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Abstract

The widely denounced replicability crisis in science hints at revised standards of
significance. The customary frequentist confidence intervals, calibrated through hy-
pothetical repetitions of the experiment that is supposed to have produced the data
at hand, have a feeble concept of replicability. In particular, contrasting conclusions
may be reached when a substantial enlargement of the study is undertaken. To rede-
fine statistical confidence in such a way that inferential conclusions are compatible,
with large enough probability, under enlargements of the sample, we give a new read-
ing of a proposal dating back to the 60’s, Robbins’ confidence sequences. Directly
bounding the probability of reaching, in the future, conclusions incompatible with
the current ones, Robbins’ confidence sequences ensure a clear-cut form of replica-
bility when inference is performed on accumulating data. Moreover, we show that
they can be justified under various views of inference. They are likelihood based, can
incorporate prior information, obey the strong likelihood principle. They are easily
computable, even when inference is on a parameter of interest. Finally, their main
frequentist property is easy both to understand and to prove.

Keywords: Bayes factor; Confidence region; Laplace expansion; Profile likelihood; Revision
of standards; Statistical evidence.
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1 Introduction

Announcing a result is a hazard when the supporting evidence is statistical in nature. In

the long run, scientific credibility is jeopardized if discoveries are claimed or implied (or un-

derstood) to be more firmly established than they will eventually prove to be. The issue has

become pressing, especially after the denounce of a replicability crisis in science by Ioanni-

dis (2005) and many others on its wake, triggering the recent ASA statement, Wasserstein

and Lazar (2016). To reduce failure to replicate, more strict evidential thresholds are pro-

pounded in the literature, see Johnson (2013), possibly variable by discipline (Goodman,

2016). Benjamin et al. (2017) advocate changing the standard threshold for significance

from 0.05 to 0.005, while Lakens et al. (2017) recommend a case by case transparently

justified choice, better if pre-registered. A general warning against the dichotomization of

evidence is given in McShane and Gal (2017).

When interest lies in reporting effect sizes and related confidence intervals (see e.g.

Nakagawa and Cuthill, 2007), a revision of standards for statistical significance would

entail a parallel revision of standards for confidence levels, say from 0.95 to 0.995. These

higher levels are not, however, linked to some formal replicability requirement. In this

note we bring to the fore a simple but apparently new concept of replicability for inference

based on confidence regions and explore its relations with a proposal dating back to the

60s, Robbins’ confidence sequences (Robbins, 1970; see also Darling and Robbins, 1967a,b).

We interpret here replicability as assurance that compatible conclusions are reached

when information increases, i.e. the sample is enlarged. To be specific, inferential con-

clusions from confidence regions for the same parameter are compatible if these regions

overlap, incompatible if their intersection is empty. Compatible confidence regions are also

said to be non-contradictory.

As a form of replicability, non-contradiction is especially compelling in experimental

sciences when inference is performed on accumulating data. Early conclusions are suscepti-

ble to be falsified within the matter of years or months, and sometimes even earlier. When

the true state of nature, or a much more reliable representation of it, becomes eventually

available, reputational penalty ensuing from hasty wrong conclusions could be large. This

denouement does not happen in hard sciences alone. Think for instance of estimating the
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result of an election from early reporting counting areas, where the estimate is made only

hours before a winner is declared. Other contexts where coherence under sample enlarge-

ment seems to be cogent are long-term epidemiological studies and drugs surveillance.

We show that the use of confidence sets ensuing from Robbins’ approach produces com-

patible confidence regions with large enough probability, at least in the idealized situation

of i.i.d. sampling from a correctly specified parametric model. Robbins’ papers are highly

technical and reasearch on confidence sequences seems to have been neglected after the

equally technical contributions Lai (1976) and Csenki (1979). We try here to give an acces-

sible account and to highlight the bearing of Robbins’ confidence sequences on principles

of statistical inference.

Fixed level confidence regions, even with a higher revised level, fail to fulfill the compat-

ibility requirement. Hence, they correspond to a feeble sense of replicability. As a simple

example, consider i.i.d. sampling from a normal distribution with known variance σ2
0. Let

Ȳn =
∑n

i=1 Yi/n be the sample mean. Then

Ȳn+m − Ȳn ∼ N

(
0, σ2

0

(
1

n
− 1

n+m

))
and the probability that (1 − α)-level confidence intervals for the mean at sample sizes n

and n+m do not overlap is

2Pµ

(
Ȳn +

σ0√
n
z1−α/2 < Ȳn+m −

σ0√
n+m

z1−α/2

)
= 2Φ

(
−z1−α/2

(√
1 +

n

m
+

√
n

m

))
> 0 .

Therefore the probability is 1 of finding a couple of disjoint intervals, i.e. of observing

a sequence of samples that gives rise to incompatible (1 − α)-level confidence intervals.

When the realistically attainable sample size is very large but finite, though the usual

confidence intervals shrink towards the true value of the parameter as the sample size

increases, conflicting conclusions may be reported at various stages of the data acquisition

process, with a probability that may be close to 1.

A side advantage of Robbins’ confidence sequences is their justification under various

views of inference. They are likelihood based, can incorporate prior information, have

frequentist properties, have Bayesian properties under a proper prior, obey the strong like-

lihood principle. On top of that, Robbins’ confidence sequences have great pedagogical
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benefits. They need virtually no sample space calculations (Fisherian distribution prob-

lems disappear) and require a fairly limited amount of parameter space calculations, the

expectation of a scalar function, easily performed by simulation.

The outline of the paper is as follows. A new reading of Robbins’ confidence sequences is

given in Section 2. Their inferential properties are summarized in Section 3, with technical

details provided in the Appendix. Section 4 presents two examples and illustrates the

replicability properties of Robbins’ confidence sequences through simulation results dealing

with normal mean and binomial probability. Section 5 concludes.

2 Non-contradiction and Robbins’ confidence sequences

Let us consider the highly idealized and simplified situation of a statistician who is poten-

tially able to obtain any number n of i.i.d. observations y(n) = (y1, . . . , yn), realization of

the random vector Y (n) = (Y1, . . . , Yn). Let Pθ denote the joint probability distribution of

the sequence Y (∞) = (Y1, Y2, . . .). We suppose that Pθ belongs to a statistical model with

parameter space Θ ⊆ IRp. Let pn(y(n); θ) denote the density of Y (n) under Pθ. Assume

that, for every given n, all these densities are strictly positive on the same support, i.e.,

the support does not depend on θ.

A confidence region, based on y(n) and constructed according to a certain rule, is a

subset of Θ denoted by Θ̂n = Θ̂(y(n)). A confidence sequence is a sequence of confidence

regions. To avoid triviality, we consider only confidence sequences that are consistent, i.e.

such that limn→∞ Pθ(θ
′ ∈ Θ̂n) = 0 for every θ′ 6= θ, where θ, θ′ ∈ Θ. Consistency implies

that, for θ′ 6= θ,

Pθ

(
θ′ ∈ ∩n≥1Θ̂n

)
≤ lim

n→∞
Pθ(θ

′ ∈ Θ̂n) = 0 .

We will say that a confidence sequence is non-contradictory if no Θ̂n is contradicted by

a Θ̂n+m, for some m > 0. Contradiction happens when, for an m > 0, Θ̂n ∩ Θ̂n+m = ∅.

When a confidence sequence is non-contradictory, there are conclusions that are common

to all confidence statements, i.e., ∩n≥1Θ̂n 6= ∅. Consistency ensures that non-contradictory

sequences shrink towards the true parameter value. Indeed, for consistent confidence se-

quences, only the true θ may belong to ∩n≥1Θ̂n, even though with probability strictly less
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than 1.

Since ∩n≥1Θ̂n = ∅ implies θ /∈ ∩n≥1Θ̂n, we have

Pθ

(
∩n≥1Θ̂n = ∅

)
≤ Pθ

(
θ /∈ ∩n≥1Θ̂n

)
= 1− Pθ

(
θ ∈ Θ̂n for every n ≥ 1

)
.

It follows that, if, for 0 < ε < 1,

Pθ

(
θ ∈ Θ̂n for every n ≥ 1

)
≥ 1− ε , (1)

then

Pθ

(
∩n≥1Θ̂n = ∅

)
≤ ε ,

so that the probability of contradiction as evidence accumulates is held in check.

Confidence sequences satisfying (??) are obtained in Robbins (1970, see formula (3)).

A heuristic argument for their consistency is outlined in the Appendix. Robbins’ regions,

denoted by Θ̂1−ε(Y
(n)), with realization Θ̂1−ε(y

(n)), have the form

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : pn(y(n); θ) > εqn(y(n))

}
, (2)

where qn(y(n)) is the averaged, or marginal, density

qn(y(n)) =

∫
Θ

pn(y(n); θ)π(θ) dθ .

Above, the weight function π(θ) is a preset probability density over Θ with π(θ) > 0 for

every θ ∈ Θ. The value 1 − ε will be called here the assured persistence level, or simply

the persistence level, of the confidence sequence.

To illustrate the pedagogical virtues of the approach, the proof in Robbins (1970) that

the sequence of regions Θ̂1−ε(Y
(n)) satisfies (??) is sketched in the Appendix. The key

argument is an inequality giving a bound on the probability of reaching strongly misleading

evidence from the likelihood ratio statistic (Royall, 1997, page 7).

Robbins’ confidence sequences are likelihood-based. Specifically, Θ̂1−ε(y
(n)) is the region

of θ values whose likelihood L(θ; y(n)) = pn(y(n); θ) is large, in particular larger than a preset

fraction of the integrated likelihood qn(y(n)). Therefore, regions (??) are invariant under

one-to-one transformations of y and one-to-one transformations of θ. The computation of

qn(y(n)) incorporates prior information, notional or real. In either way, the importance of
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the choice of the prior is downplayed because property (??) holds for every preset spec-

ification of π(θ), provided π(θ) does not place probability 0 on a plausible region of Θ.

Examples of the effects of different choices of the prior are given in Section 4. Confidence

regions (??) are nested, i.e., Θ̂1−ε′(y
(n)) ⊆ Θ̂1−ε(y

(n)), when 1− ε′ < 1− ε. The maximum

likelihood estimate θ̂n is always in Θ̂1−ε(y
(n)), being pn(y(n); θ̂n) ≥ qn(y(n)).

When the parameter is partitioned as θ = (ψ, λ), where ψ ∈ Ψ is a p0-dimensional

component of interest and λ is nuisance, in some cases inference on ψ can be based on a

statistic t(n) = t(yn) producing a marginal or conditional model free of λ. In these cases,

pn(t(n);ψ) or pn(y(n)|t(n);ψ) may replace pn(y(n); θ) in (??) and q(y(n)) is redefined accord-

ingly. However, the implementation of Robbins’ confidence sequences for a parameter of

interest is also feasible when a reduction by marginalization or conditioning is not avail-

able, and does not require sample space calculations. The confidence sequence for ψ is the

projection of Θ̂1−ε(y
(n)) on Ψ,

Ψ̂1−ε(y
(n)) =

{
ψ ∈ Ψ : (ψ, λ) ∈ Θ̂1−ε(y

(n)) for some λ
}
. (3)

The confidence sequence (??) turns out to be based on the profile likelihood:

Ψ̂1−ε(y
(n)) =

{
ψ ∈ Ψ : pn(y(n);ψ, λ̂ψ) > εqn(y(n))

}
,

where λ̂ψ is the maximum likelihood estimate of λ in the model for y(n) with ψ fixed and

qn(y(n)) =

∫
Θ

pn(y(n); θ)π(θ) dθ ,

as above, independently of ψ = ψ(θ).

3 Frequentist, pure likelihood and Bayesian proper-

ties

Robbins’ confidence sequences have frequentist properties from their very inception. The

usual asymptotics where

2
(
`(θ̂n;Y (n))− `(θ;Y (n))

)
d→ χ2

p
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entails that the marginal asymptotic coverage of Θ̂1−ε(Y
(n)) is one,

lim
n→∞

Pθ(θ ∈ Θ̂1−ε(Y
(n))) = 1 . (4)

Details are in the Appendix. This behaviour contrasts greatly with what is usually sought

for in conventional frequentist inference, i.e., asymptotic coverage equal to the nominal

level 1 − α. Under this respect, a frequentist statistician willing to ensure her confidence

regions to be non-contradictory with positive probability seems to have to pay a price in

terms of overcoverage for fixed n.

A revival of Robbins’ confidence sequences entails a novel concept of confidence, in-

volving the current size n experiment and its future, hypothetical or not, enlargements. A

persistence level 1− ε has the frequentist assurance that

Pθ

(
θ ∈ Θ̂1−ε(Y

(m)) for every m ≥ n
)
≥ 1− ε ,

so that

Pθ

(
∩m≥nΘ̂1−ε(Y

(m)) 6= ∅
)
≥ 1− ε .

In practice, we have high confidence that no contradiction with Θ̂1−ε(y
(n)) would occur with

larger sample sizes, even in settings where the sample enlargement is only hypothetical.

It is important to stress that what happened for sample sizes from 1 to n − 1 does

not matter. Moreover, although the sequence ∩j≤nΘ̂1−ε(Y
(j)) satisfies (??) as well, it is

not eligible as a sensible confidence sequence because ∩j≤nΘ̂1−ε(y
(j)) could be empty, and

therefore not consistent.

There is another way to express the frequentist assurance coming with Θ̂1−ε(Y
(n)). From

Pθ

(
θ ∈ ∩m≥nΘ̂1−ε(Y

(m))
)

= Pθ

(
θ ∈ Θ̂1−ε(Y

(n))
)

Pθ

(
θ ∈ ∩m>nΘ̂1−ε(Y

(m)) | θ ∈ Θ̂1−ε(Y
(n))
)

we get

Pθ

(
θ ∈ ∩m>nΘ̂1−ε(Y

(m)) | θ ∈ Θ̂1−ε(Y
(n))
)

=
Pθ

(
θ ∈ ∩m≥nΘ̂1−ε(Y

(m)
)

Pθ

(
θ ∈ Θ̂1−ε(Y (n))

) ≥ 1− ε .

Therefore, if Θ̂1−ε(y
(n)) covers the truth (an easily conceded premise if n is large enough,

in view of (??)), then, with probability at least 1− ε, no contradiction with Θ̂1−ε(y
(n)) will

be seen in future enlargements of the study.
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Moreover, the reward for overcoverage in a fixed n perspective is that Robbins’ con-

fidence sequence (??) offers inference that rarely fails to reproduce even in a multiple

investigation perspective. Let the sequences Y (n) and Y ∗(n
′) be independent with the same

statistical model {Pθ, θ ∈ Θ ⊆ IRp} and the same true parameter value. Statistician A will

observe the initial part of the sequence Y (n), statistician B will observe the initial part of

the sequence Y ∗(n
′). If both adopt and communicate publicly Robbins’ confidence regions

with the same ε, though with possibly different preset weight functions, they will be usually

found in agreement, because

Pθ

(
Θ̂1−ε(Y

(n)) ∩ Θ̂1−ε(Y
∗(n′)) 6= ∅

)
≥ Pθ

(
θ ∈ Θ̂1−ε(Y

(n)) ∩ Θ̂1−ε(Y
∗(n′)) for every n, n′ ≥ 1

)
≥ (1− ε)2 .

In fact, conventional inference, both Bayesian and frequentist, is contingent on the

current sample or the generating mechanism of the current sample. Inference from Robbins’

confidence sequences is in a sense absolute, it leads to conclusions that with reasonably high

probability can withstand any further scrutiny under the same data generating model. From

a practical stance, as traditional confidence regions give at best what they promise, the same

is true of Robbins’ confidence sequences. Both are vulnerable to model misspecification.

Regions Θ̂1−ε(y
(n)), depending on the data only through the likelihood function, agree

with the strong likelihood principle. In particular, they obey both the sufficiency and

the conditionality principles. For sufficiency, let s(n) = s(y(n)) be a sufficient statistic for

pn(y(n); θ), θ ∈ Θ ⊆ IRp, so that

pn(y(n); θ) = pS(n)(s(n); θ) pn(y(n)|s(n)),

with pS(n)(s(n); θ) the marginal density of S(n) = s(Y (n)) and pn(y(n)|s(n)) the conditional

density of Y (n) given S(n) = s(n). Then, Θ̂1−ε(y
(n)) = Θ̂1−ε(s

(n)), as is easy to see. As to

the conditionality, let a(n) = a(y(n)) be a distribution constant statistic, so that

pn(y(n); θ) = pA(n)(a(n)) pn(y(n)|a(n); θ).

Then

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : pn(y(n)|a(n); θ) ≥ ε

∫
Θ

pn(y(n)|a(n); θ)π(θ)dθ

}
= Θ̂1−ε(y

(n)|a(n)) ,
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so that regions Θ̂1−ε(Y
(n)) have probability of contradiction bounded by ε also conditionally

on a(n).

Let us consider now Bayesian properties of the confidence sequence (??). The ratio

qn(y(n))

pn(y(n); θ)
=

∫
Θ
pn(y(n); θ)π(θ) dθ

pn(y(n); θ)
(5)

is a Bayes factor, Kass and Raftery (1995). In fact, Kass and Raftery (1995, Section 3.2)

suggest quantitative standards for interpretation of (??) as evidence against the hypothesis

θ. For instance, decisive evidence requires (??) greater than 100. This corresponds ε = 0.01

in (??) and hence a persistence level equal to 0.99.

When π(θ) represents a prior distribution, with data y(n), the posterior is

π(θ|y(n)) =
pn(y(n); θ)π(θ)∫

Θ
pn(y(n); θ)π(θ) dθ

.

Definition (??) may be recast as

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : π(θ|y(n)) > επ(θ)

}
. (6)

The complementary set Θ̄1−ε(y
(n)) = Θ \ Θ̂1−ε(y

(n)) has posterior probability∫
Θ̄1−ε(y(n))

π(θ|y(n)) dθ ≤ ε

∫
Θ̄1−ε(y(n))

π(θ) dθ ≤ ε .

Therefore, Θ̂1−ε(y
(n)) has posterior probability at least 1− ε.

Credible regions Θ̂1−ε(y
(n)) have bounded probability of being contradictory even in

a Bayesian sense. Indeed, let P be the joint probability model of θ and Y (∞), where

θ has marginal density π(θ) and, given θ, Y (∞) has conditional distribution Pθ. In this

setting, (??) is a conditional probability statement. With Θ̂n = Θ̂1−ε(Y
(n)) it implies that,

marginally,

P

(
θ ∈

⋂
n≥1

Θ̂1−ε(Y
(n))

)
≥ 1− ε .

Representation (??) shows that inference from Robbins’ confidence sequences proceeds

by subtraction, eliminating the most implausible values of θ. Viewing the prior as a poste-

rior for an empty dataset, π(θ) = π(θ|∅), from (??) we conclude formally that Θ̂1−ε(∅) = Θ,

which makes sense.
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4 Examples

The implementation of Robbins’ confidence sequences requires the specification of π(θ)

and the choice of ε or a range of ε values. These issues are sketched through two simple

examples.

Example 1. Normal population with known variance.

Suppose that Yi, i = 1, 2, . . ., are i.i.d. N(θ, σ2
0), with unknown mean θ and known variance

σ2. Reduction by sufficiency produces the sequence of sample means Ȳn =
∑n

i=1 Yi/n with

model N(θ, σ2
0/n), n = 1, 2, . . .. The density of Ȳn given θ is

pn(ȳn; θ) =

√
n√

2πσ2
0

exp

{
−n(ȳn − θ)2

2σ2
0

}
.

Let us consider as the weight function a conjugate prior N(µ0, τ
2
0 ) density, i.e.

π(θ) =
1√
2πτ 2

0

exp

{
−(θ − µ0)2

2τ 2
0

}
.

With this π(θ), the marginal distribution of Ȳn is N(µ0, τ
2
0 + σ2

0/n), so that

qn(ȳn) =
1

√
2π

√
τ 2

0 +
σ2

0

n

exp

−1

2

(ȳn − µ0)2

τ 2
0 +

σ2
0

n

 .

After some algebra, Robbins’ confidence sequence Θ̂1−ε(ȳn) = {θ ∈ IR : pn(ȳn; θ) ≥ εqn(ȳn)}

is seen to consist of the intervals ȳn ± dn, where

dn =
σ0√
n

√
log n+ log

τ 2
0 + σ2

0/n

σ2
0

+
(ȳn − µ0)2

τ 2
0 + σ2

0/n
− 2 log ε .

A simulation study has been performed in order to shed some light on the practical

bearing of using Robbins’ confidence sequences vis-à-vis the customary confidence intervals.

A sequence of confidence intervals (θn, θ̄n) shows a contradiction in the range nmin ≤ n ≤

nmax whenever max(θn) > min(θ̄n), where min and max are over the n values of interest.

Analogously, the sequence shows non-coverage of θ at some n in the range nmin ≤ n ≤ nmax

whenever, over the n values considered, max(θn) > θ or min(θ̄n) < θ. Contradictions and

non-coverages have been monitored for 1,000 replications of enlarging samples of size n

with nmin = 1 and nmax = 40, 000.
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Table 1: Normal population with known variance: empirical percentages of contradictions

and non-coverages at some n for intervals for the mean with confidence level 1−α in 1,000

sequences of samples with size from 1 to 40,000.

100(1− α) 90 95 99 99.5

contradictions 76.9 51.1 12.8 7.4

non-coverages 90.3 68.9 26.0 15.7

In Table 1 the results for confidence intervals ȳn ± σ0z1−α/2/
√
n, with confidence level

1− α = 0.90, 0.95, 0.99, 0.995, are shown. Contradictions and non-coverages are dominant

for the levels 90% and 95%. They are both comparatively uncommon for the level 99.5%,

but their relative frequency could be made as close to 1 as desired by letting nmax large

enough. In the same scenario, all non-coverages become contradictions. The simulation

has been performed by sampling standard normal deviates, the results, however, do not

depend on the true value of the parameters of the normal population.

Table 2 displays the results for Robbins’ confidence sequences with persistence levels

1−ε = 0.50, 0.80, 0.90, 0.95 and various prior distributions on θ. When the prior is concen-

trated around the true θ, contradictions and non-coverages are comparatively abundant,

but their relative frequency remains under the upper bound probability ε. When the prior

is discrepant from the likelihood, that is µ0 is far from θ, the conflict between the two is

resolved in favour of the likelihood, through wider confidence regions. As is seen, this coun-

terbalance increases conservativeness of the ε bound. Apart from these cases, the results

in terms of observed contradictions and non-coverages for some n in the range 1–40,000

when 1−ε = 0.80 are qualitatively comparable with those for the customary intervals with

confidence level 0.995.

Example 2: Bernoulli population.

Suppose that Yi, i = 1, 2, . . . are i.i.d. Bernoulli Bi(1, θ), with unknown mean θ ∈ (0, 1).
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Table 2: Normal population with known variance 1: empirical percentages of contradic-

tions and non-coverages at some n for Robbins’ confidence sequences for the mean with

persistence level 1− ε in 1,000 sequences of samples with size from 1 to 40,000 and various

normal priors on the mean. The true value of the mean is 0.

prior 100(1− ε) 50 80 90 95

µ0 = 0, τ 2
0 = 0.1 contradictions 29.9 8.3 4.0 1.2

non-coverages 42.7 15.4 7.6 4.2

µ0 = 0, τ 2
0 = 1.0 contradictions 26.0 9.4 4.5 1.8

non-coverages 32.7 13.1 7.2 3.1

µ0 = 0, τ 2
0 = 10 contradictions 13.0 5.0 2.4 1.3

non-coverages 15.8 6.9 3.3 1.6

µ0 = 1, τ 2
0 = 1.0 contradictions 21.5 7.0 3.2 1.6

non-coverages 25.9 9.9 5.1 2.4

µ0 = 2, τ 2
0 = 1.0 contradictions 12.6 4.3 2.2 1.2

non-coverages 14.3 5.0 2.7 1.6

µ0 = 5, τ 2
0 = 1.0 contradictions 0.6 0.4 0.1 0.0

non-coverages 0.6 0.4 0.2 0.0

Reduction by sufficiency produces the sequence of sample sums Sn =
∑n

i=1 Yi, whose model

is Bi(n, θ). The density of Sn given θ is

pn(sn; θ) =

(
n

sn

)
θsn(1− θ)n−sn .
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Let us consider as a weight function the conjugate prior Beta(α, β) density

π(θ) =
1

B(α, β)
θα−1(1− θ)β−1 ,

where α, β > 0 and B(α, β) = Γ(α)Γ(β)/Γ(α+ β). With this prior, the marginal distribu-

tion of Sn is beta-binomial, with density

qn(sn) =

(
n

sn

)
B(sn + α, n− sn + β)

B(α, β)
.

The choice α = β = 0.5 is Jeffreys’ prior. When α = β = 1 the prior is a continuous

uniform distribution on [0, 1] and the marginal distribution of Sn is discrete uniform on

{0, 1, . . . , n}. Intervals that form the Robbins’ confidence sequence

Θ̂1−ε(ȳn) = {θ ∈ IR : pn(ȳn; θ) ≥ εqn(ȳn)}

have not a closed-form expression but are easily computed numerically.

Intervals with asymptotic confidence level 1− α are obtained from the likelihood ratio

statistic and have the form

Θ̃1−α(y(n)) =
{
θ ∈ (0, 1) : pn(sn; θ) ≥ pn(sn; θ̂n) exp{−0.5χ2

1,1−α}
}
,

where θ̂n = sn/n is the maximum likelihood estimate and χ2
1,1−α is the (1−α)-quantile of a

chi-squared distribution with 1 degree of freedom. Even these intervals are easily computed

numerically.

A small simulation study with various true θ values and various weight functions has

been performed. In particular, contradictions and non-coverages for n in the range nmin =

100 and nmax = 4, 000 have been enquired. The number of replications remains 1, 000.

Table ?? displays the results for the confidence intervals with confidence level 1− α =

0.90, 0.95, 0.99, 0.995 obtained from the likelihood ratio statistic. Contradictions and non-

coverages are important when 1 − α = 0.90, 0.95, even over such a restricted range of n

values. The case 1− α = 0.995 shows a marked improvement.

In table ?? results for Robbins’ confidence sequences with persistence levels 1 − ε =

0.50, 0.80, 0.90, 0.95 and various beta prior distributions on θ are shown. When the prior

is centered at the true θ, non-coverages are comparatively abundant. Contradictions are

rarely observed due to the limited range of n considered. As expected, conservativeness
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Table 3: Bernoulli population: empirical percentages of contradictions and non-coverages

at some n for likelihood ratio intervals for the mean with confidence level 1 − α in 1,000

sequences of samples with size from 100 to 4,000.

100(1− α) 90 95 99 99.5

θ = 0.5 contradictions 28.5 11.6 1.5 0.5

non-coverages 65.7 41.0 13.5 8.6

θ = 0.7 contradictions 30.4 14.2 1.2 0.2

non-coverages 64.2 43.3 12.5 7.1

θ = 0.9 contradictions 29.5 11.8 0.9 0.2

non-coverages 65.0 42.6 12.1 7.1

increases as the prior moves away from the true parameter value. Again, the results when

1− ε = 0.80 are qualitatively comparable with those for the customary intervals with con-

fidence level 0.995.

5 Conclusions

Herbert E. Robbins is mostly acknowledged in Statistics for his path-breaking introduction

of empirical Bayes methods, stochastic approximation methods, and his contributions to

sequential analysis (Lai and Siegmund, 1986). On the other hand, his proposal of con-

fidence sequences has been largely neglected. One exception, at least in the statistical

literature, is Gandy and Hahn (2016), where Robbins’ confidence sequences provide a tool

to keep in check stochastic simulations. Robbins’ confidence sequences also inspired re-

peated confidence intervals (Jennison and Turnbull, 1989), where coverage of the true θ is
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required at a finite (typically small) number of interim analyses of a study. Notably, in the

discussion of Jennison and Turnbull (1989), Whitehead (1989) points to situations, such

as long-term epidemiological studies, where a fixed number of analyses “might become a

barrier”. Here, we have stressed the link between non-contradiction and coverage along

the whole sequence as the basis for a novel interest in Robbins’ confidence sequences. The

price to pay for controlling for the probability of non-contradiction is that wider regions

are needed. When data are scarce and difficult to obtain, this could appear as a serious

drawback of Robbins’ confidence sequences.

Robbins’ confidence sequences offer durable inferences, satisfying coverage requirements

along the whole sequence of samples. By contrast, inferences as those stemming from the

usual statistical procedures satisfy coverage requirements separately for any given sample

size. They may be called episodic inferences. The distinction between episodic and sequen-

tial environments appears in artificial intelligence, see Russel and Norvig (2010, Section

2.3.2). All in all, Robbins’ confidence sequences strengthen the standards of confidence,

and, thanks to their frequentist assurance, offer more compelling summarizations of evi-

dence.

Appendix

Robbins’ confidence sequences have the required persistent coverage (Robbins, 1970)

To see that, for regions of the form (??), inequality (??) holds for every θ ∈ Θ, consider

that

Pθ

(
θ ∈ Θ̂1−ε(Y

(n)) for every n ≥ 1
)

= 1− Pθ
(
θ 6∈ Θ̂1−ε(Y

(n)) for some n ≥ 1
)

and

Pθ

(
θ 6∈ Θ̂1−ε(Y

(n)) for some n ≥ 1
)

= Pθ

(
qn(Y (n))

pn(Y (n); θ)
≥ 1

ε
for some n ≥ 1

)
.

The last probability does not exceed ε in force of a fundamental inequality for the likelihood

ratio statistic.

Let P and Q denote the joint probability distribution of the sequence Y (∞) when Y (n),
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n = 1, 2, . . ., have density pn(Y (n)) and qn(y(n)), respectively. Then

P

(
qn(Y (n))

pn(Y (n))
≥ k for some n

)
≤ 1

k
, (7)

for any k > 0. Robbins’ proof of (??) is as follows. Define the stopping time

N = min

{
n ≥ 1 :

qn(Y (n))

pn(Y (n))
≥ k

}
,

with min ∅ =∞. Then

P

(
qn(Y (n))

pn(Y (n))
≥ k for some n

)
= P (N <∞)

=
∑
n≥1

P (N = n) =
∑
n≥1

∫
{y(n) : N=n}

pn(y(n)) dy(n)

≤
∑
n≥1

∫
{y(n) : N=n}

1

k
qn(y(n)) dy(n)

=
1

k

∑
n≥1

Q(N = n) =
1

k
Q(N <∞)

≤ 1

k
.

Inequality (??) also follows from a well-known martingale inequality, see e.g. Jacod and

Protter (2000, Theorem 26.1).

A heuristic argument for the consistency of confidence sequences

Rigorous proofs of consistency of Θ̂1−ε(y
(n)) when the density of Y (n) belongs to an expo-

nential family are given by Lai (1976) and Csenki (1979) for the one-parameter and the

multiparameter case, respectively. For models whose likelihood function obeys the usual

regularity conditions (see e.g. Severini, 2000, Section 3.4), consistency of Θ̂1−ε(y
(n)) may

be seen by the following heuristic argument.

Assume that θ̂n is the unique maximum of L(θ; y(n)) in an open neighborhood of the true

θ. Let `(θ; y(n)) = logL(θ; y(n)) be the log likelihood function and let jn(θ) = j(θ; y(n)) =

−∂2`(θ; y(n))/∂θ∂θ> be the observed information. Assume moreover that, as under repeated

sampling of size n, `(θ;Y (n)) = Op(n) and j(θ̂n;Y (n)) is positive definite and of order Op(n).

Using Laplace expansion, see e.g. Barndorff–Nielsen and Cox (1989, Section 3.3), we have

qn(y(n)) =

∫
Θ

pn(y(n); θ)π(θ) dθ = pn(y(n); θ̂n)
π(θ̂n)(2π)p/2

|jn(θ̂n)|1/2
{1 +O(n−1)} , (8)
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so that

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : `(θ; y(n)) > `(θ̂n; y(n)) + log

(
επ(θ̂n)(2π)p/2

|jn(θ̂n)|1/2

)
+O(n−1)

}
.

Let kn = − log
(
επ(θ̂n)(2π)p/2/|jn(θ̂n)|1/2

)
. Then, for θ′ 6= θ,

Pθ(θ
′ ∈ Θ̂n) = Pθ

(
`(θ̂n;Y (n))− `(θ′;Y (n)) < kn +Op(1)

)
,

where `(θ̂n;Y (n))− `(θ′;Y (n)) is Op(n) and positive, while

kn =
p

2
log n+Op(1) . (9)

Therefore,

lim
n→∞

Pθ(θ
′ ∈ Θ̂n) = 0 .

Proof of (??).

Using Laplace expansion (??) and the definition of kn we see that

Θ̂1−ε(y
(n)) =

{
θ ∈ Θ : 2

(
`(θ̂n; y(n))− `(θ; y(n))

)
< 2kn +O(n−1)

}
,

so that, if

2
(
`(θ̂n;Y (n))− `(θ;Y (n))

)
d→ χ2

p ,

then (??) follows from (??).
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Table 4: Bernoulli population: empirical percentages of contradictions and non-coverages

at some n for Robbins’ confidence sequences for the mean with persistence level 1 − ε in

1,000 sequences of samples with size from 100 to 4,000 and various priors on the mean.

true θ prior on θ 100(1− ε) 50 80 90 95

0.5 Beta(.5, .5) contradictions 0.6 0.3 0.1 0.0

non-coverages 8.5 4.1 2.3 1.0

0.5 Beta(1, 1) contradictions 1.8 0.4 0.2 0.0

non-coverages 10.5 5.9 3.3 1.7

0.5 Beta(5, 5) contradictions 6.3 1.1 0.4 0.2

non-coverages 20.5 10.0 6.0 3.4

0.7 Beta(.5, .5) contradictions 0.7 0.1 0.0 0.0

non-coverages 7.2 3.0 1.7 0.5

0.7 Beta(1, 1) contradictions 1.2 0.2 0.0 0.0

non-coverages 10.3 3.7 2.3 0.8

0.7 Beta(5, 5) contradictions 2.7 0.3 0.0 0.0

non-coverages 12.0 5.6 2.1 1.3

0.9 Beta(.5, .5) contradictions 0.4 0.1 0.0 0.0

non-coverages 6.9 2.4 1.3 0.7

0.9 Beta(1, 1) contradictions 0.3 0.0 0.0 0.0

non-coverages 6.1 2.3 1.2 0.7

0.9 Beta(5, 5) contradictions 0.0 0.0 0.0 0.0

non-coverages 1.1 0.4 0.1 0.1
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