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Abstract: Marine organisms produce a large array of natural products with relevance in drug discovery.
These compounds have biological activities such as antioxidant, antibacterial, antitumor, antivirus,
anticoagulant, anti-inflammatory, antihypertensive, antidiabetic, and so forth. Consequently, several
of the metabolites have made it to the advanced stages of clinical trials, and a few of them are
commercially available. In this review, novel information on natural products isolated from marine
microorganisms, microalgae, and macroalgae are presented. Given due research impetus, these
marine metabolites might emerge as a new wave of promising drugs.

Keywords: marine microorganisms; natural products; pharmaceutical potential; bacteria;
microalgae; macroalgae

1. Introduction

Oceans cover about 70% of the earth’s surface, serving as the habitat of a great diversity of
organisms [1]. These organisms produce numerous metabolic products. Especially, lower organisms
elaborate a multitude of secondary metabolites as signaling molecules for “defense and offense”.
These compounds, which belong to diverse chemical classes, can act as potential therapeutics for
healthcare [2]. In the past decades, several promising therapeutics have been extracted from bacteria,
fungi, corals, micro- and macroalgae, gorgonians, sponges, nudibranchs, bryozoans, sea cucumbers,
tunicates, and sea hares, among other marine organisms [3]. Considerable efforts have been directed
towards the isolation of these compounds, and at the moment, more than 10,000 natural products
(NPs) of potential biotechnological interest have been isolated [4]. The present review reports on the
most promising bioactive compounds of marine origin, emphasizing their pharmaceutical potential.

2. Bioactive NPs from Marine Bacteria and Fungi

In the marine environment, bacteria and fungi are pervasive. In the past decades, the number
of reported bioactive compounds derived from marine bacteria and fungi has steadily increased [5].
Marine bacteria produce a large repertoire of secondary metabolites to survive in the hostile oceanic
conditions. Among others, thermophilic and archaea bacteria elaborate thermostable enzymes which
belong to diverse classes [1,6].
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2.1. Antibiotic Activity

The myxomycetes Lycogala epidendrum produces halogenated bisindole pyrrole derivatives
(Lynamicins A–E) (Figure 1A–D) with antibacterial activity against Enterococcus faecalis, Staphylococcus
epidermidis, and Staphylococcus aureus. Efficacy against these pathogens suggests the potential application
of these compounds for the treatment of nosocomial infections [7]. Similarly, a bacterium isolated
from the sea grass Thalassia produces a highly brominated pyrrole antibiotic [8]. The crude extract
of Nocardia sp. strain, isolated from the marine red marine alga Laurenica spectabilis, produces active
compounds against bacterial and fungal pathogens [9]. The eggs of the oriental shrimp Palaemon
macrodactylus harbor bacterial epibionts with antifungal potential towards the pathogenic fungus
Lagenidium callinectes [10]. Likewise, marine fungi have been studied for their bioactive compounds
and they have proven to be a valuable source of antibacterial, antibiotic, antifungal, and anticancer
compounds [11]. A marine Aspergillus sp. fungus was isolated from the large marine brown alga
Sargassum horneri, and it produces a polyoxygenated decalin, dehydroxychlorofusarielin B (Figure 1E),
which has demonstrated antibacterial activity against methicillin-resistant and multidrug-resistant
(MDR) S. aureus [12]. Another fungal Aspergillus sp. strain, isolated from a sea fan (Alcyonacea), was
found to produce antibacterial compounds against S. aureus ATCC 25923 and methicillin-resistant
S. aureus [13].
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cellular DNA polymerase-α. This substance has been applied for the treatment of cancer in preclinical 
research [14]. An unidentified fungus of the Pleosporales order (strain CRIF2) produces several 
compounds showing weak cytotoxic activity against tumor cell lines [15]. A Pestalotiopsis sp. fungus, 
isolated from the leaves of Rhizophora mucronata, produces a chromone, namely, pestalotiopsone F 
(Figure 1H), which displays cytotoxic activity against L5178Y murine cancer cells [16]. 

Figure 1. Chemical structure of marine natural compounds isolated from marine microorganisms.
(A) Lynamicin E; (B) Lynamicin B; (C) Lynamicin A; (D) Lynamicin D; (E) Dehydroxychlorofusarielin B;
(F) Aquastatin A; (G) Thiocoraline; (H) Pestalotiopsone F; (I) Anhydrofulvic acid; (J) Citromycetin.

2.2. Anticancer Activity

Besides antibiotics, marine microorganisms are also a source of anticancer principles.
The bacterium Micromonospora sp. produces thiocoraline (Figure 1G), a depsipeptide which inhibits
cellular DNA polymerase-α. This substance has been applied for the treatment of cancer in preclinical
research [14]. An unidentified fungus of the Pleosporales order (strain CRIF2) produces several
compounds showing weak cytotoxic activity against tumor cell lines [15]. A Pestalotiopsis sp. fungus,
isolated from the leaves of Rhizophora mucronata, produces a chromone, namely, pestalotiopsone F
(Figure 1H), which displays cytotoxic activity against L5178Y murine cancer cells [16].
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2.3. Antidiabetic Activity

Diabetes mellitus (or diabetes) is a debilitating and often life-threatening disorder that is prevalent
worldwide, and the number of patients is significantly increasing [17]. Marine fungi have been screened
for possible antidiabetic compounds [18]. The Cosmospora sp. SF-5060 fungus produces aquastatin
A (Figure 1F), a secondary metabolite which inhibits protein tyrosine phosphatases 1B (PTP1B) with
an effective concentration (EC50) value of 0.19 µM. As PTP1B regulates insulin signaling and leptin
receptor, aquastatin A might find an application in diabetes management [18]. Another marine fungus,
Penicillium sp. JF-55, produces methylethylketone, which exerts inhibitory action on PTP1B as well.
Other substances obtained from marine fungi are penstyrylpyrone, anhydrofulvic acid (Figure 1I), and
citromycetin (Figure 1J), all displaying inhibitory actions of PTP1B with IC50 values in the micromolar
range [19].

Generally, marine bacteria and fungi species survive under hostile conditions, for example, high
shear stress, high salinity, high light intensity, and low temperatures, which result in the elaboration
of a large array of fascinating and structurally complex molecules. In Table 1, some of the bioactive
compounds produced by marine fungi and bacteria are listed.
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Table 1. Structure and biological activity of some novel marine microorganisms’ natural compounds.

Marine Microorganisms (Bacteria, Fungi, and Cyanobacteria)

Compound Chemical Structure Source/Species Biological Activity Mechanism of Action References

Salinosporamide A
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covalently modifying the threonine
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Table 1. Cont.

Marine Microorganisms (Bacteria, Fungi, and Cyanobacteria)

Compound Chemical Structure Source/Species Biological Activity Mechanism of Action References
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Compound Chemical Structure Source/Species Biological Activity Mechanism of Action References
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3. Metabolites with Potential Beneficial Activities from Marine Algae

Marine algae are the primary producers of oxygen in the aquatic environment and sit at the
bottom of the marine food chain, serving all other organisms [31]. Marine algae can be divided into
two main groups: macroalgae (seaweeds) and microalgae, both being prolific sources of bioactive
substances [32]. Therefore, research is in progress for evaluating their medicinal prospects.

3.1. Marine Microalgae: Blue-Green Algae (Cyanobacteria)

Marine microalgae typically constitute the phytoplanktons. They can be categorized into three
groups: blue-green algae (Cyanobacteria), diatoms (Bacillariophyta), and dinoflagellates (Dinophyceae).
There are over 50,000 different species of microalgae, of which only a few have been characterized [18].
Significant biochemical differences have been found among marine microalgae, resulting in a broad
spectrum of novel bioactive compounds [33] of pharmaceutical interest [34]. Some of them show high
antiviral and anti-HIV activity [35,36]. Recently, a new natural anti-AIDS drug has been derived from
Lyngbya lagerhaimanii and Phormidium tenue (Table 2). Calcium spirulan isolated from Spirulina platensis
possesses strong antiviral activity [37]. Some cyanobacteria strains produce antifouling compounds
with antibiotic activity [38]. For example, the extracts of Lyngbya majuscule have been tested as a
potential source of antifouling agents [39]. Some of the cyanobacteria-derived products have multiple
properties. For example, ulithiacyclamide and patellamides A and C are known for their antimalarial,
antitumor, and MDR-reversing activities [40]. Two new bioactive compounds, dolastatin 13 (Figure 3C)
and lyngbyastatins 5–7 (Figure 3D), were isolated from Lyngbya spp., which inhibited elastase from
porcine pancreas, with an IC50 = 3–10 nM [41]. Of the three abovementioned groups, cyanobacteria
have been credited with the most bioactive compounds. Cyanobacteria (Cyanophyta) are a group of
Gram-negative bacteria and one of the richest sources of novel bioactive compounds with antifungal,
anti-inflammatory, antibiotic, and antitumor activities (Table 1), which make them interesting candidates
for the production of molecules for new potential pharmaceutical applications [42].

3.1.1. Antibiotic Activity

The antibacterial activity of cyanobacteria might make them useful antibiotics sources. For example,
the extracts of Anabaena variabilis and Synechococcus elongates inhibit the growth of Escherichia coli,
Enterococcus, and Klebsiella [43]. The extracts of Synechocystis sp. and Synechococcus sp. showed
significant antimicrobial activity towards Gram-positive bacteria [44]. Noscomin (Figure 2C), a
diterpenoid, was isolated from Nostoc commune and possesses good antibacterial properties [45].
Other antibiotics are malyngamides (malyngamide D and malyngamide D acetate) and amides of
the fatty acid (8)-7(S)-methoxytetradec-4(E)-enoate, isolated from the L. majuscule [46]. Analogously,
ambiguine H isonitrile (Figure 2B) and ambiguine I isonitrile are antibiotic alkaloids purified from
Fischerella sp. [47]. Another example of an antibacterial compound is kawaguchipeptin B, isolated from
the toxin-producing cyanobacterium Microcystis aeruginosa [48].
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Figure 2. Chemical Structure of marine natural compounds isolated from marine microalgae.
(A) Cryptophycin; (B) Ambiguine H isonitriles; (C) Noscomin; (D) Dolastatin 10.

3.1.2. Antitumor Activity

Antitumor compounds affecting cell signaling by the activation of the protein kinase C cascade
have been demonstrated in cyanobacteria [49]. Cyanobacteria elaborate anticancer compounds, such
as dolastatin 10 (Figure 2D), curacin A, and cryptophycin (Figure 2A), which target tubulin or actin
filaments of eukaryotic cells. Dolastatin 10, a strong microtubule inhibitor that can arrest cell mitotic
division, was isolated from Symploca sp. [50]. Curacin A was isolated from L. majuscule and is a
strong antiproliferative agent, inhibiting microtubule assembly [51]. Cryptophycin was isolated from
marine Nostoc sp. GSV 224 and is an anticancer drug candidate with efficacy against L1210 leukemia
cells, ovarian carcinoma cells, and drug-resistant breast cancer cells [52]. The mechanism of action of
cryptophycin involves binding at the microtubule ends, leading to the disruption of cell mitosis [53].
Odoamide is a newly discovered cyclic depsipeptide from Okeanis sp., showing strong cytotoxicity
against HeLa S3 human cervical cancer cells (IC50 = 26.3 nM) [54]. Hierridin B from Cyanobium sp.
LEGE 06113 exerted cytotoxicity towards HT-29 colon adenocarcinoma cells [55].

3.1.3. Antifungal Activity

Cyanobacteria are important producers of antifungal substances as well, as they are competitors
and predators of parasitic fungi. Many antifungal compounds have been isolated from marine extracts
of cyanobacteria, including hapalindoles, tolytoxin (Figure 3A), 7-OMe-scytophycin-B, toyocamycin
(Figure 3B), tjipanazole D (Figure 3G), hassallidin A, nostocyclamide, and nostodione A (Figure 3F) [56].
7-OMe-scytophycin-B, a metabolite isolated from marine Anabaena sp. HAN21/1, has shown activity
against Aspergillus flavus and Candida albicans [57]. A new antifungal lactone compound, majusculoic
acid (Figure 3E), has been isolated from a marine cyanobacterial mat community. Majusculoic acid
displayed antifungal activity towards C. albicans ATCC 14503 [58]. The butanol extracts of Spirulina sp.
exhibited antifungal activity against Candida glabrata [59].
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3.1.4. Antimalarial Activity 

Antimalarial activity of natural products isolated from cyanobacteria has been reported. 
Gademann and Kobylinska (2009) isolated an acyl proline derivative, tumonoic acid I, from 
Blennothrix cantharidosmum, which exhibited moderate toxic activity against Plasmodium falciparum 
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(A) Tolytoxin; (B) Toyocamycin; (C) Dolastatin 13; (D) Lyngbyastatin 7; (E) Majusculoic acid; (F)
Nostodione A.; (G) Tjipanazole D.

3.1.4. Antimalarial Activity

Antimalarial activity of natural products isolated from cyanobacteria has been reported. Gademann
and Kobylinska (2009) isolated an acyl proline derivative, tumonoic acid I, from Blennothrix
cantharidosmum, which exhibited moderate toxic activity against Plasmodium falciparum (IC50 = 2µM) [60].
Two new antimalarial depsipeptides, companeramides A and B, have been extracted from a marine
Panamanian cyanobacteria assemblage [61]. Oscillatoria nigro-viridis produces two new linear peptides,
viridamides A and B, with antitrypanosomal and antileishmanial activity [62]. Moreover, cyanobacteria
are sources of vitamins B and E [63]. Pigments extracted from cyanobacteria, such as carotenoids
and phycobiliproteins, are already industrially applied as food coloring additives, as supplements for
health and fertility of dairy cattle, and in the cosmetics industry.
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3.1.5. Anti-inflammatory Activity

Cyanobacteria metabolites have also shown pronounced anti-inflammatory effects. For instance,
bis-bromoindoles from Rivularia sp. displayed powerful anti-inflammatory activity [8]. An anti-
inflammatory compound malyngamide F acetate has been derived from L. majuscule. This substance
inhibited the production of nitric oxide (NO) in stimulated RAW 264.9 cells [64] by blocking the MyD88
inflammation pathway.

3.2. Marine Macroalgae

Macroalgae, or seaweeds, are found in intertidal regions and tropical waters. They are multicellular
organisms with various arrays of morphological types and sizes and can be further classified by
their photosynthetic pigments into red algae (Rhodophyceae), green algae (Chlorophyceae), and
brown algae (Phaeophyceae) [65]. Currently, over 3200 novel products have been extracted from
macroalgae, the majority of which come from subtropical and tropical waters [66]. Compounds with
medical applications, such as antitumor, antioxidant, antiviral, antifouling, anticoagulant, antibacterial,
antifungal, and anthelminthic activities, have been detected in macroalgae [67,68]. Red seaweeds
are proposed as anticoagulants, anthelmintic, and in the treatments of gastritis and diarrhea [69].
The traditional medical uses of green seaweed spans form anthelmintic to astringent and anti-gout.
Brown seaweeds are applied to cure rheumatic diseases, hypertension, arteriosclerosis, menstrual
disorders, skin diseases, gastric ulcers, goiter, and syphilis and are also used as anticoagulants.
Polysaccharides, such as ulvans from green seaweeds, alginates, fucans, laminarin from brown
seaweeds, and carrageenans and porphyrans from red seaweeds, can stimulate defense responses
against plant pathogens [70]. Thus, marine algae yield a large diversity of bioactive metabolites and
appear to be a potential resource of interesting pharmacological substances. The sections below present
the therapeutic compounds and functions of members from each of the three groups of seaweeds.
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3.2.1. Red Seaweeds

Red seaweeds are commonly considered beneficial for human health and an important source of
bioactive compounds [86]. For centuries, their extracts have been applied for the cure of asthma, thyroid
goiter, urinary infections, stomach ulcers, and even tumors. Among the compounds isolated from red
seaweeds, sulfated polysaccharides are economically the most important bioactive compound because
of their wide application in medicine. These polysaccharides are carrageenan, agar (Figure 4A), agarose,
and furcellaran (Danish agar). Carrageenan is produced by the genera Chondrus, Eucheuma, Gigartina,
and Iridea and is considered an effective remedy for gastric and duodenal ulcers [87]. Chondrus crispus
is a good source of carrageenan that has an antiviral property, in particular against influenza B and
mumps virus [88]. Agar and agarose are used for interferon production, usage as antiviral compounds,
and improving B- and T-cell activity [89]. A polysaccharide (Mw = 100–500 kDa) isolated from the
fermented red seaweed Lomentaria catenata possesses anticoagulant activity [90]. Fucoidan (Figure 4F),
extracted from Gracilaria corticata, showed activity against both colorectal and breast cancer [91].
An anthelmintic compound, L-α-kainic acid (Figure 4B), has been isolated from Digenea simplex [92].
Deepa et al. (2017) reported on the possible effects of G. corticata on cancer treatments, inflammation,
and infectious diseases [91]. Some red seaweeds, such as Rhodomela confervoides, Symphyocladia latiuscula,
and Polysiphonia urceolata, produce phenolic compounds, which have shown antidiabetic activity.
These compounds possess the capacity to inhibit protein tyrosine phosphatase (PTPase), which is
responsible for the response to insulin. Collins reported on the antiasthmatic activity of polyphenolic
extracts of Laurencia undulate [68]. A new potent inhibitor of lipoxygenase (LOX), which plays a
crucial role in neurodegeneration, has been isolated from Odonthalia corymbifera [93]. The substance is
pheophytin A, which can be applied as a new therapeutic, and is considered an excellent opportunity
for the treatment of neuropathologies such as Alzheimer’s disease.
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Witvrouw et al. (1994) isolated a polysaccharide, galactan sulfate, from Agardhiella tenera that 
showed activity against HIV-1 and HIV-2, with IC50 values of 0.5 and 0.05 µg/L, respectively [94]. 
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Figure 4. Chemical structure of marine natural compounds isolated from marine macroalgae. (A) Agar;
(B) Alpha-Allokainic acid; (C) Stypoquinonic acid; (D) Siphonaxanthin; (E) Lutein; (F) Fucoidan;
(G) 8,8’-Bieckol; (H) Caulerpenyne; (I) Phlorofucofuroeckol A; (J) Sodium alginate.

Antiviral Activity

Witvrouw et al. (1994) isolated a polysaccharide, galactan sulfate, from Agardhiella tenera that
showed activity against HIV-1 and HIV-2, with IC50 values of 0.5 and 0.05 µg/L, respectively [94]. Devi
et al. reported on the antioxidant and antimicrobial activity of the methanolic extracts of different Indian
red seaweeds [95]. An antiviral compound, sulfated xylomannan, has been extracted from the Indian
red seaweed Scinaia hatei that inhibited HSV-1 and HSV-2 (IC50 = 0.5–1.4 µg/mL) [96]. Water-soluble
polysaccharidic extracts of Sphaerococcus coronopifolius and Boergeseniella thuyoides collected from
the coast of Morocco showed antiviral properties against viruses, including HIV and HSV-1 [97].
Serkedjieva (2004) extracted a bioactive compound from Ceramium rubrum isolated from the Black Sea.
This metabolite inhibited types A and B influenza viruses, both in vivo and in vitro, followed by the
reduction of cytopathogenic effects [98].
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Antioxidant Activity

Antioxidant properties has been found in several species of red seaweeds, including Gracilaria,
Halymenia, Laurencia, Ahnfeltiopsis, and Polysiphonia. For example, mycosporine-like amino acids
isolated from Ahnfeltiopsis devoniensis show antioxidant activity [99]. Moreover, two classes of
natural compounds, polyphenols and bromophenols, with known antioxidant activity were
isolated from red seaweeds [100]. The ethanolic [101] and methanolic [102] extracts isolated from
Gracilaria tenuistipitata showed antiproliferative activity on the oral carcinoma cell line Ca 9-22 by
modulating oxidative-stress-induced cell apoptosis.

Antibiotic Activity

Rahelivao reported on the properties of crude extracts of the red algae Laurencia complanata, which
displayed antibacterial activity against Streptococcus pneumoniae, Bacillus cereus, and S. aureus [81].
Four tetracyclic brominated 1, 4-diterpenes were isolated from the extract of S. coronopifolius, collected
from the rocky coasts of Corfu Island (Greece). These diterpenes showed antibiotic activity against
a panel of bacteria, including methicillin-resistant S. aureus (MRSA) and MDR strains, with MIC
(Minimum Inhibitory Concentrations) values in the 16–128 µg/mL range [103]. Crude methanolic
extracts isolated from Acanthaphora spicifera showed antibacterial activity against E. coli, Bacillus subtilis,
Pseudomonas aeruginosa, and Bacillus palmitus [104]. Also, antifungal activity of the extracts against C.
albicans, Aspergillus niger, and Microsporum gypseum was observed [105].

Antitumor and Anticoagulant Activities

A novel polyhalogenated monoterpene, halomon, isolated from Portieria hornemannii, shows
cytotoxic action against numerous human tumor cell lines (brain, kidney, and colon) and is currently in
the preclinical testing phase [106]. Moreover, Andrianasolo (2006) isolated three halomon derivatives
from P. hornemannii, which exhibited inhibitory effects on the DNA methyltransferase-1 enzyme [107].
Among other functions, DNA methyltransferase has a profound role in epigenetics and gene
expression. The anticoagulant activity of sulfated polysaccharides derived from Delesseria sanguinea
(Ceramiales) [108] and a sulfated galactan fraction from Botryocladia occidentalis (Rhodymeniales)
was reported [109]. Matsuhiro et al. (2005) reported on an antiviral sulfated galactan from
Schizymenia binderi [110]. Moreover, Botryocladia leptopoda extracts exhibited stimulant activities on the
central nervous system (CNS) in a mouse model [111].

3.2.2. Brown Seaweeds

Brown seaweeds contain several pigments, such as fucoxanthin, violaxanthin, andβ-carotene [112].
Fucoxanthin occurs in edible marine brown algae, including Undaria pinnatifida, Laminaria japonica,
Sargassum fulvellum, and Hijikia fusiformis, and possesses antioxidant, anticancer, antiobesity, antidiabetic,
and antiphotoaging activities [113]. The ethanolic extract of Turbinaria conoides demonstrated antioxidant,
antibacterial, and anticancer properties. The sources and properties of some bioactive principles in the
extracts of brown seaweeds are reported in Table 2. For example, organic solvent extracts from Sargassum
wightii and Sargassum ilicifolium exhibited an interesting anticancer activity on several cells lines [114].
Several studies on U. pinnatifida demonstrated anti-hyperglycemic, antitumor, anti-hypertensive, and
antiobesity potential [115]. Khan reported on an omega-3 essential fatty acid, stearidonic acid, isolated
from U. pinnatifida which showed activity against erythema, mouse ear inflammation, edema, and
blood flows (IC50 = 160, 314, and 235 µg/per ear, respectively) [116]. Laminarin is a water-soluble
polysaccharide found in brown algae that has strong heparin-like activity and, therefore, is useful as
an anticoagulant, antilipemic, antiviral, or anti-inflammatory agent [17]. Park et al. (2011) reported
that that fucoidan reduces lipid accumulation by stimulating lipolysis, and it can be beneficial for
obesity therapy [117]. Spavieri reported on the antimycobacterial, antiprotozoal, and cytotoxic
activity of 21 brown algae (Phaeophyceae) from British and Irish waters [118]. Several other bioactive
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compounds were reported for fucoidans isolated from different species of brown algae, including
antiviral and antibacterial activities [119]. Moreover, fucoidans isolated from brown seaweed species
present immunomodulating activity, involving the increased generation of macrophage-mediated
responses such as interleukin-2 (IL-2), interleukin-12 (IL-12), and interferon gamma (IFN-γ) [120].
Salgado reported on the interactions between polyphenolic compounds from the brown alga Padina
gymnospora and cell wall alginates, leading to the absorption of ultraviolet radiation [121]. Also, diekol
isolated from Ecklonia cava showed antifungal, anti-inflammatory, and anti-type-II diabetes activities in
mouse models [122].

Antibacterial and Antioxidant Activities

The essential oil derived from U. pinnatifida possesses potent antibacterial and antioxidant
activities [114]. The methanolic extracts of Sargassum platycarpum A and Sargassum latifolium B
were shown to be highly effective against Gram-positive bacteria [123]. Three novel products from
Ecklonia maxima—eckol, dibenzo-dioxine-2,4,7,9-tetraol, and phloroglucinol—were shown to exhibit
free-radical scavenging activity by a DPPH assay, and the EC50 values were 0.008, 0.012, and
0.128 µM, respectively [124]. The phenolic extracts of Sargassum showed antibacterial and antioxidant
properties [125].

Antidepressant Activity

Extracts of Sargassum swartzii and Stoechospermum marginatum showed significant stimulant
and anxiolytic effects on a rat model, which occurred by the amelioration of brain norepinephrine
levels [126]. The aqueous extracts of Cystoseira usneoides, Cystoseira tamarascifolia, Cystoseira nodicaulis,
Stypocaulon scoparium, and Fucus spiralis showed antidepressant activity by inhibiting the monoamine
oxidase A (MAO-A) enzyme [127].

Anticancer Activity

A cytotoxic metabolite, stypoldione, isolated from Stypodium zonale inhibited microtubule
polymerization, thereby preventing mitotic spindle formation in cell cultures [128]. Ethanolic extracts
of U. pinnatifida sporophylls induced nonoxidative apoptotic damage on human colon or rectum cancer
cells [129]. The derivative of atomaric acid, stypoquinonic acid (Figure 4C), isolated from S. zonale is an
inhibitor of the tyrosine kinase enzyme. Another atomaric acid derivative, dimethoxy-atomaric acid,
showed cytotoxic activity against lung and colon cancer cells [130]. Moreover, fucoidan is known to
possess other bioactive properties, such as inhibitory effects on the growth of cancer cells [131]. Sodium
alginate (Figure 4J) obtained from brown seaweeds has shown antitumor and anti-inflammatory
properties [132]. The anticancer activity was evaluated by analyzing the effects on the cell cycle
and apoptosis induction on HepG2 cells [133]. Furthermore, several studies validated the apoptosis
induction ability of fucoidans in various tumor cell lines, including melanoma cells, colon cancer,
lymphoma, and breast cancer cells [134].

Antiangiogenic and Anticoagulant Activities

Phlorofucofuroeckol A (Figure 4I), a phlorotannin (Figure 4H) from Ecklonia kurome, exhibited
inhibitory activity on the angiotensin-converting enzyme, with an IC50 value of 12.74 µM [135].
The sulfated polysaccharides known as fucoidans caused the prevention of cell proliferation and
migration and also vascular network formation on human umbilical vein endothelial cells (HUVEC),
suggesting significant antiangiogenic activity [136]. Remarkably, this effect deteriorated upon the
reduction of fucoidan molecular weight (<30 kDa) [137]. An analogous observation was reported for
the anticoagulant activities of fucoidans [138]. A fucoidan isolated from Fucus vesiculosus showed
antithrombotic activity [139].



Mar. Drugs 2019, 17, 464 19 of 29

Antiviral Activity

Phlorotannin derivatives extracted from E. cava, 8,4′-dieckol and 8,8′-bieckol (Figure 4G), displayed
an anti-HIV-1 property by inhibiting the viral reverse transcriptase and the protease at concentrations
(IC50) of 5.3 and 0.5 µM, respectively [140]. Hayashi et al. studied the fucoidan from U. pinnatifida
and described its defensive effects against herpes simplex virus (HSV) infections [141]. Also, Queiroz
reported on a brown seaweed polysaccharide inhibiting the activity of the reverse transcriptase of
HIV [142]. Fucans from Dictyota mertensii, F. vesiculosus, Spatoglossum schroederi, and Lobophora variegate
show inhibitory effects on the reverse transcriptase of HIV-1 [143].

Antiparasitic Activity

Soares demonstrated that brown algae belonging to the family of Dictyotaceae, namely Dictyota pfaffii
and Canistrocarpus cervicornis, possess antileishmania activity [144]. Nara reported that the extracts from
Pelvetia babingtonii and Fucus evanescens contain inhibitors of dihydroorotate dehydrogenase, a virulence
agent of Trypanosoma cruzi, the protozoa responsible of the Chagas disease [145]. Dolabelladienetriol,
a diterpene derived from D. pfaffii, showed killing effects against Leishmania intracellular amastigotes
(IC50 = 44 µM) as well as anti-HIV-1 activities [146]. Eleganolone (Figure 3), another diterpene from
Bifurcaria bifurcate, exerted strong inhibitory activity (IC50 = 0.53 µg/mL) against the bloodstream forms
of Trypanosoma brucei rhodesiense [147].

Of course, the clinical application of all these substances depends on further studies and
safety evaluations.

3.2.3. Green Seaweeds

Green seaweeds, or chlorophyta, are a large group of macroalgae with worldwide distribution.
The morphology of some species is presented in Figure 3. Green seaweeds are highly considered
for their production of antioxidants, vitamins, and bioactive peptides [148]. Among their bioactive
constituents, cell wall polysaccharides, constituting about 38–54% of the seaweed dry matter, show
pharmaceutical potential [149]. Some green seaweeds, such as Caulerpa taxifolia, Caulerpa racemose, and
Cladophora pinnulata, show hypotensive activities [111]. At the moment, most of the literature on green
seaweed products is focused on sulfated polysaccharides because of their interesting properties,
including anticoagulant, antioxidant, anticancer, anti-hyperlipidemic, and immunomodulation
effects [150]. Ulvan, a sulfated polysaccharide form Ulva pertusa, has valuable antioxidant activity [151].
It also acts on the plasma levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), and
triglycerides in mice and can be useful for ischemic, cerebrovascular, and cardiovascular diseases [152].
Sulfated polysaccharides from U. pertusa, Capsosiphon fulvescens, and Codium fragile possess potent
immune-modulating activity by stimulating macrophages [153]. Also, the ethanolic extracts of
Codium tomentosum showed antigenotoxic and antioxidant effects [154] and Codium decorticatum
showed antibacterial activity [155]. Moreover, methanolic extracts of Ulva linza, due to their high
polyunsaturated fatty acids (PUFA) content, showed high inhibitory activity against inflammatory
response [156].

Antiviral Activity

Sulfated polysaccharides from nine different green seaweeds (Caulerpa brachypus,
Caulerpa scapelliformis, Caulerpa okamurai, Chaetomorpha crassa, Chaetomorpha spiralis, Monostroma nitidum,
C. fragile, Codium adhaerens, and Codium latum) exhibited strong activity against type 1 herpes virus,
with the IC50 ranging from 0.38 to 8.5 µg/mL, while presenting low cytotoxicity [157]. Rhamnan
sulfate, another sulfated polysaccharide from M. nitidum, was effective against type 2 herpes virus
by inhibiting its adsorption and penetration onto host cells [78]. In a study carried out by Sato et al.
(2011), a high-mannose-binding lectin was isolated from Boodlea coacta. This lectin showed antiviral
activity against HIV-1 infections (EC50 = 8.2 nM) and influenza viruses [158]. The potent anti-HIV-1
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activity was related to the carbohydrate-binding tendency, formerly reported for other antiviral lectins.
In addition, ethanolic extracts of Codium elongatum and Ulva fasciata exhibited antiviral activity against
the Semliki forest and Vaccinia viruses [111].

Antioxidant and Anticancer Activities

According to Wang, extracts and monounsaturated fatty acids (MUFA) derivatives from Ulva lactuca
induced an antioxidant response in cells [159]. Beta-carotene is a potent antioxidant found in green
seaweeds and can be accumulated in very high amounts in Dunaliella salina [160]. Carotenoids,
for example, lutein (Figure 4E) and zeaxanthin from the green seaweed Chlorococcum humicola,
exhibited antimutagenic activity against benzo[a]pyrene-induced mutations in histidine-revertant cells
of Salmonella typhimurium and were proposed for the reduction of the breast cancer risks [161]. Another
carotenoid from green seaweeds, siphonaxanthin (Figure 4D), effectively induced apoptosis in human
leukemia (HL-60) cells by caspase-3 activation, accompanied by the modification of growth arrest and
DNA-damage-inducible protein (GADD45α), tumor necrosis factor receptors (DR5/TRAIL receptor-2),
and Bcl-2 regulatory protein expression pattern [162]. Ganesan reported that siphonaxanthin derived
from C. fragile possesses considerable antiangiogenic activity [163]. Moreover, the ethanolic extracts of
C. tomentosum showed antigenotoxic and antioxidant effects [154].

Antibacterial and Antifouling Activities

Extracts of U. fasciata isolated from the southeast coast of India displayed antibacterial properties
and a broad spectrum of antibiotic activity against B. cereus, E. coli, B. subtilis, Aeromonas hydrophila,
Vibrio fischeri, and Vibrio harveyi [164]. Cladophora glomerata exhibited significant antibacterial activity
against the MDR bacterium Acinetobacter baumannii and various human and fish pathogens, such
as E. coli, B. cereus, Vibrio anguillarum, V. fischeri, Vibrio parahaemolyticus, and Vibrio vulnificus [165].
An acetylenic sesquiterpene isolated from Caulerpa prolifera, caulerpenyne (Figure 4H), exhibited
antifouling activity against bacteria and the microalga Phaeodactylum tricornutum [166]. Moreover, the
ethanolic extracts of C. decorticatum showed antibacterial activity [155]

Anticoagulant Activity

The earliest report on the anticoagulant effects of substances produced by green seaweeds were
carried out on Codium, in particular on C. fragile ssp. tomentosoides [167]. Matsubara also reported
on the anticoagulant activity of a sulfated galactan in the Codium genus [168]. Furthermore, Maeda
described that sulfated polysaccharides from the marine green alga M. nitidum yielded a sixfold higher
anticoagulant effect than heparin [169]. Also, Synytsya reported on the anticoagulant activity of
sulfated polysaccharides derived from C. fulvescens [170].

The findings presented above suggest that green marine algae can be considered a promising
source of bioactive substances, which should be further studied and exploited for pharmaceutical
applications. Some of the biological activities of compounds extracted from marine seaweeds are
presented in Table 2.

4. Concluding Remarks

The marine environment represents a unique source of bioactive compounds with high
pharmaceutical potential. Preclinical and clinical studies are in progress for a number of marine
organism derivatives. Nevertheless, several problems should be solved for a deep characterization
of biomolecules derived from marine microorganisms, micro, and macroalgae. Notably, marine
microbes are notoriously difficult to prepare and maintain in culture. Bacteria likely grow as consortia
in the marine environment and dependences on other bacteria for essential nutrients should be
guaranteed. These interactions are lacking in isolated laboratory cultures. Further, the marine shear
stress, hypersalinity, and antagonists, which induce unique metabolite elaborations, are missing in
laboratory cultures. That notwithstanding, these efforts may lead to valuable results. In fact, marine
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bacteria are significant reservoirs of a plethora of bioactive molecules which have never been found
in terrestrial organisms. Moreover, microalgae represent an important, still underestimated source
of bioactive metabolites, such as antiviral and anti-AIDS agents. Seaweeds as well produce many
different, interesting biologically active substances, such as sulphated polysaccharides, which are
promising compounds for drug development [171]. For example, carbohydrate recognition molecules,
such as lectins from green seaweeds, have the potential to be used as antitumor and antiviral agents,
but they have been rarely investigated [172]. Notably, a natural compound can have variable effects on
the human body, as host factors are different. The promising results obtained by an in vitro experiment
may not show the same effects in a patient’s body. Moreover, the human body under an inflammatory
process presents an activated immune system that can consider even a therapeutic compound a
threat. Thus, proper safety assessments of the studied metabolites are required. The optimal dosage
determination is very important, as this parameter distinguishes whether a compound will act as a
drug or a poison. From a technological point of view, novel cost-effective and large-scale fermentation
strategies ought to be devised, and particular attention should be paid to the conditions under which
the secondary metabolites are produced. Recreating the physical, chemical, and biological conditions
of a marine environment is hardly an achievable task. Metabolic and protein engineering can improve
the efficacy of some of the marine candidates with pharmaceutical potential. In the future, the efforts
and advances in this direction will certainly open the way for extraordinary discoveries for novel
applications of marine-derived compounds in biotechnology and biomedicine.
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