. However, it appears that 

numerous issues related to the biochemistry of the materials have not been identified and 

addressed in in vitro and in vivo experiments before they are translated into clinical practice. 

This is especially true for biomaterials whose material properties change over time after 

implantation leading to a significantly different host response in the long term [118].       
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Polymers most commonly used for soft tissue regeneration are PolyLactic Acid (PLA), 

PolyGlycolic Acid (PGA) and PolyCaproLactone (PCL). All these polymers are approved by 

FDA for a variety of application mostly in suture materials. Basic physical properties of these 

polymers are listed in Table 4.  

 

Table 1.4. A summary of the physical properties of the polymers most commonly used in 

scaffolds for soft tissue regeneration (* polymers used in this thesis). 

Polymer Degradation time  Tg (°C) Tm (°C) Tensile modulus 

PLLA* >2 years 60- 65 175 2.7 GPa 

PGA 6- 12 months 35-40 >200 6 GPa 

PCL >2 years 54 55- 60 0.4 GPa 

PU* 12-18 months -35 180 1.31- 2.07 GPa 

PPL Non-degradable -10 165 800- 1300 MPa 

 

 

 

1.7.2. Design requirements for materials to be used in pelvic floor reconstruction 

 

The PPL vaginal meshes in current clinical use were never designed or tested specifically for 

use in pelvic floor. The best available material was empirically used in pelvic floor based on 

an assumption that if it worked well in the abdomen to reinforce hernia repairs it would work 

equally well to support vaginal prolapse repairs. It is now being recognized that this approach 

was inherently flawed as the microbial flora, pH, vascular supply and physiological 

mechanical requirements of the pelvic floor are different from that of the abdomen.   
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The search for an ideal graft material to be used in pelvic floor continues since mid- twentieth 

century. An ideal graft has been defined arbitrarily as being biocompatible, noncarcinogenic, 

nonimmunogenic, able to provide structural support until tissue healing is completed, pliable, 

sterilizable, readily available, inexpensive and have a minimal risk of infection. Additionally, 

any material used to support the pelvic floor needs to have defined characteristics of material 

deformation and load bearing as well as how it contributes to tissue remodelling once it is 

implanted in to the body.    
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Biocompatibility is the ability of the biomaterial to perform with an appropriate host response 

that is defined for a particular clinical application [119]. This definition is often criticized for 

not providing any insights on how to assess biocompatibility or how to improve it . A tissue 

response is expected to any biomaterial once in contact with the host and what is needed is a 

mutually acceptable co- existence of the biomaterial and the host tissues while the biomaterial 

exerts its desired function. There are very many different ways the materials and tissues can 

interact. Classically, any synthetic material implanted in the body will trigger an 

inflammatory reaction sequentially involving acute inflammation, chronic inflammation, a 

foreign body reaction and wound healing/ scar formation. Under normal circumstances all 

available biomedical implants will generate a similar foreign body reaction that leads to 

formation of a fibrotic capsulation reaction with a thin (50 to 200 µm), tough, collagenous and 

avascular tissue around the implant material [120]. The fibrous capsule often defined as a 

desirable outcome from a clinicians point of view when the implant performs desired 

functions without causing any adverse reactions. However, in some cases, such as pain and 

deformation seen in capsular contracture of breast implants, foreign body reaction is 

considered an undesirable outcome that can necessitates excision of the implant.    

 

Current understanding of biocompatibility defines a host response to the biomaterial that is 

more similar to normal wound healing where a healthy, vascularized tissue is formed in the 

biomaterial- tissue interface rather than the fibrous capsule. This could be achieved by 

reducing the capsule formation and increasing the vascularity around the implantation site 

[121].  Although the exact relationship between angiogenesis and foreign body reaction and 

biocompatibility of an implant material is not clearly defined, it was recently proposed that 

blood vessel density was directly correlated with the biocompatibility of an implant [122]. 

Therefore, a controlled increase in the angiogenesis in the surrounding tissues could be a 

strategy to increase the biocompatibility of the biomaterial.  
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1.7.3. Angiogenic properties of tissue engineered materials 

 

The growth of new blood vessels into a tissue engineered substitute is crucial to improve its’ 

tissue integration and to obtain a successful long term clinical outcome. It has been estimated 

that a distance of less than 200 µM from the supplying capillary is the critical distance for 

diffusion of oxygen and nutrients to any new tissue introduced into the body. Because of this 

the  survival of any 3- dimensional tissue graft relies on rapid development of new blood 

vessels to supply not only the centre but also the margins of the graft [123]. A specific 

consideration should be given to clinical scenarios where the wound bed accommodating the 

biomaterial is already poorly vascularized, such as pelvic floor tissues of postmenopausal 

women with SUI and POP [124].  Clinical studies have demonstrated that post- menopausal 

women and women with co-morbidities that can have a negative impact vascular supply to 

tissues (e.g. diabetes, smoking, previous surgeries)  were more likely to experience vaginal 

mesh related complications [125].  

All attempts to design tissue engineered repair materials need to include an understanding of 

angiogenesis.  Angiogenesis is the sprouting of capillaries from pre-existing blood vessels in 

vivo. This process involves a complex interaction between endothelial and non- endothelial 

cells as well as many enzymes, growth factors and adhesion molecules. Several strategies to 

promote angiogenesis of tissue engineered constructs have been described [126], these 

include: (1) engineering a scaffold that allows easy attachment and proliferation of endothelial 

cells, (2) designing the microstructure to aid the formation of capillaries, (3) providing 

angiogenic growth factors into the microenvironment within the biomaterial either directly by 

incorporating a growth factor into the scaffold material or indirectly by seeding a cell source 

that is able to synthesize angiogenic factors onto the material such as stem cells or genetically 

modified cells.  
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Accordingly, strategies for the introduction of clinically acceptable agents  that would 

stimulate neovascularisation and new extracellular matrix production by the patient's 

endogenous cells have been assessed in the current work. To this end, effective 

pharmacological functionalization of electrospun PLA scaffolds by incorporating clinically 

acceptable bioactive factors such as vitamin C and Estradiol without compromising structural 

and mechanical properties are being assessed  [127]. Estradiol and ascorbic acid were selected 

as a) both are already in use clinically which will make their regulatory approval less 

challenging, b) within the group it has been demonstrated that both can increase extracellular 

matrix (ECM) production as they are released from PLA scaffolds without compromising 

mechanical properties of these materials. To the best of our knowledge neither of these drugs 

has ever been investigated regarding their effects on the intrinsic angiogenic potential of a 

tissue engineered biomaterial.   
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1.8. Aims and Objectives 

 

Aim:  The aim of this project is to develop biocompatible synthetic materials for pelvic floor 

repair that can promote angiogenesis and improve tissue regeneration.  

 

The specific objectives to accomplish this are; 

 

1. To establish an in vivo bioassay to study the angiogenic potential of tissue engineered 

materials  

a. To explore the feasibility of running an ex ovo version of the traditional chick 

chorionic allantoic membrane (CAM) assay. 

b. To evaluate embryo survival rates in ex ovo cultures 

c. To find the best way of obtaining high quality images for image analysis 

d. To explore the best way of visualizing all macro and microvessels of the CAM 

e. To assess if any added value can be obtained from the ex ovo cultures of the 

chick embryo 

2. To evaluate the chick aortic ring assay as an organ culture assay to study endothelial 

cell sprouting  

3. To construct electrospun PLA scaffolds that release Vitamin C  

a. To determine the release characteristics of Vitamin C from the scaffolds 

b. To characterize the Vitamin C releasing scaffolds with regards to their 

ultrastructure and mechanical properties 

c. To assess how the scaffolds, affect proliferation and extracellular matrix 

production of cells (either fibroblasts or adipose derived stem cells) grown on 

these scaffolds  

d. To assess the angiogenic potential of Vitamin C releasing scaffolds on an ex- 

ovo CAM model. 

e. To assess the initial tissue response to the materials 
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4. To construct electrospun PLA scaffolds that release Estradiol  

a. To determine the release characteristics of Estradiol from the scaffolds 

b. To characterize the Estradiol releasing scaffolds with regards to their 

ultrastructure and mechanical properties 

c. To assess how the scaffolds, affect proliferation and extracellular matrix 

production of cells (either fibroblasts or adipose derived stem cells) grown on 

these scaffolds  

d. To assess the angiogenic potential of Estradiol releasing scaffolds on an ex- 

ovo CAM model. 

e. To evaluate the effect of Estradiol on the microvasculature of the CAM 

f. To assess the initial tissue response to the materials 

5. To analyse if stem cells can provide any added benefit when added to scaffolds to 

promote angiogenesis 

a. To find an appropriate cell carrier to keep the stem cells on the CAM 

b. To find the most effective concentration of stem cells to promote angiogenesis 

in a chick aortic ring assay    
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Chapter 2. Materials and Methods 
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2.1. Cells 

 

Two cell types were used in the experiments included in the current doctoral studies: human 

dermal fibroblasts and human adipose derived stem cells. Both cell types were isolated from a 

regular supply of donated skin and subcutaneous fat  of patients undergoing breast reduction 

and abdominoplasty. All patients had given informed written consent and all procedures were 

covered under a research tissue bank license by the Human Tissue Authority (number 

08/H1308/39). 

2.1.1. Fibroblasts 

 

After donated skin was received in the laboratory a split thickness skin graft was taken using a 

Watson knife by a named technician under laminar hood. Skin grafts were then cut into 0.5X 

0.5 cm squares and incubated overnight at 4°C in a solution of 0.4% trypsin plus 0.1% w/v D-

glucose in phosphate buffered saline (PBS) to enable easy separation of epidermal and dermal 

layers. After trypsinisation skin grafts were taken into a Petri dish and epidermal layer was 

peeled off the dermis using a forceps and scalpel. Dermal layer was used for fibroblast 

isolation. After washing with PBS the dermal pieces were minced thoroughly using a scalpel. 

Minced dermis was incubated overnight at 37°C in a 10 mL solution of 0.05% collagenase A 

in media. Next day the collagenase was neutralized, the resulting suspension was centrifuged 

at 1300 rpm for 10 minutes and the precipitate was resuspended in fibroblast growth media in 

T25 flasks. Fibroblast growth media consisted of Dulbecco's Modified Eagles's Medium 

(DMEM) (Gibco Invitrogen, Paisley, UK) supplemented with 10% foetal calf serum 

(Advanced Protein products, Brierly Hill, UK), 1% penicillin/streptomycin and 0.5% 

Fungizone (Gibco Invitrogen, Paisley, UK). After the first passage HDFs were cultured in 

T75 flasks and incubated at 37°C in the presence of 5% CO2 with fresh media changes every 

3–4 days. Regular inspections under inverted microscope were undertaken daily to visualize 

cell morphology of the growing cells and exclude any infections. For the experiments HDFs 

between passages 4- 9 were used.  
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Passaging was performed using incubating the cells with 4 ml of trypsin/ EDTA solution 

(Sigma- Aldrich, Dorset, UK) per flask for 4 minutes.  Thereafter, the trypsin was neutralized 

with media, cells counted using a haemocytometer and the cell suspension was centrifuged at 

1000 rpm. The pellet was than divided into 3-4 new T75 flasks at a density of 100.000 to 

1.000.000 cells per flask.   

2.1.2. Adipose derived stem cells 

All ADSC isolation and characterization experiments were performed in collaboration with 

Dr Sabiniano Roman. Small lumps of human subcutaneous fat was placed in Petri dishes 

containing 10 mL of PBS containing 1% penicillin/ streptomycin.  Initially the fat tissue was 

minced in a Petri dish using a sterile scissors and collected into a 50 mL centrifuge tubes. An 

equal volume of 0.1% collagenase type A solution in HANKS buffer was than added into the 

centrifuge tubes and incubated in 37°C for 40 minutes while shaking the tube every 10 

minutes to facilitate enzymatic digestion. The collagenase was then neutralized adding an 

equal amount of culture  media and centrifugation performed at 1300 rpm for 8 min. The 

supernatant containing all the undigested fat tissue is discarded and the supernatant (stromal 

vascular fraction) was resuspended in culture media. After the supernatant was washed with 

media and centrifuged again, the pellet was resuspended and cells were seeded in T25 flasks 

containing 4 ml of DMEM medium. Flasks were incubated in at 37°C and 5% CO2.  

Next day the media was removed and flasks were washed with PBS removing all the non- 

adherent cells. Regular inspections under inverted microscope were undertaken daily to 

visualize cell morphology of the growing cells and exclude any infections. Once the growing 

cells reached to a confluence of 80% passaging was performed using 2 ml of Trypsin/ EDTA 

(Sigma- Aldrich, Dorset, UK) per flask for 4 minutes. After the first passage cells were 

seeded into T75 flasks and for the experiments ADSCs between passages 3- 6 were used.        

Cryopreserved ADSCs were also used. Previously isolated and characterized ADSCs were 

resurrected from cryogenic frozen vials and were cultured in T75 flasks which were then 

incubated in at 37°C and 5% CO2. Regular inspections under inverted microscope were 

undertaken daily to visualize cell morphology of the growing cells and exclude any infections. 

Once the growing cells reached to a confluence of 80% passaging was performed using 4 ml 

of Trypsin/ EDTA (Sigma- Aldrich, Dorset, UK) per flask for 4 minutes. ADSCs between 

passages 3- 6 were used in all experiments. 
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2.2. Scaffolds 

 

Electrospun Poly- (L)-lactic acid (PLA) scaffolds were produced with electrospinning 

technique (Figure 2.1). Polymer solutions were made by dissolving 10% w/v PLA (Sigma- 

Aldrich, Dorset, UK) (density: 1.24 g/ cm3, Mw 55-90K) in Dichloromethane (DCM) 

overnight on a benchtop shaker. After homogeneous solutions of suitable viscosities for 

electrospinning are formed polymer solutions were loaded into 5 mL syringes each fitted with 

an 18 G  blunt tipped stainless steel needle (I&J Fisnar Inc.). Four syringes were loaded onto a 

programmable syringe pump (Aladdin 1000) attached to a purpose built electrospinning rig in 

a fume cupboard. The collector was wrapped with an aluminum foil and the distance between 

the tip of the blunt needle and the collector was arranged to be 17 cm. A copper plate 

punctured at 4 locations to form a diamond shape was fitted over the needles for equal 

distribution of electrical current. A crocodile clip that was connected to the voltage generator  

was than attached to the copper plate. The opposite charged end of the voltage generator was 

connected to the rotating collector with use of another crocodile clip.  The syringe driver was 

set at a constant rate of 40µl/ min.   The voltage generator was set at 15kV. During 

electrospinning the formation of Taylor’ s cone was observed at all times and excessive 

polymer solution that accumulated at the tip of the blunt needle was continuously removed 

with use of a sterile nonconductive rod. At the end of electrospinning the resultant sheet of 

scaffold was removed off the rotating collector along with the aluminum foil.       
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Figure 2.1. The electrospinning setup 

 

 

 

2.2.1. Preparation of drug releasing scaffolds 

 

In addition to the standard electrospinning procedure described above, blend electrospinning 

and emulsion electrospinning techniques were used to form drug releasing scaffolds. A list of 

electrospun PLA scaffolds studied in this thesis is given in Table 2.1. In case of 17β Estradiol 

a homogeneous solution of the lipophilic Estradiol in DCM could be formed. Hence, a blend 

electrospinning technique where the drug is simply dissolved in polymer solution was used. 

However, in case of Vitamin C, the high hydrophilicity of the vitamin did not allow 

dissolution in DCM (Figure 2.2). Therefore, a stable emulsion of Vitamin C in polymer 

solution was formed before electrospinning.  
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Table 2.1. A list of biomaterials produced 

Scaffold Acronyms used Technique of 

production 

Ingredients 

Electrospun PLA PLA Electrospinning PLA 

Estradiol releasing 

PLA 

PLA Estradiol Blend 

electrospinning 

PLA, Estradiol 

Emulsion 

electrospun PLA 

Vehicle scaffold Emulsion 

electrospinning 

PLA, Span80, Water  

Ascorbic Acid 

releasing PLA 

PLA_AA Emulsion 

electrospinning 

PLA, Span80, AA in 

Water 

Ascorbate-2 

phosphate  

releasing PLA 

PLA_A2P Emulsion 

electrospinning 

PLA, Span80, A2P in 

Water 
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Figure 2.2. Demonstration of preparation of stable emulsions from the polymer solution. In 

(A) phase separation of polymer solution when the water phase containing Vitamin C is 

added can be seen (red arrow). (B) is the stable emulsion obtained using the surfactant where 

water phase contains Vitamin C and oil phase contains PLA polymer. (C) control where only 

Vitamin C powder is mixed with polymer solution where the powder settles at the bottom 

and to the sides of the glass (blue arrow).   
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2.2.2. Emulsion electrospinning 

 

After PLA polymer was dissolved in DCM as described above, 50 µl of surfactant, Span80 

(Sigma- Aldrich), was added to the polymer solution while stirring at a rate of 250 RPM with 

the aid of a rotating magnet inside for 10 min. Two forms of Vitamin C were used: ascorbic 

acid (AA) and ascorbate-2 phosphate (A2P). Vitamin C was dissolved in 500 µl of distilled 

water and added drop wise into the polymer solution containing the surfactant while stirring at 

a rate of 1000 RPM. For control scaffolds (Vehicle scaffolds) distilled water without any drug 

was used to form an emulsion. The polymer solution was observed to turn into a milky, stable 

emulsion gradually. After a stable emulsion was formed all the emulsions were immediately 

electrospun.  The resultant electrospun fibres are known to result in a core- shell morphology 

where the hydrophilic Vitamin C is in the core while the hydrophobic PLA polymer formed 

the shell (Figure 2.3).   
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Figure 2.3. Graphical demonstration of preparation of the emulsion electrospinning solutions. 

The hydrophilic Ascorbic Acid (AA) and Ascorbate- 2 – phosphate (A2P) dissolved in 

distilled water (dH2O) were added into the polymer solution obtained by dissolving 

Polylactic acid (PLA) in dichloromethane (DCM). This emulsion forms a core- shell 

morphology upon electrospinning.  
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2.3. Characterization of scaffolds 

2.3.1. Scanning electron microscopy 

 

Scanning electron microscopy was performed to assess scaffold ultrastructure of plain 

scaffolds and to assess the deposited extracellular matrix on the cell seeded scaffolds.  

On plain scaffolds, fibre diameters and pore sizes were examined on the SEM images of 

electrospun scaffolds. Dry samples of scaffolds were cut into 1x1 cm pieces and directly 

underwent gold sputtering (Edwards Sputter Coater S150B, Crawley, UK). Images were taken 

using a Phillips XL- 20 scanning electron microscope (Cambridge, UK).   The software 

ImageJ (National Institutes of Health) was used for measurements. For each experimental 

group three scaffold samples were examined with SEM.  

For each piece of scaffold, four images were taken from the random sites within the scaffold. 

From each image taken, 10 fibres and 5 pores were randomly selected and the fibre diameter 

and pore sizes were measured. As a result, a total of 120 fibres and 60 pores were analysed 

per scaffold.  A pore was defined as areas of void space bounded by fibres on all sides at or 

near the same depth of field.  

For cell seeded scaffolds, the samples were fixed in 10% buffered formaldehyde solution for 

10-15mins. After sequential incubation with 0.1M cacodylate buffer and glutaraldehyde in 

cacodylate buffer each for 20 minutes samples were washed in 0.1M cacodylate buffer twice 

for 15 min each wash. The samples were then incubated in osmium tetraoxide for 2 hours and 

in 0.1M cacodylate buffer for 15 min.  Following these, samples were incubated in increasing 

concentrations of ethanol (75, 95, 100%) for 15 min each and were incubated for 30 min in 

100% ethanol dried over anhydrous copper sulphate. Finally, the ethanol was removed and 

hexamethlydisalazine was added to the samples for 30 minutes and the samples were left to 

dry overnight. Dry samples were then mounted on 12.5 mm stubs and underwent gold 

sputtering with approximately 25 nm of gold (Edwards Sputter Coater S150B, Crawley, UK). 

Samples were imaged with a Phillips XL- 20 scanning electron microscope (Cambridge, UK).    
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2.3.2. Evaluation of the hydrophilicity of the scaffolds 

 

The hydrophilicity of the scaffolds was mainly studied for Vitamin C releasing electrospun 

scaffolds as a significant change in hydrophilicity would be expected due to involvement of 

Vitamin C and the surfactant in the scaffolds. Hydrophilicity was studied by measurement of 

water contact angle and water uptake by the scaffolds.  

Water contact angle measurement 

Water contact angle measurement was performed by a contact angle goniometer (ramé- hart 

instrument co., NJ, USA). Scaffolds were cut into 1 cm x 1 cm squares and placed on the 

testing plate. Subsequently 0.03 mL of distilled water was carefully dropped onto the 

scaffolds and contact angles between water droplets and the scaffolds were   measured 

immediately after dropping. Six samples were used at each test and average value was 

reported with standard deviation (±SD). 

Water uptake measurement 

Water uptake by scaffolds was assessed by incubating weighed 1x 1 cm pieces of each 

scaffold in 10 mL of PBS. Six samples for each group were weighed using a digital scale. 

Scaffolds were put in PBS and incubated at 37 °C for a total of 21 days. At days 1, 2, 3, 7, 14 

and 21 scaffolds were carefully blotted with filter paper to remove surface water and weighed 

again. Water uptake of each scaffold was expressed as the percent increase in weight of the 

scaffold and calculated with the formula:  

(Weight wet –Weight dry)/ Weight dry x100.  

2.3.3. Mechanical testing 

Uniaxial mechanical testing on scaffolds was performed using a BOSE tensiometer (BOSE 

Electroforce Test Instruments, MN). Samples were cut into 0.5x1 cm pieces and the 

thicknesses measured using a handheld micrometer thickness gauge. A small 22 N load cell 

was used in measurements. Samples were vertically placed between two grids and a ramp test 

was applied at a rate of 0.5 mm/ sec. The first failure point and plateau was used to calculate 

the ultimate tensile strength (UTS) and the displacement at this point (strain). The initial 

linear gradient of a plot of stress versus strain was taken as the Young’s modulus (E).  
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2.4. Release of drugs from the scaffolds 

2.4.1. Measurement of Vitamin C 

Vitamin C was measured using two different methods: a spectrophotometric method and a 

UV- spectroscopic method. A spectrophotometric method was initially developed due to 

unavailability of other methods. As the UV- spectrophotometer become available in the Kroto 

S20 lab the release experiments were repeated.  The UV spectroscopic method was less time 

consuming and allowed more accurate readings.      

Spectrophotometric measurement of Vitamin C 

A previously defined method called the ‘Enzyme linked Ferric tripyridyltriazine 

spectrophotometric assay (EFTSA)’ was used [128], [129]. In this assay the EFTSA solution 

which consists of acetate buffer, TPTZ (2,4,6-tripyridyl-s-triazine) and ferric chloride 

(FeCl3.6H20) is used to form a coloured ferrous tripyridyltriazine complex with reduction of 

ferric ion to ferrous ion by ascorbic acid at low pH. The absorbance of the ferrous 

tripyridyltriazine complex was read at 593 nm. Of the two forms of Vitamin C, ascorbic acid 

was directly measured with this method whereas A2P was first enzymatically converted to 

AA [130]. 

Briefly, after 2 parallel samples from each solution of Vitamin C were incubated for 5 min in 

37°C water bath with or without 4 units/ mL of ascorbate oxidase (AO). Then in the presence 

of acetate buffer at pH 3.6, 8mM tripyridyltriazine (TPTZ) and 20mM Ferric chloride 

solutions were added.  After 5 min incubation at room temperature, the absorbance was 

measured at 593 nm in a colorimetric plate reader (Bio- TEK, NorthStar Scientific Ltd, Leeds, 

UK). The difference between AO negative and positive readings were related to the presence 

of AA (Figure 2.4). For A2P measurement, samples were first incubated 15 min at room 

temperature with acid phosphatase (25 mg/mL in 0.1 M citric acid buffer at pH 4.8) to convert 

AA to A2P.  The concentration of unknown solutions was determined with the aid of standard 

curves plotted for AA.   The standard curves obtained with this method is demonstrated in 

Figure 2.4. Solutions of AA in both distilled water and PBS between 0.3 and 600 µM were 

studied. The lower limit of detection of AA (>6 µM) with this method was found to be lower 

when it was dissolved in distilled water compared to PBS (>60 µM). This is due to oxidation 

of AA with the metal ions present in PBS.   
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Figure 2.4. An example of running parallel samples with EFTSA method for detection of ascorbic 

acid (A). Standard curves obtained with this method in PBS and distilled water (B).   

 

 

After construction of the standard curves, preliminary experiments were undertaken to detect 

AA released from scaffolds using the spectrophotometric method. For this scaffolds were cut 

into 3x3 cm square pieces and put into distilled water. On 8th, 24th, 48th and 72th hours samples 

were taken from distilled water and AA concentration was determined using the standard 

curve for the spectrophotometric assay. After the distilled water was either replaced or all the 

media was completely changed.  The preliminary release curves obtained using the 

spectrophotometric method was demonstrated in Figure 2.5. The amount of AA detected in 

media continuously decreased after 3 days when it went down to undetectable levels. This 

demonstrated that AA was not only oxidized by the metal ions in media but also with the 

oxygen in the environment and incubator. A2P could be measured to increase consistently for 

28 days when measured by sampling the media. A2P could not be measured after day 10 

when replacing the media most probably due to released concentrations below the lower limit 

of detection of this test.  
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Figure 2.5. The release of AA and A2P from electrospun PLA scaffolds as measured by the spectrophotometric method. 
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Therefore, AA could be detected as released from the electrospun PLA scaffolds using the 

spectrophotometric method however this had some important limitations. Firstly, the release 

could only be studied in distilled water to avoid interference with method of detection of AA 

with use of PBS. This is not ideal as the release studies are more relevant when performed in 

physiologically similar media and conditions. Secondly, even when distilled water was used, 

detection of AA, not A2P, was still very limited probably because AA oxidized immediately 

with oxygen in the air and became undetectable soon after it was released. Therefore, AA 

became undetectable after 72 hours whereas A2P was still detectable on day 28. Thirdly, the 

lower limit of detection for the spectrophotometric method was high (>30 µM) which 

precluded measurement of small changes in concentration. Thus the spectrophotometric 

method to measure AA release from the electrospun PLA scaffolds had significant limitations.   

UV- spectrophotometric method 

Vitamin C was also measured using a UV- spectrophotometer (Thermo ScientificTM Evolution 

220) at an absorbance wavelength of 252 nm. A calibration curve was constructed by 

measuring 8 concentrations of vitamin C (lowest: 10 nM and highest: 100 µM) prepared in 

distilled water (Figure 2.6). All solutions were freshly prepared and the absorbances were 

immediately measured.  The lower limit of detection for Vitamin C with this method was 300 

nM and upper limit of detection was 100 µM.  
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Figure 2.6. The standard curve for measurement of Ascorbic acid using UV- spectrophotometry. 

 

 

 

To detect release of Vitamin C from electrospun scaffolds a 1x1 cm piece of scaffold was 

placed in 4 mL of media and was kept in a dry incubator at 37°C.  At 2, 4, 6, 8, 10 hours and 

daily afterwards a sample was removed from the media and the concentration measured. A 

vehicle scaffold with neither AA nor A2P  was taken as a control. All the media was then 

removed and replaced with a fresh sample. These steps were repeated at each time point.    
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2.4.2. Measurement of Estradiol 

 

Measurement of Estradiol was performed initially by a spectrofluoremeter and subsequently 

by UV- spectrophotometer. The release experiments for a duration of 6 months was initially 

started by Dr Christopher Hillary. The release of Estradiol from PLA scaffolds constructed 

within the current PhD studies was mainly studied using UV- spectrophotometer for a 

duration of 28 days.  

Spectrofluorometric detection of Estradiol    

A concentration ranges of Estradiol between 10 nM and 100 µM in PBS were measured using 

(Kontron SFM 25 spectralflurometer) at λex277nm/λem310nm. Standard curves were 

constructed and used thereafter to determine an unknown concentration of the drug in solution 

during the release experiments (Figure 2.7).   

UV- spectrophotometric detection of Estradiol 

Estradiol was also detected using a UV- spectrophotometer (Thermo ScientificTM Evolution 

220) at an absorbance wavelength of 220 nm.  Standard curves were constructed using a 

concentration of 10 nM and 100 µM in PBS and used to determine an unknown concentration 

of the drug in solution during the release experiments.   
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Figure 2.7. The standard curves for measurement of Estradiol using the spectralflurometer (A) and the UV- spectrophotometer (B). 
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2.5. In vitro evaluation of scaffolds 

2.5.1. Evaluation of metabolic activity by resazurin assay 

 

In all experiments using cells in 2D or 3D cell metabolic activity was measured by a resazurin 

assay. A stock solution of resazurin sodium salt (Sigma-Aldrich, Dorset, UK)  was first 

prepared by dissolving 0.124g wt/v of resazurin in 100mL of phosphate buffer saline (PBS). 

Dilutions of this stock solution in 1:20 was used for experiments. After the culture media was 

removed from each well the cells were washed with PBS and resazurin solution was added   

into each well. Cells were incubated for 60 min at 37°C in 5% CO2 atmosphere. Then 100 µl 

of resazurin solution was pipetted out from each well and transferred into a 96 well plate. 

Absorbence was measured at 570 nm in a colorimetric plate reader (Bio- TEK, NorthStar 

Scientific Ltd, Leeds, UK). Culture wells without cells or cell free scaffolds in media were 

used as reagent blanks. Samples were then washed of the dye and either fixed with 3.7% 

formaldehyde or replaced with culture media if experiments were to be continued.  Each 

measurement was performed in triplicates.   

 

2.5.2. Measurement of total collagen with Sirius red staining 

 

Total collagen production by the cells in 2D and 3D were measured using Sirius red staining 

(Figure 2.8). Sirius red is an elongated birefringent molecule that contains six salt-forming (-

SO3H) sulfonic groups. It binds to a variety of molecules in tissues however when bound to 

collagen it attaches parallel to fibrillary collagen enhancing its natural birefringence. 

Birefringence refers to an optical property of a material that reflects the light in a manner that 

is dependent on the orientation of the molecule relative to the light hitting them. In other 

words optically anisotropic materials are referred to as being birefringent. The Sirius red 

staining relies on birefringent properties of the fibrillary collagen.  

When the Sirius red stained tissues are examined under bright field microscope, all the 

proteins in the tissue would be visualized as Sirius red binds all. Visualizing Sirius red stained 

tissues under polarized light allows effective identification of collagen networks and 

appreciation of potential collagen alterations. Therefore, Sirius red stained samples need to be 

visualized under polarized light to show collagen specificity. The method used in these 
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studies relies on eluting the Sirius red that is first bound to all extracellular matrix elements 

produced by cells grown on the scaffolds. This is than measured using spectrophotometry.      

Samples that were previously fixed in 3.7% formaldehyde were washed 3 times with PBS. 

Two mL of Sirius red stain (0.1% Direct Red 80 in saturated picric acid, Sigma- Aldrich) was 

added to each sample of monolayer cultured fibroblasts or fibroblasts grown on scaffolds. 

Samples were left to stain on a benchtop shaker for 16 hours. Afterwards excess stain was 

washed off with distilled water until the wash out water ran clear. Then specimens were left to 

dry under fume cupboard. Dry samples were pictured and weighed. The stain was then eluted 

with 2 ml 0.2 M NaOH: methanol 1:1 for 15 min. The absorbance was measured at 490 nm. 

Acellular scaffolds acted as controls for calculating collagen production. Results were 

expressed as Sirius Red stain per gram of PLA.    

 

 

 

Figure 2.8. An example of how the Sirius Red staining was used to measure total collagen production 

of human dermal fibroblasts in tissue culture plastic (2D) and on scaffolds (3D). Yellow arrow shows 

a scaffold on which no collagen was produced and blue arrow shows an obvious collagen production 

on the scaffold stained by the Sirius red.  In between a range of staining can be observed. 
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2.6. Evaluation of angiogenic properties of the scaffolds 

 

The angiogenic potentials of the bioactive factors incorporated into the scaffolds were 

assessed using the chick aortic ring assay whereas the angiogenic potential of the final 

scaffolds were evaluated in a chick chorioallantoic membrane (CAM) assay.  The aortic ring 

assay is an organ culture assay that allows studying a wide range of concentrations of 

bioactive factors whereas the CAM assay was used as an in vivo assay to test the angiogenic 

response to the final scaffolds as well as the initial tissue response to the biomaterial.    

 

2.6.1. Chick aortic ring assay 

2.6.1.1.Description of the methodology 

 

Incubation of fertilized eggs 

Pathogen-free fertilized white leghorn chicken eggs (Gallus gallus domesticus) were obtained 

from Henry Stewart Co. Ltd (UK). Care was consistent with the guidelines of the Home 

Office, UK. The fertilized eggs were incubated at 37°C in a humidified egg incubator for 12- 

14 days. Between embryonic development days (EDD) 12- 14 the eggs shells were cracked, 

embryos were taken out and sacrificed immediately by decapitation. A vertical incision on the 

chest wall was made on the midline and the heart of the chick was dissected out together with 

the aortic arches. The aortic arches, surrounding connective tissues and the heart of the chick 

embryo was placed in PBS. The remaining body parts were disposed of in line with Home 

Office requirements.   

Preparation of aortic rings for organ culture 

Under a dissection microscope placed inside a culture hood, the aortic arches were cleaned of 

the surrounding connective tissue using fine forceps and scalpel and the aortic arches were 

separated from the heart by cutting through the attachment of aortic roots at the ventricles of 

the heart. At the end of this procedure 3 aortic arches attached to a single common root and 2 

other arches attached to another common root was obtained (Figure 2.9). Further dissection of 

the connective tissues around the aortic arches was performed until the collagenous outer wall 

of the aorta (the adventitia) was exposed completely.  Thereafter each tubular branch of the 

aorta was cut into 1 mm rings under a stereomicroscope.  
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Figure 2.9. Dissection of aortic arches from the chick embryo. (A) The chest wall is opened to see the 

the heart and the aortic arches (arrows). (B) The aortic arches attached to the heart is next cut out. (C) 

The aortic arches of the chick embryo, dissected from all the surrounding connective tissues and 

ready to be sliced for the aortic ring assay. (scale bars 0.5 cm for all images) 
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Culturing the aortic rings 

Between 20- 25 aortic rings can be obtained from each embryo. Aortic rings were collected in 

PBS and immediately after the completion of the dissection aortic rings were embedded in 50 

µL of Matrigel® (Basement Membrane Matrix, Corning®) in a 24 well plate.  After 30 min 

of incubation in Matrigel allowing gelation of the Matrigel, MEM (supplemented with 2.5% 

FCS, 50 unit’s/mL penicillin and 50 μg/mL streptomycin, GIBCO, Carlsbad, CA) (2 mL) was 

added into each well. The aortic rings were incubated in a cell culture incubator at 37°C and 

5% CO2 for 3- 5 days. Normal growth of endothelial cell sprouts in the chick aortic arch assay 

is shown in Figure 2.10. 

If the experiments involved drug testing the required concentration of the drug was added into 

the culture media. In experiments where co- culture of aortic rings with different cell lines 

(e.g. ADSCs) was intended, a transparent tissue culture insert (Greiner Bio-One GmbH) was 

used to contain the desired component of co- culture. The endothelial sprouts were observed 

under an inverted microscope between days 3 and 5. The pictures taken at each time point and 

the longest sprout length for each sample was calculated. Endothelial cell sprouts had a 

typical appearance of long, micro tubular elongations originating from the inside of the aortic 

ring and forming endothelial cell lacunae as if they were forming blood vessel lumens 

between themselves (Figure 2.11). Endothelial cells were further characterized by 

immunofluorescence staining with Griffonia Simplicifolia Lectin I, isolectin B4 (Vector 

Laboratories, Burlingame, USA) that stained endothelial cells (Figure 2.12).  
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Figure 2.10. Normal growth of the endothelial cell sprouts from day 3 to day 5 in the chick aortic ring assay. The tubular endothelial cell sprouts 

can be seen in close view (red arrows) and the endothelial cell branches connect with each other to form a lumen (yellow arrow). (black scale 

bar: 1 mm; yellow scale bar: 0.2 mm) 
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Figure 2.11.  Observation of the endothelial cell sprouts in the chick aortic ring assay. Firstly, 

endothelial cell sprouts appearing like long microtubules appear on day 3 of organ culture assay (red 

arrows in A). The tubules than start branching (B) and the branches then connect with each other to 

form the typical vessel lumen- like structures (red arrows in C & D) that can only be fully seen 

adjusting the focus as they are on 3D matrix.      
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Figure 2.12.  Characterization of the endothelial cell sprouts in the aortic ring assay. Staining with 

isolectin B4 (A) for endothelial cells, DAPI (B) for the cell nuclei and the combined images (C- D). 

Endothelial cell membranes appear green with isolectin B4 staining (A) and all cell nuclei appear 

blue with DAPI staining (B). Combining the two images allows visualization of endothelial sprouts. 

Error bar in A represents 200 µm and is applicable to all images.    
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2.6.1.2. Optimizations in the chick aortic ring assay 

Use of collagen as an extracellular matrix in the chick aortic ring assay 

The endothelial cells need a 3D extracellular matrix to facilitate formation of the typical 

endothelial morphology in cell culture. For the aortic ring assay although classically Matrigel 

has been chosen as the ECM to embed the rings into [131], some literature suggested use of 

other ECM elements such as collagen and fibrin. Therefore, in the preliminary work, collagen 

type I was used as an ECM to grow the aortic rings in (Figure 2.13). This had led to extremely 

suboptimal results because with collagen matrix the endothelial cell sprouting was very 

difficult to observe under light microscopy. This could be for 2 reasons: i) the collagen matrix 

facilitated growth of fibroblastic/ dendritic cells along with endothelial cell sprouts making 

the endothelial cell sprouts invisible, ii) after day 3-4 days of the organ culture assay the 

collagen matrix started degrading resulting in formation of empty spaces in the matrix which 

also led to displacement of the aortic ring inside the gel. It appears that the ideal extracellular 

matrix to stimulate formation of endothelial cell sprouts and micro tubular structures should 

contain basement membrane proteins [132]. Therefore, use of collagen type I in aortic ring 

experiments was abandoned and Matrigel was used as a standard ECM for aortic ring assay.  

Use of mouse aortic rings 

The aortic ring assay was initially described and performed on the rodent aortic rings [133]. 

Using rodent tissues could have several advantages over using chick tissues. Firstly, the 

rodents are genetically more similar to humans and secondly the range of proteins and 

markers that could be used with mouse tissues are more widely available compared to those of 

chickens. Therefore, during the course of this PhD studies mouse aortic rings were obtained 

from freshly sacrificed mouse aortic tissues (biological Services, The University of Sheffield) 

and dissected under the microscope within 4 hours of scarification. The rings were cut into 1 

mm thick slices and embedded in Matrigel as described above for the chick aortic ring assay. 

The maximum endothelial cell sprout growing from the mouse samples are shown in Figure 

2.14.  Out of 42 samples obtained from 2 different experiments measurable endothelial cell 

sprouts can be obtained only from 4 of the mouse aortic rings at 8 days of culture even with 

supplementation of media with fibroblast growth factor and vascular endothelial growth 

factor. Therefore, the mouse aortic ring was not as responsive as the chick aortic ring in the 

preliminary experiments. An obvious reason was that the embryonic tissues would have more 

regenerative capacity compared to adult tissues (aortic rings of the adult mice).   
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Figure 2.13. Using collagen as a matrix to grow chick aortic rings.  Starting from day 3 the collagen matrix degrades leaving empty spaces around the 

aortic ring (red arrows) and pushing the ring to the side of the circular collagen collagen matrix.     
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Figure 2.14. Preliminary findings of mouse aortic ring experiments. The most commonly encountered 

response at day 8 of organ culture with mouse aortic rings (A). Average response of the 4 samples 

where a measurable endothelial sprout could be observed (red arrow) (B). The maximum response as 

obtained by supplementation of the culture media with fibroblast growth factor (C) (Scale bar 0.2 

mm). 

 

   

The chick embryo metatarsal assay 

Another organ culture assay that could have been used is the chick embryo metatarsal assay. 

Although this methodology had not been defined before, the mouse embryo metatarsal assay 

has been described previously [134]. The same methodology was used to create a culture of 

chick metatarsal/ phalangeal bones of the developing chick embryo on embryonic 

development days 12- 14. The preliminary results are shown in Figure 2.15. Although this 

assay was feasible the dissection of the surrounding connective tissues from the bones of 

chick metatarsal bones were difficult and required more delicate instruments. Furthermore, 

the phalanges were easier to dissect and could have given better results however this needed 

to be defined as a methodology first requiring further set of intense experiments. Therefore, 

this methodology was also abandoned.  
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Figure 2.15. The preliminary findings of the chick embryo metatarsal assay. The chick embryo 

metatarsal bones embedded in Matrigel can be seen in the upper row images. A closer view shows 

the endothelial cell sprouts growing from the periosteum  on day 3 of the culture (red arrows) (Scale 

bars 0.2 mm).  

 

    

 

 

2.6.2. The chick chorioallantoic membrane assay 

The CAM assay methodology is   presented in the next chapter. 
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2.7. Statistical analysis 

Statistical analysis was performed with SPSS v. 17.0.  The differences between percentages 

were compared using Chi- square test.  Differences between two group means were analysed 

with Student’ s T test when the data was normally distributed and with Mann Whitney U test 

otherwise. Survival of the chick embryos were analysed with Kaplan Meier method. 

Correlation between two continuous variables was assessed by Pearson correlation test.   A p 

value of <0,05 was considered statistically significant.    
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3.1. Chapter Introduction 

 

The chorioallantoic membrane (CAM) of the chick embryo forms by the fusion of the 

allantois of the developing chick embryo with the mesodermal layer of the chorion (Figure 

3.1). It first appears as the allantoic vesicle on embryonic development day (EDD) 4 after 

which it enlarges rapidly until EDD 10 and fuses with the chorion [135] (Figure 3.2). The 

blood vessels located in the mesodermal layer of the CAM give rise to a capillary plexus that 

grows rapidly between EDD 8- 11 to mediate gas exchange with the environment. Therefore, 

the CAM is an extraembryonic membrane that functions as an organ for gas exchange 

between the embryo and the environment. It is rich in blood vessels and because it stays on 

top of the developing embryo it is easily accessible for experimental interventions.  

 

 

Figure 3.1. Graphical demonstration of extraembryonic membranes of the chick embryo.  
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The CAM assay has been used as a well- established in vivo assay to study angiogenesis since 

the 1970s. The CAM model has indeed made fundamental contributions to understanding of 

tumour related angiogenesis. It was first demonstrated experimentally in the CAM assay that 

growth of solid neoplasms was always accompanied by neovascularization and that the 

formation of new blood vessels in this context was more vigorous and continuous than that 

observed in wounds and inflammation [136]. Today inhibition of angiogenesis is one of the 

main strategies used when developing targeted therapies for cancer. Additionally, cancer cell 

lines are commonly grown on the CAM to test the efficacy of anticancer drugs in pre- clinical 

studies.  

The in ovo [137] and ex ovo culture methods have been used to grow chick embryos for use in 

research [135], [138]. The in ovo culture method was established first. In this method 

fertilized chicken eggs are placed in an incubator at 37°C with constant humidity to start 

embryogenesis. On day 3 of embryonic development 2-3 ml of albumen is removed from 

inside of the egg using a needle attached to a syringe. Removal of the albumen detached the 

CAM from the egg shell and increases the distance between the egg shell and the CAM 

allowing experimental intervention without damaging the vascular structures and embryo. 

After removal of the albumen, a small square window is opened on the egg shell which is than 

closed and sealed until further experimental interventions are done. The main advantage of 

this technique is that it allows a more physiological environment for development of the chick 

embryo. Also it is known that the egg shell itself is a source of calcium for the developing 

embryo which could be important when studying bone physiology. For example, when 

studying bone regeneration it may be a good idea to grow in vivo cultures to allow absorbance 

of calcium from the egg shell. It has also been suggested in earlier literature that the survival 

rates of in ovo cultures were higher however there is recent evidence against this suggestion.       

The ex ovo method is where the embryo is grown outside of the egg shell for most of the 

embryonic life. This represents a useful modification of the classical in ovo CAM assay 

offering a few unique advantages. With use of the ex ovo CAM assay the growing embryo and 

the vascular structures can be better observed. Additionally, a larger area of the CAM can be 

used for experiments. The main concern with this technique is related to the survival and 

maintenance of the chick embryos outside of the egg shell [139]. There is literature to support 

both arguments suggesting a decreased [139] and unchanged [140]–[142] survival of ex ovo 

cultures.  
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Figure 3.2. The development of the CAM after first appearing on embryonic development day (EDD) 5 (black arrows) and growing up to cover the 

whole surface of the square weighing boat on EDD 9 (Black and red scale bars represent 1 cm and 5 mm, respectively).    
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3.2. The ex ovo CAM assay protocol 

3.2.1. Assay planning 

 

All the experiments were planned beforehand as this is a ‘bioassay’. The fertilized eggs that 

were laid on the same day of dispatch were received next day. The date of dispatch and the 

date received in the egg laboratory were recorded following the Home Office guidelines. 

After fertilized eggs were received they were stored at 10°C up to 10-12 days until the 

incubation is started.  

The day of incubation of fertilized eggs started was embryonic development day (EDD) 0, 

followed by cracking the eggs on EDD 3, start of experimental intervention EDD 7 and 

sacrifice of the embryos on EDD 14 (Figure 3.3).  

Practically, it was most convenient to receive 6 dozen of eggs at a time and to start incubation 

on a Friday (day 0), crack the eggs on a Monday (day 3), implant the test samples on the next 

Friday afternoon (day 7) and sacrifice the embryos on the third Friday (day 14).  This allowed 

image acquisition during the weekdays when necessary. 
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Figure 3.3. The timeline of the ex ovo CAM assay. The incubation of the eggs starts at embryonic 

development day (EDD) 0, the ex ovo cultures start at EDD 3. The experimental intervention is done 

late on the EDD 7 and the angiogenic response can be evaluated anytime between EDD 10 and 14.    
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3.2.2. Incubation of fertilized eggs 

 

The internal parts of a rotating egg incubator was cleaned by spraying IMS (70%) and left to 

dry inside the laminar flow cabinet. The fertilized eggs were removed from the fridge and the 

egg shells were wiped with tissue paper and 20% IMS under the laminar flow cabinet. The 

eggs were then placed in the rotating egg incubator lying on their horizontal axis. Eggs were 

incubated at 37- 38° C and 40- 60% humidity for 3 days.  

 

3.2.3. Starting the ex ovo cultures 

 

At EDD 3 the upper surface of the horizontally lying eggs were marked with a pen and the 

rotating incubator was put in a stationary state for at least 10 min. In the meanwhile, plastic 

weighing boats are dipped into 70% alcohol for disinfection and left to dry. Additionally, a 

1% solution of Penicillin/ Streptomycin in PBS was prepared and 2 ml of the antibiotic 

solution is pipetted in each weighing boat (Figure 3.4). The eggs were taken out of the 

incubator and inside the laminar flow cabinet each egg was cracked from below (opposite to 

the marked line) by hitting it on a hard surface.    
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Figure 3.4. The preparation of the setup before cracking the eggs. The horizontally lying eggs are first 

marked on the top surface (insert). Inside the laminar hood, sterilized plastic weighing boats, antibiotic 

solution, Petri dishes, racks to hold the eggs, a beaker to use to collect the waste and a small heater to 

help keep the embryos warm.   

 

 

The chick embryo was gently transferred into a plastic square weighing boat by separating the 

two halves of the egg shell (Figure 3.5). Successful embryo transfer was confirmed by 

observation of the beating heart in the developing embryo and an intact egg yolk. A sterile 

petri dish was covered as a lid on the weighing boat and the ex ovo cultures were put in a 

stationary sterile incubator 37- 38°C with 60% humidity immediately.  Survival and normal 

development of the ex ovo cultures were checked daily afterwards. Any dead embryos were 

disposed of immediately following the Home Office procedures.  
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Figure 3.5. The start of ex ovo cultures on embryonic development day 3. The egg cracking technique is 

demonstrated with confirmation of a successful embryo transfer with intact egg yolk and the live 

embryo (5 & 6). Here a Petri dish is used instead of a weighing boat for better demonstration.  

 

 

 

 

3.2.4. Start of experimental intervention 

 

On EDD 7 the ex ovo cultures from incubator and placed in laminar flow cabinet. The 

biomaterials to be implanted were prepared beforehand. Scaffolds were cut into circular 

shapes with a diameter of 7- 10 mm using a laser cutter and sterilized for 40 min under UV 

radiation. Using a sterile forceps samples were placed in between two large vessels halfway 

between the embryo and the outer border of the CAM (Figure 3.6).  It is important to 

delineate the borders of the CAM on EDD 7 and not to place the sample outside of the CAM 

to avoid growth of the CAM over the test sample (Figure 3.7). Daily checks of embryo 

survival and development continued.  
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Figure 3.6. Correct placement of the test sample on the CAM. The dashed arrows show the borders 

of the CAM which will grow further to cover all surface of the square weighing boat in a few days. 

Coloured circles show the preferred places for placement of the sample on the CAM.  
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Figure 3.7. An example of correct and incorrect placement of the test samples on the CAM. 

In embryonic development day (EDD) 7 the CAM does not completely cover the surface of 

the square weighing boat leaving areas devoid of the CAM. The sample 1 is placed outside of 

the CAM whereas sample 2 is placed correctly on the CAM the borders of which can be 

followed by close inspection (arrows).   The area where sample 1 is placed is not the CAM 

but the yolk sac. Following up this sample for 2 more days in the embryonic development it 

could be observed that sample 1 blocks normal expansion of the CAM which is clearly seen 

to accumulate behind the sample at EDD 9. Sample 2 grows and expands together with the 

CAM. (Scale bars 10 mm for all images). 
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3.2.5. Evaluation of angiogenic response to scaffolds 

 

Angiogenic responses to the scaffolds were evaluated between EDD 10- 14. In the case of 

ascorbic acid releasing scaffolds the angiogenic response was evaluated at EDD 11 whereas 

for Estradiol releasing scaffolds experiments were continued until EDD 14. This was because 

with ascorbic acid an anti- angiogenic dose of the drug was being demonstrated which was 

most evident at EDD 11, in preliminary studies. 

A digital camera fixed at a constant height was used to take images (Figure 3.8). All samples 

were imaged while being trans illuminated with light coming from below. Additionally, two 

side lamps were also used when necessary. To obscure the unnecessary background due to 

presence of chick embryo body parts or egg yolk a 20% solution of oil in water emulsion was 

injected just beneath the test sample (Figure 3.9). For some samples, injection of the contrast 

underneath the test samples makes a significant difference (Figure 3.10). Standard procedures 

were consistently applied in all experiments to obtain standard, high quality images for 

subsequent image analysis.  

Figure 3.8. The imaging unit used to take pictures of the CAM- biomaterial complex at the 

end of the experiments. The digital camera (yellow arrow) fixed at a constant height and a 

transillumination box (red arrow) are key to take high quality images consistently. 
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Figure 3.9. Demonstration of how an emulsion is injected underneath the CAM- biomaterial complex to obscure the unnecessary background. First the 

injectors containing the contrast agent is inserted between the two layers of the CAM (1-2). Than by rotating the petri dish the tip of the needle is 

brought underneath the area of interest containing the implanted scaffold and the contrast injection is started (3-4). After adequate amount of contrast 

is injected evenly the sample is ready for image acquisition (5-6).  
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Figure 3.10. Comparison of images obtained before and after injection of the contrast. Here two 

contrast agents with different colours are compared. In the upper raw, a white contrast provides 

effective visualization of the blood vessels whereas in the lower raw the blue contrast obscures the 

small blood vessels. Error bars represent 400 µm.   

 

 

3.2.6. Sacrifice of chick embryos 

The CAM is an extraembryonic structure and does not contain any nerve endings. However, 

nerve endings occur in the developing chick embryo starting from EDD 11. Therefore, this 

point was considered during all stages of experimental planning. Current experiments did not 

involve any noxious stimulus or intervention to the chick embryo and only implantation of 

biomaterials onto the CAM surface was performed. Therefore, no prior sedation or 

anaesthesia was performed during the experiments following the Home Office guidance 

statement ‘a prior sedation or anaesthesia should be carried out before humane killing unless 
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to do so would be likely to cause greater distress than using the same method of killing 

without sedative or anaesthetic’.   

On EDD 14 immediately after images were taken, the chick embryos were sacrificed by 

bleeding. The CAM- biomaterial complex was excised using tissue scissors and forceps with 

a margin of 1 cm. Samples were fixed in 3.7% formaldehyde for histologic examination. 

 

3.3. Setting up control scaffolds for angiogenesis 

 

The preliminary experiments on evaluating the angiogenic potential of a biomaterial proved to 

be challenging due to lack of data on what constitutes a pro- angiogenic material and what 

defines an anti- angiogenic material. Although there is data in the literature on the testing of 

certain drugs on the ex ovo CAM assay there was no data for biomaterials.  A further 

complication when studying angiogenesis with biomaterials is that any foreign material 

placed on the CAM could potentially induce an antigenic reaction that can then be confused 

with an angiogenic response. Therefore, every material placed on the CAM needs to have its 

own set of controls.   

3.3.1. A negative control for electrospun PLA scaffold 

 

Incorporating antiangiogenic substances into the electrospun PLA scaffolds was chosen as a 

strategy to construct an anti- angiogenic PLA scaffold as a negative control for angiogenesis 

experiments. Among available options hydrocortisone releasing PLA scaffold was chosen as a 

negative control scaffold for several reasons: i) hydrocortisone has several derivatives that 

allow it to dissolve in water and oil phases, ii) it is known to have antiangiogenic properties, 

iii) its release can easily be demonstrated using the UV- spectrophotometer and iv) it is cheap 

and widely available.      

Hydrocortisone (Sigma Aldrich, Dorset, UK) was dissolved in 500 µl of distilled water and an 

emulsion of hydrocortisone in 10% PLA solution was formed as described earlier in Chapter 

2.  Electrospun PLA scaffolds containing 0.01 gram of hydrocortisone per gram of PLA were 

constructed. Release of hydrocortisone was measured at an absorbance wavelength of 242 nm 

using UV- spectrophotometer. The calibration curve for hydrocortisone and release of 
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hydrocortisone from PLA scaffolds is demonstrated in Figure 3.11. Release of hydrocortisone 

from the scaffolds was only studied for 3 days.  

Concentrations of hydrocortisone of up to 1 gram of hydrocortisone per gram of PLA can be 

used to observe more angiostatic effects by dissolving the lypophilic formulation of 

hydrocortisone in the polymer solution. However increased dosages reduced the embryo 

survival at EDD 10.   

 

Figure 3.11.   The standard curve to determine the concentration of hydrocortisone in an unknown 

solution and the release of hydrocortisone from electrospun PLA scaffolds for 3 days.  

 

 

 

3.3.2. A positive control for electrospun PLA scaffold 

 

Constructing a positive control where a pro- angiogenic drug is released from electrospun 

PLA scaffolds proved to be more difficult. Known pro- angiogenic substances such as VEGF, 

FGF and EGF were all protein structures that could not go into polymer solutions for 

electrospinning. A strategy to incorporate heparin into the PLA scaffolds by layer- by- layer 

coating was performed within the group previously [143] this was technically very 

challenging. Therefore, PLA scaffolds seeded with tumour cell lines were constructed with 

the idea that tumour cells would secrete pro- angiogenic factors.  
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To do this, the human melanoma cell line (C8161) available in the MacNeil lab (isolated from 

an abdominal wall metastasis from a recurrent malignant melanoma) was cultured in 

melanoma culture medium consisted of EMEM media (Sigma-Aldrich) supplemented with 

FSC (10%v/v), L-glutamine (2uM), Penicillin (100U/mL), streptomycin (100ug/mL) and 

Fungizone (0.625ug/mL).  A total of 1 million C8161 cells were seeded on an electrospun 

poly (lactic acid) (PLA) scaffolds. After culturing in vitro overnight the scaffolds seeded with 

tumour cells were controlled for attachment and viability using the resazurin assay. Scaffolds 

seeded with tumour cells were then implanted on CAM at EDD 7 to constitute a positive 

control (Figure 3.12).  

 

Figure 3.12.  Demonstration of negative and positive controls to use when assessing the angiogenic 

potential of a biomaterial. An angiostatic effect is evaluated at embryonic development day (EDD) 10 

whereas a proangiogenic response is best evaluated at EDD 14. Scaffolds constructed with an 

intention to act as positive controls have led to pathologic bleeding and probable hypercoagulation 

(arrows) eliminating use of this strategy to construct positive controls. (scale bars represent 200 µm)    
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3.4. Evaluation of results 

3.4.1. Evaluation of embryonic survival and development 

 

Normal development of the ex ovo cultures are checked and recorded daily. The survival of 

the embryos, the presence of any developmental arrests and/ or presence of any infection were 

reported for each experimental group. 

 

3.4.2. Evaluation of angiogenic response to biomaterials 

 

The angiogenic response to biomaterials was analysed using digital images. A previously 

described methodology was used to calculate the ‘vasculogenic index’ [144]. All discernible 

vessels including capillaries, arterioles, venules that are within an imaginary circle drawn 

around the scaffold with a 1 mm margin were counted provided that they form an angle of 

less than 45° with a line radiating from the centre (Figure 3.13). Vessels branching within the 

annulus are counted as 1 vessel, whereas those branching outside the annulus are considered 

to be 2 vessels. 

 

 

Figure 3.13. An example of how the ‘vasculogenic index’is calculated. Original image and contrast 

injected image are shown together with demonstration of blood vessel counting. On the processed 

grayscale image (on the right hand side) all discernible vessels growing towards the scaffold in a 

spoke- wheel pattern are counted (Scale  bar 2 mm) 
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Another method of quantification was also used when evaluating the angiogenic response to a 

transparent hydrogel. In this case transparency of the hydrogel allowed observation of blood 

vessels underneath the biomaterial itself. In this semi- automated quantification method, the 

free online plug in for Image J software, Neuron J, was used (Meijering et al., Cytometry Part 

A 2004;58A:167–176; http://www. imagescience.org/meijering/software/neuronj/). The 

digital images were converted to grayscale (8- bit) and sharpened twice. Afterwards all 

discernible vessels in the image were traced using the Neuron J tracing tool. An advantage of 

this method is that it allowed calculation of other parameters in addition to number of blood 

vessels, such as total vessel length and the total number of blood vessels.  

The angiogenic responses have also been quantified in histologic sections of the CAM- 

biomaterial complex. Standard Haematoxylin &Eosin (H&E) sections allowed observation 

and counting of medium to large sized blood vessels on the CAM in cross sections (Figure 

3.14). The feasibility of demonstration of blood vessels by immunohistochemical or 

immunofluorescence staining has also been studied. The blood vessels on the CAM could 

effectively be stained by fluorescent labelled α-SMA (Figure 3.15). Although effective 

staining could be performed on the CAM, in the presence of the biomaterial, which is PLA in 

this context, the autofluorescence of the material prohibited effective use of this method to 

quantify vessels that were in between the fibres of the material.  

Figure 3.14. Quantification of angiogenic response by counting the blood vessels on Haematoxylin 

&Eosin (H&E) stained sections. The scaffold implanted on the surface of the CAM can be observed 

followşng the normal CAM tissues on the sides of the implanted scaffold. The blood vessels on the 

CAM are labelled with blue arrows. The scaffold on the left contains more blood vessels in the CAM 

tissue underneath the scaffold (therefore is more angiogenic) compared to the scaffold on the right. 

(Scale bars 100 µm) 
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Figure 3.15. Staining properties of the CAM with antibody to alpha smooth muscle actin (α-SMA). 

The normal CAM has a trilayer structure with blood vessels in the mesodermal layer.  Larger blood 

vessels (arrows) give the best results for staining with α-SMA.  (scale bar 200 µm). The mounting jelly 

appears like an artefact in all images. 
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To overcome this limitation, another method was developed. A rhodamine labelled lens 

culinaris agglutinin [LCA], a member of the lectin family, was injected into the circulation of 

the CAM before sacrifice. The LCA is known to attach to the endoluminal surface of the 

CAM vessels by an agglutination reaction. With this method selective labelling of all blood 

vessels regardless of their size and shape was achieved (Figure 3.16).  

 

 

 

 

 



Figure 3.16. Staining properties of the CAM with the lens culinaris agglutinin (LCA). Larger blood vessels (arrow head) appear more prominently 

stained with the LCA compared to smaller ones both in the CAM only samples and CAM+ PLA scaffold samples. In the samples with the scaffold, 

smaller blood vessels sectioned in different directions can be detected (arrows). (scale bars 1 mm for all images). 
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3.4.3. Evaluation of initial tissue response to biomaterials 

 

All implanted materials placed on the CAM surface were evaluated for their biocompatability 

and engraftment by daily observations. Additionally the tissue sections with H&E staining 

were assessed for the amount of inflammatory cell infiltration in and around the material.  

 

3.4.4. Evaluation of angiogenic potential of drugs in the CAM assay 

 

Before the drug releasing scaffolds were placed on the CAM, each drug was tested by 

applying them onto the CAM surface. This was achieved by labelling the area where the 

drugs would be applied using a 100 µm thick plastic ring that was cut from using a6.5 mm in 

diameter soft needle cover using cryosectioning. Solutions of drugs (Estradiol, VEGF and 

Sunitinib) with various concentrations were prepared in PBS. Between EDD 7 and EDD10 

drugs were applied onto the CAM delineated by the plastic ring. Two doses per day were 

given to each area with an application  volume of 30 µl each time (Figure 3.17-1).  

Angiogenic responses were evaluated by observation of macrovessels and microvessels.  
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Macrovessels 

Images of the area of drug application were taken at EDD 10 using a digital microscope. 

Using Image J software images were first converted to grayscale and then adaptive 

thresholding was performed. Finally, noise removal was performed by obtaining the binary 

images that went to analysis. From each image ‘the percentage area covered by blood vessels’ 

was calculated. A similar protocol was described by other authors previously [22] (Figure 

3.17-2).  

Microvessels 

The microvasculature was imaged by confocal microscopy on fixed tissues of the CAM. The 

CAM vasculature was labelled using a rhodamine conjugated LCA by injecting it into chick 

circulation at EDD 10. On the top planar view, the microvasculature was found by focusing 

on the area just above the larger blood vessels of the CAM (Figure 3.17-3). The 

microinjection technique is demonstrated in Figure 3.18. A Zeiss LSM 510 META confocal 

upright microscope with Zeiss LSM Image Browser software (version 4.2.0121) was used for 

image acquisition. EC-plan Neofluar 5X and 10X objective lenses were used. For 

visualization of rhodamine LCA following parameters were used: excitation 543nm and 

emission 615nm; optical images were taken at every 25 μm interval, confocal settings (frame 

size 512 x 512, scan direction (single), scan speed (4), data depth (8 bit), pinhole (1 Airy 

unit), laser power and detector gain were all kept constant for all samples.  These parameters 

were arranged initially with the help of Dr Ahtasham Raza and the same settings were used 

for all samples. 
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Figure 3.17. The process of application of drugs directly on the CAM, injection of the lens culinaris agglutinin (LCA) and imaging the 

vasculature on confocal microscopy.    
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Since there is no hierarchy in the microvasculature, mainly the degree of endothelial cell 

hypertrophy was assessed in all samples. This was calculated on processed images 

constructed using Image J software. Original images were converted to grayscale, ‘enhance 

contrast’ applied, band pass filter applied and images were ‘thresh holded’ to be most 

representative of original images. The total area covered by endothelial cells in a frame was 

calculated. The frames were taken from randomly selected areas of the CAM within and 

around the plastic ring.    



Figure 3.18. Demonstration of microinjection technique. A 30G hypodermic needle attached to 1 ml injector is used. A cotton swab is used to 

stabilize the CAM when injecting. A bifurcation in one of the vitelline veins is chosen for injection (arrow heads in 1 and 2). The needle first 

punctures the membrane with a 45-degree angle and then goes as horizontal as it can be to lie parallel to the membrane. Once inside the vein, a small 

flush demonstrates clearing of the vessel content for a few seconds (arrows in 3, 4 and 5) which confirms successful injection into the vitelline vein.  

After the injecting the needle is removed while pressing with the swab. 
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3.5. Chapter discussion 

 

Developing the ex ovo technique to culture the chick embryos in our laboratory was one of the 

main achievements of the current doctoral studies. The current work builds on previous work 

of Dr Giulia Gigliobianco who first setup the necessary procedures with the in ovo CAM 

assay. Although the ex ovo culture method was described previously, developing the 

necessary equipment and the standard operating procedures in house for this assay was the 

main challenge addressed within these doctoral studies. As a result, this assay is now being 

taken up and used by a wider community of researchers within the department. 

The ex ovo CAM assay can be used as a readily available bioassay to study the angiogenic 

potential of and initial tissue responses to biomaterials. The main advantages of the ex ovo 

(shell- less) modification is that a larger surface area of the CAM is available for all 

experimental interventions where up to 3-4 samples can effectively placed on a single embryo 

culture. Also the developing chick and the vascular structures are clearly visible to the 

researcher without effort. This could have particular importance for material testing as 

toxicity of some materials or their constituents can be detected.  

Recently the CAM assay proved to be a useful in initial in vivo assessment tool to test 

biomaterials.  Biomaterials comprise a wide range of natural and synthetic materials that are 

often combined with a range of bioactive molecules, proteins and/ or cells. The 

biocompatibility testing has to examine each of these constituents separately and in various 

combinations. This creates a demand for reproducible and technically simple bioassays that 

allow higher throughput screening of biomaterials prior to animal testing. The 3Rs principles 

inevitably limit the use of animals for high- throughput screening of biomaterials. Vigorous 

testing of biomaterials in in vivo assays during pre- clinical development is key to their 

subsequent success in clinical studies. Therefore, the CAM assay stands out as a technically 

simple bioassay where biomaterials can be assessed for their biocompatibility and angiogenic 

potential prior to animal testing.    
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The CAM assay is increasingly being used as a pre in vivo test to assess biomaterials [145]. 

The CAM has been effectively used as a short term host for grafted materials, organs and 

tissue samples where the angiogenic response and their safety and biocompatibility can be 

studied [142]. Also the CAM assay has recently been demonstrated to produce data that is 

comparable to mouse assays in testing bio-distribution and in vivo stability of 

radiopharmaceuticals [146].    

Other advantages of the ex ovo technique is that it allows direct visualization of sprouting and 

intussusceptive angiogenesis in vivo which can be of particular importance when studying the 

mechanisms of angiogenesis.   Other available in vivo models are expensive, do not allow 

high throughput screening and require expertize and sophisticated instruments (e.g. the dorsal 

skin fold assay).  Another unique feature of the CAM assay is that it allows visualization of 

the capillary plexus in a top planar view under a fluorescent microscope after a fluorescently 

tagged lectin (lens culinaris agglutinin [LCA]) is injected into the circulation of the chick 

embryo.  This capillary plexus is a very responsive in vivo system where the effect of an 

experimental intervention on the microcirculation can be studied.  

The main disadvantage of the ex ovo technique has commonly been cited as decreased 

survival rates associated with it. However, throughout these studies survival rates of above 

80% were consistently obtained. Nevertheless, there is a learning curve when conducting ex 

ovo cultures. This may explain the apparently inconsistent reports in the literature.  Within the 

MacNeil group my research experience has accumulated and been shared with several 

researchers.  
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Within the context of this work, mainly biomaterials without cellular components have been 

implanted onto the CAM. However, the CAM is known to accept xenogeneic grafts that 

contain cells and/ or proteins in the initial stages of embryonic life. The immune system of the 

chick embryo starts developing later in the embryonic life after embryonic development day 

11. First mononuclear phagocytes are detected in the chick embryo at EDD 9 [147] and 

functional macrophages which are responsible for the initiation of acute inflammatory 

response, were detectable in the circulation at EDD 14, the number of which suddenly 

increased at EDD 19 [148]. The lymphoid cells that constitute the cellular (T cells) and 

humoral immunity (B cells) were detected after EDD 11 and EDD 12, respectively [147].  

The chick embryo is considered immunocompetent only after EDD 18.   

Under our institutional regulations, the embryos can be cultured for only up to 14 days (other 

centres are known to have licenses for longer durations) this assay has been found useful to 

assess the initial in vivo tissue response to biomaterials. Therefore, other tissue engineered 

constructs, such as tissue engineered skin, can also be implanted and cultured on the CAM 

making use of the in vivo environment. However, it should be considered that this model on 

its own cannot be adequate in characterizing the biocompatibility and immunogenic potential 

of the biomaterials. Further animal studies would still be needed to achieve a complete 

understanding.  

Other in vivo assays have also been used to study angiogenesis. Among these the mouse 

dorsal skin chamber (DSC) assay allows direct visualization of blood vessels at all times 

during the experiment with use of intravital microscopy [149]. This model can also accept 

xenogeneic grafts if nude mice are used and it can provide information on the dynamics of 

blood vessel development. The main limitation of mouse DSC assay is that it requires 

significant expertise and sophisticated equipment that may not be available in most 

laboratories. Furthermore, for biomaterials testing implantation of the biomaterial will be 

difficult as the chamber lies vertically at the back of the mouse. Therefore, the ex ovo CAM 

assay stands out as an inexpensive, reproducible and technically less challenging bioassay to 

allow screening of materials. 
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4.1. Chapter Introduction 

 

During and after pregnancy there is extensive connective tissue remodelling in the pelvic 

floor. This remodelling occurs as a result of a complex interplay between the synthesis and 

degradation of main components of the extracellular matrix, mainly collagen and elastin 

[150].  Defects in the remodelling of the ECM during and after pregnancy have been 

suggested as one of the mechanisms leading to development of pelvic floor disorders 

including SUI and POP.  

The main component of ECM is collagen. Collagen accounts for 30% of all proteins in human 

body. Collagen fibrils allow connective tissues to withstand tensile forces. To date 27 

different collagen types have been identified each of which is coded by a specific gene [151].  

Most commonly encountered collagen types are collagen I and III constituting 80-90% of the 

collagen in human body. Collagen is synthesized as procollagen and after being secreted to 

the extracellular space procollagen acquires a triple helical structure and assembles into the 

highly ordered fibrillary collagen [152].   

Collagen turnover is mediated by a balance between collagen synthesis and degradation. 

Collagen degradation is mainly driven by a family of matrix metalloproteinases (MMP). The 

action of these enzymes is regulated by interefering with their synthesis, activation and 

activity inhibition at the tissue (tissue MMP inhibitors) at multiple levels. On the other hand 

collagen synthesis is followed by a series of  post- translational modification reactions which 

eventually lead to formation of a mature,  high tensile strength double helix of collagen that 

can provide structural support.  
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4.1.1. The role of defective ECM production in POP and SUI 

 

In women with SUI and POP, anatomical defects and/ or biochemical dysfunctions of the 

pelvic floor support structures have been suggested as the possible etiological factors. 

Changes in biochemical composition of ligaments, paravaginal tissues and vaginal wall have 

been reported with decreased levels of collagen I and III that can lead to reduced tensile 

strength of these structures [153], [154].  Also elevated levels of MMP and reduced activity of 

MMP inhibitors were found in paravaginal tissues [155]. Furthermore, impaired healing of 

tissues following pelvic floor surgery leading to recurrencd has been suggested to be due to 

the underlying primary defect in connective tissue metabolism. It has been reported that in 

women with altered collagen I and III metabolism risk of recurrence of POP after surgery was 

significantly higher [156]. Nevertheless it is not clear whether the observed changes in ECM 

composition and organization are the cause or the effect of the underlying POP [32]. 

Therefore defects in collagen synthesis and turnover appear to be a part of the disease process 

in women with SUI and/or POP but the exact pathophysiological pathways are not clear.  

4.1.2. The effect of Vitamin C on collagen metabolism 

Vitamin C is historically known to be the single most crucial vitamin to play a role in collagen 

biosynthesis. Deficiency of Vitamin C is  called ‘scurvy’ and it has been associated with 

sailors who go on lengthy voyages without access to fresh fruit. Scurvy  manifests itself as a 

severe connective tissue disorder characterized by  swollen bleeding gums, non- healing 

wounds, edematous legs with soft tissue heamorrhage and bruising together with other 

constitutional symptoms.   

 Vitamin C exerts its effects on collagen synthesis and post-translational modification at 

multiple levels: (1) acting as a co- factor for the enzyme prolyl hydroxylase which is 

responsible for crosslinking of collagen fibrils thus forming the triple helix structure [157], (2) 

stimulating collagen gene expression via malondialdehyde [158] and (3) activation of 

collagen gene transcription and stabilization of procollagen mRNA [159], [160].   Vitamin C 

is absorbed in the small intestine and its blood concentrations is regulated by renal excretion. 

Humans rely on a continuous supply of Vitamin C in their diet. 
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4.1.3. Effect of Vitamin C on angiogenesis 

 

Vitamin C can influence blood vessel formation through its effects on collagen III and IV 

which are the main types of collagens forming the blood vessel wall and basement membrane. 

Ascorbic acid is an essential co- factor in expression, maturation and deposition of collagen in 

ECM of cultured fibroblasts, vascular smooth muscle cells and endothelial cells [161], [162]. 

Some contradictory results have been reported on the effects of Vitamin C on angiogenesis. 

Some studies evaluating the effect of ascorbic acid on CAM demonstrated angiostatic effects 

for ascorbic acid [163] whereas others reported ascorbate-2- phosphate to be significantly  

proangiogenic [164]. This variability can be due to different experimental setups and dosages. 

4.1.4.Vitamin C and POP/ SUI 

Although a strong association between collagen metabolism and Vitamin C and changes in 

collagen structure and biochemical composition and pelvic floor disorders are known, the role 

of Vitamin C in pathophysiology of SUI and POP is not known.  A recent study however 

suggested that Vitamin C supplementation during pregnancy in rats resulted in increased type 

I and III collagen content in cardinal and uterosacral ligaments [165]. In a cross sectional 

study of 96 women with and without POP, smokers with POP were found to have lower 

levels of Vitamin C and higher levels of MMP-9 compared to non- smokers with POP 

suggesting smoking can effect development of POP via depleting vitamin C levels [166]. In a 

population based cross sectional study between 2002 and 2005, the Boston Area Community 

Health survey, adult women who had high- dose Vitamin C  intake were more likely to report 

storage type lower urinary symptoms. However normal intake of vitamin C from food and 

beverages decreased lower urinary tract symptoms [167].  Nevertheless the evidence is very 

limited to suggest Vitamin C deficiency as a cause of any pelvic floor disorder as well as a 

positive effect of Vitamin C supplementation in prevention of SUI and POP.  

Therefore Vitamin C is a potent stimulator of collagen production and can have positive 

effects on new blood vessel formation. In this section Vitamin C is incorporated in 

scaffolds with the aim of improving tissue integration of the materials by  increasing 

ECM production and by stimulating angiogenesis.   
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4.1.5. Incorporation of Vitamin C into Tissue Engineered scaffolds 

 

Ascorbic acid (AA) is the naturally occurring and metabolically active form of Vitamin C in 

humans.  It has been used since 1970s as a supplement in culture media to increase the 

collagen production of fibroblasts [168]. AA is easily oxidizable and is not stable in aerobic 

culture conditions [169] therefore a variety of AA derivatives such as Ascorbate-2-phosphate 

[A2P] and ascorbate sodium salt have been synthesized. A2P has been the most widely used 

synthetic form of AA with its good chemical stability (Figure 4.1) with the same activity  as 

AA [170], [171]. Nevertheless there are a few direct comparisons of AA analogs [172], [173] 

in terms of their effects on collagen production by fibroblasts. A continuous supplementation 

of either AA or A2P in culture media so as to mimic a sustained release state from a 

biomaterial, has not been studied. This can be important because if a continuous supply of AA 

can be achieved it would abolish the need for using a more stable derivative such as A2P.      

A2P was previously incorporated into PLGA scaffolds using the solvent- casting, particulate 

leaching technique achieving a sustained release [174]. Using the electrospinning spinning 

technique, substances with high hydrophilicity often fail to form stable solutions with the  

hydrophobic polymer solutions [169].  To overcome this the technique of ‘emulsion 

electrospinning’ was described. In this technique a surfactant is used to form a stable 

emulsion where hydrophilic substances are in the water phase and hydrophobic polymer 

solutions are in the oil phase.  Upon electrospinning, the hydrophillic phase constitutes the 

core of the electrospun fibres whereas the hydrophobic phase forms a shell around the 

hydrophilic core [175], [176]. Successful encapsulation of  vascular endothelial growth factor 

[177], Rhodamine B [178] and human nerve growth factor [179] with the emulsion 

electrospinning technique have been reported previously.     

The aims of this section were to construct emulsion electrospun PLA scaffolds that are able to 

release  vitamin C derivatives (AA and A2P) and assess the effects of these scaffolds on 

collagen production and angiogenesis.  
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Figure 4.1. The chemical formula of L- ascorbic acid (AA) and ascorbate-2 phosphate (A2P). AA 

can easily oxidize whereas A2P is more stable.  

 

 

 

4.2. Effect of Vitamin C on collagen production of human dermal fibroblasts 

 

The effects of Vitamin C on collagen production of human dermal fibroblasts (HDFs) were 

evaluated on proliferating cultures of HDFs and confluent cultures of HDFs. HDF cultures 

were supplemented by two forms of AA in these experiments:  AA and A2P.  Furthermore, to 

mimic a continuous release state of the drugs, as would be expected to occur with sustained 

release from the biomaterials, AA and A2P were supplemented in cell culture media freshly 

every day which was compared to routine supplementation in culture media.  The flowchart of 

this experimental design is shown in Figure 4.2. 
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Figure 4.2. Flowchart of the experimental design to assess collagen production of human dermal 

fibroblasts on tissue culture plastic when ascorbic acid (AA) and ascorbate- 2 phosphate (A2P) are 

supplemented daily to mimic a continuous release state. 
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4.2.1. Effect of Vitamin C on collagen production of ‘proliferating cultures of 

fibroblasts’ 

 

Human dermal fibroblasts (HDFs) were seeded in 12 well plates at a concentration of 50,000 

cells per well. Supplementation of AA and A2P in media started next day for ‘proliferating’ 

cultures. Cell culture media consisting of DMEM supplemented with 10% FCS and 1% 

penicillin/streptomycin was used to prepare the following concentrations of AA and A2P in 

media: 0, 10, 100, 300 and 600 µM. Media was prepared freshly and changed every day for 

14 days in the ‘media changed daily group’. For the ‘media changed every 3-4 days’ group’ 

the media was replaced every 3-4 days for 14 days. The results of collagen production in this 

section were presented as a percent (%) increase in collagen production compared to collagen 

production of fibroblasts grown in non-supplemented media.  

Daily supplementation of proliferating fibroblasts with 10, 100, 300 and 600 µM 

concentrations of either AA or A2P resulted in a dose dependent increase in collagen 

production up to a maximum of 100% by 14 days of culture.  Compared to supplementation 

every 3-4 days, which resulted in a maximum of 50% increase in total collagen production, 

daily supplementation of AA at a concentration of 600 µM and daily supplementation of A2P 

at concentrations of 100, 300 and 600 µM resulted in significantly more collagen production 

(Figure 4.3.).   
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Figure 4.3. Total collagen production of proliferating fibroblasts supplemented with either ascorbic 

acid (AA) or ascorbate- 2 phosphate (A2P) daily or routinely (every 3-4 days) after 14 days of 

culture (*p<0.05 and **p<0.005, compared to every 3-4 days’ group).   
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4.2.2.Effect of Vitamin C on collagen production of ‘confluent cultures of fibroblasts’ 

 

Human dermal fibroblasts (HDFs) were seeded in 12 well plates at a concentration of 50 000 

cells per well. Supplementation of AA and A2P in media started 3 days after seeding for 

‘confluent’ cultures. Cell culture media consisting of DMEM supplemented with 10% FCS 

and 1% penicillin/streptomycin was used to prepare the following concentrations of AA and 

A2P in media: 0, 10, 100, 300 and 600 µM. Media was prepared freshly and changed every 

day for 7 days in the ‘media changed daily group’. For the ‘media changed every 3-4 days’ 

group’ the media was replaced every 3-4 days for 7 days. The results of collagen production 

were presented as a percent (%) increase in collagen production compared to collagen 

production of fibroblasts grown in non-supplemented media.  

Daily supplementation of proliferating fibroblasts with 10, 100, 300 and 600 µM 

concentrations of either AA or A2P resulted in a dose dependent increase in collagen 

production up to a maximum of 60% at 7 days of culture was observed with significantly 

more collagen production at all concentrations in the daily supplemented groups (Figure 4.4.).     
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Figure 4.4. Total collagen production of confluent cultures of fibroblasts supplemented either with 

AA or A2P daily or once every 3-4 days for 7 days (*p<0.05 and **p<0.005, compared to every 3-

4 days group). 
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4.3. Production of Vitamin C releasing PLA scaffolds 

 

Scaffolds containing 3 different concentrations of AA and A2P were prepared: 0.0001, 0.001 

and 0.01 grams of either AA or A2P per gram of PLA (summarized in Table 4.1). AA and 

A2P were first dissolved in 500 µl of distilled water and with the aid of the surfactant an 

emulsion with the polymer solution was prepared for electrospinning.  Additionally, polymer 

solutions containing neither AA nor A2P but only 500 µl distilled water to make the emulsion 

was also prepared (Vehicle scaffolds) (Figure 2.3).  All emulsions were freshly prepared and 

electrospun immediately.  

Table 4.1. Summary of all scaffolds produced in this section. 

Scaffold Acronym Production 

method 

Ingredients 

PLA PLA Electrospinning PLA 

Emulsion electrospun 

PLA 

Vehicle 

scaffold 

Emulsion 

electrospinning 

PLA+ surfactant+ distilled 

water 

AA releasing emulsion 

electrospun PLA 

AA scaffold Emulsion 

electrospinning 

PLA+ surfactant+ distilled 

water + AA 

     0.0001 g AA/ g of PLA AA_0.0001   

     0.001 g AA/ g of PLA AA_0.001   

     0.01 g AA/ g of PLA AA_0.01   

A2P releasing emulsion 

electrospun PLA 

A2P scaffold Emulsion 

electrospinning 

PLA+ surfactant+ distilled 

water + A2P 

     0.0001 g A2P/ g of PLA A2P_0.0001   

     0.001 g A2P/ g of PLA A2P_0.001   

     0.01 g A2P/ g of PLA A2P_0.01   
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4.3.1. Demonstration of release of Vitamin C from PLA scaffolds 

 

All measurements of AA and A2P were performed using a UV- spectrophotometer (Thermo 

ScientificTM Evolution 220) at an absorbance wavelength of 252 nm. A previously constructed 

calibration curve (Figure 2.6) was used to determine the concentration of AA and A2P in a 

given solution.  

Release of AA and A2P from scaffolds were studied in distilled water. Three pieces of AA 

and A2P scaffolds (mean weights: 0.0199± 0.002 and 0.0176± 0.002, respectively) were 

placed in 4 mL media and were kept in a dry incubator at 37°C.  A vehicle scaffold was taken 

as a control. At 2, 4, 6, 8, 10 hours and 1, 2, 3, 7, 14, 21 and 28 days a sample was removed 

from the media, the absorbance measured and the concentration was determined with use of 

the calibration curve. All the media were then discarded and replaced with fresh media. 

Experiments were repeated three times.  

Release characteristics 

The sustained release of both AA and A2P over 28 days (Figure 4.5). Percentage release of 

the drug at each point was calculated based on the actual drug content. For AA releasing PLA 

scaffolds a burst release of 77% of AA in the first 2 hours was followed by the release of 90% 

of the actual drug content in the first 10 hours. Afterwards AA was not measurable after 72 

hours. For A2P releasing PLA scaffolds a burst release of 34% was followed by the release of 

60% of the actual drug content in 14 days which continued gradually until 28 days.   

Therefore, AA had a significant burst release compared to the more sustained release of A2P 

from electrospun PLA scaffolds. The released AA from the scaffolds were depleted after 72 

hours whereas A2P continued to be released over 28 days.  
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Figure 4.5.  Cumulative release of AA and A2P over 28 days. 

 

 

 

Encapsulation efficiency  

The indicated concentrations of AA or A2P in scaffolds are the amount of vitamin C put into 

the polymer solution that went into electrospinning. This is called the ‘theoretical drug 

content’. During the electrospinning process the amount of polymer and the vitamin that go 

into the electrospun fibrous mat can be disproportional. Therefore, the ‘actual drug content’ 

that is encapsulated within the micro/ nanofibers of the electrospun PLA scaffolds can be 

different to the ‘theoretical drug content’.  This can be studied by calculating the 

‘encapsulation efficiency’.  
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The electrospun scaffolds were dissolved back and vitamin content was extracted. An 

accurately weighed 20 mg piece of AA and A2P releasing electrospun PLA scaffold was 

dissolved in 10 mL of DCM. On top of the polymer- vitamin solution a 5 mL volume of 

distilled water was added and the suspension was vigorously vortexed intermittently for 30 

min the extract all the hydrophilic vitamin C into the water phase. The suspension was then 

left to stand still for 60 minutes to facilitate separation of the water and oil phases. The water 

phase containing vitamin C was than pipetted out and absorbances were read using UV 

spectrophotometer. The encapsulation efficiencies for AA and A2P were calculated to be 

46.8% (± 6.45) and 44.06% (± 7.14).  

The encapsulation efficiency (%) was calculated using the following formula:   

(Actual drug content/ Theoretical drug content) x 100.  

 

4.4. Characterization of Vitamin C releasing PLA scaffolds 

4.4.1. Ultrastructure 

 

The effect of incorporation of AA and A2P on the ultrastructure of electrospun PLA scaffolds 

was studied using SEM.  The SEM images of the AA and A2P releasing scaffolds are shown 

in Figure 4.6.  The mean fibre diameter and the mean pore size for AA, A2P and Vehicle 

electrospun PLA scaffolds were 0.99 (±0.60); 1.04 (±0.56) and 1.11 (±0.63) and 5.66 (±3.18); 

5.76 (±2.76) and 5.47 (±3.52), respectively.  For PLA only scaffolds the mean fibre diameter 

and the mean pore size was 1.06 (±0.72) µm and 5.65 (±4.61) µm, respectively.  Therefore, 

neither the incorporation of the surfactant (Span-80) nor the incorporation of AA or A2P in 

electrospun PLA scaffolds had an effect on scaffold ultrastructure.   



 

141 

 

 

Figure 4.6. The ultrastructure of ascorbic acid (AA) and ascorbate- 2 phosphate (A2P) releasing 

electrospun PLA scaffolds (scale bar represents 20 µm for all images).  

 

 

4.4.2. Wettability 

 

The water uptake of AA, A2P and vehicle scaffolds was significantly higher than that of pure 

electrospun PLA scaffolds (Figure 4.7).    The water uptake (% increase in weight) of 

scaffolds containing AA were significantly higher in the first 7 days compared to vehicle 

scaffolds (355.84 [±140.36] vs 274.84 [±108.21] at day 1, p=0.005; 407.69 [±62.38] vs 

299.76 [±92.2] at day 2, p=0.001; 397.74 [±53.3] vs 328.76 [±80.31] at day 3, p=0.001 and 

363.64 [±45.32] vs 304.31 [±65.59] at day 7, p=0.001) whereas those of A2P containing 

scaffolds were significantly lower at all-time points compared to vehicle scaffolds (161, 1 

[±116.36] vs 317.55 [±62.25] at day 14, p=0.001).  
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The wettability of AA and A2P scaffolds containing different concentrations of the drug was 

also evaluated. For AA scaffolds there was no difference in the wettability between AA 

releasing scaffolds of 0.0001 g, 0.001 g and 0.01 g of AA per gram of PLA concentrations 

(mean percentage increase in weight was 350.52 [±192.54], 325.41 [±191.72] and 321.06 

[±186.65], respectively [p=0.49]). A2P releasing scaffolds with 0.001 g per gram of PLA 

were slightly more hydrophilic (mean percentage increase in weight being 72.84 [±64.24], 

174.02 [±153.54] and 79.46 [±84.71] for 0.0001 g, 0.001 g and 0.01 g of A2P per gram of 

PLA concentrations, respectively [p=0.03]).  
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Figure 4.7. The wettability of emulsion electrospun PLA scaffolds. (A) Representative images of 

scaffolds at day 1 of water uptake experiment showing partial wetting of all AA, A2P and vehicle 

scaffolds when PLA only scaffolds were wetting at all (B) Percent increase in weight of the emulsion 

electrospun scaffolds upon incubation in PBS over 21 days (*p<0,005 compared to vehicle scaffolds) 

(C) Correlation of percent increase in weight (PIW) and  Ultimate Tensile Strength 
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4.4.3.Mechanical properties 

 

This was studied both in dry and wet scaffolds. Also the effect of water uptake on mechanical 

properties was studied. Since the water uptake of our scaffolds occurred gradually the 

mechanical properties in the wet state were evaluated at days 3, 7, 14 and 21 after the 

scaffolds were placed in PBS in incubator.   

In their dry state, all emulsion electrospun scaffolds (AA, A2P and Vehicle scaffolds) had 

higher UTS, strain and YM values compared to pure PLA scaffolds (Figure 4.8). On the other 

hand, there was no difference in the mechanical properties of the emulsion electrospun PLA 

scaffolds.  

In their wet state, the UTS and strain values of AA and Vehicle scaffolds further increased, 

whereas the Young’ s modulus were variable. The mechanical properties of A2P scaffolds did 

not change significantly when wet compared to when dry.  The UTS of AA scaffolds were 

significantly higher than Vehicle scaffolds only at day7 (Table 4.2).  There was a statistically 

significant correlation between the percent increase in weight and the UTS of wet scaffolds at 

day 3, 7, 14 and 21 (Pearson r= 0, 64 [p<0,001], 0, 78 [p<0,001], 0, 67 [p<0,001] and 0, 85 

[p<0,001], respectively), the strongest correlation was observed at day 21. 
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Figure 4.8. Mechanical properties in dry and wet states for all scaffolds. (The values in the y axis are mean of days 3, 7, 14 and 21). 

 



Table 4.2.  Mechanical properties of AA and A2P releasing scaffolds at days 3, 7, 14 and 21 in in vitro culture conditions. Values are 

mean (standard deviation). (+p<0.05 and ++p<0.005 compared to PLA; *p<0.05 and **p<0.005 compared to Vehicle scaffolds)  

 Dry Wet (day 3) Wet (day 7) Wet (day 14) Wet (day 21) 

 UTS  Strain  YM  UTS  Strain  YM  UTS  Strain  YM  UTS  Strain  YM  UTS  Strain  YM  

AA 

scaffolds 

1.39++.** 0.43++ 16.46++.** 2.37++ 0.66++ 20.07++ 2.93++.** 0.77++ 24.06++ 2.36++ 0.73++ 13.57++ 2.26++ 0.59++ 21.78++.* 

  (0.30) (0.06) (5.99) (0.45) (0.15) (7.81) (0.55) (0.08) (8.06) (0.44) (0.12) (4.70) (0.39) (0.17) (5.60) 

A2P 

scaffolds 

1.54++ 0.41++ 23.08++ 1.49++.** 0.48 14.76++ 1.28++.** 0.44** 9.62+.* 1.52++.** 0.37** 15.49++ 1.27++.** 0.31+.** 16.56++.* 

  (0.41) (0.15) (12.07) (0.38) (0.48) (10.81) (0.48) (0.09) (7.03) (0.37) (0.18) (10.29) (0.46) (0.15) (12.75) 

Vehicle 

scaffolds 

1.76++ 0.45++ 25.68++ 2.36++ 0.58++ 20.97++ 2.10++ 0.71+ 

  

16.93++ 2.23++ 0.66+ 14.18++ 2.45++ 0.47++ 27.08++ 

  (0.25) (0.07) (9.03) (0.34) (0.17) (6.42) (0.57) (0.12) (6.51) (0.66) (0.17) (5.54) (0.35) (0.07) (4.56) 

PLA 0.66 0.22 9.17 0.71 0.40 3.56 0.34 0.45 1.80 0.54 0.36 2.75 0.30 0.40 1.70 

  (0.36) (0.05) (4.20) (0.23) (0.11) (2.12) (0.10) (0.16) (0.73) (0.09) (0.15) (1.86) (0.04) (0.05) (0.79) 
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4.5. Effect of Vitamin C on collagen production of fibroblasts seeded on scaffolds 

 

The SEM images showed continuous coverage of the scaffold surface by fibroblasts and 

extracellular matrix which was more intense in AA and A2P containing scaffolds (Figure 4.9). 

Although lower concentrations of AA and higher concentrations of A2P seemed to work 

better, no single concentration of either AA or A2P proved to be significantly different than 

other concentrations.   

 

Figure 4.9. SEM images showing the ECM produced by the human dermal fibroblasts seeded on 

the scaffolds and corresponding DAPI staining of the cell nuclei of fibroblasts grown on scaffolds 

for 14 days (scale bar represents 50 µM for all images). 
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Scaffolds were cut into 8x8 mm squares using sterile forceps and scissors. A total of 500.000 

HDFs were seeded and cultured on the scaffolds for 14 days. The metabolic activity of HDFs 

grown on scaffolds was assessed on days 3, 7 and 14 (Figure 4.10A).     

Total collagen production of HDFs grown on scaffolds was assessed by Sirius red staining. 

HDFs produced significantly more collagen at all concentration of AA and A2P scaffolds 

compared to Vehicle scaffolds (Figure 4.10B).  The mean corrected absorbance values (Sirius 

red stain/gram of PLA) were 5.44 (±0.50); 5.26 (±0.46); 4.44 (±0.49) and 4.41 (±0.41); 5.32 

(±0.55); 5.50 (±0.51) for AA and A2P scaffolds with concentrations of 0.0001; 0.001; 0.01 

grams of either AA or A2P per gram of PLA. respectively. Corresponding values for Vehicle 

and PLA scaffolds were 3.86 (±0.43) and 3.39 (±0.43), respectively. 
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Figure 4.10.  Metabolic activity of fibroblasts grown on scaffolds over 14 days (A) and total collagen production by Sirius red staining (B).  
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4.6. Angiogenic properties of Vitamin C releasing PLA scaffolds 

4.6.1. Day of evaluation of angiogenesis 

 

After the electrospun scaffolds are placed on the CAM at EDD 7. The angiogenic response 

could be evaluated between EDD 10 and 14. To determine the best time point to evaluate the 

angiogenic response to vitamin C releasing PLA scaffolds initial experiments were conducted 

by taking serial images daily starting from EDD 10 (Figure 4.11). By EDD 11 the scaffolds 

started to contract with the underlying CAM making it more difficult to assess a possible anti- 

angiogenic effect. Therefore the angiogenic responses to vitamin C releasing scaffolds were 

all assessed on EDD 10.  



 

151 

 

 

Figure 4.11. Daily follow up of the scaffolds implanted on CAM starting from EDD 10. Scaffold 

start contracting starting from EDD 11 obscuring a negative angiogenic response to scaffolds if 

evaluated after EDD 10. (scale bar represents 200 µm for all images).  
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4.6.2. Angiogenic Response to vitamin C releasing PLA scaffolds 

 

A hydrocortisone releasing electrospun PLA scaffold was used as a negative control in these 

experiments. For both AA and A2P scaffolds containing two different concentrations of the 

drug were used: 0.01 gram (low concentration) and 0.1 gram (high concentration)  of AA or 

A2P per gram of PLA. Compared to Vehicle scaffolds. hydrocortisone releasing PLA 

scaffolds were angiostatic with a vasculogenic index of 11.4 (±2.6) (p=0.001) compared to 

21.7 (±3.4) for the vehicle scaffolds. AA releasing scaffolds were proangiogenic at low doses 

(AA_0.01 g) with a vasculogenic index of 32.3 (±6.0) but angiostatic at higher doses (AA_0.1 

g) with a vasculogenic index of 13.4 (±3.6) compared to Vehicle scaffolds. A2P releasing 

PLA scaffolds did not different from Vehicle scaffolds either at high (A2P_0.1) or low 

(A2P_0.01) doses of the drug (Figure 4. 12).   

 



Figure 4. 12. Total data for the comparison of low (0.01 g per gram pf PLA) and high (0.1 g per gram of PLA) doses of AA and A2P as released from 

PLA scaffolds. Negative control is a hydrocortisone releasing PLA scaffold. The hydrocortisone releasing PLA scaffolds (1) decreased the number of 

blood vessels around the scaffold compared to controls (2). Ascorbic acid 0,01 releasing PLA scaffolds (3) stimulated angiogenesis whereas the others 

(4, 5 and 6) were no different to controls  (scale bars represent 200 µm for all images). 
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4.6.3. Initial tissue response to vitamin C releasing PLA scaffolds 

 

The initial tissue response was only evaluated for AA releasing scaffolds as they were most 

proangiogenic. Both Vehicle scaffolds and AA releasing scaffolds induced a mild to moderate 

inflammatory response on the CAM adjacent to the scaffold with infiltration of the scaffolds 

by the host cells. Their appeared to be more blood vessels growing around the scaffold 

releasing AA in cross sections of the histologic images (Figure 4.13).   

 

Figure 4.13. The initial tissue response to AA releasing PLA scaffolds.The interface where the PLA 

scaffolds integrate into CAM are shown with dotted line. Underneath the dotted line blood vessels 

growing underneath the scaffolds can be observed in cross section (black arrows). More blood 

vessels are observed in the CAM tissue adjacent to AA releasing scaffolds. Error bars represent 200 

µm. 
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4.7. Chapter discussion 

 

In this section PLA scaffolds with desired mechanical properties that could release AA and 

A2P were synthesized and assessed for for their ability to stimulate new collagen production 

and new blood vessel formation. The ultimate aim was to improve the tissue integration of 

pelvic floor repair materials once they are implanted into the host.    

Firstly, these experiments showed that both derivatives of vitamin C. AA or A2P. could 

effectively be incorporated into biodegradable PLA scaffolds using a modification of the 

commonly used electrospinning setup. The first milestone in these experiments was to 

develop the emulsion electrospinning technique which had not been performed within the 

MacNeil  group before. This technique allowed formation of stable emulsions of hydrophilic 

and hydrophobic solutions that could then be electrospun with use of a surfactant. Previous 

evidence demonstrated that upon electrospinning the surfactant delineates a core in the 

electrospun fibre that contains the hydrophilic phase whereas the hydrophobic polymer 

solution remains outside of the core forming an outer shell in the fibre.  

The emulsion systems need to have defined concentrations and viscosity in order to be  

electrospun successfully  [180]. The first requirement is the formation of a stable emulsion. 

For this purpose a surfactant (Span 80) was used and the emulsion was created by slowly 

pipetting  droplets of water phase into the oil phase while mixing with use of rotation 

magnets. The resultant emulsion was stable without any phase seperation for 6 hours. During 

electrospinning of the emulsion. the oil phase containing the solvent rapidly evaporates 

leaving the high viscosity polymer to the outside of the fibre while the aqueous phase 

migrates to the centre of the jet.  The electrostatic properties of the electrospinning solution 

are known to be affected by the inclusion of surfactant [181] however systematic studies do 

not exist on which combination of the surfactant- polymer combination will produce the 

desired fibre characteristics. Therefore in these experiments the non- ionic surfactant Span 80 

was used at a minimum concentrations to acheive the minimum amount of an aqeuous 

solution containing vitamin C in the emulsion. This did not affect fibre diameter or pore sizes 

of the electrospun scaffolds.      
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Another technique of electrospinning, co- axial electrospinning, could have been used to 

contain bioactive substances in a core- shell morphology within the electrospun fibres [182]. 

The co- axial electrospinning has the advantage of not requiring a surfactant to separate water 

and oil phases. Instead phases are carried to the tip of the needle in separate channels which 

only mix together in the Taylor’ s cone. However it requires a special setup using a 

specifically designed co- axial electrospinning needle. This technique was not used as we 

lacked this equipment. 

The core- shell fibre structure formed by the emulsion electrospinning has also been 

suggested as a means to achieve a sustained release of bioactive factors encapsulated in the 

core of the fibres.  For AA and A2P releasing PLA fibres, a successful encapsulation of the 

drugs was demonstrated that is consistent with the previous literature reporting encapsulation 

efficiencies of between 17- 90% [183]–[186]. The difference in the encapsulation and release 

pattern of AA and A2P can be explained by the difference in their chemical structure. 

With regards to release of AA and A2P from electrospun PLA fibres. a burst release of 30- 

70% of both drugs occurred within the first 10 hours. Previously. the same core- shell 

morphologies of hydrophilic drugs have been reported to produce burst release rates between 

20- 73% with different drug- polymer combinations [179], [185], [187]. A limitation of the 

current release studies relates to use of distilled water as a medium in which to study drug 

release. Distilled water is not an ideal medium when conducting an in vitro release experiment 

as it is not similar to physiologic fluids. However, distilled water was the only option when 

studying AA release as PBS rapidly oxidized AA with the metal ions it contained within it 

making it impossible to detect the released amount of AA. AA could also be oxidized by the 

oxygen in air even when distilled water is used however this did not happen immediately 

(after 6 hours in our experiments) allowing us to carry out the experiment at 2 hourly 

intervals. Nevertheless, ideal release experiment would be expected to be conducted in an 

environment devoid of oxygen which was not possible in the given circumstances.   
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AA is well documented for its effect in stimulating collagen production in in vitro cultures of 

fibroblasts. Among the various derivatives of it.  A2P appeared to be the most commonly used 

derivative due to its increased stability in culture conditions. However, achieving a sustained 

release of AA could abolish the need for A2P. Therefore, the comparative effectiveness of 

AA and A2P on collagen production of cultured fibroblasts in 2D was first evaluated in these 

experiments. No such comparative data was available in the literature.  The results 

demonstrated that when a continuous release state was mimicked in culture conditions both 

AA and A2P increased collagen production of fibroblasts to a similar extent in a dose 

dependent manner. The toxic concentration of AA was 600 µM whereas there was no toxicity 

for  A2P up to the highest concentration studied in these experiments.  

The next step was to test the effect of the AA and A2P releasing PLA scaffolds on cell 

viability and collagen production of fibroblasts seeded on them. This was done using 

scaffolds containing three different concentrations of each drug.  Overall, a significant 

increase in collagen production of fibroblasts up to about 60% was observed with both AA 

and A2P  scaffolds compared to controls. It was important to note that the scaffolds 

containing the highest concentration of AA was least effective, although better than the 

control scaffolds. This could be due to higher local concentration of the drug that may have 

occured in micropores of the scaffold resulting in a similar toxicity to that observed in 2D 

experiments.  
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With regards to scaffold ultrastructure. incorporation of neither the surfactant nor either of the 

bioactive factors, AA and A2P, changed the fibre diamater and pore size of the electrospun 

fibres. However, all emulsion electrospun PLA scaffolds became more hydrophilic compared 

to control PLA electrospun scaffolds.  Among the emulsion electrospun scaffolds AA 

releasing PLA scaffolds were the most hydrophilic followed by Vehicle scaffolds and A2P 

releasing scaffolds. Furthermore, AA and Vehicle scaffolds became stronger with higher UTS 

values and more elastic as they became wet whereas there was no difference between dry and 

wet states for the A2P scaffolds. Also there was a positive correlation between water uptake 

and the ultimate tensile strength when all emulsion electrospun were taken into account. 

Therefore both the addition of surfactant and a combination of AA and surfactant appear to 

have a plasticizing role [35].  Other surfactants such as polyethylene glycol and glucose 

monoesters. are reported to have acted as plasticisers [36]. 

The mechanical properties of the candidate materials are of particular importance when 

producing materials for use in female pelvic floor. Although the design requirements in terms 

of mechanical properties are not clearly defined for the pelvic floor. the range of normal 

female pelvic floor tissues is reported as  a mean maximum tensile strength of  0.79±0.05 

Mpa and Young’ s modulus of  6.65±1.48 Mpa for pre-menopausal tissues  [28]. Therefore, 

the AA and A2P releasing scaffolds are slightly above this target.   

The introduction of AA into electrospun scaffolds not only stimulated more collagen 

production but also exerted a proangiogenic effect. Particularly AA scaffolds secreting lower 

concentrations of AA appeared to be signigicantly better than control scaffolds at stimulating 

new blood vessel formation. Surprisingly a higher concentration of AA was angiostatic 

porbably due to local acidic effects of AA. On the other hand scaffolds releasing A2P did not 

cause any change in blood vessel formation at  any concentration. This raises the question of 

the chick embryos ability to convert A2P to AA which is performed in humans by the enzyme 

acid phosphatase on the cell membrane.    
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Taken altogether, among the scaffolds constructed in this section electrospun PLA scaffolds 

releasing lower concentrations of AA appear to be the best candidate to take into further 

analysis with their ability to stimulate new collagen formation and angiogenesis. Initial tissue 

responses studied on the CAM for 5 days of impantation shows a moderate cell infiltration of 

the scaffolds which is promising however these scaffolds needs to be further evaluated in 

relevant animal models with regards to their efficacy and safety.   
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5.1. Chapter Introduction 

 

Another potential drug that could be incorporated into the electrospun PLA scaffolds to 

improve the tissue integration is Estradiol. Estradiol is the major estrogen secreted by the 

premenopausal ovary to act not only on the female reproductive organs but also on many 

other non- reproductive organs such as the skeletal, cardiovascular, nervous and immune 

systems.   

The three most abundant forms of estrogens in females are estrone (E1), estradiol (E2) and 

estriol (E3). Estrogens are steroid hormones synthesized from cholesterol most of which 

comes from the plasma low density lipoprotein derived from dietary cholesterol. Human 

adrenal gland can also synthesize cholesterol from acetate. Steroid biosynthesis is mainly 

derived by two enzymes: cytochrome P450s or hydroxysteroid dehydrogenases [188]. These 

enzymes are expressed highly in ovaries of premenopausal women, placenta in pregnant 

women and adipose tissue in both postmenopausal women and men.  Estradiol is synthesized 

by the aromatization of testosterone. It can be converted to estrone with the enzyme 17β 

hydroxysteroid dehydrogenase while estrone can also be synthesized from androstenedione 

(Figure 5.1).  In premenopausal women, estradiol is mainly synthesized in the ovaries to act 

on target tissues all over the body.  After the menopause small amounts of estradiol are 

produced mainly at extragonadal sites including adipose tissue, bone, vascular endothelial and 

smooth muscle cells to act locally [189].  

Estrogens exert their effects via several well defined pathways. One of the ways estrogens 

function is via binding of the hormone to the intracellular estrogen receptors (ER- α and β) 

which then modulate transcription of target genes.  ER-α is mainly expressed in the uterus, 

mammary gland, ovary (thecal cells), bone and adipose tissue whereas ER- β is present in 

ovary (granulosa cells), immune system, colon and bladder. Both receptor subtypes can be 

found in the cardiovascular and central nervous system [190]. Therefore, the physiological 

functions of estrogens can also be controlled by modifying the receptor expression. Sex 

steroid receptors have been investigated for their role in the development of POP (reviewed in 

[191]) however there is limited data to reach to a conclusion.     
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Figure 5.1. The chemical formula and synthesis of Estradiol and its two main derivatives.   
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5.1.1. The role of Estradiol in the pathophysiology of pelvic floor disorders 

 

Estrogens play vital roles in normal structure and functions of female genital and lower 

urinary tract organs [192], [193]. Estrogen receptors are present in the tissues of female 

urethra, bladder neck, vagina and all connective tissues of the pelvic floor including smooth 

muscles and ligaments. Although estrogen deficiency is recognized as one of the main factors 

leading to the occurrence of SUI and POP the exact mechanisms are not completely known. 

One possible mechanism of estrogens influencing  the female urogenital tract is through 

modifying collagen metabolism.  The total collagen content of the vaginal mucosa was 

significantly reduced in premenopausal women with POP compared to controls.   

Furthermore, their MMP activity was significantly higher [193].  Estrogen levels can also 

affect the pathophysiology of POP by differential expression of estrogen- related genes.  

Recent microarray studies identified expression changes of transcriptional response and signal 

transduction genes associated with estrogens in the uterosacral ligaments of women with POP 

[194].   

Another mechanism by which estrogens relate to development of SUI and POP could be via 

changing the blood flow to pelvic organs. Estrogens are known to be involved in many other 

physiologic and pathologic processes characterized by neovascularization such as lupus, 

Takayasu’s arteritis and menstrual bleeding [195]. The relationship between angiogenesis and 

development of pelvic floor disorders is much less studied. However a measurable decrease in  

vaginal blood flow has been demonstrated in postmenopausal women which improved 

significantly with exogenous estrogen replacement [124].  Additionally, recent work has 

suggested that Estradiol can be involved in pathophysiologic processes leading to 

development of many pelvic floor disorders via its effects on vaginal microcirculation [196], 

[197].   
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Estrogen replacement was shown to increase the collagen content of skin by 48% in 

postmenopausal women compared to controls [198]. The role of estrogen replacement therapy 

in the regulation of collagen metabolism in female pelvic tissues is less clear. It is well known 

that topical estrogen treatment increases the vaginal epithelial thickness and promotes 

revascularization [199]. The change in collagen content in the subepithelial tissues in response 

to estrogen supplementation has been studied in animal models. In ovariectomized rhesus 

macaque vaginal estrogen treatment increased collagen gene transcription in the vaginal 

connective tissues indicating an increase in total collagen production [200]. In ovariectomized 

rats low doses of vaginal estrogen replacement resulted in increased vaginal weight, increased 

collagen I/ collagen III ratio and increased distensibility of the vaginal wall. Low dose vaginal 

treatment was superior to high dose vaginal treatment regimen and systemic supplementation 

[201].  

Currently there is evidence to support the effectiveness of vaginal estrogens in the treatment 

of vaginal atrophy [202] however there is no clinical evidence to support the use of vaginal 

estrogens for prevention or management of POP [203]. With regards to SUI, exogenous 

replacement of estrogen does not necessarily lead to an improvement of SUI symptoms. It 

was shown that estrogen replacement reduced total collagen concentration, decreased collagen 

cross- linking and increased collagen turnover. Also estrogen supplementation increased 

collagen to smooth muscle ratio in the lower urinary tract that may lead to reduced bladder 

compliance and storage symptoms. Therefore, systemic estrogen treatment although it has 

historically been used, can have negative impact when treating SUI.  Nevertheless there is 

some evidence to support the use of vaginal estrogens for treatment of SUI [204]. Clinical 

guidelines recommend use of vaginal estrogens to treat SUI only when it is associated with 

vaginal atrophy [38].    
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5.1.2. The effect of Estradiol on angiogenesis 

 

In adult organisms angiogenesis is normally absent unless there is tissue injury and repair or 

tumours. An exception to this is in the female reproductive tract where physiologic 

neoangiogenesis takes place monthly in menstruating women. This suggests that sex steroids 

influence neovascularization [195]. Additionally estradiol prevents endothelial dysfunction 

and promotes vascular endothelial repair and angiogenesis [205], [206]. Both estrogen 

receptors alpha and beta are expressed in vascular endothelium. Estradiol has direct actions on 

endothelial cells including accelerating endothelial cell migration, proliferation and 

organization of endothelial cells in vitro [205], [207]. Estradiol can directly stimulate vascular 

endothelial cells through the estrogen receptors [208].  Vascular endothelial growth factor 

(VEGF) is a potent stimulator of angiogenesis. Estrogen receptor elements are thought to be 

responsible for direct activation of VEGF gene transcription [209].  Also in vivo experiments 

showed bovine corpus luteum to increase neovascularization in the CAM assay [210].  

In this section, it was hypothesized that estradiol could effectively be introduced to 

electrospun PLA scaffolds and that it could stimulate neovascularisation as released from the 

scaffolds. Incorporating drugs into tissue engineered constructs is a well- established strategy 

to improve the intrinsic angiogenic potential of a tissue engineered materials [126].   Estradiol 

has been shown to be a potent stimulator of angiogenesis as released from electrospun 

materials [72], [138]. Clinically its pro- angiogenic properties are used in disease states such 

as cardiac ischaemia [211] and wound healing to improve tissue vascularization. Additionally 

topical Estrogen treatment is also believed to improve post- operative wound healing and it is  

a common practice among surgeons to use topical vaginal  estrogens before and after vaginal 

surgery especially in the presence of vaginal atrophy [212].  
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5.2. The effective concentrations of Estradiol to stimulate collagen production 

 

This was studied on monolayer cultures of human dermal fibroblasts (HDFs). HDFs were 

isolated from consented donors as described in Chapter 2. A total of 100. 000 cells were 

seeded on each well of a 12 well plate. After overnight incubation the culture media was 

replaced with same media supplemented with different concentrations of Estradiol. First a 

dose finding experiment was conducted using the following concentrations: 10 nM, 100 nM, 1 

µM, 10 µM and 50 µM.   Collagen production was assessed with Sirius red staining and 

expressed as percentage increase in collagen production compared to non-supplemented 

controls.   Concentrations of Estradiol above 100 nM decreased collagen production and 

concentrations of 50 µM reduced collagen production. Additionally as the concentration 

increased there appeared to be a reduction in cell metabolic activity (Figure 5.2).  

 

Figure 5.2. Dose response study for the effects of Estradiol on cell metabolic activity (A) and  

collagen production (B) of human dermal fibroblasts. 
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Therefore, a second set of experiments were conducted using the following concentrations: 2 

nM, 5 nM, 10 nM, 25 nM and 50 nM. Within this concentration range cell metabolic activity 

increased for all concentrations from day 7 to day 14. The most effective concentration for 

Estradiol to stimulate collagen production appeared to be 2 nM and 5 nM (Figure 5.3).   

 

 

Figure 5.3. The effect of different concentrations of Estradiol on cell metabolic activity (A) and 

collagen production (B) of human dermal fibroblasts. 
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5.3. The effective concentrations of Estradiol to stimulate endothelial cell proliferation 

and sprouting 

 

The effect of different concentrations of Estradiol on endothelial cell proliferation and 

sprouting was assessed using the chick aortic arch assay. Chicken embryos were sacrificed 

between EDD 14, aortic arches removed from aortic branches were cut into 1 mm rings under 

a stereomicroscope.  Aortic rings were embedded in 50 µL of Matrigel® (Basement 

Membrane Matrix, Corning®) in a 24 well plate.   Cell culture media, DMEM (supplemented 

with 2.5% FCS, containing 0, 1, 10, 30, 50 and 100 nM of 17-β Estradiol were added into 

wells.  Vascular endothelial growth factor (VEGF) at a concentration of 100 nM was used a 

positive control in this assay.  The endothelial sprouts were observed under an inverted 

microscope on the 5th day of culture. The longest sprout was measured on the digital images 

using Image J software (U. S. National Institutes of Health, Bethesda, Maryland, USA). The 

mean sprout length was calculated for each sample (Figure 5.4). 

The aortic arch assay was used to effectively demonstrate a significant difference in the mean 

sprout length between the control and VEGF supplemented groups, mean sprout length 211 

(±24) µM and 315 (±21) µM, respectively (p=0,003).  Estradiol stimulated endothelial cell 

sprouting at concentrations of 1, 10 and 30 nM, mean sprout length 358 (±34), 362 (±42) and 

357 (±26) µM, respectively (all p values >0,05 compared to control). Estradiol concentrations 

of 50 and 100 nM did not increase endothelial cell sprouting with mean sprout lengths of 215 

(±34) and 131 (±19) µM, respectively.   The number of samples included in this analysis for 

each group were as follows: control (n=19), Estradiol 1 nM (n=8), Estradiol 10 nM (16), 

Estradiol 30 nM (n=11), Estradiol 50 nM (n=14), Estradiol 100 nM (n=9) and VEGF 100 nM 

(n=20).   
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Figure 5.4. The effect of different concentrations of Estradiol on endothelial cell sprouting. 

Concentrations of Estradiol between 1- 30 nM appear to stimulate longer endothelial cell sprouting 

compared to controls whereas a concentration of 50 nM seems to result in shorter endothelial cell 

sprouts. The VEGF is used as a positive control (scale bars 200 µM).  
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5.4. The effect of Estradiol on angiogenesis in the CAM assay 

 

Macrovessels 

Another way of evaluating the effect of Estradiol on new blood vessel formation was applying 

the drug solution to the CAM. For this purpose, a 2 mm thick plastic ring was cut from a soft 

30G needle cover was placed on the CAM. A 50 nM solution of Estradiol in PBS was 

prepared together with positive and negative controls of VEGF (100 nM) and Sunitinib (50 

µg/ ml). The solutions were prepared freshly for each experiment and an injection volume of 

30 µl was pipetted slowly onto the CAM marked by the plastic ring. The drugs were given 

twice every day between EDD 8 to 11. Each group contained 6 eggs for each experiment. 

EDD 11 the CAM area around the plastic ring was imaged. 

The macrovascular response to VEGF and Sunitinib could effectively be observed on the 

CAM images (Figure 5.5). Especially with Sunitinib the decrease in the number and intensity 

of the blood vessels is very dramatic. However, the response to Estradiol never appeared as 

dramatic as it was in the in vitro assays. This could be due to the difficulty in achieving a 

positive effect with twice daily applications of the drug.  
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Figure 5.5. The comparative effectiveness of Estradiol on macrovessels in the CAM assay (Scale bar 

represents 500 µM for all images).  

 

 

Microvessels 

After imaging the macrovessels, a rhodamine labelled lens culinaris agglutinin (LCA) (Vector 

laboratories) (50 µL of a 5µg/ mL of) was injected into one of the major vitelline veins of the 

chick embryo using a 30G hypodermic needle attached to a 1 mL syringe. A maximum of 100 

µl of LCA solution was injected into each embryo. Embryos were then sacrificed and the area 

of the CAM involving the plastic rings were cut by wedge resection and fixed immediately in 

3.7% paraformaldehyde (Sigma Aldrich, USA) in PBS. These samples were used for confocal 

imaging to visualize the microvasculature.  When imaging the microvasculature Estradiol 

effects appeared more quantifiable. Estradiol resulted in a response similar to that of VEGF 

with endothelial cell hypertrophy with smaller lacunar spaces (Figure 5.6).  The percentage 

areas covered by endothelial cells were 52.6±14.3, 87.0±3.7, 87.1±3.5 and 11.7±5.7% 

respectively in control, Estradiol, VEGF and Sunitinib groups (all p values < 0.005 compared 

to controls for all three). 
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Figure 5.6. The comparative effectiveness of Estradiol on the microvasculature on the CAM. The 

normal honey- comb like appearance of the CAM microvasculature can be observed in PBS treated 

samples. With application of Estradiol and VEGF, endothelial cell hypertrophy with smaller lacunar 

spaces are observed. Sunitinib resulted in loss of endothelial cell coverage with larger lacunar spaces. 

Error bars represent 50 µm. 

 

 

In summary, Estradiol at concentrations between 1- 50 nM stimulated endothelial cell 

proliferation and sprouting in vitro. In the CAM assay, although the microvasculature could 

easily quantify the Estradiol effects, the effect of Estradiol on macrovasculature was not 

clearly observable. Therefore, a continuous release system for Estradiol was investigated next.     
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5.5. Achieving a sustained release of Estradiol from a hydrogel 

 

To achieve a sustained release of Estradiol a hydrogel was used as a carrier. This hydrogel 

was constructed as described previously by a visiting researcher (Dr. Gözde Eke) and 

supplied in a ready to use powder form. Briefly, methacrylated gelatin (GelMA) and 

methacrylated hyaluronic acid (HAMA) were synthesized as described previously [140].  

GelMA (15%, w/v) and HAMA (1%, w/v) were mixed with cell culture media containing 

photoinitiator (Irgacure 2959, 0.3% w/v). Estradiol was added into this solution at a 

concentration of (10 µg/1 mL). After complete dissolution at 37°C, 100 µL of hydrogel 

solution was placed on to a petri dish and immediately photo- crosslinked by exposing to UV 

light at a wavelength of 365 nm for 40 sec (Omnicure s1000) (Figure 5.7). The release of 

Estradiol from the hydrogels were confirmed for three days. 
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Figure 5.7. Graphical demonstration of construction of a UV- crosslinkable, transparent hydrogel 

system to achieve a sustained release of Estradiol. (A) The hydrogel is constructed from methacrylated 

gelatin and methacrylated hyaluronic acid which are first dissolved in media, then the photoinitiator and 

Estradiol are added. The final solution was crosslinked by exposing to UV light for 40 seconds. (B) The 

final hydrogel can easily be handled by a fine forceps. (C) A summary of the physical properties of the 

hydrogel has been described previously. 

 

 

The Estradiol releasing and control hydrogels were placed on CAM on EDD 7 and incubated 

for 8 days. On EDD 14, the hydrogels and surrounding CAM area were imaged by digital 

microscope. Digital images were analysed and the vasculogenic index calculated. Estradiol 

releasing hydrogels resulted in a significant increase in the number of newly formed blood 

vessels growing towards the hydrogel in a spoke wheel pattern compared to control 

hydrogels. The vasculogenic index was 35.0±4.6 and 21.3±3.5, respectively for control and 

Estradiol releasing hydrogels (p: 0.005) (Figure 5.8).  
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Figure 5.8. Angiogenic response to the Estradiol releasing hydrogel in the chick chorioallantoic 

membrane (CAM) assay. Micrographs of the control and Estradiol releasing hydrogels taken on day 14 

of embryonic development demonstrate a significant increase in the mean vessels count with Estradiol 

releasing hydrogels compared to controls (n= 6 for each group) (Scale bar 500 µm). 

 

 

Therefore, a sustained release of Estradiol from a hydrogel resulted in an increase in the 

number of blood vessels growing around the hydrogel. This hydrogel had two main 

advantages in this experimental set up. Firstly, it did not trigger an inflammatory response that 

could have interfered with the angiogenetic process. Secondly, because it was transparent all 

the blood vessels underneath the hydrogel were clearly visible during the experiment.   
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5.6. Construction and characterization of Estradiol releasing PLA scaffolds 

 

A total of 50 mg of Estradiol was dissolved in 10 mL of DCM into which 1 gram of PLA 

added to produce a homogenous solution of PLA and Estradiol. This solution was then 

electrospun. Micro/ nanoporous scaffolds of Estradiol incorporated PLA with a mean fibre 

diameter of 0.71±0.28 µm and a pore size of 4.25±2.04 µm were produced. Control PLA 

scaffolds without any Estradiol had a fibre diameter and pore size of 0.65±0.30 µm and 

4.26±2.29 µm, respectively (Figure 5.9).    
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Figure 5.9. The ultrastructure of Estradiol releasing PLA scaffolds as shown by scanning electron 

microscopy. There was no difference in the fibre diameter and pore sizes of both scaffolds. Scale bar 

represent 10 µm.  

 

 

Mechanical testing of scaffolds was previously performed by Dr. Chris Hillary demonstrating 

no significant change in mechanical properties of PLA scaffolds with incorporation of 

Estradiol, apart from a slight increase in UTS and Young’s modulus. Therefore, the 

mechanical testing was not repeated here.    
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Release of estradiol from scaffolds over 5 months 

Scaffolds were cut and standardised by mass to equate to 1% of the entire electrospun mat.  

All scaffolds were washed and incubated in 1ml/well of Phosphate buffered saline (PBS) in a 

12-well tissue culture plate.  The relative fluorescence of PBS was measured intermittently 

(Kontron SFM 25 spectrofluorimeter) at λex277nm/λem310nm, with fresh PBS replaced 

following each sampling over a 5- month period.  New standard curves were prepared at each 

sampling time-point.   

 

Figure 5.10. The release of Estradiol from PLA scaffolds over 133 days in a concentration 

dependent manner. (This experiment was conducted by Dr. Chris Hillary) 
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The concentration of estradiol released from each of the 3 scaffold groups (10mg (1% wt/vol), 

50mg (5% wt/vol) and 100mg (10% wt/vol)) was measured fluorimetrically against solutions 

of known concentration (n=6 per group).  The cumulative release of estradiol increased for 

each time-point, until no further estradiol was released (at 133 days) as demonstrated in 

Figure 5.10. The total released estradiol from the scaffolds was equivalent to 2.5%, 1.4% and 

2.45% of the estradiol present in the polymer solution for the 10mg, 50mg and 100mg 

estradiol scaffolds respectively prior to the electrospinning process, while 40%, 50% and 40% 

of estradiol was released over the initial 14 days for each of the 3 scaffold groups 

respectively; the rate of release was proportional to the amount of estradiol present in the 

scaffold and reduced over time.   

 

5.7. Assessment of angiogenic potential of Estradiol releasing electrospun PLA scaffolds 

 

This was assessed by both co- culturing the scaffolds with chick aortic rings and by 

implanting the scaffolds on the CAM.   

Co- culture of scaffolds with chick aortic rings 

Three 1x1 cm piece of control and Estradiol releasing PLA scaffolds were cut and placed in 

transparent tissue culture inserts (Greiner Bio-One GmbH). Chick aortic rings were embedded 

in Matrigel  in 48 well plates and co- cultured with scaffolds for 5 days. Estradiol releasing 

scaffolds stimulated more endothelial cell sprouting compared to controls, with a sprout 

length/radius of 1.6 (±0.51) and 1.0 (±0.44), respectively (P=0.01) (Figure 5.11).   
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Figure 5.11. The effect of estradiol on endothelial cell proliferation and sprouting as released from 

PLA scaffolds. Representative images are shown in (A) showing increased endothelial cell sprouting 

at 5 days of culture compared to controls. (B) Fluorescent microscopy images of immunological 

staining.  Lectin IB4 - endothelial cells stained green, nuclear components stained blue (DAPI).  C) 

Sprout length/radius results taken from 11A, * P=0.01.  (Scale bars represent 50 µm). 
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Implantation of scaffolds on the CAM 

PLA scaffolds with or without Estradiol were cut into 0.65 cm circles with use of an Epilog 

Laser Cutter (Clevedon, UK), placed in 1 mL PBS for pre-wetting and kept under UV light 

for 30 min for sterilization. At EDD 7 pieces of circular scaffolds were placed on the CAM 

and incubated for 8 days. At EDD 14 pictures of scaffolds and surrounding CAM were taken 

with a digital camera. A 20% emulsion was injected just underneath the CAM when 

necessary. For better visualization of blood vessels on histologic sectioning, the LCA was 

injected into one of the vitelline veins before sacrificing the embryo cultures. The embryos 

were sacrificed by cutting their vitelline arteries, scaffolds were resected from the CAM 

surface together with a rim of membrane and samples were fixed.   

On the digital images ‘vasculogenic index’ was calculated.  Estradiol releasing scaffolds (50 

mg/ gram of PLA) resulted in a significant increase in the number of blood vessels growing 

towards them in a spoke- wheel pattern compared to control PLA scaffolds. The mean vessel 

counts were 25.0 (±5.29) and 10.67 (±2.64), respectively (P<0.001) (Figure 5.12).    

Initial tissue response to Estradiol releasing PLA scaffolds 

Retrieved scaffold- CAM complexes were fixed in paraformaldehyde and were placed into 

moulds for cryo-sectioning filled with OCT solution (Leica, Germany). They were left to 

freeze at 80°C and 10 µm sections were cut with the cryostat Leica CM1860UV (Leica 

Germany). Slides were then stained with haematoxylin & eosin solutions (H&E), according to 

the standard protocol for frozen slides. Slides were then covered with DPX (Sigma-Aldrich, 

USA) and a glass coverslip to be imaged with a light microscope (Motic, China) (Figure 

5.13). 

Both estradiol releasing PLA and control PLA scaffolds became infiltrated with host tissues 

(CAM interstitial cells) together with a moderate inflammatory reaction.  The CAM tissue 

adjacent to the estradiol scaffolds demonstrated more blood vessels compared with PLA only 

scaffolds.  Moreover, a greater proportion of blood vessels were observed in between the 

fibres of the estradiol releasing PLA scaffolds as compared to controls (Figure 5.13).   
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Figure 5.12. Angiogenic potential of estradiol releasing PLA scaffolds compared to control PLA 

scaffolds. A normal distribution of blood vessels was observed with the control PLA scaffolds whereas 

with the estradiol releasing scaffolds resulted in a significant increase in the number of blood vessels 

growing towards the scaffold (A). The mean vessel count of estradiol releasing meshes was double 

that of the PLA meshes (B) and the embryo survival rate was the same between the two groups (C).   

(Scale bars represent 3mm). 
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Figure 5.13. Histologic evaluation of tissue- mesh interface. A mild inflammatory reaction together 

with a normal distribution of blood vessels on the CAM adjacent to the PLA mesh (upper raw) can be 

observed compared to a significantly increased number of large blood vessels in response to Estradiol 

releasing PLA mesh (lower raw) at day 14, Haematoxylen &Eosin (H&E) staining (left side). Also on 

higher magnification several small blood vessels could be observed in between the PLA fibers which 

were more abundant in the presence of Estradiol (middle). On the right endothelial cells lining all 

sizes of blood vessels appear stained Rhodamine- conjugated Lens culinaris agglutinin and cell nuclei 

are stained with DAPI.  Scale bars represent 100 µm. 
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5.8. Chapter discussion 

 

In this set of experiments, estradiol was first confirmed as a potent stimulator of collagen 

production and endothelial cell proliferation and sprouting. Next, an estradiol releasing 

electrospun PLA scaffold with desired ultrastructural and mechanical properties was 

constructed. The most striking finding of this section was the ability of estradiol releasing 

scaffolds to stimulate new blood vessel formation around itself in the CAM assay. Finally, the 

initial in vivo tissue response was assessed in the CAM assay.   

Despite the association of pelvic floor disorders with estrogen deficiency and increasing age, 

the exact role of estradiol in the pathophysiology of pelvic floor disorders is not clear. Here, 

estradiol was not used for the purposes of estrogen replacement but to improve the tissue 

integration of the biomaterial by stimulating new ECM production and new blood vessels 

formation. Estradiol is a known stimulator of collagen production. Previously, effective 

concentrations of estradiol to stimulate collagen synthesis were reported to range between 1 

nM- 10 µM [213], [214]. Additionally, inhibitory concentration of estradiol to suppress 

collagen production were found to be above 10 µM [214]. These are all in line with our 

findings demonstrating a significant decrease in collagen production by human dermal 

fibroblasts with supplementation of more than 10 µM of estradiol.  

For evaluation of collagen production by HDFs, donated skin from anonymous donors were 

used. The source of the donated skin to the laboratory was mostly the Plastic surgery unit and 

the vast majority of the donated skin and fat were obtained from breast reduction and 

abdominoplasty surgeries. Therefore, most patients would be expected to be females. Yet the 

gender of the patient is not known to the researchers in this set up. This could potentially be 

important when assessing the effect of estrogens on cellular functions. Males are known to 

express estrogen receptors in their reproductive as well as non- reproductive organs such as 

liver, muscle, kidney [215]. However, the affinity of these receptors could differ in male and 

females which could have increased the variability in the presented results.       
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Estradiol is also known to be an effective stimulator of endothelial cell proliferation and tube 

formation in vitro and in vivo [216], [217]. The effective concentrations of estradiol in 

endothelial cultures were between 1- 10 nM [216], [218]. Angiogenesis is a process where a 

complex interaction between endothelial and non- endothelial cells as well as many enzymes, 

growth factors and adhesion molecules are crucial and for this reason the widely used, 

traditional monolayer cultures of endothelial cells are limited. In this section, the angiogenic 

properties of estradiol were studied in an organ culture assay, the chick aortic ring assay, and 

an in vivo CAM assay both of which allowed the study of the process of angiogenesis with all 

the elements playing a role in it. In this section it has been demonstrated that the effective 

concentration for estradiol to stimulate endothelial cell proliferation, sprouting and tube 

formation was 1- 30 nM. Interestingly, estradiol had obvious negative effects on endothelial 

proliferation and sprouting at concentrations of 100 nM. The chick aortic arch assay was 

found to be a very responsive assay and could effectively be used to screen various 

concentrations of drugs. A limitation of this assay is that the cultured organ is an embryonic 

tissue with a high proliferative capacity. Even in the absence of a pro- angiogenic factor 

endothelial cell sprouting can be observed. Additionally, a common limitation to all of the in 

vitro experiments with estradiol might be the interference with the estrogens that are naturally 

present in the fetal calf serum (FCS). There is approximately 0.05 pM of estradiol in the FCS 

[219]. This value may vary between batches and that could potentially interfere with the 

results.  

In addition to confirming the findings reported in the literature previously, a direct 

comparison of Estradiol with the well- known pro and anti- angiogenic drugs was also 

included in the current studies. Using the CAM assay, the pro- angiogenic (VEGF) and anti- 

angiogenic (Sunitinib) were compared with estradiol. In this experimental set up, a 

biomaterial was not used to allow observation of the drug effect only. Although the positive 

and negative controls worked stunningly well, particularly the negative control, estradiol did 

not work as was expected. This could have been due to its administration via a the twice- 

daily dosage. Therefore, we postulated that a sustained release system for estradiol might 

prove more effective.  
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Among the available drug carriers, a photocrosslinkable transparent hydrogel appeared to be a 

reasonable carrier for this experiment. The estradiol releasing hydrogel was therefore used to 

achieve a continuous release of estradiol. This proved that a sustained release state of the drug 

appeared to produce more obvious results. 

Another dramatic effect of estradiol was on microvasculature. The absence of a hierarchical 

organisation of the vasculature allowed more accurate assessments and easier quantification 

of angiogenesis on the microvasculature. The CAM assay offers an experimental system 

where the microvasculature can be studied. Although the CAM microvasculature would be 

expected to have differences to the microcirculation of mammals, it could be used in initial 

screening. Methods to assess vaginal microcirculation have recently been developed with 

unknown efficacy and uptake by the scientific and clinical community [220]. The role of 

vaginal microvasculature in the pathophysiology of pelvic floor disorders such chronic pelvic 

pain and pelvic organ prolapse is increasingly being studied [196], [221].   Poor vaginal 

microcirculation can be the final common pathway where all factors that are related to 

development of pelvic floor disorders such as aging, birth trauma, smoking, poor 

estrogenization and previous surgeries meet to result in the clinical presentation of these 

conditions. The current findings cannot suggest a relationship between estradiol and vaginal 

microcirculation but only shows a potential effect of the drug on microcirculation.  

After determination of the effective concentrations of estradiol to stimulate collagen 

production and angiogenesis the blend electrospinning technique was used to construct 

estradiol releasing electrospun PLA scaffolds. Estradiol is highly lipid soluable and could 

effectively be dissolved in polymer solution before electrospinning. The drug would be 

blended in the polymer fibres and be expected to be released as the polymer degrades. The 

release of estradiol from electrospun PLA scaffolds continued for nearly 5 months. Estradiol 

releasing biomaterials have previously been described for a variety of clinical applications.  

An estradiol releasing polyurethane- dextran nanofibrous mat was introduced as a wound 

dressing for post- menopausal women. In this study a higher concentration of estradiol (2 

wt%) was incorporated into the scaffolds and in an in vivo wound model estradiol releasing 

mats were shown to accelerate cutaneous wound healing [222].  However, in this study the 

angiogenic effects of the scaffolds were not studied. In another study, estradiol was 

demonstrated to stimulate endothelial cells to produce VEGF when cultured on collagen 

based scaffolds in the presence of estradiol [25]. Here we demonstrate for the first time that 
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estradiol as released from an electrospun scaffold could dramatically stimulate new blood 

vessel formation in and around the material.  Although we have designed this material for use 

in pelvic floor repair, we believe it can have wider applications in all areas of tissue 

engineering as a pro-angiogenic scaffold.    

The most striking property of this Estradiol releasing hydrogel is its ability to stimulate and 

attract new blood vessel formation.  Adequate blood supply to the wound is critical to ensure 

good wound healing. This could be even more important in women when the blood supply to 

the vaginal tissues are already compromised after menopause or as a result of other medical 

conditions such as diabetes, previous pelvic surgeries and radiotherapy.  A severe mesh 

related complication is mesh erosion (extrusion) which is described as ‘vaginal mesh being 

visualized through the separated vaginal epithelium’. This most commonly occurs in the 

midline where the surgical incision is made as if there was a wound dehiscence [1] implying a 

poor wound healing process. With use of the current mesh material, previous studies have 

demonstrated the presence of a maladaptive remodelling response [223] and triggered an 

unfavourable macrophage response [106] however the effect of surgical mesh on vaginal 

wound healing has not been investigated before. Nevertheless, when mesh erosion occurs 

clinically, a common practice among surgeons is to apply topical estrogen creams for the 

initial treatment of smaller mesh erosions. Taken all together, the estradiol releasing PLA 

scaffolds appear to be good candidates to stimulate angiogenesis and wound healing at the site 

of implantation. This needs to be studied further in relevant animal models.   
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The current results will need to be taken into account considering that so far only the 

chorioallantoic membrane of chick embryos were used to study angiogenesis. The CAM assay 

is a well- established method to evaluate angiogenesis in vivo and it allows direct 

visualization of the newly forming vessels in a cheap, quick way that can be readily available 

to most laboratories.  Furthermore, this method can be used as a rapid, simple and low cost 

screening tool to test the initial tissue response to biomaterials, as a pre in vivo method. The 

presented results show that CAM tissues can penetrate the scaffold and blood vessels can 

grow in between the fibres of the electrospun PLA scaffolds which was observed to be more 

prominent in case of estradiol releasing PLA. One limitation of relying on this model to 

characterize the immune response to the implanted material is related to the fact that the 

immune system of the chick embryo develops after day 11 of embryonic life, thus these 

results need to be confirmed on animal models. Therefore, these promising results now need 

to be confirmed in relevant animal models.  
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Evaluation of the effects of mesenchymal 

stem cells on tissue integration and 

angiogenic potential of electrospun scaffolds 
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6.1. Chapter Introduction 

 

Another way of improving the tissue integration of biomaterials designed for use in pelvic 

floor could be to incorporate cell sources that can stimulate tissue regeneration and 

angiogenesis into the biomaterials.  Mesenchymal stem cells (MSCs) have long been  

recognised to play a vital role in normal tissue regeneration/repair.  

MSCs, were first isolated from bone marrow. This was followed by isolation of MSCs from 

almost all adult tissues including adipose tissue, skeletal muscle and central nervous system. 

MSCs are characterized by their ability to self- renew and to differentiate into other 

phenotypes (multipotency) [224].  Although a standard definition for an MSC has been 

established and widely used by the scientific community, there is a lot of discussion around 

the limitations of such a definition. The main limitation about the current definition of an 

MSC is about the multi differentiation capacity of MSCs which currently is only proven for 

bone marrow derived MSCs in vivo [225].  In other words, although MSCs has been shown to 

differentiate into other lineages in vitro, the expectation of replacement of damaged tissues by 

these cells in vivo has not yet been met.  Nevertheless, a therapeutic effect of MSCs has 

consistently been demonstrated in in vivo studies that may not necessarily relate to their 

ability to differentiate into other lineages to replace damaged tissue.  

MSCs achieve their therapeutic effects by producing a wide range of bioactive molecules.  

This is known as paracrine action of MSCs and up to now paracrine actions of MSCs involve 

stimulation of angiogenesis, modulation of immune and inflammatory responses, inhibition of 

apoptosis and trophic effects such as stimulation of mitosis, proliferation and differentiation 

of intrinsic stem/ progenitor cells [226]. Most paracrine actions of MSCs are exerted as part of 

a ‘homing’ process. These cells are known to follow the biochemical cues to migrate to sites 

of tissue damage caused by ischemia, inflammation, trauma or tumour invasion when 

delivered systemically. Just like the well- defined leukocyte adhesion cascade, MSC 

trafficking involves migration within the blood stream (chemotaxis),  cell attachment and 

rolling in vessel lumen and finally transmigration of MSCs across the endothelium and 

invasion into the tissue stroma [227].  
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Chemotaxis is migration of MSCs to the sites of tissue injury following the chemical signals 

pooled at the sites of injury. This process is facilitated by the chemokine receptors classified 

as G- protein coupled receptors for CXC, CC, C and CX3C chemokines [228]. MSCs are 

demonstrated to express CCR1- 10, CXCR1- 2, CXCR4- 6 and CX3CR1 receptors with a 

high variability depending on the tissue of isolation, passage number of cells analysed and 

different isolation/ cultivation protocols [229]. A well- studied chemokine- receptor 

interaction both in vivo and in vitro is CXCL12 (or stromal cell derived factor [SDF]-1)- 

CXCR4 [230], [231]. It was shown in vitro that MSCs express increase their expression of 

CXCR4 upon stimulation by cocktails containing IGF- 1 [232] and TNF- α [233], [234]. After 

attachment of MSCs to the vascular endothelium migration occurs following several 

coordinated steps involving rolling along the endothelium by selectins and their ligands, firm 

adhesion after activation of integrins by chemokines, diapedesis across the endothelial tight 

junctions and basement membrane and finally invasion through extracellular matrix.  

6.1.1. Paracrine effects of mesenchymal stem cells 

Most effects of MSCs are attributed their rich secretome, known as paracrine action, and  

involves modulation of immune and inflammatory responses, inhibition of apoptosis and 

trophic effects such as stimulation of mitosis, proliferation and differentiation of intrinsic 

stem/ progenitor cells and stimulation of angiogenesis [226].   
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Immunomodulation 

MSCs can adopt pro-inflammatory or anti- inflammatory phenotypes within their 

microenvironments. MSCs acquire an immune-suppressive phenotype in the presence of high 

levels of TNF- alpha and IFN- gamma levels in the microenvironment. On the other hand, low 

levels of these cytokines induce a pro-inflammatory phenotype [235]. The cell surface 

receptors on MSCs, the Toll like receptors (TLR), are thought to contribute to differentiation 

into either of these phenotypes via stimulation of either TLR- 3 and TLR- 4 receptors to 

derive an anti- inflammatory (MSC 2) or pro- inflammatory (MSC 1) phenotype, respectively 

[236]. In analogy to macrophage polarization, this process of MSCs is called the MSC 

polarization to which interactions with other cells of the innate immune system such as 

monocytes are also reported to contribute. Conclusively, MSCs play a regulatory role in 

several phases of immune response through diverse mechanisms of actions and on various cell 

types.  

Angiogenesis 

Angiogenesis involves a complex interaction between endothelial and non- endothelial cells 

as well as many enzymes, chemokines, growth factors, matrix metalloproteinase and adhesion 

molecules.  A defective angiogenesis is implicated in many disease states such as ischemic 

heart disease, peripheral vascular disease and all defective wound healing processes. MSCs 

have demonstrated to secrete a wide variety of pro- angiogenic factors such as vascular 

endothelial growth factor, fibroblast growth factor 2, interleukin- 6 that are shown to act in 

each step of the angiogenesis (endothelial cell proliferation, migration and tube formation 

[237].  The secretion of pro- angiogenic factors by MSCs has been shown to be increased 

significantly by exposing the cultured MSCs to hypoxia (hypoxic pre conditioning) [238] 

resulting in better regenerative capability in vivo [239]. 
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Tissue growth and regeneration 

Another important property of MSCs is to secrete growth factors and other chemokines to 

induce cell proliferation and tissue regeneration in many organ systems including peripheral 

nerves. Some of the important growth factors that have been shown to be included in the 

secretome of the MSCs are NGF (nerve growth factor), BDNF (brain-derived neurotrophic 

factor) and GDNF (glial cell line-derived neurotrophic factor) [240], [241].   MSCs also 

modify the microenvironment in a pro- proliferative way, by secreting anti- apoptotic proteins 

and by direct cell- to- cell communications.  On MSC co- culture experiments, MSCs 

improved survival of ischaemic cardiac cells via direct cell- cell connections and intercellular 

nanotube formation [242]. The secretome of MSCs also contain anti- apoptotic factors [243], 

[244] as MSC- conditioned medium without any cells have shown to decrease Caspase-3 

activity in the myocardium and improved functional outcomes in pig models [245].  

Therefore, MSCs can provide beneficial effects on tissue regeneration and integration of the 

tissue engineered products by secreting factors that promote tissue regeneration and new 

blood vessel formation.    In this section, the effect of stem cells on new blood vessel 

formation was first investigated. Than the added effect of combining a drug releasing scaffold 

with stem cell implantation is investigated.   

 

6.2. Effect of adipose derived stem cells on angiogenesis 

 

In these experiment a hydrogel was used as a stem cell carrier to be able demonstrate a 

measurable paracrine effect of MSCs both in aortic ring assay and the CAM assay a high 

number of cells would need to be concentrated in a small surface area which required a three 

dimentional structure. For example, when testing the effects of stem cells on endothelial cell 

sprouting in the chick aortic ring assay a 24 well plate was used which was necessary to 

ensure minimal dilution of the growth factors that naturally existed in the piece of the cultured 

organ. The culture insert that could go with a 24 well plate to achieve a co- culture system 

could only accommodate   100.000 cells at confluency which did not allow demonstration of a 

measurable difference in endothelial cell sprouting using this set up.  
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The feasibility of implantation of cells directly on the CAM was also investigated in the 

preliminary experiments. Similar to the experimental set up used to test the effect of estradiol 

on CAM a plastic ring was placed on the CAM at EDD 7 into which a suspension of 100k 

cells were seeded. Human dermal fibroblasts were first used as cellular controls and 

melanoma (C8161) cells were planned to constitute positive controls for ADSCs. When the 

cells were directly seeded on a circumscribed area on the CAM, the maximum measurable 

angiogenic response was not considered to be ideal. This could have been due to invasion of 

the CAM stroma by the tumour cells and failure of these cells to get concentrated on a single 

spot or the number of cells would not have been enough to allow a visible change in 

angiogenesis. Therefore, a hydrogel system was used as a carrier of more cells.  The 

preliminary experiments demonstrated that up to 1000k cells could be encapsulated into the 

hydrogels resulting in more dramatic increase in angiogenesis (Figure 6.1). However, the 

blood vessels in tumour induced angiogenesis appeared tortuous and disordered. Therefore, 

although the the hydrogel system worked well to concentrate enough number of cells on a 

singke area on CAM, the tumour cells were abandoned as a positive control as they induced a 

pathological neovascularization.  
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Figure 6.1. Preliminary experiments to establish control groups for testing angiogenic potential of 

adipose derived stem cells (ADSCs). Here human dermal fibroblasts (HDFs) were used as 

cellular controls whereas melanoma (C8161) cell line was included as a possible positive control. 

Both cell types were first implanted directly on CAM (upper raw) which did not result in an 

obvious change in vascularization at the site of implantation. After HDfs and C8161 cells were 

encapsulated in a hydrogel (lower raw) tumour cells resulted in an increase in vascularization 

however this time the blood vessels were tortuous as would be expected with tumour cells.    
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Construction of the hydrogel cell carrier 

A bicomponent hydrogel was constructed using methacrylated gelatin and methacrylated  

hyaluronic acid by UV- crosslinking. This hydrogel was designed and synthesized in 

BIOMATEN Center of Excellence in Biomaterials and Tissue Engineering, Middle East 

Technical University, Ankara, Turkey by Dr. Gozde Eke and Prof Vasif Hasirci. Previously 

synthesized and characterized powders of lyophilized gelatin and hyaluronic acid were 

received in Kroto Research Institute which were than weighed, dissolved and crosslinked in 

house. The main characteristics of the hydrogel has been published previously [140] and 

summarized in Figure 6.2.  
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Figure 6.2. Graphical demonstration of synthesis, assembly and basic in vivo evaluation of the 

hydrogel used to encapsulate adipose derived stem cells (ADSC) in these experiments.  Synthesis 

of components of the hydrogel by methacrylate groups (upper raw). Assembly of hydrogel can be 

easily performed by crosslinking a solution of methacrylated gelatin (GelMA) and methacrylated 

hyaluronic acid (HA-MA) using UV irradiation (middle raw). In vivo testing of biocompatability 

of the hydrogel by demonstrating growth and DNA synthesis over 21 days in the hydrogel (lower 

raw). More detailed information in reference [140].  

 



Briefly, gelatin and hyaluronic acid were methacrylated by dropwise addition of methacrylic 

anhydride with degree of methacrylations of  63% and 25%, respectively, as detected with 

NMR analysis. Methacrylated polymers were dialyzed against distilled water and than 

lyophilized. The lyophilized polymers were weighed and dissolved in media at a ratio of 15:1 

(w:w) together with a Photoinitiator (Irgacure 2959, 0.3% w/v). The solution was than placed 

into molds and  exposed to 365 nm UV (Omnicure s1000) for 40 seconds resulting in a solid 

mass. The final hydrogel had a highly porous structure with an average pore size of 120±76 

µm and 79% porosity. Once in media, the hydrogels further absorbed water to reach to 200% 

of their original weight equilibrating at 48 hours.  The proliferation of adipose derived stem 

cells in the hydrogels were assessed by quantification of DNA with Picogreen staining. 

ADSCs in the hydrogels proliferated at a rate similar to that in their growth on tissue culture 

plastic increasing throughout the 21 days of incubation as quantified by the measurement of 

increase in the amount of DNA. ADSCs appeared mostly encapsulated in the hydrogel in the 

first 3 days. On Day 14 of in vitro culture, ADSCs appeared more elongated and spreading.   

In summary, this hydrogel was used as a cell carrier to test the effects of ADSCs on 

angiogenesis and was not considered as a candidate material for use in pelvic floor 

repair.  

Chick aortic ring assay 

The effect of three different concentrations of ADSCs encapsulated in the hydrogel (250k, 

500k and 1000k) was assessed in the chick aortic ring assay by co- culturing the hydrogels 

together with the aortic rings via a transparent tissue culture insert. The results were evaluated 

at day 5 of culture and results were expressed as mean sprout length for each group. The 

endothelial cell sprouts were significantly longer with increasing concentrations of ADSCs. 

The mean sprout length for control, 250k, 500k and 1000k ADSC encapsulated groups were 

84 (±6.1), 11.2 (±19.3), 203 (±25.3) and 397 (±96.2), respectively (Figure 6.3). Additionally 

the endothelial cell sprouts were characterized by staining positively with the endothelial cell 

marker Isolectin B4.   
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Figure 6.3. Assessment of endothelial cell proliferation and sprouting in response to different number 

of ADSCs loaded hydrogels. Hydrogels were  co-cultured with chick aortic rings for 5 days. 

Characterization of endothelial cell sprouts (arrows) by lectin IB4 (green) and cell nuclei with with 

DAPI (blue) (A). The change in the length of endothelial sprouts with the seeding density of ADSCs 

(B) and representative images (C). (scale bars 250 µm). 
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CAM assay  

One million ADSCs were put into the hydrogel solution containing methacrylated gelatin and  

hyaluronic acid and photoinitiator that was warmed up to 37°C beforehand. After gentle 

pipetting, 100 µl of this solution was pipetted on to Petri dishes and immediately exposed to 

UV light for 40 seconds. The ADSC containing hydrogels were implanted on to the CAM at 

EDD 7. Hyrogels without any cells and hydrogel containing 100 ng of VEGF was used as 

controls (Figure 6.4).  Three parametres were calculated on digital images using the Image J 

software and the Neuron J plugin: the total vessel count, the total vessel length and the 

vasculogenic index (Table 6.1). 

 

Figure 6.4. Evaluation of the angiogenic properties of ADSCs encapsulated into the hydrogel in the 

chick chorioallantoic membrane (CAM) assay. Micrographs (upper row) and semi-automatic 

processed images (lower row) of the hydrogel, hydrogel containing ADSCs and hydrogel 

containing VEGF (positive control), taken on day 14 of embryonic development.  
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Table 6. 3. The summary of CAM assay findings comparing hydrogels with and without 

adipose derived stem cells (ADSCs).  (*p<0.05 compared to control hydrogels; +p<0.05 

compared to VEGF hydrogels) 

 Control hydrogels ADSC hydrogels VEGF hydrogels 

Total vessel count 

(mean± SD) 

59.2 (±15.1) 93.2 (±12.7)* 117.6 (±14.3)* 

Total vessel length 

(mean±SD) 

97.6 (±16.3) 136.0 (±16.7)*, + 168.6 (±11.5)* 

Vasculogenic index 14.6 (±1.8) 21.0 (±2.7)*,+ 27.0 (±3.8)* 
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Histology 

On EDD 14 the hydrogel- CAM complex were gently resected and fixed in formaldehyde. 

The first observation was that unlike fibrous scaffolds the hydrogels could easily be detached 

from the CAM. The H&E staining confirmed this showing almost no tissue integration into 

the hydrogels.  Additionally the hydrogels did not induce any inflammatory reaction on the 

underlying CAM tissue (Figure 6.5.). This made it easier to count the blood vessels on the 

adjacent  CAM.    The angiogenic response to the hydrogels were quantified by measuring the 

area stained positive for α-SMA on fluorescent images. Therefore, histologic examination of 

CAM-hydrogel complex have confirmed a significantly increased area of α-SMA positive 

blood vessels in CAM tissue under and adjacent to the VEGF loaded hydrogel compared to 

the hydrogel alone whereas ADSC loaded hydrogel was associated with a moderate increase 

in the number of blood vessels. Also there was almost no cellular/ inflammatory cell 

infiltration in the CAM underneath the hydrogel.   

In conclusion ADSCs on their own appeared to stimulate angiogenesis through their 

paracrine effects. Compared to VEGF, ADSCs have mild to moderate pro- angiogenic 

properties.     
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Figure 6.5. Histological evaluation of angiogenic properties of ADSCs encapsulated in hydrogels. 

A) Normal appearance of CAM structure on Haematoxylin &Eosin (H&E) staining and 

fluorescence staining of CAM vessels with alpha-smooth muscle actin (α-SMA) and 4′,6-

diamidino-2-phenylindole dihydrochloride (DAPI). B) Area coverred by blood vessels (stained 

positive for  α-SMA) (**: p<0.01; ***: p<0.005). C) Representative images from each group 

demonstrating more blood vessels in the area adjacent to the hydrogels. Additionally hydrogels 

caused a mild inflammatory response on the CAM. (Scale bars: 100 µm). 
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6.3. Combining electrospun scaffolds with ADSCs to improve tissue integration 

 

In this section a polyurethane scaffolds used to follow on the work within the group 

suggesting PU material could have beneficial mechanical properties with improved elasticity.  

All the work presented in this section was a part of the masters thesis of Miss Sarah Shafaat 

which has been published [72]. The PhD scholar has direct contribution to all satges of the 

experiments at all levels including planning, conducting and results evaluation.  

Briefly, polyurethane (PU) Z3 (Biomer technologies, Cheshire, UK) was dissolved  (8% w/v) 

in a mixture of 70% v/v N,N-Dimethylformamaide and 30% v/v tetrahydrofuran. Into the 

polymer solution 50 mg of Estradiol was added and electrospun. Eight milliliters of 10% PLA 

was first electrospun as a sacrificial layer. Electrosinning parameters were rotation at a rate 

for collector of 265 rpm, 20 cm of distance from the tip of the needle to the collector, feed rate 

of 40 µl/min and an accelerating voltage of 17.4 kV. Estradiol was released from these 

scaffolds gradually after an initial burst release of 30-40% in the first 10 days as measured by 

UV-spectrophotometer at a wavelength of 272nm. Incorporation of estradiol into the PU 

scaffolds did not effect scaffold ultrastructure but increased total collagen production by 

ADSCs compared to PU only scaffolds. 

Evaluation of mechanical properties of PU scaffolds 

The main advantage of PU materials is related to their inherent elasticity. The mechanical 

properties of electrospun PU scaffolds were evalauted by both uniaxial and cyclic mechanical 

testing. The cyclic mechanical testing is performed to demonsrate a deformation of the 

material by repeated loading and unloading (Figure 6.6).  
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Figure 6.6. Graphical explanation of using a cyclic mechanical testing to demonstrate material 

deformation. (A) The BOSE tensiometer for uniaxial testing. (B) The stress- strain curve produced by 

uniaxial tensile testing. The change in the appearance of the sample during the test is shown in the 

inset. (C) Demonstration of deformation of the material in cyclic mechanical testing applying a 25% 

displacement (strain) to the material. The deformation of the material can be measured by the lack of 

stress starting from the second cycle. 
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In uniaxial testing, incorporation of estradiol significantly increased the ultimate tensile 

strength (UTS) (N/mm2) and Young’ s modulus (YM) (N/mm2) of PU scaffolds compared to 

controls, UTS and YM were 5.79± 0.336 and 3.26±0.46 (p<0.005) and  11.5±1.6 and 9.8±0.7 

(p<0.005), respectively (Figure 6.7).  These values were  30-40% higher than the reference 

range for the healthy native fascia (YM 6.4-10.1 N/mm2). In the cyclic mechanical testing, all 

PU scaffolds underwent deformation from cycle 1 to cycle 2, with reduced YM values for 

estradiol releasing PU scaffolds from  20.2±2.4 in the first cycle to  14.7±1.4 in the second 

cycle (Figure 6.8).   

 

Figure 6.7. Mechanical testing of PU only and Estradiol releasing PU scaffolds on uniaxial 

mechanical testing. 
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Figure 6.8. Cyclic mechanical testing on PU only and estradiol releasing PU scaffolds to 

demonstrate material deformation (*: p<0.05). 
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In another study conducted within the group in collaboration with Dr. Sabiniano Roman, the 

deformation of various mesh materials under cyclic mechanical testing was compared to two 

other electrospun materials. This has shown that all materials underwent plastic deformation 

after cyclic loading mainly between cycle 1 and cycle 2. However it appeared that the 

commercial meshes demonstrated significantly higher deformation compared to electrospun 

meshes after 10 cycles. The percentage deformation for commercial meshes were 6.69% 

(±0.75), 8.51% (±0.47), 4.77% (±1.08) and 3.60% (±0.52), respectively for Gynemesh®, 

Restorelle®, DynaMesh-ENDOLAP® and DynaMesh-PR4®. In contrast the percentage 

deformation for electropun meshes (UPy-PC and PU) were 1.92% (±1.19) and 0.58% (±0.32) 

(Figure 6.9).    

 

 

Figure 6.9. Comparison of electrospun polyurethane (PU) scaffold with available meshes currently 

used in the treatment of SUI and POP.  (This experiment performed by Dr. Sabiniano Roman) 
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Evaluation of scaffold and stem cell constructs for their effects on angiogenesis 

PU scaffolds with and/ or without estradiol were cut into 1x1 cm squares and were UV 

sterilized. ADSCs between passages 3 and 8 were seeded on the estradiol releasing PU and 

control scaffolds at a density of 250k and incubated at 37 °C and 5% CO2 until they were 

implanted onto the CAM next day. HDFs were used as a cellular control in these experiments. 

The scaffolds were then implanted on the surface of CAM by placing the cell seeded surface 

in direct contact with CAM tissue. 

Estradiol releasing PU scaffolds were significantly more angiogenic compared to controls, 

vasculogenic index 33.5 (±7.2) and 15.8 (±3.5), respectively (p<0.05). When ADSCs were 

seeded on the estradiol releasing and control scaffolds the vasculogenic index went up to 55.2 

(±7.2) and 43 (±3.6), respectively. Therefore ADSCs increased the vasculogenic potential of 

PU scaffolds compared to PU only scaffolds (Figure 6.10).     
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Figure 6.10. The effect of incorporating ADSCs into the tissue engineered constructs on the 

angiogenic potential of estradiol releasing PU and control scaffolds. (scale bars represent 200 µm; 

*p<0.05 compared to PU only scaffolds). (This experiment was performed by Miss Sarah Shafaat) 
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Evaluation of tissue integration of scaffold- ADSC constructs 

Histologic examination of the ADSC seeded PU scaffolds resulted in good tissue integration 

into the CAM tissues after 8 days of implantation. There was no significant difference 

between estradiol releasing and PU only scaffolds (Figure 6.11). A mild inflammatory 

response in the CAM tissue adjacent to tissue engineered constructs could be seen in all 

samples.  
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Figure 6.11. The effect of incorporating ADSCs on tissue integration of estradiol releasing 

and control scaffolds. Haematoxylin and Eosin (H&E) staining of CAM- scaffold complexes 

after 8 days of incubation.  Scale bar represents 100µm and applies to all images 

(PU=Polyurethane) (*CAM tissue, ** implant/scaffold). (This experiment was performed by 

Miss Sarah Shafaat) 
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6.4. Chapter discussion 

 

Mesenchymal stem cell (MSC) therapy   has emerged in the last 10 years as an important 

cellular source to stimulate tissue regenration and promote angiogenesis with several cell 

based therapeutic applications being tested in clinical trials [246]. In this section, the added 

effects of incorporating stem cells inthe tissue engineered constructs designed for pelvic flor 

repair is evaluated. The data presented shows that stem cells alone have a mild to moderate 

effects on stimulating new blood vessel formation in the CAM assay and combination of 

electrospun matrices with stem cells can have an added effect when stimulating angiogenesis. 

Nevertheless the involvement of cellular components in the tissue engineered constructs 

would mean more complicated routes when translating into clinic compared to biomaterials 

without cells.  

From a regulatory perspective, regenerative medicine refers to methods to replace or 

regenarate human cells, tissues or organs to restore or establish normal function. This includes 

cell therapies, tissue engineering, gene therapy and biomedical engineering techniques as well 

as more traditional treatments involving pharmaceuticals, biologics and devices. On the other 

an advances medicinal therapy product (ATMP) is a medicinal product which is either a gene 

therapy medicinal product, a somatic cell therapy medicinal product or a tissue engineered 

product [247].   Among these gene therapy medicinal products and somatic cell therapy 

medicinal products have legal definitions, a tissue engineered product rather more difficult to 

define due to the extent and complexity it encompassess. For medicinal products that do not 

contain viable cells the mode of action is primarily by physical means. However if they 

contain viable cells or tissues, regardless of the role that the material component play,  the 

primary mode of action of the combined product should be considered to be a function of the 

pharmacological, immunological or metabolic effects of the cells. Hence the regulatory 

evaluation of ATMPs often require very specific expertise covering the areas of 

biotechnology and medical devices. 
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Under the new EU directive, a tissue engineered product is defined as “a product that contains 

or consists of engineered cells or tissues and is presented as having properties for, or is used  

in or adminisered to human beings with a view to regenerating, repairing or replacing a 

human tissue” [247]. An ‘engineered cell’ is defined as “a cell that fulfil at least one of hte 

following: i) the cells or tissues have been subject to substantial manipulation  so that 

biological characteristics, physiological functions or structural properties relevant for the 

intended regeneration, repair or replacement are achieved” [247]. Article 2(1)(c) of the 

directive defines specific procedures that are not considered as substantial manipulations. 

These are: cutting, grinding, shaping, centrifugation, soaking in antibiotic or antimicrobial 

solutions, sterilization, irradiation, cell separtion, concentration or purification, filtering, 

lyophilization, freezing, cryopreservation, vitrification ; ii) the cells or tissues are not intended 

to be used for the same essential function or functions in the recipient as in the donor. 

Therefore adipose tissue derived cells, even if not substantially manipulated, will be 

considered an ATMP when used to serve functions other than being adipose tissue. This 

means that the necessary regulatory approval before translation of these products would be 

difficult.        

The main challanges that lie ahead of the clinical translation of MSCs for many applications 

are related to lack of a more specific definition of an MSC, the uncertainties about the 

mechanisms of actions, reproducable manufacturing of adequate amounts of MSCs, 

distribution and costs.  The widely accepted minimal criteria to define a mesenchymal stem 

cell [224], although useful to have one, covers a hugely diverse cell population that could 

result in high variability among result findings. Also,  the in vivo fade of MSCs at the site of 

tissue injury is not clear. It has been shown that after intravenous injection most of the MSCs 

are trapped in the lungs initially, however they eventually home to sites of tissue injury and 

finally 0.1% to 2.7%  of MSCs can be found engrafted to the sites of injury after 2 weeks 

[248]. Furthermore, in most pre- clinical research the MSCs are used without pre- labelling 

and the fate was not tracked. Instead it has been a common practice to report efficacy of stem 

cells based on functional outcomes. This has also been referred to as ‘the beneficial effects 

given as a reason to move fast from insufficient science to translation or therapy are not 

clearly defined’ [225].     
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In addition, the efficacy and bioavailability of stem cells as a function of the method of 

delivery is highly variable and not comparatively studied. For example, most pre- clinical and 

clinical research on using MSCs for treatment of erectile dysfunction applied stem cells  by 

intracavernousal injections where the main tissue damage was actually in the cavernous nerve 

in the pelvis [246], [249]. This assumes an effective homing of MSCs to the sites of tissue 

injury however this has not been assessed in many studies. The bioavailability and efficacy of 

any therapeutic agent is affected by its method of delivery.  A direct comparison of 

intravenous, intracoronary and endocardial injections of MSCs in a swine model of acute MI 

demonstrated a better engraftment of MSCs in  intracoronary and endocardial injections 

compared to IV delivery [250].  In the context of pelvic floor repair materials, the MSCs is 

envisaged to be seeded on scaffolds before implantation. Hence they will be implanted at the 

site of the intended tissue repair  however the fate of the MSCs in this scenario still needs to 

be studied. 

Some of the above challanges can be overcome by innovative methods of cell labelling and 

together with use of non- invasive imaging technologies. The detection of MSCs in fixed 

tissue samples requires scarification of groups of animals at several time points and harvesting 

organs for histologic sectioning. These disadvantages led to development of dynamic imaging 

modalities. The non- invasive dynamic imaging studies include MR imaging of magnetic 

particle labelled cells [251]–[253], single photon emission computed tomography (SPECT) 

imaging of radioisotope (111In oxine, 99mTc) MSCs [254] and quantum dot labelling [255]. 

Each of these non- invasive imaging modalities have their own advantages and limitations 

however they are very likely to become an integral part of stem cell based therapies and 

further improvements in this area needed.        
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Another issue that is addressed within this section is related to the cyclic mechanical 

properties of the biomaterials designed for pelvic floor reconstruction. Looking back critically 

on the currently used mesh materials, mainly PPL, it appears that many authors agree on the 

biological and mechanical incompatability of the PPL mesh to the pelvic floor. Briefly, it is 

known that the host response to PPL mesh is more representative of a chronic inflammation 

resulting in poor tissue integration and significant fibrosis around the implant [256]–[258], 

especially in cases of vaginal implantation rather than abdominal [101]. This unfavourable 

biological response to PPL mesh, is much less studied compared to its mechanical failure. It 

has been commonly suggested that the mesh is too strong and too stiff for applications in the 

female pelvic floor. Theoretically, this can lead to a phenomenon called ‘stress shielding’ 

which is more commonly used for orthopaedic implants. Stress shielding is when a strong 

material carries all the load and depriving the adjacent issues of mechanical stimuli that 

eventually results in defective extracellular matrix production in the tissues adjacent to the 

implant. The same phenomenon can explain the poor tissue healing and erosion associated 

with vaginal mesh implant surgeries.  

Furthermore, PPL mesh is probably not only too strong but also it can mechanically fail when 

exposed to cyclic distension at the site of implantation. The cyclic loading experienced by the 

materials are known to lead to plastic deformation of the material a little at a time when they 

are exposed to loads above their yield point. This can contribute to material failure and/ or 

change in its mechanical properties overtime [74]. The available evidence on the effects of 

cyclic loading on mechanical properties of the PPL mesh is not well studied. Cyclic uniaxial 

loading studies are conducted to study the deformation of the material under repetitive sub- 

failure loads [259]. Previous studies have shown the results when such tests were run for up to 

10 cycles [259], [260] and despite showing ‘deformation’, they were not planned to 

demonstrate ‘failure’. Fatigue testing of materials for longer durations of cyclic mechanical 

loading under simulated physiological conditions can show material failure. These tests have 

been commonly performed for biomedical implants such as heart valves and stents however 

they were never considered for evaluation vaginal meshes.  
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Mechanical testing studies within the pelvic floor research group in the Kroto Research 

Institute, have led to describing a simple protocol that could be used as a fatigue testing to 

demonstrate the mechanical failure of the materials starting from early stages of development 

[261].   This is important because although previous studies have used ‘dynamic mechanical 

assessment’ techniques to test surgical meshes [262], such tests require sophisticated 

equipment and expertise making it difficult to adopt for many research groups.  Nevertheless, 

the failure of Ultrapro mesh after 16,000 cycles has been reported together with permanent 

change in yarn structure [263]. In conclusion, using the simple fatigue testing under 

physiologic conditions electrospun polyurethane (PU) is shown to survive 80% strain equally 

well before and after the fatigue testing, while the commercial meshes failed the uniaxial 

tensile test after fatigue testing.  

A limitation of using such a fatigue testing protocol to detect material failure early during 

development is related to the current inability to estimate the cyclic loading conditions that 

the material will undergo at the site of implantation. This is mainly due to lack of 

understanding of the biomechanics of the female pelvic floor. Not only the anatomy is 

complex and the biomechanics are poorly understood, but also the consequences of other risk 

factors such as carrying full term pregnancies, vaginal deliveries and the loss of oestrogens at 

the menopause are not known.  

A comparison of fatigue behaviour of available candidate materials within the group 

demonstrated that electrospun PLA scaffolds underwent significant deformation after 7 days 

of dynamic distention in 7 days while electrospun PU Z1 and Z3 scaffolds remained elastic 

[113].  Hence the PU scaffolds has been studied as another good candidate to functionalized 

by incorporation of Estradiol and MSCs in the current section. The results demonstrated that 

Estradiol could effectively be blended into PU scaffolds and achieve a sustained release 

without having a negative effect on scaffold ultrastructure and mechanical properties. PU 

scaffolds survived the fatigue test better compared to commercial meshes and they stimulated 

new blood vessel formation with good tissue integration.   Therefore, Estradiol releasing PU 

scaffolds could be used effectively to stimulate new blood vessel formation and improve 

tissue integration for applications where non- degradable materials are desired.     
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Chapter 7.                                         

Summary and Future Work 
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7.1.Summary 

 

In summary this thesis explored the feasibility of functionalization of biomaterials by 

addition of drugs and cells with the ultimate aim of improving the biocompatability of the 

biomaterials by acheiving  increased angiogenesis and tissue integration. 

Firstly, an in vivo methodology to study the angiogenic potential of and the initial tissue 

response to constructed biomaterials was developed. The ex ovo CAM assay proved to be a 

feasible and effective  bioassay to assess the angiogenic potential of biomaterials with a 

unique advantage of allowing visualization of the developing blood vessels at all times during 

the experiment. The main limitations of this method was the inability to run the experiments 

beyond 14 days under in- house Home Office regulations and the lack of a developed 

immune system in the chick embryo in the early stages of embryonic development.  The 

latter mainly limited the assessment of the initial tissue response to the constructed 

materials.  This methodology was used as the main assay for assessing angiogenesis and 

early stage biocompatibility  throughout the thesis.  

Electrospinning was selected for the material production method and polylactic acid (PLA) 

was the main polymer used with its excellent biocompatiblity, drug releasing properties and 

degradability. The accumulated knowledge within the group was helpful in assessing  two 

candidate drugs to be incorporated into the constructed scaffolds to stimulate new blood 

vessel formation and tissue integration: Vitamin C and Estradiol. Both Vitamin C and 

Estradiol could effectively be incorporated into the electrospun PLA  scaffolds without 

causing significant disruptions to the ultrastructural and mechanical properties of the 

scaffolds. Vitamin C was released  from the scaffolds over several weeks whereas Estradiol 

was released  over months.  
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Both drugs increased extracellular matrix production of cells cultured on the scaffolds.  

Although both Vitamin C and Estradiol increased the angiogenic potential of the PLA 

scaffolds, Estradiol resulted in a more dramatic increase in new blood vessel formation.  

Stimulation of both ECM production and new blood vessel formation by drug releasing PLA 

scaffolds could prositively affect tissue integration of these materials. This was assessed by 

implantation on the CAM for seven days which demonstrated a good tissue integration for 

all electrospun PLA scaffolds with no significant differences between drug releasing and plain 

scaffolds. The contribution of Vitamin C or Estradiol released from electrospun PLA scaffolds 

now needs be assessed in longer term in vivo assays.     

The last stage of functionalization of the scaffolds that was assessed in the current studies 

whether the ability of the drug releasing scaffolds to stimulate angiogenesis and  better 

tissue integration would be improved with addition of mesenchymal stem cells (MSCs). 

Firstly, MSCs alone were demonstrated to have a mild pro- angiogenic effect on the CAM 

assay. MSCs in this case were initially implanted on the CAM using a hydrogel as a cell carrier 

system. Secondly, Estradiol releasing electrospun scaffolds pre-seeded with MSCs were 

shown to have an added effect on new blood vessel formation compared to plain Estradiol 

releasing electrospun scaffolds. However, the size of this additional effect was small. 

Additionally, pre- seeded scaffolds appeared to have a similar ability to integrate into tissues 

in short term implantation over seven days. Therefore, from a clinical translational point of 

view the use of pre- seeded biomaterials would need to be balanced with the complexities 

and expense of manufacturing an advanced therapy medicinal product. At the time of 

writing the additional angiogenic benefit of adding cells to the drug releasing scaffolds does 

not seem justified. 
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7.2.Future Work 

 

The first line of future work would involve confirmation of the pro- angiogenic and tissue 

integration properties of Estradiol releasing electrospun PLA scaffolds in small animal 

models. After the confirmatory study, the materials will need to be implanted in large 

animals for efficacy testing. Two large animal species have been used in the literature. The 

most widely used animal for vaginal implantation of a candidate mesh material is the sheep. 

The sheep stands out as it has a vagina that is very similar in size to the human female 

vagina. Other animals such as rabbit  have also been used a recipients of vaginal soft tissue 

implants before [264] however due to the smaller size of the vagina these could only accept 

implantation of a small piece of mesh material. This did  not demonstrate  vaginal mesh 

erosion in most studies [265] although some authors reported observation of mesh erosion 

with rabbit vaginal implants in the longer term [266]. It is important to use a model that can 

re- create mesh erosion as it is a significant mesh- related adverse effect. Vaginal 

implantation of mesh material into sheep vagina was demonstrated to lead to development 

of mesh erosion in 30% of sheep which received a vaginal mesh implant [101]. Additionally 

sheep are known to develop pelvic organ prolapse spontaneously after repeated 

pregnancies/ births like humans.  
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Another animal that has been used in vaginal implant testing is the rhesus macaque. These 

studies are mostly performed in the United States. The obvious advantage of the rhesus 

macaque is that they are standing upright similar to humans. Also rhesus macaque develop 

spontaneous pelvic organ prolapse, they have pelvic floor anatomy similar to women with 

hormone sensitive ligaments in paravaginal attachments. Additionally the fibroblast 

activities in the connective tissues of the pelvic floor of these animals was responsive to 

hormonal treatment in a way similar to that of humans [267]. However the implantation of 

three commercial meshes in rhesus macaque  resulted in erosion in only in 1 out of  32 

animals [256], regardless of the mesh weight and textile structure. However in this study the 

meshes were implantated abdominally after hysterectomy and this does not represent  

vaginal implantation. Another study reported vaginal implantation without using a vaginal 

mucosal incision [257] precluding the applicability of this data to represent vaginal mesh 

implantation surgeries. Hence, the available evidence supports the use of sheep for testing 

of candidate vaginal implant materials. After safety and efficacy testing in relevant animals 

the candidate material can go on to first pilot clinical trial. 

Another important point to consider during translation of these products into the clinic is 

about the changing regulatory approval processes for biomedical devices. It is increasingly 

being acknowledged that the available medical device regulations allowed the ‘faulty’ 

medical devices onto the market failing to ensure public and patient safety [257]. The 

scientific and surgical communities have also raised concerns on the ‘commercially privileged 

relationship’ between manufacturers and regulatory authorities [268].  A part of the 

problem is probably related to the inability of the old regulations to keep up with the pace of 

rapid technological and scientific developments in biomedical sciences and technologies in 

the last few decades. Although this new field of biomedical engineering offers new 

opportunities for treatment of disease and replacement of organs/ tissues in human body, 

the necessary novel legal definitions, new rules on governing their production and 

distribution and new processes for regulatory approval to safeguard public health appear to 

be missing.  
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Recently, two new EU regulations on medical devices entered into force [269] with the aim 

of establishing a robust, transparent, predictable and sustainable regulatory framework for 

medical devices which ensures public safety while supporting innovation. For this purpose 

the new EU regulations introduced new definitions such as ‘active device’, ‘implantable 

device’ and ‘single use device’ in addition to the medical device definition. Separate 

regulations for placing products on the market, traceability of supply chains and registration 

of devices and post- market surveillance are implicated.  Therefore, future work needs to 

consider these regulations. 

Another useful tool to guide safe and effective introduction of new surgical innovations is 

the IDEAL (Idea, Development, Exploration, Assessment and Long Term follow-up) 

guidelines, that define clear guidance on the types of studies and specific data requirements 

for each stage of approval and surveillance [270]. This involves stages of 0 to 4, where stage 

0 involves pre- clinical development with materials and components testing following real- 

world situations. Stage 1 is the first in human trial with a few studies followed by safety and 

efficacy studies (Stage 2) and then randomized controlled trials to study comparative 

effectiveness involving hundreds of patients (Stage 3). The final stage involves long term 

studies for quality assurance making use of device registries. No matter what scheme is 

followed, it is important to ensure a system whereby the issues with implantable medical 

devices can be identified.   
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