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Production of black holes has been discussed in a variety of extensions of the Standard Model, and related 
bounds have been established from data taken at the Large Hadron Collider. We show that, if the Higgs 
particle has a fully gravitational content via the equivalence principle, enhanced cross-sections of black 
holes at colliders should be expected within the Standard Model itself. The case of black hole production 
by precision measurements at electron colliders is discussed. The Coulomb repulsion strongly suppresses 
the related cross-section with respect to the one based on the hoop conjecture, making the possible 
production of black holes still unfeasible with current beam technology. At the same time, this suggests 
the reanalysis of the bounds, based on the hoop conjecture, already determined in hadronic collisions for 
extra-dimensional models.
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1. Introduction

The possibility that the Fermi scale and the Planck scale ac-
tually coincide is an appealing feature of many extensions of the 
Standard Model as it avoids the hierarchy problem. This may oc-
cur either by embedding the latter in higher-dimensional space-
time [1–3], by introducing a hidden sector with a large number of 
fermions [4,5], or invoking spin-related frame-dragging effects [6]. 
In these scenarios the effective gravitational coupling constant at 
the Fermi scale should be then increased by about 33 orders of 
magnitude with respect to the one measured in the macroscopic 
world. In this way, its value becomes identical or of the same order 
as the coupling constants involved in charged weak interactions via 
the Fermi constant G F and the CKM and PMNS flavor mixing ma-
trices. As such, gravitational effects should be already observable 
at the Fermi scale, and quite prominent among these should be 
the formation of black holes in high-energy, small impact parame-
ter collisions. The hoop conjecture [7] assumes that production of 
black holes should occur with significant probability whenever the 
distance between the two colliding particles becomes comparable 
to their Schwarzschild radii. Semiclassical considerations suggest 
that, for collisions at center of mass energy 

√
s, the cross-section 

for black hole production should be of the order σB H ∼ π R̃2
S [8,9]. 

Here R̃ S = 2G̃ N
√

s/c2 is the Schwarzschild radius, and G̃ N is the 
effective gravitational Newton constant at the Fermi scale, whose 
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numerical value is assumed to be much larger than the known 
gravitational Newton constant G N measured at the macroscopic 
scale. A further intriguing implication is that high-energy physics 
with production of new particle states should be inhibited [8], 
leading to a dominance of gravitational physics over quantum field 
theory beyond the Fermi scale, in some cases implying a revival of 
classicality [10].

Searches for black holes, at the Large Hadron Collider (LHC) 
general purpose detectors CMS [11,12] and ATLAS [13,14], have 
placed first lower bounds on their mass in the 5-10 TeV range. 
However, these limits are strongly model dependent, especially in 
regard to the variety of assumptions made on the decay products 
of the black holes. In particular, criticisms have been raised about 
the validity of the Hawking radiation emission mechanism during 
the black hole decay process. The Hawking effect has been derived 
in a semiclassical regime in which the mass of the black hole is 
considered to be much larger than the putative lower Planck mass 
scale, and this is in conflict with the assumptions made in the data 
analysis [15]. The large background due to hadronic interactions 
and the consequent large multiplicity of events, and the presence 
of initial states that cannot be well controlled at hadron collid-
ers, are also far from optimal features from the standpoint of black 
hole production and characterization.

In this letter, we focus on black hole production as a mecha-
nism intrinsic to the Standard Model, and we sketch a proposal for 
its test by using electron colliders. This analysis complements vari-
ous former contributions more focused on black hole decay modes. 
The leptonic nature of the colliding particles lowers the overall 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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rate of uninteresting, from this perspective, hadronic events. Us-
ing same-charge particles avoids the usual annihilation s-channel 
otherwise allowed for particles-antiparticles collisions [16,17]. The 
price payed in looking for black hole production in electron collid-
ers is the presence of Coulomb repulsion, which modifies signifi-
cantly the estimates based on the hoop conjecture.

2. Higgs-related gravity at the Fermi scale

The discovery of a scalar resonance compatible with the expec-
tations for a Higgs particle [18,19] has consolidated the Standard 
Model by opening up the possibility of experimentally testing elec-
troweak symmetry breaking and a new interaction, that of the 
Higgs particle with all other fundamental particles. A unique fea-
ture of the Higgs-fermion coupling is the fact that its strength is 
proportional to the inertial mass of the fermions. If the equiva-
lence principle holds at the microscopic scale, this would imply 
that the Higgs should also couple linearly to the gravitational mass 
of the fermions, and this closely mimics what is expected for grav-
itational couplings in the nonrelativistic limit. With respect to the 
gravity we experience in the macroscopic world, the Higgs-related 
gravity should be short range (with a Yukawa range on order of 
the Compton wavelength associated to the Higgs particle), with 
coupling 33 orders of magnitude larger than macroscopic grav-
ity, and scalar, rather than tensorial, in character. This possibility 
has been discussed in detail in [20,21]. However, although eval-
uating at the very end of [20] the magnitude of the expected 
interaction, the authors have not made connection to the weak 
interaction coupling strength. A comparative discussion of the sim-
ilarities between gravitational and weak interactions appeared in 
[22], including the discussion of potential phenomenological impli-
cations. In particular, these include the possible impact in precision 
spectroscopy of muonic hydrogen [23], a gravitational interpreta-
tion of the Yukawa coefficients, and the impossibility of observing 
gauge-mediated particles at energies larger than the Higgs vacuum 
expectation value [24], confirming the prediction already discussed 
in [8]. From this perspective, the gravitational content of the Higgs 
field is similar to that of the scalar component in the Brans-Dicke 
theory of gravitation [25]. In the following, we will consider an ef-
fective gravitational potential sourced by the usual infinite-range 
Newtonian term, of tensorial origin in general relativity, as well as 
from a short-range Higgs term of scalar origin, both directly pro-
portional to the mass of the source m, in the form

V eff(r) = − G Nm

r

(
1 + αH e−r/λH

)
, (1)

with αH = 1.23 × 1033 and λH = h/(mH c) � 10−17 m the Compton 
wavelength of the Higgs [23]. At distances much larger than λH

this potential corresponds to Newtonian gravity, but at distances 
of the order of λH or smaller, this potentially boosts the effec-
tive gravitational coupling by the factor αH . This parameterization 
of strong gravity effects is rather simple with respect to the case 
of extra-dimensional physics, it has similar quantitative predic-
tions, and allows for a simpler comparison to the other interactions 
present in the case of charged leptons, i.e. the electromagnetic in-
teraction. Considering this effective interaction and the repulsive 
Coulomb interaction allows for the exploration of the actual dy-
namics of collisional processes, as well as the related predictions 
for the probability to form black holes, as we describe in the next 
sections.
3. Electron-electron elastic scattering

The increase in black hole formation from the enhanced gravity 
due to the Higgs field, or any mechanism producing strong gravity
at the microscopic scale, is given by estimating the Schwarzschild 
radius. For ordinary gravity and the case of the electron, the 
Schwarzschild radius is R S = 2G Nme/c2 = 1.3 × 10−57 m, and by 
boosting the Newton constant to the value G̃ N = 1.23 × 1033G N

we get R̃ S = 1.6 × 10−24 m. This means a hoop-conjecture-based 
cross-section with a peak value of σB H ∼ 8 × 10−48m2 ∼ 8 × 10−5

fb for impact parameters much smaller than the Higgs Compton 
wavelength λH . In the intermediate case, we will interpolate the 
effective Schwarzschild radius as R̃ S (r) = R S [1 + αH exp(−r/λH )]. 
This is based on the assumption that, due to the Higgs field, even 
the scalar component of the potential contributes to the space-
time metric and to the emergence of the event horizon. A detailed 
discussion of black holes collapse in Brans-Dicke theory makes 
this hypothesis plausible [26–29]. Notice also, as further elements 
of plausibility, that the Yukawa component does not qualitatively 
change the functional behavior of the potential at any length scale. 
Furthermore, at the length scale at which the horizon is expected 
(not larger than 10−24 m), the Yukawa term of the Higgs po-
tential is, for all practical purposes, a 1/r potential like standard 
gravity but with a larger coupling constant. In the case of rela-
tivistic electrons with energy E the Schwarzschild radius is fur-
ther increased by the relativistic factor γ = E/(mec2). For instance, 
for electron-electron collisions occurring at 100 GeV+100 GeV, we 
have γ � 2 × 105, and the peak value of the black hole cross-
section will be boosted to a value of about 3.2 nb.

These estimates based on purely geometric considerations are 
quite optimistic as they do not take into account that colliding 
particles interact. More realistic estimates of the black hole pro-
duction cross-section are therefore obtained by investigating the 
full collision process. In doing this we try to single out the ba-
sic effects neglecting various factors which are not expected, at 
leading order, to change significantly the estimates. First, we ne-
glect the effect of spin in the collisions, therefore schematizing the 
electrons as usually done in scalar electrodynamics. Second, even 
for relativistic collisions we can consider electron-electron inter-
actions are approximated by their static Coulomb potential, the 
magnetic field generated by two counter propagating beams made 
of same-charge particles being approximately zero. This also im-
plies that, apart from the Lorentz boost of the cross-section, we 
do not expect relativistic considerations to play a major role in the 
interaction dynamics. Finally, we neglect the effect of the electric 
charge on the horizon. The Reissner-Nordström radius is indeed 
negligible with respect to the Schwarzschild radius in the case of 
strong gravity and collisions occurring above 

√
s ∼ 30 GeV.

A first approach consists of numerically integrating the Schrö-
dinger equation in a two-dimensional setting. One-dimensional 
problems do not capture the physics of the collisions as they miss 
the vast majority of events occurring at moderate, non-zero im-
pact parameters. The full three-dimensional setting is obviously 
superfluous due to the cylindrical symmetry around the direction 
of the two beams. Furthermore, the problem of two colliding elec-
trons interacting with central forces is transferable to the one of 
a single electron with reduced mass half its physical mass in the 
presence of a static potential equivalent to the one between the 
two electrons, plus the attractive correction due to usual gravi-
tation (completely negligible in a realistic case). This corresponds 
to a potential energy UC = [−e2/(4πε0) + G Nm2]/r = αC /r, with 
ε0 the dielectric permittivity of vacuum. In Fig. 1 we present the 
modulus of the wave function |ψ(x, y, t)| at various instants of 
time numerically evaluated from an initial condition of a Gaus-
sian wave packet impinging on a static repulsive Coulomb poten-
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Fig. 1. Snapshots of the modulus of the wave function for a wave packet traveling with a given initial velocity and impact parameter in the presence of a potential with a 
source located in the center, evaluated through numerical simulations of the Schroedinger equation with a purely repulsive Coulomb potential. The case shown is relative 
to a nearly head-on collision, with an impact parameter of 0.1 in spatial units, and a momentum of 0.15 in reciprocal spatial units. The snapshots are taken at times (in 
arbitrary units, and from top left to bottom right) t = 0, 0.05, 0.1, 0.15, 0.2, 0.25.

Fig. 2. Same as in Fig. 1 but for a combination of a repulsive Coulomb potential and an attractive Yukawa potential with equal strengths, and the same time sequence of 
snapshots. The third panel (top-right) already shows some difference with respect to the corresponding panel in Fig. 1, with a more uniform wave packet. The differences 
become more evident in the comparison of the last three panels of the two figures. The wave packet is slowed down in the presence of the Yukawa term, and there is 
reduced back-reflection.
tial. The wave packet spreads and starts to experience interference 
effects while approaching the singularity of the potential. Notice 
that at later time the wave function “fragments” into various com-
ponents for small impact parameters. Analogous simulations for 
larger impact parameters confirm that the wave packet roughly 
maintains a Gaussian shape while following an average trajectory 
being repelled away from the scattering center. In presence of an 
additional attractive Yukawa potential representing the short-range 
component in Equation (1), the dynamics becomes more complex, 
as seen in Fig. 2. If the strength of the Yukawa potential is small, 
as expected there are small deviations from the purely Coulomb 
scattering, at least for wave packets with energy small enough to 
avoid penetration into the scattering center in which the Yukawa 
potential is significantly strong. In this case the bulk of the dynam-
ics can be described in terms of an effective potential which is still 
Coulomb but of smaller strength, implying smaller deflections of 
the electron trajectory. However, if the Yukawa potential is large 
enough and/or in the presence of a large Yukawa range, the dy-
namics is significantly affected, as a larger component of the wave 
function propagates through the central potential due to reduced 
repulsion. At smaller initial momentum, the wave function tends 
also to be more localized momentarily in the local minimum of 
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the potential at the scattering center, delaying its exit. The numer-
ical method has, as usual, the drawback of being time-consuming, 
on top of the lack of accuracy due to the numerical approxima-
tions and the presence of finite steps in time and space, and of 
finite boundaries.

An alternative which has rather different approximations, and 
therefore allows for a cross-check of these numerical results, is 
provided by the so-called Extended Gaussian Dynamics (EGD). 
This belongs to the family of semiclassical methods originated by 
Ehrenfest [30]. In the simplest case of a particle described in one-
dimension, the Heisenberg equations of motions are averaged with 
a suitable Taylor expansion of the potential energy V (x), obtaining 
an infinite hierarchy of equations, each corresponding to higher or-
der moments of position and momentum [31,32]:

d〈x〉
dt

= 〈p〉
m

, (2)

d〈p〉
dt

= −
∞∑

n=0

1

n! V (n+1)(〈x〉)〈	x̂n〉, (3)

where V (n+1) = ∂n V /∂xn . The EGD consists in truncating this infi-
nite set of equations by demanding that at any given time the state 
has a Gaussian form, thereby characterized by only two cumulants 
[33,34]:

d〈x〉
dt

= 〈p〉
m

, (4)

d〈p〉
dt

= −
∞∑

n=0

1

n!2n
V (2n+1)(〈x〉)ρ2n, (5)

dρ

dt
= �

m
, (6)

d�

dt
= h̄2

4mρ3
−

∞∑
n=0

1

n!2n
V (2n+2)(〈x〉)ρ2n+1. (7)

Here the variable ρ is defined such that the even cumulants have 
the expression 	x̂2n = ρ2n2n!/(2nn!), starting from n = 0, and the 
variable � = 〈	x̂	p̂+	p̂	x̂/(2ρ). In this way the dynamics is de-
scribed in term of the centroids of the Gaussian in ordinary phase 
space, and of an associated “fluctuational phase space” in which 
the variances of position and momentum evolve in time.

This technique has been extensively used in chemical physics 
[35] and in atomic trapping [36], but the constraint of a Gaus-
sian shape is obviously rather strong. For instance, shortcomings of 
its application to potentials in which tunneling phenomena occur, 
with consequent creation of delocalized wave functions without a 
classical counterpart, has been discussed in [37]. In our situation, 
we will see that the presence of interference terms during the col-
lision will appear in a rather approximate and peculiar form. In our 
specific relativistic setting, the only modification occurs in Eqs. (4)
and (6), as the relativistic factor γ will appear in the denominator 
on the right hand side, i.e. m → γ m.

To provide a benchmark for the EGD method in a simple sit-
uation, we can consider the motion of a harmonic oscillator of 
mass m and angular frequency ω. In this case Eqs. (4) and (5) as-
sume a simple form, with the right hand sides equal, respectively, 
to −mω2〈x〉 and h̄2/(4mρ3) − mω2ρ . The motion is harmonic in 
the centroid space (〈x〉, 〈p〉), and the variance ρ = 	x̂ has a mo-
tion resulting from the interplay between a harmonic-like force 
dominating at large ρ and a strong repulsive effective force at 
small ρ . The latter term enforces the uncertainty principle mak-
ing sure than ρ cannot become zero, a sort of “centrifugal” term 
which obviously goes to zero in the classical limit. The motions in 
the (〈x〉, 〈p〉) and (ρ, �) variables are decoupled, and the centroid 
moves according to the classical Hamilton equations, while the ρ
variable may oscillate around its minimum value, i.e. the Gaussian 
state is “breathing”, unless it is a minimum uncertainty Gaussian 
state.

In a general case, the equations of motion for the centroid and 
for the fluctuational space are coupled, leading to quantum cor-
rections to the classical trajectory. The presence of an external 
potential in general affects the dynamics of the positional variance. 
Power-law potentials like a linear one are not enough to decrease 
the positional variance during the dynamics, while a quadratic po-
tential results in a stationary (or periodically breathing) positional 
variance. Instead, potentials steeper than a parabolic one, like cubic 
or quartic potentials, or potentials depending on inverse distance 
as the Coulomb one, can momentarily decrease the positional vari-
ance. In our toy model, we have chosen the relevant parameters to 
be αC = 10, λH = 0.1, αH = 15, R S = 10−2, with an initial spread-
ing of 0.25 in the x-direction, and an impact parameter of 0.1 (all 
quantities in Figs. 1–4 are in arbitrary, computer-friendly, units). 
These conditions are taken to mimic the realistic case in which 
(a) the Schwarzschild radius under Newtonian gravity R S is much 
smaller than the spread of the particle, (b) the Coulomb poten-
tial and the Yukawa potential at its maximum strength are close 
in amplitude, and (c) the range of the Yukawa potential is much 
smaller than the positional spread of the particle. Fig. 3 shows that 
the presence of the Yukawa term significantly reduces the variance 
of the particles at later time, as expected due to its attractive char-
acter. We notice that with the Coulomb potential, in the nt = 0
case ρx grows faster than in the nt = 1 case, whereas the oppo-
site happens with the Coulomb plus attractive Yukawa potential. 
This is because the inclusion of higher order terms in equation (7)
makes the effect of the Yukawa potential on the variance much 
stronger than that with lower orders of expansion, thus cancel-
ing out the effect of the Coulomb term on the positional variance. 
Due to Coulomb repulsion, the variance of the particle decreases 
first, while in the presence of a substantial Yukawa term the oppo-
site occurs. Figs. 1–2 already show that the wave function is more 
strongly reflected in the Coulomb potential than in the Coulomb 
plus attractive Yukawa potential, resulting in a larger variance in 
the Gaussian approximation in the former case. This effect, con-
firmed in the behavior of the variances shown in Fig. 3, is of 
relevance for the considerations reported in the following section.

4. Black hole production probability

In this section we define a probability for black hole produc-
tion based on the hoop conjecture in the presence of interactions, 
and estimate its magnitude using the numerical and EGD meth-
ods previously discussed. Consider the wave functions of the two 
colliding particles ψ(x, t), ψ ′(x′, t). At time t , the probability of 
black hole formation is the probability that the two particles are 
located within the time-dependent Schwarzschild radius R̃ S . The 
differential probability that a black hole is formed if the parti-
cle is in the position interval (x, x + dx) and the other particle is 
located nearby within a Schwarzschild radius, i.e. it lies in the in-
terval (x′ − R̃s, x′ + R̃s), is

dP B H (t) =
x+dx∫
x

|ψ(x′, t)|2dx′
x′+R̃ S∫

x′−R̃ S

|ψ ′(x′′, t)|2dx′′, (8)

which in the realistic case of small R̃s becomes
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Fig. 3. Particle scattering through the Extended Gaussian Dynamics approximation. Plots of the average position in the x − y plane (top left), and the Gaussian variances in 
the x and y plane (bottom left) for scattering from a repulsive Coulomb potential. On the right plots, same quantities but in the case of an attractive Yukawa potential added 
to the repulsive Coulomb potential. The integer nt denotes the order of truncation of the series present in Equations (4)–(7), such that nt = 0 represent the purely classical 
dynamics, and nt = 1 the first order quantum corrections.

Fig. 4. Black hole production probability for electron-electron collisions versus time evaluated through numerical simulations of the Schrödinger equation (NSE, solid line) 
and the Extended Gaussian Dynamics (EGD) at orders of approximations zero (dashed line) and one (dot-dashed line). The left plot is for a repulsive Coulomb potential, the 
right plot includes also an attractive Yukawa potential, for the same parameters as in Fig. 3. Notice the more complex dynamics for the EGD cases, due to the breathing of 
the Gaussian wavefunction occurring especially in correspondence of the region of minimum approach distance, around a time of 0.17.
dP B H = 2R̃ S(t)

x+dx∫
x

|ψ(x′, t)|2|ψ ′(x′, t)|2dx′. (9)

The total probability for black hole formation is obtained by 
integrating over all possible values of x

P B H (t) = 2R̃ S(t)

∞∫
−∞

|ψ(x′, t)|2|ψ ′(x′, t)|2dx′. (10)

The EGD lends itself to a simple evaluation of this probabil-
ity, provided that the assumption of a general Gaussian form for 
the wave function holds at the relevant times, in this case during 
the closest approach in the collision. If the general Gaussian wave 
function is characterized by its centroid x0(t), its wave vector k0(t)
and its positional spread ρx(t), we will have

ψ(x, t) = 1√
ρx

√
π

exp

{
−[x − x0(t)]2

2ρx(t)2
+ ik0(t)x

}
, (11)

while the other colliding particle will have the opposite sign for 
the wave vector. Therefore, Eq. (10) will become
P B H (t) = 2
√

2

π

R̃ S(t)

ρx(t)
exp

[
−2x0(t)2

ρx(t)2

]
, (12)

which can be easily generalized to the two-dimensional case

P B H (t) = 8R̃ S(t)2

πρx(t)ρy(t)
exp

[
−2

(
x0(t)2

ρx(t)2 + y0(t)2

ρy(t)2

)]
. (13)

Equation (13) allows us to replace complex numerical simula-
tions with a relatively simple formula containing time-dependent 
quantities, as emphasized by the explicit time-dependence for each 
relevant quantity. This avoids numerical issues related to the pres-
ence of quantities, such as the coupling strength of the effective 
interaction, or the relevant length scales that can vary over several 
orders of magnitude. Equation (13) also shows that the probability 
of black hole formation decreases exponentially with the distance 
between the particles, as intuitively expected, although each com-
ponent of the distance gets weighted by the corresponding posi-
tional variance. The dependence upon the latter quantity is more 
subtle. In general, the positional variance increases from the ini-
tial state with the possibility of oscillations due to the breathing 
of the wave function in the presence of the potential. This may 
lead to a non-trivial interplay because, on one hand, the positional 
variances appear with inverse dependence in the denominator of 
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Fig. 5. Black hole production probability for electron-electron collisions versus relativistic factor γ evaluated with the Extended Gaussian Dynamics for a repulsive Coulomb 
potential and attractive Yukawa potential added to the Coulomb strength of various relative strengths and ranges. The left plot shows the cases for an attractive coupling 
equal to (a) αH /αC = 0.020, (b) αH /αC = 0.015, (c) αH /αC = 0.010, (d) αH /αC = 0.005, all with range λH = 1 (in arbitrary units). The case of a purely Coulomb repulsion 
(e) is also shown. The right plot shows the cases for a constant attractive coupling αH /αC = 0.020 with different ranges (a) λH = 2, (b) λH = 1, and (c) λH = 0.5, while case 
(d) again is the pure Coulomb repulsion for comparison. The impact parameters are generated by a Gaussian distribution centered around zero and with variance 102, and 
the black hole probability is evaluated on a sample of 102 particles for each beam.
the right hand side in Eq. (13) but, on the other hand, they also 
appear in the denominator of the exponential term of the same 
equation. The first term tends to decrease the probability for form-
ing black holes as the wave function of the particle initially spreads 
out. However, the second, exponential term will yield a smaller 
suppression of the probability in the presence of the same spread-
ing. It is then possible to expect, for a judicious choice of the 
initial parameters, a positional variance for which the formation 
of black holes is maximized, due to the fact that the interaction 
between the particles will tend to decrease their positional vari-
ance. In Fig. 4 we show an example of probability for black hole 
formation versus time, for the same average trajectories and the 
related variances discussed in Fig. 3. This allows for a direct com-
parison between the EGD method and the results of the numerical 
integration of the Schrödinger equation. The presence of breath-
ing effects is evidenced in the EGD approach, and becomes more 
pronounced as more terms in the expansion are included. As ex-
pected, the numerical solution of the Schrödinger equation and the 
EGD method do not provide the same probabilities and, in particu-
lar, it is evident that the peak probability occurs at a later time for 
the EGD method, as any non-Gaussian precursor is not included 
in the related approximation. However, the first order expansion 
of the EGD equations (nt = 1) is much closer to the numerical so-
lution. Comparing the two plots, it is evident with either method 
that the boosting of the effective Schwarzschild radius due to the 
Higgs component enhances the probability of black hole produc-
tion.

5. Experimental considerations

We discuss in this section possible ways to observe the ex-
pected enhancement of the probability for black hole production 
in electron-electron collisions. The main idea, differing from the 
hadronic case analyzed at the LHC, is that one should focus on pre-
cision measurements in the elastic scattering channel alone. The 
absence of the annihilation s-channel, present for electron-positron 
collisions, make the overall analysis more clean.

In principle, the cleanest signature of the black hole production 
is achieved by energy scanning. Due to the hoop conjecture, we do 
expect a sudden increase in the production probability when the 
two electrons come within a Schwarzschild radius of each other. 
Once this happens, any small increase in energy will make the 
black hole production more likely, both due to the Lorentz boost 
in the Schwarzschild radii and the smaller minimum distance be-
tween the electrons. Such a sudden phenomenon is shown in both 
panels of Fig. 5 already for electron-electron collisions without the 
expected Yukawa-like component due to the Higgs field, see black 
dots and curves in both plots. The presence of the Higgs field 
is manifested in a precocious black hole formation, at a thresh-
old value of the relativistic γ factor occurring progressively earlier 
for largest values of the Higgs coupling strength and its range. 
Note also the larger sensitivity of the black hole probability to the 
Yukawa range due to the exponential dependence of the potential 
on this parameter.

Another observable affected by the presence of a Higgs poten-
tial is the angular distribution, as we expect both a softening of the 
hard deflections due to the Coulomb repulsion, as well as smaller 
distances of approach between the two electrons. This is evidenced 
again in the toy model discussed above in the left plot of Fig. 6, 
where a subset of nine electron-electron collisions is shown with a 
random generation of initial conditions in the x-y plane. The pres-
ence of softer deflections is quantified in the right plot of Fig. 6, 
where we present the distribution of the difference between the 
deflection angles 	θ = θY − θC , where θY is the deflection angle of 
the trajectory including the Yukawa potential, and θC is the deflec-
tion angle of the corresponding trajectory (i.e. with the same initial 
conditions) with purely Coulomb repulsion. With this observable, 
one expects larger deflection angles for the added Yukawa case for 
electrons originating from the right beam, and smaller deflection 
angles for electrons originating from the left beam. This induces 
a nearly symmetrical spreading in the 	θ variable, subjected to 
asymmetries due to the different initial conditions in the positions 
of each electron pair. In a realistic setting, tracking this observable 
implies precision determination of the rapidity of the electron tra-
jectories, and comparison to the expected QED predictions for a 
variety of energies. The effect of the Higgs field should appear as 
a systematic shift of the deflection angle with increasing energy of 
the beams, see inset of Fig. 6.

In terms of absolute cross-sections, an order of magnitude 
estimate is obtained by considering the electron-electron elastic 
(Möller) scattering. By using an angular acceptance in between 
0.05 and 3.09 radians, the total elastic cross section at 

√
s =

100 GeV is evaluated to be about 72 nb. For a minimum im-
pact parameter of 10−18 m at the same energy, the probability for 
black hole production based on Eq. (13) yields P B H � 7 × 10−14, 
based on the assumption that the positional spread of each elec-
tron wave function in its rest frame is larger than the related 
Compton wavelength. The corresponding cross-section, due to the 
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Fig. 6. Impact of the Yukawa potential on the kinematics of electron-electron collisions. On the left, a close-up of the collision region for a sample of nine collisions in 
the case of purely Coulomb interaction (black, thicker lines) and the same collisions with the Coulomb interaction plus a Yukawa attractive interaction with strength ten 
times the Coulomb interaction and range of λ = 0.5 (red, thinner lines). The geometrical center of the collisions is evidenced by a dot. Notice that the presence of the 
Yukawa interaction leads, with respect to the corresponding trajectories in the presence of the pure Coulomb repulsion, to softer deflection angles and a smaller distance 
of approach between the two electrons. On the right, the distribution of the change in the scattering angle, measured with respect to the x-axis, due to the presence of 
the Yukawa potential, 	θ = θY − θC , is evaluated in the case of a simulation with 104 collisions for the same parameters used in the plot on the left. The presence of 
negative values is due to trajectories, as in the top-left quadrant in the left panel, in which the Yukawa trajectory occurs at a smaller angle with respect to the Coulomb 
one. A more representative plot is depicted in the inset, which shows the distribution of the difference between the absolute values of the tangents of the related angles, 
| tan θY | − | tan θC |. The asymmetry present in the 	θ distribution originates from the convolution with the horizontal spreading of the initial conditions visible, for instance, 
in the left figure with a trajectory originating from a smaller distance from the center in the bottom-left section.
minuscule branching ratio, is therefore simply the product of the 
elastic cross-section and the black hole production probability, i.e.
σB H ∼ 5 × 10−12 nb, i.e. 12 orders of magnitude smaller than the 
probability expected on the basis of the hoop conjecture. Notice 
that the probability for black hole production is proportional to 
the square of the Schwarzschild radius which, in turn, is propor-
tional to the relativistic γ factor. This probability scales as the 
square of the energy of the electrons, while the elastic cross sec-
tion scales with its inverse. Therefore, the absolute cross section 
for black hole production is expected to be independent of energy, 
and higher energies will make the corresponding branching ra-
tio higher, therefore increasing the signal-to-background ratio with 
respect to the uninteresting elastic collisions, until it reaches the 
unitarity limit, i.e. a branching ratio of 100 %, as in the toy model 
example in Fig. 5.

Notice that the cross-section can be also evaluated keeping in 
mind that the interaction potential is Coulomb-like at both large 
impact parameters (coinciding in the case with the Coulomb po-
tential) and at very small impact parameters (smaller than the 
Yukawa range). In an intermediate region, the potential is ade-
quately approximated by a linear and a quadratic term, which 
satisfy the Ehrenfest theorem. Therefore, as far as elastic processes 
are considered, classical cross-sections “a là Rutherford” are ade-
quate. This also ensures a protection from genuine quantum effects 
and justifies the robustness of the EGD technique. In the con-
text of a comprehensive analysis, checking for quantum corrections 
will be important [38–40], including the probabilistic nature of the 
event horizon as already discussed, in a one-dimensional and non-
interacting setting, in [41–43].

In a concrete experimental proposal one should also take into 
account that, at the energies of interest, Z 0 exchange will super-
impose to photon exchange [44], but we do not expect the picture 
to change significantly at least below the electroweak breaking 
symmetry scale. Above this scale, we expect the unified running 
coupling constant to decrease, therefore partially mitigating the re-
pulsive effect. In the regime of extremely high energies not yet 
available, the presence of asymptotic freedom for the unbroken 
non-Abelian gauge group of the electroweak model will allow for 
cross sections closer to the geometrical estimate based upon the 
hoop conjecture. Analogous considerations can be carried out for 
hadronic collisions, in which the simultaneous presence of color 
and electromagnetic interactions, at least for the quark degrees 
of freedom, complicates the analysis, as we plan to discuss in 
the future. Also, high-energy elastic scattering will be affected 
by radiative corrections due to the emission of hard photons via 
bremsstrahlung. This effect will be mitigated in a μ+μ− collider.

6. Conclusions

Bounds to production of black holes in hadronic collisions as 
discussed in [11–14] rely upon the hoop conjecture, which is of 
purely geometrical nature and therefore does not include the ef-
fect of interactions between the colliding particles. We have dis-
cussed the impact of interactions in the more controllable case of 
electron-electron collisions for a model of strong gravity living in 
four dimensions and including the effect of the Higgs field at the 
attometer scale. We have derived an analytical expression for the 
probability of black hole formation, and benchmarked its validity 
with numerical simulations and controlled semiclassical approxi-
mation schemes. The presence of Higgs-induced strong gravity is 
not enough to significantly offset the suppression in cross-section 
due to the Coulomb repulsion. This result does not immediately 
impact the bounds discussed at the LHC since hard collisions be-
tween quarks will be mainly dominated by gluon exchange, of 
attractive character, at odds with the repulsive character of the 
same-charge electrons discussed here. Nevertheless, we envision 
possible bounds to black hole production in a more pristine en-
vironment once the new generation of leptonic colliders, either 
e+e− or μ+μ− , will be operational, by simply converting the e+
or μ+/μ− beams to the opposite charge lepton, a rather simple 
modification at least for linear colliders [45], complementing the 
already planned physics based on the particle-antiparticle annihi-
lation s-channel [46].

Small impact parameters should be available through scattering 
between electrically neutral fundamental particles, such as high 
energy photons produced from e+e− beams [47]. Also, a neutrino-
neutrino collider seems in this regard an appealing, though un-
conventional, possibility. The extremely small mass and the corre-
sponding small Schwarzschild radius even in strong gravity scenar-
ios could be compensated by considering very high energy neutri-
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nos, such as those expected from already planned muon colliders. 
The background to the process, consisting of particle production 
via neutrino annihilation into Z 0 bosons, is rather clean, but the 
strongest limitation will be set by the event statistics.
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