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ABSTRACT 

Solid tests of the impact of environmental and energy policy on important economic outcomes, such 
as innovation, productivity, competitiveness and energy and carbon efficiency are impaired by the 
lack of appropriate empirical proxies for the commitment to, and stringency of, environmental policy. 
We contribute to the literature by: (1) computing different indicators of environmental policy 
stringency, (2) testing to what extent they convey similar insights through a statistical comparison 
exercise, and (3) showing the implications of using one or the other indicator in two illustrative 
empirical applications focused on environmental innovation and energy efficiency. We conclude by 
highlighting the implications of our analysis for empirical research focusing on the evaluation of 
policy impacts, and highlight fruitful future research avenues. 
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1. Introduction 

Raising concerns about the impact of anthropogenic greenhouse gas emissions (GHG) have 

recently pushed more and more governments to take concrete mitigation actions. To this end, 

countries are implementing increasingly stringent environmental policies which are aimed at 

internalizing the social cost of pollution or, alternatively, at reducing the price wedge between 

clean and dirty technologies. The implementation of more stringent environmental policies is 

accompanied by a lively debate on their impact on several key economic outcomes, such as 

productivity, competitiveness, and innovation.  

On the one hand, many among researchers and policy makers hold that “you cannot have the 

cake and eat it, too”, maintaining that environmental policy represents an additional cost 

(burden) for firms and consumers and that increased environmental quality will come at the 

expense of productivity and competitiveness, especially in light of the recent economic 

downturn. For instance, the so-called Pollution Haven Hypothesis postulates that increasing 

environmental standards will push polluting firms to relocate abroad, suggesting that this will 

likely harm the competitiveness and the welfare of citizens in countries with more stringent 

regulation (Tobey, 1990; Cole and Elliott, 2003; Levinson and Taylor, 2004). 

On the other hand, the policy discourse is centred on the possibility of setting the economy on a 

“green growth” path. Proponents of this strategy worldwide hold that fostering reductions of 

harmful greenhouse gas emissions through environmental policy can be pursued together with 

increased growth and can result in higher competitiveness (Jaffe et al., 1995). For instance, 

Porter (1991) and Porter and Van der Linde (1995) claimed that well-crafted and well-enforced 

environmental regulation would benefit both the environment and the firm. Supporters of this 

view argue that environmental policy stringency will not harm competitiveness, but will benefit 

firms through increased innovation activity and improved productivity (Gray and Shadbegian, 
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1993; Jaffe and Palmer, 1997; Lanoie et al., 2011; Ambec at al., 2013; Rubashkina et al., 2015; 

Albrizio et al., 2017; Dechezleprêtre and Sato, 2017). 

Solid tests of these propositions are impaired by the lack of appropriate empirical proxies for the 

commitment to, and stringency of, environmental policy. Most of the studies on the impact of 

environmental policy on growth, productivity, and trade-related variables present conflicting 

results. This is due to three main reasons: (i) they differ in the sample of sectors/countries 

considered, (ii) they apply different empirical approaches and methodologies, and, last but not 

least, (iii) they use different proxies for the stringency of environmental policy. Such diversity 

makes it very hard to draw definite conclusions on the role and effectiveness of environmental 

policy.  

In this paper we focus on the last issue and conduct an empirical investigation of whether 

different policy indicators convey overlapping or complementary information. This is an 

important question, which has implications for settling the debate around the impact of 

environmental policy on economic growth. If the different indicators proposed in the literature 

convey similar information, concerns about using one or the other indicator in empirical 

applications would be highly mitigated. Conversely, if these indicators convey different and 

complementary information, benefits can in principle be drawn by building a more general 

indicator capturing information from each of the components. 

We proceed in three steps. First, we compute several of the policy indicators suggested in the 

literature. These include measures of pollution abatement efforts, composite policy indexes and 

emission-based indicators. Second, we compare them through a statistical analysis aimed to 

understand to what extent the various indicators convey similar/overlapping information. We 

concentrate on differences in average country rankings to show how the different indicators 

capture variations between countries. Third, we focus on differences in capturing within-country 

variation. To this end, we use the policy indicators in an application to assess to what extent 
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empirical results obtained in a panel setting are indicator-dependent. Specifically, we test 

whether countries with more stringent environmental policy have indeed shown historically 

higher levels of environmental innovation or of energy efficiency. We carry out this analysis 

using panel data for 19 OECD countries over the years 1995-2009.  

The results emerging from the statistical analysis show that the various environmental policy 

proxies do not always convey the same information with respect to either between-country or 

within-country variation. Generally speaking, in both cases indicators based on pollution 

abatement give rise to significantly different results than emission-based indicators or composite 

indexes. Overall, these two latter types of indicators show higher agreement.  

The rest of the paper is organized as follows. Section 2 reviews the methodologies used in the 

empirical literature to proxy for the stringency of environmental policy and presents the 

indicators used in this paper. Section 3 shows the results of the comparison of the various 

indicators and of their relevance in empirical applications to environmental innovation and to 

energy efficiency. Section 4 closes the paper with some policy implications and directions for 

further research on the issue.  

 

2. Methods 

Measuring environmental policy stringency is a very difficult task, which is characterized by the 

standard challenges of building and implementing policy indicators.1 In this section we first 

discuss the methodological challenges which characterize the quantitative measurement of 

environmental policy stringency and describe broad groups of indicators which, notwithstanding 

such measurement challenges, have been implemented in the empirical economic literature to 

                                                
1 See for instance the discussions in Nourry (2008) and Selomane et al. (2015) with respect to indicators for 
sustainable development and social-ecological sustainability, respectively. 
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date. We subsequently discuss the selection of indicators used in this paper, the methodology for 

their computation and the data sources.  

2.1 Methodological issues concerning the quantitative measurement of environmental 

policy stringency and available indicators 

Brunel and Levinson (2013) highlight the main challenges faced in any empirical analysis 

centered around the measurement of environmental policy stringency. First, countries can 

choose from a wide array of policy instruments to address climate and energy concerns. Each of 

these instruments is characterized by a different level of effectiveness, dynamic efficiency and 

political acceptability (Fisher and Newell, 2008). Hence, building a policy indicator requires 

facing this “multidimensionality” of a country’s policy portfolio. Second, countries with worse 

pollution challenges might impose more stringent options. Not accounting for this would 

provide a biased indicator of environmental policy stringency. Third, some “initial condition” or 

some time varying characteristics, such as the industrial composition of the economy, the level 

of energy efficiency or the age of capital, might crucially affect the ability of countries to 

implement certain (lower cost) options. Finally, environmental policy is often endogenously 

determined. Notwithstanding these obstacles, several indicators have been proposed and applied 

in the literature. They can be grouped in four main categories: (a) pollution abatement effort, (b) 

direct assessments of regulations, (c) emission-based indexes, and (d) composite indicators.2 

2.1.1 Variables measuring pollution abatement efforts 

These include measures of both private and public effort. Pollution Abatement Costs and 

Expenditures (PACE) by private firms are among the most common indicators used. They are 

obtained from company surveys. The main criticism to such indicators is that they are subject to 

measurement errors, that they are potentially affected by reverse causality problems, and that in 

                                                
2 Brunel and Levinson (2013) identify five categories, by splitting our first category into private efforts (PACE) and 
government R&D efforts. 
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the presence of market or behavioral failures they do not successfully measure the level of 

regulatory pressure (Berman and Bui, 2001). Measures of government efforts to control 

pollution include environmental R&D expenditures, total revenue from environmental taxes and 

the implicit tax rate on energy. These indicators gauge the commitment of governments to 

devote public money to the support of pollution or emission control. However, since this is only 

an indirect measure of government effort, this proxy has been less and less used as other direct 

measures, such as emissions and cost data, have become available. Note that both types of 

proxies are generally characterized by very poor country coverage, as we further discuss below.  

2.1.2 Direct assessments of regulations 

When dealing with very narrowly focused research questions, researchers have often resorted to 

specific proxies for environmental policy stringency. This approach becomes increasingly 

difficult as the focus of analysis widens. For instance, finding good proxies based on direct 

assessment of regulation at the sector or country level is difficult due to multidimensionality and 

simultaneity. An alternative widely used strategy in this category of proxies is to treat the US 

Clean Air Act as a natural experiment, since its standardized air quality limits (the NAAQS, 

National Ambient Air Quality Standards) address both problems above. Another example of a 

narrow regulation-based measure is the use of the lead content of gasoline as an indicator for 

overall environmental regulatory stringency. 

2.1.3 Composite indexes 

Some of the earliest examples of this type of indicator were based on simple indexes 

constructed from counts of regulations, non-governmental environmental organizations, 

international treaties signed, and similar variables. Another approach is to use statistical 

aggregation techniques, such as Principal Component Analysis, on a set of environmental policy 
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indicators. More recently, approaches have been proposed to model environmental policy 

stringency as a latent variable, which we discuss more in detail below. 

2.1.4 Measures based on ambient pollution, emissions, or energy use 

Some studies have turned the question on its head and used emissions, ambient pollution, or 

energy use as measures of stringency. Early attempts in this direction used information about 

the level of (or the change in) emissions and energy use at the country or sector level. However, 

both changes and levels can differ across countries for many reasons other than environmental 

policy stringency, such as for instance differences in industrial composition and in the degree of 

trade openness. Furthermore, emission- or energy use-based indicators are also likely to mirror 

changes other than in regulatory stringency, such as for example in factor prices. To overcome 

these shortcomings, Brunel and Levinson (2013) refine this approach and propose an indicator 

which compares a country’s predicted emissions intensity due to its sectoral composition (based 

on average emissions per sector worldwide) to the country’s actual emission intensity. This 

indicator is larger (smaller) than one for countries whose actual emission intensity is higher 

(lower) than what would be expected given their sectoral composition. That is, the indicator is 

higher (lower) for countries with stricter (laxer) environmental policies. The Brunel and 

Levinson (2013) approach is more sophisticated than using the actual values of emission 

intensity per each country and year. As they highlight, such indicator comes a long way toward 

overcoming some of the shortcomings of previously proposed emission-based measures; 

specifically, it is theoretically motivated by pollution abatement costs, it is time-varying by 

country, and it accounts for a country’s sectoral composition.  

2.2 Selection of indicators for this analysis 

In this paper, we compare insights from three of the above categories of indicators, namely: (i) 

variables measuring pollution abatement effort, (ii) composite indicators and (iii) emission-



 

8 

based indicators.3 The first type of indicator has been widely used in the past (especially 

PACE), notwithstanding the scattered data coverage. The second and the third types of 

indicators have recently become more and more popular due to increased data availability 

across a wide set of countries. Hence, these latter two types of indicators will increasingly be 

relevant for future assessments of the impact of environmental policy on economic growth. To 

the best of our knowledge, this paper represents the first attempt at comparatively assessing 

different indicators to measure environmental policy stringency.  

For each category of indicators, we collect, compute and compare several proxies. This 

necessarily requires selecting different datasets. Combining the data availability of the various 

indicators, we are able to create a sample of at most 19 OECD countries over the years 1995-

2009. The countries are: Austria, Australia, Belgium, Canada, Germany, Denmark, Spain, 

Finland, France, the United Kingdom, Greece, Hungary, Italy, Japan, Netherlands, Portugal, 

Sweden, Turkey, and the United States.4 We describe below each of the indicators in our 

analysis and provide insights on their development over time. Note that to make all indicators 

comparable in a straightforward way, we normalize them to lie between 0 and 10 by applying 

the transformation: !" = 10 ∗ (! − !)*")/(!)-. − !)*"), where In is the normalized indicator, I 

is the indicator under consideration, and Imin and  Imax are the lowest and the highest values of 

the indicator in our sample.5 Table 1 lists countries and environmental policy indicators 

considered and the corresponding abbreviations used throughout the paper. In the rest of this 

Section, we present and discuss each indicator and briefly comment on its time development for 

the countries in our sample. 

 

                                                
3 “Natural experiment” approaches are useful but are hard to find in a cross-country setting.  
4 For the indicators measuring pollution abatement effort, poor data coverage causes our panel to be unbalanced. 
See the discussion later in the section. 
5 This transformation leaves the statistical and empirical analysis we carry out unchanged but provides an easy 
visual way to compare the different indicators and to interpret the associated coefficients.  
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[Table 1 about here] 

 

2.2.1 Proxies for pollution abatement effort 

We collect and compute four indicators to proxy for a country’s pollution abatement efforts. 

The first indicator is computed as the share of Pollution Abatement Costs and Expenditures 

(PACE) in Gross Domestic Product (GDP). We denote it as I1 = PACE/GDP. This indicator is 

retrieved from EUROSTAT (2015). Note that scaling the PACE variable by GDP is necessary, 

especially when carrying out cross country comparison, to account for the size of a given 

country’s economy, which would determine differences in the ability to sustain PACE 

expenditures by firms. PACE is among the most popular early indicators of pollution abatement 

effort, notwithstanding the difficulties related to the use of expenditure data highlighted in the 

previous section. Nevertheless, it is important to include it in this analysis given the widespread 

use it has been subject to and the fact that many of the early findings based on this indicator are 

still very relevant today (see, for instance, Jaffe and Palmer 1997).  

The second indicator is given by government expenditures on energy R&D relative to GDP, 

denoted I2 = R&D/GDP. Traditionally, energy R&D investments have been among the most 

commonly used instruments to support the development of carbon-free and green technologies, 

with most countries introducing this form of support already in the early 1970s in the wake of 

the oil crisis (Haščič et al., 2010). We obtained energy R&D data (in constant 2013 PPP US 

dollars) from the IEA Energy Technology R&D Statistics Database (IEA, 2015), which 

provides information on government R&D expenditures in a number of important energy 

technologies.6 As done for previous indicator, government R&D expenditures in energy are 

scaled by GDP (obtained from the National Accounts of OECD Countries, and transformed to 

                                                
6 The categories reported in the database include: fuel cells, fossil fuels power technologies, storage technologies, 
cross-cutting research, nuclear, energy efficiency, hydrogen, renewable energy and transport.  
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constant 2013 PPP US dollars) to account for differences in the size of the economies 

considered. 

The third indicator is the implicit tax rate on energy, denoted as I3 = ITRE. While taxing energy 

goods and services may simply be a way to collect revenues on a good with a relatively inelastic 

demand, the effect of a higher implicit tax rate is that of reducing energy consumption. Since 

most energy until recently was produced using fossil fuels, a higher tax would have de facto the 

same impact of a stringent environmental policy regulation, resulting in lower energy 

consumption and associated emissions. Data on the implicit tax rate on energy are taken from 

EUROSTAT (2015). 

The fourth indicator we compute is the amount of total revenue from environmental and energy 

taxes as a share of GDP, denoted as I4 =TET/GDP. Along the same lines of reasoning made 

above for the implicit tax rate on energy, higher revenues from environmental taxes relative to 

GDP would indicate a more stringent commitment towards environmental policy. Data on 

TET/GDP are downloaded from EUROSTAT (2015). 

In Figure 1 we report the behavior across time and across countries of the four normalized 

pollution abatement effort indicators just described. 

 

[ Figure 1 about here] 

 

Significant heterogeneity is evident across the countries in our sample, both in terms of level 

and in terms of time profile. Only in a few cases the indicators show that 

stringency/commitment of policy has increased over time (for instance, ITRE and TET/GDP in 

the Netherlands or R&D/GDP in Finland and Hungary). The four indicators convey a very 

similar picture only in the case of France.  



 

11 

2.2.2 Composite indicators 

We compute seven composite indicators of environmental policy stringency using the OECD 

Environmental Policy Stringency (EPS) database (Botta and Koźluk, 2014). The EPS database 

contains information on 15 different Non-Market Based (NMB) and Market Based (MB) 

environmental policy instruments implemented in OECD countries. NMB policies include 

limits to pollutants (SOx, NOx, Particulate Matters and Sulphur Content of Diesel) and 

government energy-related R&D expenditures as a percentage of GDP. MB policies include 

feed in tariffs (FIT) for solar and wind, taxes (on CO2, SOx, NOx and Diesel), certificates 

(White, Green and CO2) and the presence of deposit and refund schemes (DRS). All variables in 

the database are continuous, except DRS which is a 0/1 indicator for the presence of such 

schemes. Botta and Koźluk (2014) describe the methodology used to build this dataset: the 

reader is referred to their original contribution for details. 

The first three composite indicators are the original OECD EPS indicators computed by Botta 

and Koźluk (2014), which we denote as I5 = EPS, I6 = MBEPS and I7 = NMBEPS. Details on 

the statistical procedure used for computation is available in the original publication. Here, we 

summarize its main steps. First, each of the continuous policy instrument of the database is 

categorized on a Likert scale from 0 to 6 using statistical procedures to identify specific bins. 

These 15 Likert-scale scores are then aggregated into 6 large macro-instruments: Taxes, 

Certificates, Limits, FIT, DRS and R&D by using weights. Subsequently, these 6 indicators are 

aggregated into a MBEPS score (Taxes, Certificates, FIT, DRS) and a NMBEPS score (R&D 

and Limits). The EPS composite score is then obtained as the average between the MBEPS and 

NMBEPS scores.  

The fourth and fifth composite indicators are computed following the approach adopted in Nesta 

et al. (2014). Specifically, based on the detailed data included in the OECD EPS database, a 

score of 1 is assigned to a country starting from the year in which it first implements a given 



 

12 

policy instrument. The composite policy indicator is then computed by summing the different 

dummy indicators for each country and year. We build a first indicator, labelled as I8 = SUM15, 

which can range from 0 to 15, considering the 15 continuous variables contained in the OECD 

EPS database. We build a second indicator, denoted as I9 = SUM6, which can range from 0 to 6, 

considering the 6 categorical macro-aggregates proposed by Botta and Koźluk (2014) and 

described above. These two indicators inform on the diversification of the policy portfolio in a 

given country over time.  

The sixth and seventh composite indicators are computed following the method proposed in 

Galeotti et al. (2018). Also in this case we briefly summarize the methodology and refer the 

reader interested in details to the original publication. Building on an approach common in Item 

Response Theory, Galeotti et al. (2018) propose an ordinal logistic three-level random intercept 

(TLRI) model to assess the performance of countries with respect to environmental policy, 

which is treated as a latent variable. In the TRLI context, the levels considered are “policy 

instrument ” (level 1), “time” (level 2) and “country” (level 3). Relative to the basic IRT model 

that considers two levels (the item, or policy instrument, and the subject, or the country), 

Galeotti et al. (2018) set up a three-level random intercept model accounting for a third 

dimension of their dataset, which is time. We apply this methodological approach where we use 

the continuous data on the 15 policy instruments in the OECD EPS Database to estimate the 

TLRI model. After estimating the TLRI, we  sum the third (“country”) and second level 

(“time”) residuals to obtain a time-varying indicator of a country’s commitment to stringent 

environmental policy, which we label I10 = LATENT15. We repeat the same procedure using 

the data on the 6 categorical aggregates used in Botta and Koźluk (2014) to obtain I11 = 

LATENT6.  
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Figure 2 and Figure 3 show the time profile of the normalized composite indicators described 

above. Specifically, Figure 2 shows the time profile of the EPS, MBEPS and NMBEPS. Figure 

3 shows the time profiles of the SUM6, SUM15, LATENT6 and LATENT15 variables. 

 

[ Figure 2 about here] 

 

[Figure 3 about here] 

 

Note that in this case, unlike the case of the proxies for pollution abatement effort, the indicators 

convey very similar information, both with respect to level and time profile. From Figure 2, it is 

evident that the EPS variable is the average of its components, MBEPS and NMBEPS. Figure 3 

shows that the SUM6 and SUM15 indicators provide less variability with respect to the 

LATENT6 and LATENT15 indicators. . 

2.2.3 Emission-based indicators 

We compute two  emission-based indicators using data on sectoral emissions which is taken 

from the World Input-Output Database (WIOD, 2013; Timmer et al. 2015).The first, which we 

denote I12 = BL_CO2, is  based on the methodology proposed by Brunel and Levinson (2013) 

and calculated as the ratio of the predicted  CO2 emission intensity to the actual emissions 

intensity of a given country, as explained above.7 To this end, we use data on carbon dioxide 

emissions in Kilotons aggregated across 26 energy carriers and data on value added by sector 

                                                
7 Readers interested in the detailed discussion of this indicator are referred to the original Brunel and Levinson 
(2013) paper. 
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expressed in monetary units in 1995 prices and then converted to million US dollars using 

market exchange rates.8 

In addition to including information on CO2 emissions, WIOD also collects data on other 

pollutants: sulfur oxide (SOx), Nitrogen oxide (NOx), non-methane volatile organic compounds 

(NMVOC), ammonia (NH3), nitrous oxide (N2O), carbon monoxide (CO), methane (CH4). The 

second emission-based indicator, denoted I13 = BL_PCA, exploits information on all these 

pollutants and is computed in two steps. First, we calculate a Brunel-Levinson indicator for each 

pollutant.  Second, we apply a Principal Component Analysis (PCA) approach to all these 

indicators.  PCA allows to successfully summarize several variables (in this case, emissions-

based indicators) through a synthetic statistic. Specifically, PCA reduces a number of (possibly) 

correlated variables (representing as many characteristics of the analyzed phenomenon) to a 

(smaller) number of latent variables called principal components. In PCA, the first principal 

component accounts for as much of the variability in the data as possible and each subsequent 

component accounts for as much of the remaining variability as possible. Such an approach has 

been proposed, for example, in Vona and Nicolli (2012) to summarize the presence of several 

policy instruments at the country level. The analysis indicates that the first components accounts 

for most of the variability in the data (almost 51 percent) and is positively correlated with all the 

underlying indicators.9 Hence, the first component can be reasonably used as a summary 

measure for all emission-related indicators. 

Figure 4 shows the time profiles for the BL_CO2 and the BL_PCA indicators, which generally 

behave quite similarly, both in terms of absolute values and time profiles. 

 
                                                
8 Note that the most recent version of the WIOD Database, which was published in 2016, does not contain data on 
“environmental accounts”, namely the input-output tables of CO2 emissions and other pollutants. For this reason, 
we are forced to rely on the WIOD (2013) version of the database, which is the only data source that provides 
statistical information for several countries and time periods at the sectoral level, including environmental accounts. 
This version of the database covers the period from 1995 to 2009 (WIOD, 2013).  
9 The detailed results of the PCA analysis are available from the authors upon request.  
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[Figure 4 about here] 

 

Country-level averages over the sample period for all normalized indicators are presented in 

Table 2. As already mentioned, information about all these indicators is missing for some 

countries in some years due to missing data. 

 

[Table 2 about here] 

 

3. Results  

In this section, turn to the comparison of the indicators presented above. We are interested in 

understanding to what extent the information they convey is similar. There are two important 

aspects of this question that need to be addressed: differences between countries and differences 

within countries. Understanding if the different indicators provide a consistent representation of 

these two aspects is necessary to gauge the extent to which researchers can rely on any indicator 

or whether this choice will affect the results of any (empirical) analysis. We explore the issue of 

between-country variations in Section 3.1 through a statistical analysis of the average country 

rankings which emerge in the sample. Insights emerging from this comparison are relevant both 

to summarize the performance of countries over specific periods of times, and when considering 

cross-sectional differences and analysis. The second issue, namely differences in the ability to 

capture within-country variations over time, is explored in Section 3.2 where we present two 

empirical applications in a panel setting. 

3.1 Results from between-country variation 
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We begin by looking at between-country variation, which is tantamount to asking whether, on 

average, all policy indicators attribute a similar score to each country, i.e. they give rise to 

similar country rankings. This is an important issue for two reasons. First, there is the interest in 

ranking countries with respect to their ability to implement environmental policies. This is, for 

instance, the aim of the OECD policy indicator as presented on the OECD website, where nice 

figures are shown that rank all OECD countries from the worse to the best performer. Clearly, if 

different indicators give rise to similar rankings, then such rankings are rather robust. 

Conversely, if the rankings are sensitive to the choice of indicator then no robust conclusions 

can be drawn in this respect. Second, the agreement or disagreement of country rankings for 

different indicators has significant implications for any cross-sectional empirical analysis, which 

exploits between-country variations to identify the relevant coefficient.  

The rankings we present here are built using information on the average value of the specific 

indicator for each country over the sample period. The Spearman correlation, reported in Table 

3, shows that the indicators are generally positively correlated with each other. There is only 

one case of negative correlation, between ITRE and BL_CO2. As evidenced from Figure 1, the 

correlation among the pollution abatement efforts indicators is rather low, while it is higher 

among the composite indicators and between the BL_CO2 and the BL_PCA indicators. Overall, 

the indicators that display higher average correlations are LATENT6 and LATENT15.  

 

[Table 3 about here] 

 

Based on the average value over the sample period for each indicator we produce country 

rankings, which are displayed in Table 4 and in Figure 5, which confirm once again that the 

different indicators are not in agreement. In Table 4 we visually represent the rankings for each 
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country and indicator of environmental policy stringency with colors that go from white to dark 

green: the lowest level of environmental policy stringency is assigned a white color, whereas the 

highest level a dark green color. In Figure 5, the bigger the slice of the pie, the higher the 

ranking of the given country for the given indicator.  

 

[Table 4 about here] 

 

[Figure 5 about here] 

 

Generally speaking, the agreement is higher between the composite and emission-based 

indicators, while the indicators based on pollution abatement give rise to significantly different 

country rankings. In some cases (for instance Belgium, Denmark and Germany), the position of 

countries is generally stable across indicators. In other cases (for instance, Canada and Greece), 

using different indicators can give rise to completely different insights. These differences may 

reasonably hide differences in the effectiveness of policy implementation and monitoring, or the 

fact that some indicators do not take into account the “intensity” of the implemented policies 

(this is the case for the SUM6 and SUM15 indicators, which have often been used in the 

literature). Furthermore, in the case of the SUM6 and SUM15 indicators, it can be argued that it 

is indeed the countries with lowest performance (i.e. low ranking in emission-based or pollution 

effort indicators) that need to implement a more complex portfolio of policy instruments to 

address pressing environmental issues. If a country is already doing well, further regulation may 

be needed less. This reasoning does not however apply to the EPS and other composite 

indicators, which take into account the stringency of the implemented policy.  
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To further characterize the distance between these metrics, Figure 6 presents a dendogram, a 

tree diagram frequently used to illustrate the arrangement of the clusters produced by 

hierarchical clustering. In the dendrogram, each indicator is positioned according to its distance 

with the other indicators. Indicators with higher similarity cluster into nodes. The height 

indicates how far away the indicators within the different clusters are. Specifically, the height of 

each node in the plot is proportional to the value of the intergroup dissimilarity between its two 

whiskers.  

Consistent with what presented above, the dendogram shows that the several composite indexes 

we compute are closer to each other than they are to emission-based indicators or to the 

indicators measuring pollution abatement effort. Interestingly, PACE/GDP and R&D/GDP are 

rather close to each other, indicating that in general public and private measures of pollution 

abatement effort provide consistent country rankings. SUM6 and SUM15 indicators are very 

similar, as are the BL_CO2 and the BL_PCA metrics and the EPS and MBEPS ones.  

The statistical analysis presented to so far has shown that the country rankings are not robust to 

the choice of indicator. This is particularly troublesome if such indicators where to be applied in 

cross-sectional analysis of between-country differences, as they would give rise to different 

results. We now explore whether this holds true when analyzing within-country variations in a 

panel setting through two empirical applications. 

 

[Figure 6 about here] 

 

3.2 Results from within-country variation    

Another crucial dimension of the comparison of alternative indicators of environmental policy 

stringency is whether they capture similar or different dynamics of within-country variations. 



 

19 

Specifically, the relevant question in this respect is whether the different indicators display 

similar time profiles within each country. If this were the case, for instance, empirical analyses 

in a panel setting (which exploit within-country variations of the variables of interest) would 

provide similar results irrespective of the indicator used. This issue is best studied through 

empirical applications which highlight how the different indicators perform in practice. 

Indeed, in many cases empirical analyses of the effectiveness of environmental policies presents 

conflicting results. As argued in the Introduction, for instance, this is the case for analyses 

focused on economic performance and competitiveness or on innovation. One is thus left to 

wonder whether such differences are indeed real, which would mean that environmental policy 

has somewhat of an idiosyncratic effect, or whether they depend more on empirical design and 

specifically on the choice of proxy for policy stringency.  

In this Section, we shed light on this issue by studying whether the implications of using one or 

the other indicator influence the results of empirical analyses. Specifically, we focus on two 

examples which have been widely studies in the literature. First, we assess whether countries 

with more stringent environmental and energy policy perform better in terms of environmental 

innovation. Second, we focus on the impact of energy and environmental policies on 

improvements in the efficiency with which energy inputs are used.10 Both environmental 

innovation and energy efficiency are arguably affected by the implementation of energy and 

environmental policies, as discussed in a large literature (see for a discussion Carraro et al., 

2010;  Popp et al., 2010; Witajewski-Baltvilks et al., 2017; Popp, 2019). Overall, both variables 

are expected to be positively associated with higher values of the policy indicators presented 

above, since environmental regulation, primarily motivated by energy-related emission control, 

is in principle able to foster technological innovation, to provide stimuli for consumers to 

                                                
10 Increased energy efficiency encompasses improvements in existing energy technologies, introduction and 
diffusion of new technologies, more modern and advanced infrastructure networks, more rational use of energy. 
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efficiently use energy, to generate incentives for investment in better and more efficient 

infrastructures. The efficiency of energy use should therefore be enhanced by effective 

environmental policies. 

3.2.1 Environmental innovation 

As mentioned in the Introduction, the role of environmental policy can be framed within the so-

called Porter Hypothesis, which holds that environmental policy stringency will not harm 

competitiveness, but will benefit firms through increased innovation activity and improved 

productivity.11 With respect to innovation, Hick’s (1932) induced innovation hypothesis posits 

that both increased demand and increased technological opportunity in a given country affect 

the production of additional knowledge. Popp (2002) confirms this insight in his analysis of 

innovation in energy technologies in the United States. 

To investigate the role of environmental policy on innovation, following Jaffe and Palmer 

(1997) and Rubashkina et al. (2015), we adopt a simple log-log specification relating innovation 

to an environmental policy indicator and to a few controls capturing demand and supply 

determinants of knowledge, so that: 

 

/0123456 = 75 + 76 + 9:/0;<156 + 9=/0>123456 + 9:1?56 + 9:!(")56 + @56      (1) 

 

In (1) the ratio between environmental patents to total patents (PATR) in country c at time t is 

taken to depend on real per capita GDP, on the ratio between the stock of environmental patents 

to the total patent stock (KPATR), an energy price index (PE), and the selected environmental 

policy stringency indicator (I(n), n = 1,…,12), as denoted in the previous section (see also Table 

1). Patent data are downloaded from the OECD (2015) Patents Statistics database; they 
                                                
11 See Dechezleprêtre and Sato (2017) for a recent critical review. 
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represent applications to the European Patent Office assigned according to inventor country.  

Data on GDP are expressed in US dollars in 2005 PPP prices and are drawn from the National 

Accounts of OECD Countries. The energy price index is the real end-use energy price index 

(2010=100) for households and industry provided by the IEA Energy Prices and Taxes Database 

(2015). We include per capita GDP as a proxy for the resources necessary to meet the fixed 

costs and bear the risks involved with undertaking investments in innovation. Demand-pull 

effects are proxied by energy prices, as price changes affect a firm’s decision regarding R&D 

investment and efforts, thus influencing the rate and direction of innovation and resulting in 

biased technological change. To allow for technology push factors, we add a knowledge stock 

variable capturing previous innovation experience, which is expected to have a positive 

influence on the innovation capacity because innovators can “stand on the shoulders of the 

giants”. Higher past investment in technological development makes it more likely to engage in 

future innovative practices. We consider both the contemporaneous and the once lagged policy 

indicator, in the latter case to avoid simultaneity problems with innovation activity. We allow 

for country (c) and time (t) fixed effects, represented by 75 and 76 respectively, @56 is a standard 

error term. The results are presented in Table 5.12 

 

[Table 5 about here] 

 

All regressions reported in both panels show good fits and significant and correctly signed 

control variables. The energy price index presents a few occasional exceptions. Focusing on the 

environmental policy indicators and looking at their statistical significance, we note that those 

capturing pollution abatement efforts are all insignificant. The set of composite indicators is, on 
                                                
12 We should like to point out that this and the following application are essentially illustrative. The results cannot 
therefore be generalized. In addition, we rely on “standard” specifications of the literature, with no special ambition 
to look for the best statistical fit. 
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the contrary, almost always statistically significant, with the notable exception of the SUM15 

index. If they are entered lagged once, however, the statistical significance fades away. The 

Brunel-Levinson indicators are significant only lagged once. Turning to the sign of the 

coefficients, all the significant cases are positive, in agreement with the (weak version of the) 

Porter hypothesis: thus, an increase in the stringency of environmental policy prompts firms to 

undertake more environmental innovation relative to the total. How large is this incentive 

effect? The size of the impact is generally similar and small: given that our indicators are 

normalized, our findings suggest that a 10 percent increase in any of the significant index 

(which is equivalent in our case to a 1 unit increase) would result in an increase of 

environmental patenting relative to total patents of about 0.2 to 0.4 percent (one Brunel-

Levinson indicator is equal to 0.8). 

3.2.2 Energy efficiency  

Energy economists have shown a long-standing interest in the study of aggregate reduced form 

relationships between economic development and energy demand, both for positive and 

normative purposes (among many others: Zilberfarb and Adams, 1981; Galli, 1998; Judson et 

al., 1999; Medlock and Soligo, 2001; Ozturk, 2010; Stern, 2011; Csereklyei et al., 2014; Tiba 

and Omri, 2017; Shahbaz et al., 2018). One aspect with relevant policy implications is whether 

the income elasticity of energy consumption is below one. If confirmed by empirical evidence, 

this result would imply the progressive decoupling of energy use from economic growth, with 

very important consequences for energy-related emissions of carbon dioxide and thus climate 

change. Moreover, in resource-poor countries energy dependence from abroad may provide a 

powerful stimulus to economize on energy. More generally, and independently of 

environmental considerations, conserving energy contributes to lessening the pressure on 

exhaustible resource depletion. 
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To deal with the above issues it is convenient to model a variable income elasticity of aggregate 

energy consumption, so that as income increases the elasticity may decrease and even turn 

negative (Richmond and Kaufmann, 2006; Howarth, Galeotti, Lanza, and Dubey, 2017). This 

would imply energy efficiency improvements given by the negative correlation between energy 

use and GDP. These improvements can be fostered by energy and environmental policy.13 The 

standard approach is to assume that per capita energy consumption (E/P) is a function of (real) 

per capita income (GDP/P) and of other controls. To capture the possibility that the income 

elasticity of energy use may first increase and then decrease as income goes up the square of per 

capita GDP is added to the right hand side of the relationship. The usual parametrization of the 

energy-income relationship is a log-linear polynomial function of income: 

 

/0 ?/1 56 = A5 + A6 + B:/0 ;<1/1 56 + B= /0 ;<1/1 56= + BC!(")56 + D56      (2) 

 

where for simplicity the only additional controls are our alternative indicators of environmental 

policy stringency (I(n), n = 1,…,12) and where country-specific and time-specific effects have 

been allowed for. These are given by A5 and A6 respectively, while D56 is a standard error term. 

Note that, in keeping with the concept of energy efficiency, we can exploit the logarithmic 

properties of (2) and reformulate it with energy intensity (E/GDP) as a function of per capita 

GDP. That is: 

 

/0(?/;<1)56 = A5 + A6 + E:/0 ;<1/1 56 + E= /0 ;<1/1 56= + EC!(")56 + D56      (3) 

 

                                                
13 In the electricity sector the link between efficiency and regulation has been studied by several authors: one very 
recent example is Bigerna et al. (2019). 
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We estimate (3) using data on Total Final Energy Consumption (E) – measured in Mtoe – taken 

from IEA World Energy Statistics and Balances (various years), whereas population (P) and 

GDP in US dollars in 2005 PPP prices data are from the National Accounts of OECD Countries. 

We use these data together with the environmental policy indicators described above on our 

sample which covers the period 1995-2009 for the 19 countries under examination. A within 

estimator econometric method is used. 

Note that energy efficiency improvements are possible only in a context of economic growth. 

Indeed, growth implies an increased demand for environmental protection, while making it 

possible to allocate the financial resources necessary for implementing those changes in energy 

systems. Thus, economic growth entails per se an increase in total energy use, as increased 

production volumes require more energy, but also allows for a more rational use that may even 

result eventually in a lower energy intensity of the economy. This is presumably where 

environmental policies play a role. 

The results are presented in Table 6. As before, the policy indicator is entered either current or 

lagged, on the account of issues of potential endogeneity. 

 

[Table 6 about here] 

 

Focusing first on the relationship between energy intensity and income, we see that all GDP 

coefficients are highly significant and the signs are as expected. Geometrically speaking, the 

relationship is concave or, equivalently, the income elasticity of energy consumption is initially 

positive and then becomes negative, implying absolute decoupling between energy use and 

economic growth. 
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Focusing on environmental policy indicators and looking first at their statistical significance, a 

clear pattern can be seen. Indicators capturing pollution abatement efforts are generally 

insignificant, with the notable exception of the implicit tax rate of energy (ITRE). The set of 

composite indicators is, on the contrary, almost always statistically significant, with the notable 

exception of the market-based OECD policy indicator (MBEPS). Finally, of the two Brunel-

Levinson indicators considered, only the CO2 emissions-based indicator is significant, whereas 

the indicator based on the PCA of various pollutants is never significant. Turning to the sign of 

the coefficients, in nearly all cases they are negative as expected, implying that the overall shape 

of the energy intensity – income relationship shifts downward as a consequence of more 

stringent environmental policies, thus bringing about an improvement in the economy’s energy 

efficiency. Furthermore, composite and emission-based indicators generally provide a similar 

picture, suggesting that a 10 percent increase in policy commitment/stringency leads to a 

reduction of between 0.5 and 1.5 percent in energy intensity. The only notable case of a positive 

and significant coefficient is that of total revenue from environmental and energy taxes as a 

share of GDP (TET/GDP), which is difficult to rationalize.14  

 

4. Conclusion and Policy Implications 

Effectiveness of economic policies is a critical requirement for policy makers to be able to 

achieve the desired goals. While this condition is often taken for granted by policy studies, 

policy measures may be more or less effective depending on their degree of stringency. 

Increasing concerns about the adverse impacts of global warming and climate change 

worldwide are inducing more and more governments to take concrete mitigation actions. To this 

end, countries are implementing increasingly stringent environmental policies aimed to curb 

                                                
14 The lack of significance of the BL_PCA indicator is hardly surprising given the results of the PCA analysis form 
which it is built. In particular, the BL_PCA indicator represents the first Principal Component, which in the case at 
hand captures only half of the variation across the different indicators. See Appendix B.  
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emissions of greenhouse gases. This shift is however accompanied by concerns that increased 

environmental policy stringency may come at the expense of competitiveness and well-being, 

especially in light of the recent economic downturn. To empirically assess these impacts, it is 

important to have appropriate empirical proxies for the commitment to, and stringency of, 

environmental policy. Unfortunately, there is no unique indicator of such policy, but the 

literature has proposed several alternatives. 

This paper has presented several indicators of environmental policy stringency proposed in the 

literature, which include indicators measuring pollution abatement effort by both the public and 

the private sectors, composite indicators and emission-based indicators. We conducted an 

empirical investigation of whether different policy indicators convey overlapping or 

complementary information. This is an important question, which has implications for the 

analysis of environmental policy impact on economic growth. If the different indicators 

proposed in the literature convey similar information, concerns about using one or the other 

indicator in empirical applications would be highly mitigated. Conversely, if, as we might 

expect, these indicators convey different and complementary information, benefits can in 

principle be drawn by building a more general indicator capturing information from each of the 

components. In our comparative analysis we analyzed how such indicators capture between-

country variations by focusing on the difference in average rankings over the sample period. It 

also shed some light on whether they differ in capturing within-country variation through two 

illustrative empirical applications, on environmental innovation and on energy efficiency 

respectively.  

The analysis presented in this paper shows that conclusions regarding within-country or 

between-country variation are not robust across the different indicators considered. More 

specifically, both with respect to within-country and between-country variation there is higher 

agreement between composite and emission-based indicators, while proxies based on pollution 
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abatement effort paint a very different picture. This confirms that part of the disagreement with 

respect to several important question in the empirical literature are likely the result of a different 

choice in policy indicators.  

The analysis presented in the paper thus points to some fruitful future research directions. First, 

methodologies should be devised to appropriately summarize the several environmental policy 

indicators into one summary statistics for use in aggregate assessments of the impact of 

environmental policy on economic growth and performance. Second, attention should be 

devoted to the quantification of differences emerging from the various indicators. Thirdly, 

additional empirical applications should be considered. In this direction we are currently 

focusing our research efforts.  
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Fig. 1. Proxies for pollution abatement effort, 1995-2009. 
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 Fig. 2. Composite indexes: EPS, MBEPS and NMBEPS, 1995-2009. 
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 Fig. 3. Composite indexes: SUM6, SUM15, LATENT6, LATENT15, 1995-2009. 
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Fig. 3. Emission-based indicators: BL_CO2 and BL_PCA, 1995-2009. 
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Fig. 4. Rankings of policy indicators, by country. 
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Fig. 5. Dendogram for different indicators. 
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Table 1 
List of countries and environmental policy indicators and abbreviations. 

 Country Abbreviation Environmental policy indicator Abbreviation 

Australia AU I1 Pollution abatement and control expenditures over GDP PACE/GDP 
Austria AT I2 Government R&D expenditures over GDP R&D/GDP 
Belgium BE I3 Implicit tax rate on energy ITRE 
Canada CA I4 Total revenue for energy and environmental taxes over GDP TET/GDP 
Denmark DK I5 OECD environmental policy stringency indicator (all instruments) EPS 
Finland FI I6 OECD environmental policy stringency indicator (market-based instruments) MBEPS 
France FR I7 OECD environmental policy stringency indicator (non market-based instruments) NMBEPS 
Germany DE I8 Sum of dummy indicators (fifteen individual instruments)  SUM15 
Greece GR I9 Sum of dummy indicators (six categorical aggregate instruments ) SUM6 
Hungary HU I10 Three-level random intercept model-based indicator (fifteen individual instruments) LATENT15 
Italy IT I11 Three-level random intercept model-based indicator (six categorical aggregate instruments) LATENT6 
Japan JP I12 Brunel and Levinson emission-based indicator (CO2 emissions)  BL_CO2 
Netherlands NL I13 Brunel and Levinson indicator (principal components of various emission-based indicators) BL_PCA 
Portugal PT    
Spain ES    
Sweden SE    
Turkey TR    
United Kingdom GB    
United States of A. US    
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Table 2 
Descriptive statistics for all indicators, country averages 1995-2009. 

  PACE/GDP R&D/GDP ITRE TET/GDP EPS MBEPS NMBEPS SUM6 SUM15 LATENT6 LATENT15 BL_CO2 BL_PCA 

Australia   1.49     0.99 0.89 1.13 2.92 3.64 2.77 3.30 0.97 0.18 
Austria 7.99 0.95 1.63 4.72 4.96 5.39 4.44 8.06 6.77 6.40 6.66 6.25 3.83 
Belgium 4.11 1.35 0.34 4.48 1.97 0.73 2.93 3.61 4.39 3.54 4.64 2.91 1.53 
Canada   2.20     3.29 3.99 2.67 5.14 5.30 4.27 4.04 1.52 0.57 
Denmark 4.09 1.47 8.05 8.96 5.60 4.72 6.06 7.64 7.22 7.53 7.14 2.39 2.71 
Finland 3.38 3.68 0.40 5.81 5.49 4.37 6.14 5.83 4.39 5.91 5.82 2.40 2.48 
France 4.16 2.43 2.56 3.97 2.99 3.27 2.71 5.42 6.67 5.95 6.57 6.35 2.29 
Germany 4.71 0.96 3.21 4.45 4.31 4.77 3.82 6.94 6.16 6.72 6.86 3.17 2.10 
Greece 1.18 0.47 1.17 4.57 2.53 3.18 2.00 5.94 5.80 5.70 6.04 2.19 3.47 
Hungary 4.67 4.38   0.87 2.47 2.35 2.53 4.22 5.06 5.08 5.63 1.00 0.43 
Italy 6.17 1.43 6.19 5.58 2.42 2.56 2.29 5.97 7.27 5.33 6.20 3.94 2.50 
Japan   4.35     3.18 4.25 2.29 4.58 5.71 4.50 5.61 5.70 7.56 
Netherlands 5.61 2.10 2.44 6.73 4.15 3.12 4.81 5.97 5.61 5.91 5.58 2.50 3.08 
Portugal 2.67 0.11 2.49 6.84 2.61 2.49 2.67 5.83 5.76 5.24 5.77 2.48 1.09 
Spain 3.24 0.64 1.90 3.41 3.77 5.23 2.54 6.81 7.93 6.29 6.57 3.51 1.92 
Sweden 2.07 1.57 2.99 5.47 4.26 4.20 4.17 5.00 4.70 6.18 6.30 7.95 4.03 
Turkey 1.01 0.13     0.62 0.55 0.76 2.21 2.03 1.06 1.57 1.93 1.56 
United Kingdom 2.51 0.41 3.32 4.77 2.20 1.51 2.72 3.89 4.95 4.44 5.38 3.56 1.81 
USA   1.75     3.42 4.68 2.36 6.11 6.01 3.91 4.56 1.32 0.58 

Note: Indicator averages are not reported for those countries in which there are missing values. 
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Table 3 
Spearman correlation matrix among alternative indicators. 

  PACE/GDP R&D/GDP ITRE TET/GDP EPS MBEPS NMBEPS SUM6 SUM15 LATENT6 LATENT15 BL_CO2 BL_PCA 

PACE/GDP 1                         
R&D/GDP 0.14 1                       
ITRE 0.02 -0.14 1                     
TET/GDP -0.10 -0.15 0.59 1                   
EPS 0.35 0.28 0.14 0.37 1                 
MBEPS 0.33 0.19 0.16 0.21 0.88 1               
NMBEPS 0.30 0.31 0.09 0.44 0.92 0.63 1             
SUM6 0.48 0.11 0.24 0.34 0.85 0.85 0.70 1           
SUM15 0.47 0.15 0.37 0.19 0.73 0.73 0.61 0.87 1         
LATENT6 0.41 0.19 0.33 0.34 0.85 0.75 0.79 0.81 0.78 1       
LATENT15 0.42 0.21 0.28 0.22 0.83 0.75 0.76 0.83 0.87 0.95 1     
BL_CO2 0.21 0.13 -0.05 0.03 0.28 0.30 0.21 0.25 0.25 0.38 0.41 1   
BL_PCA 0.29 0.32 0.07 0.39 0.27 0.28 0.20 0.21 0.18 0.30 0.32 0.69 1 
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Table 4 
Rankings associated with alternative indicators. 

 
Notes: The rankings range from lowest level of environmental policy stringency for a give indicator (white color) to highest level 
of environmental policy stringency for a give indicator (dark green color).  
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Table 5 
Patent regressions - Panel A. 

Dep. Var. 
lnPATR 

NO 
INDICATOR PACE/GDP RDD/GDP TET/GDP ITRE SUM6 SUM15 

Explanatory 
Variables   current lagged current lagged current lagged current lagged current lagged current lagged 

ln GDP 2.026 2.449 2.131 2.296 2.310 1.262 1.468 1.776 1.959 1.946 2.167 1.940 2.257 

  3.830 3.583 3.057 3.951 3.733 2.266 2.531 3.166 3.254 3.674 4.012 3.714 4.240 

ln KPATR 1.718 1.862 1.849 1.713 1.708 1.653 1.593 1.703 1.604 1.725 1.715 1.704 1.719 

  10.325 9.423 8.663 9.948 9.963 6.416 6.319 6.324 5.927 10.512 10.268 10.476 10.305 

PE 0.008 0.009 0.004 0.011 0.008 0.010 0.005 0.012 0.008 0.007 0.005 0.008 0.006 

  2.134 1.645 0.840 2.647 2.784 1.668 1.163 2.071 1.900 1.975 1.735 2.035 1.845 

I(n)   -0.022 -0.020 -0.021 -0.033 0.053 0.013 0.026 -0.007 0.024 0.013 0.014 -0.004 

   -1.288 -1.087 -1.105 -1.537 1.369 0.417 0.884 -0.315 2.170 1.187 0.986 -0.326 

              

Adjusted R2 0.784 0.792 0.790 0.809 0.839 0.781 0.817 0.808 0.843 0.787 0.809 0.784 0.808 

Log L 71.540 51.139 52.534 84.372 103.955 61.201 80.598 70.432 90.247 74.273 87.815 72.216 86.976 

F test 31.213 21.318 20.327 32.526 38.296 21.290 25.324 22.999 28.044 30.939 34.091 30.423 33.849 

No obs. 301 199 186 277 258 211 197 195 182 301 282 301 282 

Note: t-ratios in italics. 
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Table 5 
Patent regressions - Panel B. 

Dep. Var. ln PATR EPS MBEPS NMBEPS LATENT6t LATENT15t BL_PCA BL_CO2 

        
Explanatory 

Variables current lagged current lagged current lagged current lagged current lagged current lagged current lagged 

ln GDP 2.005 2.215 2.065 2.231 1.982 2.232 1.880 2.258 1.942 2.313 1.751 1.794 1.792 2.002 

  3.767 4.126 3.910 4.178 3.682 4.149 3.555 4.191 3.582 4.253 3.125 3.354 3.131 3.526 

ln KPATR 1.706 1.710 1.714 1.709 1.710 1.715 1.714 1.715 1.710 1.722 1.818 1.789 1.760 1.723 

  10.476 10.168 10.542 10.265 10.278 10.154 10.505 10.213 10.341 10.295 10.628 10.490 10.111 10.184 

PE 0.008 0.005 0.008 0.005 0.008 0.006 0.008 0.006 0.008 0.006 0.008 0.005 0.008 0.005 

  1.964 1.763 2.129 1.763 1.974 1.827 2.009 1.856 2.013 1.972 1.935 1.452 1.847 1.475 

I(n) 0.042 0.010 0.025 0.011 0.022 -0.002 0.047 -0.009 0.018 -0.017 0.056 0.083 0.030 0.032 

  3.092 0.706 2.978 1.243 1.919 -0.173 1.949 -0.352 0.876 -0.848 1.344 3.222 1.553 1.859 

                              
Adjusted R2 0.789 0.808 0.788 0.809 0.785 0.808 0.786 0.808 0.784 0.809 0.764 0.818 0.761 0.810 

Log L 76.013 87.140 75.245 87.587 73.046 86.918 73.710 86.975 72.031 87.361 65.510 94.309 63.992 88.237 

F test 31.382 33.896 31.186 34.025 30.631 33.832 30.797 33.848 30.377 33.960 25.620 36.019 25.276 34.214 

No obs. 301 282 301 282 301 282 301 282 301 282 283 282 283 282 

Note: t-ratios in italics. 
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Table 6 
Energy-GDP regressions - Panel A. 

Dep. Var. ln EI NO 
INDICATOR PACE/GDP RDD/GDP TET/GDP ITRE SUM6 SUM15 

Explanatory 
Variables   current lagged current lagged current lagged current lagged current lagged current lagged 

ln (GDP/P) 1.193 1.574 1.734 1.783 1.786 0.355 0.344 1.977 2.628 1.201 1.290 1.394 1.465 

  -4.600 4.798 5.942 6.402 7.625 0.765 0.719 1.406 1.405 4.563 4.686 5.520 5.453 

ln2(GDP/P) -0.289 -0.356 -0.379 -0.372 -0.375 -0.174 -0.170 -0.397 -0.492 -0.289 -0.303 -0.316 -0.328 

  -6.729 -6.005 -6.800 -7.953 -8.955 -2.221 -2.084 -1.878 -1.771 -6.640 -6.587 -7.546 -7.275 

I(n)   -0.0013 -0.0035 -0.0029 -0.0035 0.0215 0.0286 -0.0246 -0.0170 -0.0045 -0.0023 -0.0124 -0.0090 

    -0.302 -0.880 -1.434 -1.447 2.331 3.192 -6.415 -4.516 -2.231 -1.182 -5.096 -3.863 

      
	

  
	

  
	

  
	

  
	

  
	Adjusted R2 0.975 0.969 0.971 0.976 0.978 0.965 0.969 0.971 0.970 0.975 0.977 0.977 0.978 

Log L 563.455 373.746 364.692 521.884 505.286 380.413 371.052 370.807 347.015 564.023 546.514 575.596 553.436 
F test 336.833 172.363 177.450 314.602 324.053 164.377 172.004 185.406 166.516 330.852 335.894 357.702 352.955 

No obs. 304 201 189 279 261 213 199 197 184 303 285 303 285 

Note: t-ratios in italics. 
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Table 6 
Energy-GDP regressions - Panel B. 

Dep. Var. ln EI EPS MBEPS NMBEPS LATENT6 LATENT15 BL_CO2 BL_PCA 

Explanatory 
Variables current lagged current lagged current lagged current lagged current lagged current lagged current lagged 

ln (GDP/P) 1.095 1.198 1.141 1.268 1.091 1.183 1.172 1.292 1.319 1.430 1.198 1.248 1.193 1.265 

  4.104 4.426 4.221 4.561 4.102 4.422 4.520 4.923 5.301 5.693 4.577 4.660 4.316 4.507 

ln2(GDP/P) -0.273 -0.289 -0.281 -0.301 -0.271 -0.285 -0.281 -0.300 -0.301 -0.319 -0.279 -0.287 -0.292 -0.301 

  -6.271 -6.424 -6.396 -6.543 -6.176 -6.318 -6.514 -6.727 -7.241 -7.463 -6.274 -6.260 -6.442 -6.459 

I(n) -0.0044 -0.0055 -0.0007 0.0002 -0.0050 -0.0074 -0.0066 -0.0064 -0.0123 -0.0110 -0.0096 -0.0084 0.0003 0.0004 

  -1.215 -1.662 -0.281 0.073 -1.750 -2.975 -2.205 -2.433 -4.556 -4.295 -2.012 -1.997 0.065 0.098 

                              
Adjusted R2 0.975 0.977 0.975 0.977 0.975 0.978 0.975 0.977 0.977 0.978 0.976 0.977 0.976 0.977 

Log L 562.678 547.701 561.525 545.793 563.445 550.398 564.577 548.760 573.485 555.689 536.451 548.279 533.613 545.792 
F test 327.863 338.760 325.320 334.163 329.564 345.365 332.092 341.340 352.650 358.691 322.436 340.167 315.943 334.162 

No obs. 303 285 303 285 303 285 303 285 303 285 285 285 285 285 

Note: t-ratios in italics. 
 
 


