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Algebraic cubature on polygonal

elements with a circular edge
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Abstract

We ccompute low-cardinality algebraic cubature formulas on convex or
concave polygonal elements with a circular edge, by subdivision into cir-
cular quadrangles, blending formulas via subperiodic trigonometric Gaus-
sian quadrature and final compression via Caratheodory-Tchakaloff sub-
sampling of discrete measures. We also discuss applications to the VEM
(Virtual Element Method) in computational mechanics problems.

2010 AMS subject classification: 65D32, 65N30.

Keywords: algebraic cubature formulas, curved polygonal elements, cubature com-

pression, Caratheodory-Tchakaloff subsampling, VEM (Virtual Element Method).

1 Introduction

The problem of efficient numerical integration over polygons has been object of
great interest during the last fifteen years, mainly due to the developement and
expansion of polygonal/polyhedral finite element models and methods; cf., with
no pretence of exhaustivity, [2, 23, 25, 28, 29, 30, 37, 41, 42] with the references
therein. On the other hand, the case of polygons with possible curved edges has
also emerged in recent years, for example in connection with the VEM (Virtual
Element Method), cf., e.g., [13, 14, 15].

In this paper, we consider a particular situation of interest in computational
mechanics, namely the construction of algebraic cubature formulas, i.e. exact
formulas on bivariate polynomials up to a given total degree, with low cardinality
on polygonal elements with a circular edge. Convex as well as concave curved
polygonal elements may appear by polygonal discretization, the concave ones
typically in the presence of circular holes, and both kinds for example with a
fibre-reinforced composite material; see Figures 1 and 4, and Figures 2 and 6.

We postpone to section 3 some introductive notions and technical consider-
ations about the VEM. We only sketch here the computational approach for the
construction of low-cardinality cubature formulas on polygonal elements with
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a circular edge, which is essentially a discrete moment-matching technique, fol-
lowed by a suitable compression stage.

The first step, described in subsections 2.1 and 2.2, consists of the element
subdivision into “circular quadrangles” (possibly degenerating into asymmetric
circular sectors), followed by the computation of product-like Gaussian quadra-
ture on each quadrangle via arc blending and Gaussian quadrature on circular
arcs (subperiodic trigonometric Gaussian quadrature, cf. [21, 22, 45]). Then, a
final algebraic cubature formula for the curved element is immediately obtained
by finite union, collecting together all the nodes and respective positive weights.

The second key step, discussed in subsection 2.3, is the compression of the
overall formula on the element into a low-cardinality one, still with positive
weights and keeping the polynomial exactness degree, by the Caratheodory-
Tchakaloff subsampling methods for discrete measures discussed in [31, 39].
Numerical examples concerning applications to the VEM implementation in
the framework of computational mechanics are discussed in detail in section 3.

We stress that, differently from other cubature approaches available in the
literature (cf., e.g., [13, 38]), with the present specific element geometry we are
able to provide low-cardinality cubature formulas that have in any case internal
nodes, positive weights and guaranteed polynomial exactness.

2 Cubature construction

We shall consider an integration domain, say Ω with vertices P1, . . . , P`, ` ≥ 2
(counterclockwise ordered), obtained from a convex polygon, say P with the
same vertices, where the straight edge joining P` and P1 is substituted by an

arc P̆`P1 of a circle with center C and radius r (with no other intersection
with the straight edges). Domains of this form are for example obtained by
intersection or set difference of convex polygons with an overlapping disk, when
the boundary circle intersects the polygon boundary at only two points. This
is a typical situation with suitable polygonal meshes in the presence of holes, as
we shall see in the application to the VEM.

When ` = 2, the domain turns out to be a circular segment (one of the two
portions of a disk cut by a straight line), when ` = 3 is a generalized circular
sector, while when ` = 4 is more generally a circular quadrangle. Our aim
is to describe Ω when ` ≥ 4 as a partition into circular quadrangles, possibly
degenerating in generalized circular sectors or circular segments, and at most
two convex polygons.

2.1 Domain subdivision

The simplest case is that of a convex edge P̆`P1 (i.e. the curved edge is outside
the convex polygon P), since the domain is simply the nonoverlapping union of
P with a circular segment, say S, see e.g. Figure 1. Observe that in general the
domain could even be globally nonconvex.

The case of a concave edge (i.e. P̆`P1 is inside P) turns out to be more
complicated. Let (rk, θk) be the polar coordinates (with respect to the circle
center C) of the points Pk, for k = 1, . . . , `, where r1 = r` = r and [θ1, θ`] ⊂
[0, 2π). It is not restrictive to assume θ1 < θ` otherwise one simply rotates the
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Figure 1: Example of domain Ω with a convex edge and its partitioning (` = 7).

domain so to satisfy this requirement. Observe that such a domain is always
concave by construction.

We subdivide the vertices as follows:

(i) {P1, . . . , P`1} are consecutive vertices, whose polar angles are not in the
open interval (θ1, θ`);

(ii) {P`1+1, . . . , P`2−1} are consecutive vertices of the polygon P, whose polar
angles are in (θ1, θ`);

(iii) {P`2 , . . . , P`} are consecutive vertices of the polygon P, whose polar angle
are again not in (θ1, θ`), with `1 < `2.

This partitioning of the vertices can be easily understood in Figure 2.

Figure 2: Example of domain Ω with concave edge and its partitioning (`1 = 1,
`2 = 7, ` = 9). In particular the only polygon of this partition is the triangle
with vertices P7, P8, P9.

We observe that there can be many particular cases, for instance the sets (i)
or (iii) may reduce to a singleton, or the set of vertices (ii) may be empty. In
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spite of this, the partition into (at most two) polygons and circular quadrangles,
possibly degenerating in generalized circular sectors, is always possible.

Indeed, consider first the set of vertices (ii). If this is not empty, define P ∗k ,
k = `1 + 1, . . . , `2− 1, as the intersection point between the circular arc and the
straight line passing between C and Pk. Alternatively, one can think of P ∗k as
the point on the circular arc with the same polar angle θk of Pk (with respect
to the circle center C). As a first step, one defines the circular quadrangles
Qk, k = `1 + 1, . . . , `2 − 2, whose boundary is defined by the segments P ∗kPk,

PkPk+1, Pk+1P ∗k+1, and the subarc ˚�P ∗k+1P
∗
k .

As further step one considers the circular quadrangles

• Q`1 (possibly reducing to a circular sector or even to a segment), whose
boundary is defined by the segments P1P`1 , P`1P`1+1, P`1+1P ∗`1+1, and

the subarc ¸�P ∗`1+1P1;

• Q`2 (again possibly reducing to a circular sector or even to a segment),
whose boundary is defined by the segments P ∗`2−1P`2−1, P`2−1P`2 , P`2P`,

and the subarc ¸�P`P ∗`2−1.

We finally observe that the (closure of the) set Ω \
⋃`2
k=`1
Qk consists of (at

most) two convex polygons.

Figure 3: Example of domain Ω (concave case) where the set of vertices (ii) is
empty, and its partitioning. Here, `1 = 4, `2 = 5, ` = 7.

Alternatively, suppose that the set of vertices (ii) is empty; see Figure 3. In
this case `2 = `1 + 1 and we simply define Q`1 = Q`2−1 the circular quadrangle
(possibly reducing to a generalized circular sector) whose boundary is defined

by the segments P1P`1 , P`1P`1+1, P`1+1P`, and the entire arc P̆`P1. Again, the
(closure of) the set Ω \ Q`1 consists of (at most) two convex polygons.

Remark 1 We note that, though our initial assumption is that the polygonal
domain P is convex (as for example the elements generated via Voronoi tessel-
lations), the case of a nonconvex P could be treated by preliminary splitting into
nonoverlapping convex polygons; cf., e.g., the simple algorithm in [26].
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2.2 Algebraic cubature by arc blending

In the previous section we have shown that in the case of a convex circular edge,
the integration domain Ω can be partitioned into into a convex polygon P and
circular segment S. In the more difficult case of a concave circular edge, the
domain can be partitioned into a certain number of circular quadrangles, say
{Qk} (possibly generalized circular sectors) and (at most) two convex polygons,
say P1, P2.

Thus, if we intend to obtain a cubature rule with algebraic degree of exact-
ness ADE = n on Ω, i.e.∫∫

Ω

p(x, y) dxdy =

Mn∑
i=1

wi p(xi, yi) , ∀p ∈ P2
n , (1)

where P2
n denotes the space of bivariate polynomials of total degree not exceed-

ing n, by the additivity of integrals, it is sufficient to find formulas with the same
property on polygons and circular quadrangles. Observe that generalized circu-
lar sectors are a special degenerate case of circular quadrangles, where the edge
opposite to the curved one collapses into a point. Similarly, circular segments
are special circular quadrangles where the opposite straight edges collapse into
points.

In particular, if we are able to determine formulas with Positive weights and
Interior nodes for both polygons and circular quadrangles, then one with the
same features is available on the whole Ω collecting together nodes and weights
of the partition pieces; we shall adopt the usual acronym PI for such formulas.

Concerning polygons, though a number of cubature methods are available in
the literature (we have already given a partial list in the Introduction), we have
followed the approach implemented by the codes in [36]. Since the relevant
polygons are convex, they can be easily partitioned into a minimal number
of triangles (two less than the number of edges), simply by taking triples of
consecutive vertices. Then, it is sufficient to compute a PI cubature formula
with ADE = n in each triangle, taking a formula of this type for the simplex
and using barycentric coordinates.

Well-known examples are Stroud’s formulas whose cardinality is (n+ 1)2/4
for odd n, but if available, one can use formulas attaining Möller’s lower bound,

namely νn = dim
Ä
P2
dn/2e

ä
(the so called minimal formulas). Minimal formulas

on the simplex are known for example for n = 1, 2, 3, 4, 5, 7 and have respectively
1, 3, 4, 6, 7, 12 nodes; cf., e.g., [19, 20] with the references therein. Alternatively,
one could resort to several near-minimal formulas for the simplex obtained in the
literature, whose cardinality is close to the lower bound; cf. [36] for a collection
of minimal and near-minimal formulas up to degree 50.

Turning to circular quadrangles, a PI cubature formula with ADE = n can
be obtained adapting some arguments in [21], that rely on the basic concepts of
subperiodic trigonometric Gaussian quadrature and circular arc blending. In the
following, we shall denote by Pn, Tn the univariate algebraic and trigonometric
polynomials of degree not exceeding n, respectively.

Indeed, the basic observation is that a circular quadrangle Q can be written
as a bilinear algebraic-trigonometric transformation of a rectangle, namely

Q = {(x, y) = σ(t, θ) = tP (θ) + (1− t)Q(θ) , (t, θ) ∈ [0, 1]× [α, β]} , (2)
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where in general P (θ) and Q(θ) are parametric curves with trigonometric com-
ponents of degree 1, namely

P (θ) = A1 cos(θ) +B1 sin(θ) + C1 , Q(θ) = A2 cos(θ) +B2 sin(θ) + C2 , (3)

with θ ∈ [α, β], β − α ≤ π, and Ai, Bi, Ci ∈ R2, i = 1, 2. We can call this
transformation a “linear blending of subperiodic arcs”, since the angles belong
to a subinterval of the period. Several sections of a disk and other domains
related to circular (or even elliptical) arcs can be obtained by a transformation
of this kind, cf. [21, 22].

In the present context, let us call Vi = (ξi, ηi), i = 1, 2, 3, 4 the consecutive

vertices of the circular quadrangle (counterclockwise ordered), where V̄1V4 is a
circular arc of center C = (x0, y0) and radius r (the other edges being straight
segments), and let α, β be respectively the polar angles of V1 and V4 (with
respect to C). Then, assuming β − α ≤ π and setting s = sin(β−α2 ) and
φ = (β + α)/2, it is easily seen that a circular quadrangle is obtained by the
transformation (2)-(3) with

A1 = (r, 0) , B1 = (0, r) , C1 = C = (x0, y0) ,

A2 = − sin(φ)

2s
(V3 − V2) , B2 =

cos(φ)

2s
(V3 − V2) , C2 =

1

2
(V3 + V2) . (4)

The first row of the formula above corresponds to the polar representation of the

circular arc V̄1V4, and the second row to a bijective trigonometric representation
of the segment V2V3 via the same interval [α, β], as (V3 + V2)/2 + τ(V3 − V2)/2,
τ ∈ [−1, 1], with τ = sin(θ − φ)/s = [sin(θ) cos(φ)− cos(θ) sin(φ)]/s, θ ∈ [α, β].

Now, as observed in [21], the transformation σ is injective whenever the
curves parametrized by P (θ) and Q(θ), as well as any two segments tP (θ1) +
(1− t)Q(θ1), tP (θ2) + (1− t)Q(θ2), θ1, θ2 ∈ [α, β], can mutually intersect only
at an endpoint. Notice that this property holds for the circular quadrangles
relevant to the present paper (cf. Figures 2-3), due to the geometric structure
of the curved polygonal element Ω. Then the Jacobian det(Jσ) has constant
sign in the interior of Q and we can write for any p ∈ P2

n∫∫
Q
p(x, y) dxdy =

∫∫
[0,1]×[α,β]

p(σ(t, θ)) [±det(Jσ(t, θ))] dtdθ , (5)

depending on the Jacobian sign, where

(p ◦ σ) [±det(Jσ)] ∈ Pn+1 ⊗ Tn+2 , (6)

since (p ◦ σ) ∈ Pn ⊗ Tn and det(Jσ) ∈ P1 ⊗ T2.
Such a tensorial structure suggests to use a product quadrature, via algebraic

Gaussian quadrature, provided that a good trigonometric quadrature formula
is also available on subintervals of the period. This is indeed the case, by the
following proposition on subperiodic trigonometric Gaussian quadrature, proved
in [22] and used for example in [21].

Proposition 1 Let {(ξj , λj)}, 1 ≤ j ≤ k+ 1, be the nodes and positive weights
of the algebraic Gaussian quadrature formula for the weight function

w(x) =
2 sin(ω/2)»

1− x2 sin2(ω/2)
, x ∈ (−1, 1) , ω ∈ (0, π] . (7)
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Then for 0 < β − α ≤ 2π the following trigonometric Gaussian quadrature
formula holds ∫ β

α

f(θ) dθ =
k+1∑
j=1

λj f(θj) , ∀f ∈ Tk , (8)

where setting ω = (β − α)/2 and φ = (β + α)/2

θj = φ+ 2 arcsin(ξj sin(ω/2)) , 1 ≤ j ≤ k + 1 . (9)

We can now state the following proposition on the construction of a product
Gaussian-like formula on circular quadrangles, whose proof is an easy conse-
quence of Proposition 1 and (5)-(6), cf. [21] for the general blending case.

Proposition 2 Let Q be a circular quadrangle of the form (2)-(4), where the
transformation σ is injective. Then

∫∫
Q
p(x, y) dxdy =

n+2∑
j=1

dn+1
2 e∑
i=1

Wij p(xij , yij) , ∀p ∈ P2
n , (10)

where

(xij , yij) = σ(tGL

i , θj) , 0 < Wij = |det(Jσ(tGL

i , θj))|wGL

i λj , (11)

{(θj , λj)} being the angular nodes and weights of the trigonometric Gaussian
formula of degree of exactness n + 2 on [α, β] and {(tGL

i , w
GL
i )} the nodes and

weights of the Gauss-Legendre formula of degree of exactness n+ 1 on [0, 1].

We have implemented the cubature formula (10)-(11) by the Matlab functions
trigauss and gqellblend (trigonometric Gaussian quadrature and cubature
via arc blending, respectively), that are available at [45]. Observe that the
cardinality of such a formula is (n+ 2)dn+1

2 e = n2/2 +O(n).

Figure 4: Convex and concave edge polygonal elements of Figures 1-2 with
basic cubature nodes by splitting and arc blending (91 and 223 small dots,
respectively), and compressed Caratheodory-Tchakaloff nodes (28 small circles),
for ADE = 6.
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2.3 Caratheodory-Tchakaloff cubature compression

In this subsection we show how a PI cubature formula with ADE = n and a
cardinality greater than

N = Nn = dim
(
P2
n

)
=

Ç
n+ 2

2

å
=

(n+ 1)(n+ 2)

2
(12)

can be compressed into a formula with the same properties, whose nodes are a
re-weighted subset of the original ones with cardinality not exceeding N . We
focus here on the bivariate discrete case, recalling however that this result is valid
in full generality for any discrete or continuous measure in any dimension, by
the celebrated Tchakaloff’s theorem; cf., e.g., [33]. We give below the main lines
of the construction, following [31] where the general case of discrete measures
in any dimension is treated.

Consider an algebraic cubature formula like (1) on a domain Ω ⊂ R2, with
M = Mn > N , where X = {(xi, yi)} is the set of Mn nodes and w = {wi}
the array of positive weights. Let {p1, . . . , pN} be a basis of P2

n and define the
corresponding Vandermonde-like matrix

V = Vn(X) = [vij ] = [pj(xi, yi)] ∈ RM×N . (13)

Then, looking for a PI cubature formula whose support is a subset of X, is
equivalent to finding a sparse solution with less than M nonzeros, of the under-
determined moment matching system with nonnegativity constraints

V tu = b = V tw , u ≥ 0 . (14)

Now, by the celebrated Caratheodory’s theorem on finite-dimensional conic com-
binations [18], applied to the columns of V t, we know that such a sparse nonneg-
ative solution exists (not necessarily unique) and that the number of nonzeros
does not exceed N . If u is any such solution, calling {ik}, 1 ≤ k ≤ m ≤ N < M ,
the indexes such that uik 6= 0, we have∫∫

Ω

p(x, y) dxdy =
M∑
i=1

wi p(xi, yi) =
m∑
k=1

uik p(xik , yik) , ∀p ∈ P2
n . (15)

In view of the theoretical tools, following [31] we may call the resulting cubature
formula a Caratheodory-Tchakaloff (CATCH) compressed cubature formula.

The computation of Caratheodory-Tchakaloff cubature formulas (or cuba-
ture measures under a more probabilistic point of view) has been object of
some attention in the recent numerical literature; cf., e.g., [31, 39, 44] with the
references therein. Two main approaches have been pursued. Notice that the
problem does not fall readily in the class solvable by the most usual compressed
sensing techniques, such as the well-known Basis Pursuit [24], which work on
`1-norm minimization, because by construction here the `1-norm of the weights
is constant, namely ‖w‖1 = ‖{uik}‖1 = area(Ω).

A first one is a Linear Programming approach, consisting in solving via the
simplex method ß

min ctu
V tu = b , u ≥ 0

(16)
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where the constraints identify a polytope in RM (the feasible region, which is
nonempty since b = V tw) and the vector c is chosen to be linearly independent
from the rows of V t, so that the objective functional is not constant on the
polytope. As known the simplex method computes a vertex of the poytope,
that has at least M −N vanishing components.

A second approach is based on Quadratic Programming, requiring the solu-
tion of the NonNegative Least Squares (NNLS) problem

compute u∗ : ‖V tu∗ − b‖2 = min
u≥0
‖V tu− b‖2 , (17)

where u∗ can be determined by the well-known Lawson-Hanson active set opti-
mization method [27], that computes a sparse solution to (17). Several versions
of the Lawson-Hanson method are available in Matlab. One is the built-in func-
tion lsqnonneg, while an open-source version is downloadable from the package
NNLSlab [35]. Other versions require the use of MEX files and will not be
used here. Our numerical experience has shown that for moderate degrees (say
n ≤ 20), which are the target of the applications in the present paper, the resid-
ual ε = ‖V tu∗−b‖2 is always around machine precision and the NNLS approach
turns out to be more efficient than the LP approach.

We have applied Caratheodory-Tchakaloff compression to the basic cubature
formula on polygonal elements with a circular edge, obtained via splitting of the
element into circular quadrangles and polygons, as discussed in the previous
subsections. The same compression technique can also be applied to standard
polygonal elements with straight edges appearing in FEM/VEM applications
(see Figure 5 and 7 below), cf. [10]. As polynomial basis, in order to avoid the
extreme ill-conditioning of Vandermonde matrices arising for example with the
standard monomial basis, we have chosen the total-degree product Chebyshev
basis of the smallest Cartesian rectangle containing the element.

To give an idea of the performance of the method with degrees of exactness
suitable to FEM/VEM applications, we present the following table, where we
have collected the cputimes for the construction of the basic formula and of
the compression phase on the convex and concave curved polygonal elements
of Figure 4, for ADE = n = 2, 4, 6. The numerical tests tests have been
performed in Matlab R2017b on a 2.7 GHz Intel Core i5 with 16GB 1867MHz
DDR3 memory.

The results are encouraging, in view of large-scale applications. For example
in the concave element test case (9 edges) at degree n = 6, the basic formula
with 223 nodes and its compression into 28 nodes are constructed with a total
cputime in the order of milliseconds.

3 VEM benchmarks (computational mechanics)

The present section is devoted to the application of the proposed cubature for-
mula for curved polygons to the solution of two benchmark problems stemming
from computational mechanics with the Virtual Element Method (VEM). The
VEM has been recently introduced [14, 15] as a generalization of the Finite
Element Method for the approximation of partial differential equations. It is a
Galerkin method which presents numerous interesting features, many of which
are not feasible in a standard FEM context. In particular, the VEM method
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Table 1: Average cputimes (seconds) for the computation of the basic cubature
formula and of the Caratheodory-Tchakaloff (CATCH) compressed cubature
formula on the polygonal elements of Figure 4.

degree n 2 4 6
CONVEX edge
cputime BASIC 1.2e-3 s 1.2e-3 s 1.2e-3 s
cputime CATCH 8.0e-4 s 9.0e-4 s 2.0e-3 s
cputime total 2.1e-3 s 2.1e-3 s 3.2e-3 s

CONCAVE edge
cputime BASIC 4.6e-4 s 4.7e-4 s 4.8e-4 s
cputime CATCH 4.5e-4 s 1.6e-3 s 2.5e-3 s
cputime total 9.1e-4 s 2.1e-3 s 3.0e-3 s

can deal with complex domain geometries via general polytopal meshes, which
allow for hanging nodes, efficient local mesh refinement, adaptivity, and, as it
will be made clear in the following, curvilinear polygons. Although approxi-
mation spaces are not known explicitly for a VEM method, they can be built
so to fulfill internal constraints, high continuity requirements and, in general,
as the solution of particular PDEs systems. All in all, the VEM can represent
an interesting alternative from the standard FEM in many mathematical and
engineering applications.

In regard to linear elasticity problems, where VEM has been already applied
in numerous situations [11, 12, 17, 25], in the present investigation, attention will
be given to a newly proposed version of the method, which is capable of using
general polygons with curved edges [13]. The interest towards this particular
capability resides in the fact that problems posed on curved physical domains
can be approximated annihilating the geometric rectification error on curvilinear
domain boundary portions, while the same does not hold true with standard
straight-edge finite element approximations. Moreover, curved virtual elements
are shown to have optimal rate of convergence and higher accuracy with respect
to straight-edge VEM.

Motivated by the above mentioned facts, and to prove applicability of our
cubature formula in structural analysis simulations, we present a selected nu-
merical campaign with curved virtual elements adopting the proposed cubature
scheme. As previously stated, a key feature of this formula is that it grants all
interior nodes and all positive weights, regardless of curved edge convexity. The
latter is a remarkable feature for solid and structural mechanics applications,
especially when dealing with material nonlinearity [5], as, typically, cubature
node locations are connected to the evaluation of constitutive properties for the
material body under investigation and hence need be interior to it for their
evaluation to make sense.

In the following two sections, details on problem formulation, VEM dis-
cretization and result post-processing for the two investigated cases are omitted
for brevity, as they can be found in [43, 4], and in [6, 3], respectively.
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Figure 5: Infinite plate with hole. Left: geometry, boundary conditions, loading
for the computational domain. Right: representative Voronoi tessellation for
VEM analysis.

3.1 Infinite plate with circular hole

The first benchmark is an infinite plate with a central circular hole under uni-
form unit traction along horizontal x direction. The exact solution of this prob-
lem, in polar coordinates, can be found in [43].

Fig. 5 shows the finite computational domain exploiting double symmetry,
in which a square domain with a circular hole, with radius R = 1, is considered
assuming a side-to-radius ratio of 5. Plane stress conditions are invoked. Ma-
terial properties are chosen as: Young’s modulus E = 105 units and Poisson’s
ratio ν = 0.3. Tractions corresponding to the analytical solution are applied
on the right and top edges, while Dirichlet homogeneous symmetry boundary
conditions are applied on the left and bottom edges [43].

Resorting to a Voronoi polygonal tessellation, as depicted in Fig. 5, an ac-
curacy and convergence rate study with quadratic VEM is carried out. Starting
from an initial ad-hoc mesh with appropriate refined elements around the circu-
lar hole and comprising polygons having each a curved circular edge, we plot the
L2 relative error norm for the Cauchy stress, considering uniform mesh refine-
ments. As it can be observed in Fig. 6, the VEM structural analysis adopting
curved polygons in conjunction with the proposed cubature formula shows op-
timal convergence rate and excellent accuracy levels. A further remark in favor
of the proposed approach is that the convergence rate O(h2

E), as reported in
Figure 8, is correctly obtained due to the fact that the geometric parametriza-
tion of the circular boundary of the fibre is exactly taken into account by the
curvilinear VEM formulation, while it is known (see [13, 7] for instance) that
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Figure 6: Infinite plate with hole. L2 error norm for the Cauchy stress vs mesh
size hE for k = 2 VEM approximation.

only a suboptimal rate would be expected with a standard (i.e. straight-edge)
VEM-like (or FEM-like) approach with piecewise linear geometry parametriza-
tion of the curve; the same issue would hold for k = 2, yielding a suboptimal

O(h
3/2
E ) error behavior in the same norm.

3.2 Fibre-reinforced composite material (homogeneization)

The second benchmark is related to a classical problem from constitutive mod-
eling of advanced materials, namely computational homogenization for fibre-
reinforced composite materials. In the realm of asymptotic homogenization
theory [16, 34], the case under investigation refers to doubly periodic arrays of
straight parallel circular fibre-like inclusions embedded into a surrounding ma-
trix, both made of homogeneous isotropic linear elastic material. Theoretically,
the above mentioned problem is posed on the so called unit cell domain as a
secord order elliptic problem with possibly highly oscillating coefficients and
periodicy Dirichlet buoundary conditions for the cell function χ [6].

For such a composite, homogenized or equivalent in-plane shear moduli can
be deduced resorting to a closed form solution method proposed in [6], which will
serve as a reference for accuracy ascertainment purposes. A numerical tool in
this regard is nonetheless of the uttermost importance, because it can deal with
material/geometric arrangements and setups for which closed-form solutions
of the homogenization problem are not available. Given the particular domain
under consideration, the choice of a curved edge VEM approach seems naturally
appropriate, aiming at calibration and accuracy assessment of the methodology,
and granting a broader range of applicability than periodically arranged purely
linear elastic constituents [1].

Without addressing explicitly the numerical approximation of the homog-
enization problem at hand (the interested reader may find detailed treatment
in [3, 1]), we will consider a representative material setup with fibre-to-matrix
shear moduli ratio of 50 and perfect interfaces [6]. The discrete domain consists
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(a) (b) (c)

Figure 7: Asymptotic homogenization. Parallelogram unit cell with circular
inclusion (vf = 0.5.) Representative mesh types. (a) Tri-mesh. (b) Voro-mesh.
(c) Quad-mesh
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Figure 8: Asymptotic homogenization. H1 error norm vs mesh size hE for k = 2
and k = 3 VEM approximations of the homogenization problem.

of a simple polygonal mesh of the unit cell which in the present case is a paral-
lelogram with equal unit sides incorporating a centered circular inclusion as can
be seen in fig. 7, where three types of meshes are pictured, namely triangles,
quadrilaterals and Voronoi polygons. Quadratic and cubic VEM approximation
spaces are here adopted for each mesh, and h-convergence is assessed in terms of
H1 relative error norm for the cell function with respect to the analytical one.
As in the previous case, polygons adjacent to fibre-matrix interface have a cir-
cular edge, hence they are processed using the presented cubature scheme. As it
can be deduced from Fig. 8, all the tested schemes behaves as predicted in terms
of convergence rates, with a slight edge in favor of square mesh discretizations
for what concerns accuracy.
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4 Conclusion

We have constructed low-cardinality algebraic cubature formulas for convex or
concave polygonal elements with a circular edge, arising by element intersec-
tion or difference with a disk. These situations are typical of computational
mechanics models, where convex elements have to be interfaced with a circular
inclusion or a circular hole, as discussed above.

It should be stressed that the cubature formulas can be extended to the
more general case of elliptical inclusions or holes, that are of great interest in
computational mechanics where using classical FEM approaches necessarily im-
plies a rectification error [46, 32] which can significantly affect solution accuracy,
whereas it is proved that curvilinear VEM, avoiding such inconvenience, grant
superior accuracy at a lower computational cost [7].

Indeed, by an invertible affine transformation (more precisely a roto-translation
followed by axes scaling) an ellipse is mapped onto a disk and convex polygonal
elements onto elements which remain convex and polygonal. Then we can use
the cubature machinery for the circular case and get a formula for the elliptical
case by the corresponding change of variables (a Matlab package including the
elliptical case is in preparation [8]).

Following current trends in VEM implementations, it is also of great in-
terest the possibility of using general elements with more than one or even all
curved edges, not necessarily circular (or elliptical). These cases have been clev-
erly treated in the recent VEM literature, renouncing however to polynomial
exactness, cf. [13]. The construction of algebraic cubature formulas on such el-
ements is another of our future goals, as an application of a general approach to
low-cardinality algebraic cubature on Jordan domains with a piecewise regular
boundary, approximated to high precision by spline curves (spline curvilinear
polygons, [40]).
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