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Abstract. Can quantum-mechanical particles propagating on a fixed spacetime background
be approximated as test bodies satisfying the weak equivalence principle? We ultimately answer
the question in the negative but find that, when universality of free-fall is assessed locally, a
nontrivial agreement between quantum mechanics and the weak equivalence principle exists.
Implications for mass sensing by quantum probes are discussed in some details.

1. Introduction
The weak equivalence principle (WEP) is arguably the most basic property of the classical
gravitational field. It states that the trajectories of a particle subject only to gravitational
forces are completely determined by the local spacetime geometry [1, 2]. Strictly speaking, the
WEP applies only to test-bodies, i.e. particles which are sufficiently light so that their back-
action on the external gravitational field is negligible, and sufficiently small so that the effects of
tidal forces on them are inconsequential. For such probes, the WEP states that their trajectories
under gravity are independent of the internal properties, most remarkably their masses.
In general relativity, the WEP is directly encoded into the specific form taken by the action

functional for a free point-like material particle. The action S(a, b) for the propagation of a
particle of mass m between the two events a and b is given by

S(a, b) = −mc

∫ b

a
ds , (1)

where ds =
√

gμνdxμdxν is the metric element. Since the mass appears as a multiplicative
factor, it does not enter the equations of motions. As a consequence, particles of different
masses follow the same trajectories given the same initial conditions. This is the content of the
WEP, as iconically represented by the Leaning Tower of Pisa experiment, supposedly performed
by Galileo Galilei in 1589 [3, 4], as well as its repetition on the moon by astronaut David Scott
during the Apollo 15 mission [5].
The classical gravitational theory thus undisputably predicts that test-bodies move

universally when in free-fall. However, it is a logically different question whether the behavior
of real physical particles may, in fact, be approximated with that of test-bodies. The question
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is especially relevant when the particle’s propagation exhibits quantum features [6, 7, 8, 9, 10],
i.e. if quantumness of the particle probing an external gravitational field is taken into account.
Is the WEP satisfied in the quantum regime? In this paper, we address the conceptual aspects
of the problem and, in particular, we devote our analysis to

1. discussion of the status of the WEP within quantum mechanics: in Section 2, we
review some standard objections against the possibility of extending the WEP of classical
physics to quantum particles;

2. formulation of a WEP for quantum probes: while with classical particles one
can sensibly talk about trajectories, quantum particles are described by wavefunctions.
Therefore, a suitable reformulation of the WEP that applies also to quantum probes is
in order. Our proposal, based on quantifying the information extractable from position
measurements, is described in details in Section 3;

3 results for uniform and non-uniform gravitational fields: in Section 4, we discuss
to what extent quantum probes obey the WEP according to our information-theoretic
formulation, pointing out in particular the differences between uniform and non-uniform
gravitational fields.

Besides the foundational aspects, our analysis may be of interest to address experiments
involving gravity and particles with an inherently quantum-mechanical behaviour, e.g. Bose-
Einstein condensates and neutron interferometry.

2. Quantum mechanics and the WEP
Let us here review the status of the WEP in classical and quantum physics, with a focus on
their non-relativistic limits. The Newtonian theory of gravity implies that a test-body of mass
m in an external gravitational potential ϕ(x) obeys the equation of motion

m ẍ = −m ∇ϕ(x) . (2)

The mass simplifies and, as a result, the solutions of (2) do not depend on m.
Moving to the quantum case, one may incorporate gravity at the semiclassical level by

starting from the relativistic Klein-Gordon equation for a massive spinless boson in a fixed metric
background [11]. Then, upon taking the non-relativistic limit, one recovers a Schrödinger-like
equation with the gravitational potential energy m ϕ(x) of the probe contributing an extra term
to the Hamiltonian,

ih̄ ∂tψ(x, t) = − h̄2

2m
Δψ(x, t) +m ϕ(x)ψ(x, t) . (3)

The particle’s mass appears explicitly through the ratio h̄/m. The solutions of (3) thus depend
parametrically on the same ratio. It follows that quantumness of the state describing the probing
particle is directly linked to the appearance of mass-dependent effects in its propagation. In
other words, the dynamical evolution of the wavefunction for a particle falling in a gravitational
field contains non-trivial information about its mass. This is because we may take repeated
measurements on identically prepared probes and, since the quantum state of the system is
mass-dependent, the statistics of the measurements would also be, in general, mass-dependent.
At a first sight, such a conclusion appears to be at odd with the essence of the WEP, which
dictates that no information about the mass of a freely-falling particle is available to an observer
monitoring its trajectories. As we will see, the WEP is indeed clashing with quantum mechanics
in the general case of a nonuniform field, whereas a nontrivial agreement between quantum
mechanics and the WEP exists for uniform fields, i.e. locally.
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2.1. Quantifying information on a parameter: quantum parameter estimation theory
Information about the value of a certain parameter may be extracted from the system under
investigation by performing measurements. This intuitive concept may be made more precise
in the framework of quantum parameter estimation theory. In order for this contribution to be
self-contained, we present a brief overview of its fundamentals. A more extensive review can be
found in [12], together with the more in-depth references [13, 14, 15].
Quantum parameter estimation theory provides the tools to quantify the precision achievable

in any estimation procedure aimed at inferring the value of a certain physical parameter λ, taking
into account the limitations imposed by quantum mechanics. As a matter of fact, there are many
quantities in quantum systems which do not formally correspond to proper physical observables
(e.g. coupling constants). As such, they are not directly measurable, even in principle. In these
cases, one has to resort to an indirect estimation strategy, i.e. one measures some observable of
the system, which is experimentally accessible, and whose outcomes’ statistics depends on the
parameter, and then extracts an estimate through a suitable processing of the data. Therefore,
there are two distinct steps involved in any estimation task: 1. the choice of the measurement to
be performed and 2. the choice of data processing, i.e. the choice of how to elaborate statistically
the experimental data to extract an estimate of the parameter.
The last step is usually fulfilled by a locally unbiased estimator λ̂, which is a function of the

measurement outcomes such that its expectation value equals the true value of the parameter.
That is, �λ(λ̂) = λ, where�λ denotes the expectation value taken with respect to the probability
distribution pλ(x) of the experimental data x = {x1, x2, . . . , xN }.
Typically, one further requires the estimator to minimize the expectation value of a suitable

loss function. One of the most natural choices is to minimize the expectation value of the square
of the deviations of the estimator with respect to the true value of the parameter, �λ[(λ̂ − λ)2],
which for locally unbiased estimator coincides with the variance Var(λ̂) of λ̂. It is then a well-
known result of classical statistics (that goes under the name of Crámer-Rao theorem [16]) that
the variance of any locally unbiased estimator after N repeated measurements is bounded from
below by the inverse of the Fisher information FX(λ) (multiplied by N),

Var(λ̂) ≥ 1
N FX(λ)

. (4)

The bound is saturable, at least in the asymptotic limit N → ∞ of a large number of
measurements, and the corresponding optimal estimator is said to be efficient. The Fisher
information thus quantifies, for a fixed choice of measurement scheme, the maximum amount
of information which can be extracted on some unknown parameter. Explicitly, it is defined as
the expectation value of the logarithmic derivative squared of the probability distribution of the
data,

FX(λ) = �[(∂λ ln pλ)2] . (5)

Regarding the first optimization step, i.e. the choice of the measurement, one is interested
in achieving the best possible estimation precision, which corresponds to the maximum possible
Fisher information. The Fisher information can in fact be maximized over the choice of the
measurement scheme, which yields as an upper-bound the quantum Fisher information J(λ),

J(λ) = max
{X}

FX(λ) , (6)

where the maximum is taken with respect to measurements of all possible observables X [17].
Closed-form expressions for J(λ) are available. The quantum Fisher information encodes the
ultimate bound to the achievable precision for any quantum-limited measurement.
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2.2. A quantum Galilean experiment
Returning to the case of a freely-falling quantum probe under gravity, the reasoning below
(3) suggests that the Fisher information will in general be non-zero when measurements of
position are employed to estimate its mass. The same could also be true for other kinds of
measurements, e.g. a measurement of momentum. However, since the WEP concerns the
trajectories of particles, it is the Fisher information for position measurements to be relevant.
Thus, from now on the parameter to be estimated is the mass of a probe in a gravitational field,
and the probability pm(x) of measuring the particle at position x is the modulus square of the
wavefunction ψ(x, t) which is a solution of equation (3) for appropriate initial conditions.

In order to quantitatively illustrate some of the observations made above, let us work
out a simple example. More general examples of quantum measurement strategies aimed at
mass estimation under gravity, and their corresponding sensitivities, can be found in [18]. Let
us consider a quantum free-fall experiment á-la Galileo with a quantum probe in a uniform
gravitational field g = −g î (̂i is the unit vector along the x axis). The initial preparation of the
probe is described by the Gaussian wavefunction

ψ(x, 0) =
1

(πΔx2)1/4 e− 1
2 (x−h

Δx )
2

, (7)

which in the classical limit describes a particle localized over the scale Δx around x = h. Under
time evolution (setting h̄ = 1), we have

ψ(x, t) =
1

(πΔx2)1/4 e−img2t3/6 e−imgxt 1√
1 + it/mΔx2 e

− 1
2(1+it/m Δx2)(

x−h
Δx )

2

. (8)

One can then compute [18] the Fisher information on m which can be extracted from the system
through measurements of position, and compare it with the ultimate quantum limit set by the
quantum Fisher information,

FX(m) =
2

m2

⎡
⎣1 +

(
mΔx2

t

)2
⎤
⎦

−2

, J(m) =
t2

2m4Δx4 + 2g
2t2Δx2 +

2g2t4

m2Δx2 . (9)

The quantum Fisher information grows like t4 for large interrogation times. In contrast, the
Fisher information saturates to a constant value, which means that by monitoring the trajectory
of a freely-falling quantum probe one cannot arbitrarily improve the precision.
This last remark is valid when the probe is subject only to gravitational forces. If this

is not the case, a measurement of position can perform significantly better. Let us consider
the following setup, which reproduces the basic physics of neutron interferometry experiments
[19]. A beam of particles with de Broglie wavelength λ̄ is split in two and propagates along
the two arms of an interferometer, with one arm being located higher by an amount h in
the Earth’s gravitational field. The beam propagating in the upper arm acquires an extra
phase due to gravity, ϕg = −m2ghLλ̄/h̄2, where L is the length of the horizontal arm of the
interferometer. Then the two beams are recombined on a beamsplitter and a coarse-grained
position measurement is made, i.e. it is measured whether the particle leaves the interferometer
through one port or the other. The Fisher information on the particle’s mass that can be
extracted in this way is equal to 4ϕ2

g/m2. It scales quadratically with L and therefore likewise
with the interrogation time of the experiment. Thus, if the particle probing the field is not in
pure free-fall, monitoring of its trajectory allows to estimate its mass to any desired level of
accuracy by increasing the interrogation time.1

1 However, a single measurement would not suffice. It is still necessary that the Crámer-Rao inequality be
saturated, which in general requires a number of repetitions sufficiently large to be close to the asymptotic
regime.
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Figure 1. Comparison between the quantum Fisher information J(m) (solid) and the position
Fisher information FX(m) (dashed) for the mass of a freely-falling Gaussian probe in a uniform
field. Both quantities are multiplied by m2 to make them adimensional. For the purposes of
this figure, the mass m is taken to be the neutron’s mass m � 1.7× 10−27 kg and the time t is
reported in seconds.

3. Information theory-inspired WEP for quantum probes?
The trajectories of classical test-bodies in free-fall carry no information about their masses. Vice
versa, measurements of position on quantum probes allow to extract nonvanishing information.
In particular, even in the point-like limit when Δx → 0, FX(m) does not go to zero. The fact
that the Fisher information does not vanish may be seen as evidence that a quantum probe
cannot be approximated by a test-body.
However, we are going to argue that such a conclusion is premature. In fact, the solutions

of the Schrödinger equation depend on the ratio h̄/m also in the free case. Therefore, the
propagation of a wavepacket is subject to mass-dependent dispersive effects even in the absence
of any gravitational field. As a consequence, one would generically obtain a nonzero Fisher
information by monitoring the probe’s trajectory.
In order to assess the validity of the test-body approximation for quantum probes, one should

focus only on the information which is explicitly due to the gravitational coupling. In other
words, one may split the Fisher information as

FX(m) = FX(m)|free + FX(m)|grav , (10)

where FX(m)|free is the Fisher information one would have if no gravitational field were present
(for the same initial preparation of the probe), and FX(m)|grav is the Fisher information which
is introduced by the external field. We will therefore say that quantum probes satisfy the WEP
if the introduction of a gravitational field does not allow to extract any information FX(m)|grav,
in addition to the amount FX(m)|free which would already be present with no gravity. Vice
versa, if it turns out that FX(m)|grav is in general nonzero, then we will conclude that quantum
probes cannot behave even in principle as test-particles.
Such formulation of the WEP is sufficiently general to apply to properly quantum particles. It

has an operative flavour (as it is based on the results of physical measurements), and is inspired
by information theory concepts. In the next section, we discuss to what degrees it is actually
satisfied by quantum mechanics.

4. Results for uniform and non-uniform gravitational fields
We tackle first the case of a uniform gravitational field. Let ψ(x, 0) denote the initial preparation
of the probe at time t = 0 and let g be a uniform gravitational field corresponding to a potential
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ϕ(x). The state of the probe is then evolved according to the Hamiltonian H = p2/2m+mϕ(x).
The resulting state at general time t is

ψ(x, 0) = e−img2t3/6 e−imtϕ(x) ψfree(x − gt2/2, t) , (11)

where ψfree(x, t) is the time-evolved wavefunction in the absence of any gravitational field
and given the same initial condition. It is then a simple matter [20] to check that the Fisher
information for the state (11) satisfies FX(m) = FX(m)|free, i.e. FX(m)|grav = 0. Thus, at least
locally, no clash between quantum mechanics and the WEP is present.
More interesting is the case of a non-uniform gravitational field. In this case it is not

possible in general to obtain exact solutions of the Schrödinger equation (3); however one can
obtain approximate solutions by solving (3) through a BCH expansion [21] of the time-evolution
operator, neglecting terms which are second order in the gravity gradient ∇g and its derivatives
[20]. Then, one finds that the probability distribution of position measurements is modified in
a mass-dependent way by the introduction of an external gravitational field. More precisely,

|ψ(x, t)|2 ∼ |ψfree(x − gt2/2 + dm, t)|2 , (12)

where dm is a displacement which violates universality, i.e. it depends explicitly on the mass m
of the probing particle,2

dm =
t2

2
[x · ∇g(x)− g(x)] + t3

3m
p · ∇g(x) + 5t

4

48
∇g2(x) . (13)

Notice that the mass-dependent terms vanishes identically for a uniform field. More generally, we
expect our formulation of the WEP to be satisfied when such a term can be neglected compared
to the term −gt2/2, which would imply∣∣∣t3 p · ∇g/m

∣∣∣ � |gt2| . (14)

By substituting p with its classical expression mgt and approximating the gravity gradient as
∼ g/�, where � is the characteristic scale of variation of the gravitational field, one finds that
(14) is equivalent to the condition

|gt2| � � , (15)

i.e. as long as the probe does not have the time to explore regions of the order of the curvature
scale the WEP appproximately holds. In general, however, gravity gradients can encode non-
trivial information about the mass of a particle into its wavefunction, so that FX(m)|grav 	= 0.

5. Conclusions
In conclusion, we have discussed the use of quantum parameter estimation theory to analyze
the interplay between quantum mechanics and the WEP. We have shown that, besides being a
fundamental tool for the design of sensing experiments, the Fisher information may also provide
a way to discuss whether quantum probes can be approximated as test-bodies. We found that,
in general, this is not the case: the evolution of the wavefunction of a quantum probe is sensitive
in a mass-dependent way to gravity gradients. This, in turn, means that the introduction of a
gravitational field may improve precision in estimating the mass of a freely-falling particle by
monitoring its trajectory. Nonetheless, locally, i.e. in the limit of a uniform field, our formulation
of the WEP does hold.
2 A few words on notation. For example, the writing x · ∇g(x) stands for the three-dimensional vector whose
jth component is xi∂igj , with repeated indices summed over. There is no ambiguity over contractions of indices
since xi∂igj = xi∂jgi. The same considerations apply for other analogous expressions in the text.
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Let us emphasize that for classical probes, universality of free-fall holds in a stronger sense: a
probe, devoid of any internal structure as considered here, but subject only to classical physics,
would satisfy our formulation of the WEP irrespective of whether the external field is uniform
or not. On the other hand, if the classical probe has an internal structure, e.g. it is spatially
extended, then it is known [22] that it does not in general move geodesically. Our results
show that a quantum probe, even if in principle devoid of any internal structure, behaves
instead in analogy with a non-pointlike classical probe, because of the extended character of
its wavefunction.
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