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Introduction

For decades it has been acknowledged that chronic kidney 
disease (CKD) is associated with bone disease and, after a 
causal link was established, this bone disease was termed 
renal osteodystrophy (ROD) [1]. As outlined in detail else-
where in this issue, ROD encompasses a wide spectrum of 
bone histological abnormalities, recently categorized based 
on three parameters: rate of turnover, amount of mineraliza-
tion and bone volume (TMV) [2]. Although novel imaging 
techniques are promising in terms of their ability to non-
invasively quantify components of ROD—like dual-energy 
X-ray absorptiometry (DEXA) for combined bone volume 
and mineralization and quantitative computerized tomogra-
phy (CT) for bone volume and architecture—they are usu-
ally not capable of measuring bone turnover. Bone turnover 
generally indicates activity of bone cells, since turnover by 
definition is a dynamic biological process, which contrasts 
with mineralization which is a more passive physicochemi-
cal process. Since dynamic processes are difficult to esti-
mate on a single time point, this feature of bone biology 
can be assessed by bone histomorphometry using tetracy-
cline double-labeling, where both the width between the 
two labels and the length of each label is a proxy for time, 
and therefore for the osteoid volume formation rate over 
a given time [3, 4]. Currently, many available treatment 
options for ROD, such as calcimimetics, bisphosphonates, 
denosumab, and teriparatide, target bone turnover, with 
bone volume and strength as a net resultant of the inter-
vention on osteoclasts and osteoblasts. For these reasons, 
longitudinal assessment of bone turnover is of relevance in 
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clinical decision-making to select and initiate treatment and 
to monitor its effect. Although bone histomorphometry is 
considered the gold standard, it has important limitations 
with regard to meeting this clinical need. Among these lim-
itations are the potential of sampling error since bone for-
mation is a cyclic process which includes a period of qui-
escence [4], invasiveness, costs, limited availability of both 
the technique and assessment of the samples, and barriers 
to perform serial biopsies in individual patients.

For these reasons, circulating markers, that can be 
assessed in the blood compartment, are attractive alterna-
tives to some aspects of bone histomorphometry, in par-
ticular turnover. Indeed, several biomarkers of renal oste-
odystrophy are being used clinically or in clinical studies, 
as will be addressed below. Besides the attractiveness of 
these biomarkers due to their ease of measurement, it is 
also important to keep several limitations in mind that are 
applicable to all these humoral factors. As for all biochemi-
cal variables, the clinical relevance depends on either the 
marker’s predictive power for incident clinical events (like 
future fractures or cardiovascular events) or its causal role 
in the pathogenesis of ROD, because only in the latter 
case does the process as reflected by the biomarker qual-
ify as a treatment target. For none of the currently avail-
able bone markers is this established beyond doubt. In 
addition, biomarkers are used clinically both as a proxy to 
establish the type of bone disease or quantify its severity, 
and also to assess (cardiovascular) risk, as summarized in 
Fig.  1. Interestingly, some so-called bone-turnover mark-
ers may not be specific for indicating metabolic processes 
in bone tissue only, like sclerostin or bone-specific alkaline 
phosphatase (BSAP), but can also be expressed in cells of 

cardiovascular tissues [5–7], and finally these markers may 
in some pathological states be a marker for non-primary 
bone disease, like total alkaline phosphatase (AP) in liver 
disease and parathyroid hormone (PTH) in primary hyper-
parathyroidism. Another important issue when considering 
measuring a humoral factor as an indicator of bone turn-
over is that the kinetics of these markers in serum differs 
substantially from the place where bone formation occurs 
[4, 8]. In addition, an inherent complication of CKD is that 
interpretation of substance concentrations is complicated 
by the reduced renal clearance of that substance, which 
thereby no longer reflects its production rate. Finally, as 
mentioned above, most circulating biomarkers are a reflec-
tion only of bone turnover, and not of more static features 
like mineral density, bone quality and strength.

The interplay between bone markers

Several bone markers differ as to their origin and vary 
substantially by nature. Some are direct regulators of 
bone formation, like PTH (produced outside bone) and 
sclerostin, while others are proteins produced by bone 
cells as locally acting factors, spilled into systemic circu-
lation, like BSAP and tartrate-resistant acid phosphatase 
5b (TRAP5b), or by-products of either production or 
cleavage of bone collagen, like the N-terminal domain 
of the propeptide of procollagen 1 (P1NP) and C-termi-
nal crosslaps (CTX), respectively. Due to these different 
backgrounds, it can be expected that there is no clear 
correlation between biomarkers even if they reflect the 
same biological process in bone. Indeed, while PTH can 
be considered a driver of bone turnover, its association 
with BSAP, an indicator of osteoblastic activity, is gen-
erally vague in patients on dialysis when longitudinally 
assessed [9]. This may in part be explained by CKD-
associated PTH-resistance, which can consist of either 
posttranslational modification of PTH rendering it bio-
logically inactive, or end-organ resistance to its actions 
[10]. Alternatively, the differences in kinetics of two sep-
arate indicators of bone formation, as outlined previously, 
may also explain in part why bone markers indicating 
the same feature of bone biology may dissociate. Gen-
erally, when estimating bone turnover, this is done by a 
biomarker that indicates either formation or resorption of 
bone. The underlying assumption that these are in balance 
is usually true [4, 11] as activity of osteoblasts and osteo-
blast is in balance in most circumstances (Fig. 2). In that 
case, measuring bone formation also reliably estimates 
the bone resorption rate. In pathological states, however, 
this may be different, as in postmenopausal women [12, 
13] or during use of glucocorticosteroids [14, 15]. Very 
relevant for CKD in this regard is the fact that in treated 

Fig. 1  Complex relationship between biomarkers of bone turnover 
and clinical outcome. For several biomarkers, like PTH and alkaline 
phosphatase, the association with mortality and cardiovascular (CV) 
morbidity is reasonably well established. However, the association 
between these markers and bone histomorphometry is less clear. 
Importantly, no strong data clarify the relationship between bone 
histomorphometry and either future bone fracture or CV complica-
tions, mostly due to a paucity of data examining bone histology
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and untreated secondary hyperparathyroidism the bone 
formation rate may also be dissociated from bone resorp-
tion [16]. It is well established that in severe hyperpar-
athyroidism, bone balance is usually negative despite the 
high level of the hormone that promotes osteoblast activ-
ity, and in turn bone mass increases after correction of 
overt hyperparathyroidism [17]. For these reasons, espe-
cially in CKD, it is important to realize that estimating 
bone turnover by measuring circulating biomarkers is 
full of pitfalls, that even a reliable estimate of turnover 
does not indicate changes in bone balance, and that frac-
ture risk is also dependent on bone features that cannot 
be assessed by biomarkers, nor even by bone histomor-
phometry like architecture and bone strength. With these 
considerations in mind, in the remainder of this article 
we will address a selected number of circulating mark-
ers of bone turnover, that are most used or promising. 
Some of the markers listed below may contribute mean-
ingfully to every-day clinical practice in ROD assessment 
and therapy. There are several additional biomarkers 
available, such as osteocalcin, pyridinolines, sclerostin 
and c-terminal propeptide of procollagen 1 (P1CP), but 
the authors currently attribute the strongest clinical rel-
evance and evidence to PTH, AP (BSAP), P1NP, CTX, 
and TRAP5b when assessing bone turnover. Moreover, 
the pyridinolines (and the related deoxypyridinoline) 
are usually measured in the urine and therefore heav-
ily rely on kidney function, and as such are unreliable 
in that setting [18]. Osteocalcin, although bone derived, 
and as such also used as a bone turnover marker, exists 
in various carboxylation states, which require dedicated 
assays to distinguish. Importantly, this carboxylation 

status depends on vitamin K status, which is variable in 
CKD, thereby losing its value as a bone turnover marker 
[19]. Several forms appear better indicators for different 
processes, like atherosclerosis [20]. Sclerostin, though 
definitely involved in bone formation, is far from being a 
valuable additional biomarker of bone turnover [21].

Parathyroid hormone

Undoubtedly PTH is the most frequently used biomarker 
to estimate bone turnover. The clinical application of PTH 
as a biomarker is attractive because it is readily available, 
routinely used and, importantly, modifiable. This latter vir-
tue, by either vitamin D, phosphate homeostasis or calci-
mimetics, holds the prospect of modulating bone turnover 
itself. Very different from most other turnover markers, 
PTH is not produced in bone tissue and its secretion is not 
dictated by local demand in bone as sensed by mechani-
cal forces by osteocytes in bone, as is the case for several 
other indicators of bone turnover [23, 24]. Guidelines in 
nephrology provide PTH target ranges [25]. The defini-
tion of these ranges, however, is predominantly based on 
association studies between PTH and mortality, as such 
reinforced by recent observations [26], but not by bone 
turnover or fracture risk. Indeed using the Kidney Dis-
ease Improving Global Outcomes (KDIGO) target range 
for CKD stage 5D (2–9 times the upper normal limit for 
the assay used) is clinically useless to identify either low 
or high bone turnover disease (see Table 1) [27]. To esti-
mate the validity of PTH as an indicator of bone turnover, 
the gold standard should be bone histomorphometry ideally 

Fig. 2  Despite the different 
origin of osteoblasts on the 
right and osteoclasts on the left, 
their activity is highly coordi-
nated and under cellular control 
orchestrated by osteocytes, 
hidden in mineralized bone and 
a highly complex system of 
paracrine action humoral fac-
tors, not shown in the diagram. 
(From [22]: approval pending)



666 J Nephrol (2017) 30:663–670

1 3

with future fracture risk. Indeed, several previous studies 
have examined this issue. Generally, there was a signifi-
cant trade-off between positive predictive value (PPV) to 
detect either low or high turnover bone disease, and sen-
sitivity. Exemplary for this dilemma is the study by Torres 
et al. [28]. In 119 patients with advanced CKD, bone turno-
ver was assessed by bone histomorphometry. An important 
strength of this study was that patients were unselected by 
indication to undergo bone biopsy. With a PTH value above 
450  pmol/l the PPV was 100% to diagnose high turnover 
disease, but the sensitivity was only 43%, indicating that 
applying this PTH value, more than half of high bone turn-
over cases were missed. Alternatively, using a lower thresh-
old for PTH the misclassification of high turnover disease 
increases, but there are less missed cases [29]. This same 
trade-off exists for defining low-turnover disease based 
on PTH values [25]. The recent well-performed Bonafide 
study evaluated bone biopsy in patients selected by con-
centrations of PTH, BSAP and calcium (above 300 pg/dl, 
20.9 ng/dl and 8.4 mg/dl, respectively) and followed these 
subjects after starting treatment with a calcimimetic [16]. 
The PPV at baseline for this constellation of biomark-
ers was 110 confirmed cases out of 135 evaluable biopsy 
samples, yielding a PPV of 81%, but by design the sensitiv-
ity could not be determined. Among the largest studies to 
evaluate diagnostic accuracy of PTH in dialysis patients is 
a very recent pooled analysis of data from four countries 
[27]. PTH, among other biomarkers, was centrally assessed 
from stored serum samples using a second and third gen-
eration assay in parallel. The optimal level for intact PTH 
(iPTH) to discriminate low from non-low turnover disease 
was 104  pg/mg and high versus non-high had an optimal 
concentration of 323 pg/ml (upper limit of normal for the 

applied Roche assay: 65  pg/ml). Although the area under 
the receiver operating curve for iPTH was only 0.701 and 
0.724, indicating borderline clinical usefulness, iPTH was, 
however, not outperformed by other biomarkers, including 
the third generation PTH assay (see Table  1). Moreover, 
combining iPTH with other biomarkers did not improve 
the diagnostic accuracy. It is of clinical relevance to note 
that the association between the bone phenotype and iPTH 
appears to be different for Afro-American dialysis patients 
[30]. For the same value of iPTH, low turnover bone dis-
ease is more prevalent in Afro-Americans [31].

The explanation for the moderate performance of PTH 
as an indicator of bone turnover is several fold. First, as 
mentioned above, in CKD the serum concentration of PTH 
generally overestimates its biological activity due to post-
translational modification, especially oxidation, of the hor-
mone, which renders it biologically inert [10]. In addition, 
the existence of PTH hypo-responsiveness at the target 
tissue level also limits the association between PTH con-
centration and its bioactivity. Accumulation of inhibiting 
C-terminal fragments, too, may contribute to this partial 
PTH resistance [32] (Fig. 3). A frequently neglected issue 
is the fact that there is no evidence indicating a feedback 
control between bone turnover and PTH secretion. The 
spectrum of adynamic bone disease in uremia is much 
wider than just low concentration of PTH due to iatrogenic 
oversuppression of the hormone. The uremic retention mol-
ecule indoxyl sulphate, for instance, promotes osteoblast 
apoptosis [33], FGF23 inhibits normal Wnt signaling path-
ways by osteoblasts [34], while increased concentrations 
of asymmetric dimethyl arginine (ADMA), an inhibitor 
of nitric oxide generation, and elevated in CKD, hampers 
osteoblastic differentiation [35], as has been described for 

Table 1  Area under receiver 
operating curves of circulating 
bone biomarkers to distinguish 
high and low bone turnover 
from nonhigh and nonlow 
bone turnover, respectively, 
as assessed by BFR/BS [27] 
(approval pending)

AUROC area under the receiver operating characteristic curve, bALP bone-specific alkaline phosphatase, 
BFR/BS bone formation rate/bone surface, CI confidence in-terval, iPTH intact parathyroid hormone, NA 
not available, P1NP amino-terminal propeptide of type 1 procollagen, wPTH whole parathyroid hormona

Blood sample marker N AUROC (95% CI) Best cut off

Low vs non low
 iPTH (pg/ml) 280 vs 196 0.701 (0.653–0.750) 103.8
 wPTH (pg/ml) 260 vs 180 0.712 (0.662–0.761) 48.0
 bALP (U/l) 273 vs 190 0.757 (0.713–0.801) 33.1
 P1NP (ng/ml) 280 vs 1197 0.650 (0.599–0.701) 498.9
 Combined iPTH + bALP 272 vs 188 0.718 (0.670–0.767) NA
 Combined wPTH + bALP 257 vs 174 0.743 (0.695–0.790) NA

High vs non high
 iPTH (pg/ml) 81 vs 395 0.724 (0.663–0.786) 323.0
 wPTH (pg/ml) 75 vs 365 0.678 (0.611–0.746) 61.4
 bALP (U/l) 77 vs 386 0.711 (0.655–0.767) 42.1
 P1NP (ng/ml) 81 vs 396 0.743 (0.689–0.797) 621.1
 Combined iPTH + bALP 76 vs 384 0.718 (0.658–0.779) NA
 Combined wPTH + bALP 72 vs 359 0.691 (0.628–0.725) NA
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acidosis [36]. Moreover, chronic inflammation may con-
tribute to abnormal bone turnover, as is well established in 
rheumatologic diseases [37]. While all these factors may 
contribute to adynamic bone disease in CKD, they will 
hardly suppress PTH secretion. This, therefore, may in part 
explain the ever-increasing prevalence of adynamic bone 
disease, especially in non-black patients on dialysis [38], 
but also the limited ability of PTH to predict low turnover 
bone disease.

With all these pitfalls in mind, it is important to stress 
that one of the largest and most recent analyses confirmed 
that PTH currently is the most useful biomarker for bone 
turnover in CKD [27].

Bone-specific alkaline phosphatase

Slightly less than 50% of circulating alkaline phosphatase is 
bone-derived (BSAP), and the remainder mainly originates 
from hepatocytes [39]. In the absence of cholestatic liver 
disease, arbitrarily defined as normal concentration of γGT, 
the value of total alkaline phosphatase above the normal 
range, can arguably be considered as reflecting BSAP [25]. 
BSAP is produced by osteoblasts during bone formation 
and an important role is to inactivate pyrophosphate, an 
inhibitor of mineralization [40]. Recent small studies indi-
cate a potential role for BSAP isotypes where, for instance, 
the B1x subtype was positively associated with low bone 
turnover disease, so improving diagnostic accuracy for 
that diagnosis [41]. BSAP is considered to reflect bone 

turnover, in particular the bone formation rate. Both BSAP 
and total AP are associated with all-cause and cardiovas-
cular mortality in dialysis patients [42, 43], but also with 
fracture risk [43]. This association of BSAP with fracture 
risk, however, was not found in a non-CKD population [44, 
45]. In a study of 42 hemodialysis patients, BSAP showed 
a better correlation with bone turnover (histomorphometri-
cally determined) than total AP, and outperformed iPTH in 
detecting high bone turnover [46]. However, the aforemen-
tioned study by Sprague et  al., combining databases from 
four countries, found that BSAP (cut-off value 33.1  U/l) 
was only slightly better than PTH for diagnosing low turno-
ver disease, but not for high turnover disease (Table 1) [27]. 
Importantly, this latter study did not support the combined 
use of BSAP and PTH, as shown in Table  1. Clinically, 
however, these data on BSAP can still be very useful. The 
PPV for low bone turnover disease, for instance, can easily 
be increased by applying a considerably lower cut-off value 
for BSAP, and vice versa for high-turnover disease by con-
sidering a value above 42.1 U/l (Table 1).

N-terminal propeptide of procollagen-1

The protein matrix of bone consists to a large extent of col-
lagen 1. Collagen 1 is formed by osteoblasts as procolla-
gen-1, which forms a triple helix (combining two α- and 
one β-chain) on organization into its quaternary structure. 
On maturation both the N-terminal and C-terminal end-
ings are cleaved, leaving the triple helix collagen 1, a lon-
gitudinal matrix component along which mineralization is 
organized [47]. The small cleavage fragments, N-terminal 
propeptide of procollagen type 1 (P1NP) and C-terminal 
propeptide of procollagen 1 (P1CP) are detectable in the 
circulation and are therefore indicative of the formation 
rate of bone collagen [48]. Since these cleavage products 
originate from a triple helix, they initially are trimeric com-
pounds that are rapidly broken down to monomeric pep-
tides. The latter is of special importance in CKD, because 
the monomeric form of P1NP accumulates in kidney dis-
ease, while the trimeric form does not [49]. When using 
P1NP, it is therefore important to know the specific assay 
characteristics, because the intact P1NP assay is the only 
reliable one in CKD. P1CP, in particular, has a short half-
life, hence P1NP is recommended as the bone formation 
marker in the general population [48].

P1NP was also assessed in the study by Sprague et  al. 
cited above in which biomarkers were validated based on 
bone histomorphometry [27]. As shown in Table 1, in that 
study, P1NP performed worse than iPTH or BSAP in dis-
tinguishing between low versus non-low bone turnover, 
and had no additional value over iPTH for diagnosing high 
turnover bone disease. The assay that was used was one 

Fig. 3  Components of PTH resistance in CKD. Secreted PTH from 
parathyroid cells may exist as a bio-active 1–84 fragment containing 
polypeptides, but also as variable amounts of PTH fragments with 
variable biological effects, including an antagonizing impact. In addi-
tion, after secreting normal PTH, in CKD the hormone may undergo 
abnormal posttranslational modification. Finally, target tissue may be 
hypo-responsive to normal PTH in CKD
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that detects total P1NP (personal communication from lead 
author, S. Sprague) leaving the possibility that the intact 
P1NP assay performs better in CKD populations.

C-terminal crosslaps of collagen 1

Mature triple helices formed from collagen 1 are crosslinks 
by non-collagenous proteins (pyridinolines and deoxypyri-
dinolines), also formed by osteoblasts, to establish a firm 
longitudinally oriented protein network. During bone deg-
radation, lysosomal enzymes derived from osteoclasts 
including tartrate-resistant acid phosphatases (TRAP) and 
cathepsin K are responsible for breakdown of the collagen-
ous matrix of bone at specific sites, yielding both carboxy- 
and nitrogen telopeptide containing parts of the original 
collagen 1 (CTX and NTX) but also the cross-linking pro-
tein [48]. The assay used for CTX determines the specific 
amino acid sequence of the telopeptide of collagen 1 (this 
telopeptide is termed the crosslap, in the case of β isomeri-
zation of aspartic acid: β crosslaps). Importantly, as bone 
ages, α-aspartic amino acid converts to β-aspartic acid, and 
therefore the detecting of βCTX is indicative of resorption 
of matured bone [50]. Unfortunately, CTX has kinetic char-
acteristics that significantly limit its clinical usefulness in 
CKD. First, there is a relevant circadian rhythm, but impor-
tantly its removal from the circulation is highly dependent 
on kidney function [48]. For this reason, the use of CTX 
cannot be recommended in patients with CKD.

Tartrate-resistant acid phosphate 5b

TRAP5b is a mainly osteoclast-derived enzyme [51, 52]. 
As its name indicates, this protein cleaves phosphate from 
proteins thereby influencing their function. Since its activ-
ity is optimal at a relatively low pH, it is active at acidic 
sites such as in resorption lacunae in bone. Both osteo-
pontin and bone sialoproteins are presumed targets of the 
enzyme [51], but also collagen 1 itself [48]. Cell lines, dif-
ferentiated in vitro by osteoclastic-like cells by exposure to 
receptor activator of nuclear factor κ-B ligand (RANKL, in 
physiology an osteoblast-derived ligand) produce TRAP5b 
and its amount is strongly associated with both the num-
ber and size of the osteoclast-like cells [53]. Interestingly 
TRAP5b is not affected by CKD [54], nor even by hemodi-
alysis or peritoneal dialysis [55, 56]. Based on these charac-
teristics, TRAP5b is a most attractive candidate biomarker 
for bone resorption in patients with CKD, unlike βCTX. 
The compound can be measured in serum by immunoas-
says [52]. However, currently data are lacking that indicate 
its association with bone histomorphometry.

Conclusion

Biomarkers of bone turnover are promising aids in clini-
cal nephrology practice. A thorough knowledge of what 
they indicate, of the assay characteristics and of the 
impact of low estimated glomerular filtration rate (eGFR) 
are important in interpreting the results. Generally, bio-
markers lack sufficient specificity to be able to base far-
reaching treatment decisions upon them. However, as 
follow-up parameters, they may be very useful. Most bio-
markers provide mainly an indication of bone formation 
and, as such, PTH, BSAP and also P1NP can be used. 
The only useful biomarker that reflects bone resorption in 
patients with CKD is TRAP5b, but the concentration of 
this enzyme has not yet been validated with respect to the 
gold standard, which is bone histomorphometry.
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