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ABSTRACT 12 

Accelerated sea-level rise (SLR) is threatening tidal marshes worldwide. An important 13 

control of tidal marsh survival under accelerated SLR is the sediment deposition. 14 

Therefore, factors affecting sediment deposition rates (SDR) have been studied 15 

extensively using various types of sediment traps. The efficiency of various sediment 16 

traps has been compared in several studies, but most of these were conducted in 17 

shallow lakes or rivers. In contrast, the efficiency of different sediment traps in tidal 18 

marshes is unknown. Therefore, the aim of this study was to compare the trapping 19 

efficiency of four frequently used sediment traps, namely flat traps constructed of either 20 

tiles or floor mat, and circular traps with and without a lid, under controlled experimental 21 

conditions simulating tidal inundations in a flume. The strong differences between 22 

circular sediment traps (high efficiency) and both flat surface sediment trap methods 23 

(low efficiency) found in this study were remarkable. Additionally, further evidence was 24 

found for decreases of SDR with increasing distance to the inflow of the flume 25 

(sediment source) and with decreasing suspended sediment concentration (SSC). 26 

These findings indicate that trap design has a large influence on sedimentation rate 27 

and that studies using different types of sediment traps are not directly comparable.  28 

ADDITIONAL INDEX WORDS: 29 

Tidal marsh, wetland, sediment deposition, sedimentation. 30 

IINTRODUCTION 31 

Accelerated sea-level rise (SLR) has been recently discussed as a major threat to tidal 32 

marshes (Craft et al., 2009; Crosby et al., 2016; Kirwan and Megonigal, 2013; Kirwan 33 

et al., 2016). An important control of tidal marsh survival under accelerated SLR is the 34 

sediment deposition, which can be defined as the gravity-based deposition of organic 35 
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and inorganic particles during inundations (Allen, 2000; Nolte et al., 2013; Temmerman 36 

et al., 2005). However, sediment deposition rates (SDR) in tidal marshes are highly 37 

variable in space and time (Butzeck et al., 2015; Reed, 1989). The spatial and temporal 38 

variability is affected by various factors, including for example the distance to the 39 

sediment source (Esselink et al., 1998; Temmerman et al., 2003) and the variability of 40 

suspended-sediment concentration (Butzeck et al., 2015; Fettweis, Sas and Monbaliu, 41 

1998).  42 

These factors affecting sediment deposition and surface elevation change have 43 

been studied extensively (e.g., Craft et al., 2009; Kirwan and Megonigal, 2013; 44 

Suchrow et al., 2012) to understand and predict possible effects of accelerated SLR 45 

on tidal marshes. However, these studies used a wide variety of methods such as 46 

varying types of sediment traps to quantify SDR. The efficiency of different sediment 47 

traps to measure SDR has previously been compared by several studies (see review 48 

by Nolte et al., 2013). Yet, most of these studies were conducted in shallow lakes or 49 

rivers (Bloesch and Burns, 1980; Kozerski and Leuschner, 1999). Tidal marshes surely 50 

differ from such shallow lakes and river systems in their hydrodynamics, which, 51 

however, greatly affect sediment trap efficiency (de Swart and Zimmerman, 2009). 52 

Therefore, the trapping efficiency of different commonly used trap designs needs to be 53 

evaluated for intertidal systems. The most commonly used traps in tidal marshes are 54 

either flat traps or cylindrical traps with a rim (Nolte et al., 2013). Such a rim could affect 55 

trapping efficiency as it prevents lateral relocation processes (Temmerman et al., 56 

2003), while a sediment trap with a flat surface might be vulnerable to washout of 57 

sediment by heavy rain events (Steiger, Gurnell and Goodson, 2003). Among flat 58 

sediment traps there are also different types such as, for example, flat ceramic tiles 59 

(Pasternack and Brush, 1998) or AstroTurf® floor mats (Lambert and Walling, 1987). 60 
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The latter are used to mimic vegetation and a more natural surface roughness, which 61 

might greatly affect trapping efficiency compared to, for example, ceramic tiles. 62 

Additionally, it is unknown how a frequently used circular trap with a floatable lid 63 

(Butzeck et al., 2015; Temmerman et al., 2003) compares to traps without such a lid.  64 

To better understand the influence of trap design on sedimentation rate 65 

measurements in tidal systems, the trapping efficiency of four frequently used 66 

sediment traps were compared under controlled experimental conditions in a flume. 67 

Results were additionally analyzed with respect to the distance to the sediment source, 68 

and different suspended-sediment concentrations of the flooding water. 69 

METHODS 70 

Measurements were conducted at the Department of Environmental Science and 71 

Technology, University of Maryland using a self-contained glass sided tilting re-72 

circulating flume. The flume consisted of a 7.3 m long, 0.3 m wide, and 0.45 m high 73 

rectangular channel. The flat inner bottom of the flume was completely covered with a 74 

soft and flexible artificial grass floor mat (stem length: 43 mm) to simulate the friction 75 

of tidal marsh vegetation. Patches were cut out of the mat at the sampling points for 76 

the sediment traps. Four different sediment traps were tested, including two different 77 

flat traps, namely, ceramic tiles (e.g., Pasternack and Brush, 1998) and circular 78 

AstroTurf® floor mats (e.g., Lambert and Walling, 1987), and circular traps with and 79 

without a floatable lid (Butzeck et al., 2015; Temmerman et al., 2003; Figure 1, Table 80 

1).  81 
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 82 

Figure 1 (a) Different types of sediment traps used to measure sediment-deposition rate and plastic bottles used 83 
to measure suspended sediment concentration (SSC). (b) Example of the setup in the flume for the test runs, which 84 
in this case include the SSC-bottle (left) and circular sediment trap with lid (right). The flume bottom was covered 85 
with an artificial floor mat which was removed at sampling locations 86 

Table 1 Area [cm²], size and specific features of the different sediment trap types. 87 

 
 
Trap type Surface Area [cm²] size specific feature 

Circular trap (with lid) 280.55 18.9 cm (inside diameter) 3 cm high rim 
    

Circular trap (plain)  280.55 18.9 cm (inside diameter) 3 cm high rim 

    

Floor mat 314.16 20.0 cm (diameter) at bottom level, stem length: 20 mm 

    

Ceramic tile 232.26 15.24 x 15.24 cm at bottom level 
    

 88 

Set-up and Test Procedure 89 

The sediment traps were installed at 0.5, 2.0 and 6.0 m distance from the inlet opening 90 

of the flume (Figure 2). The circular traps and floor mats were attached with Velcro® 91 

tape to the flume bottom. In addition the setup included bottles (adapted from Butzeck 92 

et al., 2015; Temmerman et al., 2003) to measure suspended-sediment concentration 93 

(SSC) positioned directly behind the sediment trap.  94 



6 
 

 95 

Figure 2 Schematic drawing of flume to illustrate the experimental setup. The flume is indicated by the rectangular 96 
shape with the sediment source on the left side. The sediment source container is positioned adjacent to the flume 97 
but in an elevated position and is connected to the flume with a pipe. The tidal flow direction is indicated by arrows 98 
below the flume. The position of sediment traps with increasing distance to the origin of the flume is indicated using 99 
circles 100 

The sediment used consisted of over 99 % of clay and fine silt and was collected from 101 

an oligohaline marsh at the Nanticoke estuary (Maryland, USA). Sediment was sieved 102 

with 1.18 mm and 425 µm sieves to remove large organic particles. A high (SSC-high: 103 

~100 mg l-1) and a low sediment supply scenario (SSC-low: ~65 mg l-1) were applied 104 

by mixing the sediment with a defined quantity of water in a container positioned 105 

adjacent to the flume but in an elevated position. To prevent the sediment from settling 106 

inside the container, an air pump was installed in the container to provide a constant 107 

movement of the sediment-water mixture. The sediment-water mixture was then 108 

transported from the container to the inlet opening of the flume via a pipe using low 109 

pressure at the flume end of the pipe and gravity. The outlet of the flume was closed 110 

during the entire experiment to simulate inundation heights of 15 cm above surface. 111 

Inundation heights were measured at Trap 1. The duration of the tidal water inflow was 112 

between 8 and 11 minutes. Water samples (SSCInitial) were taken automatically as 113 

soon as the inundating water submerged the inlet opening of the SSC bottle. After 114 

reaching the maximum inundation height of 15 cm the inflow of the water and the 115 

discharge of the sediment water-mixture were stopped. At maximum inundation SSC-116 

bottles were replaced to obtain SSC-samples (SSCSlack) from the outflowing water. The 117 

outflow of the water (ebb) occurred over the inlet opening of the flume. Total inundation 118 

time of one run of the tidal simulation lasted between 37±2 min (short inundation runs) 119 
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and 61±2 min (long inundation runs). Long inundation runs with SSC-low, and short 120 

inundation with SSC-high were performed, using one trap type per run. Ten runs with 121 

each of the four trap types of the SSC-low and the SSC-high simulations were 122 

conducted in random order.  123 

After each run, the sediment was rinsed from the sediment trap with distilled water into 124 

aluminum boxes and dried at 105 °C to a constant weight. Values were then converted 125 

into sediment deposition rates [g m-2] per tidal inundation. SSC-samples were well 126 

mixed before taking a subsample of 200 ml, which was vacuum-filtrated through pre-127 

weighed 0.45 μm glass fiber filters (WhatmanTM). Afterward, SSC-samples were dried 128 

at 60 °C for 4 h to constant weight to determine SSC [mg l-1]. 129 

Statistical Analysis 130 

Data met the assumptions of normality and homogeneity of variance. Thus a three-131 

factorial ANOVA was used to analyze differences in SDR between sediment trap types. 132 

Sediment trap type, distance to the inlet of the flume, and sediment supply (SSC-low/ 133 

SSC-high) were included as factors. If a significant effect was detected, pairwise 134 

comparisons using Bonferroni post-hoc tests were applied. All statistical analyses were 135 

done with STATISTICA 10 (StatSoft Inc. 2010). 136 

RESULTS 137 

Mean sediment deposition rate significantly differed between sediment trap types 138 

(Figure 3, Table 2). The highest SDR was found in plain circular traps. According to 139 

the post-hoc tests SDR in circular traps with a floatable lid were slightly, but not 140 

significantly lower (7 %) than SDR in plain circular traps without a floatable lid. 141 

Sediment traps made of floor mats differed significantly from both tiles and plain 142 

circular traps, but the post-hoc test indicates no significant difference between floor 143 
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mats and circular traps with a lid (Figure 3). The lowest SDR were found on tiles, which 144 

significantly differed from all other sediment trap types. In total, the SDR of tiles was 145 

31 % lower than the SDR of floor mats, and 43 to 47 % lower than the SDR of circular 146 

traps with lid and plain circular traps, respectively. 147 

 148 

Figure 3 Plotted values are means (±SE) of sediment-deposition rates [g m-2] of four different sediment traps. 149 
Letters denote statistical differences between sediment-trap types (p < 0.05) based on post-hoc tests 150 

 151 

Results revealed strong effects of distance to the inlet of the flume (Figure 4, 152 

Table 2), and sediment supply (Figure 4, Table 2) on SDR. All sediment trap types 153 

showed a highly significant decrease in SDR with increasing distance from the inlet of 154 

the flume (Figure 4, Table 2), although the reduction was greater under high than under 155 

low sediment supply rates (significant distance × sediment supply rate, Table 2). A 156 

higher SSC (Figure 4) resulted in a higher SDR, but the effect of SSC varied with 157 

distance (Table 2, significant distance x sediment supply rate). With higher sediment 158 

supply, the percent decreases of SDR with distance were slightly higher. The 159 

interaction effects trap type x ssc and trap type x distance were not significant (Table 160 
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2) indicating the differences in trapping efficiency of different sediment traps to be 161 

constant regardless of the spatial and temporal variation represented by distance to 162 

the inlet and SSC, respectively. 163 

 164 

Figure 4 Plotted values are means (±SE) of sediment-deposition rates [g m-2] of different sediment traps, depending 165 
on distance to the origin of the flume, during (a) low and (b) high suspended sediment concentration (SSC) 166 

 167 

Table 2 Results of the three-factorial ANOVA for effects of trap types, distance to the origin of the flume and SSC 168 
on sediment-deposition rate. 169 

 

Sediment-
deposition rate 

Factor F p 

Trap type 61.5 *** 

Distance 212.7 *** 

Sediment supply 273.3 *** 

Trap type × Distance 0.4 n.s. 

Distance × Sediment supply 13.0 *** 

Trap type × Sediment supply 1.3 n.s. 

Trap type × Distance × Sediment supply 0.2 n.s. 

n.s. not significant,  ***p < 0.001   

 170 

DISCUSSION 171 

In line with the expectations, trapping efficiency was found to differ significantly 172 

between commonly used sediment trap designs. These differences in trapping 173 
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efficiency were constant regardless of the conditions (distance to inlet and SSC). The 174 

strong differences between circular sediment traps (high efficiency) and both flat 175 

surface sediment traps methods (low efficiency) found in this study were remarkable. 176 

Therefore, studies using different types of sediment trap may not be directly 177 

comparable due to differences of the trapping efficiency of the various available trap 178 

designs (Nolte et al., 2013). 179 

During this study, SDR in both circular sediment trap types was higher than in 180 

flat sediment trap types. This difference between the circular sediment trap (with a rim) 181 

and the flat surface sediment trap might indicate re-suspension and/or lateral 182 

sediment-transport processes. This might occur on different scales depending on 183 

sediment trap type. Some studies have found that collected sediment trapped by flat 184 

surface traps is sensitive to washing off by rain and partly by tides (Gardner, 1980; 185 

Kozerski and Leuschner, 1999). Although it can be expected that the rim of the circular 186 

sediment trap prevents trapped sediment from lateral dispersal to the surrounding 187 

surface (Neubauer et al., 2002), it might also prevent a relocation of sediment from the 188 

surrounding surface into this sediment trap type. No or only a marginal amount of 189 

re-suspension of fresh deposited sediment from circular sediment traps was found by 190 

both Reed et al. (1999) and Temmerman et al. (2003). The higher SDR in circular traps 191 

compared to flat tiles found here might also be due to reduced bottom shear stress 192 

(Kozerski and Leuschner, 1999), while simultaneously the rim of the circular trap 193 

induced local flow acceleration and the formation of eddies which can increase 194 

deposition rates (Butman, Grant and Stolzenbach, 1986). 195 

When comparing two types of flat sediment traps higher SDR was found on floor 196 

mats compared to ceramic tiles, probably because of the higher surface roughness of 197 

the floor mat. This is in line with Steiger, Gurnell and Goodson (2003), who suggested 198 
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the usage of floor mat sediment traps for riparian sedimentation studies as the surface 199 

simulates surrounding vegetation. However, it could be argued that the commonly 200 

available floor mats do not represent the vegetation sufficiently, as vegetation in many 201 

marshes is taller than the stem length of the floor mat (Leonard and Luther, 1995; 202 

Neumeier and Amos, 2006; Rupprecht et al., 2015). One exception might be marshes 203 

where canopy height is reduced due to livestock grazing e.g. in the Wadden Sea region 204 

(Nolte et al., 2014) or in the Yangtze estuary (Yang, Nolte and Wu, 2017). 205 

Nevertheless, Steiger, Gurnell and Goodson (2003) argue, that the increased surface 206 

roughness of the floor mat provides an easy handling during collecting and processing. 207 

Also Kleiss (1996) used flat surface sediment traps with a rough upper surface to 208 

minimize re-suspension of deposited sediments. Contrastingly, Mansikkaniemi (1985) 209 

found no significant differences between flat sediment traps with and without attached 210 

floor mats during a shallow water study, possibly because of different hydrodynamic 211 

forcing. Also Steiger, Gurnell and Goodson (2003) did not find significant differences 212 

between flat surface sediment traps with varying roughness.  213 

No significant difference between circular sediment traps with and without a lid 214 

was found in this experimental flume study. In field studies the floatable lid is supposed 215 

to protect trapped sediment from splashing out by heavy rain events during low tides 216 

(Temmerman et al., 2003), which of course did not occur in the flume. In their study 217 

Bloesch and Burns (1980) stated that the geometry of circular sediment traps (ratio of 218 

height to diameter) also affects the amount of re-suspension. However, in this case the 219 

circular sediment traps were identical except for the lid. The slightly higher SDR found 220 

in circular sediment traps without a lid might be partly explained by sediment adhered 221 

below the lid or on the pole.  222 
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Significant decreases of SDR with increasing distance to the inflow of the flume 223 

(sediment source) and decreasing SSC were found for all sediment trap types. SDR 224 

has previously been found to relate to distance to the sediment source, like marsh 225 

edge and nearest creek (e.g., Esselink et al., 1998; Butzeck et al., 2015; Temmerman 226 

et al., 2003), as well as to seasonal and spatial variability of SSC (e.g., Butzeck et al., 227 

2015; Fettweis, Sas and Monbaliu, 1998; Temmerman et al., 2003). 228 

CONCLUSIONS 229 

Based on the clear difference between the flat and circular trap types found in this 230 

study, the use of flat traps would be recommended to prevent overestimation of SDR. 231 

However, in systems with very high SDR, the flat tiles might be less p as sediment 232 

might be lost during the collection process. Therefore, the choice of sediment trap 233 

design should be made taking various aspects of the study site and study design into 234 

account (see review by Nolte et al., 2013). It is furthermore concluded, that differences 235 

in trapping efficiency impede the comparability of sediment trap types commonly used 236 

in tidal wetland studies. This especially needs to be considered in meta-analysis of 237 

studies assessing marsh-resilience to sea-level rise (e.g., Crosby et al., 2016; Kirwan 238 

et al., 2016). Standardization of sediment traps for intertidal habitats would be 239 

necessary for a direct comparison. As a next step, field studies to compare different 240 

sediment trap types under different inundation regimes, flow velocities, as well as 241 

different marsh types (mineral and organic) would be recommended. Short-term 242 

measurements of SDR with sediment traps like those compared in this study are 243 

especially useful for analyzing spatio-temporal variation in SDR and in their predictors.  244 
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