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PENAMBAHBAIKAN ALGORITMA PENGANGGARAN PETA PERBEZAAN

PENGLIHATAN STEREO SECARA TEMPATAN

ABSTRAK

Anggaran Peta Perbezaan Penglihatan Stereo (PPPS) adalah satu topik penyelidikan

yang aktif dalam penglihatan komputer. Untuk meningkatkan ketepatan PPPS adalah su-

kar dan mencabar. Ketepatan dipengaruhi oleh rantau dari sisi tak selanjar, bertutup, corak

berulang dan bertekstur rendah. Oleh itu, tesis ini mencadangkan algoritma untuk pe-

ngendalian yang lebih cekap bagi cabaran ini. Pertama, algoritma PPPS yang dicadangk-

an menggabungkan tiga ciri pengiraan kos padanan berasaskan perbezaan setiap piksel.

Gabungan ciri Perbezaan Mutlak (PM) dan Padanan Kecerunan (PK) mengurangkan he-

rotan radiometrik. Kemudian, kedua-dua perbezaan digabungkan dengan Transformasi

Banci (TB) untuk mengurangkan kesan perbezaan pencahayaan. Kedua, tesis ini mem-

bentangkan teknik baru pengendalian sisi tak selanjar yang dinamakan Penapis Berpandu

Lelaran (PBL). Teknik ini diperkenalkan untuk memelihara dan menambah baik sempad-

an objek. Akhirnya, proses-proses pengisian perbezaan tak sah, peruasan graf tak berarah

dan pemadanan satah digunakan di peringkat terakhir untuk memulihkan rantau bertu-

tup, corak berulang dan bertekstur rendah pada PPPS. Berdasarkan keputusan eksperimen

data penandaarasan piawai dari Middlebury, algoritma yang dicadangkan ini dapat meng-

urangkan masing-masing 17.17 % dan 18.11 % daripada ralat semua dan tidakbertutup,

berbanding dengan tanpa rangka kerja yang dicadangkan. Tambahan lagi, rangka kerja

yang dicadangkan mengatasi sebahagian daripada algoritma terkini dalam literatur.
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IMPROVEMENT OF LOCAL-BASED STEREO VISION DISPARITY MAP

ESTIMATION ALGORITHM

ABSTRACT

Stereo Vision Disparity Map (SVDM) estimation is one of the active research topics

in computer vision. To improve the accuracy of SVDM is difficult and challenging. The

accuracy is affected by the regions of edge discontinuities, occluded, repetitive pattern and

low texture. Therefore, this thesis proposes an algorithm to handle more efficiently these

challenges. Firstly, the proposed SVDM algorithm combines three matching cost features

based on per pixel differences. The combination of Absolute Differences (AD) and Gradi-

ent Matching (GM) features reduces the radiometric distortions. Then, both differences are

combined with Census Transform (CN) feature to reduce the effect of illumination vari-

ations. Secondly, this thesis also presents a new method of edge discontinuities handling

which is known as iterative Guided Filter (iGF). This method is introduced to preserve

and improve the object boundaries. Finally, the fill-in invalid disparity, undirected graph

segmentation and plane fitting processes are utilized at the last stage in order to recover

the occluded, repetitive and low texture regions on the SVDM. Based on the experimental

results of standard benchmarking dataset from the Middlebury, the proposed algorithm is

able to reduce 17.17% and 18.11% of all and nonocc errors, respectively, as compared

to the algorithm without the proposed framework. Moreover, the proposed framework

outperformed some of the state-of-the-arts algorithms in the literature.

xvii



CHAPTER ONE

INTRODUCTION

This chapter is divided into seven sections. Section 1.1 introduces the background of 

stereo vision system. The introduction consists of basic fundamental explanation based 

on mathematical models. Then, Section 1.2 gives examples of stereo vision applications. 

Section 1.3 provides the research challenges and Section 1.4 describes the problem state-

ment. Section 1.5 presents the objectives of this thesis. After that, Section 1.6 and 1.7 

explain about the scope and structures of this thesis, respectively.

1.1 Background of Stereo Vision

Human vision is capable to recognize the depth easily through the stereoscopic fusion 

from the eyes. This job is automatically implemented by the human brain. The depth of 

a scene from stereoscopic fusion is also can be modeled mathematically (Bhatti, 2012). 

This model is called as stereo vision system which is one of the most active and important 

research areas in computer vision. Stereo vision consists of two cameras (i.e., left and 

right) which perceives one scene from two different viewpoints. These two viewpoints 

are processed permitting the visual depth data to be recovered. The process involves in 

computation of three-dimensional (3D) information of the scene from two-dimensional 

(2D) input images. The depth information of stereo images can be acquired by shifted 

together to discover the parts or pixels that match each other. The shifted value is named 

as  disparity  (Xu & Zhang, 2013). The higher disparity value means the object is closer 

to the cameras. The disparity value is nearly zero if the object is far from the cameras. 

This indicates the same pixel location of the left and right images.
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Figure 1.1 shows a basic concept of stereo vision system and its translation of mathe-

matical models (Ma et al., 2012). Figure 1.1(a) shows stereo sensor (i.e., L=left camera, 

R=right camera) detects an object at point P with the same viewpoint. The horizontal dot-

ted line is the plane projection of a stereo system which image P at left and right cameras 

are placed at pixel locations of xl and xr respectively. Figure 1.1(b) shows the translation 

of stereo vision geometry. At the plane projection views, the left camera produces left 

image (i.e., Left image) which the matching point is located at xl coordinate. The right 

camera produces right image (i.e., Right image) which the matching pixel is located at xr. 

The distance between L and R is baseline range b and a is the distance of matching pixel 

coordinates (i.e., between xl and xr). Fundamentally, based on the triangulation principle, 

the angle of (∠L,P,R) and (∠xl,P,xr) is similar which enables to compute the depth based 

on Equation (1.1):

b
Z
=

a
Z − f

=
(b− xl)+ xr

Z − f
(1.1)

where b denotes the baseline of stereo camera sensor and Z is the depth or distance. The

(a) Stereo vision sensor with an object de-
tection at point P.

(b) Translation of stereo vision geometry.

Figure 1.1: A stereo vision system which contains a point detection and its translation
model.
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xl and xr are the coordinates of plane projections on matching pixel and f represents the

stereo camera focal length.

After further calculation, the final depth estimation is given by Equation (1.2):

Z =
b f

xl − xr
=

b f
d

(1.2)

where d = xl − xx is the disparity value. This value can be plotted into 2D map which

is known as disparity map. This map is important and contains of information for stereo

vision applications. The process or algorithm of estimating the Stereo Vision Disparity

Map (SVDM) is based on the taxonomy which was developed by Scharstein and Szeliski

(2002). They categorized three major methods in SVDM development (i.e., global, Semi

Global (SGM) and local methods). The framework of SVDM consists of four main steps

(i.e., Step 1: matching cost computation; Step 2: cost aggregation; Step 3: disparity se-

lection and optimization; Step 4: disparity map refinement). The mentioned steps will be

described extensively in Chapter 2.

1.2 Application of Stereo Vision

The stereo vision system covers a wide range of applications such as:

(i). Augmented Reality (AR): Stereo vision information is an important element of AR

systems which depends on the accurate depth estimation of a scene. This is to put

an accurate position of computer created objects with real life video which was

implemented by Markovic et al. (2014), Suenaga et al. (2015).

(ii). Robotic and automotive applications : Industrial robotic inspection and autonomous

robot navigation involves in static and dynamic environments. It requires the infor-

3



mation of realistic motion and depth estimation. Stereo vision can be used efficiently

to estimate the depth which was implemented by Dinham and Fang (2013), Di Ful-

vio et al. (2014), Philipsen et al. (2015).

(iii). 3D surface reconstruction: The analysis of 3D surface reconstruction is important

to determine the status and conditions of an object or environment for example in

archaeological artifact observation by Dellepiane et al. (2013) and 3D terrain recon-

struction by Correal et al. (2014).

1.3 Research Challenges

The accuracy of SVDM algorithm might be affected by several factors. These fac-

tors are labeled by alphabets in Figure 1.2 which consist of four main challenges and are

explained as follows:

Figure 1.2: A stereo image (i.e., (a) left image (b) right image) of Tsukuba is mapped
based on the research challenges (Kordelas et al., 2015).

(i). A (Low texture regions)

The areas labeled A are the most difficult region for the SVDM algorithm to do the

matching process. These regions on an image are caused by the plain colour surface

and textureless surface regions. Any small regions from the circle in Figure 1.2(a)

4



image could similarly match to the region within the circle in Figure 1.2(b) image.

Additionally, the larger low texture regions on both of the stereo images, it becomes

more difficult and challenging due to the pixel intensities look alike to each other.

(ii). B (Repetitive regions)

The second challenge is the areas labeled B. These areas contain the regions with

periodic and repetitive surface texture. The algorithm trying to match the pixels

on Figure 1.2(a) image with the circle on Figure 1.2(b) image which has a number

of possible intensity values may be allocated. The difficulty of matching process

occurs when the SVDM algorithm uses wrong matching coordinates. Generally,

space objects and man-made objects will normally have many repetitive textures, so

this is unavoidable to be a problem that the algorithm must take into consideration.

(iii). C (Occluded regions)

The areas labeled C are the occluded regions. These regions contribute to most gen-

eral type of difficulty for a stereo matching algorithm. Notice in Figure 1.2(a) image

one book is not visible, but matching the similar region in Figure 1.2(b) image the

book is almost visible behind the table lamp. Because of the geometric displacement

between the cameras, one of the scene is causing another to not be visible to both

cameras. Apparently something that cannot be seen by both cameras unable to be

matched between the images. On the disparity map, the occluded regions are very

hard to estimate or to be filled-in with accurate disparity values. This is because the

unknown objects, shapes or structures behind the occluded regions. These regions

are getting bigger and hard to be corrected when the baseline of the stereo sensor is

expanded.

(iv). D (Discontinuity regions)

A final challenge to SVDM algorithms are depth discontinuities as shown by the

5



table lamp holder marked by the letter D. The challenge is because of the stereo

algorithms use a predetermined sized mask from one image to localize within the

other image. If this mask contains the information from the front-most surface and

the rear-most surface across a depth discontinuity, several correct disparity values

could be assigned. Usually, this leads to increase the error across the depth bound-

aries. It makes more difficult to get the corresponding points if the discontinuity

region sizes are different drastically between the stereo image.

1.4 Problem Statements

The focus  of this thesis is to  develop a new SVDM  algorithm to produce  accurate re-

sults.  This  will  benefit to  expand the  relevant  of stereo vision in  areas that implicate 

the  depth  estimation. Even though the SVDM  algorithms have  been studied for years, 

the low  texture  regions,  repetitive patterns,  and  occluded  regions  are the  attributes  of 

difficulties in the   SVDM  development.  Yang (2012) (i.e., SSD), Mei  et a l. (2013) (i.e., 

SAD)  and Zhu  et  al. (2015) (i.e.,   NCC) used  window-based techniques  at  

matching cost  computation  which resulting the  disparity map heavily exposed to high 

noise. The improper or wrong window size selections, it may causes problems at 

incorrect disparities in the object edges and occlusion boundaries. If the window size is 

too large and consists of object bound-aries, it will assume similar intensity values 

which this will make an incorrect assumption. Hence, the fattening effects occurred on the 

results. While small window size will escape the important information crossing the 

depth discontinuities. The matching cost compu-tation is the most important step which 

provides the preliminary performance of SVDM algorithm. Thus, this step must have 

robust function and minimal noise.

Some existing SVDM algorithms were sensitive to the low texture regions which these 

algorithms could not determine the correct disparity values on the plain colour regions.
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