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Inhomogeneous small-amplitude plane waves of
(complex) frequency ω are propagated through a
linear dissipative material which displays hereditary
viscoelasticity. The energy density, energy flux and
dissipation are quadratic in the small quantities,
namely, the displacement gradient, velocity and
velocity gradient, each harmonic with frequency ω,
and so give rise to attenuated constant terms as
well as to inhomogeneous plane waves of frequency
2ω. The quadratic terms are usually removed by
time averaging but we retain them here as they are
of comparable magnitude with the time-averaged
quantities of frequency ω. A new relationship is
derived in hereditary viscoelasticity that connects the
amplitudes of the terms of the energy density, energy
flux and dissipation that have frequency 2ω. It is
shown that the complex group velocity is related to
the amplitudes of the terms with frequency 2ω rather
than to the attenuated constant terms as it is for
homogeneous waves in conservative materials.

1. Introduction
For the most general form of plane wave in a linear
continuous medium, the particle displacement field
u(x, t) takes the complex exponential form

u(x, t) = {U exp i(K · x− ωt)}+ (1.1)

where i =
√
−1 and

U =U+ + iU−, ω= ω+ + iω−, K =K+ + iK−

are, respectively, the complex wave amplitude vector,
the complex frequency and the complex wave vector,
all of which are constant. Throughout this paper, the
superscripts + and − refer to real and imaginary parts
of a complex quantity. The real variables x and t denote
position and time, respectively. If the planes of constant

c© The Author(s) Published by the Royal Society. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/237699725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:n.scott@uea.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

phase K+ · x= const. and the planes of constant amplitude K− · x= const. are not parallel, then
(1.1) is said to represent an inhomogeneous plane wave.

Inhomogeneous plane waves arise in many different areas of mechanics both for conservative
and for dissipative media, for example, Rayleigh and Stoneley waves in elasticity, electromagnetic
radiation in wave guides, and surface and body waves in viscous fluids, viscoelastic solids and
thermoelastic solids. Inhomogeneous plane waves are important because all solutions of a linear
problem may be written as superpositions, as finite sums or integrals, of waves of the form (1.1).

We show that the energy density, energy flux and dissipation in hereditary viscoelasticity are
connected by an energy-dissipation equation, see (3.7) below. These quantities are quadratic in
the small quantities and so each consists of two parts, one an attenuated harmonic term with
frequency 2ω and the other an attenuated constant. Usually, we time-average the governing
equations by integrating over a cycle of the harmonic terms so that only the attenuated constant
terms remain. We find that these terms satisfy the relationship (5.17) below in hereditary
viscoelasticity. Here, however, we explore the consequences of retaining the terms of frequency
2ω in the theory of hereditary viscoelasticity because these terms are of the same order of
magnitude as the attenuated constant terms. We shall see these terms satisfy the relationship
(5.8) below. For inhomogeneous waves we find that the (complex) group velocity is related to the
amplitudes of the quadratic terms rather than to those of the (attenuated) constant terms as it is
for homogeneous waves in conservative media, see (6.9) below.

The theory of inhomogeneous plane waves propagating through continuous media has been
given a detailed exposition by Boulanger & Hayes [4]. The idea of retaining the quadratic
terms in the energy density, energy flux and dissipation in the theories of thermoelasticity
and Kelvin-Voigt viscoelasticity has been explored by Scott [20,21]. Boulanger [3] obtained
some of our results in the particular case of incompressible isotropic viscoelastic fluids. Energy
density, group velocity and dissipation in homogeneous and inhomogeneous plane waves have
been much studied previously in a variety of contexts. For example, Chadwick et al. [6] and
Borejko [2] consider homogeneous and inhomogeneous wave propagation in a constrained
elastic body, e.g. an incompressible or inextensible body, and discuss energy propagation and
group velocity. Cerveny & Psencik [7] discuss time-averaged and time-dependent energy-
related quantities in inhomogeneous harmonic waves in anisotropic viscoelastic media, especially
Kelvin-Voigt viscoelasticity. Declercq et al. [9] discuss the history and properties of ultrasonic
inhomogeneous waves, including complex frequency and bounded beams. Deschamps & Huet
[11] consider complex surface waves associated with inhomogeneous skimming and Rayleigh
waves in linear elastodynamics. Rodrigues Ferreira & Boulanger [18] extend the theory of damped
inhomogeneous waves to the finite-amplitude case in a deformed Blatz-Ko material. Vashishth &
Sukhija [23] extend the theory of inhomogeneous waves to the case of porous piezo-thermoelastic
solids.

The paper is constructed as follows. In Section 2 we write down the constitutive equations
of viscoelasticity in integral form. Then in Section 3 we use the equations of motion and double
integral forms for the strain energy and the dissipation to derive an equation of energy balance
including dissipation effects. In Section 4 we derive the propagation condition for inhomogeneous
plane waves in hereditary viscoelasticity. In Section 5 we recall that the energy density, energy
flux and energy dissipation are all quadratic in the small quantities occurring in the linear theory,
e.g. the displacement and velocity gradients, and obtain expressions for them, each containing
a constant term and one harmonic with frequency 2ω where the linear quantities are harmonic
with frequency ω. We obtain some results valid for all dissipative media and further results
proved here only for viscoelastic media. Section 6 uses the dispersion relation to obtain a relation
between the complex group velocity and the complex energy velocity, which is new to hereditary
viscoelasticity, and concludes with some examples, namely, linear elasticity, the Newtonian
viscous fluid and the Kelvin-Voigt viscoelastic solid. The double integrals for the strain energy
and dissipation are evaluated in the Appendix.



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

2. Constitutive equations
The particle velocity v(x, t) is given by v(x, t) = u̇(x, t) where u denotes particle displacement,
as at (1.1), and the superposed dot denotes the time partial derivative. The components of the
infinitesimal strain tensor e and the infinitesimal rate-of-strain tensor d= ė are given by

eij =
1
2 (ui, j + uj, i), dij =

1
2 (vi, j + vj, i), (2.1)

respectively. The notation ( ), j denotes the spatial partial derivative ∂( )/∂xj .
The constitutive equations of anisotropic linear hereditary viscoelasticity are

tij =

∫ t
−∞

Gijkl(t− τ)dkl(τ) dτ (2.2)

for the Cauchy stress t, see for example [14, Eq. (2.27)], in which twice-occuring roman suffices
are summed over. On putting s= t− τ in (2.2) we see that

tij =

∫∞
0
Gijkl(s)dkl(t− s) ds. (2.3)

We assume that the components Gijkl(s) vanish for s < 0 and satisfy the further properties

Gijkl(s)≥ 0, G′ijkl(s)≤ 0, lim
s→0

Gijkl(s) = cinst
ijkl, lim

s→∞
Gijkl(s) = cijkl, (2.4)

where prime denotes differentiation with respect to argument. The constants cinst
ijkl are the

instantaneous (small t) elastic moduli and the constants cijkl are the equilibrium (large t) elastic
moduli. If the cijkl all vanish then the material is a viscoelastic fluid rather than a viscoelastic
solid.

The tensor components Gijkl(s) have the symmetries

Gijkl(s) =Gjikl(s) =Gijlk(s), s≥ 0, (2.5)

because of the symmetries of t and d. We shall need the further symmetry property

Gijkl(s) =Gklij(s), s≥ 0. (2.6)

If this symmetry is present in the elastic moduli of a purely elastic material it implies the existence
of a strain energy function. Gurtin & Herrera [13] have shown that cinst

ijkl and cijkl each satisfy the
symmetry (2.6), that is, the short and long time material behaviour in hereditary viscoelasticity
both satisfy the elastic symmetries. Day [8] has gone further. He shows that (2.6) is obeyed for
0< s<∞ if and only if a certain work integral, namely,

W (e) =

∫∞
−∞

t(τ) · d(τ) dτ,

is invariant under time reversal; i.e. if W (e(−t)) =W (e(t)). However, it cannot be claimed that
(2.6) has been proved for all s > 0 and so we shall simply assume it, in common with most authors.

3. Equations of motion and energy balance
For hereditary viscoelasticity, the linearised equations of motion in the absence of body force are

tij, j = ρv̇i , (3.1)

where the mass density ρ may be taken to be constant.



4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

On multiplying (3.1) by vi we see that

k̇ + ri, i + tijvi, j = 0, (3.2)

in which vi are the components of the particle velocity v= u̇ and

k= 1
2ρvivi, ri =−tjivj , (3.3)

denote the kinetic energy and the components of the energy flux vector r, respectively.
By modelling an isotropic viscoelastic material as consisting of springs and dashpots connected

in series and parallel Bland [1] and Hunter [17] obtained expressions for the strain energy and
dissipation in such a material as certain double integrals. When generalised to the anisotropic
case these double integrals become, for the strain energy,

w=
1

2

∫ t
−∞

∫ t
−∞

Gijkl(2t− τ1 − τ2)dij(τ1)dkl(τ2) dτ1dτ2,

=
1

2

∫∞
0

∫∞
0
Gijkl(s1 + s2)dij(t− s1)dkl(t− s2) ds1ds2

(3.4)

and for the dissipation

d=−
∫ t
−∞

∫ t
−∞

G ′ijkl(2t− τ1 − τ2)dij(τ1)dkl(τ2) dτ1dτ2,

=−
∫∞
0

∫∞
0
G ′ijkl(s1 + s2)dij(t− s1)dkl(t− s2) ds1ds2,

(3.5)

where, as before, prime denotes differentiation with respect to argument. The expression (3.4)1
for the stored energy is attributed by Del Piero & Desiri [10] to Staverman & Schwarzl [22]. The
determination of a suitable expression forw is discussed further by Golden [12] and the references
therein. Buchen [5] applied this model to plane waves in linear isotropic viscoelastic solids and
Boulanger [3] applied it to plane waves in incompressible isotropic viscoelastic fluids.

Differentiating (3.4)1 under the integral sign with respect to t gives

ẇ=
1

2

∫ t
0
Gijkl(t− τ2)dij(t)dkl(τ2) dτ2 +

1

2

∫ t
0
Gijkl(t− τ1)dij(τ1)dkl(t) dτ1

+

∫ t
−∞

∫ t
−∞

G ′ijkl(2t− τ1 − τ2)dij(τ1)dkl(τ2) dτ1dτ2.

From (3.5)1 we see that the double integral above is equal to −d. From the symmetry property
(2.6) the first two integrals above may be combined to give∫ t

−∞
Gijkl(t− τ)dij(t)dkl(τ) dτ,

which from (2.2) is equal to tijvi, j . Combining these results leads to

ẇ= tijvi, j − d. (3.6)

Eliminating tijvi, j between this equation and (3.2) gives the energy balance equation in the form

ė+ ri, i =−d (3.7)

with the total energy e given by

e= k + w. (3.8)
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4. Inhomogeneous plane waves and the propagation condition
We now assume the small disturbance in the viscoelastic body to have the most general complex
exponential plane wave form possible, so that the particle velocity v takes the form

v= {V eiχ}+ (4.1)

in which, as before, + denotes the real part of the quantity in braces and the phase factor χ is
defined by

χ=K · x− ωt= χ+ + iχ−, (4.2)

where
χ+ =K+ · x− ω+t , χ− =K− · x− ω−t (4.3)

are the real and imaginary parts of χ expressed in terms of those of K and ω. From (4.3), we see
that the wave amplitudes (4.1) may be written

v= {V eiχ
+

}+e−χ
−

(4.4)

from which it is clear that these wave amplitudes represent a sinusoidal travelling wave of
frequency ω+ and wave vector K+ which is attenuated by the real exponential factor e−χ

−
.

From the component form of the particle velocity (4.1) and its definition (2.1) we see that the
symmetrised velocity gradient may be written

dij =
{

1
2 i(ViKj +KiVj)e

iχ
}+

(4.5)

so that from its definition (2.3) the stress becomes

tij =
{
iHijkl(ω)VkKle

iχ
}+

(4.6)

with

Hijkl(ω) =

∫∞
0
Gijkl(s)e

iωsds (4.7)

denoting the half-range Fourier transform.
Applying the momentum balance equation (3.1) to the stress (4.6) and the velocity (4.1) leads

to the propagation condition {
ρωδik + iHijkl(ω)KjKl

}
Vk = 0 (4.8)

with δik denoting the components of the Kronecker delta.

5. Energy density, energy flux and dissipation
General results

We see from (3.3)–(3.5) and (3.8) that the energy density, energy flux and energy dissipation in
the energy balance equation (3.7) are quadratic in the small quantities and so, for inhomogeneous
plane waves, are expressible as linear combinations of products of the form

f(x, t) = {Aeiχ}+{Beiχ}+ (5.1)

in which χ continues to be given by (4.2)2 and A and B are complex constants. Using (4.3), we
may evaluate the product (5.1) to obtain

f(x, t) = {F e2iχ}+ + fe−2χ
−

(5.2)

and from (4.4)

f(x, t) = {F e2iχ
+

}+e−2χ
−
+ fe−2χ

−
(5.3)
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where

F =
1

2
AB , f =

{
1

2
AB∗

}+

(5.4)

in which F is a (usually) complex constant and f is a real constant. Here and throughout, ∗

denotes the complex conjugate. The first term of (5.2) represents an inhomogeneous plane wave
with phase factor 2χ, while the second consists of the real constant f attenuated by the real
exponential factor e−2χ

−
. From (5.3) and (4.4), we see that the inhomogeneous plane wave is

attenuated by the same factor and is sinusoidal with frequency 2ω+.
To interpret f , we follow [4, Section 11.5] and integrate (5.3) over a cycle of χ+ at constant χ−

to show that the mean value of f is fe−2χ
−

, which depends on x and t through χ−. The real
constant f is then regarded as a weighted mean of f(x, t).

We have already observed that the energy density, energy flux, and energy dissipation
occurring in (3.7) may be expressed as linear combinations of products of the form of (5.1) and so,
using (5.2) and (5.3), we obtain

e= {Ee2iχ
+

}+e−2χ
−
+ e e−2χ

−
(5.5)

rj = {Rje2iχ
+

}+e−2χ
−
+ rj e

−2χ−
(5.6)

d= {De2iχ
+

}+e−2χ
−
+ d e−2χ

−
(5.7)

in which E,Rj , D are (usually) complex constants and e, rj , d are real constants. These latter
constants are the weighted means of e, rj , d as discussed above.

Previously, discussion of energy and dissipation has focused on the weighted means at the
expense of terms involving the complex quantities E,Rj , D, see for example [4], often on the
grounds that these terms do not contribute when averaged over a cycle of χ+. However, the
energy-dissipation equation (3.7) is valid for all x and t, without averaging, and the neglected
terms are of the same order of magnitude (before averaging) as the retained terms.

It is our chief purpose here to explore the consequences of retaining the attenuated harmonic
terms on an equal footing with the weighted means.

On substituting (5.5)–(5.7) into (3.7) and equating the coefficients of the attenuated harmonic
terms, and those of the purely attenuated terms, we obtain

ωE −K ·R+ iD= 0 (5.8)

ω− e−K− · r + d= 0 (5.9)

respectively. Equation (5.8) has appeared at [20, Eq. (44)] and [21, Eq. (4.15)]. Equation (5.9) has
appeared at [19, Eq. (76)], [20, Eq. (45)], [21, Eq. (4.17)2] as well as at [4, Eq. (11.5.8)], where it was
derived by a different method. Equations (5.8) and (5.9) have a wide range of validity, not only in
viscoelasticity, since they are valid for any system that has an energy-dissipation equation of the
form (3.7) with energy density, energy flux, and energy dissipation being quadratic in the small
quantities and taking the forms given by (5.5)–(5.7).

We may conclude from (5.9) that if both ω and K are real, then d= 0 and there is no weighted
mean dissipation. Alternatively, if there is dissipation (d 6= 0), then we may draw the conclusion
from (5.9) that not both of ω and K can be real.

Hereditary viscoelasticity

For the kinetic energy k defined by (3.3)1 we take v in the form (4.4) and use the formula (5.3) to
show that

k=
ρ

4

{
V · V e2iχ

+
}+

e−2χ
−
+
ρ

4
V · V ∗e−2χ

−
.

By adding this equation to (A7) we obtain the equation (5.5) for the total energy e= k + w defined
at (3.8) with E and e given by (5.10) and (5.13), respectively.
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For hereditary viscoelasticity, we may obtain explicit expressions for the quantities E,Rj , D
and e, rj , d occurring in (5.5)–(5.7) by substituting the inhomogeneous plane wave forms of (4.1)
into (3.3)–(3.5) and (3.8) for the energy density, energy flux, and energy dissipation and using (5.2)
and (5.4):

E =
ρ

4
ViVi +

i

4
H ′ijkl(ω)ViKjVkKl (5.10)

Rj =−
i

2
Hijkl(ω)ViVkKl (5.11)

D=−1

2
(Hijkl(ω) + ωH ′ijkl(ω))ViKjVkKl (5.12)

e=
ρ

4
ViV
∗
i +

1

4ω+
H−ijkl(ω)V

∗
i K
∗
j VkKl (5.13)

rj =

{
− i

2
Hijkl(ω)V

∗
i VkKl

}+

(5.14)

d=−1

2

(
ω−

ω+
H−ijkl(ω)−H

+
ijkl(ω)

)
ViKjV

∗
k K
∗
l . (5.15)

We may use the symmetry property (2.6), in the form

Hijkl(ω) =Hklij(ω), (5.16)

to verify that e is real. The reality of rj is clear. It also follows from (2.6) that d is real. As in the
general case, the non-vanishing of d implies that not both of ω and K can be real.

We may verify the general equation (5.8) in the present case of hereditary viscoelasticity by
substituting for E,R, and D from (5.10)–(5.12) into (5.8) and observing that it is satisfied. In the
same way, we may use (5.13)–(5.15) for the weighted means e, rj , d to derive the identity

ωe−K · r + id= 0. (5.17)

Equations (5.8) and (5.17) have the same form, the first involving the amplitudes of the attenuated
harmonic terms and the second involving the weighted means, but it should be remembered that
(5.8) has general validity while (5.17) has been demonstrated here only for viscoelasticity.

Bearing in mind that e, rj , d are real, we may take real and imaginary parts of (5.17) to obtain

r ·K+ = ω+ e , r ·K− = ω− e+ d. (5.18)

As might be expected from the absence of d, (5.18)1 is valid also for conservative media and was
proved by Hayes [16, Eq. (4.8)2]. Equation (5.18)2 simply verifies for hereditary viscoelasticity the
general result (5.9).

6. Dispersion relation, group velocity and energy velocity
In theories of continuous media, one typically derives from the propagation conditions, such as
(4.8), an equation giving the frequency as a function of the wave vector:

ω= ω(K) (6.1)

known as the dispersion relation. In the present case of hereditary viscoelasticity we could obtain
from (4.8) the dispersion relation (6.1) in the implicit form

det
{
ρωδik + iHijkl(ω)KjKl

}
= 0.

However, it proves more convenient to consider the propagation condition (4.8) in its original
form

ρωVi + iHijkl(ω)KjVkKl = 0. (6.2)

It follows from (6.1) and (6.2) that ω and V depend on K but not on its complex conjugate
K∗. Then E,Rj , D, defined by (5.10)–(5.12), are functions of K but not K∗. Clearly, ω∗ and V ∗
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are functions of K∗ but not K. It follows that the real quantities e, rj , d, defined by (5.13)–(5.15),
are functions of both K and K∗.

Now (5.8) holds for all possible complex wave vectors K and so may be regarded as an identity
in K. Allowing the operator ∂/∂Kp to act upon this equation then gives

∂ω

∂Kp
E −Rp =−

{
ω
∂E

∂Kp
−Kj

∂Rj
∂Kp

+ i
∂D

∂Kp

}
. (6.3)

In the general case of a linear dissipative material, we do not have explicit expressions forE,Rj , D
and so can make no further progress.

Equation (5.9) also holds for all possible complex wave vectors K, but since its terms depend
explicitly also on K∗, it is to be regarded as an identity in each of the six quantities K+

p ,K
−
p , p=

1, 2, 3. Equivalently, (5.9) is an identity in each of the six components of K and K∗, with K∗ now
regarded as independent of K. Therefore, we rewrite (5.9) as

(ω − ω∗) e− (Kj −K∗j ) rj + 2id= 0

and allow ∂/∂Kp to act upon it, bearing in mind that ω depends only on K and ω∗ depends only
on K∗, to obtain

∂ω

∂Kp
e− rp =−2i

{
ω−

∂ e

∂Kp
−K−j

∂ rj
∂Kp

+
∂ d

∂Kp

}
(6.4)

As with (6.3), we do not have explicit expressions for e, rj , d in the general case of a linear
dissipative material and so can make little further progress.

There is, however, one deduction we can make from (6.4). In the case of homogeneous waves in
a dissipationless system, the complex wave vector K is replaced by the real one k, the frequency
ω also is real, and the dissipation d vanishes, so that

ω− = 0 , K−j = 0 , d= 0

and (6.4) reduces to

rp = e
∂ ω

∂Kp
(6.5)

valid for homogeneous waves in a general dissipationless system as proved by Hayes [15, Eq.
(20)].

We return to our discussion of energy and dissipation in hereditary viscoelasticity and seek a
connection between the complex group velocity ∂ω/∂K and quantities E and R already defined
at (5.10) and (5.11). We apply the operator ∂/∂Kp to (6.2) and contract the resulting equation with
Vi to obtain {

ρωVi + iHklijKjVkKl
} ∂Vi
∂Kp

+
{
ρViVi + iH ′ijklViKjVkKl

} ∂ω

∂Kp
(6.6)

+ iHipklViVkKl + iHijkpViKjVk = 0.

We may use the symmetry property (5.16) to show from the propagation condition (6.2) that the
first term of (6.6) vanishes. Furthermore, we contract (6.2) with Vi and use the result to eliminate
ρViVi from the second term of (6.6). We then use the definitions (5.10) and (5.11) to show that the
remaining two terms of (6.6) reduce to

Rp =E
∂ω

∂Kp
. (6.7)

This is an important result in the theory of inhomogeneous waves in dissipative media,
here demonstrated for hereditary viscoelasticity. It has previously been demonstrated for
thermoelasticity, see Scott [20, Eq. (69)], and for Kelvin-Voigt viscoelasticity, see Scott [21, Eq.
(5.1)]. One might expect this result to have a wider validity in the theory of dissipative media, but
this has not been demonstrated.
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We define a complex energy velocity G associated with the attenuated harmonic terms of the
energy-dissipation equation by

G=
attenuated harmonic energy flux

attenuated harmonic energy density
=

R

E
(6.8)

provided E 6= 0, which from (6.7) may be written

G=
∂ω

∂K
. (6.9)

In terms of G, (5.8) becomes

G ·K = ω + iD/E. (6.10)

The energy velocity vector more usually considered in the literature, that associated with the
weighted mean quantities, is defined by

g=
weighted mean energy flux

weighted mean energy density
=

r

e
(6.11)

a purely real vector. In terms of g, (5.17) becomes

g ·K = ω + id/e (6.12)

comparable with (6.10), and has real and imaginary parts

g ·K+ = ω+, g ·K− = ω− + d/e. (6.13)

Examples

Linear elasticity Gijkl(s) = cijklh(s), where h(s) is the Heaviside step function: h(s) = 0 if s <
0 and h(s) = 1 if s≥ 0. The quantities cijkl are the usual elastic moduli. From (4.7) we see that
Hijkl = (−1/iω) cijkl so that the propagation condition (4.8) becomes{

ρω2δik − cijklKjKl
}
Vk = 0 =⇒ det

{
ρω2δik − cijklKjKl

}
= 0. (6.14)

Thus we see that in the dispersion relation (6.1), ω is homogeneous of degree one in K. Elasticity
is a conservative theory, so that there is no dissipation, and the counterparts in elasticity of the
present equations (6.10) and (6.12), with D= d= 0, are simple consequences of the fact that ω is
homogeneous of degree one in K. Many of the present results have been obtained for constrained
elastic materials by Chadwick et al. [6, Eqns (4.16), (4.22) and (4.24)], see also Borejko [2, Eqns
(3.19), (4.18), (4.20), (4.24), (4.27) and (4.30)].

Newtonian viscous fluid Gijkl(s) = ηijklδ(s), where δ(s) is the Dirac delta function: δ(s) =
0 if s 6= 0 and

∫∞
0 f(s)δ(s) ds= f(0) for any function f continuous at x= 0. For the Newtonian

viscous fluid we have

ηijkl = (κ− 2
3µ)δijδkl + µ(δikδjl + δilδjk), (6.15)

where κ is the bulk viscosity and µ the shear viscosity. Thus, from (4.7) we see that for viscous
fluids Hijkl = ηijkl, independent of ω. The propagation condition (4.8) then becomes{

ρ iωδik − ηijklKjKl
}
Vk = 0,

where ηijkl is given at (6.15). This is discussed further in [19] in which the present equations (5.9)
and (5.17) are derived for compressible viscous fluids.
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Kelvin-Voigt viscoelasticity Gijkl(s) = cijklh(s) + ηijklδ(s), which is simply a linear combination
of linear elasticity and the Newtonian viscous fluid described above. Then

Hijkl(ω) =−
1

iω
cijkl + ηijkl

so that the propagation condition (4.8) becomes{
ρω2δik − (cijkl − iωηijkl)KjKl

}
Vk = 0,

the same as [21, Eq. (3.9)] derived directly for a Kelvin-Voigt viscoelastic material. The present
equations (5.9) and (5.17), and many others, are derived directly for a Kelvin-Voigt viscoelastic
material in [21] .
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A. Appendix

Evaluation of the integral (3.4)2 for w
From (4.5) and (5.3) we see that

dij(t− s1)dkl(t− s2) =−
1

8

{
(ViKj +KiVj)(VkKl +KkVl)e

2iχ+−2χ−
eiω(s1+s2)

}+
+

1

8

{
(ViKj +KiVj)(V

∗
k K
∗
l +K∗kV

∗
l )e−2χ

−
eiωs1−iω

∗s2
}+

.

(A1)

We can show from this equation that the integrand of (3.4)2 may be written

Gijkl(s1 + ss)dij(t− s1)dkl(t− s2) =−
1

2

{
Gijkl(s1 + ss)ViKjVkKle

2iχ+−2χ−
eiω(s1+s2)

}+
+

1

2
Gijkl(s1 + ss)ViKjV

∗
k K
∗
l e
−2χ−

e−ω
−(s1+s2) cosω+(s1 − s2),

(A2)
where (2.5) has been used. By taking the complex conjugate of Gijkl(s1 + ss)ViKjV

∗
k K
∗
l and

using the symmetry (2.6) we see that this quantity is real leading to the last line of (A2).
Dropping temporarily the suffixes ijkl, we evaluate the integrals

I1 =

∫∞
0

∫∞
0
G(s1 + s2)e

iω(s1+s2) ds1ds2, (A3)

I2 =

∫∞
0

∫∞
0
G(s1 + s2)e

−ω−(s1+s2) cosω+(s1 − s2) ds1ds2, (A4)

as these integrals will be needed in performing the double integral in (3.4)2 with integrand (A2).
By means of the substitutions α= s1 + s2 and β =−s1 + s2 we see that

I1 =
1

2

∫∞
0

∫α
−α

G(α)eiωα dβ dα

and on performing the β integral

I1 =

∫∞
0
G(α)α eiωα dα=

1

i

d

dω

∫∞
0
G(α)eiωα dα

=−iH ′(ω), (A5)
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where H(ω) =
∫∞
0 G(α)eiωαdα, see (4.7). Also, we see that

I2 =
1

2

∫∞
0

∫α
−α

G(α)e−ω
−α cos(ω+β) dα dβ

=
1

ω+

∫∞
0
G(α)e−ω

−α sin(ω+α) dα

=
1

2iω+

∫∞
0
G(α)

(
eiωα − e(iω)

∗α
)
dα

=
1

2iω+

(
H(ω)− {H(ω)}∗

)
=
H−(ω)
ω+

, (A6)

where H−(ω) denotes {H(ω)}−, the imaginary part of H(ω).
We now evaluate w by performing the integrals in (3.4)2 taking the integrand in the form (A2).

The ensuing integrals I1 and I2 are given by (A5) and (A6), respectively, so that we finally obtain

w= {W e2iχ
+

}+e−2χ
−
+ w e−2χ

−
, (A7)

where

W =
i

4
H ′ijkl(ω)ViKjVkKl, w=

1

4ω+
H−ijkl(ω)ViKjV

∗
k K
∗
l .

Evaluation of the integral (3.5)2 for d
To evaluate d by means of (3.5)2 we need to evaluate the same double integral as in (3.4)2 except
that Gijkl(s1 + s2) is replaced by its derivative G ′ijkl(s1 + s2). Therefore the integrand of (3.5)2
must be replaced by (A2) except that Gijkl(s1 + s2) is replaced by its derivative G ′ijkl(s1 + s2).
In place of I1 and I2 above we must therefore evaluate the integrals

I3 =

∫∞
0

∫∞
0
G ′(s1 + s2)e

iω(s1+s2) ds1ds2 (A8)

I4 =

∫∞
0

∫∞
0
G ′(s1 + s2)e

−ω−(s1+s2) cosω+(s1 − s2) ds1ds2. (A9)

Substituting α= s1 + s2 and β =−s1 + s2 as before, we see that

I3 =
1

2

∫∞
0

∫α
−α

G ′(α)eiωα dβ dα=

∫∞
0
G ′(α)α eiωα dα.

Integrating by parts gives

I3 =
[
G(α)α eiωα

]∞
0
−

∫∞
0
G(α)

(
eiωα + iωαeiωα

)
dα

=−H(ω)− ωH ′(ω), (A10)

where the integrated out limits vanish and the integral (A5) has been used.
Also, we see that

I4 =
1

2

∫∞
0

∫α
−α

G ′(α)e−ω
−α cos(ω+β) dβ dα

=
1

ω+

∫∞
0
G ′(α)e−ω

−α sin(ω+α) dα

=
1

ω+

[
G(α)e−ω

−α sin(ω+α)
]∞
α=0

− 1

ω+

∫∞
0
G(α)

{
−ω−e−ω

−α sin(ω+α) + ω+e−ω
−α cos(ω+α)

}
dα
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=
ω−

ω+

∫∞
0
G(α)e−ω

−α sin(ω+α) dα−
∫∞
0
G(α)e−ω

−α cos(ω+α) dα

=
ω−

ω+
H−(ω)− 1

2

∫∞
0
G(α)

(
eiωα + e(iω)

∗α
)
dα

=
ω−

ω+
H−(ω)− 1

2

(
H(ω) + {H(ω)}∗

)
=
ω−

ω+
H−(ω)−H+(ω). (A11)

We now evaluate d by performing the integrals in (3.5)2 using the integrals I3 and I4 given by
(A10) and (A11), respectively, so that we finally obtain equation (5.7) withD and d given by (5.12)
and (5.15), respectively.
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