
IET Research Journals

Submission Template for IET Research Journal Papers

Genetic algorithm-based multiple moving
target reaching using a fleet of sailboats

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

VIEL Christophe1, VAULTIER Ulysse1, WAN Jian1, JAULIN Luc2
1School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, Devon, UK, e-mail: jian.wan@plymouth.ac.uk
2Lab STICC, ENSTA Bretagne, Brest, France, e-mail: lucjaulin@gmail.com

Abstract: This paper addresses the problem of Dynamic Traveling Salesman Problem (DTSP) for a multi-agent system
using a fleet of sailboats. A genetic algorithm (GA) is proposed which attributes to each agent a varying number of targets
to be collected. GA allows to obtain a suboptimal solution in the shortest time possible. Moreover, this paper adapts it to the
specific problem involving a fleet of sailboats, which is a challenging task with comparison to Unmanned Surface Vehicle
(USV) or motorized vehicles in terms of the propulsion. Therein motors can be flexibly controlled while sailboat movements
are constrained by available wind direction and speed. Thus the method takes into account wind conditions at various
locations of the sailboat. Simulation results demonstrate the effectiveness of the proposed approach.
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1 Introduction

For the past decades, the development of marine robotics
has been stimulated by the needs of oceanography and ocean
exploitation. Considerable progresses have been made in devel-
oping and using various platforms of autonomous marine sys-
tems.

Despite of their limited speed and wind dependence,
autonomous sailboats have the potential for marine science
as their use of renewable solar and wind energies is fit for
long-duration missions. Other potential applications such as
surveillance and mapping generate further interest in them.
Autonomous sailing is however faced with two inherent diffi-
culties: the sailboat velocity is indeed uncontrollable at certain
orientations such as upwind, and there is also an absence of accu-
rate control for the boat velocity in many cases; the maximal
velocity of sailboats depends entirely on the wind speed. Thus,
while the position and the speed of surface vehicles can be con-
trolled by motors, the limitation on the speed of sailboats and the
wind conditions must be taken into account. Many low-level and
high-level control systems designed for sailboats can be found
in the literature [13, 14, 18, 20, 21, 24, 25] to follow line, avoid
obstacles, path tracing or reach a target point. This paper focuses
on the problem of a fleet of sailboats to collect data from mov-
ing targets (buoys, fish, boats), as an application of the Dynamic
Traveling Salesman Problem (DTSP).

The Travelling Salesman Problem (TSP) probably represents
the most studied optimization problem. However, the problem
involving moving targets, or Dynamic TSP (DTSP), is still an
open issue. To solve DTSP, several methods exist using for
example Ant Colony Optimization (ACO) [1, 2, 12], Genetic
Algorithm (GA) [3, 9], Integer Linear Program (ILP) solvers
[22, 23] or Self-Organizing Map (SOM) [7, 26]. ACO obtains
good performance for DTSP where cities appear and disappear,
but are completely inappropriate for moving targets. Genetic
Algorithms (GA) [3, 9] offer a sub-optimal trajectory with the
most reduced time or distance to collect targets, but require a
long processing time and there lack of approaches in the litera-
ture for attributing targets to a multi-agent system (MAS). ILP
solvers [22, 23] and SOM [7, 26] allow to obtain results with
less calculation time. However, ILP solvers require specific con-
figurations such as targets moving with zero accelerations and

following linear paths while SOM’s trajectories for moving tar-
gets are not optimal.

In this paper, the GA developed in [3] has been improved
by adapting it to a multi-agent algorithm for tracking multiple
targets simultaneously, and by adapting this algorithm to the par-
ticular problem coupled with sailboat dynamics using a method
similar to [4]. It allows to control a fleet of pursuers like in [7, 26]
but with an optimal trajectory of the shortest time to collect all
targets like in [3]. However, in opposite with [4], this work is
adapted to sailboat dynamics and various wind conditions. We
focus here on wind influence, but other oceanic data, like waves
or surface currents, can be added in a similar way.

The main contribution of this paper is twofold: first, the pro-
posal of a genetic algorithm for collecting moving targets using a
multi-agent system and coming back home after retrieving their
targets; second, the adaptation of this GA to the particular prob-
lem involving a fleet of sailboats to collect buoys by taking into
account wind conditions changing with time and space.

The potential application of this method is to use sailboats for
picking up buoys previously cast off in sea and to bring them
back to the base. For that, the paper is divided into two main
parts: the first part presents the genetic algorithm that finds the
smaller time to collect all the moving targets, to return to the
initial position, and to choose the number of targets for each
agent; the second part adapts the proposed algorithm to the sail-
boat problem. A calculation of interception time and position is
proposed, using an approximation of the average sailboat veloc-
ity to reduce the processing time in the loop of the GA. This
average velocity takes into account several varying parameters
such as wind direction and speed.

The rest of the paper is organised as follows. The related work
is introduced in Section 2. Problem statement is described in
Section 3. Genetic algorithm is exposed in Section 4 with its par-
ent selection, crossover and mutation in Sections 4.4, 4.5 and 4.6,
respectively. The method of target attribution is explained in
Section 4.3. The adaptation of the GA for a fleet of sailboats
is described in Section 5 and 6, where a method to evaluate an
average sailboat velocity and target interception position are pro-
posed in Section 6.2 and 6.1. Section 7 presents some simulation
results. Section 8 concludes the paper.
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2 Related work

The Traveling Salesman Problem (TSP) probably represents
the most studied optimization problem. It can be presented as a
sub-problem in many transportation and logistics applications,
for example, finding the shortest path for vehicles or the fastest
path to collect data using a robot. TSP can be divided into a mul-
titude of different problems [15, 19]. However, the literature on
TSP is still rare with regards to moving targets, like in fishing
[3], surveillance [11] or in military applications [5, 23]. These
research topics are grouped under the title of “Dynamic Travel-
ing Salesman Problem ”, DTSP, with two main versions existing
in the literature. The first one consists of inserting or deleting
cities into a given problem instance [1, 2, 12] and the second
keeps constant the number of cities but changes the distance
among them [5, 22, 23], addressing for traffic jams, highways,
or the collection of data with moving targets.

In [1, 2, 12], an Ant Colony Optimization (ACO) algorithm
was proposed to solve DTSP due to their strong adaptation
capabilities. When a new city appears, the knowledge of old
optimization is transferred to the new scenario, and so as to
reduce the calculation time. The proposed algorithm maintains
a good balance between the computation time and the quality of
the solution through effective local search algorithms. However,
ACO can only be used for the first version of the DTSP, and it is
not adapted to move targets, which is the focus of this paper.

Another adapted method for DTSP is the Genetic Algorithm
(GA). In [9], a GA-based method is proposed based on the
prediction of target trajectories for solving DTSP problems. A
genetic algorithm is a meta-heuristic method inspired by the pro-
cess of natural selection to generate high-quality solutions to the
optimization problem. GA starts with initializing the population
with randomly generated but feasible solutions. Each solution is
then evaluated by using a fitness function describing the desired
configuration, for example, the shorter time or distance to reach
all the targets. A selection of parents is made to generate children
through crossover and mutation from parents. Children become
the new population and the reproduction cycle continues. In [9],
each target is moving in a direction at a constant velocity from
an initial position, and the pursuer starts from the origin at a
constant velocity. Two different crossovers are used with the
guarantee that if the two parents are valid tours, the child is also
a valid tour. A most evolved GA is proposed in [3]. This one
evaluates its fitness to reduce the final time of a vessel to col-
lect moving buoys. A simple prediction of future locations of
the buoys is evaluated using Newton’s motion equations based
on historical real data provided by GPS fitted on buoys. Compar-
isons between the proposed method and Nearest Neighbor (NN)
or simple Genetic Algorithms GA-TSP method are provided. It
is worthy noting that the assumption made therein is that only
one pursuer rather than multiple pursuers is engaged to collect
the targets. In [4] the same approach to [3] is discussed with the
extension to a multi-agent system for fishing boats.

[5] is one of the first papers that study DTSP directly rather
than the adapted TSP to a single or multiple pursuers. It pro-
poses and proves a geometric optimal solution to minimize the
time to collect targets moving with a zero acceleration and fol-
lowing linear path passing through the origin. Each pursuer has
to catch one target and come back to the origin before starting the
next target. A similar configuration is studied in [22, 23]. Here,
the DTSP is studied for the application of multiple weapons to
multiple target assignments, where the weapons play the role of
the salesmen, and targets play the role of the cities to be vis-
ited. The specific constraint here is that the problem needs to be
solved in a very short time. The algorithm turns out to be a mod-
ern ILP solver, allowing to solve instances of relevant size for a
weapon-to-target assignment problem in a reasonable short time.
The solutions are often globally optimal. However, the chosen

constraints make these two problems limited to a specific con-
figuration.

In [7, 26], a SOM-based approach is proposed to control a
team of AUVs to visit moving targets in a dynamic 3-D ocean
current environment. This method can deal with complicated
cases such as the number of AUVs is smaller or larger than the
number of targets. Initially, SOM is used to define the shortest
path between static targets, making it useful for energy saving.
By updating continuously targets assignment to UAVs and tak-
ing into account current perturbations on UAVs and targets, the
proposed algorithm adapts itself to reach the moving target and
to choose a shortest path. Note the principle is to adapt assign-
ments to current behavior without any effort to predict them, thus
the trajectories are not optimal and could be improved if a target
prediction becomes available. Moreover, adapting it to obtain the
shortest time rather than the shortest distance in the presence of
moving targets seems rather complicated.

3 Problem statement

In this paper, the problem can be summarized with the
following assumptions:
•N sailboats, also called agent, are deployed to collect Nt

moving targets with N ≤ Nt. Each agent is numbered from
1 to N and each target is numbered from 1 to Nt;
•Targets must be collected with the least time, i.e. a target is

assigned to a particular sailboat if it is able to be at the target
at the earliest possible time, even if it needs to travel a longer
distance compared to other nearby sailboats;
•Targets need to be recovered once by only one boat;
•Targets cannot be added or removed during the mission;
•Agents start in an initial “home ” location and must come

back to the “home ” to complete its mission after they have
reached their targets;
•The number of targets attributed to sailboats is not necessar-

ily equal, but each agent collects at least one target.
Each target is represented by a number. For instance, [4, 2, 3, 1]
means that the sailboat has to recover target 4, then target 2,
target 3 and finally target 1, before coming back to the home
position.

4 Genetic algorithm

A genetic algorithm achieves a quasi-optimal solution from a
random set of initial feasible solutions called population. From
the initial generating population, each solution is then evaluated
by using a fitness function describing the desired configuration.
In our case it is the shortest time to reach all the moving tar-
gets. For that, a prediction for the movement of each target and
a calculation for the interception time are required. Once the
fitness is evaluated, a selection of the parents is made by orga-
nizing a competition between them. Children are generated from
crossovers and mutations among parents, and then they become
the new population. The reproduction cycle continues until a
stopping criteria is reached. The best solution of each iteration is
kept in memory to make the final choice.

In this paper, the GA has been built to minimize the distance
to be travelled by the agent during the collecting process. The
following subsections described the algorithm design. Figure 1
shows the flowchart of the algorithm. Note this algorithm can
deal with all kinds of vehicles because time to perform manoeu-
vres are supposed to be negligible compare to time to reach
the target (more details on these hypothesis will be provided in
Section 5.1).

4.1 Initialization

As usual in genetic algorithms, the initial population is cho-
sen randomly. Let define the population matrix Lpop of size
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Fig. 1: Genetic algorithm flowchart

Npop ×Nt where Npop is the size of the population, and
Lpop (i, :) is the solution associated to the subject i inside the
population. A subject i corresponds to the solution Lpop (i, :).
A solution associated to subject i is the order in which targets
are to be collected by agents. Let also define the randomly split
matrix Lsplit of size Npop × (N − 1) associated to the popula-
tion Lpop, with Lsplit (i, :) is the split vector associated to the
subject i. The split list Lsplit (i, :) assigns the Nt targets inside
Lpop (i, :) to the N agents such that
•Agent 1 has to collect targets [Lpop (i, 1) , . . . ,
Lpop

(
i, Lsplit (i, 1)− 1

)]
,

•Agent j for j ∈ [2, . . . , N − 1] has to collect targets[
Lpop

(
i, Lsplit (i, j)

)
, . . . , Lpop

(
i, Lsplit (i, j + 1)− 1

)]
,

•Agent N has to collect targets
[
Lpop

(
i, Lsplit (i, N)

)
, . . . ,

Lpop (i, end)],
•Lsplit (i, a) < Lsplit (i, b) for all (a, b) ∈ [1, N − 1]2 such
a < b.
Example: Suppose N = 3 agents {a, b, c}, and solution i is
associated to the list Lpop (i, :) = [2, 4, 1, 3, 7, 6, 5] with the
split list Lsplit (i, :) = [3, 5]. Thus Agent a pursues [2, 4],
agent b pursues [1, 3] and agent c pursues [7, 6, 5].

LetNk be the number of targets collected by Agent k such as
•N1 = Lsplit (i, 1)− 1 ,
•For j ∈ [2, . . . , N − 1],Nj = Lsplit (i, j + 1)− Lsplit (i, j),
•NN = N + 1− Lsplit (i, N).

The fitness of each solution is evaluated as described in the
Section 4.2.

4.2 Fitness evaluation and fitness list

For each subject i in the population, let fi be the fitness of the
subject i and Fi ∈ RNt be the list of fitness discrepancy. The
fitness fi of the solution corresponds to the time performed by
the slowest agent in the fleet to collect all its targets and to return
back home. Let define also the following sum of fitness f̄i,k and
f i,k . f̄i,k is the fitness of an Agent k in the solution i: it is to be
used for fitness calculation. f i,k is the fitness of an Agent k in
the solution i when the agent reaches the second last target, and
will be used in Section 4.3. One has

f̄i,k =

jmax,k∑
j=jmin,k

Fi (j) , f i,k =

jmax,k−1∑
j=jmin,k

Fi (j)

where jmin,k and jmax,k are respectively the index of the first
and last targets collected by agent k inside list Fi. Thus, one has
jmax,k = Lsplit (i, k) if k < N , jmax,k = Nt else, jmin,k =
Lsplit (i, k − 1) if k > 1, jmin,k = 1 else. The fitness evalua-
tion can be expressed with the following Algorithm 1.

Algorithm 1: fitness evaluation
Require: Initially, let Fi = 0Nt×1 be the current fitness, t = 0

be the current time instant, n = 1 be the current agent index
and pn = [0, 0] be its initial position.
for j = 1 : Nt do

if j = Lsplit (i, n), the next agent is selected: then
take t = 0, told = 0 and n = min (n+ 1, N − 1).

end if
◦ Take the target k = Lpop (i, j) and evaluate its current
position ptk (t) (using for example Section 5.3).
◦ Using ptk (t) and current Agent n position pn (t), eval-
uate their interception point p̄ (k, n) and interception time
tk,n > t (using for example Section 6.1).
◦ Update Agent n position, fitness and time : take told = t,
Fi (j) = tk,n − told, t = tk,n, and pn

(
tk,n

)
= p̄ (k, n).

if j + 1 = Lsplit (i, n) or j = Nt, then
◦ Agent n has reached all its target. Evaluate time t0,n
to come back to home.
◦ Take Fi (j) = t0,n − told.

end if
◦ Fitness f̄i,k ∀k ∈ [1, . . . , N ] are times required by each
Agent k to collect all its target and back home. The fitness
fi of the solution corresponds to the longest time performed
in the fleet, thus fi = maxk∈[1,..., N ]

(
f̄i,k
)
.

end for

Let define the stock fitness matrix Lf of size Npop × 1 such
Lf (i) = fi and the stock matrix of increasing fitness LF of
size Npop ×Nt such LF (i, :) = Fi. These two matrices are to
be used to update the target distribution and to select parents of
the new generation.

4.3 Update target distribution

To balance the time performed by agents, Lsplit needs to
be updated. An equal distribution of the targets is not always
a good option because some targets can be collected quickly by
one agent while others can be very far from the group requiring
one dedicated agent to collect it. The target attribution is chosen
to reduce the global fitness fi by balancing the individual fit-
ness f̄i,k. For that, fitness f̄i,k after Agent k coming back home
is compared with fitness of other agents ` reaching their second
last target fi,`. If this fitness is lower, one target of a slower agent
is attributed to Agent k. The second last target is chosen to com-
pare fitness. Remind that each agent needs to collect at least one
target.

Since the fitness of an agent must be re-evaluated when its
number of targets has been modified. Only one modification by
agents is allowed in the following approach. Let q = 0Nt

be the
binary test variable to manage it. The method is described in
Algorithm 2.

If ∃j ∈ [1, . . . , N ] q (j) = 1, the modification has been
made on Lsplit. A new evaluation of the fitness fi is required
before conducting the parent’s selection exposed in Section 4.4.

4.4 Parent’s selection

Once the fitness of each solution has been calculated, a selec-
tion of these solutions is performed to become the parent of
the next generation. Nparent =

Npop

2 are generated. For that,
a Tournament Selection Method (TSM) is used as the selection
procedure. TSM is a robust and simple method for selecting
priority solutions with the best fitness, but with a chance to
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Algorithm 2: update fitness list
for j = 1 : (N − 1) do

for k = (j + 1) : N , do
if q (j) = 1, then

break : a modification has already be made for
Agent j.

else
if

(
f̄i,j < f i,k

)
& (Nk > 1) & (q (k) = 0), i.e.

Agent k has at least two targets, it has not been mod-
ified yet and its fitness f

i,k
is larger than the fitness

f̄i,j of Agent j, then
Agent j takes a target to Agent k to balance their
tasks
for p = j : (k − 1) do
Lsplit (i, p) = Lsplit (i, p) + 1

end for
put q (j) = 1 and q (k) = 1.

end if
if

(
f̄i,k < f i,j

)
&
(
Nj > 1

)
& (q (k) = 0), i.e.

Agent k has not been modified yet, Agent j has at least
two targets and its fitness f

i,j
is larger than the fitness

f̄i,k of Agent k, then
Agent k takes a target to Agent j to balance their
tasks
for p = j : (k − 1) do
Lsplit (i, p) = Lsplit (i, p)− 1

end for
put q (j) = 1 and q (k) = 1.

end if
end if

end for
end for

select also a solution with bad fitness to keep genetic diversity
for avoiding the convergence to a local minimum. TSM can be
described as follows:

1.Select randomly two subjects (i, j) inside Nparent with their
associated fitness

(
fi, fj

)
and split list

(
Lsplit (i, :) , Lsplit (j, :)

)
.

2.Define the best subject using fi and fj .
We take here PT = 1 to ensure the best solution. As the tourna-
ment is performed by selecting randomly a couple of solutions,
the diversity is not lost because two solutions with a large fit-
ness can also be selected. A loop is performed to select the
Nparent. Solution Lpop (i, :), split list Lsplit (i, :) and fitness
list F (i, :) of a chosen parent i are stocked inside the lists
Lparent, Lparent, split and Fparent.

Once the Nparent parents from the initial population have
been chosen, a crossover or mutation is provoked for each
parent with a probability of Pcross and Pmut = 1− Pcross.
Two descendants from each of the Nparent parents are gen-
erated to recreate the new generation of Npop subjects. If the
crossover is selected for parent 1, another parent 2 is chosen
randomly from the other remaining Nparent − 1 parents. Two
children are generated from each parent. Children are stocked
inside the list Lchild of sizeNpop ×Nt and Lchild, split of size
Npop × (N − 1).

4.5 Crossover

Crossover is a method where the child inherits the charac-
teristics of two parents for obtaining a better result. Crossover
operator is chosen with probability Pcross, taken here Pcross =
0.7. In case of crossover, the second parent is selected randomly.
A modified crossover inspired by the Greedy Crossover Method
and adapted for our specific problem is proposed here.

For a couple of parents (i, j) ∈ [1, . . . , Nparent]
2, let define

the parent 1 with the routeR1 = Lparent (i, :), fitness listF1 =
Fparent (i, :) and slip list S1 = Lparent, split (i, :). Simi-
larly, let define R2, F2 and S2 for the parent 2. Finally, let
Rchild, 1,Schild, 1 and Rchild, 2, Schild, 2 be the attributes of
children.

Given the two parent routes R1 and R2, the first offspring is
built with the following steps:

A) Choose a random number b inside [2, . . . , Nt − 1].
B) Check if the route leading from 1 to b or from b to the Nt

is the same in both R1 and R2, i.e. R1 (1 : b) = R2 (1 : b) or
R1 (b : Nt) = R2 (b : Nt). If this happens, then

1.If R1 (1 : b) = R2 (1 : b):
(a)Update children route: Rchild, 1 (1 : b) = R1 (1 : b) and
Rchild, 2 (1 : b) = R1 (1 : b).

(b)Define children split list: Evaluate f1 =
∑b
j=1 F1 (j) and

f2 =
∑b
j=1 F2 (j). If f1 ≤ f2, take Schild, 1 = S1 and

Schild, 2 = S1. Else, take Schild, 1 = S2 and Schild, 2 = S2.
2.If R1 (b : end) = R2 (b : end),
(a)Update children route: Rchild, 1 (b : Nt) = R1 (b : Nt)

and Rchild, 2 (b : Nt) = R1 (1 : b).
(b)Define children split list: Evaluate f1 =

∑Nt

j=b F1 (j) and
f2 =

∑Nt

j=b F2 (j). If f1 ≤ f2, take Schild, 1 = S1 and
Schild, 2 = S1. Else, take Schild, 1 = S2 and Schild, 2 = S2.

C) Otherwise
1.the fitness of R1 and R2 of the b’s right edge are compared,
i.e. f1 =

∑b
j=1 F1 (j) and f2 =

∑b
j=1 F2 (j). The shorter

one is chosen as base for first children route, i.e. if f1 ≤
f2, take Rchild, 1 (1 : b) = R1 (1 : b) and Schild, 1 = S1, else
take Rchild, 1 (1 : b) = R2 (1 : b) and Schild, 1 = S2.

2.the b’s left edge is compared in R1 and R2, i.e. f1 =∑Nt

j=b F1 (j) and f2 =
∑Nt

j=b F2 (j). The shorter one is cho-
sen as base for the second children route, i.e. if f1 ≤ f2, take
Rchild, 2 (b : Nt) = R1 (b : Nt) and Schild, 2 = S1, else take
Rchild, 2 (b : Nt) = R2 (b : Nt) and Schild, 2 = S2.
D) To complete Schild, 1 and Schild, 2, build a new route using
the fitness of the both parents or each one
1.For Schild, 1(or Schild, 2) , if Schild, 1 (1 : b) has already be

defined, thus for p from b+ 1 to Nt:
(a)Put a = Schild, 1 (p) and find the ranks n1 and n2 of ele-

ment a inside the list S1 and S2, i.e. find S1 (n1) = a and
S2 (n2) = a.

(b)Check
(1)If elements S1 (n1 + 1) and S2 (n2 + 1) exist (S1 (n1)

and S2 (n2) are not the last element of their lists)
and are not already inside of the list Schild, 1, i.e.(
S1 (n1 + 1) /∈ Schild, 1 (1 : p)

)
&
(
S2 (n2 + 1) /∈ Schild, 1 (1 : p)

)
, does

•If F1 (n1 + 1) < F1 (n2 + 1), take Schild, 1 (p+ 1) =
S1 (n1 + 1),
•Else, take Schild, 1 (p+ 1) = S2 (n2 + 1).

(2)If S1 (n1 + 1) exists and
(
S1 (n1 + 1) /∈ Schild, 1 (1 : p)

)
&
(
S2 (n2 + 1) ∈ Schild, 1 (1 : p)

)
, take Schild, 1 (p+ 1) =

S1 (n1 + 1).
(3)If S2 (n2 + 1) exists and

(
S1 (n1 + 1) ∈ Schild, 1 (1 : p)

)
&
(
S2 (n2 + 1) /∈ Schild, 1 (1 : p)

)
, take Schild, 1 (p+ 1) =

S2 (n2 + 1).
(4)Else, pick a random element not already inside of the list
Schild, 1 to complete Schild, 1 (p+ 1).

2.If Schild, 1 (b, : Nt) has already be defined, performed the
same steps than in (a) for p from b− 1 to 1 and by tack-
ing S1 (n1 − 1) and S2 (n2 − 1) instead of S1 (n1 + 1) and
S2 (n2 + 1).

Two children have been created using this method. Stock R1
and R2 inside the list Lchild and S1 and S2 inside the list
Lchild, split.

4.6 Mutation

Mutation is used to preserve and introduce genetic diver-
sity. It avoids the algorithm to converge to a local minimum
when the population is similar. Mutation operator is associated
with a mutation probability Pmut such Pmut = 1− Pcross,
taken here Pmut = 0.3. Different mutation types exist (Flip-
bit, Boundary, Gaussian, etc.), but the simplest one where only
one modification is made with an equal probability for each ele-
ment is chosen here. First, take one parent Lparent (i, :) with
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Lsplit (i, :) and give its information to the child such as R1 =
Lparent (i, :) and L1 = Lsplit (i, :). Two elements of the list
R1 are exchanged randomly following a uniform distribution. It
allows mixing targets inside an agent list and/or exchange targets
between two agents in the same operation. However, the split list
L1 stays unchanged by the mutation. This operation maintains
the genetic diversity of our population and ensures proper con-
vergence of the algorithm.

For example, suppose 3 agents {a, b, c} associate to the list
R1 = [2, 4, 1, 3, 5, 6] and the split list L1 = [3, 5], i.e. agent a
pursues [2, 4], agent b pursues [1, 3] and agent c pursues [5, 6].
We mutate R1 by exchanging the element 4 and 3 (second and
fourth position of the vector) to obtain R1 = [2, 3, 1, 4, 5, 6].
Note agent a and agent b targets have changed to become [2, 3]
and [1, 4], but agent c targets stayed unchanged.

Perform this operation twice with the same parent to obtain
two childrenR1 andR2. StockR1 andR2 inside the list Lchild
and S1and S2 inside the list Lchild, split.

4.7 New generation

Once the Npop children have been generated from the
initial population, the children become the new population
such Lpop = Lchild and Lsplit = Lchild, split, and cycle from
Section 4.2 to Section 4.7 continues. Before updating the pop-
ulation, the solution Smin of the current population with the
best fitness fmin is compared to the best solution of all pre-
vious loops noted Sopt, Lsplit,opt, fopt. If fmin ≤ fopt, the
solution is stocked to become the new optimal solution, i.e.
Sopt = Smin, Lsplit,opt = Lsplit,min, fopt = fmin.

4.8 Stopping criteria

This process finishes when the number of loops achieves a
chosen Nmax = 1000 iterations without any fitness improve-
ment, or when 10000 iterations have been performed for avoid-
ing an infinite loop if the solution does not converge. The
solution Sopt, Lsplit,opt is thus considered as the quasi-optimal
route. This one reflects the shortest time to recover all the targets
from the agents’ initial position.

5 Dynamic model

The GA exposed in Section 4 can be performed for differ-
ent agents and targets dynamics. In this paper, the problem is
focused on targets, for example buoys, pursued by sailboats, and
so the specific constraints of sailboat dynamics. In opposite to
motorboats and USV that can control their position and veloc-
ity flexibly, the position and the velocity of sailboats depend on
wind direction and speed. Moreover, autonomous sailboat has
difficulty in accelerating or decelerating rapidly. Thus, the fol-
lowing sections expose the strategy for implementing the GA
with sailboats. First, the dynamics of the sailboat and an approx-
imation of its average velocity for variable wind conditions are to
be exposed. Second, a method to evaluate the interception time
with a target is provided, using the approximation of the sailboat
velocity. This interception time is used in the GA.

5.1 Sailboat dynamics

The dynamic model of a sailboat is complex and it requires
the knowledge of parameters difficult to obtain in practice. How-
ever, for a specific wind direction and speed, it is possible to
create a diagram of the average velocity of a sailboat. Since
the distance between two targets is supposed to be large here,
the dynamic model can be simplified to assume a constant
sailboat velocity for a defined orientation and wind speed. More-
over, the time to perform maneuvers are much smaller than the
time to reach the target. This simple dynamic model allows to
implement the algorithm with a modest processing time.

Fig. 2: Polar diagram of sailboat velocity function of wind
velocity vtw . Red areas correspond to sailing direction to avoid
(dead area). [21]

Line following control for a sailboat has been studied in
[8, 10, 17, 18]. The sailboat k dynamics is approximated the
following model:

ps,k (t0 + T ) = ps,k (t0) + vs,k (t0)T (1)

where T ≥ 0 a chosen time, ps,k =
[
xs,k, ys,k

]
, vs,k =

Vs,k
[
cos
(
θs,k

)
, sin

(
θs,k

)]
are the sailboat k Cartesian coor-

dinate and velocity, with θs,k the constant sailboat heading
during t ∈ [t0, t0 + T ] chosen to intercept sailboat target as
exposed in Section 6, and Vs,k is the average velocity of the
sailboat during t ∈ [t0, t0 + T ], function of θs,k and wind
parameters as exposed in Section 5.2.

5.2 Current sailboat velocity

Sailboats’ velocity depends on the apparent wind direction
ψaw and the apparent wind speed vaw , which can be evaluated
from the current sailboat direction and speed and the true wind
direction ψtw and the wind speed vtw . As shown in [6, 21],
a diagram of the average velocity of a sailboat with regards to
the wind direction can be plotted using only the true wind, see
Figure 2. Thus, one may write Vs,k = f

(
θs,k, ψtw, vtw

)
where

f is a known function corresponding to the polar diagram of the
sailboat velocity.

Let [ψtw + π − δ, ψtw + π + δ] with the hauled angle δ be
the dead area where sailboat is considered as upwind (pink area
in Figure 2), with δ is taken equal to π

4 . When a desired orien-
tation θ̄s,k is inside the dead area, the sailboat needs to perform
tacks at 45◦ around θ̄s,k: the distance performed to be multi-
plied by two, which is equivalent to the sailboat travelling in the
direction θs,k = θ̄s,k with a velocity divided by two. Thus, the
sailboat velocity model can be approximated by
•If cos

(
ψtw (t)− θs,k (t)

)
+ cos (δ) > 0

Vs,k (t) = vmax (vtw (t)) (2)

•Else Vs,k (t) =
vmax(vtw(t))

2 where

vmax (vtw (t)) = max
θs,k ∈ [−π, π]
ψtw ∈ [−π, π]

,

(
f
(
θs,k, ψtw, vtw (t)

))
(3)

where f is a known function corresponding to the polar dia-
gram of sailboat velocity, for example, Figure 2. In the same way,
one may define

vmin (vtw (t)) =
vmax (vtw (t))

2
, (4)

which is the velocity of the sailboat when it follows a tacking
trajectory. These notations are to be used in the next sections.
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5.3 Target moving prediction

The literature offers different methods to simulate and predict
current movements in the sea [16], but all are based on complex
models and require the values of those parameters that are dif-
ficult to obtain. Thus a simple model is used here to reduce the
processing time for the GA.

The Newton’s motion equation is considered to evaluate target
dynamics:

pt,k (t0 + T ) = pt,k (t0) + vt,k (t0)T +
1

2
at,k (t0)T 2 (5)

where pt,k , vt,k = Vt,k
[
cos
(
θt,k

)
, sin

(
θt,k

)]
and at,k are

the target k coordinate, velocity and acceleration, and T a dis-
crete time. Suppose we have access to vt,k and at,k using a
method like Time series, Newton’s motion equation or by tack-
ing them constant. The comparison of these three methods is
provided in [3]. Note in these methods at,k is very small. In
[3] for example, future locations of the buoys are evaluated
using Newton’s motion equations based on historical real data
provided by GPS.

6 Target interception

To define the fitness in the GA, the interception instant and
the position between the sailboat and its target is required.
The following sections explain how to find them with different
constraints due to the wind conditions.

6.1 Interception time calculation

Consider the first sailboat velocity, noted V ∗s (t0), at the ini-
tial instant t = t0 can be evaluated using Section 6.2 with the
first evaluation of the sailboat orientation

θ∗s = atan2 (yt ∗ −ys (t0) , xt ∗ −xs (t0)) (6)

where p∗t = [x∗t , y
∗
t ] = [xs (t0) , ys (t0)],

ps (t0) = [xs (t0) , ys (t0)] and ps
(
tf
)

=
[
xs
(
tf
)
, ys

(
tf
)]

.
For initial position of the sailboat ps (t0) and the target pt (t0),
the interception time tf can be expressed as tf = t0 + T where
T can be found by solving

0 = AT 4 +BT 3 + CT 2 +DT + E (7)

with

A =
1

4
at (t0)2

B = vt,x (t0) at,x (t0) + vt,y (t0) at,y (t0)

C = (xt (t0)− xs (t0)) at,x (t0) + (yt (t0)− ys (t0)) at,y (t0)

+
(
Vt (t0)2 − V ∗s (t0)2

)
D = (xt (t0)− xs (t0)) vt,x (t0) + (yt (t0)− ys (t0)) vt,y (t0)

E = (xt (t0)− xs (t0))2 + (yt (t0)− ys (t0))2

and vt,x = Vt (t0) cos (θt (t0)), vt,y = Vt (t0) sin (θt (t0)),
similarly for at,x and at,y .

The corresponding proof is provided in 9.1. The value of T is
the smallest positive real part of these solutions. If no solution
corresponds to this criterion, it means that the sailboat cannot
reach the target. Using T , the intersection time tf = T + t0
and the interception position pt

(
tf
)

= pt (t0) + vt (t0)T +
1
2at,k (t0)T 2 can be defined. From it, one may find the desired
orientation of the sailboat ∀t ∈

[
t0, tf

]
θs (t) = atan2

(
yt
(
tf
)
− ys (t0) , xt

(
tf
)
− xs (t0)

)
The evaluated orientation θs (t0) induces a new evaluation

of the sailboat velocity Vs (t0) using θ∗s (t0) and taking p∗t =

Fig. 3: Map of wind distribution

pt
(
tf
)

=
[
yt
(
tf
)
, yt

(
tf
)]

. If V ∗s (t0) 6= Vs (t0), a second
evaluation of T is required using V ∗s (t0) = Vs (t0) and p∗t =
pt
(
tf
)
.

6.2 Average sailboat velocity during interception

In practice when vessels sail on a large area, the wind direc-
tion and speed are not identical at all positions and they are
changing with the time, influencing the sailboat velocity and so
the interception point. An average value of the sailboat veloc-
ity Vs must be defined by taking into account these conditions.
However, since evaluating the true average sailboat velocity by
taking into account variations is complicated and time consum-
ing, an approximation of this average value is performed by
taking a fixed number of points Ndiff between the initial posi-
tion of the sailboat and its target. These ones are defined at an
equal distance of each other, and their number is proportional
to the number of changes. This method allows performing the
velocity approximation in a short time for the GA.

Wind matrices Let first define the wind distribution map Mw

divided in a grid of size Nh ×Nv . The wind orientation and
velocity are supposed to be identical inside a square as shown in
Figure 3.

Let Mψ (t) and Mv (t) be matrices of wind orientation ψtw
and velocity vtw which contain the different values of ψtw ,
vtw corresponding to the wind map distribution. For example,
Mψ (1, 1) (t) = −π

4 corresponds to the first case in the map of
the Figure 3. Assume there exist a duration ∆tc such Mψ (t)
and Mv (t) can be considered constant during this interval
I = [t, t+ ∆tc], i.e. ∀ (t1, t2) ∈ I Mψ (t1) ≈Mψ (t2) and
Mv (t1) ≈Mv (t2). The wind data are supposed to be collected
using systems like NOAA or CMEMs.

Let define the index coordinate Pt (t) ∈ [1 : Nh]× [1 : Nv]
of the target coordinate pt inside Mw . In the same way, let
define Ps for the sailboat coordinate ps. Notation Mψ (Ps) (t)
corresponds to the value of the wind orientation for the sailboat
at time t.

Choice of Ndiff Let define the distance

dst =
√

(x∗t − xs (t0))2 + (y∗t − ys (t0))2 where [x∗t , y
∗
t ] are

target value defined in Section 6.1, and t̄ = dst
vmin(Mv(Pt)(t0))

a first rude approximation of the time required to reach target
position with the minimum velocity of the sailboat. Then, one
may define

Ndiff = |Pt (1) (t)− Ps (1) (t)|+ |Pt (2) (t)− Ps (2) (t)|

+

⌊
t̄

∆tc

⌋
+ 2 (8)

where bxc is the whole part of x.
One may observe:
•Ndiff = 2 if Pt = Ps, i.e. the sailboat and the target are in

the same area with similar wind conditions, and if t̄
∆tc

< 1,
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which means the sailboat catches its target before wind con-
ditions have changed significantly. Thus, only two points, the
initial position and the final position, are used to measure the
wind conditions and to evaluate the sailboat velocity.
•Ndiff = 3 if
◦Pt and Ps are two adjacent areas with two different wind

conditions. Thus, take the initial position, the final position
and a middle point to know in which area the sailboat travels
during the longest time (for example, if the target/sailboat is
close to an edge of an area, the distances inside areas are not
equal).
◦Pt and Ps are in the same area but the traveling time is

enough for wind conditions to change significantly. Thus,
take the initial position, the final position and a middle point
to know in which wind condition the sailboat travels during
the longest time.

•Ndiff > 3 if
◦Pt and Ps are in two distant areas. Ndiff is chosen to

be large enough to take at least one measurement in each
crossed area plus one. For example, if Ps = (1, 1) and Pt =
(1, 4), the sailboat needs to cross 4 areas, thus Ndiff =
|1− 4|+ 2 = 5, the 4 areas plus one.
◦Pt and Ps are in the same area, but the sailboat moves slowly

with comparison to the change of wind conditions. Simi-
larly with the previous points, Ndiff is chosen to take a
measurement for each wind condition.
◦Combination of both previous cases.

Average velocity calculation Initialize t = t0, p̄s = ps (t0), θs =
atan2 (y∗t − ys (t0) , x∗t − xs (t0)) where p∗t = [x∗t , y

∗
t ] are

target value defined in Section 6.1,

dst =
√

(x∗t − xs (t0))2 + (y∗t − ys (t0))2 and V ∗s = 0.
•For i = 1 :

(
Ndiff − 1

)
,

◦Evaluate the index coordinate P̄s (t) associated to p̄s
◦Take ψtw = Mψ

(
P̄s (t)

)
(t) and vtw = Mv

(
P̄s (t)

)
(t).

◦Evaluate v̄ using ψtw , vtw and θs with the method exposed
in Section 5.2
◦Put v = v + v̄

Ndiff
, t = t+ dst

v̄(Ndiff−1)
and p̄s = p̄s +

dst
(Ndiff−1)

[cos (θs) , sin (θs)].
•Evaluate v̄ using method exposed in Section 5.2 by taking
ψtw = Mψ (Pt (t)) (t), vtw = Mv (Pt (t)) (t) and θs. Take
v = v + v̄

Ndiff

Choose V ∗s (t0) = v (or Vs (t0) = v respectively) in Section 6.1.

7 Simulation

In this section, the result of the proposed GA algorithm is
compared with the performance of the algorithm exposed in
[4]. Since [4] studied fishing motor boat and not sailboats, the
new prediction of the sailboat velocity and targets interceptions
exposed in Section 6 are used in the existing GA algorithm to
obtain a fair comparison between these two methods. Moreover,
“home” has been added as a final target to reach in the previ-
ous GA to come back at the initial position. Major difference
between these two algorithms is the second part of the crossover
which manages the number of targets assigned to each agent. In
[4], an asexual crossover is employed.

LetN = {N1, . . . , NN} be the set of number of targets col-
lected by each agents and let Ntour be the number of iterations
made by the GA to find a solution.

Figures 4 (a),(b),(c) and (d) compare the results of these two
methods. Target positions and orientations are chosen randomly.
In Figure 4 (a) and (b), paths selected by both approaches are
evaluated without taking into account the wind direction. In
Figure 4 (c) and (d) where the effects of the wind direction are
added. The trajectory evaluated by the GA allows the sailboat
to collect targets while avoiding certain configurations such as
going upwind (bold lines).

In Figure 5, a configuration in cross is chosen to obtain a sim-
pler configuration to understand. Two different velocities of the

target are chosen, Vt = 1 and Vt = 0.5, and the maximal sail-
boat velocity is Vs = 8. For Vt = 0.5 in Figure 5 (a) and (b), one
may observe that the solutions found by the proposed GA and the
existing GA are close. However, when Vt = 1 in Figure 5 (c)
and (d), the targets are sparse. In this configuration, the tasks
for collection become more challenging. The random selection
of the population at the beginning of the GA makes the optimal
solution difficult to find. A SOM like [7, 26] could obtain a better
performance than the GA approaches for this particular config-
uration while these two GA methods can be more efficient than
the SOM in other complex configurations.

It can be observed that the proposed GA fitness is smaller than
the existing GA fitness while the existing GA converges faster to
its final solution. It can be explained by the second part of the
crossover, which makes the number of targets assigned to the
agents less stable and so the evaluation of its fitness. This allows
to better balance the mission time between sailboats.

GA. Fitness: 32.49 without
considering wind orienta-
tion. N = {14, 13, 13}.
Ntour = 3865

Old GA. Fitness: 35.24 without
considering wind orienta-
tion. N = {16, 13, 11}.
Ntour = 2738.

GA. Fitness: 32.488
with wind orienta-
tion. N = {16, 12, 12}.
Ntour = 4422

Old GA. Fitness: 35.09
with wind orienta-
tion. N = {13, 14, 13}.
Ntour = 4536

GA. Predicted fitness: 32.05.
N = {10, 9, 9, 6, 6}.
Ntour = 3013

Old GA. Fitness: 34.5.
N = {10, 10, 5, 7, 8}.
Ntour = 2956

Fig. 4: Comparison GA and SOM with different wind direc-
tions.N = 3 agents followingNt = 40 targets. Red, blue, black
and magenta lines: N sailboat trajectories. Cyan lines: tar-
get trajectories from their initial position (cyan stars) to their
final position when they are collected (blue stars). Bold lines
correspond to a configuration where the sailboat is upwind.

8 Conclusion

In this paper, a genetic algorithm for collecting multiple mov-
ing targets using a multi-agent system is provided. This proposed
algorithm finds the shortest time to collect all the moving targets
and come back to the initial position. A new method to choose
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GA. Fitness: 18.03.
N = {10, 10, 10, 10}.
Ntour = 1351, target velocity
Vt = 0.5.

Old GA. Fitness: 21.25. N =
{8, 10, 11, 11}, target velocity
Vt = 0.5. Ntour = 1351.

GA. Fitness: 22.97.
N = {9, 10, 11, 10},
target velocity Vt = 1.
Ntour = 3825.

Old GA. Fitness: 27.99. N =
{8, 10, 11, 11}, target velocity
Vt = 1. Ntour = 2531.

Fig. 5: Comparison of GA and SOM with cross configuration.
N = 5 agents following Nt = 40 targets. Red, blue, black and
magenta lines: N sailboat trajectories. Cyan lines: target trajec-
tories from their initial position (cyan stars) to their final position
when they are collected (blue stars).

the number of targets to attribute to each agent has been devel-
oped so as to reduce the overall time of the mission. This method
can be easily adapted to different kinds of vehicles.

Adaptation of this genetic algorithm for a fleet of sailboats is
also provided. A calculation of interception instant and position
is proposed. This proposed algorithm uses an approximation of
the average sailboat velocity to reduce the processing time in the
loop of the GA. This average velocity takes into account several
parameters such as wind direction and speed, which change with
the time and the localization of the sailboats. Simulation results
show the effectiveness of the proposed method with comparison
to a existing GA.

In future work, the attribution of targets to agents is to be
explored so as to guarantee an optimal configuration for some
particular scenarios, for example, when the targets are grouped
in a small stack.
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9 Appendix

9.1 Evaluation target interception time

Let ds be the distance performed by the sailboat between its
initial solution ps (t0) = [xs (t0) , ys (t0)] and its final position
ps
(
tf
)

=
[
xs
(
tf
)
, ys

(
tf
)]

. Since (1), this distance is equal
to

vs (t0)2 T 2 = d2
s (9)

where vs (t0) is the sailboat velocity. From (9), one may write

vs (t0)2 T 2 =
(
xs
(
tf
)
− xs (t0)

)2
+
(
ys
(
tf
)
− ys (t0)

)2

and since the final position of the sailboat is the same to the target
position, i.e. ps

(
tf
)

= pt
(
tf
)
, one has

vs (t0)2 T 2 =
(
xt
(
tf
)
− xs (t0)

)2
+
(
yt
(
tf
)
− ys (t0)

)2
Using (5), one may write

vs (t0)2 T 2 =

(
(xt (t0)− xs (t0)) + vt,x (t0)T +

1

2
at,x (t0)T 2

)2

+

(
(yt (t0)− ys (t0)) + vt,y (t0)T +

1

2
at,y (t0)T 2

)2

and formatted as

0 = 2 [(xt (t0)− xs (t0)) vt,x (t0) + (yt (t0)− ys (t0)) vt,y (t0)]T

+ [(xt (t0)− xs (t0)) at,x (t0) + (yt (t0)− ys (t0)) at,y (t0)

+
(
vt (t0)2 − vs (t0)2

)]
T 2 + dts (t0)2

+ [vt,x (t0) at,x (t0) + vt,y (t0) at,y (t0)]T 3 +
1

4
at (t0)2 T 4

We put A, B, C, D and E as described in Section 6.1 and one
get 0 = AT 4 +BT 3 + CT 2 +DT + E, which can be solved
to obtain different values of T .
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