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Abstract

In this study we use level-k thinking and a recently proposed model of

non-equilibrium beliefs in dynamic games (PBNLK) to predict behavior in a

tournament with self-selection. We �nd that the combination of level-k and

PBNLK predicts both the population of types in the tournament, as well as

the mean and variance of e�orts better than Nash equilibrium, a static level-k

model and other models of non-equilibrium beliefs. Our results show that non-

equilibrium beliefs are an important determinant for the decision to compete

in a tournament and the performance in that tournament. Moreover, a useful

model of non-equilibrium beliefs should allow players to update their beliefs

during the course of the competition.
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1 Introduction

In modern labor markets, there is considerable variety in the compensation schemes

o�ered to employees both between �rms and within �rms. These compensation

schemes include �xed wages, piece rates, bonuses and relative performance pay such

as tournaments.1 One of the �rms' key objectives when implementing a payment

scheme is to screen the pool of candidates in the recruitment or promotion process.

To achieve this objective and attract applications from the most suitable candidates,

�rms need a good understanding of how workers choose between payment schemes.

As a result, there is a growing literature in labor economics analyzing workers' self-

selection into di�erent compensation schemes and the impact on their subsequent

performance. Experimental research shows that, holding ability constant, gender,

risk aversion, social preferences and the perceived probability of winning a�ect self-

selection into tournaments (Niederle and Vesterlund, 2007; Eriksson et al., 2009,

�ETV�; Dohmen and Falk, 2011 and Balafoutas et al., 2012). Moreover, workers

that have self-selected into a tournament are more productive than workers that

have been assigned to the tournament (ETV and Balafoutas et al., 2012). The

�ndings of these experiments have been con�rmed in real labor markets (Flory et

al., 2015); and behavior in this type of experiment has predictive power for real

labor market entry decisions (Buser et al., 2014).

This study contributes to this literature by focusing on the role of workers' beliefs

about their opponents' behavior. In particular, we analyze the usefulness of models

of non-equilibrium beliefs for predicting the performance of a tournament with self-

selection. ETV's tournament experiment o�ers ideal conditions for this endeavor.

1A survey of 97 UK-based organizations found that 48% of organizations use performance-

related rewards schemes. To measure performance 58% of organizations rely on individual per-

formance ratings (like bonuses or piece rates) and 39% use relative performance ratings (like

tournaments). Note that these two groups are not mutually exclusive (Bailey et al., 2017).
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The experiment consists of two treatments in a between-subject design. The Bench-

mark treatment is a standard two-player tournament. In the Choice treatment,

subjects can self-select into a piece rate compensation scheme or the tournament

scheme. In the �rst step, we estimate the population level frequencies of the level-k

model for the Benchmark treatment. In the second step, we use these population

level frequencies to predict the outcome of the Choice treatment. Level-k thinking

does not explicitly allow players to update their beliefs over the course of a dynamic

game. Levin and Zhang (2019) propose a new model of non-equilibrium beliefs

(NLK) that bridges Nash equilibrium and level-k thinking. In an extension of their

model to dynamic games (PBNLK) players update their beliefs about what type of

opponent they face during the course of the game. We �nd that the combination of

level-k and PBNLK accurately predicts (i) the population of types that self-select

into the tournament; (ii) the updating of beliefs after the self-selection stage; and

(iii) mean and variance of e�ort in the tournament stage.

The �ndings of this paper have implications beyond the self-selection decision in

labor markets. A good solution concept should help us make sense of the behavior

that we observe. But for a solution concept to be useful for policy makers and

mechanism designers, it should also have predictive power for future behavior, even

when details of the game are modi�ed.2 Levin and Zhang (2019) have already

shown that their PBNLK solution concept explains behavior in centipede games

better than Nash equilibrium and level-k thinking. The present study �nds that in

a tournament context, PBNLK has the greatest out-of-sample predictive power in

a modi�ed version of the tournament among all the alternatives considered. Thus,

PBNLK and its updating of beliefs during the course of a game seem to be important

2Gabaix and Laibson (2008) argue that economic research does not emphasize predictive pre-

cision as much as the natural sciences and they �hope that economists will close this gap. Models

that make weak predictions (or no predictions) are limited in their ability to advance economic

understanding of the world� (p. 296). Studying the performance in out-of-sample predictions also

helps to avoid model over�tting.
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concepts that promise to be valuable for the design of new policies and deserve more

attention in future research.

2 Rank-order tournaments

Rank-order tournaments are introduced by Lazear and Rosen (1981). Two players

compete in a tournament. Each player i ∈ {1, 2} chooses an e�ort level xi, which

results in output yi = xi + εi. The output shocks εi are independently distributed

according to a uniform distribution on the interval [−a, a]. The player with the

highest output receives prize W, the other player receives w, with W > w. Players

incur costs that are convex and increasing in their own e�ort choice. Following most

experimental studies, we assume a quadratic cost function C(xi) = cx2i .

Player i chooses the e�ort level xi that maximizes her expected utility,

EUi(xi, x−i) = Gi(xi, x−i) (W − w) + w − cx2i , (1)

where Gi denotes the probability that player i has the highest output.

For W − w < 8 c a2, there is a unique symmetric Nash equilibrium in which both

players choose

x∗1 = x∗2 =
W − w
4ac

. (2)

Experimental studies of rank-order tournaments, starting with Bull et al. (1987),

commonly �nd that average e�ort levels are reasonably close to the Nash equilibrium

prediction, but the variance in e�orts is huge (see Dechenaux et al., 2015, for a survey

of this literature.).

ETV's experiment uses the following parameter values: W = 96, w = 45, a = 40

and c = 1
150
, which induce an equilibrium e�ort of 48. The Choice treatment di�ers
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Table 1: Experimental results: E�ort levels in tournament

Experiment Mean Variance Equilibrium e�ort

ETV Benchmark 53.3 652.3 48

(rounds 1-20) (rounds 1-20)

ETV Choice 61.6 258.2 48

(rounds 1-20) (rounds 1-20)

from the Benchmark treatment in that subjects have the choice to opt out of the

tournament and work for a piece rate instead. The piece rate is set such that (i) zero

e�ort leads to a �xed payment of 45 (equal to the loser's prize in the tournament)

and (ii) the maximum expected utility of a risk neutral player is the same as the

expected utility in the Nash equilibrium of the tournament. Therefore, risk neutral

players are indi�erent between the piece rate and the tournament and those who

choose the tournament should again exert the equilibrium e�ort of 48. In both

treatments, subjects played 20 rounds with random rematching after each round.

ETV's results are summarized in Table 1. In the Benchmark treatment, average

e�ort is 53.3, which is slightly above the equilibrium prediction. The more striking

feature is the huge variance in e�orts of 652.3. In the Choice treatment, the average

e�ort in the tournament is higher (61.6) and the variance in e�ort is lower (258.2)

than in the Benchmark treatment. Balafoutas et al. (2012) �nd a similar treatment

e�ect for average e�orts using a real-e�ort task and a within-subject design.

The huge variance in e�orts, especially in the Benchmark treatment, and the change

in the distribution of e�orts when moving from the Benchmark treatment to the

Choice treatment cannot be reconciled with the Nash equilibrium prediction. In

the following, we will explore if models of non-equilibrium beliefs can explain the

variance in e�ort and predict the treatment e�ect. This is motivated by Balafoutas

et al. (2012)'s �nding that the expectation of winning the tournament, which is
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derived from the beliefs about other subjects' e�ort choices, is the most signi�cant

explanatory variable for the choice of the tournament.

3 Level-k and NLK

Level-k thinking relaxes the assumption that players' beliefs about their opponents'

strategies coincide with the Nash equilibrium strategies. Instead, beliefs are modeled

by a hierarchy of beliefs. The key issue in any application of level-k thinking is the

speci�cation of the starting point of this belief hierarchy, the non-strategic level-0

type (L0). A common choice for L0 is a uniform distribution over all non-dominated

actions. In rank-order tournaments all e�ort levels above the equilibrium e�ort are

dominated. As L1 and all higher types will never play dominated strategies, a level-

k model that builds on a L0 speci�cation that rules out dominated strategies cannot

describe the vast amount of e�ort choices above the equilibrium level.3

Thus, a L0 speci�cation that puts substantial mass on actions above the equilibrium

level seems necessary in rank-order tournaments. Other than that, the qualitative

results of this paper are not very sensitive to the choice of L0.We assume that L0 is

uniformly distributed between the equilibrium e�ort level, 48, and the upper bound

of the e�ort space, 100.

In the �rst stage of the Choice treatment, in which players choose between the piece

rate and the tournament scheme, we assume that L0 chooses randomly between the

two schemes.

3Bernard (2010) makes a related point in the context of using level-k thinking to explain ex-

perimental evidence of contests.
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3.1 Level-k

Level-k thinking assumes that a player believes that all other players' strategic

sophistication is exactly one level below her own level of sophistication. Thus, L1

believes that her opponent in the tournament is L0. The best response to a uniform

distribution on the interval [48, 100] is to choose an e�ort level of 10.4 L2 believes

her opponent is L1 and, thus, chooses the best response to an e�ort level of 10, L3

chooses the best response to L2's e�ort choice and so on. The level-k strategies for

ETV's Benchmark treatment are summarized in Table 2.

L1 exerts low e�ort and does not expect to win the tournament. Thus, her expected

utility of 46.3 is close to the loser's prize, w = 45. Under the piece rate scheme,

a player can reach an expected utility equal to the expected utility in the Nash

equilibrium, 55.1, independently of the other player's strategy. Therefore, when

given the choice between the piece rate and tournament scheme, L1 will choose

the piece rate. L2 (and all types above L2) expect to play against an opponent

who chooses a lower e�ort level than their own. Consequently, they have a greater

probability of winning the tournament than in Nash equilibrium, while exerting

less e�ort than the equilibrium e�ort level. Thus, L2 and higher types prefer the

tournament to the piece rate.

3.2 NLK and PBNLK

Levin and Zhang (2019) propose a generalization of level-k, called NLK, that allows

a player to believe that other players are equally sophisticated as she is. In NLK,

a NLk player believes that with probability λ she plays against a naive opponent

(i.e. a NL(k− 1) type) and with probability 1−λ her opponent is of the same type

4The derivation of the level-k strategies is provided in the Appendix.
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(i.e. a NLk type). For λ = 1, NLK is identical to level-k thinking; for λ = 0, NLK

is identical to a Nash equilibrium analysis.5

To keep the number of parameters to be estimated small and to avoid ambiguity, we

assume that λ→ 1. Consequently, NLK is identical to level-k in ETV's Benchmark

treatment. This assumption is not critical for our main results. What is important

is that NL1-types choose a low e�ort level compared to the Nash equilibrium e�ort

and that their expected utility is lower than in Nash equilibrium.6

Furthermore, Levin and Zhang (2019) extend their NLK concept to dynamic games.

Perfect Bayesian NLK (PBNLK) requires that players update their prior beliefs

about other players' sophistication, λ, using Bayes' rule. We use PBNLK to predict

behavior in ETV's Choice treatment. In the �rst stage of the Choice treatment,

subjects decide between the piece rate scheme (d = 0) and the tournament (d =

1). The above analysis shows that NL1 prefers the piece rate scheme, i.e., the

probability that a player chooses the tournament given that she is NL1 is zero,

p(d−i = 1|NL1) = 0. All higher types prefer the tournament, i.e., p(d−i = 1|NLk) =

1, for k ≥ 2. Thus, when a NL2 player learns at the beginning of stage two that

she is paired with another player to play the tournament, she will update her prior

belief, λ. The posterior belief of playing against an opponent one level below her

own level is now given by

pNL2(d−i = 1) =
λp(d−i = 1|NL1)

λp(d−i = 1|NL1) + (1− λ)p(d−i = 1|NL2)
= 0. (3)

Thus, in the second stage of the Choice treatment, NL2 types believe they play

against an opponent that is as sophisticated as they are, and they will play the

Nash equilibrium. Consequently, all higher types will best respond by also choosing

5Levin and Zhang (2019) primarily focus on the case where k = 1, but they discuss the case

with k > 1 as an extension.

6Applying NLK to a common value auction, Levin and Zhang (2019) �nd �that for inexperienced

bidders (using the �rst 18 periods), the most accurate prediction of BNLK is with λ = 1� (p. 26).
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Table 2: Predicted e�ort levels for the di�erent level-k/NLK types. Note: For the

NLK model we assume λ → 1, such that NLK is equal to level-k in the Benchmark

treatment. For ETV's Choice treatment we use PBNLK.

L0 (N)L1 (N)L2 (N)L3 EQ

ETV Benchmark [48, 100] 10 34 43 48

ETV Choice [48, 100] piece rate 48 48 48

the Nash equilibrium strategy.

Table 2 summarizes the e�ort choices of the di�erent level-k/NLK types and the

Nash equilibrium (EQ) for ETV's experiment. The table reveals that level-k think-

ing, together with PBNLK, has the potential to explain the general pattern in ETV's

experiment. Within a population where all types (LO,L1, L2, L3 and EQ) are re-

presented, the variance of e�orts will be large in the Benchmark treatment. In

the Choice treatment, NL1 will not participate in the tournament and NL2 and

NL3 exert higher e�ort than they would in the Benchmark treatment. Both of

these e�ects lead to higher average e�ort and lower variance than in the Benchmark

treatment.

4 Estimation of types

To categorize the subjects in ETV's experiment into the di�erent level-k, NLK

or equilibrium types, we closely follow the mixture model approach pioneered in

Stahl and Wilson (1994). In this mixture models approach players make logistic

errors. Let k denote the type of a player (e.g. NL1, but k can also represent

equilibrium beliefs). Player i's observed e�ort choice in the t-th round is xit and her

corresponding expected utility given her belief type k is Sk(xit). The probability of
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Table 3: Subject-speci�c type classi�cation

Benchmark Benchmark Choice Choice

Model 1 Model 2 predicted

Type (k) πk πk πk πk

L0 30.0% 30.0% 37.5% 26.7%

(N)L1 20.0% 20.0% 0% 2.2%

(N)L2 13.3% 6.7% ∼ EQ ∼ EQ

(N)L3 30.0% ∼ EQ ∼ EQ

EQ 36.7% 13.3% 62.5% 71.1%

Log-likelihood -2581.39 -2578.73 -2251.52

e�ort choice xit, if subject i is of type k, is then given by

Pr(xit|k, αi) =
exp(αi Sk(xit))∫ 100

0
exp(αi Sk(e))de

, (4)

where αi denotes the precision of subject i . As αi → 0, subject i's e�ort choices

are uniformly distributed on the interval [0, 100]; as αi →∞, player i always plays

exactly the best response.

Let πik denote the probability that player i is of type k , with
∑K

k=1 πik = 1. For

each individual i = 1, ..., N we �nd the values (πi1, ..., πiK , αi) that maximize the

likelihood
K∑
k=1

πik

T∏
t=1

Pr(xit|k, αi). (5)

Using the estimates of the πik's, we can classify subjects into di�erent types and

�nally obtain the population level frequencies, πk.

4.1 Results

Table 3 presents the results of the classi�cation for ETV's experiment. Model 1

includes L0, L1, L2 together with an equilibrium type (EQ). In addition to all the
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types in Model 1, Model 2 also includes L3. In the Benchmark treatment, Model

1 estimates a high proportion of EQ (40.0%) and L0-types (30.0%). But there are

also L1- and L2-types. Model 2 estimates similar proportions of L0 and L1, but

some subjects that have been classi�ed as L2 or EQ are now classi�ed as L3. A

likelihood ratio test, however, shows that adding the L3-type does not signi�cantly

improve the model.

ETV �nd convergence of e�ort choices towards the equilibrium e�ort level in the

Benchmark treatment. As level-k is intended to describe initial play, we redid the

classi�cation using only the �rst ten periods of the experiment. The results are

very similar: For 80% of subjects the classi�cation does not change; the subjects

that are classi�ed di�erently do not follow a particular pattern, so that the overall

composition is hardly a�ected.

Another concept that is commonly used to explain behavior in experiments is the

quantal response equilibrium (QRE, McKelvey and Palfrey, 1995). In a QRE, play-

ers make mistakes, the probability of making a given mistake being decreasing in the

cost of that particular mistake. More speci�cally, in a logistic QRE, the probability

of choosing e�ort xit is given by equation (4). Unlike level-k, however, players are

identical and hold consistent beliefs about their opponents' e�ort choices, i.e., player

i believes player j's e�ort choices follow the distribution implied by equation (4).

Dutcher et al. (2015) �nds that QRE makes better comparative statics predictions

than Nash equilibrium in a tournament experiment. We �t a logistic QRE model to

ETV's Benchmark data and �nd a maximum likelihood estimate of α = 0.0089 for

the precision parameter and a log-likelihood value of -2767.42. This log-likelihood

value is much lower than those for Model 1 and Model 2, but the QRE model has

fewer parameters because players are assumed to be symmetric and have the same

precision parameter. Using the Bayesian Information Criterion to correct for the

di�erence in estimated parameters, we �nd that Model 1 (BIC= 5412.8) and Model
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2 (BIC= 5490.8) explain the data better than the QRE model (BIC= 5537.6).

4.2 Predicting the Choice treatment

The population level distribution obtained for the Benchmark treatment, together

with the belief updating rule of PBNLK, can be used to make an out-of-sample pre-

diction for the Choice treatment which can then be evaluated using the experimental

results from the Choice treatment.

The third column of Table 3 shows the predicted distributions of types in the tour-

nament of the Choice treatment. The 20% (N)L1-types from Benchmark Models

1 and 2 will choose the piece rate scheme and, thus, there will be no (N)L1-types

in the tournament of the Choice treatment. NL2 and NL3 types will update their

beliefs about their opponent's sophistication based on equation (3) and behave like

equilibrium types.

Column 4 of Table 3 reports the type classi�cation results for the tournaments in

the Choice treatment.7 The estimated population level distribution for the Choice

treatment is reasonably close to the predicted distribution in column 3. Most strik-

ingly, only one out of the 45 subjects that chose the tournament at least �ve times

is classi�ed as L1.

The out-of-sample prediction for the Choice treatment, based on the proportions of

types shown in column 3 of Table 3, implies an average e�ort of 58.8 and variance

of 259.9. These predictions are close to the actual average (61.6) and variance

7For the type classi�cation we consider only subjects who have participated in at least �ve

tournaments. This reduces the number of subjects we classify from 60 to 45. The results are not

sensitive to this restriction. For the 58 subjects that chose the tournament at least three times,

the estimated population level distribution is L0 : 27.6%, L1 : 1.7% and EQ : 70.7%.
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Table 4: Accuracy of predicted e�ort levels

predicted predicted

mean variance RMSE MAE

PBNLK 58.8 259.9 11.3 8.8

Level-k 52.3 327.7 13.3 11.6

Nash 48 0 21.0 17.3

QRE 48.1 813.3 20.6 17.0

CH (U [48, 100]) 74.0 233.9 14.0 12.5

U [0, 100] 50.0 856.2 19.6 16.0

(258.2) of e�ort in the Choice treatment. To put the accuracy of this prediction into

perspective, we compare it to alternative models.

First, consider a level-k model without updating. Assume that the subjects in the

Choice treatment are drawn from the population level distribution estimated for the

Benchmark treatment (Benchmark Model 1 in Table 3), but they do not update

their beliefs about their opponents' sophistication. More speci�cally, although L1-

types choose the piece rate, L2-types believe they will compete with a L1-type in

the tournament. Table 4 shows the predicted mean and variance of e�ort for the

level-k model without updating. Both mean and variance of e�ort are further away

from those observed in the experiment than the PBNLK prediction.

Table 4 also reports the root mean squared error, RMSE =
√
mean((x− x̂)2),

and the mean absolute error, MAE = mean(|x − x̂|), for the PBNLK, level-k and

Nash equilibrium prediction. (Here, x and x̂ are vectors of observed and predicted

e�orts, respectively, both arranged in ascending order.) Both measures show that

PBNLK predicts e�ort better than the level-k model without updating, which in

turn predicts better than Nash equilibrium. We use the Diebold-Mariano test to

assess the signi�cance of di�erences in predictive accuracy (Diebold and Mariano,
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1995).8 All the di�erences in the predictive accuracy between the PBNLK, level-k

and Nash model are signi�cant.

Second, we consider the prediction based on the QRE model discussed in the pre-

ceding section. In the QRE model the decision to participate in the tournament

does not reveal any information about a player's type or their intended behavior.

There is, therefore, no reason to believe that behavior in the tournament during the

Choice treatment will be any di�erent from that during the Benchmark treatment.

Thus, we use the QRE model with the precision parameter α = 0.0089 to predict

e�orts. Table 4 shows that the prediction of the QRE model is poor; it narrowly

beats the Nash equilibrium prediction, although the di�erence is insigni�cant, and

is signi�cantly behind the PBNLK and static level-k predictions.

Third, we consider the predictions of a Cognitive Hierarchy model (CH, Camerer

et al., 2004). Similar to level-k thinking, the CH model consists of a hierarchy of

types. For L0-types and L1-types, the CH model is identical to level-k thinking.

L2-types, however, believe their opponent is drawn from a population consisting of

L0 and L1-types. Similarly, L3-types believe they face an opponent drawn from a

population consisting of L0, L1 and L2-types. As in the level-k model, L1-types in

the CH model will choose the piece rate in the Choice treatment. A L2-type will

then expect to face a L0 opponent if she chooses the tournament. Consequently,

the L2-type prefers the piece rate. The same is true for the L3-type. As a result, in

the CH model only L0-types choose the tournament in the Choice treatment and,

thus, e�ort choices should be uniformly distributed between 48 and 100. Table 4

8The Diebold-Mariano test is usually applied to time series forecasts; we apply it to the current

setting by regressing the di�erence in squared (absolute) prediction errors between two predictions

on an intercept with random e�ects on the subject level. For example, to test if the MAE of

the PBNLK prediction is signi�cantly di�erent from the MAE of the Nash prediction, we run the

regression |x̂PBNLK−xit| − |x̂Nash−xit| = β0 + vit, where the composite errors vit include random

e�ects on the subject level and idiosyncratic errors.
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shows that this prediction is better than the QRE prediction but worse than the

predictions from the PBNLK and static level-k models. All the di�erences between

the accuracy of the CH, QRE, PBNLK and static level-k predictions reported in

Table 4 are signi�cant, except the di�erence between CH and static level-k when

using squared deviation, which is only marginally signi�cant (p-value=0.0561).

The �nal row of Table 4 reports the prediction of random play over the entire action

space from 0 to 100. Again, this prediction is signi�cantly less accurate than the

predictions from the PBNLK and static level-k models.

5 Conclusions

We �nd that the combination of level-k and PBNLK accurately predicts (i) the

population of types that self-select into the tournament; (ii) the updating of beliefs

after the self-selection stage; and (iii) mean and variance of e�ort in the tournament

stage. Of course, our analysis merely shows that the combination of level-k and

PBNLK predicts behavior in ETV's experiment better than Nash equilibrium and

other models of non-equilibrium beliefs; it does not imply that these are the �right�

models. There might be other behavioral drivers that a�ect behavior in tourna-

ments, in addition to the models of non-equilibrium beliefs considered here. E.g.,

ETV and Balafoutas et al. (2012) show that risk aversion partly explains the choice

between tournament and piece rate and the subsequent e�ort provision. Note that

adding modest levels of risk aversion does not change the qualitative results of our

analysis. For L1-types low e�ort means low risk, so adding risk aversion makes re-

ducing e�ort even more attractive. A risk averse L2-type will exert more e�ort than

a risk neutral L2-type to increase their chance of succeeding and thereby reducing

risk. The same is true for all types above L2. Thus, with risk aversion L1 will still

prefer the piece rate and the Bayesian updating rule in the Choice treatment will be
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the same as under risk neutrality. All that changes is that L2, L3 and equilibrium

types will exert higher e�ort than under risk neutrality.

The accuracy of the predictions of level-k thinking and PBNLK, both qualitatively

and quantitatively, provide a strong indication that non-equilibrium beliefs are an

important determinant for the decision to compete in a tournament and the subse-

quent performance in that tournament. Moreover, our results highlight that a useful

model of non-equilibrium beliefs should allow players to update their beliefs during

the course of the game.

It is worth bearing in mind that the Lazear/Rosen (1981) tournament model is

not restricted to labor markets and is often used as an analogy for competitive

environments more generally. Acknowledging that non-equilibrium beliefs a�ect

entry into and behavior in competitive environments is valuable. Self-selection on

the basis of individual characteristics like productivity, risk aversion or willingness-

to-pay are not new in economics. But unlike personal characteristics, beliefs can

be changed, often at negligible cost. For example, to increase uptake of a newly

introduced competitive scheme, a one-hour training session, attended by all potential

participants, that describes the strategic considerations involved in that particular

form of competition can bring all participants on (roughly) the same page and

thereby reduce the proportion of L0- and L1-types. Alternatively, providing selected

examples of behavior and outcomes from past instances of that type of competition

can help to focus beliefs around the equilibrium action. Even if it is not possible

to in�uence people's beliefs, understanding that beliefs matter, helps to have more

realistic expectations about the performance of the competitive scheme.
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Appendix: Derivation of level-k strategies

L1's e�ort level

From the perspective of a L1-type who chooses e�ort xi, the probability of winning

the tournament is Prob(xi ≥ xL0+ε−i−εi), where xL0 follows a uniform distribution

between 48 and 100. Let z ≡ ε−i − εi and y ≡ xL0 + z. The probability density

functions of z and y are then given by

g(z) =


z+80
802

,−80 ≤ z < 0

80−z
802

, 0 ≤ z ≤ 80

(6)

and

f(y) =

∫ 100

48

g(y − xL0) 1
52
dxL0,

respectively. Thus, Prob(xi ≥ xL0 + ε−i − εi) = Prob(xi ≥ y) = F (xi), where

F (y) =


1
6

1
52

(y+32)3

802
, 0 ≤ y < 20

1
6
(52
80
)2 + 1

2
(y−20)(y+32)

802
, 20 ≤ y < 48

1
6
(52
80
)2 + 7

40
+ 1

2
(y−48)(y+60)

802
− 1

3
1
52

(y−48)3

802
, 48 ≤ y ≤ 100.

(7)

The expected utility of a L1-type is then given by

EUL1
i (xi) = F (xi)(96− 45) + 45− 1

150
x2i .

The graph of this expected utility function in Figure 1 reveals that there is a unique

interior maximum in the region 0 ≤ xi ≤ 20. By solving the �rst-order condition

1
2

1
52

(xi+32)2

802
51 = 1

75
xi , we �nd that this maximum is at xL1i = 10.265. As ETV's

experiment only allows integer e�ort levels, we round this to 10.
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Figure 1: Expected Utility of L1-type

Lk's e�ort level, for k ≥ 2

To �nd the level-k e�ort levels for L2 and L3, we �rst derive player i's best response

to player j's e�ort level. If the two players choose e�ort levels xi and xj , the

probability that player i has higher output is

Gi(xi − xj) =



0 , xi − xj < −80

1
2
(
80+xi−xj

80
)2 , xi − xj ∈ [−80, 0]

1− 1
2
(
80−(xi−xj)

80
)2 , xi − xj ∈ [0, 80]

1 , xi − xj > 80 ,

(8)

and player i's expected utility is given by

EUi(xi, xj) = Gi(xi − xj) (96− 45) + 45− 1

150
x2i . (9)
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The best response of player i to player j's e�ort xj , is then given by

xi(xj) =


153
409

(80 + xj) , xj ∈ [0, 48]

153
103

(80− xj) , xj ∈ [48, 80]

0 , xj ∈ [80, 100] .

(10)

Using this best response function, we �nd that L2's best response to xL1j = 10 is

xL2i = 34, and L3's best response to xL2j = 34 is xL3i = 43.
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