
Colour and Texture Image

Analysis in a Local Binary

Pattern Framework

by

Seth Winston Stewart Nixon

Submitted for the degree of Doctor of Philosophy

UNIVERSITY OF EAST ANGLIA

School of Computing Sciences

September 2019

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with the author and that use

of any information derived there from must be in accordance with current UK

Copyright Law. In addition, any quotation or extract must include full

attribution.





Abstract

In this Thesis we use colour and Local Binary Pattern based texture analysis

for image classification and reconstruction

In complementary work we offer a new texture

description called the Sudoku transform, an extension of the Local Binary Pattern.

Our new method when used to classify members of benchmark datasets shows

a performance increment over traditional methods including the Local Binary

Pattern. Finally we consider the invertibility of texture descriptions and show

how with our new method - Quadratic Reconstruction - that a highly accurate

image can be recovered purely from its textural information.



Acknowledgements

I would like to sincerely thank my supervisor Professor Graham Finlayson for all

of his hard work and help. Especially I would like to thank him for his unwavering

belief in me throughout.

Finally I would like to thank my family for their eternal support, especially

throughout this degree.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables xii

Publications xiii

1 Context and contributions 1

1.1 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Texture analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Colour analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.1 Internal Reports . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6.2 Conference papers . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.3 Journal papers . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Image classification with feature vectors . . . . . . . . . . . . . . . 9

2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Distance metrics . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 k-Nearest Neighbour classification . . . . . . . . . . . . . . . 12

2.2.3 The Naive Bayes classifier . . . . . . . . . . . . . . . . . . . 13

2.3 Texture classification - an overview . . . . . . . . . . . . . . . . . . 17

2.3.1 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Approaches to texture classification . . . . . . . . . . . . . . 20

2.3.3 Gray Level Co-occurrence Matrices . . . . . . . . . . . . . . 25

2.3.4 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



Contents v

2.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Histogram based texture classification . . . . . . . . . . . . . . . . . 29

2.4.1 Approaches to histogram based texture classification . . . . 30

2.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Local Binary Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Rotational invariance . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Border handling . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Circular sampling . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.5 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Variations and extensions to LBP . . . . . . . . . . . . . . . . . . . 44

2.6.1 Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Local Ternary Patterns . . . . . . . . . . . . . . . . . . . . . 45

2.6.3 Improved LBP . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.4 Completed LBP . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.5 Dominance LBP . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.6 Strength LBP . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.7 Center-Symmetric LBP . . . . . . . . . . . . . . . . . . . . . 50

2.7 Colour analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Texture synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9.1 Exemplar based texture synthesis . . . . . . . . . . . . . . . 58

2.9.2 Reconstruction using Complex Wavelet Coefficients . . . . . 60

2.9.3 Reconstruction from Feature Points . . . . . . . . . . . . . . 61

2.9.4 Texture synthesis conclusions . . . . . . . . . . . . . . . . . 62

2.10 The Rank Transform and extensions . . . . . . . . . . . . . . . . . 62

2.10.1 The Rank Transform . . . . . . . . . . . . . . . . . . . . . . 62

2.10.2 The Complete Rank Transform . . . . . . . . . . . . . . . . 64

2.11 Overall conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Contents vi

6 Sudoku texture classification 123

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.1 Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.3 Histogram formation . . . . . . . . . . . . . . . . . . . . . . 128

6.1.4 Relation to the Complete Rank Transform . . . . . . . . . . 128

6.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.2 Sensitivity testing . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 Experimental parameters . . . . . . . . . . . . . . . . . . . . . . . . 134



Contents vii

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Image Recovery From Texture 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Image recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 The Minimum Contrast Algorithm . . . . . . . . . . . . . . 140

7.2.2 Quadratic Reconstruction . . . . . . . . . . . . . . . . . . . 143

7.2.2.1 Tone curve mapping . . . . . . . . . . . . . . . . . 145

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Reconstruction in colour . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Conclusions and future work 153

8.1 Overall conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 170



List of Figures

2.1 Two images and their associated intensity histograms. . . . . . . . . 10

2.2 Example of KNN classification, Left we have a 3 class training
dataset, centrally we have 3 query images and right we have KNN
classification results with 3, 5 and 7 nearest neighbors. . . . . . . . 12

2.3 The book problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Examples of transforms in images. A is the original, B is a scaled
version of A, C is scaled and rotated and D is a contrast and bright-
ness reduced version of C. . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Two textured images from the CUReT database and heatmaps of
their Fourier power spectra with the DC coefficients set to 0. Images
were converted to grayscale before having the Fourier transform
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The Level 5, Edge 5, Spot 5, Wave 5 and Ripple 5 1D filters. And
the 2D Level5/Edge5 filter. . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Example wavelet decomposition using three orientations: 0 deg,
45 deg and 90 deg and six scales. . . . . . . . . . . . . . . . . . . . . 23

2.8 Example shapes and their fractal dimensions. On the left: a perfect
square and a perfect cube. On the right: two examples from the
Outex TC 00013 dataset. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 A pixel window with three gray-levels and corresponding example
co-occurrence matrices with varying θ and d . . . . . . . . . . . . . 25

2.10 Visualisation of an example Gabor filterbank with 3 scales and 4
orientations (0 deg, 45 deg, 90 deg and 135 deg). . . . . . . . . . . . 27

2.11 Image filtered by the Gabor filter bank in Figure 2.10. . . . . . . . 28

2.12 Histogram of 3 apples, 4 oranges and 1 banana. . . . . . . . . . . . 29

2.13 MR4 filterbank [1]. Code courtesy of https://www.robots.ox.ac.uk/ vg-
g/research/texclass/filters.html . . . . . . . . . . . . . . . . . . . . 31

2.14 Comparsion of the TS and LBP features on a 3x3 neighborhood.
LBP is parametrised with 8 points and radius 1, corner pixels are
interpolated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.15 Transformation of a local neighbourhood into its LBP glyph. . . . . 35

2.16 Neighbourhood A and its 90 deg rotation B. . . . . . . . . . . . . . 36

2.17 LBP counterparts of A and B in Figure 2.16. LBP codes beneath. . 36

2.18 Examples of uniform patterns. . . . . . . . . . . . . . . . . . . . . . 38

2.19 Circular Sampling neighbourhoods. From left to right: LBP1,8,
LBP2,16 and LBP3,24. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

viii



List of Figures ix

2.20 Example of interpolating a pixel within a quadrant. Coordinates
are shown in red, S is the pixel we are sampling and x and y are
the coordinates of S within the quadrant of pixels. . . . . . . . . . . 40

2.21 Classification of images using LBP histograms . . . . . . . . . . . . 41

2.22 Examples of an image corrupted by increasing levels of gaussian
white noise and the associated LBP histograms. . . . . . . . . . . . 43

2.23 Examples of pixel neighbourhoods. Left with near uniform struc-
ture, right with a more random structure. . . . . . . . . . . . . . . 44

2.24 A neighbourhood processed into its positive and negative Local
Ternary Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.25 An image converted into its CLBP S, CLBP C and CLBP M
counterparts. (CLBP C is quantised to 16 levels, CLBP M is
approximated for visualisation) . . . . . . . . . . . . . . . . . . . . 48

2.26 Example of uniform patterns vs dominant patterns on an image. . . 49

2.27 Examples of histogram quantisation on images of Leaves . . . . . . 52

2.28 Our problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.29 Visualisation of the possible outcomes of classification in a two class
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.30 Plot of TP vs FP with example values. . . . . . . . . . . . . . . . . 56

2.31 A pixel being synthesized by the Efros and Leung algorithm. . . . . 59

2.32 The Rank and Census transforms of a single pixel neighbourhood. . 63

2.33 Comparative example of the Rank and Complete Rank transforms
in a 3× 3 neighbourhood. . . . . . . . . . . . . . . . . . . . . . . . 64



List of Figures x

6.1 A completed Sudoku puzzle. the numbers in black are placed by
the puzzle designer and the numbers in red must be deduced . . . . 124

6.2 Transformation of pixel intensities from a 3×3 image patch to rank
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Two Sudoku patterns. Left is uniform and right is non-uniform. . . 126

6.4 Transformation of a neighbourhood into its Sudoku glyph with
equality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Visualisation of a histogram equalisation function with 5 levels. . . 129

6.6 The full workflow of our experimental process. . . . . . . . . . . . . 132

6.7 Examples of the threes datasets, from left to right: Curet, Outex,
Vistex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.8 Bin density vs classification accuracy on Outex and Vistex. . . . . . 133



List of Figures xi

7.1 The image recovery pipeline. . . . . . . . . . . . . . . . . . . . . . . 139

7.2 A patch of pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 The two neighbourhoods of 7.2. . . . . . . . . . . . . . . . . . . . . 141

7.4 LBP transformations of Figure 7.3. . . . . . . . . . . . . . . . . . . 141

7.5 One greater than path through Figure 7.2. . . . . . . . . . . . . . . 142

7.6 Examples of LBP and Sudoku minimum contrast reconstruction on
MATLABs “Cameraman.tif”. . . . . . . . . . . . . . . . . . . . . . 143

7.7 Transformation of an LBP into its associated constraints. . . . . . . 144

7.8 Examples of quadratic reconstruction on “Cameraman.tif”. . . . . . 145

7.9 Example of Isotonic Regression on a Sudoku Quadratic Reconstruc-
tion of MATLABs “Cameraman.tif”. . . . . . . . . . . . . . . . . . 146

7.10 Examples of grey-scale reconstructions from Outex, Vistex, Curet
and Ponce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.11 The color image recovery pipeline. . . . . . . . . . . . . . . . . . . . 149

7.12 All resultant images from our experiments. . . . . . . . . . . . . . . 150



List of Tables

6.1 Table of mean percentage accuracies for the 4 methods described
over the 3 databases. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Table of bin quantities used for the two Sudoku methods over the
3 databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 SSIM results for the 6 methods over the 4 datasets. . . . . . . . . . 148

7.2 Table 1: SSIM results for the 6 methods over the 6 images. . . . . . 150

xii



Publications

The following are publications by the author related to this work:

5 Finlayson, Graham, and Seth Nixon. ”Sudoku texture classification.” Elec-

tronic Imaging, 2016.

6 Finlayson, Graham, and Seth Nixon ”Reconstructing a colour image from

its texture” Color and Imaging Conference, Accepted for oral presentation

in Nov 2018.

7 Nixon, Seth, and Graham Finlayson ”The Sudoku texture representation”,

In preparation, Image and Vision Computing

xiii



Chapter 1

Context and contributions

1.1 Image analysis

This thesis focuses on image analysis using methods from two primary areas. In

Section 1.1.1 we will introduce the area of texture analysis. In Section 1.1.2 we

will introduce colour in the context of image classification.

1.1.1 Texture analysis

Texture is the feel or appearance of a surface. It can be considered heuristically

using terms such as “rough” or “smooth”. It can also be considered visually as the

pattern(s) or lack thereof that a surface exhibits. Texture is widely considered to

be a feature of a region, not a point [2]. The interaction between different elements

in that area is what forms the full appearance or the texture. In digital imaging

these elements become pixels, singularly or in groups, and analyses of these has

proven useful in a wide range of areas including fingerprint recognition [3], facial

expression recognition [4] and image segmentation [65]. In this thesis we consider

texture as a feature, using it primarily for classification.

1



Chapter 1. Introduction 2

Texture analysis hinges on the assumption that it can be quantified and/or under-

stood using computational methods. It has a long history and many techniques

have been used including Gabor filters [54], Local Binary Patterns (LBP) [5] and

Basic Image Features (BIFs) [6]. There are two primary schools of thought as to

how texture is best quantified. “Global” methods consider texture as a property

of an image as a whole. “Local” methods suggest that texture is a feature of

local areas of an image. Sampling strategy is also a key. “Dense” sampling meth-

ods consider textural information at every point in the image. “Sparse” sampling

methods only consider especially salient regions in an image. Densely computed

histograms of local features such as LBP have evidenced benchmark performance

in many areas such as face recognition [7]. The Scale Invariant Feature Transform

(SIFT) is a further local method [8] which samples the image Sparsely, forming

local descriptions of the selected points. It is used in areas such as fingerprint

recognition [9] and medical imaging [10].

A significant problem in the area of texture is that no standard description of it

exists and no single method works best in all conditions. Methods have been pro-

posed which attempt to organise how we classify texture. A major contribution to

this was [11], where the authors proposed that texture classification can be split

into four categories: statistical properties, mathematical models, geometric meth-

ods and signal processing methods. This work was then extended by [12] where

they define a taxonomy of texture which also considers colour. One particular de-

scription of a set of texture classification methods is the Histograms of Equivalent

Patterns (HEP) [13]. This defines a framework which encompasses many bench-

mark methods such as LBP. They make the distinction that all methods which

are instances of HEP partition the feature space. This is based on image patches

by applying a pre-defined function on the intensities of that patch. The texture

contributions of this thesis all fit within the HEP framework.



Chapter 1. Introduction 3

1.1.2 Colour analysis

Image colour is a significantly better understood problem than texture. From a

physics point of view a colour is formed from the surface reflection of singular or

multiple wavelengths of light from the visible spectrum. From a computational

standpoint given a colour space (e.g. HSV, L*a*b or RGB) and an illuminant (e.g.

D50, D65) a colour can be defined precisely using a set of 3 values. Pertinent to

this thesis is image classification using colour and as a method this has been widely

applied.



Chapter 1. Introduction 4

1.3 Constraints

In writing this thesis we do not attempt either to survey the whole area - it is

too vast - or even to claim that we are developing the worlds best classification

algorithm, or the most comprehensive and robust image feature or description.

1.4 Contributions

The contributions of this work arise from the industrial focus and from academic

insight. We show how feature descriptions and classical machine learning tech-

niques can be used to provide robust systems for product inspection. We then



Chapter 1. Introduction 5

extend the basis of the techniques in description and in reconstruction. The main

contributions are then:

3 We develop a novel texture histogram for texture analysis within the

Local Binary Pattern framework. This new method increases the textural

information encoded while improving classification capability with higher

invariant attribute analysis.

4 We propose a new reconstruction approach to show the completeness of

the image descriptors. We show that by using quadratic programming it is

possible to reconstruct an image using its local texture codes.

The minor contributions are:



Chapter 1. Introduction 6

1.5 Thesis structure

We describe our contributions first, concentrating on the industrial material be-

fore progressing to the new work on texture and image reconstruction. We survey

relevant background literature in texture and colour analysis in Chapter 2. We

then move in Chapter 3 where we detail our industrial partner in full, the data

provided and our remit from them. Next in Chapter 4

This is followed in Chapter 5

Chapter 6 describes our new

work in texture analysis via a novel Local Binary Pattern framework which we

term “Sudoku”. We then show in Chapter 7 how is possible to reconstruct images

from their texture features using quadratic programming. This shows that the

descriptions are unique and reversible, supporting the performance capabilities in

texture image analysis.

1.6 Publications

1.6.1 Internal Reports



Chapter 1. Introduction 7

1.6.2 Conference papers

E Finlayson, Graham, and Seth Nixon. ”Sudoku texture classification.” Elec-

tronic Imaging, 2016: This forms the basis of Chapter 5 and is associated

with Contribution 3.

F Finlayson, Graham, and Seth Nixon ”Reconstructing a colour image from

its texture” Color and Imaging Conference, Accepted for oral presentation

in November 2018: The paper shows how images can be reconstructed from

their texture descriptions, as described in Chapter 6, using the basis of Chap-

ter 5.

1.6.3 Journal papers

G Nixon, Seth, and Graham Finlayson ”Understanding image reconstruction

using Sudoku and LBP”, In preparation, Image and Vision Computing

Do to the commercial sensitivity of the industrial areas of this thesis some

of the publications resulting from this thesis remain only as internal reports.



Chapter 2

Background

This Thesis focuses primarily on digital image classification: determining the con-

tents of an image using computational techniques. We focus on a two stage pro-

cess, firstly processing images into some distinct description and secondly using

classifiers to distinguish between our descriptions.

Specifically we are interested in image texture classification using histograms. To

begin this Chapter we will discuss a standard method for image classification in

Sections 2.1 and 2.2. Secondly in Section 2.3 we will focus in on how texture can

be used to discriminate between different types of images. Thirdly in Section 2.4

we will overview the spectrum of histogram based texture classification methods.

Next in Sections 2.5 to 2.7 we delve into various methods for feature extraction

based on and around the Local Binary Pattern (LBP), a focus of our work. Finally

we will overview a method for visualising our results in Section 2.8. Sections 2.9

and 2.10 review some remaining literature relevant to our work in Chapters 6 and

7.

8



Chapter 2. Background 9

2.1 Image classification with feature vectors

A question often asked in computer vision is: “How similar are two images?”. The

simplest method would be to simply take the difference between the two images,

if the two images are identical the difference will be 0. This approach is rarely

used however as it has many problems. For example, an image compared with

a copy of itself which is shifted 1 pixel to the right would have a comparatively

large difference despite the images being very nearly identical. Also, the raw pixel

values often contain a large amount of redundant data.

In vision the most common method for comparing images is to compute feature

vectors from the images and then compare these instead. These feature vectors are

a numeric description of the contents of the image, formed based on a mathematical

foundation or an observation. Consider the images “kobi.png” and ”football.jpg”

from the MATLAB default package and a feature vector for each in Figure 2.1.

The feature vectors in Figure 2.1 are the intensity histograms of the images. They

are simply counts of the number of times intensity i occurs in each image 0 ≤ i ≤

255. We can now measure how similar these two images are by comparing these

feature vectors. Feature vector comparison can be performed using a distance

metric, a classifier or other methods and some of these are detailed in the next

Section.

2.2 Classification

Ultimately in classification we boil everything down to a single number. This can

be anything from a 1 or a 0, indicating yes or no, to a percentage, indicating a

measure of similarity.



Chapter 2. Background 10

Figure 2.1: Two images and their associated intensity histograms.

2.2.1 Distance metrics

One of the most common ways for comparing two feature vectors is to use a

distance metric. These take the two vectors and perform some calculations between

the two to form a single number indicating difference or similarity. Many have been

proposed in the literature and usually fall into two groups: the first group are the

general mathematical constructs, the second is specifically designed calculations

to target an application or hand crafted feature vector.

Let us consider two vectors ~x and ~y of equal length with values x1...xn, y1...yn where

xi denotes the ith value in the vector ~x (1 ≤ i ≤ n). One of the most commonly

used distance metrics is the Euclidean distance, also known as the L2 distance (the

L2 norm of the difference between two vectors). The Euclidean distance considers

~x and ~y as vectors in Cartesian space and states that the difference between ~x and



Chapter 2. Background 11

~y is the distance between them. Euclidean distance is equal to the square root of

the sum of the squared differences between the two vectors, a lower value indicates

a more similar pair of vectors:

ED =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

Histogram intersection is another distance metric specific to histogram comparison.

It defines similarity between ~x and ~y as the amount each bin overlaps. This is

expressed as:

HI =
n∑
i=1

min(xi, yi) (2.2)

Unlike Euclidean distance Histogram Intersection is a measure of similarity, with

a higher value indicating a better match. A pre-requisite of this method is that

both histograms are normalised. It can also be shown that Histogram Intersection

is equivalent to the L1 distance (the L1 norm of the difference vector), other-

wise known as the Manhattan distance [17] when the histograms sum to 1 (the

histograms are normalised).

L1 =
n∑
i=1

|(xi − yi)| (2.3)

There are many other distance metrics used in a variety of applications includ-

ing Kullback-Liebler Divergence [5], Chi-squared distance [18] or the Hamming

distance [19].



Chapter 2. Background 12

2.2.2 k-Nearest Neighbour classification

One of the most commonly used classifiers for a set of feature vectors is the K

Nearest Neighbor (kNN) classifier. If we consider a simple problem with n classes

of samples: the premise is that a sample from class 1 will be most similar to other

samples from class 1, class 2 will match to class 2 and so on up to class n. Choice

of distance metric is paramount as the difference measured between vectors drives

classification [20].

There are many different schemes for implementing a kNN classifier. One example

would be to consider a database as a whole. If we have a set of classes of samples.

To classify a single sample we calculate the distance between it and every other

sample in the dataset. We take the minimum k distances and assign the sample

the modal class within those k results. Once repeated for every sample in the

dataset the percentage accuracy of the pass is the number of times the solution is

correct divided by the total number of samples. See Figure 2.2 for an example.

Dataset
Test

Samples

Results

3NN

5NN

7NN

Figure 2.2: Example of KNN classification, Left we have a 3 class training
dataset, centrally we have 3 query images and right we have KNN classification

results with 3, 5 and 7 nearest neighbors.

KNN classifiers do have drawbacks the primary issue being that of complexity.

With a standard KNN classifier computational time scales in O(n) for a single



Chapter 2. Background 13

sample where n is the total number of samples in the dataset. This means that

for a full experiment (classifying every image in the dataset) computational time

scales in O(n2). The number of comparisons required to totally evaluate a dataset

is expressed as:

n ∗ (n− 1) = n2 − n

as each sample must be compared with every sample except itself.

KNN classifiers have been used in a wide range of applications. Examples include

the work of [21] where they detect land mines from radar. In [22] they use a

nearest neighbor classifier as part of their process for handwritten digit recognition.

Finally we use a KNN classifier to evaluate our new texture representation in

Chapter 6.

2.2.3 The Naive Bayes classifier

Supervised machine learning algorithms form decisions based on a set of predefined

knowledge. The Naive Bayes classifier is a classic example based on Bayes theorem

[23]. This is defined as:

P (A|B) =
P (A)P (B|A)

P (B)
(2.4)

Where P (A|B) is the probability of event A given that event B has occurred,

P (B|A) is the Probability of B given event A has occurred, P (A) is the probability

of A occuring in isolation and P (B) is the probability of event B occuring in

isolation. This can be rephrased into a classification problem if A is replaced with

Class C and B with feature vector x.



Chapter 2. Background 14

P (C|x) =
P (C)P (x|C)

P (x)
(2.5)

Remembering x is a feature vector and C is a class label, equation 2.5 gives the

probability of a sample x having class label C. P (x|C) is known as the prior

probability, P (C) is known as class probability and P (C|x) is known as posterior

probability.

Let us set up a demonstrative example. We have 6 books from 2 authors, 4

of which are written by David and 2 are written by Sophie. Both authors use

the words “Adventure, Explored, Friend” in their books, however they use them

varying amounts. David uses them with probability [0.1,0.6,0.3] respectively and

Sophie with probability [0.4,0.2.0.4]. We have two class labels: CD for Davids

books, and CS for Sophie’s. We have P (CD) which is 4
6

(4 books of the 6 are

Davids) which is known as the prior probability for the class CD. P (CS) is 2
6
. We

also have the probability of the 3 words occurring given they were written by a

specific author. P (“Adventure′′|CD) = 0.1, P (“Adventure′′|CS) = 0.4 etc.

Now, a scrap of paper appears with the phrase “The adventure went well, our

hero and his friend explored the forest. Their next adventure would be..”. A Naive

Bayes classifier can be employed to determine the most likely author of this phrase.

In this case, the words in the scrap are the unknown feature vector x and we are

trying to determine which class label CD or CS is most likely. Firstly, let us

calculate for David.

P (CD|x) =
P (CD)(P (x|CD)

(Px)
(2.6)

We have two unknowns: the posterior probability we are trying to obtain (P (CD|x)

and the prior probability of the feature vector given that David is presumed the

author (P (x|CD)). P (x|CD) is a vector of probabilities, each referring to a word



Chapter 2. Background 15

David Sophie

Books

Words

Word P

Adventure 0.1

Explored 0.6

Friend 0.3

Word P

Adventure 0.4

Explored 0.2

Friend 0.4

Unknown phrase

“The adventure went well, our 
hero and his friend explored 

the forest. Their next adventure 
would be…”

Figure 2.3: The book problem.

in the phrase and the likelihood that David wrote it. To compute a vector of prior

probabilities into a scalar we exploit the identity:

P (A,B) = P (A)P (B) (2.7)

Where P (A,B) means the probability of A and B. In this case we can write

P (x|CD) as the product of each element of the feature vector:

P (x|CD) = P (x1|CD)P (x2|CD)...P (xn|CD) =
n∏
i=1

P (xi|CD) (2.8)



Chapter 2. Background 16

Also, P (x) (the denominator in the Bayes equation, also known as the evidence) is

constant independent of class so it can be removed: leading to the final equation

for determining class probability:

P (CD|x) = (P (CD)
n∏
i=1

P (xi|CD) (2.9)

Our unknown x has 15 variables (words in the phrase) and we have Davids 3 words

and their prior probabilities: P (“Adventure′′|CD) = 0.1, P (“Explored′′|CD) =

0.6 and P (“Friend′′|CD) = 0.3. There are words in the phrase which do not

appear in Davids vocabulary, in this case we will ignore them (In practice the zero

probabilities must be accounted for. Implementations of a Naive Bayes classifier

will usually implement a mechanism to account for zero probabilities. One example

is Laplace Smoothing [24]). Our final computation for David is then:

P (CD|x) =
4

6
∗ 0.1 ∗ 0.6 ∗ 0.3 ∗ 0.1 = 0.0012 (2.10)

And for Sophie is:

P (CS) =
2

6
∗ 0.4 ∗ 0.2 ∗ 0.4 ∗ 0.4 = 0.0043 (2.11)

The resulting values can then be normalized to form probabilities:

P (CD) =
0.0012

0.0043 + 0.0012
= 0.218 (2.12)

P (CS) =
0.0043

0.0043 + 0.0012
= 0.782 (2.13)

Despite Sophie only having two books she is by far the most likely author of the

phrase with a posterior probability of 0.782 compared to Davids 0.218.



Chapter 2. Background 17

The primary assumption of the Naive Bayes classifier is that features are indepen-

dent: each feature has no bearing on any of the other features (hence “Naive”). In

the majority of cases this assumption is untrue, for example in our problem it is

plausible that if you write about “Adventure” you are also likely to use the word

“Explore”. This would suggest that “Adventure” and “Explore” as features are

dependent on each other to some degree. However in practice the classifier still

performs very well.

Naive Bayes has also been extended: in our above example we are using discrete

data, the Gaussian Naive Bayes offers a solution for continuous distributions [25].

Multinomial Naive Bayes offers multiclass support [26]. Others include the Nor-

mal and Lognormal [25]. In application Naive Bayes classifiers has shown good

performance in a wide range of areas, examples include image classification [27]

and text classification [28].

In this Section we have discussed how an image may be classified using an arbitrary

feature vector. In the next Section we present an overview of the methods for

forming feature vectors based on textural information.

2.3 Texture classification - an overview

Image classification using texture is a problem of representational efficiency: how

we can capture the maximal amount of discriminative texture information from

an image. And then how we use this information to form a description of the

images texture. The question then becomes: what is image texture? In reality

this question is answered by how capture and description of image texture is

approached, the validity of the answer is then the effectiveness of said approach.

This Section is ordered as follows. Firstly we shall give a broad overview of the

texture field, some methods fall under the category of Histogram based texture

classification and will instead be discussed in Section 2.4. Secondly we shall give



Chapter 2. Background 18

a more comprehensive view of two key methods, the Gray Level Co-occurrence

matrix and the Gabor Filter. Feature vector classification is a two part process -

first forming the feature vector and secondly classifying it. Classifier choice plays

a large part in the performance of a method, however here we are interested in just

the feature vectors. Thus we shall avoid discussing how these methods perform

where possible. Texture is a very large field, many surveys have been undertaken

to capture the field [29] [30] [31] [13]. Here we simply aim to discuss the general

considerations and then the more salient approaches proposed in the literature.

2.3.1 Invariance

The process of developing a texture feature has two primary aspects. Firstly,

how textural information is captured. Secondly, the invariance of the method to

changes in imaging setup. Invariance is desirable as while a texture may remain the

same, the image may change and this may affect the textural description a method

produces. The transforms that a method may wish to be invariant to begin with

general imaging artifacts such as noise or blur. More specific attributes such as

rotation, scaling, shifting and other affine transformations or illumination changes

can then be considered. For example if we consider the images in Figure 2.4.

As human beings we can intuitively tell that all four pictures have a wood texture

despite each of the transformations. Ideally, computational texture algorithms

should be able to be able to do the same. Depending on the application of a texture

method invariance to one or all possible transforms is desirable, however some

invariances are more complex than others. Rotation is simple in consideration

as a textured image and its rotated version have the same texture. Invariance

to this is in some cases a property of the method, e.g. global statistics from

images are naturally rotationally invariant. Otherwise it is usually obtained by

some rotational transform of the features themselves “aligning” them in some way

[5][1].



Chapter 2. Background 19

A B

C D

Figure 2.4: Examples of transforms in images. A is the original, B is a scaled
version of A, C is scaled and rotated and D is a contrast and brightness reduced

version of C.

Scale is a more complex issue as different texture elements can occur at different

scales. For instance a Brick wall may be classified using the layered brick pattern

or the micro-structure of a brick. Image scale is also an arbitrary continuous

space, unlike rotation which is a bounded continuous space: there are only 360

degrees of rotation whereas there are no well defined limits to scale. Also, image

resolution becomes a factor as fine detail textural structure may not be present in

a coarsely scaled image. Scale invariance is a challenge to achieve. Most methods

utilise a multi-scale approach where features captured at multiple scales form

the description [6]. Other methods are defined in a scale-selective manner where

the scale is a parameter [32][5]. Other methods attempt to achieve true scale

invariance through use of adaptive scale selection where the scale(s) of the texture

is approximated from an image [33]. In the next Section we shall give an overview

of the general field of texture based image analysis. The methods detailed attempt

to address one or more of the described issues.



Chapter 2. Background 20

2.3.2 Approaches to texture classification

Some authors consider texture as a statistical property of an image. First order

statistics such as the mean or the variance of an image do have the benefit of

rotational and translational invariance, however they lack discriminative power.

Thus, second order statistics of images have been a focus of research. One of

the earliest methods is that of Haralick and Shanmugan [32] where they present

texture as the co-occurrence of gray-levels in an image at some distance and angle.

Matrices calculated at varying distances and angles are computed and statistics of

these matrices provide an index for recognition. A later extension was the Gray

Level Difference Matrix, where co-occurrence of differing pixel values was measured

instead [34]. Another statistical approach is that of [35] where they use a range of

multivariate analysis techniques such as the Single Valued Decomposition (SVD),

autocorrelation and autocovariance functions on raw images to extract texture

features.

The Fourier transform is an immensely well regarded technique in both mathe-

matics and computer science. Its transformation of information from the spatial

domain to the frequency domain has heralded numerous advances across many

disciplines. The primary products of the 2D Fourier Transform are the magnitude

and phase spectra of an image. When computed over for a texture image, usu-

ally using a Discrete Fourier Transform (DFT), the distribution of the magnitude

spectrum describes the coarseness and directionality of a texture. Two example

textured images with their Fourier power spectra are shown in Figure 2.5, note

how the spectrum is more concentrated for the coarse texture.

In [36] they use coefficients computed from the magnitude spectrum as texture

features. The Fourier transform is also key in many filtering applications.

Filtering approaches localise the image in scale and orientation to extract fea-

tures. Laws Operators [37] are widely considered to be the first filtering method

in texture. These texture measures are calculated from the responses of a set of



Chapter 2. Background 21

Figure 2.5: Two textured images from the CUReT database and heatmaps
of their Fourier power spectra with the DC coefficients set to 0. Images were

converted to grayscale before having the Fourier transform applied.

separable linear filters. Separable filters are those that exist in 1 dimension in x

and y. The product of two separable filters produces a 2D filter. A large selection

of 1D filters for extracting level, edge, spot, wave and ripple structures are defined;

the multiplication of any two of these producing a distinct 2D filter. Examples are

shown in Figure 2.6.

L5 = [ 1 4 6 4 1 ]
E5 = [ -1 -2 0 2 1 ]
S5 = [ -1 0 2 0 -1 ]
W5 = [ -1 2 0 -2 1 ]
R5 = [ 1 -4 6 -4 1 ]

L5/E5 =

-1 -2 0 2 1
-4 -8 0 8 4
-6 -12 0 12 6
-4 -8 0 4 8
-1 -2 0 2 1

[ ]
Figure 2.6: The Level 5, Edge 5, Spot 5, Wave 5 and Ripple 5 1D filters. And

the 2D Level5/Edge5 filter.

Images are convolved with a set of these filters replacing each pixel with a set of

measures describing its textural “energy”. A large contingent of modern filtering



Chapter 2. Background 22

methods for texture use Gabor filters [38] [39], a type of filter designed to approx-

imate the visual system in mammals. Statistics taken from a careful selection of

these has shown discriminative capability as a feature vector. This approach is

reviewed in more detail in Section 2.3.4.

Probabilistic structures are also prevalent in texture classification. Markov Ran-

dom Fields (MRFs) are one example that model random processes and image

textures satisfy the necessary conditions to be calculated by this model. In the

work of Chellappa et al. [40] they make the assumption that a texture can be gen-

erated by a Gaussian MRF. They first show that an textured images pixels satisfy

the Markov Property. Then, for a given textured image, they calculate a least

squares estimate of the parameters of the model that would generate the texture.

These estimated parameters form a feature vector. Autoregressive models are an

instance of MRFs. The Simultaneous Autoregressive Model (SAR) of texture is

a member of a class of models “specifically designed to model spatially autocorre-

lated data based on neighborhood relationships”[41]. In [42] the authors present

a multi-resolution and rotational invariant SAR. Again, estimated parameters of

the model which would generate a texture provide a feature vector.

Wavelet transforms offer a decomposition of an image into oriented sub-bands of

information at a certain scale. In imaging they are similar to the Fourier transform

in that they transform an image from the spatial domain to the spatial-frequency

domain. However where Fourier models an image as a sum of infinite sinusoids,

wavelet transforms model an image as a sum of finite wavelets via scaling, rotation

and translation. Usually designed to be over-complete they also offer excellent

reconstructive capability. Figure 2.7 shows an example wavelet decomposition.

A huge variety of different wavelets are available and some have seen use in texture.

In [43] they use the channels of a Discrete Wavelet Transform to form a feature.

In [44] they form feature vectors using the Dual Tree Complex Wavelet Transform

(DTCWT) to extract frequency and directional information from an image. [45]



Chapter 2. Background 23

Original Image

Discrete Wavelet Transform

Figure 2.7: Example wavelet decomposition using three orientations: 0 deg,
45 deg and 90 deg and six scales.

offers another method based on the DTCWT. They show that the variance and

entropy calculated from each of the oriented sub-bands of information at each scale

offer feature vectors which are discriminative and robust to noise [45].

A perfect fractal is a shape which, among other things, if equally subdivided

and re-scaled produces itself. Shapes which exhibit this property have an integer

fractal dimension, shapes which do not have a fractal dimension somewhere been

two integers, examples are shown in Figure 2.8. In imaging the fractal dimension

is considered a measure of complexity or roughness and can be used as a feature

for describing texture.

In [46] they calculate the fractal dimension of textures and complement it with a set

of measures known as lacunarity to form feature vectors. Other methods exploit

the fractal dimension using a fractional Browninan motion (fBm) model. The fBm

model is characterised by the single “Hurst” parameter which is a measure of the

roughness of an image. In [47] they use a generalised set of Hurst parameters as

features.

Sparse sampling techniques presume that only certain areas of an image contain

important textural information. In [48] they present a method based on local affine



Chapter 2. Background 24

dim = 2

dim = 3

dim = 2.5051

dim = 2.4780

Figure 2.8: Example shapes and their fractal dimensions. On the left: a
perfect square and a perfect cube. On the right: two examples from the

Outex TC 00013 dataset.

regions which are invariant to local transforms. They use Harris and Laplacian de-

tectors to extract feature points from an image. Descriptors for these points come

in two forms. Firstly the Intensity Normalised Spin Image based on Spin Images

[49]. Secondly the RIFT (Rotationally Invariant Feature Transform) descriptor

based on SIFT [8]. These descriptors are clustered to form signatures, which can

be compared using a metric such as the Earth Movers Distance.

Learning approaches use a data driven approach and machine learning techniques

to classify texture images. Deep learning techniques such as that of [50][51] are

known for exceptional performance albeit with a rather obfuscated mechanism. In

[50] they use a modification of the traditional Convolutional Neural Network to

extract highly dimensional feature vectors from images. They show performance

equivalent or better to current state of the art deep learning techniques. As part

of the contribution of Hayman et al. [52] they offer a learning approach using Sup-

port Vector Machines evidencing the importance of scale in texture classification

algorithms.

As evidenced above, texture is an immense field of research. There is a huge

literature available with a near-infinity of methods and variations. This is in part

due to its nebulous nature. In the remainder of this Section we will cover in more



Chapter 2. Background 25

detail two of the more salient developments over the history of this area. Firstly

in Section 2.3.3 we shall discuss Gray Level Co-occurrence matrices. Secondly we

cover Gabor filters in Section 2.3.4.

2.3.3 Gray Level Co-occurrence Matrices

The work of Haralick et al. [32] [2] is one of the earliest methods of texture de-

scription. Their statistical approach characterises an image from its simultaneous

occurrence of intensities in scale and orientation.

Consider a 8-bit grayscale image, there are 256 different intensities so the co-

occurrence matrix will have 256 rows (i) and 256 columns (j ). Each cell in the

256 × 256 matrix corresponds to the number of times intensity i and intensity j

occur simultaneously at distance d and angle θ. In [32] the authors recommend

producing matrices for the angles 0 deg, 45 deg, 90 deg and 135 deg with distance

at 1 or 2. See Figure 2.9.

1 2

1

3

2 2

3 3

2 2

2

1
θ = 45                    δ = 1

0 2

0

0

2 3

2 3

0 0 0

0

3

0 0

2 0

3

θ = 90                    δ = 2

0 0

2

3

0 1

2 1

3

θ = 0                     δ = 2θ = 0                     δ = 1

2 0

6

1

0 1

6 1

1
Pixel Patch

Example Co-occurrence matrices

1

2

3

1

2

3

1

2

3

1

2

3

1 2 3 1 2 3

1 2 3 1 2 3

Figure 2.9: A pixel window with three gray-levels and corresponding example
co-occurrence matrices with varying θ and d

The angular variation is in place to ensure that all orientations are captured by the

matrix. It is worth noting that this only achieves orientation-selectivity, not rota-

tional invariance. An image and its counterpart rotated clockwise 45 deg will have



Chapter 2. Background 26

corresponding GLCMs at a 45 deg offset. However this method does correspond

effectively for unrotated textures. Also, later we shall see that this principle of

orientation-selectivity remains employed in more recent methods using filters. The

distance parameter δ is analogous to modern methods for capturing scale. By in-

creasing the value of δ we will capture texture information at coarser scales. With

appropriately selected values for θ and δ the assumption is that the co-occurrence

matrices contain all of the textural information of the image. The texture features

for an image are then a set of statistics calculated over the matrices. This method

could equally be considered as a histogram as the GLCM’s are a count of a specific

set of features, however in practice they are rarely used in their raw form.

2.3.4 Gabor filters

Filtering approaches are common in all areas of image processing. Examples in-

clude Gaussian and mean filters which, among other things, are used for image

smoothing, differential filters are used for edge detection and band pass filters re-

move certain frequency bands from images. In texture analysis Gabor filters are

the most common technique. Gabor filters are linear filters which extract oriented

local frequency information.

A 2-D Gabor filter is defined as a sinusoidal wave modulated by a Gaussian enve-

lope [39]. The response of a Gabor filter at a point (x,y) is given by.

ψ(x, y) =
F 2

πγη
e−F

2[(x
′
γ
)2+( y

′
η
)2]ei2πFx

′
(2.14)

where

x′ = xcosθ + ysinθ (2.15)

y′ = −xcosθ + ysinθ (2.16)



Chapter 2. Background 27

Within this formulation there are four parameters. F is the central frequency of

the filter, this can be considered analogous to scale, and θ is the orientation. γ and

η are smoothing parameters in the x and y directions in an image. An evaluation

of these parameters can be found in [53].

In a texture classification task, to obtain the maximum amount of information,

a set of filters is defined at various scales and orientations. Common practice

is to choose a set of scales which reflect the texture components of the image in

question, and a set of angles which ensure you have all 360 deg of rotation covered.

See Figure 2.10 for an example filter-bank.

Figure 2.10: Visualisation of an example Gabor filterbank with 3 scales and
4 orientations (0 deg, 45 deg, 90 deg and 135 deg).

Linear convolution is the process where a linear filter is applied to an image. Every

pixel in the image is replaced with a linear sum, the weightings defined by the filter,

of its neighbors. What results from convolution of an image with Gabor filters is

a set of Gabor filter responses. An example is shown in Figure 2.11.

Note how the filters extract different textural information at different scales. In

the fine scale responses the dogs fur is highlighted, whereas in the coarser scales

the spotted pattern of the dogs coat is brought to the fore.

The Fourier transform offers key insight into filtering. The convolution of a filter

and an image in the spatial domain is equivalent to the multiplication of the



Chapter 2. Background 28

Sc
al
e

Coarse

Fine

Angle

0o 45o 90o 135o

Figure 2.11: Image filtered by the Gabor filter bank in Figure 2.10.

frequency domain of the image and the frequency domain of the filter. The filtering

method described in this Section also has a frequency domain implementation,

intuitively this makes sense as the filter itself extracts the frequency information

from the image. Thus Gabor filters can be seen as a Fourier description with

localized capability. Also, the Fourier transform has real and imaginary coefficients

and consequently the magnitude and phase spectra. These components have used

individually in a Gabor texture description [39] .

The most common approach for define a feature vector from a set of Gabor Filter

responses is to calculate a set of statistics. In [54] and [55] their feature vector is the

set of means µ and standard deviations σ of the magnitude of the filter responses for

an image. Other metrics computed from Gabor filters include the Gabor Energy

Feature, the Complex Moment and the Grating Cell Operator Feature [39].

2.3.5 Conclusions

In this Section we have discussed a selection of the approaches for capturing an

images texture. Each of the methods above has shown discriminative ability. We

have also discussed invariance: its importance and also its complexity. All texture

classification work undertaken in this thesis begins with the Local Binary Pattern,

a histogram based texture feature. In the next Section we shall overview the



Chapter 2. Background 29

universe of histogram based texture classification. Then in Section 2.5 we shall

comprehensively review the Local Binary Pattern.

2.4 Histogram based texture classification

Histograms are the count of a discrete space of variables. If we have a bag of fruit

with 3 apples, 4 oranges and 1 banana, the histogram of the contents of the bag

looks as in Figure 2.12.

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

apples
oranges
bananas

Figure 2.12: Histogram of 3 apples, 4 oranges and 1 banana.

In imaging histograms are a sub-set of feature vectors. Where feature vectors are

any set of numbers describing an image, histograms are the distribution of a dis-

crete vocabulary of features within an image. It should be noted that signature

based methods also use discrete vocabularies of features, however those methods

tend to perform clustering or some other processing to form a final description

and use specialized measures for comparison. In this Section we focus only on his-

tograms and first discuss the primary challenges in developing a texture histogram.

Secondly we offer an overview of methods presented in the literature.



Chapter 2. Background 30

The primary goal of histogram based texture methods is to define a feature space,

then partition the space to form a set of discrete “words”. There are two main

ways develop this vocabulary. One is to develop a set of features relative to the

data you are trying to classify. This informs a data-driven partition of the space.

Examples include [56] [57] [1]. The second method is to define a general set of

features. This general set exists separately to any data and is usually defined

mathematically, referring to a set of structures or some other observation on the

composition of texture. Examples of these include Local Binary Patterns [5] and

Basic Image Features [6].

The difference between these two methods is that of generality. The methods

which generate a general set of features tend to perform well across a large swathe

of textured images. They also benefit from computational efficiency increases as

they require no pre-training step. The methods which inform a data-driven parti-

tion will often offer the specific textural information which their dataset requires.

However the vocabulary they generate, if taken out of context, may offer little

to no descriptive ability on other data. Also, depending on how the data is used

to form the vocabulary, bias may be introduced into the representation [58]. All

methods covered in Section 2.4.1 will fall into one of the two brackets.

2.4.1 Approaches to histogram based texture classification

Julesz [59] presented the concept of Textons as a set of fundamental image struc-

tures. In the work of Leung and Malik [56] the Texton was formalized as a cluster

centre in filter response space. They show that a dictionary of these Textons cal-

culated over an image or set of images offers discriminative capability. In [57] they

extend this to a 3D Texton. They filter 20 different views of the same textured

material to capture surface variations. They then perform K-means clustering over

the set of responses to generate a dictionary of Textons. An unknown stack of 20

images has its pixels labelled with the closest Texton representation to the local



Chapter 2. Background 31

jet of filter responses. These labels are then histogrammed to form the feature

vector which can then be compared with a set of model histograms. An issue with

this method is that of high dimensionality, the clustering has to be performed over

960 dimensions. The Textons are also not rotationally invariant, and in practice

operating on multiple views of the same texture is cumbersome. Cula and Dana

[60] offered a solution with significantly reduced dimensionality. Schmid [61] offers

a rotationally invariant Texton algorithm with some scale selectivity.

The work of Varma and Zisserman [1] is perhaps the best known Texton method

applied to a single view of a texture (as opposed to the multiple view definition

of [57] [60]). They offer a rotationally invariant Texton computed using their

MR4 and MR8 filterbanks. These filterbanks achieve rotational invariance by

combining the maximum responses of sets of oriented filters. The MR4 filterbank

is comprised of six edge, six bar, one Gaussian and one Laplacian of Gaussian

resulting in 14 filters and 4 responses. This filterbank is shown in Figure 2.13.

The MR8 filterbank is an augmented MR4, where the edge and bar filters also

have three scales, resulting in 38 filters with 8 responses.

Figure 2.13: MR4 filterbank [1]. Code courtesy of
https://www.robots.ox.ac.uk/ vgg/research/texclass/filters.html

Their maximum response methodology significantly reduces the dimensionality of

the clustering to 4 dimensions with VZMR4 and 8 with VZMR8. The VZMR8

method is often used as a benchmark technique for comparison of newer methods.



Chapter 2. Background 32

Later in [62] they offered a further method known as VZ-Joint. Instead of using

local jets of filter responses as the basis, they instead cluster the joint distribution

of local intensities to form their Textons. Varma and Garg [63] use this principle

further and combine it with fractal geometry. Textons are formed by clustering a

set of local fractal dimension and fractal length features computed densely across

an image.

One early texture histogram was the Texture Spectrum (TS) [64]. In local 3x3

neighborhoods the central pixel is compared to its neighbours. If a neighbour is

less than the central pixel it is assigned a 0, equal to the centre a 1 and greater

than the central point a 2. These labels are then vectorised to form the feature

for that pixel, the distribution of these features is then the histogram. By using

relative comparisons the features are invariant to monotonic illumination functions

applied to the image, however there is no consideration of scale or rotation. Local

Binary Patterns (LBP) [5] are perhaps the most well known texture descriptors

and build on the TS. They offer a compact, multi-scale and rotationally invariant

texture description. They remove the equality from TS resulting in a binary string

composed of greater than or less than relationships per pixel. Neighborhoods are

sampled circularly around the centre, with points not landing on pixel centres

approximated, and are defined for an arbitrary radius and number of points. A

comparison of the TS and LBP features is shown in Figure 2.14.

After some processing and grouping of the binary strings what results is an effective

histogram which has been used in many applications [65][7]. It also has a huge

range of extensions to target various applications [66][67][68]. This method is

detailed comprehensively in Section 2.5.

Spectral histograms are histograms of the marginal distributions of a filterbank.

The marginal distribution of an entity is the set of probabilities of occurrence of

a discrete set of properties of the entity. Thus this method can be considered a

histogram of histograms. In [69] they use four filters: the intensity filter, gradient



Chapter 2. Background 33

123 67

32

12

200 170

123 189

225

1 0

0

0

2 2

C 2

2
1

1
0

1

0
1

1

0

TS LBP

Pixel Neighbourhood

Figure 2.14: Comparsion of the TS and LBP features on a 3x3 neighborhood.
LBP is parametrised with 8 points and radius 1, corner pixels are interpolated.

filters, Laplacian of Gaussian filters and Gabor filters at, where applicable, varying

orientation and scale, the marginal distributions of which are estimated using a

windowing function. They select the marginal distributions which comprise the

final histogram based on a greedy algorithm which maximises classification gain,

i.e. they optimise the set of filters to obtain maximum performance.

The Fourier transform has also seen use in forming texture histograms. Local

Phase Quantisation (LPQ) was proposed by Ojansivu and Janne [70]. They offer a

blur insensitive texture histogram using local phase. They compute DFTs densely

across an image and take 4 low-frequency coefficients from the phase component

of each, decorellate them via a whitening transform and then quantise them. The

histogram of the quantised coefficients shows significant classification accuracy

increases on blurred images compared with LBP.

Basic Image Features (BIFS) [6] offer a compact dictionary of fundamental im-

age features. The BIFs themselves are their mathematically defined set of seven

qualitatively different image structures based on image symmetries. An image is

convolved with six Gaussian derivative filters, each pixel in the original image is



Chapter 2. Background 34

labelled with the BIF most similar to its 6-vector of filter responses. The au-

thors find that, for texture classification, only 5 of the filters and 6 of the BIFs

are useful for description. They also find that a multiscale representation is key.

Their histogram of co-incidences of BIFs (denoted BIF columns) across four scales

shows strong performance. They then extend the multiscale notion to multiple

histograms with different base scales. Classifying these with a kNN classifier using

the Bhattacharya distance (a weighted average metric for multiple histograms)

they observed best in class performance on the UIUCTex and KTH-Tips datasets

on publication.

2.4.2 Conclusions

Histogram based texture classification has clear discriminative ability. In this

Section we have offered a broad swathe of the methods available. The texture

classification work in this thesis is focused primarily on the Local Binary Pattern

(LBP). In the next Section we will give a detailed review of LBP and its extensions.

2.5 Local Binary Patterns

Local Binary Patterns (LBP) provide a mechanism for quantifying structure in

local neighborhoods and across an entire image. LBP is one of the most, if not

the most, well known histogram based texture classification methods available.

It pervades many applications of computer vision such as texture analysis [71],

texture segmentation [65], face recognition [7] and medical imaging [72].

A single LBP is formed from two components: a central pixel C and its neigh-

bourhood of pixels p1, p2...pn. The neighborhood p is the set of pixels at distance

r away from the centre. Each pixel in this neighbourhood is compared to C, if its

intensity is greater or equal it is assigned a 1, otherwise a 0, see Figure 2.15.



Chapter 2. Background 35

123 67

32

12

200 170

123 189

225 0 0

0

0

1 1

C 1

1

10110010

Figure 2.15: Transformation of a local neighbourhood into its LBP glyph.

This relational approach to encoding pixels gives the LBP complete invariance to

any monotonic changes in the grayscale of an image. Traditionally, these values

are then read off on a per-pixel basis to form a set of binary strings for an image.

These strings then form a histogram which can be used as an index for classifica-

tion [5]. This method is denoted LBPr,p where p is the number of pixels in the

neighbourhood, and r is the distance from the central pixel at which the members

of p are sampled. This method can be expressed with the equation

LBPr,p =
P−1∑
i=0

s(C − pi)2i (2.17)

Where P is the size of the neighbourhood p and the function s(x) is defined as:

s(x) =


1 x ≥ 0

0 x < 0

(2.18)

2.5.1 Rotational invariance

A common problem in many areas of computer vision is that an image and its rota-

tional transform usually have differing histograms, feature vectors or descriptions,

regardless of having the same content. This differing description can be useful, for

example detecting motion across a video sequence, however as we are trying to

find corresponding images rotational invariance is desirable. This is achieved for



Chapter 2. Background 36

LBP by rotating each pattern, with circular wraparound, to its maximum value.

Consider the neighbourhoods in Figure 2.16.

10 50

200

30

50 70

100 70

30 50 10

50

70

200 70

100 30

30

A B

Figure 2.16: Neighbourhood A and its 90 deg rotation B.

We are interested in structure. If we consider a triangle and then rotate it an

arbitrary number of degrees it still remains a triangle. This holds for local pixel

structure as well. Neighbourhood B in Figure 2.16 is clearly the 90 deg clockwise

rotation of neighbourhood A. We can consider neighbourhoods A and B to be equal

from a structural point of view. If we then move to A and B ’s LBP counterparts

in Figure 2.17.

0 0

1

0

0 0

CA 0

0 0 0

0

0

1 0

CB 0

0

ALBP BLBP

01000000 00010000

Figure 2.17: LBP counterparts of A and B in Figure 2.16. LBP codes beneath.

These are read off from a pixel at a fixed position. In this instance, and all our

work with LBP, we will read from the right-central pixel. Neighbourhood A has

LBP code 01000000 and B has LBP code 00010000. Structurally these patterns

are identical, thus we would like them to match. We can achieve this by rotating,



Chapter 2. Background 37

or bit-shifting, the pattern elements with circular wraparound until we obtain the

maximum or minimum value of the pattern (maximum or minimum is an arbitrary

choice, as long as it is consistent). In the case of Figure 2.17 the value of both

patterns is maximally 10000000 and minimally 00000001. This, in effect, rotates

each neighbourhood 45 deg (for an 8-bit pattern) per bit shift such that they all

align according to their LBP representation. In all our work with LBP we choose to

shift to the maximum. This extension changes the notation and is now expressed

as LBP ri
r,p. r and p are as before (see Section 2.5) and the superscript ri denotes

rotationally invariant.

2.5.2 Border handling

An issue in many image processing tasks is how the border (the edge) pixels of an

image are handled. For LBP it is not possible to code the edge pixels correctly:

firstly there are less than 8 pixels in each neighbourhood, and secondly the pixels

being coded are not centred in a neighbourhood. There are multiple common

solutions for addressing this including:

• Reflection - A reflection of the image is added along the borders.

• Repetition - The images edge pixels are repeated along the borders.

• Removal - Edge pixels are ignored.

• Interpolation - A “best guess” pixel or set of pixels is added at each location

along the border based on calculations from pixels near the border of the

image.

• Wrap-around - The pixels from the opposite edge of the image are wrapped

around. This assumes the image is infinitely tileable.

Each of the above methods has benefits and issues. For instance removal of edge

pixels has the benefit that all LBP codes are produced from the image itself with



Chapter 2. Background 38

no synthetic data added. However a proportion of the information is lost from

those edge pixels. Wrap-around allows you to use the both the edge pixels and

original data from the image, however the assumption of infinite tile-ability is

usually incorrect.

2.5.3 Uniformity

Uniformity considers the number of changes from 0 to 1 in a single pattern. For

instance the pattern 01010101 has a uniformity value of 8 and 11111111 has uni-

formity 0. Patterns with uniformity 0 or 2 describe low level structural features

such as edges, dark spots or line ends [5], see Figure 2.18.

1 1

1

1

1 1

C 1

1 0 1

1

0

0 0

C 1

0 0 0

0

0

0 0

C 0

1

11111111 11000001 00000010

11111111 11100000 10000000

Standard:

Rotated:

Dark Spot Edge Line End

Figure 2.18: Examples of uniform patterns.

Through analysis of pattern occurrence it can be shown that up to 95% of patterns

in an image have uniformity 2 or less and the remainder can be considered as

insignificant or noisy [5]. When forming histograms patterns with uniformity > 2

can be grouped into a single bin without discriminative loss. When combined

with rotational invariance this condenses the number of patterns from 2p to p+ 2

where p is the number of neighbouring pixels being sampled. Uniformity 2 when

combined with rotational invariance, see Section 2.5.1, LBP is denoted LBP riu2
r,p

where r, p and ri are as before and u2 denotes Uniformity 2 [73].



Chapter 2. Background 39

2.5.4 Circular sampling

The basic formulation of LBP is based on a max distance from the centre. If we

use a distance of 1 then we are talking about the 8 direct pixel neighbours in a

3 × 3 neighbourhood. In a 5 × 5 neighbourhood we would use the 16 pixels at

distance 2 away from the centre.

A more recent, and more effective, formulation of LBP uses pixels a max radius

away from the centre forming a circular sampling pattern [5]. See Figure 2.19.

Figure 2.19: Circular Sampling neighbourhoods. From left to right: LBP1,8,
LBP2,16 and LBP3,24.

A gray-scale images pixel grid is a discrete Cartesian grid with only the integer

values. Each pixel is indexed with coordinates centering the pixel on location (x,y).

With reference to Figure 2.19 a large proportion (≥ 50%) of sampling points in

a circular sampling pattern do not fall on pixel centres. To allow these sampling

points to be correctly captured we must adjust our perception of an image. Now

we must consider an image to be a continuous Cartesian grid where pixel centres

fall on the integer values. This allows us to interpolate a quartet of pixels, based

on a location, to sample an estimated pixel exactly centred on a sampling point.

Figure 2.20 shows an example of pixel interpolation.

Figure 2.20 shows the process of interpolating a pixel not located on a pixel cen-

tre. It is simply a weighted, by the sampling points location, sum of the 4 nearest

neighbours located within a local coordinate system. The weightings will also al-

ways sum to 1. As x and y are always in the range 0,1 the value of the interpolated

pixel must fall between the smallest and largest values in the neighbourhood.



Chapter 2. Background 40

s

p3

p4 p1

p2

x

y

s = (x*y) * p1 + 
(x*(1-y)) * p2 +
((1-x) * (1-y)) * p3 +
((1-x) * y) * p4

0

0

1

1

Figure 2.20: Example of interpolating a pixel within a quadrant. Coordinates
are shown in red, S is the pixel we are sampling and x and y are the coordinates

of S within the quadrant of pixels.

Finally the entire process of classifying images using LBP histograms is detailed

in Figure 2.21.

Figure 2.21, in summary, begins with a single image, moves on to a single neigh-

borhood within that image and then how this is interpolated to form a circular

sampling pattern as in 2.5.4. This is then processed into its LBP code. The whole

image is formed into LBP codes which are all then rotated to their maximum value

as in Section 2.5.4. The non uniform patterns are then grouped (assigned their

own value) as in Section 2.5.3 leaving us with our final representation denoted

LBP riu2
1,8 . The values in the image are then counted to form a histogram. Finally

we show a simple example of classification where histograms of three different

classes of texture image are clustered on an (x,y) plane. In the next Section we

discuss some of the drawbacks of LBP.



Chapter 2. Background 41

Classifying images with LBP
riu2

histograms 
One pixel 

neighbourhood

170 240

80 100

1123256

77

220

LBP operation on 
each neighbour

Read out

11000111 = 199 
(new pixel value)

Rotate all to 
Maximum

Start: 11000111
1: 11100011
2: 11110001
3: 11111000

Complete 
for all 
pixels

Original 
Image

LBP Image

256 unique 
patterns

Remove non-
uniform patterns

11011000
11111100
10010010
11111000

LBP
riu2

image

9 unique 
patterns + 1 for 
non uniforms

Count each 
pattern to form 

histogram

Set of histograms

Class 1

Class 2

Class 3

x

y Classification

1,8

170

32

10077

57.4 90.2

182.8168

Circular Sampling

1

0

11

0 1

11

1,8

1,8

LBP
ri

Image

36 unique 
patterns

1,8

Figure 2.21: Classification of images using LBP histograms



Chapter 2. Background 42

2.5.5 Drawbacks

While the LBP method has been shown to have discriminative power when applied

as a description it has some faults. Firstly it is very noise sensitive. For instance

consider an image with random valued noise (a common problem caused by poor

transmission, faulty camera hardware or image coding errors [74]) where certain

pixels in an image are assigned random values. For an LBP riu2
1,8 process each of

these incorrect pixels will appear in 9 different LBP codes potentially changing

them. As noise density increases (or signal to noise ratio (SNR) decreases) so does

the number of corrupted codes, hence the final histogram becomes more and more

distorted. Figure 2.22 shows an example of this.

From Figure 2.22 we can see that with a barely visible amount of noise the LBP

histogram is slightly affected. Once the noise density increases the histogram

quickly becomes unrecognisable.

Another concern is that of magnitude representation. One of the tenets of LBP

is that the structure of a neighbourhood, or the sign of a difference, is far more

important than the magnitude of the values contained therein. This may be cor-

rect however the magnitude information may still be significant. Consider the

neighbourhoods in Figure 2.23.

The pertinent feature of Figure 2.23 is that neighbourhood A has near uniform

structure whereas B is more random, with a significantly higher variation in in-

tensity. The issue is that, regardless of their vastly different structures, they form

identical LBP codes. While the examples in Figure 2.23 are extreme cases the

reader can convince themselves that this issue can cause a loss of information and

in some cases a very weak description of a pixel neighbourhood. There have been

solutions proposed which aim to solve this problem. Examples include Completed

LBP detailed in Section 2.6.4 and Improved LBP in Section 2.6.3. In Chapter 6

we propose a method which explicitly encodes relative magnitude.



Chapter 2. Background 43

Original 
Image

Increasing 
Amounts 
of Noise

Figure 2.22: Examples of an image corrupted by increasing levels of gaussian
white noise and the associated LBP histograms.



Chapter 2. Background 44

2 2

1

4

1 1

0 1

1 3 90

201

100

220 45

0 21

170

A B

Figure 2.23: Examples of pixel neighbourhoods. Left with near uniform struc-
ture, right with a more random structure.

2.6 Variations and extensions to LBP

As our contribution, described in Chapter 6 can be considered a variant of LBP we

will now briefly review some of the commonly referenced extensions and variations

of LBP.

2.6.1 Contrast

The contrast of a pattern V ARr,p is an extension which encodes strength of an

LBP[66]. V ARr,p is defined as

V ARr,p =
1

N

N∑
i=1

(xn − µ)2 (2.19)

Where x are the neighbouring pixels and µ is the mean gray level of the neigh-

borhood. LBP riu2
1,8 histograms are one dimensional. Bin i refers to the number

of times LBP i occurred in an image. When incorporating V ARr,p they use a

two dimensional histogram where now bin (i,j) is the count of LBP i and VAR j

occurring on the same pixel. These histograms are denoted LBPr,p/V ARr,p.

V ARr,p, by definition, is naturally rotationally invariant. Also, as this is calculated

relevant to a local mean it retains some grey-scale invariance. The contrast value

is quantised to 8 levels to avoid sparseness in the final histograms [66].



Chapter 2. Background 45

2.6.2 Local Ternary Patterns

While invariant to monotonic changes in the grey-scale of an image, LBP is sen-

sitive to noise and non-monotonic intensity functions. It also cannot distinguish

uniform regions. This is due to the single comparison with a central pixel.

The Local Ternary Patterns (LTP) operator proposed in [67] offers a noise resistant

extension. This is achieved by adding a second tolerance threshold. The tolerance

threshold changes the patterns from a binary two-valued LBP string to a three

valued ternary string. In these codes a pixel is assigned 0 if it is within the tolerance

threshold of the central pixel, -1 if less than and 1 if greater. The advantage being

that it allows the pattern to be robust to noise and distinguish near uniform and

uniform neighbourhoods with an appropriately selected tolerance. However this

does remove some of the invariance to grayscale changes [67]. This process is

usually separated into a positive and negative part, where a pattern is generated

with a positive and negative LBP function on a neighbourhood.

LTPpos =
N∑
i=1

pi ≥ (pc + t) (2.20)

LTPneg =
N∑
i=1

pi ≤ (pc − t) (2.21)

Where t is the tolerance threshold. The process is visualised in Figure 2.24, note

how the values within the threshold range are assigned 0 in both patterns.

The positive and negative patterns, across and entire image, can be used to form

positive and negative histograms which can then be concatenated or expressed

jointly in a 2D histogram [67].

When combined with a grid based classification framework for face recognition

their experiments showed modest improvements over their LBP counterparts [67].



Chapter 2. Background 46

1 0

1

0

0 1

0

1

80

Positive (t=5)

244 83

220

76

79 143

43

170

80

0 0

0

0

0 0

1

0

80

Negative (t=5)

p ≥ C + t

p ≤ C - t

Standard: 01100110
Rotated: 11001100

Standard:10000000
Rotated: 10000000

Figure 2.24: A neighbourhood processed into its positive and negative Local
Ternary Patterns.

LTP has also shown promise in areas such as content based image retrieval [75]

and medical imaging [76].

This method has been even further extended into methods such as the Extended

Local Ternary Pattern [77] or the Relaxed Local Ternary Pattern [78].

2.6.3 Improved LBP

The observation made by the Improved LBP (ILBP) is that the original LBP

encoding does not represent the local structure as well as is possible. To address

this they instead threshold the neighbourhood by a weighted local mean denoted

m. This is expressed as:

m =
1

n+ 1
(

p−1∑
i=0

(pi + C)) (2.22)

with ILBP expressed as:



Chapter 2. Background 47

ILBPr,p =
n−1∑
i=0

s(pi −m)2i + s(C −m)2n (2.23)

s(x) =


1 x > 0

0 x ≤ 0

(2.24)

Where, as in equation 2.17, n is the size of the neighbourhood of pixels, p1...pn

are the pixels in the neighbourhood and C is the central pixel.

This retains the invariance to illumination of the canonical LBP while improving

the structural representation of each pattern. It does however increase complexity

as they must also encode the central pixel. Thus ILBP has twice the patterns of

standard LBP [68].

This is applied to face detection using the CMU-MIT and Yaleb datasets. They

use a Multivariate Gaussian Distribution with a Bayesian decision rule. They show

detection rates of up to 90% on CMU-MIT and find that the false rejects from

YaleB are mostly images with large illumination distortion (i.e. non monotonic

functions), such that the textural information is no longer present [68].

2.6.4 Completed LBP

There are certain questions surrounding LBP. How does the simple code confer

so much of the discriminative information? How much information is lost in the

transform? In [79] they attempt to answer these questions by offering a “gener-

alised complete” form of the LBP known as Complete LBP (CLBP).

Their process involves decomposing each neighbourhood into its centre and Local

Difference Sign Magnitude Transform (LDSMT). This effects a three level repre-

sentation of a local neighbourhood: firstly the Central (CLBP C) which encodes



Chapter 2. Background 48

the central pixel. Secondly the Sign (CLBP S) which encodes the sign of the

difference between the central pixel and its neighbours (this part is identical to

traditional LBP). Finally the Magnitude (CLBP M) which encodes the magnitude

of the difference between the central pixel and its neighbours. See Figure 2.25

Original Image CLBP_S CLBP_C CLBP_M

Figure 2.25: An image converted into its CLBP S, CLBP C and CLBP M
counterparts. (CLBP C is quantised to 16 levels, CLBP M is approximated

for visualisation)

With the LDSMT applied to every local neighbourhood in an image three primary

transformations are produced: CLBP C, CLBP S and CLBP M. In [79] these are

combined in multiple different manners. Primarily histograms are formed jointly

between two of the methods. For instance CLBP S/M is a two dimensional joint

histogram of instances of CLBP S and CLBP M. They found that with a 3D joint

histogram CLBP S/M/C stronger classification performance was obtained over

traditional LBP. They also found that the Sign of the transform held the majority

of the discriminative information. However contrary to traditional LBP they find

the magnitude is also useful [79].

This representation has the traditional benefits of LBP and more. CLBP S is

identical to traditional LBP so retains grey-scale and rotational invariance. By

the nature of the transform the complete feature (all three CLBP components, with

no quantisation on CLBP C (Figure 2.25 is quantised)) is also perfectly invertible

(if CLBP C is not quantised), and so can be considered in a dual sense.



Chapter 2. Background 49

2.6.5 Dominance LBP

Dominance LBP (DLBP) changes the way in which patterns are considered for

the final histogram [80]. Instead of choosing the Uniform, or most likely, patterns

to form the histogram; Dominance LBP considers the top n% most occurring

patterns across a dataset and use these as the patterns which are histogrammed.

Again, all other patterns are grouped into a bin appended to the end. The premise

is that the which appear the most should provide a more accurate index for the

data concerned [80], an example of an images dominant patterns is shown in 2.26.

11111111
11111110
11111100
11111000
11110000
11100000
11000000
10000000
00000000

11111111
11111110
11111100
11111000
11110000
11100000
11000000
10000000
00000000

11101110
11101100
10001000
11000100
11100100
11110100

Uniform Patterns
(Statistically up to 95% 

of images patterns)

Dominant Patterns
(Actual 95% of images 

patterns)

Figure 2.26: Example of uniform patterns vs dominant patterns on an image.

A common facet of DLBP, present in Figure 2.26 is that all Uniformity 2 patterns

are still present. Also note how the supplemental dominant patterns are all of

Uniformity 4.

In [80] the authors augment these features with responses from circularly sym-

metric Gabor filters. They show good results classifying members of the Outex,

Brodatz and CUReT texture databases, particularly under sub-optimal conditions

such as random rotation and noise.



Chapter 2. Background 50

2.6.6 Strength LBP

In [72] they present a novel formulation of LBP known as “Strength” or “Scale

Adaptive” LBP. Where traditional LBP considers patterns at a single radius across

an entire dataset, “Strength” LBP considers patterns at multiple radii per pixel

with the same number of points. Each of these patterns has its strength calculated

as in Equation 2.25:

Str =

p∑
i=1

|pi − pc| (2.25)

Where pc is the central pixel and pi are the neighbours. The pattern with the

highest strength is the one selected to represent that pixel. When applied to

classification of images of skin defects both benign and malignant they show strong

results [72].

2.6.7 Center-Symmetric LBP

Much of the advantage of LBP, and its extensions, is the invariance to any mono-

tonically increasing change in the image intensities. This invariance is in effect a

property of coding pixels relative to each other since it is these relations which are

independent of typical intensity transforms).

Center-Symmetric LBP (CS-LBP) was presented as a region of interest descriptor

based on the Scale Invariant Feature Transform [8] and LBP [81]. It uses binary

thresholding to form a local histogram of an interest region. We refer the reader

to [82] for more information on interest region detection.

The CS-LBP operator uses comparisons between diametrically opposed pixels in

a neighbourhood to form its patterns. This has the characteristic of generating a

4 bit code and as such there are only 24 patterns. Each region of interest image is



Chapter 2. Background 51

separated into a cartesian grid of cells, presented in the paper as 3 × 3 or 4 × 4.

Each cell generates a histogram based on the responses of a CS-LBP operator on

the pixels inside that cell. The feature for an image comprises of a concatenation

of these histograms after normalisation and weighting steps.

After parameterisation of their operator, namely the radius of the neighbourhood

and the number of pixel comparisons, they show object classification results on

the Pascal Visual Object database. They show CS-LBP out-performs SIFT in a

large number of cases, while significantly decreasing the computation time of an

experiment [81].

2.7 Colour analysis

When humans look at images the colours present form a significant part of our

recognition process [83]. Colour histograms are one of the computer vision ana-

logues to this process. These have shown good performance in areas such as

content based image retrieval [84], human face detection [85] and medical imaging

[86].

A colour histogram is a representation of the distribution of intensities in an image.

For the simplest form we shall first consider an 8 bit grayscale image A where each

pixel is represented by a single integer between 0 and 255. If we were to form an

intensity histogram of this image it would be one dimensional and have 256 bins

where bin i (1 ≤ i ≤ 256) contains the number of times intensity i appeared in

A. If we now consider a new colour image B in the RGB colour space each pixel

now has three values each representing the amount of Red, Green and Blue said

pixel is comprised of. The histogram of this image is now three dimensional with

each dimension of length 256. In this case bin (i,j,k) corresponds to the number

of times intensity i in R, j in G and k in B occur on the same pixel.



Chapter 2. Background 52

Histogram 
Intersection

(0-1, higher indicates more similarity)

𝐻 = 

𝑏=1

𝐵

min(𝐻1𝑏, 𝐻2𝑏)

0.474

0.605

0.623

0.626

0.661

H1 H2

B B

H1 H2

B B

H1 H2

B B

H1 H2

B B

H1 H2

B B

Figure 2.27: Examples of histogram quantisation on images of Leaves



Chapter 2. Background 53

The above definition allows for a histogram where each intensity, or intensity RGB

triple, indexes to a single bin. While this is a complete representation it may not

always be the best course of action. Perceptually intensities with close values have

a very similar appearance. For example consider the two RGB triples (0,0,1) and

(0,0,0), they both represent almost exactly the same colour however index to a

different bin. This can be considered a sensitivity, one which is especially prone

to noise. This can be alleviated by quantisation of the colour space. If we now

consider a 64 bin colour histogram which still represents all possible intensities:

[1,2,3,4], [5,6,7,8] are aggregated as single bins. This, in effect, says that intensities

close to each other are similar enough to be considered the same. In reality this

can be useful, consider as an example leaves. In Figure 2.27 we show two visually

similar leaves. We histogram the green channel of these leaves and find that as we

increase quantisation (increase the number of intensities indexed to each bin) we

also increase histogram similarity.

Quantisation does not completely solve the issue. In the example of a 64 bin

histogram intensities 5 and 6 are grouped in the same bin, however 5 and 4 are in

a different bin despite having the same difference. One method for alleviating this

is histogram smoothing. If a quantised histogram is smoothed by an appropriately

chosen function (e.g. Gaussian, cosine) before bins are aggregated. This has the

effect of allowing intensities to “bleed” into other neighbouring bins [17].



Chapter 2. Background 54



Chapter 2. Background 55



Chapter 2. Background 56



Chapter 2. Background 57



Chapter 2. Background 58

2.9 Texture synthesis

Another angle to consider texture analysis from is: taking images and devolving

them into some form to better understand them. The inverse problem is another

area of interest: given some form of understanding can you create an image. This

is where the topic of image synthesis arises. Specific to this thesis is that of

image synthesis from texture - given some understanding of the texture of an

image, can we: synthesize plausible examples of it, recover the original purely

from the textural information or synthesize information in the image which has

been lost (noise removal, hole filling). We will now present a sample of the methods

presented on this problem.

2.9.1 Exemplar based texture synthesis

Efros and Leung [90] present an exemplar based (that is, based on known ex-

amples) synthesis algorithm. The method is based on local image patches, with

unknown pixels being assigned values based on probabilities determined by patches

of original image. The texture of the image is modeled as an MRF, the assumption

being that a pixels intensity given that of its neighbours is independent from the

remainder of the image.

Given an unknown pixel and a window around it (the width of the window being

a parameter) the objective is to choose the most similar patch from the rest of the

image and assign the value of the central pixel of that patch to our unknown. To

achieve this they construct the set of all “similar” patches (similarity is determined



Chapter 2. Background 59

by the Sum of Squared Distances weighted by a Gaussian Kernel). The histogram

of the central pixel values of this set forms an approximation of the conditional

probability density function (pdf) of our unknown pixel. The most likely pixel

value is then chosen as shown in Figure 2.31.

An issue in application, for example image hole filling, is that most pixels which

require synthesizing have members of their window which are also unknown. This

is accounted for by only measuring patch similarity on the known pixels of the

window around them, and normalising the error in the conditional pdf based on

the number of known pixels [90].

Original image

Pixel to be synthesised
and its window

…

Similar 
windows

Histogram of 
central values

Most likely value
is selected

Figure 2.31: A pixel being synthesized by the Efros and Leung algorithm.

Efros and Leung show good results in image hole filling, synthesizing plausible

large textures from a small sample and extrapolating images into larger versions.

Diffusion is another method for image synthesis based on following contours (specif-

ically isophotes or lines of constant intensity) [91]. While good at producing large

scale linear structure diffusion unfortunately fails to effectively reproduce fine de-

tail texture, instead producing a blurred effect [92] [93]. While the technique may

fail in our specific application, the principles are still a powerful tool. In the work

of Criminisi et Al. [93] they use these principles to extend the work Efros et Al.



Chapter 2. Background 60

Their method uses isophotes to inform the order in which pixels are synthesized al-

lowing them to more effectively capture larger scale linear image structures. Their

method, when applied to removal of foreground objects in digital images, showed

good results compared to the current state of the art at publication. Bugeau and

Bertalmio [92] go further by fully combining exemplar based texture synthesis and

diffusion in their work. They form two images, firstly a structure image using the

diffusion method of [94]. Secondly a texture image using a modified version of the

algorithm in [93] and combine the two. They show promising results on a number

of images.

2.9.2 Reconstruction using Complex Wavelet Coefficients

Portilla and Simoncelli [95] offer a technique using the statistics from a complex

wavelet transform. They use a steerable pyramid decomposition [96] augmented

with quadrature pair filters to extract oriented frequency information from an

image at a number of scales. The statistics of these responses are used to form a

set of statistical constraints which define their model of texture.

They synthesize textures using their method termed “synthesis by analysis”. In

simple terms they begin with the model of the texture they wish to synthesize con-

taining all of the statistical constraints, and a Gaussian white noise image. They

then build the model of the Gaussian white noise image and iteratively force the

model to satisfy each of the statistical constraints which “warps” the white noise

image into a statistical counterpart of the original. The quality of the reconstruc-

tion is then a measure of the quality of their model. Firstly in their results on the

images which would not be considered texture (a face, a bullseye and a crowd)

they capture some of the local structure yet the image as a whole is somewhat

scrambled rendering it unrecognisable. Secondly on natural texture images their



Chapter 2. Background 61

results are effective yet some distortion is still present. Finally they show excep-

tional synthesis of highly random high frequency textures such as animal fur and

wood grain.

2.9.3 Reconstruction from Feature Points

Lillholm et al. [97] present an image modeling and reconstruction framework based

on statistics. Initially their work presents the concept of an image metamerism

class. Colour metamerism, the original use of the term, refers to how varying

colour spectra can appear identical subject to changes in viewing conditions. In

this case we are discussing spatial metamerism: for images to be of the same class

the same spatial and corresponding measurements must be obtained. They show

that given a set of local statistical measurements, minimising a norm given these

they can synthesize the “simplest” member of a metameric class [97].

Further, and more pertinent to this project, they apply their minimisation subject

to local measurements algorithm to reconstructing images from feature points.

Namely they extract “blob” [98] and “edge” [99] points in scale space from im-

ages. As only a sample of all points in an image is required for reconstruction,

method of point selection is key. Thus point selection is based on scale-normalised

feature strength (a measure of the information in a particular feature point). They

experiment with minimising the L2, ‖∇L1‖ (L1 gradient magnitude) and ‖∇L2‖

(L2 gradient magnitude) norms to synthesize images. They show that number of

points chosen is key. Blob points capture most of the stochastic complexity of the

images rather quickly, however at large numbers of selected points edge features

produce a much more accurate reconstruction.



Chapter 2. Background 62

2.9.4 Texture synthesis conclusions

We have offered a selection of the methods currently available in the area of image

synthesis from texture. The method we offer in Chapter 7 operates on spatially lo-

cated features similarly to the work of Efros et al., whereas the method in Section

2.9.2 operates on global measures. The features we and Efros et al. reconstruct

from are localised in the image space, that is we know where they are: the algo-

rithm then ascertains what they are. In the case of [95] and the method begins

with forming a global statistical model of an image. This model is a description of

the properties of the images texture: there is no notion of what a pixel is until an

image synthesis algorithm is applied. This approach produces images which are

perceptually similar or statistically identical to a prior example, however they are

entirely synthetic.

2.10 The Rank Transform and extensions

Image correspondence is the problem of detecting corresponding entities across two

or more images of the same scene. The Rank transform is a method proposed in

this area. This method and its extensions, while not texture analysis algorithms,

share similarities with our work in Chapter 6. In the succeeding Sections we review

the relevant literature.

2.10.1 The Rank Transform

The work of Zabih and Woodfill [100] presents their novel image transform for

detecting corresponding pixels between scenes. They offer a two part approach:

firstly the Census transform which assigns to a pixel a bit string denoting which

neighbouring pixels which are less than it. Secondly the Rank transform which



Chapter 2. Background 63

assigns to a pixel its rank in some square window around it of diameter d. See

Figure 2.32.

123 67

32

12

200 170

123 189

225

0 0

0

0

1 1

1

1

3

Census Transform

Rank Transform

Pixel Neighbourhood

Figure 2.32: The Rank and Census transforms of a single pixel neighbourhood.

Similarly to LBP both the Rank and the Census transforms are non-parametric

as such are invariant to monotonic changes in gray-scale. With the pixels of two

images converted into their rank and census transforms, correspondence can then

be measured. This is measured differently for each of the two transforms. To

compare two Census transformed pixels, the hamming distance between the bit

strings is used. For the Rank transform L1 correlation is used between two rank

transformed images. In their experiments the authors show lower error rates than

some previous art methods.

The Census transform does bare resemblance to LBP; however it differs in some

key points. Firstly the bit strings in the Census transform are read off from an

arbitrary, consistent across an image and within an experiment, point. LBP re-

quires a specific concatenation so as to obtain rotational invariance, a property



Chapter 2. Background 64

not exhibited by the census transform. Secondly only individual strings are com-

pared, there is no consideration of forming an index for a whole image such as the

histogram in LBP. The census strings are instead used individually and as spatial

information for the Rank transform [101].

2.10.2 The Complete Rank Transform

Presented in [101] the Complete Rank Transform (CRT) is based on the observa-

tion that the Rank transform wastes a large amount of information. It extends

the Rank and Census transforms of Zabih and Woodfill [100] to capture a maxi-

mum amount of local information. Instead of assigning a pixel its rank in a local

neighbourhood they assign it a signature comprised of the complete ranking of its

local neighbourhood. See Figure 2.33.

123 67

32

12

200 170

123 189

225

3

3 2

1

0

6 4

3 5

7

Pixel Neighbourhood Rank Transform Complete Rank 
Transform

Figure 2.33: Comparative example of the Rank and Complete Rank trans-
forms in a 3× 3 neighbourhood.

This description contains the maximum amount of comparative information be-

tween all pixels in a neighbourhood. They also present a Complete Census Trans-

form (CCT), however it occurs that the CRT is an extrapolated version of the

CCT and therefore contains identical information.

This descriptor is, again, designed for Optical Flow/Image Correspondence algo-

rithms (following entities or pixels through a series of images). Their experiments

show improved results over the original Rank and Census transforms, with little

to no computational cost increase.



Chapter 2. Background 65

The CRT bares resemblance to our work in Chapter 6. We suggest that in the

same way the Census transform differs from LBP, our Sudoku transform differs

from the CRT. This is detailed more completely in Section 6.1.4

2.11 Overall conclusions

There has been much interest in LBP since its inception. A recent study in 2017

has compared performance of 32 different LBP approaches [102]. Here we intend

to capitalize on this basis since it has the properties we seek

Further, it will lead to our new

approach for describing texture based on LBP. We have also described techniques

which appear suited to this application, but we have yet to exploit. While we

note that CLBP is perfectly invertible we have not yet considered this in the

context of other methods: this will be explored in Chapter 7. While representation

has been the focus of most studies until now there been very few approaches to

reconstruction as we shall find later.



Chapter 3

66



Chapter 3. Data 67



Chapter 3. Data 68



Chapter 3. Data 69



Chapter 3. Data 70



Chapter 3. Data 71



Chapter 3. Data 72



Chapter 3. Data 73



Chapter 3. Data 74



Chapter 4

75



Chapter 4. 76



Chapter 4. 77



Chapter 4. 78



Chapter 4. 79



Chapter 4. 80



Chapter 4. 81



Chapter 4. 82



Chapter 4. 83



Chapter 4. 84



Chapter 4. 85



Chapter 4. 86



Chapter 4. 87



Chapter 4. 88



Chapter 4. 89



Chapter 4. 90



Chapter 4. 91



Chapter 4. 92



Chapter 4. 93



Chapter 4. 94



Chapter 4. 95



Chapter 4. 96



Chapter 4. 97



Chapter 5

contributions on

classification

98



Chapter 5. contributions on classification 99

In this Chapter we will evaluate a classifier called the Support Vector Machine or

SVM. The classic SVM treats all feature vectors as vectors in Euclidean space.

In Section 5.1 we will discuss the mechanics and component parts of the SVM

from both a mathematical and real world perspective. Secondly we will discuss

our experiments and the results obtained. Finally we will evaluate our work and

form our conclusions.

We are aware that there are available packages such as libsvm to investigate use

of this method.

5.1 The Support Vector Machine

The SVM is a way of separating two sets of points in space. This is achieved by

forming a separating hyperplane between the two sets which has the maximum

symmetric margin. This maximises both classes distance to the decision boundary

while having the additional benefit of optimising directionality of the decision

boundary within the space [16].

5.1.1 Primal form

Let us define a set of points x with two classes positive and negative (for this

case positive and negative are linearly separable) and a vector w normal to the

separating hyperplane and offset b such that

~w · x+ b = 0 (5.1)



Chapter 5. contributions on classification 100

For all x which lie on the hyperplane. For all x in the positive class:

~w · x+ b ≥ 1 (5.2)

and for all x in the negative class:

~w · x+ b ≤ −1 (5.3)

These two equations enforce the margin. Now we will assign a class label y to each

class which has the value -1 for negative and 1 for positive. If we then multiply

Equations 5.2 and 5.3 by y we find we can enforce the margin while constraining

w using just one equation

y(~w · x+ b) ≥ 1 (5.4)

The width of the margin is defined as:

2

‖~w‖
(5.5)

As this is the element we wish to maximise, we now have all of the pieces we

require to can wrap this as a quadratic programming minimisation as follows

min
1

2
‖~w‖2 s.t. y(~w · x+ b) ≥ 1 ∀x (5.6)

A 2 dimensional primal SVM is shown in Figure 5.1.

In the example shown in Figure 5.1 the positive and negative classes are perfectly

linearly separable. ~w is the normal to the hyperplane and b is the y intercept.

This is the primal form of the SVM. Equation 5.6 can be solved for any linearly



Chapter 5. contributions on classification 101

w

b

2

| 𝑤 |

Figure 5.1: 2-Dimensional example of a primal SVM.

separable datasets by mapping it to a quadratic programming algorithm [16, 109].

This will calculate an explicit vector w and offset b over the input vectors. These

can then be used as in Equation 5.1 with a test sample x and the sign of the result

will determine which class x belongs to. The classifier can be biased towards either

class by varying the threshold above or below 0.

5.1.2 Dual form

While the primal form is very useful from an intuitive standpoint. It becomes

extremely inefficient when the dimensionality of the input vectors becomes large

or if we encounter a set of data which are not linearly separable. To solve this we

use the dual form

find α1...αn s.t. max(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj)

n∑
i=1

yiαi = 0 αi ≥ 0 ∀α
(5.7)



Chapter 5. contributions on classification 102

Equation 5.7 is exactly equal to Equation 5.6, however the shape of the solution

is different. Instead of finding an explicit weight vector w Equation 5.7 finds a set

of weights α which when applied to the input vectors form an implicit separating

hyperplane. Note that the majority of the α will be 0 as they are far from the

hyperplane and vectors with α > 0 are known as the Support Vectors. This

optimisation is entirely dependent on dot products between vectors instead of the

raw vectors themselves which allows us freedom with the size of our input vectors.

The quadratic programming mapping for this problem is calculated over the dot

products between all vectors in the training set. The output is a set of weights α.

As the alphas in combination with the input vectors form an implicit separating

hyperplane the classification function is as follows for a query sample xq

n∑
i=1

yiαixi · xq + b (5.8)

Where the sign of the result of Equation 5.8 determines the class. Specifically for

the linear case, the hyperplane normal w and bias b can be calculated explicitly

as in Equation 5.6 using the following.

w =
n∑
i=1

yiαixi (5.9)

b = yk − w · xk (5.10)

Equation 5.10 only holds for xk with α > 0. From Equations 5.8, 5.9 and 5.10,

for a linear SVM, a query can be performed with a single dot product as w can

be calculated offline as in Equation 5.11.

n∑
i=1

yiαixi · xq + b = w · xq + b (5.11)



Chapter 5. contributions on classification 103

5.1.3 Non linearly separable data

A further extension of the SVM is known as “Slack” or “Regularisation”. Reg-

ularisation is a common practice in many optimisation and machine learning al-

gorithms. This is effected by bounding the output of the optimisation such that

none of the input data become too highly valued. Alternatively it can be viewed

as a method for incorporating more of the training data into the final solution.

This helps avoid overfitting and allows us to have intentional misclassification. To

implement this in the SVM formulation Equation 5.7 becomes

find α1...αn ε1...εn s.t. max(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj)

n∑
i=1

yiαi = 0 λ ≥ αi ≥ 0 ∀α
(5.12)

Where ε1...εn are the slack variables, abstracted within the machinery of the al-

gorithm, assigned to each vector by the solver and λ (also known as C ) is the

regularisation parameter. This has the effect of bounding the size of the αi...αn

(See Section 2.3) by λ. As only a maximum λ of each dot product can be used in

the final solution, a larger proportion of the input data must be used to form the

separating hyperplane. As a result the margin becomes softer. For an example

see Figure 5.2.

The blue and red points are different classes with the circles being the support

vectors. Note when λ = 0.0001 the classifier is deliberately misclassifying a point

to allow for a more general solution. A few observations can be made with regards

to this. Firstly using more of the input data in the solution implies a more general

solution, as such a lower lambda should be desirable. Secondly as Lambda becomes

smaller the number of non-zero alphas increases and consequently testing time



Chapter 5. contributions on classification 104

Figure 5.2: Examples of soft margin classification using an SVM.

increases, accordingly a higher lambda is desirable when time to compute is at a

premium.

5.1.4 Forming non-linear decision boundaries

Kernels were proposed initially with SVMs as a small extension which could prove

useful in a small number of circumstances [110]. Later it was discovered that

kernels were extremely powerful and now considered to be a fundamental part of

the SVM.

Kernels are a method for mapping your vectors from their current feature space

(In the case of linear SVMs this is Euclidean) into some other feature space known

as the Embedded Space. Some examples include Polynomial kernels which map

features into a higher dimensional Euclidean space, or the Gaussian Radial Basis

Function (RBF) which maps features into an exponential space.

An issue with this is that with large data sets or large feature sizes the complexity

of the mapping can become extremely high. In the case of the RBF it is nearly



Chapter 5. contributions on classification 105

impossible to explicitly map your features. To overcome this we use a Kernel

Function as in Equation 5.13.

K(u, v) = φ(u) · φ(v) (5.13)

A kernel function maps two vectors (~u,~v) to their inner product in another space

φ. This allows us complete freedom in the design of our kernel as we never need

to explicitly map our features into the other space, we only need to understand

how our features relate to each other within said space.

One example is the L1 kernel in Equation 5.14 .

K(~u,~v) = 1−
n∑
i=1

|~ui − ~vi| (5.14)

Where ~u and ~v are the two vectors and n is the length of each vector. This kernel

function has the effect of implicitly mapping our vectors into a space where their

dot product is equal to the L1 distance between the two vectors. As stated in

Section 5.1.2 the optimisation is only dependant on the dot products between

vectors, this definition removes the need to consider the actual space, only the

relationship between each pair of vectors. When it comes to implementing a linear

SVM, which can also be considered an SVM using a linear Kernel, we pass the

quadratic programming function the set of dot products between all vectors in the

set. So to use the histogram intersection kernel we simply pass the function the

set of L1 distances between all vectors instead. To use this Equation 5.7 becomes

find α1...αn s.t. max(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)) (5.15)

with classification function



Chapter 5. contributions on classification 106

n∑
i=1

yiαiK(xi, xj) + b (5.16)

5.1.4.1 An intuitive example of kernels

Say we have 3 classes of data and we want to represent them with a single feature,

as in Figure 5.3.

Figure 5.3: Three classes of data.

In this example the data are not entirely linearly separable, see Figure 5.4.

The red line separates all of class 1 from the rest and the green line separates all of

class 3 from the rest, however there is no possible straight line which will separate

class 2. To completely separate these classes we can use a polynomial kernel. To

do this we project our features onto a quadratic curve, see Figure 5.5.

Now we can separate all 3 classes completely using single lines as in Figure 5.6.

It is worth noting that as we are remaining in Euclidean space the original lines

of separation still exist. As such this kernel can never create a worse separation

between classes.



Chapter 5. contributions on classification 107

Figure 5.4: The separations between the three classes of data.

Figure 5.5: Projection onto a quadratic curve.

Now with this intuition of spatial projection we can revert our features back to

their space in Figure 5.3. As long as we have a kernel function which tells us how

our features relate in the embedded space in Figure 5.6 we never need to actually

perform the projection.



Chapter 5. contributions on classification 108

Figure 5.6: New separations on the quadratic curve.

5.1.4.2 Additional tuning parameters

One way of examining kernels is to treat them as a mapping. For a linear SVM we

map our feature vectors into their complete set of dot products. The separating

hyperplane is then calculated using a weighted sum of these. For a Radial Basis

Function (RBF) kernel, we map our feature vectors in the following manner

K(u, v) = e
||u−v||2

σ (5.17)

This mapping, and many others, employs the additional tuning parameter σ. This

allows us to scale the output of the kernel.

5.1.4.3 List of kernel functions used

The Kernels we used in the experiments were chosen based on two criterion. Firstly

we chose the Linear, Polynomial and Radial Basis Function (RBF) kernel, as they

are widely regarded as canonical kernels and any evaluation of the SVM would be

incomplete without them.



Chapter 5. contributions on classification 109

we chose the L1, L1 RBF and Histogram Intersection RBF.

Linear

K(u, v) = u · v (5.18)

Polynomial [111].

K(u, v) = (1− u · v)2 (5.19)

Radial Basis Function [112].

K(u, v) = e
||u−v||2

σ (5.20)

L1

K(u, v) = 1−
n∑
i=1

(|ui − vi|) (5.21)

Histogram Intersection Radial Basis Function

K(u, v) = e
∑n
i=1(min(ui,vi))

σ (5.22)

Laplacian Radial Basis Function [113].

K(u, v) = e
∑n
i=1(|ui−vi|)

σ (5.23)



Chapter 5. contributions on classification 110



Chapter 5. contributions on classification 111



Chapter 5. contributions on classification 112



Chapter 5. contributions on classification 113



Chapter 5. contributions on classification 114



Chapter 5. contributions on classification 115



Chapter 5. contributions on classification 116



Chapter 5. contributions on classification 117



Chapter 5. contributions on classification 118



Chapter 5. contributions on classification 119



Chapter 5. contributions on classification 120



Chapter 5. contributions on classification 121



Chapter 5. contributions on classification 122



Chapter 6

Sudoku texture classification

The Local Binary Pattern (LBP) is a benchmark method described in Section 2.5.

In this Chapter we propose a new method named the Sudoku transform. Our new

method encodes a local neighbourhood using a total rank-ordering, this forms a

more robust description of a neighbourhood while retaining the benefits of LBP.

When combined with a equailised grouping scheme to form histograms we show

stronger performance than LBP on a number of benchmark databases.

Parts of this work were published in conference publication [E]: “Sudoku Texture

Classification”. This Chapter forms contribution [3]: “Developing a novel texture

histogram for image analysis in the Local Binary Pattern framework”

An LBP is a binary string which describes a neighbourhood of pixels. It is formed

by comparing a central pixel with its neighbours, if the neighbour is greater than

the centre it is assigned 1, if less a 0. It was observed in Section 2.5 that LBP only

crudely encodes magnitude information. In Section 2.6.4 Completed LBP was de-

scribed which additionally encodes magnitude. They found that this magnitude

supported better performance. We contend that relative magnitude is impor-

tant. Our new representation describes how a local area is organised in terms of

magnitude while retaining the primary benefits of LBP.

123



Chapter 6. Sudoku Classification 124

The rest of this Chapter is organised as follows. In Section 6.1 we propose the

method for forming our patterns using a complete local neighbourhood ranking

and the subsequent feature vector, henceforth termed the Sudoku transform,. We

then go on to discuss our results.

6.1 Method

A Sudoku grid is a form of puzzle, popularised in the Japanese newspaper The

Monthly Nikolist [114] and is found in most newspapers in the UK. A picture of a

Sudoku puzzle is shown in Figure 6.1.

5 3 2

4 8 7

6 9 1

9 8 6

2 1 5

4 3 7

7 4 1

3 6 9

5 8 2

3 2 5

7 6 4

8 1 9

1 7 4

3 9 8

5 6 2

8 9 6

1 2 5

4 3 7

1 5 6

9 7 8

2 4 3

8 2 3

6 4 1

7 5 9

9 7 4

2 5 3

6 1 8

Figure 6.1: A completed Sudoku puzzle. the numbers in black are placed by
the puzzle designer and the numbers in red must be deduced

Figure 6.1 shows a completed puzzle. The primary characteristic of a Sudoku

puzzle is that the numbers 1 to 9 must appear only once in each column, row and

the nine 3× 3 cells. The specific rule regarding 3× 3 cells formed the inspiration

for the method we shall now describe.

We form a pattern by comparing all pixels in a neighbourhood simultaneously,

forming a rank-ordering, shown in Figure 6.2.

We read this clockwise as a string starting at the right-middle pixel and appending

the central pixel’s rank to the end of the string. This can be expressed as



Chapter 6. Sudoku Classification 125

120 67

32

12

200 170

123 189

225 4 3

2

1

8 6

5 7

9

726814935

Figure 6.2: Transformation of pixel intensities from a 3 × 3 image patch to
rank values.

S(P ) =
n∑
i=1

RANK(pi) ∗ 10i−1 (6.1)

where the RANK operator assigns the rank to pixel p in neighbourhood P. In

analogy to LBP this number is then “bit” shifted with circular wrap around to its

minimum value to achieve rotational invariance. The pattern derived from Figure

6.2 would be 726814935 and then shifted to 149357268. This process is applied to

every pixel in an image to form our “Sudoku” image.

A key feature of LBP and also our Sudoku representation is that it is invariant

to all typical photometric distortions that can occur when the capture conditions

change (e.g. scaling, offsets or any non-linear increasing functions applied to the

image). The Sudoku rank also has the advantage that it is a full rank order and

is not based on the binary relation of a central pixel and its neighbours. As all

our Sudoku patterns begin with a 1 there are only 8 numbers in each pattern

which can change. As each pattern contains each number from 1 to 9 only once

this means the number of rotationally invariant Sudoku patterns is 8! = 40320.

We plausibly have more information because the number of rotationally invariant

LBPs is 36. Our hypothesis is that the Sudoku feature which compares all pixels

with each other will capture yet more salient information and so support more

accurate texture recognition. This representation also retains they key benefit of

simplicity.



Chapter 6. Sudoku Classification 126

Currently the method is only defined for 3×3 neighbourhood. A generalisation of

this method could lead to an n×n neighbourhood where n is the number of pixels

in the neighbourhood. This would require a base n2 numeric system. This would

lead to the ability, like LBP, to define Sudoku patterns with variable radii and

sampling size.

6.1.1 Uniformity

LBP uniformity is described earlier in Section 2.5.3. The analyses in [5] of uni-

formity in LBP patterns is directly applicable to our method as we are still using

relational encoding and we know how our ranks vary around our central pixel. In

our Sudoku method we apply LBP uniformity 2 rule to our Sudoku features. We

do this by only considering patterns which vary above or below the central pixels

rank twice or less. All other patterns are placed in a bin appended to the end

of the histogram. Examples of a non-uniform and a uniform Sudoku pattern are

shown in Figure 6.3.

9 7

4

1

2 3

5 6

8 9 8

7

1

6 2

5 3

4

A B

Figure 6.3: Two Sudoku patterns. Left is uniform and right is non-uniform.

In Figure 6.3 pattern A is uniform and pattern B is not. The numbers in Green

are greater than the central rank and the numbers in orange are less. The neigh-

bouring pixels in B oscillate between greater and less than as you read around the

pattern resulting in a uniformity value of 8 - that is 8 changes above or below the

central pixels rank. This pattern would be grouped in the final bin of a histogram.



Chapter 6. Sudoku Classification 127

Neighbourhood A has only two transitions resulting in a uniformity of two. This

pattern would be accepted.

In LBP uniformity significantly compresses the histogram which can be considered

an advantage. Unfortunately this is not the case for Sudoku. As the central

rank of a neighbourhood can be 1 or 9 all possible Sudoku patterns are also

potentially uniform. With regards to this it may be that there is a deeper meaning

to Uniformity with respect to this representation. However this is not within the

scope of this thesis.

6.1.2 Equality

In our representation we also consider equality. Currently if two pixels are equiv-

alent then one is arbitrarily assigned a higher rank based on its position in the

neighbourhood. We address this by allowing two pixels to have the same rank.

See Figure 6.4.

120 67

32

67

200 170

123 189

225 3 2

1

2

7 5

4 6

8

615723824

Figure 6.4: Transformation of a neighbourhood into its Sudoku glyph with
equality.

It is worth considering the increased complexity by adding this step. Without

equality there are 9! = 362880 possible glyphs or 8! = 40320 with rotation.

The combinatorics become significantly more complex once we add equality. For

example a 9 pixel pattern with two repetitions, such as the in Figure 6.4, would be

of the form 157238246. Now if we consider all possible patterns with 2 repetitions

we can calculate this using the combinatorics as follows.



Chapter 6. Sudoku Classification 128

7! ∗
(

9

2

)
(6.2)

There are 7! different ways in which the unique values can be organised multiplied

by the number of ways it is possible to choose 2 numbers from 9. We must consider

all possible ways in which patterns can have repetitions, calculate the number of

possible patterns for each permutation and then take the sum all of the above.

We present this value as 871030 without rotation.

6.1.3 Histogram formation

We choose to begin the Sudoku pattern with 1. This means all our initial features

are large integers. In order to remove any bias in the representation (from how we

make the nine digit number) we map the calculated Sudoku integer non-linearly

to the interval [0,1]. To accomplish this we calculate an increasing function f()

with a resulting n values. These n values when used as quantisation levels on

the Sudoku integers of a whole dataset effect that the histogram of that dataset

is uniform. The histogram of quantised, according to the previously calculated

function, Sudoku ranks for a given image will not be uniform and is used as the

index for texture recognition. A visualisation is shown in Figure 6.5.

6.1.4 Relation to the Complete Rank Transform

Before we discuss our experiments we must discuss the Complete Rank Transform

(CRT) [101], a method with obvious similarities to our Sudoku Transform.

The CRT is an extension a previous method known as the Rank Transform of [100].

The authors present two features in their work known the Rank Transform and the

Census transform (for a full description see Section 2.10.1). The Census transform



Chapter 6. Sudoku Classification 129

Input Sudoku Codes

123456789 198765432

O
u

tp
u

t 
V

al
u

es
0

1

f()

Figure 6.5: Visualisation of a histogram equalisation function with 5 levels.

bares a strong visual resemblance to the LBP however it is widely accepted that

the two methods are distinct [115][116][117]. The reasons are as follows:

• The Census transform concatenates the bits in an arbitrary manner where

LBP uses a specific choice to obtain rotational invariance. Rotational invari-

ance is a property not exhibited by the Census transform.

• There is no “Uniformity” equivalent step in the Census transform, all bit

strings are considered equal in terms of descriptive ability.

• The Census transform does not form a histogram like LBP. Instead strings

are compared individually by the Hamming distance [19].

For the same reasons, and more, that the Census transform is distinct from LBP,

the Sudoku transform is distinct from the CRT. Specifically:

• As with the Census transform the CRT concatenates the bits in an arbitrary

manner where our Sudoku method uses a specific choice.

• Our Sudoku patterns are mapped through a histogram equalisation function

to remove bias where the CRT ranks are used as signatures per pixel.



Chapter 6. Sudoku Classification 130

• The CRT does not produce a global index for an image (like the Sudoku

histograms), rather the individual signatures are input into an Optical Flow

algorithm to perform matching.

One final difference is that the Census and Complete Rank Transforms would re-

quire manifestly different implementations to be effective in texture classification.

Just as the Sudoku transform and LBP could not work, without serious modifica-

tion, in an Optical Flow application. As a result we shall not be comparing the

methods further.

6.2 Classification

For our classification experiments we will compare our Sudoku method, with and

without equality, with LBP and Local Ternary Patterns: a method which encodes

greater than, less than and close to the central pixel. This method is fully described

in Section 2.6.2.

We classify our histograms using a K Nearest Neighbour (KNN) classifier [20]

using the χ2 distance as our comparison metric:

χ2 =
b∑
i=1

(xi − yi)2

xi + yi
(6.3)

which measures the dissimilarity between two histograms x and y with number of

bins b.

We calculate the distance between a test sample and every training sample. We

rank the training samples in increasing order of their distance to the test sample

and take the first K results (the K most similar images). The test sample is

assigned the modal class within those K results. In our experiments we arbitrarily

set K = 3 as we are interested in comparative performance. In the case of a 3-way



Chapter 6. Sudoku Classification 131

tie we take the first (closest) images class as our result, this is equivalent to using

K = 1. K = [5, 7, 9] were tested and little difference was found between them.

To perform our experiments we use a two-fold classification protocol. With the

images in each class sorted alphabetically by file name; firstly we use the odd

indexed images for training and even indexed for testing. We then swap the

training and the testing data for the 2nd pass. The final result, detailed in Table

6.1, is the mean percentage accuracy of the two passes. A full workflow depicting

our entire experimental process is shown in Figure 6.6.

6.2.1 Data

We perform our experiments on members of the Curet [118], Outex TC 00013

(hereafter named as Outex) [119] and Vistex Datasets [120], examples of which

can be seen in Figure 6.7.

For all images which are colour we first convert them to grey-scale using the

function 0.2989 ∗ R + 0.5870 ∗G + 0.1140 ∗ B where R, G and B denote the Red

Green and Blue channels respectively.

6.2.2 Sensitivity testing

The number of bins in an LBPriu2 histogram is absolute, there can be no more or

no less as each pattern indexes to a bin. In Sudoku histograms we group patterns

into bins according to a histogram equalisation function. This allows us a vary the

quantisation level on a per experiment basis. This can be considered a sensitivity

of the representation and as such must be evaluated.

The results in Section 6.4 are generated by classifying the images with a variable

number of bins and selecting a representative result. Specifically the function we

use is round(2i) where i = 2 : 0.1 : 10. This calculates 73 unique bin values on an



Chapter 6. Sudoku Classification 132

Dataset of 
Images

Sudoku 
Images

Original 
Images

Dataset of 
Sudoku Images

Calculate 
Function

Set of n
Quantisation 

Levels

Quantise 
Individual 
Images 0-1

Dataset of 
Sudoku 

Histograms

Histogram each 
Image

……

Processing

Classification

Calculate 
Distances

Rank Images in 
order of 
Distance

d = 0.05

d = 0.08

d = 0.13

……

d = 0. 85

Take top K 
results

Granite

Granite

Granite

Result is the 
modal class. In 

this case: Granite.

Figure 6.6: The full workflow of our experimental process.



Chapter 6. Sudoku Classification 133

Figure 6.7: Examples of the threes datasets, from left to right: Curet, Outex,
Vistex.

exponential scale between 2 and 1024. See Figure 6.8 for the full range of results

on the Outex and Vistex datasets.

0 200 400 600 800 1000 1200

# Of Histogram Bins

55

60

65

70

75

80

85

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Outex 13 Sensitivity

0 200 400 600 800 1000 1200

# of Histogram Bins

30

35

40

45

50

55

60

65

70

75

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Vistex Sensitivity

Figure 6.8: Bin density vs classification accuracy on Outex and Vistex.

We find that the sensitivity of the method varies on a pseudo-logarithmic scale

which flattens at approximately 250 bins. This suggests that there is a certain

amount of granularity required for a Sudoku histogram to accurately capture an

images patterns, however once this is reached adding more bins only adds sparse-

ness to the representation.



Chapter 6. Sudoku Classification 134

6.3 Experimental parameters

All methods use an 8 point 1 radius pattern. The per method parametrisation is

as follows

• Sudoku - We empirically choose a quantisation level based on best perfor-

mance as described in Section 6.2.2.. This results on histograms with three

different lengths (one per dataset).

• Sudoku with Equality (SudokuE) - Parametrisation remains the same as

with the above Sudoku patterns however we now incorporate equality into

the local codes (See Section 6.1.2)

• LBP - We use a rotationally invariant uniformity 2 pattern; resulting in

histograms with 10 bins.

• LTP - We use the same parameters as LBP. The additional threshold is ±

5. The ternary patterns are calculated in their positive and negative parts

and concatenated to form a 20 bin histogram.

6.4 Results

Table 6.1 shows our results. We compare our Sudoku method with traditional

LBP and LTP.

Curet Outex Vistex

Sudoku 89.1 82.3 71.8
SudokuE 91.3 84.8 77.3

LBP 78.6 67.8 70.2
LTP 84.4 72.3 80.3

Table 6.1: Table of mean percentage accuracies for the 4 methods described
over the 3 databases.



Chapter 6. Sudoku Classification 135

Curet Outex Vistex

Sudoku 362 294 194
SudokuE 676 256 388

Table 6.2: Table of bin quantities used for the two Sudoku methods over the
3 databases.

We observe a performance increase over both traditional LBP and LTP when using

either form of Sudoku description. SudokuE also produces a mild but consistent

performance increase over Sudoku. On Vistex our method performs worse than

LTP, but not LBP.

These performance increments do come at a cost of significantly increased feature

vector length. This increase varies from 19.4 to 67.6 times that of LBP. While

a concern this is not a problem with regards to this Chapter: as the primary

thesis of the method is that a rank-ordering obtains more salient information

from a neighbourhood than simple comparative measures. An LBP histogram

has a finite length. There are only 256 possible patterns in a 3x3 neighbourhood

and it has been shown that 9 of these are sufficiently discriminative [5]. Our

representation increases the volume of potential patterns and a larger histogram,

so as to represent the encoded information more completely, is expected.



Chapter 6. Sudoku Classification 136

6.6 Conclusions

We have presented a new feature based on LBP. Our feature considers the rela-

tionships between all pixels in a local neighbourhood and forms a histogram based

on the distribution of said features. Over the three datasets our experiments show

a mean increase in classification accuracy of 12.3% over traditional LBP. Relative

to the more complex LTP we show a mean performance increase of 4.8%, noting

that we observe a 3% deficit on the Vistex dataset.

We now move to examine invertibility of the description. We present a new method

for recovering images from their Sudoku and LBP patterns.



Chapter 7

Image Recovery From Texture

Methods for image texture analysis usually take an image and convert it into some

textural representation. In this Chapter we present a new method for inverting

this: taking a textural representation of an image and recovering the original. We

first extend a method from the prior art and then present our new method. Our

new method offers a significantly more accurate recovery.

Parts of this work were published in conference publication [F]: “Recovering a

Colour Image from its Texture”. This Chapter forms contribution [4]: ”Proposing

a new reconstruction approach to show the completeness of the image descriptors”.

7.1 Introduction

Texture features can be considered as methods for encoding an image: taking pixel

intensities or filter responses and forming them into a description which can be

used to solve problems including recognition and matching. In this Chapter we

are considering the inverse problem: given a textural representation of an image,

how well can we recover the original.

137



Chapter 7. Image Recovery From Texture 138

The usual goal of a texture representation is to enable recognition however the

structural aspect of texture is also important. We might ask, for example, how

easy it is to synthesize a texture from an exemplar. An important work here is

that of Efros et al. where given a seed image or image patch they “grow” a texture

which is visually similar [90]. Particularly relevant to this chapter we might ask

how much of the original image can we recover from the texture representation.

This last question is interesting. Image processing is full of examples of dual rep-

resentations. For example it is well known that an image and its Fourier transform

are bijectively related. And, of course, some image processing tasks are better per-

formed in one representation than the other (e.g. fast convolution is carried out in

Fourier space) [121]. We propose that a measure of texture “as a representation”

is the extent to which it “encodes” the original image.

Image reconstruction from texture has many applications. An example is Cryp-

tography: plausibly an image’s texture features could be transmitted and then

decoded elsewhere off-line to recover the image. Another example would be anal-

ysis of a texture representation. The reconstruction would form a visualization of

the knowledge encoded therein.

Local Binary Patterns (LBP) are one of the most successful and commonly used

texture representations. In their simplest form an LBP feature is a binary string

which encodes whether the brightness at an eccentric pixel is more or less than (1 or

0) than the centre. These 1s and 0s are read out to form a binary number which can

be read as an integer. Typically these numbers are grouped (e.g. histogrammed)

to form a feature vector for indexing. The key strengths of LBP are its invariance

to monotonic changes in image brightness (by scaling, gamma functions or tone

mapping) and its robustness to rotation [5, 73].

There are many extensions to LBP. One such is the Sudoku representation. Rather

than encoding relationships to a central pixel pixels are ranked in a 3x3 neighbor-

hood (using numbers 1 through 9). By construction the Sudoku grid has the same



Chapter 7. Image Recovery From Texture 139

Original 
Image

Texture 
Representation Process

Recovered 
Image

Figure 7.1: The image recovery pipeline.

monotonic invariance as LBP but is a richer feature set [122].

Both LBP and Sudoku deliberately remove greater or lesser amounts of magnitude

information. This can be considered as removing unimportant intensity represen-

tation in favor of a more structural description. The question we ask is: given

the per-channel textural information for an image; how well can we recover the

color image? We present results for two methods: one previous art known as the

Minimum Contrast (MC) algorithm [123] and our own proposed method called

Quadratic Reconstruction (QR). We show that essentially the LBP or Sudoku

texture encoding (at a pixel) specifies the intensity relationship that pixels in a

proximal region need to satisfy. Over the whole image the effect of these local re-

lations propagate. We demonstrate how - using an optimization technique called

Quadratic Programming - we can recover the minimum norm image that satisfies

the constraints. Compared to the prior art MC method, our new QR method

provides a much better recovery. Further, we show Sudoku QR is much improved

compared with is LBP variant.

The rest of this chapter is organized as follows: First we shall detail the MC and

QR algorithms. Secondly experiments are presented.



Chapter 7. Image Recovery From Texture 140

7.2 Image recovery

While the methods detailed above go as far as to form feature vectors, we would

like to take a step back and consider just the pattern in 3x3 neighbourhoods. That

is we use the set of comparisons performed by the method while retaining the pixel

locations. This is important as once the patterns are formed into strings and/or

rotated the positioning of each pixel becomes near-arbitrary making recovery a

significantly more complex task. The following two methods, Minimum Contrast

and Quadratic Reconstruction, use these as the basis for their reconstructions.

The recovery pipeline is shown in Figure 7.1.

7.2.1 The Minimum Contrast Algorithm

The minimum contrast algorithm was proposed in [123] as a way of inverting the

Local Binary Pattern. The primary goal was two-fold, firstly to provide a recog-

nizable reconstruction of an input image, and secondly to show what information

was lost in the LBP conversion.

To reconstruct an image using this method first consider the 4×3 patch in Figure

7.2

1 33 85

242 69 124

21145 83 211

12

197

Figure 7.2: A patch of pixels.



Chapter 7. Image Recovery From Texture 141

In this 4 × 3 patch there are two 3 × 3 neighbourhoods centred around rows,

columns (2,2) and (2,3), seen in Figure 7.3.

1 33 85

242 69 124

21145 83 211

12

19733 85

69 124

21 83

Figure 7.3: The two neighbourhoods of 7.2.

We can then transform these neighbourhoods into their LBP counterparts as in

Figure 7.4.

0 0 1

1 C2,2 1

01 1 1

0

10 0

0 C2,3

0 0

A B

Figure 7.4: LBP transformations of Figure 7.3.

Considering only the LBP transformations: if we first examine A we can see that

the top left pixel is less than the centre, as defined by the 0. This means that the

central pixel of A must be at least 1 pixel intensity greater than the top left. We

can also see that the bottom right pixel is greater than the centre, as defined by

the 1. This means that the bottom right of A is at least 1 pixel intensity greater

than the centre; and transitively at least 2 pixel intensities greater than the top

left. If we then move to examine B we can see that the central pixel of B is greater



Chapter 7. Image Recovery From Texture 142

than the bottom central pixel, which corresponds to the bottom right pixel of A,

and that the bottom right pixel of B is greater than the centre. From this we can

deduce that the bottom right of B is at least 5 pixel intensities greater than the

top left of A, or in other words the minimum contrast between the two pixels

is 5. Using this series of greater than relationships we can express this as a path,

see Figure 7.5.

33 85

242

21145

12

197

Figure 7.5: One greater than path through Figure 7.2.

It is worth noting that this is not the longest path available which reaches the

bottom right. However this is the longest explicit path defined by A and B.

The actual longest path would become explicit if the neighbourhood around row,

column (1,1) were part of this example.

To expand this process we must start at every local minimum in an image and

recursively generate every possible greater than path through said image. In each

pixel location we store the length of the longest path to that pixel. The path

length is defined as the pixel brightness in the reconstructed texture image. The

final result is an image in which the local binary patterns match exactly to the

original, More details of the implementation of this method can be found in [123].

We extend this process to use the Sudoku feature. In a Sudoku pattern we have

the rank ordering of a neighbourhood expressed as the numbers 1 to 9. This means

that if one pixel is ranked 9 and another pixel is ranked 2 the minimum intensity



Chapter 7. Image Recovery From Texture 143

difference between those two pixels is 7. To incorporate this into the minimum

contrast algorithm when we explore a greater than relationship we increment the

path length by the absolute rank difference between the two pixels. For an example

of both LBP and Sudoku minimum contrast reconstruction see Figure 7.6.

Original LBP Minimum Contrast Sudoku Minimum Contrast

Figure 7.6: Examples of LBP and Sudoku minimum contrast reconstruction
on MATLABs “Cameraman.tif”.

7.2.2 Quadratic Reconstruction

Our proposed method forms the problem in terms of quadratic programming. If

we consider an image to be a vector ~x with the pixels as variables x1...xn. For LBP

we can formulate a set of linear constraints such that each pixel xi is constrained

to be at least 1 greater or lesser than its neighbours (while enforcing positivity).

The difference of 1 is drawing attention to the fact that we have an ordinal relation-

ship e.g. that the central pixel is larger than one neighbour. For a neighbourhood

x1...xn with central pixel xc the weakest way we can interpret this circumstance

(assuming an image is encoded using integers) is that xp − xc ≤ 1 where xp is the

larger pixel.

For a single 3x3 region and its LBP coding we have 8 of these kinds of relations.

And, of course we know all pixels x1...xn ≥ 0 . See Figure 7.7 as an example of

how we turn a pattern in to a set of inequality relations.

Now we must consider how to recover an image given these inequalities. Our key

insight is to employ a method called Quadratic Programming (QP) [109]. Per



Chapter 7. Image Recovery From Texture 144

123 67

32

12

200 170

123 189

225 0 0

0

0

1 1

xc 1

1

xc - x1,1 ≥ 1
x1,2 - xc ≥ 1
xc - x1,3 ≥ 1
xc – x2,1 ≥ 1
x2,3 - xc ≥ 1
x3,1 - xc ≥ 1
x3,2 - xc ≥ 1
xc - x3,3 ≥ 1

C,1a,1b…3c ≥ 0

1

2

3

1 2 3

Figure 7.7: Transformation of an LBP into its associated constraints.

pixel we have 8 inequality relations where each pixel has a value between 0 and

255 inclusive. Let xi denote the ith pixel in an image ~x (understanding that the

pixel is in a a 2D grid, but for our purposes it is useful to think of there being n

pixels in an image and xi is the ith one). Now for neighbouring pixels we have

the linear inequalities as per Figure 7.7. But, thinking of the image as a vector of

pixels these inequalities now refer to the ith and jth pixels where (i and j will be

far apart).

We construct a large matrix A such that in each row we encode a single inequality

relationship. So, in terms of our example the kth row at position i of A could have

1 and at position j a 0 if xi > xj. We have a corresponding vector B (which is a

vector of 1s). Now we can write

A~x ≥ ~B (7.1)

In the above equation we are explicitly writing in matrix form all the inequalities

that arise from every LBP encoding. Now we minimize:

min||~x||2s.t.A~x ≥ ~1 (7.2)



Chapter 7. Image Recovery From Texture 145

We solve for the above using QP. QP is guaranteed to find the global optimum

solution.

For an LBP transformation there are 8 comparisons between a central pixel and its

neighbours. As such there are 8 constraints defined per pixel. Each pixel appears in

9 different neighbourhoods so the transitive relationships between neighbourhoods

in an image will naturally be preserved.

Intuitively we can apply the same methodology to the Sudoku pattern. But, now

there will be more constraints. Indeed in a 3× 3 neighbourhood the total number

of binary comparisons possible is
(
9
2

)
= 36. Forming these as above gives us an

exact representation of the Sudoku encoding and solving with QP remains the

same. Pixel equality, encoded by Sudoku, is incorporated by constraining equal

pixels to have a negligible difference ≈ 10−6 instead of 1.

In Figure 7.8 we show examples of Quadratic Reconstruction (QR) using LBP and

Sudoku information on MATLAB’s “cameraman” image.

Original
LBP Quadratic 
Reconstruction

Sudoku Quadratic 
Reconstruction

Figure 7.8: Examples of quadratic reconstruction on “Cameraman.tif”.

7.2.2.1 Tone curve mapping

As a further processing stage in our QR pipeline we perform tone mapping on the

calculated images using Isotonic Regression. This finds a least squares fit y to a

vector x based on a known quantity x′. This is subject to the constraints yi ≤ yi+1

[124]. This enforced monotonicity retains the illumination invariant properties of



Chapter 7. Image Recovery From Texture 146

LBP and Sudoku. By finding a least squares fit between the original image and

the new image we bring the QR pixel intensities more in line with that of the

original image. For examples see Figure 7.9.

Original
Sudoku Quadratic 

Reconstruction

Sudoku Quadratic 
Reconstruction with Isotonic 

Regression

Figure 7.9: Example of Isotonic Regression on a Sudoku Quadratic Recon-
struction of MATLABs “Cameraman.tif”.

Of course, in the texture representation we do not know the original image so

cannot really carry out Isotonic Regression. But, plausibly a tone curve could be

stored along with texture features which could be deployed if a reconstruction was

necessary.

7.3 Experiments

For all of our experiments we employ the pipeline detailed in Figure 7.1. To com-

pare our reconstructions with the original image we use the Structural Similarty

index (SSIM). This is a perceptual measure based on image degradation [125].

We reconstruct images from four databases. Outex 00013 [119], Vistex [120], Curet

[118] and Ponce [48]. We use a small, consistently chosen, selection of images from

these datasets as follows:

• Outex TC 00013: We use the first and second images from each class result-

ing in a database of 136 128x128 RGB images.



Chapter 7. Image Recovery From Texture 147

• Vistex: We use the first and second images from each class resulting in a

database of 116 64x64 grey-scale images.

• Curet: Each class in Curet has an illumination gradient. The first numbered

images are dark and the highest numbered images are bright. We choose

the 47th and 48th images from each set (the middle two). Due to processing

time constraints we resize the images to 0.5 of their original resulting in a

database of 122 100x100 images.

• Ponce: We use te first and second images from each class resulting in a

database of 50 images. Due to memory constraints we resize the images to

0.25 of their original. Resulting in 160x120 grey-scale images.

We reconstruct four datasets in six different ways:

• LBP Minimum Contrast (LMC)

• Sudoku Minimum Contrast (SMC)

• LBP Quadratic Reconstruction (LQR)

• Sudoku Quadratic Reconstruction (SQR)

• LBP Quadratic Reconstruction with Isotonic Regression (LQRI)

• Sudoku Quadratic Reconstruction with Isotonic Regression (SQRI)

For all images which are colour we first convert them to grey-scale using the

function 0.2989 ∗ R + 0.5870 ∗G + 0.1140 ∗ B where R, G and B denote the Red

Green and Blue channels respectively.



Chapter 7. Image Recovery From Texture 148

LMC SMC LQR LQRI SQR SQRI

Outex13 0.26 0.26 0.65 0.69 0.77 0.96
Vistex 0.39 0.51 0.33 0.70 0.55 0.91
Curet 0.44 0.45 0.35 0.64 0.61 0.93
Ponce 0.50 0.53 0.30 0.69 0.56 0.89

Table 7.1: SSIM results for the 6 methods over the 4 datasets.

7.3.1 Results

SQRI clearly performs best out of all of the six methods. The reconstructions are

very close to their original images on all four datasets: especially Outex TC 00013

where we have an average difference of 0.04 between the reconstructions and the

originals. Figure 7.10 shows one example from each dataset, note how the SQRI

reconstructions, especially on Curet and Outex, are perceptually almost identical

to the originals.

Original LMC LQRISMC LQR SQR SQRI

O
u
te
x

V
is
te
x

C
u
re
t

Po
n
ce

Figure 7.10: Examples of grey-scale reconstructions from Outex, Vistex,
Curet and Ponce.

Sudoku provides a more significant performance boost in QR (≥ 0.12) than in

MC (≤ 0.03). This is likely due to the shortcoming of Sudoku in MC detailed in

Section 7.2.1, that is that the reconstructed codes only match closely, not exactly.

This is due to how edges are computed: the maximum rank on an edge pixel can

only be six, and on a corner can only be four. This leads to a loss of information

across the entire boundary of the image which then propagates into all other



Chapter 7. Image Recovery From Texture 149

neighbourhoods. It might be that the MC reconstructions could be improved in

implementation however this is not within the scope of this Thesis.

Using Isotonic Regression to tone map our images significantly increases perfor-

mance across all four datasets. In some cases it appears to be a vital part of the

process: LQR is outperformed by MC on Vistex, Curet and Ponce while SQR is

only marginally better on Vistex and Ponce. LQRI and SQRI however provide a

significant performance boost.

7.4 Reconstruction in colour

Our grey-scale results are very promising. An interesting question would be how

well the methods translate to RGB images. The pipeline we use requires some

modifications, these are shown in Figure 7.11.

Original 
Image

R

G

B

Glyphs

Recombine

Process
Separate 
Channels

Recovered 
Image

Figure 7.11: The color image recovery pipeline.

We choose 3 images from the MATLAB default package: kobi.png, football.jpg

and onion.png. We also use 3 images from the Outex TC 00013 texture dataset:

000087.bmp, 000366.bmp and 000397.bmp. Table 7.2 shows our results. Figure

7.12 shows the images corresponding to Table 1.

As expected SQRI is once again our strongest performing reconstruction. Sudoku

features also provide stronger reconstruction in QR but not MC. This is likely not



Chapter 7. Image Recovery From Texture 150

LMC SMC LQR LQRI SQR SQRI

ko
b
i

o
n
io
n

fo
o
tb
al
l

0
0
0
3
9
7

0
0
0
3
6
6

0
0
0
0
8
7

Original

Figure 7.12: All resultant images from our experiments.

LMC SMC LQR LQRI SQR SQRI

kobi 0.20 0.20 0.29 0.53 0.46 0.64
football 0.30 0.28 0.53 0.59 0.75 0.82
onion 0.37 0.35 0.50 0.56 0.67 0.71

000397 0.32 0.30 0.64 0.89 0.80 0.98
000366 0.28 0.27 0.75 0.89 0.90 0.96
000087 0.40 0.40 0.49 0.70 0.63 0.97

Table 7.2: Table 1: SSIM results for the 6 methods over the 6 images.

significant as our earlier results on grey-scale show that over larger sample sizes

SMC very slightly outperforms LMC on single channels.

QR performs significantly better on the texture images than on the regular images.

This is due to the fact that the texture images selected contain fine detail, or high

frequency, patterns. As we only sample neighbouring pixels it is expected that

the high frequency information propagates more efficiently than low frequency. A

possible solution for regular images would be to combine multiple different scales

in the solution.



Chapter 7. Image Recovery From Texture 151

7.5 Evaluation

We have presented a novel use of quadratic programming applied to image recovery.

We have shown that our QR method provides a statistically more similar image

using a perceptual metric. Subjectively we also believe the SQRI images to be

more visually similar.

LMC and SMC have provided poor results. It might be that their reconstructions

could be improved in implementation as the earlier results on grey-scale suggest

the translation to color should be routine but this does not seem to be the case.

QR does have drawbacks - it is currently very computationally expensive. There

are methods of circumventing this such as sparser sampling of the input image and

this will be explored in the future. Quadratic Programming itself is an expensive

process and this is the primary source of slowdown.

Perceptual comparison is also interesting. Isotonic Regression provides a mathe-

matically more similar image in all cases. However for some images, for example

kobi and football, we believe that the reconstruction without isotonic regression is

more perceptually similar. A more complete set of results would include perceptual

testing, this will be considered in the future.

7.6 Conclusions

In conclusion we have shown that given an image’s textural information it is pos-

sible to obtain a recognisable image. We have also shown that with our novel

quadratic programming method computed in the RGB channels we can recover

a highly accurate colour image. Our experiments on grayscale datasets show our

method (QR with Isotonic regression) offers an SSIM increase of up to 0.7 over

MC. However in some cases the increased knowledge of the Sudoku representa-

tion is required for QR to out perform MC. Specifically on the grayscale Vistex,



Chapter 7. Image Recovery From Texture 152

Curet and Ponce datasets LQR offers a performance loss of 0.18, 0.1 and 0.23

SSIM respectively over LMC, where SQR offers an increment of 0.22, 0.16 and

0.03 over SMC. This provides further evidence of the greater knowledge encoded

by the Sudoku representation from the consistently more accurate reconstructions

this description provides. Use of an Isotonic regression tone map increases perfor-

mance across the board, in some case severely. For instance QR with a tone curve

on the Vistex dataset gives an SSIM value of 0.70 vs 0.33 without. Using a tone

curve with SQR gives an average SSIM increase of 0.3 across the four datasets.

This contribution is only the second in this new area. As such this new ground has

a huge potential for future research. The possibility of investigating the accuracy

of a description through its invertibility allows for study of the encoding and

representational efficiency. Clearly there remains much future work possible in

this area. We now move to our overall conclusions and proposed future work.



Chapter 8

Conclusions and future work

8.1 Overall conclusions

This thesis has concentrated on the understanding and deployment of LBP type

texture and colour analysis

Outside the industrial application of this work, we have also devel-

oped a new texture representation and investigated its use in classification and

image recovery. We have also proposed and evaluated a new method in the field

of image recovery for inverting a texture descriptor to, as far as is possible, the

original image (from which the original texture was derived).

153



Chapter 8. Conclusions and future work 154

Our new technique for texture description, termed “Sudoku”, encodes relative in-

tensity variation in a local neighbourhood and then forms a feature vector based on

histogram equalisation. Our experiments show an average classification accuracy

increase of 12.3% against LBP and 5.5% compared with LTP consistent with the

improved knowledge of the representation.

We have considered the invertibility of local LBP type texture features, including

Sudoku. Using our Sudoku feature we have consistently reconstructed an image

more accurately than when using an LBP. Further to this we have presented and

evaluated a novel method using quadratic programming which improves recon-

struction significantly when compared to the previous art. With our method up

to 0.97 SSIM between a reconstructed texture image and the original was ob-

served. On “natural” images we reconstructed an image with an average SSIM of

0.72 compared to the average of 0.29 for the previous art. This new field gives

opportunity for much future development.

In Chapter 6 we presented a new and novel extension to LBP

termed Sudoku. In this chapter we carried out evaluations on standard datasets

and showed that for a simple histogram of features type classification system the

Sudoku representation advances the state of the art.

In chapter 7 we consider

the problem of calculating full colour images from LBP type texture descriptions.



Chapter 8. Conclusions and future work 155

We show that for LBP and Sudoku descriptors it is possible using our new tech-

nique based on Quadratic Programming to recover images from texture with a

high degree of accuracy and also significantly better the prior art.

8.2 Future work

This research has taken place during the revolution on deep learning. Deep learn-

ing has made many changes to the approaches used for automated image analysis.

The techniques used within this thesis have yet to exploit the advantages offered

and this is a prudent avenue of future research in this area. It is worth noting

that current research on deep learning investigates features that result in classifi-

cation capability.



Chapter 8. Conclusions and future work 156

With regards to our Sudoku method for classification we believe there is much

room for improvement (despite the performance benefits). First and foremost

we believe that considering the local rankings as an integer is a crude way of

exploiting the representation, even while histogram equalisation does account for

this somewhat. We would like a more complete description of our local rankings.

The concept of uniformity is also interesting, and whether or not it has a deeper

significance when the number of local comparisons increases. A full analysis of

all pattern occurrences across multiple large datasets would determine whether or

not any observations can be made. Finally the possibility of clustering Sudoku

ranks in an image to form a set of Textons, similarly to VZ-Joint in [62], may bear

some notice.

Image recovery from texture is a very new area and as such there is a huge scope for

future work. Firstly we would like to compare other texture descriptors within the

framework. We believe that with CLBP (see Section 2.6.4) we should theoretically

be able to obtain a perfect reconstruction. QP is the only optimisation technique

which we have considered, we would expect a Deep Learning technique, should

one be developed, to provide a significant performance increase in the future.

Finally through image recovery from texture we have shown that certain Texture

Features can be considered in a dual sense. That is, we can go from an image to its

texture and back to the image: there are two spaces with a mapping from one to

the other and back again. This suggests that the fundamental transforms of LBP

and Sudoku can be considered as texture spaces. The Fourier transform [121] is a

dual transform and some tasks are better placed in one of the two spaces. While

the Fourier transform has the property of perfect reconstruction, and QR from

texture does not (yet), this concept is still applicable. These texture spaces are



Chapter 8. Conclusions and future work 157

something worth exploring as they could open avenues for further understanding

of texture and images in general.



Appendix A

158



Appendix A Local Gradient Features 159



Appendix A Local Gradient Features 160



Appendix A Local Gradient Features 161



Appendix A Local Gradient Features 162



Appendix A Local Gradient Features 163



Appendix A Local Gradient Features 164



Appendix A Local Gradient Features 165



Appendix A Local Gradient Features 166



Appendix B

167



Appendix B 168



Appendix B 169



Bibliography

[1] M Varma and A Zisserman. Classifying images of materials: Achieving view-

point and illumination independence. In European Conference on Computer

Vision, pages 255–271. Springer, 2002.

[2] RM Haralick. Statistical and structural approaches to texture. Proceedings

of the IEEE, 67(5):786–804, 1979.

[3] AK Jain, A Ross, and S Prabhakar. Fingerprint matching using minutiae and

texture features. In Image Processing, 2001. Proceedings. 2001 International

Conference on, volume 3, pages 282–285. IEEE, 2001.

[4] C Shan, S Gong, and PW McOwan. Robust facial expression recognition

using local binary patterns. In Image Processing, 2005. ICIP 2005. IEEE

International Conference on, volume 2, pages II–370. IEEE, 2005.

[5] T Ojala, M Pietikäinen, and T Mäenpää. Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE

Transactions on pattern analysis and machine intelligence, 24(7):971–987,

2002.

[6] M Crosier and LD Griffin. Using basic image features for texture classifica-

tion. International journal of computer vision, 88(3):447–460, 2010.

[7] T Ahonen, A Hadid, and M Pietikäinen. Face description with local binary

patterns: Application to face recognition. IEEE transactions on pattern

analysis and machine intelligence, 28(12):2037–2041, 2006.

170



References 171

[8] DG Lowe. Object recognition from local scale-invariant features. In Com-

puter vision, 1999. The proceedings of the seventh IEEE international con-

ference on, volume 2, pages 1150–1157. Ieee, 1999.

[9] Y Xu, S Huang, H Ji, and C Fermüller. Scale-space texture description

on sift-like textons. Computer Vision and Image Understanding, 116(9):

999–1013, 2012.

[10] GT Flitton, TP Breckon, and NM Bouallagu. Object recognition using 3d

sift in complex ct volumes. In BMVC, pages 1–12, 2010.

[11] M Tuceryan and AK Jain. Texture analysis. Handbook of pattern recognition

and computer vision, 2:235–276, 1993.

[12] F Bianconi, RW Harvey, P Southam, and A Fernández. Theoretical and ex-

perimental comparison of different approaches for color texture classification.

Journal of Electronic Imaging, 20(4):043006, 2011.

[13] A Fernández, MX Álvarez, and F Bianconi. Texture description through

histograms of equivalent patterns. Journal of mathematical imaging and

vision, 45(1):76–102, 2013.

[14] M Pagola, R Ortiz, I Irigoyen, H Bustince, et al. New method to assess barley

nitrogen nutrition status based on image colour analysis: comparison with

spad-502. Computers and electronics in agriculture, 65(2):213–218, 2009.

[15] AJ Perez, F Lopez, JV Benlloch, and S Christensen. Colour and shape anal-

ysis techniques for weed detection in cereal fields. Computers and electronics

in agriculture, 25(3):197–212, 2000.

[16] SR Gunn et al. Support vector machines for classification and regression.

ISIS technical report, 14(1):5–16, 1998.

[17] MJ Swain and DH Ballard. Color indexing. International journal of com-

puter vision, 7(1):11–32, 1991.



References 172

[18] M Kokare, BN Chatterji, and PK Biswas. Comparison of similarity metrics

for texture image retrieval. In TENCON 2003. Conference on Convergent

Technologies for the Asia-Pacific Region, volume 2, pages 571–575. IEEE,

2003.

[19] RO Duda and PE Hart. Pattern classification and scene analysis. A Wiley-

Interscience Publication, New York: Wiley, 1973.

[20] P Cunningham and SJ Delany. k-nearest neighbour classifiers. Multiple

Classifier Systems, 34:1–17, 2007.

[21] H Frigui and P Gader. Detection and discrimination of land mines in ground-

penetrating radar based on edge histogram descriptors and a possibilistic

k-nearest neighbor classifier. IEEE Transactions on Fuzzy Systems, 17(1):

185–199, 2009.

[22] H Yan. Handwritten digit recognition using an optimized nearest neighbor

classifier. Pattern Recognition Letters, 15(2):207–211, 1994.

[23] A Tsymbal, S Puuronen, and DW Patterson. Ensemble feature selection with

the simple bayesian classification. Information fusion, 4(2):87–100, 2003.

[24] F Peng and D Schuurmans. Combining naive bayes and n-gram language

models for text classification. In European Conference on Information Re-

trieval, pages 335–350. Springer, 2003.

[25] GH John and P Langley. Estimating continuous distributions in bayesian

classifiers. In Proceedings of the Eleventh conference on Uncertainty in arti-

ficial intelligence, pages 338–345. Morgan Kaufmann Publishers Inc., 1995.

[26] JD Rennie, L Shih, Jaime Teevan, and DR Karger. Tackling the poor as-

sumptions of naive bayes text classifiers. In Proceedings of the 20th interna-

tional conference on machine learning (ICML-03), pages 616–623, 2003.



References 173

[27] B Gorte and A Stein. Bayesian classification and class area estimation of

satellite images using stratification. IEEE Transactions on Geoscience and

Remote Sensing, 36(3):803–812, 1998.

[28] AM Kibriya, E Frank, B Pfahringer, and G Holmes. Multinomial naive

bayes for text categorization revisited. In Australasian Joint Conference on

Artificial Intelligence, pages 488–499. Springer, 2004.

[29] T Randen and JH Husøy. Filtering for texture classification: A comparative

study. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):

291–310, 1999.

[30] L Nanni, A Lumini, and S Brahnam. Survey on lbp based texture descriptors

for image classification. Expert Systems with Applications, 39(3):3634–3641,

2012.

[31] H Wechsler. Texture analysisa survey. Signal Processing, 2(3):271–282, 1980.

[32] RM Haralick, K Shanmugam, et al. Textural features for image classification.

IEEE Transactions on systems, man, and cybernetics, (6):610–621, 1973.

[33] T Lindeberg. Feature detection with automatic scale selection. International

journal of computer vision, 30(2):79–116, 1998.

[34] RW Conners and CA Harlow. A theoretical comparison of texture algo-

rithms. IEEE transactions on pattern analysis and machine intelligence,

(3):204–222, 1980.

[35] K Kvaal, JP Wold, UG Indahl, P Baardseth, and T Næs. Multivariate fea-

ture extraction from textural images of bread. Chemometrics and intelligent

laboratory systems, 42(1-2):141–158, 1998.

[36] JS Weszka, CR Dyer, and A Rosenfeld. A comparative study of texture

measures for terrain classification. IEEE transactions on Systems, Man,

and Cybernetics, (4):269–285, 1976.



References 174

[37] Kenneth I Laws. Rapid texture identification. In Image processing for missile

guidance, volume 238, pages 376–381. International Society for Optics and

Photonics, 1980.

[38] I Fogel and D Sagi. Gabor filters as texture discriminator. Biological cyber-

netics, 61(2):103–113, 1989.

[39] SE Grigorescu, N Petkov, and P Kruizinga. Comparison of texture features

based on gabor filters. IEEE Transactions on Image processing, 11(10):

1160–1167, 2002.

[40] R Chellappa and S Chatterjee. Classification of textures using gaussian

markov random fields. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 33(4):959–963, 1985.

[41] JM Ver Hoef, EE Peterson, MB Hooten, EM Hanks, and M Fortin. Spatial

autoregressive models for statistical inference from ecological data. Ecological

Monographs, 88(1):36–59, 2018.

[42] J Mao and AK Jain. Texture classification and segmentation using mul-

tiresolution simultaneous autoregressive models. Pattern recognition, 25(2):

173–188, 1992.

[43] M Unser. Texture classification and segmentation using wavelet frames.

IEEE Transactions on image processing, 4(11):1549–1560, 1995.

[44] S Hatipoglu, SK Mitra, and N Kingsbury. Texture classification using dual-

tree complex wavelet transform. 1999.

[45] T Celik and T Tjahjadi. Multiscale texture classification using dual-tree

complex wavelet transform. Pattern Recognition Letters, 30(3):331–339,

2009.



References 175

[46] JM Keller, S Chen, and RM Crownover. Texture description and segmen-

tation through fractal geometry. Computer Vision, Graphics, and image

processing, 45(2):150–166, 1989.

[47] LM Kaplan. Extended fractal analysis for texture classification and segmen-

tation. IEEE Transactions on Image Processing, 8(11):1572–1585, 1999.

[48] S Lazebnik, C Schmid, and J Ponce. A sparse texture representation using

local affine regions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(8):1265–1278, 2005.

[49] AE Johnson and M Hebert. Using spin images for efficient object recognition

in cluttered 3d scenes. IEEE Transactions on pattern analysis and machine

intelligence, 21(5):433–449, 1999.

[50] M Cimpoi, S Maji, and A Vedaldi. Deep filter banks for texture recognition

and segmentation. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3828–3836, 2015.

[51] M Anthimopoulos, S Christodoulidis, L Ebner, A Christe, and

S Mougiakakou. Lung pattern classification for interstitial lung diseases

using a deep convolutional neural network. IEEE transactions on medical

imaging, 35(5):1207–1216, 2016.

[52] E Hayman, B Caputo, M Fritz, and J Eklundh. On the significance of

real-world conditions for material classification. In European conference on

computer vision, pages 253–266. Springer, 2004.

[53] F Bianconi and A Fernández. Evaluation of the effects of gabor filter pa-

rameters on texture classification. Pattern recognition, 40(12):3325–3335,

2007.

[54] BS Manjunath and W Ma. Texture features for browsing and retrieval of im-

age data. IEEE Transactions on pattern analysis and machine intelligence,

18(8):837–842, 1996.



References 176

[55] CBR Ng, G Lu, and D Zhang. Performance study of gabor filters and

rotation invariant gabor filters. In 11th International Multimedia Modelling

Conference, pages 158–162. IEEE, 2005.

[56] J Malik, S Belongie, J Shi, and T Leung. Textons, contours and regions:

Cue integration in image segmentation. In Proceedings of the Seventh IEEE

International Conference on Computer Vision, volume 2, pages 918–925.

IEEE, 1999.

[57] T Leung and J Malik. Representing and recognizing the visual appearance of

materials using three-dimensional textons. International journal of computer

vision, 43(1):29–44, 2001.

[58] F Jurie and B Triggs. Creating efficient codebooks for visual recognition.

In Tenth IEEE International Conference on Computer Vision (ICCV’05)

Volume 1, volume 1, pages 604–610. IEEE, 2005.

[59] B Julesz. Textons, the elements of texture perception, and their interactions.

Nature, 290(5802):91, 1981.

[60] OG Cula and KJ Dana. Recognition methods for 3d textured surfaces.

In Human Vision and Electronic Imaging VI, volume 4299, pages 209–220.

International Society for Optics and Photonics, 2001.

[61] C Schmid. Constructing models for content-based image retrieval. In Pro-

ceedings of the 2001 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition. CVPR 2001, volume 2, pages II–II. IEEE,

2001.

[62] M Varma and A Zisserman. Texture classification: Are filter banks nec-

essary? In 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2003. Proceedings., volume 2, pages II–691. IEEE,

2003.



References 177

[63] M Varma and R Garg. Locally invariant fractal features for statistical tex-

ture classification. In 2007 IEEE 11th international conference on computer

vision, pages 1–8. IEEE, 2007.

[64] D He and L Wang. Texture unit, texture spectrum, and texture analysis.

IEEE transactions on Geoscience and Remote Sensing, 28(4):509–512, 1990.

[65] T Ojala and M Pietikäinen. Unsupervised texture segmentation using feature

distributions. Pattern recognition, 32(3):477–486, 1999.

[66] Z Guo, L Zhang, and D Zhang. Rotation invariant texture classification

using lbp variance (lbpv) with global matching. Pattern recognition, 43(3):

706–719, 2010.

[67] X Tan and B Triggs. Enhanced local texture feature sets for face recognition

under difficult lighting conditions. IEEE transactions on image processing,

19(6):1635–1650, 2010.

[68] H Jin, Q Liu, H Lu, and X Tong. Face detection using improved lbp under

bayesian framework. In Image and Graphics (ICIG’04), Third International

Conference on, pages 306–309. IEEE, 2004.

[69] X Liu and D Wang. Texture classification using spectral histograms. IEEE

transactions on image processing, 12(6):661–670, 2003.

[70] V Ojansivu and J Heikkilä. Blur insensitive texture classification using lo-

cal phase quantization. In International conference on image and signal

processing, pages 236–243. Springer, 2008.

[71] T Mäenpää and M Pietikäinen. Texture analysis with local binary pat-

terns. In Handbook of pattern recognition and computer vision, pages 197–

216. World Scientific, 2005.

[72] F Riaz, A Hassan, MY Javed, and MT Coimbra. Detecting melanoma in der-

moscopy images using scale adaptive local binary patterns. In Engineering



References 178

in Medicine and Biology Society (EMBC), 2014 36th Annual International

Conference of the IEEE, pages 6758–6761. IEEE, 2014.

[73] S Brahnam, LC Jain, L Nanni, A Lumini, et al. Local binary patterns: new

variants and applications. Springer, 2014.

[74] RH Chan, C Ho, and M Nikolova. Salt-and-pepper noise removal by median-

type noise detectors and detail-preserving regularization. IEEE Transactions

on image processing, 14(10):1479–1485, 2005.

[75] P Srivastava, NT Binh, and A Khare. Content-based image retrieval using

moments of local ternary pattern. Mobile Networks and Applications, 19(5):

618–625, 2014.

[76] C Muramatsu, T Hara, T Endo, and H Fujita. Breast mass classification on

mammograms using radial local ternary patterns. Computers in biology and

medicine, 72:43–53, 2016.

[77] WH Liao. Region description using extended local ternary patterns. In

Pattern Recognition (ICPR), 2010 20th International Conference on, pages

1003–1006. IEEE, 2010.

[78] J Ren, X Jiang, and J Yuan. Relaxed local ternary pattern for face recogni-

tion. In ICIP, pages 3680–3684, 2013.

[79] Z Guo, L Zhang, and D Zhang. A completed modeling of local binary pattern

operator for texture classification. IEEE Transactions on Image Processing,

19(6):1657–1663, 2010.

[80] S Liao, MWK Law, and ACS Chung. Dominant local binary patterns for

texture classification. IEEE transactions on image processing, 18(5):1107–

1118, 2009.



References 179

[81] M Heikkilä, M Pietikäinen, and C Schmid. Description of interest regions

with center-symmetric local binary patterns. In ICVGIP, volume 6, pages

58–69. Springer, 2006.

[82] K Mikolajczyk, T Tuytelaars, C Schmid, A Zisserman, J Matas, F Schaffal-

itzky, T Kadir, and L Van Gool. A comparison of affine region detectors.

International journal of computer vision, 65(1-2):43–72, 2005.

[83] I Biederman. Recognition-by-components: a theory of human image under-

standing. Psychological review, 94(2):115, 1987.

[84] L Kotoulas and I Andreadis. Colour histogram content-based image retrieval

and hardware implementation. IEE Proceedings-Circuits, Devices and Sys-

tems, 150(5):387–393, 2003.

[85] J Fang and G Qiu. A colour histogram based approach to human face

detection. 2003.

[86] MW Mackiewicz, M Fisher, and C Jamieson. Bleeding detection in wireless

capsule endoscopy using adaptive colour histogram model and support vector

classification. In Medical Imaging 2008: Image Processing, volume 6914,

page 69140R. International Society for Optics and Photonics, 2008.

[87] RM Henkelman, I Kay, and MJ Bronskill. Receiver operator characteristic

(roc) analysis without truth. Medical Decision Making, 10(1):24–29, 1990.

[88] JT Townsend. Theoretical analysis of an alphabetic confusion matrix. Per-

ception & Psychophysics, 9(1):40–50, 1971.

[89] D Bamber. The area above the ordinal dominance graph and the area be-

low the receiver operating characteristic graph. Journal of mathematical

psychology, 12(4):387–415, 1975.



References 180

[90] AA Efros and TK Leung. Texture synthesis by non-parametric sampling.

In Proceedings of the seventh IEEE international conference on computer

vision, volume 2, pages 1033–1038. IEEE, 1999.

[91] J Weickert. Anisotropic diffusion in image processing, volume 1. Teubner

Stuttgart, 1998.

[92] A Bugeau and M Bertalmio. Combining texture synthesis and diffusion

for image inpainting. In VISAPP 2009-Proceedings of the Fourth Inter-

national Conference on Computer Vision Theory and Applications, pages

26–33, 2009.

[93] A Criminisi, P Pérez, and K Toyama. Region filling and object removal by

exemplar-based image inpainting. IEEE Transactions on image processing,

13(9):1200–1212, 2004.

[94] D Tschumperlé. Fast anisotropic smoothing of multi-valued images using

curvature-preserving pde’s. International Journal of Computer Vision, 68

(1):65–82, 2006.

[95] J Portilla and EP Simoncelli. Texture modeling and synthesis using joint

statistics of complex wavelet coefficients. In IEEE workshop on statistical

and computational theories of vision, 1999.

[96] WT. Freeman and EH Adelson. The design and use of steerable filters. IEEE

Transactions on Pattern Analysis & Machine Intelligence, (9):891–906, 1991.

[97] M Lillholm, M Nielsen, and LD Griffin. Feature-based image analysis. In-

ternational Journal of Computer Vision, 52(2-3):73–95, 2003.

[98] T Lindeberg. Detecting salient blob-like image structures and their scales

with a scale-space primal sketch: A method for focus-of-attention. Interna-

tional Journal of Computer Vision, 11(3):283–318, 1993.



References 181

[99] T Lindeberg. Edge detection and ridge detection with automatic scale se-

lection. In Proceedings CVPR IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pages 465–470. IEEE, 1996.

[100] R Zabih and J Woodfill. Non-parametric local transforms for computing

visual correspondence. In European conference on computer vision, pages

151–158. Springer, 1994.

[101] O Demetz, D Hafner, and J Weickert. The complete rank transform: A

tool for accurate and morphologically invariant matching of structures. In

BMVC, 2013.

[102] L Liu, P Fieguth, Y Guo, X Wang, and M Pietikäinen. Local binary fea-

tures for texture classification: taxonomy and experimental study. Pattern

Recognition, 62:135–160, 2017.

[103] I Rish. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages

41–46. IBM New York, 2001.

[104] J Kontinen, J Röning, and RM MacKie. Texture features in the classification

of melanocytic lesions. In International Conference on Image Analysis and

Processing, pages 453–460. Springer, 1997.

[105] SM Pizer, PE Amburn, JD Austin, R Cromartie, et al. Adaptive histogram

equalization and its variations. Computer vision, graphics, and image pro-

cessing, 39(3):355–368, 1987.

[106] T Mäenpää and M Pietikäinen. Classification with color and texture: jointly

or separately? Pattern recognition, 37(8):1629–1640, 2004.

[107] T Caelli and D Reye. On the classification of image regions by colour, texture

and shape. Pattern recognition, 26(4):461–470, 1993.



References 182

[108] DL Donoho. High-dimensional data analysis: The curses and blessings of

dimensionality. AMS Math Challenges Lecture, 1:32, 2000.

[109] M Frank and P Wolfe. An algorithm for quadratic programming. Naval

Research Logistics (NRL), 3(1-2):95–110, 1956.

[110] BE Boser, IM Guyon, and VN Vapnik. A training algorithm for optimal mar-

gin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152. ACM, 1992.

[111] K Muller, S Mika, G Ratsch, K Tsuda, and B Scholkopf. An introduction

to kernel-based learning algorithms. IEEE transactions on neural networks,

12(2):181–201, 2001.

[112] MD Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000.

[113] O Chapelle, P Haffner, and VN Vapnik. Support vector machines for

histogram-based image classification. IEEE transactions on Neural Net-

works, 10(5):1055–1064, 1999.

[114] E Pegg Jr. Ed pegg jr.s math games: Sudoku variations, 2005.

[115] M Rodrigues, M Kormann, and P Tomek. A comparative analysis of binary

patterns with discrete cosine transform for gender classification. 2014.

[116] R Spangenberg, T Langner, and R Rojas. Weighted semi-global matching

and center-symmetric census transform for robust driver assistance. In In-

ternational Conference on Computer Analysis of Images and Patterns, pages

34–41. Springer, 2013.

[117] T Chakraborti and A Chatterjee. A novel binary adaptive weight gsa based

feature selection for face recognition using local gradient patterns, modified

census transform, and local binary patterns. Engineering Applications of

Artificial Intelligence, 33:80–90, 2014.



References 183

[118] KJ Dana, B Van Ginneken, SK Nayar, and JJ Koenderink. Reflectance and

texture of real-world surfaces. ACM Transactions On Graphics (TOG), 18

(1):1–34, 1999.

[119] T Ojala, T Mäenpää, M Pietikäinen, J Viertola, et al. Outex-new framework

for empirical evaluation of texture analysis algorithms. In Pattern Recogni-

tion, 2002. Proceedings. 16th International Conference on, volume 1, pages

701–706. IEEE, 2002.

[120] Vision texture database. Michigan Institute of Technology,

http://www.vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html,

2016.

[121] RN Bracewell. The Fourier transform and its applications, volume 31999.

McGraw-Hill New York, 1986.

[122] G Finlayson and S Nixon. Sudoku texture classification. Electronic Imaging,

2016(14):1–5, 2016.

[123] BM Waller, MS Nixon, and JN Carter. Image reconstruction from local bi-

nary patterns. In 2013 International Conference on Signal-Image Technology

& Internet-Based Systems, pages 118–123. IEEE, 2013.

[124] RE Barlow. Statistical inference under order restrictions; the theory and

application of isotonic regression. Technical report, 1972.

[125] Z Wang, AC Bovik, HR S, and EP Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE transactions on image

processing, 13(4):600–612, 2004.

[126] T Song, H Li, F Meng, Q Wu, and J Cai. Letrist: locally encoded trans-

form feature histogram for rotation-invariant texture classification. IEEE

Transactions on Circuits and Systems for Video Technology, 2017.



References 184

[127] A Takemura, A Shimizu, and K Hamamoto. Discrimination of breast tu-

mors in ultrasonic images using an ensemble classifier based on the adaboost

algorithm with feature selection. IEEE Transactions on Medical Imaging,

29(3):598–609, 2010.

[128] H Permuter, J Francos, and IH Jermyn. Gaussian mixture models of tex-

ture and colour for image database retrieval. In Acoustics, Speech, and Signal

Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International Con-

ference on, volume 3, pages III–569. IEEE, 2003.

[129] N Dalal and B Triggs. Histograms of oriented gradients for human detec-

tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Publications
	1 Context and contributions
	1.1 Image analysis
	1.1.1 Texture analysis
	1.1.2 Colour analysis

	1.2 Industrial context
	1.3 Constraints
	1.4 Contributions
	1.5 Thesis structure
	1.6 Publications
	1.6.1 Internal Reports
	1.6.2 Conference papers
	1.6.3 Journal papers


	2 Background
	2.1 Image classification with feature vectors
	2.2 Classification
	2.2.1 Distance metrics
	2.2.2 k-Nearest Neighbour classification
	2.2.3 The Naive Bayes classifier

	2.3 Texture classification - an overview
	2.3.1 Invariance
	2.3.2 Approaches to texture classification
	2.3.3 Gray Level Co-occurrence Matrices
	2.3.4 Gabor filters
	2.3.5 Conclusions

	2.4 Histogram based texture classification
	2.4.1 Approaches to histogram based texture classification
	2.4.2 Conclusions

	2.5 Local Binary Patterns
	2.5.1 Rotational invariance
	2.5.2 Border handling
	2.5.3 Uniformity
	2.5.4 Circular sampling
	2.5.5 Drawbacks

	2.6 Variations and extensions to LBP
	2.6.1 Contrast
	2.6.2 Local Ternary Patterns
	2.6.3 Improved LBP
	2.6.4 Completed LBP
	2.6.5 Dominance LBP
	2.6.6 Strength LBP
	2.6.7 Center-Symmetric LBP

	2.7 Colour analysis
	2.8 Results visualisation
	2.8.1 Significance of the AUROC

	2.9 Texture synthesis
	2.9.1 Exemplar based texture synthesis
	2.9.2 Reconstruction using Complex Wavelet Coefficients
	2.9.3 Reconstruction from Feature Points
	2.9.4 Texture synthesis conclusions

	2.10 The Rank Transform and extensions
	2.10.1 The Rank Transform
	2.10.2 The Complete Rank Transform

	2.11 Overall conclusions

	3 Sortex and our data
	3.1 Sortex inspection system
	3.1.1 Requirements of a Sortex classification algorithm

	3.2 Databases used in this research
	3.2.1 Peanuts FM KN 2006 AA 1
	3.2.2 Peanuts FM KN 2009 A 1
	3.2.3 Almonds Hulls 2010 A 1

	3.3 Conclusions

	4 Sortex contributions on colour and texture
	4.1 Texture classification
	4.1.1 The Sortex Classifier
	4.1.2 Classification using the Sortex classifier
	4.1.3 Experiments

	4.2 Combining colour and texture
	4.2.1 Introduction
	4.2.2 Colour and Sortex
	4.2.3 Compressing the colour space
	4.2.4 Combining colour and texture: intuition and motivation
	4.2.5 Dual sensitivity
	4.2.6 Joint colour and texture histograms
	4.2.7 Comparing colour quantisation methods in the joint colour texture framework
	4.2.8 Evaluation

	4.3 Conclusions

	5 Sortex contributions on classification
	5.1 The Support Vector Machine
	5.1.1 Primal form
	5.1.2 Dual form
	5.1.3 Non linearly separable data
	5.1.4 Forming non-linear decision boundaries
	5.1.4.1 An intuitive example of kernels
	5.1.4.2 Additional tuning parameters
	5.1.4.3 List of kernel functions used


	5.2 The classification toolbox
	5.3 An example SVM application: classification with colour histograms
	5.3.1 Influence of  on performance
	5.3.2 Kernel comparison
	5.3.3 Experiments with sigma
	5.3.4 Final comparison
	5.3.4.1 Rogues

	5.3.5 Combined colour and texture

	5.4 Final note
	5.5 Evaluation
	5.6 Conclusions

	6 Sudoku texture classification
	6.1 Method
	6.1.1 Uniformity
	6.1.2 Equality
	6.1.3 Histogram formation
	6.1.4 Relation to the Complete Rank Transform

	6.2 Classification
	6.2.1 Data
	6.2.2 Sensitivity testing

	6.3 Experimental parameters
	6.4 Results
	6.5 Comparing Sudoku with LBP on Sortex data
	6.6 Conclusions

	7 Image Recovery From Texture
	7.1 Introduction
	7.2 Image recovery
	7.2.1 The Minimum Contrast Algorithm
	7.2.2 Quadratic Reconstruction
	7.2.2.1 Tone curve mapping


	7.3 Experiments
	7.3.1 Results

	7.4 Reconstruction in colour
	7.5 Evaluation
	7.6 Conclusions

	8 Conclusions and future work
	8.1 Overall conclusions
	8.2 Future work

	A Local Gradient Features
	A.0.1 Histograms of Oriented Gradients
	A.0.2 Proposed Method
	A.0.3 The Feature
	A.0.4 Data and Parameters
	A.0.5 Experimental Results

	A.1 Evaluation

	B The SVM Toolbox
	B.0.1 Functions

	Bibliography



