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Abstract
It iswidely accepted that structural glasses anddisordered crystals exhibit anomalies in their thermal,
mechanical and acoustic properties asmanifestations of thebreakdownof the long-wavelength
approximation in a disordereddissipative environment.However, the same typeof glassy-like anomalies
(i.e. bosonpeak in the vibrational density of states (VDOS) above theDebye level, peak in the normalized
specific heat atT;10K etc)havebeen recently observed also in perfectly ordered crystals, including
thermoelectric compounds.Herewepresent a theory that predicts these surprising effects inperfectly
ordered crystals as a result of low-lying (soft)optical phonons. Inparticular, it is seen that a strong boson
peak anomaly (low-energy excess ofmodes) in theVDOScanbedue almost entirely to the presence of
low-energy optical phonons, provided that their energy is comparable to that of the acousticmodes at
theBrillouin zone boundary. The bosonpeak is predicted also to occur in the heat capacity at lowT. In
presence of strongdamping (whichmight bedue to anharmonicities in theordered crystals), these
optical phonons contribute to the low-Tdeviation fromDebye’sT3 law, producing a linear-in-T
behaviorwhich is typical of glasses, even thoughnoassumptions of disorderwhatsoever aremade in the
model. Thesefindings are relevant for understanding and tuning thermal transport properties of
thermoelectric compounds, andpossibly for the enhancement of electron–phonon superconductivity.

Introduction

Structural glasses as well as disordered crystals are known to present anomalies in their vibrational spectra and in
their low-T properties, such as the specific heat and the thermal conductivity. Themost studied effect is the so-
called boson peak in the vibrational density of states (VDOS), whichmanifests itself as a peak (excess ofmodes)
at THz frequencies in theVDOSnormalized by theDebye lawω2 [1]. The boson peak is also responsible for
deviations from theDebyeT3 law in the specific heat, including a peak at temperatures on the order of 10 K and
for a low-T plateau in the thermal conductivity.

Several theories have been proposed to explain these effects, starting fromheterogeneous-elasticity theory
[2], and include such diverse approaches as: randomly-distributed soft anharmonicmodes [3, 4], local
inversion-symmetry breaking connectedwith nonaffine deformations [5–7], phonon-saddle transition in the
energy landscape [8], density fluctuations of arrested glass structures [9], and broadening/lowering of the lowest
vanHove singularity in the corresponding reference crystal due to the distribution of force constants [10, 11].
Theories of the specific heat anomaly at low-T have been basedmostly on the two-level system (TLS)mechanism
[12].More recently, a new approach has shown that the boson peak anomaly arises from the competition
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between acoustic propagating phonons and diffusive-like damping, thus providing amore general explanation
of the origin of these anomalies, which applies to both glasses and crystals [13].

Recent experimental works have demonstrated the existence of the very same anomalies (boson peak and
heat capacity anomaly) also in perfectly ordered crystals, such asmolecular single crystals [14–16] and non-
centrosymmetric perfect crystals such asα-quartz [17].

Furthermore, the same phenomenology of a pronounced boson peak in theVDOShas been observed in
thermoelectric crystals [18]. Thermoelectric crystals can be used to convert heatfluxes into charge carrierfluxes,
and the efficiency is highwhen thermal conductivity is low and at the same time electrical conductivity is high.
Low thermal conductivity can be achievedwith guest (caged) heavier atoms that undergo low-energy vibrations,
thus inducing low-energy opticalmodes [19, 20]. It is important to properly understand the link between these
low-energy vibrations of the caged atoms and the thermal conductivity, especially since the caged atoms induce a
strong boson peak in theVDOS, and the thermal conductivity is, in turn, expressed as an integral involving
theVDOS.

These observations call for a deeper understanding of the fundamental origin of these anomalies, well
beyond the paradigms developed for glasses, which fail to explain these observations in fully ordered crystals, for
obvious reasons.

Here we reexamine this problem from the point of view of the competition between propagating phonon
excitations and quasi-localized diffusive excitations produced by viscous damping, and, crucially, we account for
the role of both acoustic phonons and optical phonons. In particular, the theory predicts that, in systemswith
soft (low-energy) optical phonons piling up at low energy, the boson peak is controlled by the low-energy optical
phonons. Similar behaviors as that predicted by our theory has been reported in contemporary
experimental work.

In particular, [21] has reported experimental observations of a strong boson peak in perfectly ordered
crystals of halomethanes due to low-lying opticalmodes, whereas [22, 23] experimentally observed the upturn of
theVDOSpredicted here in organicmolecular systemswith high degree of crystallinity (and presumably very
soft opticalmodes) such as starch and glucose. Similar behaviors have beenmeasured also in thermoelectric
crystals [24, 25]where a boson peak in theVDOS is also observed, andwhere, interestingly, low-energy
vibrations (so-called rattling) of caged compounds give rise to an upturn in theVDOS at vibrational energies
below the boson peak [18].

Theory

Acoustic phonons
The starting point is to relate theVDOS to theGreen’s functions of the vibrational degrees of freedomof the
system. In particular, if we consider just acoustic, longitudinal (L) and transverse (T), phonons, theVDOS is
given in terms of theGreen functions by the following relations already used in [13]:
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which can be derived using the Plemelj identity (see supplementary information of [13] for derivation).
TheGreen’s functions for the acoustic phonons can be derived from the standard anharmonicHamiltonian
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Hereμ is the shear elasticmodulus,K the bulkmodulus, ρ the density. Furthermore,ΓTA is the phonon damping
for transverse acoustic phonons, andDTA is its corresponding (constant) diffusion coefficient (and respectively
for the longitudinal components, with subscript LA).

As discussed in [13], the boson peak coincides with the Ioffe–Regel crossover of the transverse phonons,
where the onset of diffusive-likemodes is controlled by the phonon damping [26], which in turn results from
anharmonicity [27].
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Optical phonons
Now let us consider the presence of an optical phononwhich, e.g. in the case of a crystal with two atoms in the
primitive cell, is described at lowwavevector q by(see e.g. [28]):

w w= - - G ( )Aq i , 5O0
2

whereΓO is the damping contribution for the opticalmode. Importantly,ω0 coincides with the energy gapΔ of
the opticalmode, and hencewith themass in aKlein–Gordon scalar field theory.

We assume that also the optical phonon is described by a damped harmonic oscillator Green’s function of
the same formused for the acoustic phonons. The opticalmodes thus produce an additional contribution to the
VDOS:
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whereNO is the number of opticalmodes as schematically depicted infigure 1. For simplicity we keep the same
damping for allmodes, andwe further specify that also the damping of opticalmodes is diffusive-like, with
ΓO=DOq

2. The latter is another assumption of themodel which can be justified based on hydrodynamics.
Sincewe are focusing on the low-q behavior of interest here, the diffusive dampingΓO=DOq

2 allows us to
recover the formof damping prescribed by hydrodynamics [29] in the q 0 limit. In any case, also for optical
phonons the root cause of damping is anharmonicity, specifically in the formof decay processes of an optical
phonon into two acoustic phonons [30].

In the followingwe study the full VDOS given by:
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where w w= +( ) ( )G G q G q2 , ,A TA LA . TheVDOS thus includes: (i) the acoustic phonons (transverse and
longitudinal); (ii) the effect of the optical phonons described above and given by equations (6), (7); (iii) the effect
ofmode damping (which is due to anharmonicity [27] and can also be related to the viscosity of the
solid [26, 31]).

Temperature dependence of the damping coefficients
The damping coefficientsD are normally temperature-dependent. This temperature dependence is different for
acoustic and for optical phonons. For acoustic phonons, sincewe are interested in the regime of lowwavevector
q, we assume a temperature dependence of the Landau–Rumer type [27], i.e.

= ~( ) ( ) ( )D T D T T , 9LA TA
4

which arises from the evaluation of scatteringmatrix elements of phonon–phonon processes. However, we have
checked that this dependence does not introduce significant qualitative changes with respect to choosing
temperature-independent coefficients. The same∼T4 dependence arises fromRayleigh scattering due to isolated
defects. Since however the above temperature-dependence effectively brings the acoustic damping to zero at
T=0, in order to avoid issues with the evaluation of theGreen’s function equation (2) it is necessary to
introduce a small imaginary term in the denominator, i , which allows us to recover the perfectly harmonic
behaviour atT=0.

For the optical phonons, it is usually assumed that the anharmonic damping of a low-energy optical phonon
results in the decay of the optical phonon into two acoustic phonons, amechanismproposed originally by
Klemens [30]. From amaster equation describing these phonon–phonon processes, one obtains the following
Klemens formula for the damping coefficient of optical phonons:

= + -b w( ) [ ( )] ( )D T D e1 2 1 . 10O 0
2

Hereβ= 1/kBT denotes the Boltzmann factor. Importantly, due to the presence of a Bose–Einstein coefficient,
this expression also affects thefinal calculation for theVDOS. This is not a negligible effect: since the bosons
occupation probability increases upon decreasing the normalmode energy w, this effect contributes to the
upturn in the normalizedVDOS at w  0, as will be shown below.
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Figure 1. Schematic of themodel dispersion relations used in the calculations of theVDOS and of the specific heat. Three optical
phonons are used in the calculations, which are given by the dispersion relation equation (5), and for simplicity are taken to be equally
spaced along theω axis.

Figure 2.Toppanel:Acoustic equation (1) andoptical equation (6) contributions to the totalVDOS, equation (8). Theparameters used in
theplot areA=0.001,NO=3,DO=0.02, for theopticalmodes, and  = = =c D1, 0.47, 0.4T T , = = =c D k0.6, 0.5, 1L L D .
Bottom:Optical contribution equation (6) shown in the toppanel as a functionof the energy gapω0.
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Results

The evaluation of the abovemodel as schematically depicted in figure 1 is plotted infigure 2 for a single low-lying
optical phonon. In the top panel, theVDOS clearly displays a strong boson peakwhich is controlled by the low-
energy optical phonon,whereas the acoustic phonons give amuch smaller contribution to the boson peak. To be
precise, as discussed in [13], the boson peak arises from the competition between phonon propagation and the
diffusive-like dampedmodes. This competition gives rise to a Ioffe–Regel crossover in correspondence to the
boson peak. In this case, the boson peak is given by the same competitionmechanism, but this time the
competition is between the low-energy opticalmodes and the diffusive-like dampedmodes, whereas the
acousticmodes play aminimal role.

Infigure 2, bottompanel, the dependence of the optical contribution to the boson peak is shown for
different values of the frequency at the Brillouin zone center,ω0, which determines the energy scale of the optical
phonon. It is clear that the effect arises only if the optical phonon energyω0 is sufficiently low, i.e. comparable to
the energy of the acoustic phonons at the Brillouin zone boundary. The effect becomesmore prominent asω0

decreases, whereas it vanishes in the limit of large optical gapω0. This observation allows us to conclude that only
low-energy optical phonons, and not the high energy ones, can give rise to glassy-like vibrational anomalies in
perfectly ordered crystals.

Also, we note that the low-energy optical phonon is responsible for the upturn of theVDOSupon
approachingω=0, an effect which is amplified by the frequency-dependence of the damping coefficient due to
the presence of the Bose–Einstein occupation factor in theKlemens formula, equation (10). To our knowledge,
this is another feature that has never been predicted before.

The experimental observation of this low-ω upturn in the normalizedVDOSmay be difficult, due to some
instrumental function or quasi-elastic signal which always hides theVDOSnearω=0.However, this upturn
has been clearly observed in recent experiments [22, 23] using Raman scattering and terahertz spectroscopy on
starch and glucose vitreous systems, which possess a significant degree of crystallinity andwhere low-energy
optical phononsmay play a role. Furthermore, optical phonons in such systems of large organicmolecules, are
expected to occur at low energy and to be strongly damped.

Importantly, the same low-ω upturn has been clearly observed also in thermoelectric crystals where caged
atoms undergo low-energy ‘large’ vibrationalmotions, thus giving rise to low-lying opticalmodes [18]. The
inelastic neutron scattering results of [18] on tetrahedrite crystals (figure 4 in that article) appear indeed to fully
support the theoretical scenario presented here andwhich underlies the behaviour infigure 2.

Infigure 3, the effect of the damping coefficient on the optical contribution to theVDOS is shown. It is
evident that, upon increasing the damping, the peak is redshifted, i.e. itmoves towards lower frequencies, which
is expected in view of the competitionmechanismbetween propagating and diffusive transport. However,
contrary towhat happens for acoustic phonons, the peak at intermediate frequencies tends to get lowerwith
increasing damping. The spectral weight is transferred towards lower and lower energies producing a strong
upturn in the normalized density of states. Aswewill see later, this is just themanifestation that for large
damping theVDOSdisplays awide constant plateau g(ω)∼const. whichmoves towards lower frequencies
upon increasing the diffusion constant of the phonons. Physically, this feature can be connectedwith themore
andmore localized nature of the vibrational degrees of freedom.

Figure 3.Evolution of the optical contribution to theVDOS upon varying themagnitudeD0 of the damping coefficient for the optical
phonon. In the calculationwe took  = 1 and kB=1.
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Specific heat
With theVDOSobtained in this way, the specific heat can be obtained in the standardway via [32]:
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Model predictions are shown infigure 4 for the two different sets of parameters used in theVDOS calculations.
In the top panel, we see that the optical contribution to the peak in the specific heat is the dominant one, and is
much larger than the acoustic contribution. This prediction has been experimentally and numerically confirmed
in thework ofMoratalla et al [21], whereDFT calculations of the two contributions were reported, which are in
perfect agreement with ourfigure 4 (top panel). Also, we see that in this case the specific heat behaves like the
Debye prediction∼T3 at lowT.

Infigure 4 bottompanel we studied the samemodel with a different set of parameters, inwhich the shear
elastic constant has a larger value, whereas the damping for the optical phonon is larger. The latter effect shifts
the boson peak to lower frequencies, as shown infigure 4, and in turn the red-shifted boson peak produces an
upturn in the specific heat as T 0. This upturn is highly reminiscent of the TLS tunnelingmechanismwhich
is usually invoked to explain this upturn of the specific heat at lowT. However, the TLSmechanism assumes a
randomdistribution of TLS, and hence it is unlikely to explain this upturnwhich has been observed
experimentally in ordered crystals in [21]. Instead, themechanism proposed here for the upturn does not rely on
any disorder assumption, and is uniquely provided by the red-shift of the boson peak caused by the strongly
damped optical phonon.

Infigure 5 the optical contribution (only) to the specific heat is plotted. In particular, infigure 5 (top panel)
the optical contribution is plotted upon varying the optical energy gapω0, and the peak is shown to become
larger and shifted towards low-T as the optical energy gap is reduced.

Figure 4.Top panel: Specific heat calculatedwith equation (9) on the basis of the VDOS (same as infigure 2 top panel) given by
equation (8): total (black), optical part (red) and acoustic part (blue). In the calculationwe took  = 1 and kB=1. Bottompanel: The
same specific heat calculated for amuch higher value of the opticalmodes damping. Seefigure 3 for a zoomof this behaviour and
section for a discussion on this point.
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Infigure 5 (bottompanel), the same optical contribution is plotted, this time upon varying the damping
coefficient of the optical phonon. It is seen that the peak in the specific heat is strongly shifted towardsT=0 as
the damping of the optical phonon is increased. In particular, for strong damping the optical contribution is
shown to produce an upturn in the specific heat at low-Twhich closely resembles the TLS-like behaviour that
has been observedmany times in glasses.

Effect of the piling up of optical phonons
Next, we study the effect of havingmore optical phonons piled up at low energy, as schematically depicted in
figure 1.We use the full equation (8) to evaluate theVDOS, andwe varyNO from1 to 4. Infigure 6we show the
effect of increasing the number of optical phononsNO piled up at low energy on theVDOS, for afixed set of all
the other parameters. It is clear that the boson peak increases significantly upon increasing the number of optical
phonons, although its position is only slightly blueshifted asNO is increased. Upon increasing the number of
opticalmodes, furthermore, the upturn at lowω appears to increase.

Infigure 7we plot the effect of varyingNOwithin the same range, and using the same parameters as in
figure 6, on the specific heat. It is clear that an increase in the number of optical phonons piled up at low energy
produces a significant increase of the peak in the specific heat, while the peak position is only slightly shifted
towards higherT.

Prediction of linear-in-T andTLS-like features in crystals with strongly damped low-energy optical
phonons
Finally, we lookmore closely at what happenswhen the optical phonon is strongly damped. Infigure 8we show
theVDOS (unnormalized) of the strongly damped optical phonon, which displays a constant plateau at
relatively low frequencies, for strong enough damping. In particular, we can notice that at small values of the
damping no plateau g(ω)∼const appears. On the contrary for large values of the diffusive-like damping
prefactorD0, a very robust and frequency independent intermediate regime arises.Moreover, the larger the

Figure 5.Top panel: Optical phonon contribution (only) to the specific heat calculatedwith equation (9) on the basis of the VDOS
given by equation (8) upon varying the optical energy gap w0. In the calculationwe took  = 1 and kB=1. Bottompanel: The same
quantity plotted upon varying themagnitudeD0 of the optical phonon damping coefficientDO.
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Figure 6.VDOS computed upon varying the number of optical phonons,NO, from1 (bottom) to 4 (top curve). The phonon levels (as
depicted schematically infigure 1) are equally spacedwith a fixed interval equal toΔω=0.02, inω0.

Figure 7. Specific heat computed using theVDOSof figure 6, i.e. upon varying the number of optical phonons,NO, from1 (bottom)
to 4 (top curve). The phonon levels (as depicted schematically infigure 1) are equally spacedwith a fixed interval equal toΔω=0.02,
inω0.

Figure 8.VDOS (unnormalized) for a strongly damped optical phonon. A plateau inω is reached for strong enough damping, which is
typical of diffusons.
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damping the closer the onset of this plateau to zero frequency. Infigure 9we show the total (acoustic plus
optical) specific heat, which displays a strong upturn towards T 0.

Infigure 10, we plot the optical contribution only to the specific heat. Infigure 10 (bottompanel)weplot the
same data but this time in log–log plot. It is clear that this contribution to the specific heat goes exactly like∼T at
low-T, which is the same behaviour observed in glasses and traditionally attributed to the TLSmechanism, based
on quantum tunnelling between randomly distributed double wells [12, 33, 34]. However, recently, the same
upturn and characteristic behavior shownhere has been detected in perfectly ordered crystals of organic
molecules, e.g. in [21], where low-energy optical phonons have been shown (bymeans ofDFT calculations) to
play a prominent role in the lattice dynamics and in theVDOS.Hence our prediction of a TLS-like behaviour in
crystals with low-energy and strongly damped phonons appears verified in comparisonwith those observations.

Figure 9.Total specific heat computed considering a soft (low-energy) optical phononwith a large diffusive-like damping coefficient.
The strong damping produces an upturn at low temperature similar towhat is predicted by the TLSmodel.

Figure 10.Top panel: Optical phonon contribution (only) to the specific heat calculatedwith the same strongly damped optical
phonon theVDOSofwhich is plotted infigure 8 . In the calculationwe took  = 1 and kB=1. Bottompanel: The same quantity in
log–log plot in order to highlight the TLS-like behaviour at lowTwith the characteristicC(T)∼T glassy-like trend.
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LinkwithGardner physics in disordered solids

Ourmodel presents a description of phonons in a lattice within an effective field theory strategy, whichmeans
thatwe do not explicitlymodel themicrostructure of the solid. The lattermay be a highly ordered crystal with a
complex unit cell formed by several different atoms leading tomany opticalmodes. Also, itmay be a crystal
lattice with defects (inclusions, vacancies, polydispersity etc)which vibrate within the latticematrix andmay
couple to the acoustic field of thematrix.

In the case of slightly disordered crystals, an important connection could be drawn between ourmodel and
theGardner transition, originally proposed for spin glasses [35] and then re-discovered in numerical hard-
sphere glassy systems [36, 37], and, recently, also in slightly disordered crystals [38]. At theGardner transition,
the localminimawhich form ameta-basin in the energy landscape of a glassy solid develop a fractal hierarchy of
sub-minimawithin a localminimum. This phenomenon is deeply connectedwith lifting the degeneracy of
particle contact forces, which happens typically upon increasing the packing fraction or the pressure, e.g. in
hard-spheres and possibly deep in the glass state, well below the glass transition. TheGardner phase is a
marginally stable state withmany similarities to jammed packings in terms of degeneracy of the local contact
network. Very similar physics has been recently found in [38]while studying slightly disordered crystals formed
frompolydisperse spheres. The polydispersity lifts the degeneracy of vibrationalmodes and introduces a variety
of opticalmodes with different energy, resulting in aVDOS similar to that of jammed packings at the jamming
(isostatic)point where theVDOS remainsflat down to zero frequency. This is a situationwhere basically the
boson peak effectively occurs at zero frequency.

Ourmodel presents a physics very similar towhat has been found in the polydisperse crystals of [38]:

(I) Increasing the number of optical modes towards low frequency similarly lifts the degeneracy of the modes
and introduces a proliferation of softmodes, as in theGardner state. This is associatedwith the drifting of
the boson peak toward zero-frequency, hence toward amarginally-stable state, again like theGardner state.
Furthermore, also in highly-ordered crystals such as halomethanes [21], the opticalmodes, which
contribute to the boson peak according to themechanismpresented in ourmodel, are highly degenerate
due to different rotation-vibration couplings.

(II) If the model presented above were to describe optical modes arising from randomly-distributed defects, a
coupling between defects and acoustic field can be established, as shown in [39], with a tunable parameter
which gives the concentration of defects. Upon increasing the concentration of defects, the boson peak
frequency drifts toward zero frequency as shown in [39]. Assuming that the characteristic wavevector goes
like a linear dispersion relation (which is certainly valid just below the boson peak), this implies that the
characteristic length scale of the disorder grows and diverges [40] as the boson peak drifts toward zero
frequency, i.e. upon increasing the concentration of defects. Hence theremight be a critical defect
concentration belowwhich the system transitions into amarginally-stable state similar to theGardner state.

(III) The proliferation of soft modes associated with low-lying optical phonons and the associated boson peak
causes a breakdownof standard elasticity as observed for theGardner phase in [41]. In particular, this
becomes apparent in the development ofmemory effects in the elasticmodulus, which becomes non-
Markovian and history-dependent. The link between softmodes in the boson peak and non-Markovianity
has been studiedwithin the nonaffine elasticity framework recently in the case ofmetallic glasses [42].

It will be very interesting, in future work, to study how these soft opticalmodes relate tomotions involved in the
β relaxation of glasses (a connection that has been recently studied in [43]), since those are responsible for the
jump fromone localminimum in the energy landscape to another one nearby, which defines theβ relaxation
process.

Conclusions

Themain predictions and outcomes of the presented theoretical framework are as follows.

(i) The optical contribution to the reduced VDOS g(ω)/ω2 gives rise to a boson peak if the optical phonons are
at low enough energy (i.e. comparable to acousticmode energy at the Brillouin zone boundary).

(ii) The contribution of the optical modes is, instead, completely irrelevant if the optical phonons lie at energies
much larger compared to the energy of the acoustic phonons at the Brillouin zone boundary.
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(iii) We verified, that the boson peak due to the low-energy optical phonons grows upon increasing the number
of low-energy optical phonons, with dispersion relation given by equation (5).

(iv) The boson peak is accompanied by an upturn at w  0, which is given by the optical contribution, and
which has been found experimentally in certain systemswhere low-energy opticalmodes are active
[18, 22, 23].

(v) The resulting specific heat presents a boson peak with contributions from both optical and acoustic
phonons, where the optical contributionmay be the dominant one for certain choices of the parameters.
The upturn of the specific heat at low-T, for strongly damped optical phonons, is entirely controlled by the
low-energy optical phonons, and is closely related to the upturn in the normalizedVDOS, which is also
controlled by the optical phonons.

(vi) For strongly damped low-energy optical phonons, the linear-in-T anomaly in the specific heat is reproduced
in perfectly ordered crystals.

We also note that the low-energy optical phonons induce a scaling of the specific heat at low-Twhich
approximately goes likeC(T)∼T.While it is accepted that the specific heat in glasses goes linearly inT at lowT,
similar non-Debye glassy anomalies have been recently observed in crystals [14, 17]. Thisfinding can therefore
help to shed new light on the origin of these glassy-like anomalies in the specific heat of crystals, where
disordered-based TLS arguments are not applicable.

In conclusion, the above theoretical calculation shows that low-energy optical phonons in ordered crystals
are responsible for glassy-like anomalies in theVDOS (the so-called boson peak) and in the low-T specific heat.
Also, themodel shows that, for low-lying opticalmodes, the normalizedVDOSmay no longer beflat at w  0
butmay exhibit an upturn, as shown recently in some systems [18, 22, 23], including thermoelectric crystals [18]
where low-energy opticalmodes are important.

The present findings have several implications for various types of solids. For example, in semi-crystalline
amorphous superconductors, it is known that the excess of vibrationalmodes (above theDebye level) gives a
large contribution to the Eliashberg function and hence to the electron–phonon coupling, thus enhancing the
critical temperatureTc [44–46]. This effect is proportional to the amount of disorder but vanishes as thematerial
becomes completely amorphous. Thefinding reported here, that a strong excess of vibrationalmodes can be
achieved thanks to low-energy opticalmodes in crystals, opens up a newperspective to quantitatively rationalize
a large amount of experimental data on conventional superconductors where the variation ofTc is largely
empirical. Furthermore, itmay provide design principles for a new class of high-Tc superconductors, by
combining light polarons [47]with the boson peak in perfectly orderedmaterials.
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