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Abstract
We address the characterisation of non-deterministic noiseless linear amplifiers 
(NLAs) and compare the performances of different estimation strategies. 
In particular, we focus on estimation of the gain, whose value may result 
from a combination of different experimental effects, as those governing the 
overall efficiency of the detector or the transmissivity of the involved optical 
components. At first, we show that, contrary to naive expectations, post-
selecting only the amplified states does not offer the most accurate estimate. 
We then focus on minimal implementations of a NLA, i.e. those obtained by 
coupling the input state to a two-level system, and show that the maximal 
amount of information about the gain of the NLA is obtained by measuring the 
whole composite system. The quantum Fisher information (QFI) of this best-
case scenario is analysed in some detail, and compared to the QFI of the post-
selected states, both for successful and unsuccessful amplification. Eventually, 
we show that full extraction of the available information is achieved when the 
non-deterministic process is implemented by a Lüders instrument. We also 
analyse the precision attainable by probing NLAs by single-mode pure states 
and measuring the field or the number of quanta, and discuss in some detail 
the specific cases of squeezed vacuum and coherent states.

Keywords: quantum characterization, noiseless linear amplifiers,  
quantum estimation
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1. Introduction

Deterministic, phase-insensitive, quantum linear amplifiers that amplify the whole set of 
quadratures of a bosonic field unavoidably introduce additional noise [1] of purely quantum 
origin. In spite of this general feature, several noiseless amplification schemes have been pro-
posed, both theoretically and experimentally [2–7]. In these setups, the ideal desired action 
on coherent states, i.e. |α〉 �→ |gα〉 with g  >  1, is obtained without any additional noise, and 
maintaining consistency with the basic postulates of quantum mechanics. These noiseless lin-
ear amplifiers (NLAs) are made possible by their probabilistic nature [2], i.e. amplification is 
not deterministic and is achieved only in a fraction of the experimental events. In other words, 
NLAs are able to attain arbitrary high fidelities with the target amplified state, at the cost of 
obtaining a successful amplification only with a (usually small) probability p s. Notice that this 
kind of devices not only do not add additional noise, but actually also avoid the amplification 
of the input noise [4, 8].

An ideal NLA, achieving perfect amplification for any input state, would succeed with 
probability zero [9]. Therefore, any realistic scheme implements an approximate NLA that 
works with high fidelity for a certain class of relevant states. This approach introduces a 
trade-off between the probability of success and the fidelity of amplification. Pandey et al 
[4] have identified the explicit form of the quantum operation that is optimal w.r.t. this trade-
off. Building on this result, McMahon et al [10] found a measurement model, consisting of a 
unitary interaction and projective measurements, which implements the optimal probabilistic 
operation. In this description, the NLA is fully characterized by two parameters: the gain g 
and the threshold p, i.e. the order of truncation in Fock space.

The use of NLAs has been suggested in a broad range of possible applications to improve 
quantum communication protocols [11–14]. A precise characterisation of its parameters is 
thus an important step to take full advantage of this device, and a question arises on whether 
feasible detection schemes are available with current technology. The threshold parameter is a 
discrete quantity and is likely to correspond to a well-defined experimental event and, as such, 
it may be set by the manufacturer. On the other hand, the precise value of the gain, may result 
from a combination of different experimental effects, as those governing the overall efficiency 
of the detector or the transmissivity of the involved optical components. In this framework, a 
precise estimation of the gain parameter is needed for an operational characterisation of the 
NLA. The gain parameter of a NLA, however, do not correspond to a quantum observable and, 
in turn, one has to resort to statistical estimation to infer its value. Optimisation over the choice 
of a probe state, of a detection scheme and a suitable data processing may be performed in the 
framework of quantum estimation theory, which provides the ultimate bound on precision, i.e. 
the quantum Cramér–Rao bound in terms of the quantum Fisher information (QFI) [15–18].

NLAs are probabilistic devices and their characterisation is closely related to the field of 
probabilistic quantum metrology, which has received much attention in recent years [19–25]. 
The idea behind probabilistic quantum metrology is to first deterministically encode a param-
eter onto the probe state, and then apply a selective measurement. By weakly measuring the 
probe state and then discarding part of the output states depending on the outcomes, it is possi-
ble to concentrate information on the parameter. However, from the point of view of quantum 
estimation theory these protocols cannot improve the precision of the estimation in the limit 
of many trials [25–27].

In this paper, we present a detailed study of the estimation of the gain parameter of a proba-
bilistic noiseless amplifier, focusing attention on the NLA measurement model proposed in 
[10]. In particular, we will consider the NLA as a device given to an experimentalist who needs 
to calibrate it, but who cannot act on the building blocks. At variance with the probabilistic 
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metrological protocols we have mentioned above, the non-deterministic nature of the NLA 
makes this estimation scheme intrinsically probabilistic. This feature makes it necessary to 
consider appropriate figures of merit to quantify the information obtained by measurement. 
The most informative strategy is to consider both the information contained in the classical 
statistics given by the heralding process (i.e. the POVM implemented by the quantum instru-
ment) and the information encoded in the conditional states. We also show that this strategy is 
optimal; having access to the global pure state after the interaction with the global unitary used 
to implement the selective evolution does not give any more information on the parameter. 
On the other hand, we will also consider the unconditional state, as well as the information 
encoded only in a successfully amplified state, and compare these schemes with the optimal 
one. As we will see, our analysis is general enough to assess the performances of any single-
mode pure state used as a probe for the NLA gain. In addition, in order to offer some quanti-
tative assessment, we evaluate explicitly the bounds to precision for squeezed vacuum and 
coherent states.

The paper is organized as follows. In section  2, we review the main results on single-
parameter quantum estimation theory. Section 3 is devoted to a brief review of the model of 
non-deterministic NLA proposed by Pandey et al. We focus on the action on generic one mode 
bosonic pure states and we also discuss its unitary dilation (the measurement model given by 
MacMahon et al). In section 4, we present three different metrological strategies to infer the 
value of the gain, assuming a known threshold. We assess their performances in terms of their 
respective Cramér–Rao bounds and we present our main results, a comparison between these 
strategies considering two classes of single mode bosonic pure states: squeezed vacuum and 
coherent states. In section 5 we analyze feasible measurement schemes saturating the quant um 
bounds on the precision of the NLA gain. Finally, section 6 closes the paper with some con-
cluding remarks.

2. Quantum estimation theory

Various crucial quantities for the characterisation of quantum systems, for instance entangle-
ment [28] or the loss parameter of a quantum channel [29, 30], are non-linear functions of the 
density matrix and thus cannot correspond to quantum observables. In order to have access to 
these quantities, one should resort to indirect measurements and set the problem in the context 
of quantum parameter estimation theory [16, 18, 31, 32].

In the classical case, the typical estimation procedure is set as follows. We intend to esti-
mate the value of a parameter g, from a set of measurement outcomes {x1, x2...., xm}, which 
represents a sample from a parameter-dependent probability distribution p(x|g), also called 
the statistical model. The collected data is processed (classically) to build an estimator 
ẽg = ẽg({x1, x2...., xm}), i.e. a function from the set of measurement outcomes to the set of 
possible values of the unknown parameter. Being a function of random variables, the estimator 
itself is a random variable and the precision of the estimation can be quantified by its variance 
σ2(ẽg) =

[
(ẽg − [ẽg])

2
]
. This is a good figure of merit if we assume that the estimator 

is unbiased, i.e. the average value is equal to the true value of the parameter [ẽg] = g. An 
important classical result is that the variance of any unbiased estimator has a lower bound 
independent on the particular estimator; this is the so-called Cramér–Rao bound (CRB) [33]

σ2(ẽg) �
1

MF(g)
, (1)
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where M is the number of measurements performed on the system and F(g) the Fisher infor-
mation (FI) defined as

F(g) =
∑

x

p(x|g) [∂g ln p(x|g)]2 . (2)

In quantum theory, the conditional probability is given by the Born rule p(x|g) = Tr[ρgΠ̂x], 
where the set of density matrices ρg now constitutes a quantum statistical model parametrized 
by g, while Πx represents an element of the positive operator-valued measure (POVM) describ-
ing the measurement, satisfying 

∑
x Π̂x = . Maximizing the FI over all possible POVMs we 

obtain the ultimate bound on the accuracy of any unbiased estimator, the quantum Cramér–
Rao bound (QCRB) [16, 32]

σ2(êg) �
1

MF(g)
�

1
MQ(g)

, (3)

where Q(ρg) = Tr
[
ρgL̂2

g

]
 is the so-called quantum Fisher information (QFI); L̂g is the sym-

metric logarithmic derivative, an Hermitian operator defined implicitly through the equa-

tion ∂gρg = 1
2 (L̂gρg + ρgL̂g). The QFI depends only on the quantum state ρg, thereby setting 

the ultimate limit on accuracy of any estimation strategy for g.
For a generic mixed state a general formula of the QFI is the following [18]

Q(ρg) = 2
∑

i,j

|〈ψi|∂gρg|ψj〉|2

vi + vj
, (4)

where we used the eigendecomposition of the density matrix ρg =
∑

vn |ψn〉 〈ψn|; the sum 
includes all j  and i satisfying vi + vj �= 0. For a pure state ρg = |ψg〉〈ψg| equation (4) reduces 
to

Q(|ψg〉) = 4
[
〈∂gψg|∂gψg〉 − |〈∂gψg|ψg〉|2

]
. (5)

3. Description of the non-deterministic NLA

Performing a phase insensitive amplification on a generic quantum state is well-known to inev-
itably insert additional noise, and thus poses limits to quantum communication and metrology 
protocols. Nonetheless, it has been shown that non-deterministic NLA may circumvent these 
limitations [2, 3]. Through this manuscript, we follow the theoretical model developed in [4, 
10] and we explore different strategies to calibrate such an amplifier, i.e. to precisely estimate 
the gain, assuming a known value of the integer p  setting the truncation order (which we dub 
the threshold).

The action of the optimal probabilistic NLA is described by two Hermitian and commuting 
Kraus operators [10]:

Ê p
s = g−p

p∑
n=0

gn |n〉 〈n|+
∞∑

n=p+1

|n〉 〈n| , (6)

Ê p
f =

√
1 − Π̂ p

S =

p∑
n=0

√
1 − g2(n−p) |n〉 〈n| , (7)
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where s and f  denote respectively success and failure and the basis |n〉 is the usual Fock basis 
for a bosonic mode. These Kraus operators correspond to a POVM with two outcomes, i.e. 

two positive operators Π̂ p
s = Ê p

s
†Ê p

s  and Π̂ p
f = Ê p

f
†Ê p

f  which constitute a resolution of the 
identity. Here, g is the gain of the amplifier and p  is the threshold. For a measurement per-
formed on a state ρ , the probabilities of observing the two outcomes and the corresponding 
post-measurement states read

pi = Tr
[
ρΠ̂ p

i

]
ρi =

Ê p
i ρÊ p†

i

pi
, (8)

with i = {s, f}.
Let us remark that the Kraus operator corresponding to the successful amplification in 

equation  (6) is the optimal quantum operation found in [4]. On the other hand, the failure 
Kraus operator in equation (7) is not uniquely determined a priori, since the only constraint is 

Ê p
s
†Ê p

s + Ê p
f
†Ê p

f = . The Kraus operators reported in equations (6) and (7) correspond to the 

so called Lüders instrument [34] for the POVM 
{
Π̂ p

s , Π̂ p
f

}
. Different instruments compatible 

with the same POVM are obtained by applying outcome-dependent control operations (unitar-
ies or, more generally, CPT maps) to a Lüders instrument. In other words, we focus attention 
to bare measurements, where no control operations are applied. In turn, this approach is justi-
fied by the fact that additional transformations would not change the gain of the NLA, i.e. they 
do not add any additional information.

The action of NLA on a generic pure state |ψ〉 =
∑

n cn|n〉. may be expressed as follows. 
The successfully amplified state is given by

|ψs〉 =
Ê p

s |ψ〉
√

ps
=

1
√

ps




p∑
n=0

gn−pcn |n〉+
∞∑

n=p+1

cn |n〉


 , (9)

with

ps =




p∑
n=0

g2(n−p) |cn|2 +
∞∑

n=p+1

|cn|2

 , (10)

whereas a failed amplification corresponds to a distorted state, given by

|ψf 〉 =
Ê p

f |ψ〉
√pf

=
1

√pf

( p∑
n=0

√
1 − g2(n−p)cn |n〉

)
, (11)

where

pf =

[ p∑
n=0

(1 − g2(n−p)) |cn|2
]

. (12)

The desired action of the NLA is obtained by discarding the distorted output state corre-
sponding to the measurement outcome f . This introduces a trade-off between the degree of 
amplification and the probability of success. Indeed, high degrees of amplification, i.e. great 
values of g and p , are achieved at the expense of smaller values of the success probability. 
For our purposes it is beneficial to retain also the distorted state, since it still depends on the 
parameter of interest.

H Adnane et alJ. Phys. A: Math. Theor. 52 (2019) 495302
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3.1. Measurement model of the non-deterministic NLA

It is useful to be more explicit in the realization of the NLA and consider the actual mea-
surement model, instead of the Kraus operators. In this picture, the action of the NLA is 
obtained by coupling the input system with an ancillary system (the so-called meter or mea-
suring device), followed by a projective measurement on the latter. Since there are only two 
outcomes, we consider a two-level system with its orthonormal basis {|s〉 , | f 〉}, where |s〉 is 
the state of the measuring device when a successful amplification occurs and | f 〉 when the 
amplification fails. We assume that the measuring device is prepared in the state | f 〉 before the 
interaction. The unitary operator describing the interaction is constructed as follows

Ûg = Ê p
s ⊗ |s〉 〈 f |+ Ê p

f ⊗ | f 〉 〈 f |+ Â ⊗ | f 〉 〈s|+ B̂ ⊗ |s〉 〈s| , (13)

so that Ê p
s = 〈s|Ûg| f 〉 and Ê p

f = 〈 f |Ûg| f 〉; to ensure the unitarity of Û  we can set Â = −Ê p
s  

and B̂ = Ê p
f , as shown in [10].

The action of the unitary transformation Û  on a generic pure state |ψ〉 coupled to a measur-
ing device pre-selected in the state | f 〉 gives rise to the following global state of system and 
ancilla

|ΨNLA〉 = Ûg (|ψ〉 ⊗ |f 〉) = √
ps|ψs〉 ⊗ |s〉+√

pf |ψf 〉 ⊗ |f 〉 (14)

where |ψs〉 and |ψf 〉 are respectively the amplified and degraded states appearing in equa-
tions (9) and (11).

The global state (14) is pure since no information has been discarded; this will be useful 
to set an ultimate bound the the precision of the estimation. However, in practice such a pure 
state is usually not available and in particular it is useful to consider its decohered version [27]

ρNLA = ps |ψs〉 〈ψs| ⊗ |s〉 〈s|+ pf |ψf 〉 〈ψf | ⊗ | f 〉 〈 f | . (15)

This mixed state can be thought as a state where the ancilla is used only to store the classical 
outcomes of the measurement. In general, this state contains less information than the pure 
state |ΨNLA〉, but we will see that its information content pertains to a more realistic metrologi-
cal scheme. Furthermore, we are going to show that for this particular estimation problem the 
two states contain the same amount of information about the parameter.

4. Cramér–Rao bounds for the estimation of the gain

We study three different strategies to infer the value of the gain of a non-deterministic NLA 
with squeezed vacuum and coherent states used as probes; we assess their performances in 
term of their respective QCRBs.

4.1. The three schemes

4.1.1. Global state. The first strategy we consider is a sequential measurement scheme, where 

we first measure the system indirectly via the POVM {Π̂ p
s , Π̂ p

f } and then we perform a final 
measurement on the conditional states of the system. By assuming to be able to perform any 
measurement on the conditional state the correct figure of merit is the effective QFI (we adopt 
the terminology introduced in [35]):

Qeff(g) = psQs(g) + pfQf (g) + Fc ({ ps, pf }) , (16)

H Adnane et alJ. Phys. A: Math. Theor. 52 (2019) 495302
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where Qs(g) = Q (|ψs〉) and Qf (g) = Q (|ψf 〉) are respectively the QFI of the amplified state 
and the degraded one, while Fc is the classical FI associated with the distribution probability 
{ ps, pf }. We are going to study this sequential strategy more in detail in section 5.

Let us show that this quantity corresponds to the QFI of the state ρNLA defined in (15), see 
also [27, 36]. We resort to the primary definition of the QFI and we evaluate the symmetric 
logarithmic derivative. The state ρNLA can be expressed as a 2 × 2 block matrix, with diago-
nal elements pfρs and pfρf  and zero off-diagonal ones. This particular shape enables for a 
straightforward evaluation of the SLD leading to

∂gρNLA =
1
2
{Ls, psρs} ⊗ |s〉 〈s|+ 1

2
{Lf , pfρf } ⊗ | f 〉 〈 f | , (17)

where Ls,f = ∂g ln ps,f + 2∂gρs,f  and {, } denotes the anti-commutator. After gathering 
together the two terms of the right side, we obtain the equation for the SLD of to the overall 
state ρNLA

∂gρNLA =
1
2
{L, ρNLA} ; (18)

where L is a 2 × 2 block matrix with Ls and Lf  on the diagonal and null off-diagonal elements. 
The final expression of the QFI is then obtained using its definition Tr

[
ρNLAL2

]
 and gives 

equation (16).
We notice that the sum of the two first terms in equation (16) represents the average QFI of 

the two pure states w.r.t. the probability distribution { ps, pf }. The expressions are found to be

Qs(g) = −
(
∂gps

ps

)2

+
4
ps

p−1∑
n=0

(n − p)2g2(n−p−1) |cn|2 , (19)

Qf (g) = −
(
∂gpf

pf

)2

+
4
pf

p−1∑
n=0

(n − p)2g4(n−p)−2

(1 − g2(n−p))
|cn|2 , (20)

where ∂gps,f  are the derivatives of the probabilities p s,f  with respect to g (see appendix A for 
more details). The FI of the classical probability distribution is

Fc ({ ps, pf }) =
(∂gps)

2

ps
+

(∂gpf )
2

pf
. (21)

When summing up all the terms in equation (16), we see that Fc ({ ps, pf }) cancels out the 
the first ‘classical’ terms in equations (19) and (20), more details are provided in appendix A.

Due to the fact that the NLA only changes the amplitudes of the Fock components of a 
quantum state but does not add relative phases between such components, we have that the 
normalised states are orthogonal to their derivatives, i.e. 〈ψs|∂gψs〉 = 〈ψf |∂gψf 〉 = 04. From 
this identity it easy to prove that the QFI of the state |ΨNLA〉 defined in (14) is equal to the 
effective QFI, see details in appendix B. To sum up, we have found the following equalities:

Qeff(g) = Q (ρNLA) = Q (|ΨNLA〉) , (22)

4 This property is not true in general. For a generic dependence on the parameter λ a complex state vector only 
satisfies Re〈ψ|∂λψ〉 = 0. The full orthogonality condition makes the quantum case similar to the classical case of 
real valued probability distributions (i.e. real valued normalised vectors).

H Adnane et alJ. Phys. A: Math. Theor. 52 (2019) 495302



8

where the two states are defined in equations (14) and (15). Equation (22) shows that having 
full access to the global system plus ancilla state and being able to perform arbitrary mea-
surements (e.g. projections onto entangled states) is not useful. The sequential scheme we 
described, measuring the ancilla first and the system afterwards, is indeed optimal.

We notice that by implementing the global unitary (13) in full generality one could be able 
to obtain more information about the parameter g, since such an operation could be applied to 
arbitrary (entangled) states of the bosonic mode plus the ancillary qubit and not only on the 
state |ψ〉 ⊗ |f 〉. We remark that our approach is to treat the NLA as given device to calibrate, 
thus we also consider the preparation of the initial state |f 〉 as built into the operation of the 
device. However, for completeness in appendix B we consider the simplest scheme: a sepa-
rable input state, but with an arbitrary state of the meter qubit, i.e. |ψ〉 ⊗ (α|s〉+ β|f 〉). We 
show that this approach never yields more information about the parameter than preselecting 
the meter state |f 〉.

4.1.2. Unconditional state. In the second scenario, we consider the unconditional state arising 
from the action of the NLA on the probe states. Its expression is derived by tracing out the 
measuring device (M) in equation (15) and reads

ρunc = TrM [ρNLA] = ps |ψs〉 〈ψs|+ pf |ψf 〉 〈ψf | . (23)

We notice that the resulting state is a mixture and the evaluation of the QFI is carried out 
numerically after expanding the amplified and degraded states in the Fock basis.

The figure of merit to assess these schemes is the QFI of the state ρunc, denoted as Qunc(g). 
In general the information obtainable by considering this mixed state is less than the effective 
QFI we previously introduced. This can be easily understood in terms of the monotonicity 
properties of the QFI [37], since the partial trace is a completely positive and trace preserving 
map. Therefore, we have the inequality

Qunc(g) � Qeff(g) (24)

which is also known as the extended convexity of the QFI [38, 39].

4.1.3. Successfully amplified state. In the previous schemes, we took into consideration the 
contributions of both states in the mixture. A widespread approach is to focus only on the 
relevant states which concentrate information on the unknown parameter [20, 21, 23, 40]. In 
this spirit we also study the effect of only taking into account the contribution of the amplified 
states, discarding the distorted ones. This represents the third and last strategy we consider.

Before proceeding, we stress the fact that the QFI of the post-selected amplified generic 
state may be larger than that of the overall state. According to this observation, one may expect 
to attain a better sensitivity by considering only the amplified states. Nevertheless, as seen 
before, the QFI by itself is not the relevant quantity for the estimation accuracy. The main 
trouble with this post-selection scheme is that the estimator is built with a smaller sample 
since the distorted states are discarded, while the other proposed schemes make use of all the 
available probes. Thereby, to fairly compare the different schemes we should consider these 
quantities: MsQs(g), MQeff(g), and MQun(g), where Ms is the number of measurements per-
formed on the post-selected amplified states while M refers to the whole sample [26].

We notice that considering the general case without any assumptions, this issue cannot be 
readily fixed. Here, we consider the asymptotic case of infinite runs where the CRB can effec-
tively be saturated. The number of measurement involved in this third strategy is thus given by 
Ms = Mps and the correct figue of merit for this estimation scheme is the QFI rescaled by the 
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success probability psQs(g), see also a similar discussion in [27]. For this quantity we have 
the inequality

psQs(g) � Qeff(g), (25)

which follows from the definition of the effective QFI.

4.2. Results and discussions

We now proceed to compare the performance of these strategies in terms of the figures of merit 
we have just introduced. In particular we focus on two categories of probes: coherent input 

states and squeezed vacuum. Coherent states are defined by the coefficients cn = e−|α|2 αn
√

n!
 

and have an average number of photons n̄ = |α|2, while the squeezed vacuum corresponds 

to c2n = 1√
µ

(
ν

2µ

)
n
√

(2n)!
n!  and c2n+1  =  0 with ν = sinh r  and µ = cosh r (we choose a real 

squeezing parameter r), the mean photon number is n̄ = ν2.
In figure 1 we show that all the figures of merit are decreasing functions of the gain and are 

very close to zero for gain values exceeding 4, regardless of the considered probe. In addition, 
we clearly notice that considering the sequential scheme characterised by Qeff(g) offers the 
most accurate estimate for the gain for both the coherent input state and squeezed vacuum, 
in line with the inequalities we presented. As previously noticed, this shows that the appar-
ent enhancement in the information obtained from post-selecting only the amplified states 
is cancelled out by the small probability of success [26]. However, we also find that, except 
for values of g close to 1, the precision of the design based on post-selecting the successfully 
amplified state still gives a better precision than the unconditional state, regardless of the con-
sidered probe state. To sum up our results, under the assumptions of weak mean input energies 
and values of the gain g exceeding 1.2, we found a hierarchy between the different strategies 
under study

Qeff(g) > psQs(g) � Qun(g); (26)

the inequalities between Qeff  and the other quantities are expected from the general arguments 
of the previous section, while the inequality between psQs(g) and Qun(g) holds only under 
the assumptions mentioned above and is not true in general. In figure 2 we depict the plots of 
the effective QFI for the two considered classes of probe states, at a fixed truncation order and 
for different values of the mean input energy. Our results show that, for relatively weak values 

Figure 1. Plots of the QFI of the proposed strategies as functions of g at fixed input 
energy n̄ = 1 and threshold p   =  3. The blue solid line represents the effective QFI Qeff , 
the orange dashed line denotes psQs(g) and the red dotted line represents the QFI of 
the unconditional state Qunc. The left panel shows results for a squeezed vacuum state, 
whereas the right one shows the results for coherent input state.
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of the gain, the squeezed vacuum offers a better sensitivity than a coherent probe while for 
g exceeding a certain value which depends on the mean input energy, a coherent input state 
is more efficient. Moreover, by using squeezed states we also found an important accuracy 
enhancement for small values of the gain and greater mean input energies.

These conclusions are shown in figure 3. Indeed, the sub-figures (a) and (c) obtained for 
g  =  1.5 show an enhancement of the accuracy with the squeezed vacuum for all the consid-
ered values of the truncation order p  and the input energy. On the other hand the remaining 
sub-figures on the right panel (for g  =  2) show that in this regime there is no trivial relation-
ship between the considered parameters. Summing up, our results allow us to choose the 
Gaussian probe state with the optimal input energy in order to infer the unknown value of the 
gain assuming a given truncation order.

5. Extraction of the maximum amount of information via feasible 
measurements

As we have seen in the previous sections, the QCRB achievable by measuring the global pure 
state |ΨNLA〉 corresponds to the best sensitivity to infer the value of the gain. We also noticed 
that this ultimate bound is saturated by the sequential strategy, for which the precision is 
quantified by Qeff(g). In order to investigate the performances of feasible measurements, let 
us briefly review this sequential strategy. The main idea is to extract the maximum possible 
information by taking into consideration both the contributions of the amplified and degraded 
states, as well the information coming from the statistics of the post-selection process itself 
(see the schematic representation displayed in figure 4). The post-selection is achieved by per-
forming a projective measurement on the orthogonal basis vectors of the measuring apparatus 
leading to a conditional state of the probe. When a successful amplification is heralded, the 
input state is transformed in the required way |ψ〉 �−→ |ψs〉 , while when the measuring device 
displays a failure output, the probe state is degraded |ψ〉 �−→ |ψf 〉 . In both cases, the result-
ing amplified and distorted states undergo a strong measurement. In particular, we consider 
photon counting and homodyne detection. Here, we show that the effective QFI corresponds 
to the classical FI of the sequential measurement scheme, when the optimal measurement on 
the conditional states are performed. Moreover, we find that these optimal measurements do 

squeezed vacuum coherent state

1.2 1.4 1.6 1.8 2.0 2.2 2.4
g

0.10

0.50
1

5
10

QFI

squeezed vacuum coherent state

1.2 1.4 1.6 1.8 2.0 2.2 2.4
g

0.10

0.50
1

5
10

QFI

Figure 2. Plots of the effective QFI as a function of the gain for different probe states 
at fixed value of the truncation order (p   =  2) and distinct mean input energy values. The 
red dotted curves denote a squeezed vacuum state, while the blue solid ones represent 
a coherent input state. The left panel shows results for n = 1; the right one for n = 1.5.
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Figure 3. Plots of the effective QFIs as functions of the mean photons number n̄. The 
panels (a) and (b) on top show Qeff  for a coherent state, considering different values of 
the threshold (the red dotted line denotes p   =  2, the orange dashed line p   =  3 and the 
blue dot-dashed line p   =  4). In the left panel (a) we have g  =  1.5, while in panel (b) we 
have g  =  2. The two bottom panels (c) and (d) show the same quantities with squeezed 
vacuum probe, for the same values of the other parameters.

Figure 4. Set-ups for the proposed measurement. The source of the different 
contributions for the effective QFI are underlined: the Fisher information of the 
classical distribution ps, pf  comes from post-selecting one of the measurement device’s 
outcomes whereas the average of the QFI assigned to the amplified and degraded 
probes is extracted via a strong measurement on these latter (Photo-detection (PD) or 
Homodyne detection (HD)).
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not depend on the value of g, and they are optimal for both conditional states, thereby making 
the scheme appealing for possible implementation with current technology.

The QFI of the conditional states Qs(g) is the classical FI of the optimal measurement {
Π̂s

1, Π̂s
2, ...

}
; the probabilities for each outcome to occur are { p(1|s), p(2|s), ...} , with 

p(l|s) = Tr
[
ρsΠ̂

s
l

]
, therefore:

Qs = FΠ̂s =

L∑
l=1

1
p(l|s)

(∂gp(l|s))2 . (27)

For simplicity we assumed a countable number of outcomes, but everything holds also for 
POVM labelled by continuous outcomes. Everything applies also to the distorted state, via the 
substitution s �→ f .

The post-selection on the measurement device followed by the optimal measurements on 
the probe quantum states can be viewed as a POVM performed on the composite state |ΨNLA〉 
: {Π̂s

1 ⊗ |s〉 〈s| , Π̂s
2 ⊗ |s〉 〈s| , ..., Π̂ f

1 ⊗ | f 〉 〈 f | , Π̂ f
2 ⊗ | f 〉 〈 f | , ...}. The probabilities for each 

result to appear are { psp(1|s), psp(2|s), ..., pf p(1| f ), pf p(2| f ), ...}, where p s and p f  as usual 
represent the probabilities of a successful amplification and a failed one, respectively and 
p (n|i) , (i = {s, f}) is the probability that the result of the optimal measurement Π̂i

n on the 
conditional state |ψi〉 occurs. The FI of this probability distribution reads as follows

F [g] =
L∑

l=1

1
psp(l|s)

(∂g( psp(l|s)))2
+

K∑
k=1

1
pf p(k| f )

(∂g( pf p(k| f )))2 , (28)

Figure 5. Plot of the different contributions to the effective QFI as functions of g at 
fixed threshold p   =  3 for input energies n = 1 in the left panels (a) and (c), n = 2 in 
right panels (b) and (d). The top panels (a) and (b) are obtained for a coherent input state, 
the bottom panels (c) and (d) for the squeezed vacuum. The blue solid line represents 
the contribution of the FI of the distribution { ps, pf }, the orange dashed line denotes 
the successfully amplified states psQs(g) and the red dotted line is representative of the 
distorted states pf Qf (g).
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which reduces to

F [g] = psQs(g) + pfQf (g) + FC, (29)

where

FC =
1
ps

(∂gps)
2
+

1
pf

(∂gpf )
2

 (30)

is the classical FI of the probability distribution { ps, pf }. This quantity is the FI F [g] associ-
ated with the post-selection process performed on the composite overall system and it is equal 
to the QFI of the whole composite system |Ψg〉. We can see that indeed, our proposed scheme 
enables to attain the most accurate estimate of the NLA gain.

In appendix A we show that the two optimal measurements {Πs
k} and 

{
Π f

k

}
 can be chosen 

to be photon-counting measurements, i.e. Π f/s
k = |k〉〈k|, independently from the initial state 

and from the selection outcome. With some mild assumptions on the initial state also homo-
dyne detection is optimal. In fact, for a single-mode pure probe with real Fock coefficients, 
the FI of a quadrature measurement coincides with the QFI. For the probe states considered 
explicitly in our work, namely coherent and squeezed vacuum states, even when the input 
amplitudes are complex it remains possible to saturate the QFI by measuring an appropriate 
rotated quadrature (which may be set by adjusting the phase of the local oscillator). As a mat-
ter of fact the complex amplitudes can be regarded as arising from phase shifting a state with 
real amplitudes. The commutativity of the NLA’s Kraus operators with the phase-shift opera-
tor then guarantees the equivalence with the case of real amplitudes. As previously said, these 
results make our scheme of interest for practical implementations.

In figure 5, we plot the classical FI and QFI that contribute to the effective QFI as functions 
of the gain at fixed the threshold and different values of the the input energy (n = 1, n = 2). 
We note that for a gain greater than 1.3, all the quantities decrease with respect to g and almost 
vanish for values exceeding g  =  4. For g varying from 1 to a threshold depending both on the 
input energy and on the considered probe state, the classical FI arising from the post-selection 
process is the main contribution to the effective QFI whereas in the remaining parameter 
region, the amount of information provided by the post-selected amplified states is more 
substantial. Finally, we point out a weak contribution coming from the degraded states, par-
ticularly in the first region. Our results indicate that all the steps of the present scheme are 
important in order to extract the maximum amount of information available on the whole 
composite state. In particular, when g → 1 (low amplification regime), the main source of 
information is the post-selection process itself, i.e.: the FI arising from the classical probabil-
ity distribution { ps, pf }.

6. Conclusions

We have addressed the characterisation of non-deterministic noiseless linear amplifiers and 
have compared the performances of different estimation strategies aimed at inferring the value 
of the gain, assuming a known threshold. In particular, we have analysed minimal implemen-
tation of NLA, where the system is coupled to a two level measuring device via a unitary 
transformation. We have shown that post-selecting only the amplified states usually provides 
a better precision than using the unconditional state. On the other hand, the lowest quantum 
bound is achieved by the extraction of all the information contained in the whole composite 
system.
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We have also shown that a feasible sequential measurement scheme allows one to access 
the full information available in the overall composite system. In particular, we have found 
that measuring the field or the number of quanta (i.e. homodyne detection and photon count-
ing for quantum optical implementations) are optimal measurements on both conditional 
states. Assuming to have access to an implementation of the NLA, our scheme appears to be 
feasible with current technology, since we only need the statistics of the post-selection and a 
standard homodyne measurement on the conditional states. Overall, our results pave the way 
for the operational characterisation of NLAs and may be exploited to tailor state engineering 
with such devices, which also allow one to generate non-Gaussian and non-classical states 
starting from feasible signals [41].
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Appendix A. Explicit calculation of the effective QFI

Here we derive the explicit expression of the effective QFI of a generic pure input state. As 
we have seen before, the effective QFI is given by the sum of the weighted average of the QFI 
associated with the states of the mixture plus the FI of the classical probabilities. Here we 
show how the the explicit formulas of the involved quantities are derived for a generic pure 
state expanded on a Fock basis.

As long as the amplified and distorted states remain pure, their QFI is given by equation (5), 

i.e. Qi(g) = 4
[
〈∂gψi|∂gψi〉+ 〈∂gψi|ψi〉2

]
 with i = s, f . The overlap between the amplified/

distorted state and its derivative with respect to the gain is found to be null. The evaluation of 
the overlap between their respective derivatives leads to the following expressions

psQs = −
(∂gps)

ps

2

+ 4
p−1∑
n=0

(n − p)2g2(n−p−1) |cn|2 (A.1)

pfQf = −
(∂gpf )

pf

2

+ 4
p−1∑
n=0

(n − p)2g4(n−p)−2

(1 − g2(n−p))
|cn|2 , (A.2)

where the first terms are the same appearing in the classical FI, whereas the second ones are 
the purely quantum contributions. As we can see, the effective QFI is reduced to the sum of 
these purely quantum contributions

Qeff(g) = 4
p−1∑
n=0

(n − p)2 |cn|2
g2(n−p−1)

(1 − g2(n−p))
. (A.3)

We will show that the QFIs of the amplified and distorted state are saturated by both photon 
counting and homodyne detection. The FI associated with that probability distribution reads

F [ ps(n|g)] =
∞∑

n=0

(∂g [ ps(n|g)])2

[ ps(n|g)] (A.4)
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where ps(n|g) = |〈n|ψs〉|2 . After summing over all the possible n values, one obtains

F [ ps(n|g)] = −
(
∂gps

ps

)2

+
4
ps

p−1∑
n=0

(n − p)2g2(n−p−1) |cn|2 , (A.5)

which corresponds exactly to the QFI of the amplified state.
Likewise, the evaluation of the FI associated with a photon counting performed on the 

distorted state is carried out starting from

pf (n|g) =
1
ps

(
1 − g2(n−p)

)
|cn|2 , (A.6)

from which the following expression of the FI is obtained

F [ pf (n|g)] =
p−1∑
n=0

(∂g [ pf (n|g)])2

[ pf (n|g)]
, (A.7)

and where

(∂g [ pf (n|g)])2

[ pf (n|g)]
=

|cn|2

pf

[
−
∂gpf

pf
(1 − g2(n−p))− 2(n − p)g2(n−p)−1

]2

. (A.8)

Afterwards, summation over n leads to the final FI expression

F [ pf (n|g)] = −
(
∂gpf

pf

)2

+
4
pf

p−1∑
n=0

(n − p)2g4(n−p)−2
(
1 − g2(n−p)

) |cn|2 . (A.9)

We notice that similarly to the amplified state case, the FI associated with a photon counting 
measurement performed on the distorted state saturate its QFI, thereby showing that a photon 
counting measurement is optimal regardless on the input data.

Let us also consider homodyne detection with a generic pure input probe state. The prob-

ability distribution associated to a quadrature measurement x̂ = 1√
2
(â + â†) performed on the 

amplified state reads as follows

ps(x|g) = |〈x|ψs〉|2 =

(
2
π

)1/2
( ∞∑

n=0

kn

)2

, (A.10)

where the coefficients are given by

kn =
exp

[
−x2

]
√

ps




Hn(
√

2x)g(n−p)cn

2
√

n!
if n � p

Hn(
√

2x)cn

2
√

n!
otherwise.

 (A.11)

The evaluation of the FI F [ ps(x|g)] =
∫∞
−∞

(∂g[ ps(x|g)])2

[ ps(x|g)]  is obtained by making of use the 

properties of the Hermite polynomials Hn(x). Its expression is found to saturate the QFI under 
the assumption of real coefficients of the input generic pure state5.

As for the amplified state, the expression of the FI associated with a homodyne detection 
applied on the distorted state is derived starting from the following probability distribution

5 Clearly, if the probe state is rotated with the unitary operator eiθn̂, the bound is still saturated, but the optimal 
homodyne measurement is rotated as well (i.e. one has to measure a different quadrature).
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pf (x|g) =
(

2
π

)1/2 exp
[
−2x2

]
ps




∞∑
n=0

Hn

(√
2x
)√

1 − g2(n−p)cn

2
√

n!




2

, (A.12)

and found to saturate the QFI.
Similarly to the photon counting measurement, the evaluation of the FIs associated to the 

probability distributions resulting from a quadrature measurement performed on both con-
ditional states reveal that this latter is optimal with the requirement of the coefficients of the 
input pure state to be real.

Appendix B. Estimation with a generic state of the meter qubit

Here we compute the QFI of the state obtained by acting with the global unitary (13) on the 
tensor product of the input state and an arbitrary state of the meter qubit. Let us write again 
the global unitary (13), derived in [10]

Ûg = Ê p
s ⊗ |s〉〈 f |+ Ê p

f ⊗ |s〉〈 f | − Ê p
s ⊗ |f 〉〈s|+ Ê p

f ⊗ |s〉〈s|, (B.1)

we do not need the explicit form of the two Kraus operators (6) and (7), but we need to remem-
ber that they are Hermitian and commuting, since they are both diagonal in Fock basis.

The state that we are considering for this analysis is the following one

|Ψg〉 = Ûg [|ψ〉 ⊗ (α|s〉+ β|f 〉)]

=
(
βÊ p

s |ψ〉+ αÊ p
f |ψ〉

)
⊗ |s〉+

(
βÊ p

f |ψ〉 − αÊ p
s |ψ〉

)
⊗ |f 〉

= |φ̃s〉 ⊗ |s〉+ |φ̃f 〉 ⊗ |f 〉,

 (B.2)

where |α|2 + |β|2 = 1; for β = 1 and α = 0 we get the state |ΨNLA〉 considered in the main text, 

see equation (14). We have also introduced two unnormalised states: |φ̃s〉 = βÊ p
s |ψ〉+ αÊ p

f |ψ〉 
and |φ̃f 〉 = βÊ p

f |ψ〉 − αÊ p
s |ψ〉. To compute the QFI we need the derivative of this pure state 

w.r.t. to g:

|∂gΨg〉 = ∂gÛg [|ψ〉 ⊗ (α|s〉+ β|f 〉)]

=
(
β∂gÊ p

s |ψ〉+ α∂gÊ p
f |ψ〉

)
⊗ |s〉+

(
β∂gÊ p

f |ψ〉 − α∂gÊ p
s |ψ〉

)
⊗ |f 〉

= |∂gφ̃s〉 ⊗ |s〉+ |∂gφ̃f 〉 ⊗ |f 〉,
 

(B.3)

where the derivative of the Kraus operators ∂gÊ p
s  and ∂gÊ p

f  remain diagonal in Fock basis and 
thus they satisfy the relationship

Ê p
s ∂gÊ p

s + Ê p
f ∂gÊ p

f = 0, (B.4)

which comes from the taking the derivative of the equality Ê p
s
†Ê p

s + Ê p
f
†Ê p

f = .
The first term of the QFI is found to be

〈∂gΨg|∂gΨg〉 = 〈∂gφ̃s|∂gφ̃s〉+ 〈∂gφ̃f |∂gφ̃f 〉 (B.5)

=
(
|α|2 + |β|2

) [〈
ψ

∣∣∣∣
(
∂gÊ p

s

)2
∣∣∣∣ψ

〉
+

〈
ψ

∣∣∣∣
(
∂gÊ p

f

)2
∣∣∣∣ψ

〉]
 (B.6)
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=

〈
ψ

∣∣∣∣
(
∂gÊ p

s

)2
∣∣∣∣ψ

〉
+

〈
ψ

∣∣∣∣
(
∂gÊ p

f

)2
∣∣∣∣ψ

〉
, (B.7)

it is straightforward to verify that these two terms are equal to the second terms in equa-
tions (19), (20) and thus 〈∂gΨg|∂gΨg〉 = Qeff(g) regardless of the state of the meter qubit.

On the other hand, the second term of the QFI is found to be

〈Ψg|∂gΨg〉 = 〈φ̃s|∂gφ̃s〉+ 〈φ̃f |∂gφ̃f 〉 (B.8)

= 2iIm [αβ∗]
(〈

ψ
∣∣∣Ê p

s

(
∂gÊ p

f

)∣∣∣ψ
〉
−
〈
ψ
∣∣∣Ê p

f

(
∂gÊ p

s

)∣∣∣ψ
〉)

, (B.9)

where some terms disappear because of (B.4). The formula for the QFI is 
Q (|Ψg〉) = 〈∂gΨg|∂gΨg〉 − |〈Ψg|∂gΨg〉|2  and when the term (B.9) is not zero it always 
decreases the magnitude of the QFI; therefore we have the inequality stated in the main text:

Q (|Ψg〉) � Q (|ΨNLA〉) = Qeff(g). (B.10)
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