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Some properties of local weighted second-order statistics for
spatio-temporal point processes

Giada Adelfio, Marianna Siino, Jorge Mateu and
Francisco J. Rodriguez-Cortés

Abstract Diagnostics of goodness-of-fit in the theory of point processes are often
considered through the transformation of data into residuals as a result of a thinning
or a rescaling procedure. We alternatively consider here second-order statistics com-
ing from weighted measures. Motivated by Adelfio and Schoenberg (2009) for the
temporal and spatial cases, we consider an extension to the spatio-temporal context
in addition to focussing on local characteristics. In particular, our proposed method
assesses goodness-of-fit of spatio-temporal models by using local weighted second-
order statistics, computed after weighting the contribution of each observed point by
the inverse of the conditional intensity function that identifies the process. Weighted
second-order statistics directly apply to data without assuming homogeneity nor trans-
forming the data into residuals, eliminating thus the sampling variability due to the use
of a transforming procedure. We provide some characterisations and show a number
of simulation studies.

Keywords K-function - Local properties - Residual analysis - Second-order
characteristics - Spatio-temporal point patterns

1 Introduction

Spatial, temporal, and spatio-temporal point processes, and in particular Poisson pro-
cesses, are stochastic processes that are largely used to describe and model the dis-
tribution of a plethora of real phenomena, such as, and to name just a few, seismic
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events, epidemic diffusions, the distribution of pathologies as a function of pollution
sources, traffic accidents on roads, tornado events, etc.

When a model is fitted to a set of random points, observed in a given subset of
R?, d > 1, diagnostic measures are necessary to assess the goodness-of-fit and to
evaluate the ability of that model to describe the random point pattern behaviour.
Although for temporal point processes several diagnostic tools have been already
introduced, for the multidimensional case the literature is quite recent and somehow
scarce. The main problem when dealing with residual analysis for point processes is
to find a correct definition of residuals, since the one used in dependence models can
not be used for point processes.

A widely used approach considers a stationary Poisson residual process by ran-
domly rescaling (Meyer 1971; Schoenberg 1999) or thinning (Schoenberg 2003), and
investigates whether the second-order properties of the observed residuals are consis-
tent with those of the stationary Poisson process, as in Ogata (1988).

An alternative approach is to define a weighted second-order statistic, where es-
sentially to each observed point a weight inversely proportional to the conditional
intensity at that point is given. This method was adopted by Veen and Schoenberg
(2005) in constructing a weighted version of the spatial K-function of (Ripley 1977;
Veen 2006), although the spatial weighted analogue of Ripley’s K-function which was
first introduced by Baddeley et al. (2000).

There are often two steps involved in the diagnostic of goodness-of-fit in the theory
of point processes: the transformation of data into residuals (i.e. the result of a thinning
or a rescaling procedure Schoenberg (2003)), and the use of second-order statistics-
based tests to assess the consistency of the residuals with the homogeneous Poisson
process. For instance, an estimate of the autocorrelation function of residuals could
indicate the amount of dependence of data which is not described by the fitted model.

We note that Schoenberg (2003) shows how this type of rescaling and transforma-
tion for diagnostics could provide irregular boundaries, rendering difficult any com-
parison with a homogeneous Poisson process, considered as the benchmark model.

However, in general, assessing the consistency of observed points with homoge-
neous Poisson processes often constitutes only a starting stage of a more complex
analysis, necessary to build and fit a more realistic process. Considering a more gen-
eral point process model rather than the stationary Poisson is often more complicated,
but Zhuang (2006) considered this case for second-order residuals for various gen-
eral space-time branching processes such as the Epidemic-Type Aftershock Sequence
(ETAS) model.

A possible answer to considering more general process models comes from consid-
ering weighted measures, and we focus here on this alternative procedure, as proposed
in Adelfio and Schoenberg (2009) for the temporal and spatial cases. Motivated by this
paper, we consider here an extension of their proposal to the spatio-temporal context
in addition to focussing on local characteristics. In particular, our proposed method
assesses goodness-of-fit of spatio-temporal models by using local weighted second-
order statistics, computed after weighting the contribution of each observed point by
the inverse of the conditional intensity function that identifies the process.

Weighted second-order statistics directly apply to data without assuming homo-
geneity nor transforming the data into residuals, eliminating thus the sampling vari-
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ability due to the use of a transforming procedure. The probability used in the thinning
method to retain points are replaced here by weights in order to offset the inhomo-
geneity of the process, with the advantage to include all the observed points rather
than only the ones retained after the application of a random thinning. Moreover, this
method can be applied to processes of any dimension, provided the statistics can be
computed, and allows such second-order statistics to play a primary role in the di-
agnostic procedure, so that features such as clustering and inhibition can easily be
interpreted.

More in detail, we prove in this paper that some weighted second-order statistics
behave as the corresponding non-weighted ones of a homogeneous Poisson process
and, therefore, these statistics can be used as a diagnostic tool for a general set of
models defined on R¢.

In addition to the weighting scheme, we deviate from the existing methods in
that rather than using global characteristics, we introduce local tools, considering
individual contributions of a global estimator as a measure of clustering (Anselin
1995). Generally, as explained in Anselin (1995), the individual contributions to a
global statistic can be used to identify outlying components measuring the influence
of each contribution to the global statistic. Getis and Franklin (1987) introduce a
local version of the K-function to show that trees exhibit different heterogeneity when
examined at different scales of analysis. The notion of individual functions for L and G
statistics has been introduced in Stoyan and Stoyan (1994). Mateu et al. (2010) showed
that the local product density function (Cressie and Collins 2001) is more sensitive to
identify different local structures and unusual points than the local K-function. In Siino
et al. (2017) the authors extend local indicators of spatial association to the spatio-
temporal context (LISTA functions) based on the product density, and these local
functions have been used to define a proper statistical test for clustering detection.

In this paper, we extend the spatial weighting approach of Veen and Schoen-
berg (2005) to spatio-temporal local second-order statistics, proving that the weighted
second-order statistics behave as the corresponding non-weighted ones of a homoge-
neous Poisson process; departures suggest the unsuitability of the conditional intensity
function used in the weighting scheme. As for the regression analysis the residuals are
expected to be white noise if the null hypothesis model is correct, the white noise of
point processes is the homogeneous Poisson process; thus, similarly, the transforma-
tion of observed point patterns generates a homogeneous Poisson process if the null
hypothesis model is correct.

The plan of the paper is the following. Section 2 presents some basics of spatial
and spatio-temporal point processes with an emphasis on second-order characteristics.
We analyse by simulation the convergence of the estimated K-function to the normal
distribution. The construction of a weighted spatial process and its second-order prop-
erties come in Section 3. Here we also show some properties of the convergence to
a normal distribution of a weighted K-function. Section 4 presents our new proposal
focusing on a local space-time weighted version of the K-function. We show some
theoretical properties and a simulation exercise is developed in Section 5. The paper
ends with some final conclusions and a discussion.
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2 Point processes and second-order properties

A spatial point process is a stochastic process with realisations consisting of a finite or
a countably infinite set of points in the plane. If we additionally consider the temporal
occurrences for each spatially located event, we then have a spatio-temporal point
process. Throughout this paper, we use N for both a spatial and a spatio-temporal
point process, when no confusion arises. Point processes are introduced here by a
mathematical approach that uses the definition of a counting measure on a set X C
Rd,d > 1, with positive values in Z : for each Borel set B this Z -valued random
measure gives the number of events falling in B.

This section reviews some basic concepts related to point processes, reported to in-
troduce the notation used throughout the paper. For further elaboration and references,
we refer the reader to Daley and Vere-Jones (2003).

Definition 1 Point process (Cressie 1991)

Let (Q,47,P) be a probability space and @ a collection of locally finite counting
measures on X C R?. Define 2 as the Borel o-algebra of X and let.#” be the smallest
o-algebra on P, generated by sets of the form {¢ € & : ¢(B) =n} forallBe 2. A
point process N on X is a measurable mapping of (2, .7 ) into (P, .4"). A point process
defined over (2, .7, P) induces a probability measure IIy(Y) = P(N € Y),VY € 4.

Given a point process N defined on the space (X, Z") and a Borel set B, the number
of points N(B) in B is a random variable with first moment defined by

ax(B) = EIVB) = [ o(B)y(d9)

that is a measure on (X, 2"). The measure uy is called the mean measure or first
moment measure of N (Cressie 1991). The second moment measure of N is given by
2
17 (B > B) = EINEON(B)] = | 0(B)0(BTI(d9),

with By,B, € 2. If it is finite in 2~ ) the process is said to be of second-order.
Let ds and du be small regions located at s and u € X, and let £(-) be the Lebesgue
measure. The first-order intensity is defined by

. Hn(ds)
= 1
(s) [(d.lsr)n—>0 ¢(ds)

i
and the second-order intensity is given by

(2)
) — m M (ds x du)
el ) z(di) 0 {(ds)l(du)
{(du) —0

Consider now that N is a point process on a spatio-temporal domain X = R? x R,
whose realisations are events in the form of (z,). A fundamental tool is given by the
conditional intensity function, defined as

. EN(zz+dz) x 11+ di)| )]
Azt]0) = dinItILO {(dzdt) ’

(D
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where 77 is the space-time occurrence history of the process up to time ¢, i.e. the o-
algebra of events occurring at times up to but not including ¢; dt, dz are time and space
increments, respectively, and E[N([z,z+dz) x [t,t+dt)|5#])] is the history-dependent
expected value of occurrence in the volume {[z,z+dz) X [t +dt) }. The conditional
intensity function is a function of the point history and it is itself a stochastic process
depending on the past up to time ¢. Assuming the limit in (1) exists for each point (z,7)
in the space-time domain, and that the point process is simple, then the conditional
intensity uniquely characterises the finite-dimensional distributions of N (Daley and
Vere-Jones 2003). If the conditional intensity function is independent of the past
history, but dependent only on the current time and the spatial locations, (1) identifies
an inhomogeneous Poisson process. A constant conditional intensity characterises a
stationary Poisson process.

2.1 Second-order statistics for spatial and spatio-temporal point processes

The K-function (Ripley 1976) is a measure of the distribution of the inter-point dis-
tances and captures the spatial dependence of a point process. It is defined as the
expected number of further events within distance & of any given point divided by the
overall rate A, i.e.

K(8) = A~ 'E[n. of extra events within distance § of an arbitrary event], § > 0. (2)

Let N be a point process defined on A C R? and let {zi,...,z,} a realisation of
the process on A. A simple estimator of K(0) is defined by

A

LRI WHCELELTE
1 i#]

where A is the estimator of the overall intensity given by n/¢(A), i.e. the observed
number of events per unit area £(A) and I(-) is the indicator function. Stoyan and

Stoyan (2000) used A= "E?Af);) as an estimator of the squared intensity function, and
thus

o 20A) &
nn—1) Zl: jz‘;l

The properties of the K-function are well understood. Assume N is a homogeneous
Poisson process with rate A with values in the subset A of R? with finite area £(A),
and let the distances & between the (5) pairs of points be small compared with ¢(A).
Then, as the area £(A) tends to infinity (Cressie (1991), p.642)

N d 2 2182
R(5) 4N <77:5 M(A)) )

For data analysis, the variance stabilised K-function, called the L-function, is
generally used. The sample version of the L-function is defined as

1(8) = (1%(5) /n) 2
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For approximately homogeneous data, the L-function has expected value § and its
variance is approximately constant in §.

Moving towards local features, for a point z; of the spatial point pattern N, Getis
(1984) proposed

1:(8) = En(A) 21 22| < 8) = (12,'((*3)/”)1/2

( Hél
where
, 1
Ki8 1 i <5 5
(8)= ) ,; (Izi —2;| < 6) 5)

is the local version of the K-function. Getis (1984) proved that E(L;(8)) = 8.

Second-order properties are also used to analyse the spatio-temporal structure of
a point process. In particular, the space-time inhomogeneous pair correlation function
and K-function can be used as measures of spatio-temporal clustering/regularity and
of spatio-temporal interaction (Gabriel and Diggle 2009; Mgller and Ghorbani 2012).

Let {z;,t;}}_, be arealisation of a spatio-temporal point process observedon A x T
within the spatio-temporal domain R? x R, . The simplest expression of an estimator
of the spatio-temporal K-function is given by

K(8,r) ZZI 2 — 2] < 8, |t;—1;] < r). 6)

i j>i

T jaxT] T|
such that, if the process is Poisson, then (Gabriel and Diggle 2009)
E(K(8,r)) = n8°r. (7)

We can also consider the spatio-temporal version of (5), for the generic event
si = (z;,1;) as follows

Ki(8,r) = ZI,, (8,r) (8)
T jZi

with 1;;(8,r) = I(|z; —z;| < 0, |t; —tj| <r),r € [0,T]. If the process is Poisson it is
easy to prove that, taking conditional expectation with respect to .77,

E(/RZR,,@rdN) E/ 1;(8,)Ads; = A28 rmt(A)T

and therefore,

E(Ri(8,r)) = n8°r. ©)

In Section 4, a weighted version of equation (8) is proposed, in order to use the local
K-function as a diagnostic tool for finding local lack of fitting of the estimated intensity
function.
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2.1.1 Some experiments to assess the normality condition in (4)

Under the homogeneity of the Poisson process, the converge theorem in (4) occurs
tending the area of the spatial region to infinity (¢(A) — o). In this section we show
a small simulation study to investigate for which range of distances and window
dimensions the asymptotic normal distribution for K (&) is reliable. We set the first-
order intensity function as A = 100, and A = [0, a] x [0, a] is the spatial squared region,
with a taking the values a = {1,5,10,20}; thus the corresponding expected number
of points per each a is n = {100, 2500, 10000,40000}.

Given A, and for each value of a, 100 random point patterns are generated from
a homogeneous Poisson process. For each point pattern the K-function is computed
using Ripley’s isotropic edge-correction over a vector of distances ranging from O to
0.25. Each estimated curve is standardised with respect to its mean (18?) and asymp-
totic estimated variance (282 /A2((A)) (see eq. (4)), where A2 = n(n—1)/1(A)>.

In Figure 1, the mean, and the 2.75% and 97.5% percentiles for the 100 standard-
ised estimated K-functions of point patterns generated from a homogeneous Poisson
process with intensity A = 100 in the squared window A = [0,a] X [0,qa] are shown.
As expected, the standardised curves follow a standard normal distribution for most of
the considered distances. It is clear that the approximation to the normal distribution
is better when increasing the window size. In addition, for a selected set of distances
6 € {0.005,0.01,0.02,0.05,0.10,0.15,0.2,0.25} the Shapiro-Wilks test is computed
to check the normality assumption (see Table 1 and Figure 2). When a = 1 the nor-
mality assumption is not accepted for all the selected distances, see the histograms in
Figures 2a and 2e. However, increasing the window size, and so the number of points
in A, the normality clearly holds.

\\,Mvvw
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(a)a=1 (bya=5 (¢)a=10

Fig. 1: Mean, 2.75% and 97.5% percentiles for the 100 standardised estimated K-
functions of point patterns generated from a homogeneous Poisson process with in-
tensity A = 100 in the squared window A = [0, 4] x [0, a]. The horizontal dotted lines
indicate the theoretical 2.75% percentile, mean and 97.5% percentile of the standard
normal distribution.
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Table 1: p-values of the Shapiro-Wilks test to check the normality distribution of the
estimated value of the K-function for a fixed distance, 6. The K-function is computed
over 100 simulated point patterns from a homogeneous Poisson process with intensity

A = 100 and area of the squared window a“.

2

) 1 5 10 20
0.005 0.000 0.000 0.054 0.068
0.01 0.000 0.487 0.000 0.984
0.02 0.000 0.072 0574 0.568
0.05 0.069 0.635 0380 0.345
0.1 0.004 0450 0.253 0.851
0.15 0.000 0301 0379 0.143
0.2 0.000 0.072 0.230 0.381
0.25 0.000 0.122  0.075 0.729

500

5000

0.0000 00! 0010 0.0015.

005 o
K-function value

(a) =0.005anda=1

26704

30704
K-function value

70

(b) 6=0.005a=5

000025 000030 0.00035
K-function value

(¢)8=0.005a=10

0.000¢

0.00028 000030 000032 000034 0.0003
K-function value

(d) 6 =0.005a =20

0005 0010
K-function value

() §=00la=1

00070

0.0075

00080
K-function value

0.0085.

) 6=001la=5

0.0076 80 0.0082

0.0078 0.00¢
K-function value

(2)8=0.0la=10

Fig. 2: Histograms of the sample distribution of the K-function from the simulated
point patterns in Figure 1 and Table 1, for a fixed distance 6 and window size A =

[0,a] x [0,d].

3 The weighted spatial process and its second-order properties

Let N be a point process defined on X C R?,d > 1. For any point s in X, let A (s|.%)
be the conditional intensity function of the process with respect to some filtration .#
on X, for simplicity denoted by A(s). Then

0.0077 o 0.0080

o078 00079
K-function value

(h) 8 =0.01 a=20
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A(s)0 =~ E[N(s,s+8)|.7].

Since A(s), which is related to the probability that a point occurs near s, depends on
the information on which the conditioning is based, it is a random process; we assume
that A (s) is positive and bounded away from zero.

Let N, be a real- valued random measure such that for any set S C X, N,,(S) =

Js /1 dN holds, with 7 ( )= 2’("/; and assuming the existence of the positive constant
Ainf g inf{A(s);s € S}.

Adelfio and Schoenberg (2009) formally show that the main second-order statistics
of N,,(-) behave similarly to those of a homogeneous Poisson process. Here, we first
recall some results relative to the main features of N,, that will be used in proofs of
subsequent results.

Rewriting the weighted process as N,,(S) = ﬁ((ss )>, following results in Zhuang
(2006) and Adelfio and Schoenberg (2009), we have that

E[NW(S,',S,'—F(s)] _ A«
f = Minf,

lim
50

and the mixed moment takes the form
E[Ny(si;si + 8)Ny (s, s; + 6)]

i > -ty
Thus the covariance becomes
COV[N,,(si,8i+0),Ny(sj,s;j+0)] = (10)

3.1 The spatial weighted K-function

Consider now that N is defined on A, a subregion of R? with area £(A), and let I(-) be
the indicator function.

Let Ag(z) be the true intensity function of the model that describes the observed
process on A, with z € A, here denoted as the null hypothesis. Then, the estimator of
the weighted K-function (Baddeley et al. 2000) is defined as

K" (8 )ng Z ij (|zi —z;] < 6),

inf i JFi

where Aips = inf{Ao(z);z € A} is the minimum of the conditional intensity over the
observed region under the null hypothesis and, for each k, @ = Ains/Ao(z), with
Ao (i) the conditional intensity at the point z; of A under Hy and 8 > 0.

Combining the point process residual analysis techniques and the use of the K-
function as a diagnostic tool applied to residual processes, Veen and Schoenberg
(2005) provided theorems on the distributional properties of the K-function and its
weighted variant, assuming homogeneous and inhomogeneous Poisson processes.

Formally, let "N, m=1,2,....M be a sequence of inhomogeneous Poisson
processes with intensities A and weighted K-functions ") K" (§), defined on the
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subsets ™A € R? of areas (™) ¢ (A). Using a central limit theorem, and for m — oo, Veen
and Schoenberg (2005) provided the following convergence result for the sequence
of the estimators of the weighted K-function:

(m) pw d 2 27[52 )
R (5)—>N<7t5 R ) an

where H(("™ 2)?) is the harmonic mean of the squared intensity in the observed region
(m4,

3.1.1 Some experiments to assess the normality condition in (11)

As stated above, given an inhomogeneous Poisson process, the converge theorem in
(11) holds asymptotically when the observed region is broken up into a disjoint number
of subregions ™A — oo with sufficiently regular boundaries such that the pairs of
points (z;,z;) with |z; —z;| < h,, are in distinct subregions. We report a small simulation
experiment to figure out for which range of distances and number of subregions the
asymptotic normal distribution for K*(8) holds.

We consider the following inhomogeneous first-order intensity function A(z) =
exp(Bo + Biz), where By = {5,7,8} and B; = 3 in the unit square spatial window.
Changing the value of By the number of points in the spatial window increases. Given
A(z) for each value of fy, 100 random point patterns are generated from the cor-
responding inhomogeneous Poisson process. For each point pattern the weighed K-
function is computed using Ripley’s isotropic edge-correction, with weights based on
the estimated intensity, and over a range of distances from 0 to 0.015. Considering m
the number of subregions in which the region A is divided, we explored the cases m =
{22,4%6%,10,100%}. For a selected set of distances § € {0.005,0.008,0.01,0.014}
the Shapiro-Wilks test is computed to check the normality assumption, and the results
are reported in Table 2. As expected, it is clear that as m increases the normality dis-
tribution in (11) holds for any distance 6. The effect of parameter 3y is evident. We
need a larger number of subregions, m, to get normality when [ increases, i.e. when
the number of points increases. Finally, small distances favour normality at smaller m.
Thus, the combination of parameters m, 6 and the form of the intensity that controls
the number of points is crucial in understanding the convergence theorem in (11).

Bo

4] m 5 7 8
0.005 2 0 0 0
4 0.096 0 0

6 0.205 0.004 0

10 0.301 0.655 0.011

100 0.289 0.444 0439

0.008 2 0 0 0

N

0.014 0 0
6 0.103 0 0
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10 0.254 0.436 0

100 0.307 0.877 0.759

0.01 2 0 0 0
4 0.001 0 0

6 0.355 0 0

10 0.417 0.005 0

100 0433 0445 0.72

0.014 2 0 0 0
4 0 0 0

6 0.033 0 0

10 0.144 0.041 0

100 0.317 0.156 0.538

Table 2: p-values of the Shapiro-Wilks test to check the normality distribution of
the estimated value of the inhomogeneous K-function for a fixed distance, 8. The
K-function is computed using 100 point patterns simulated from an inhomogeneous
Poisson process with intensity equals to A (z) = exp(Bo + B1z). The weights in K" are
obtained estimating 2 from the data. m? indicates the number of subregions in which
the window is divided.

4 The spatio-temporal local weighted K-function: the new proposal

Let N be a point process on a spatio-temporal domain X = R? x R, whose realisations
are events in the form of s = (z,). The weighted version of the spatio-temporal K-
function, as defined in (6), is given by (Gabriel and Diggle 2009)

(8,r)
K"(8,r) Lt (12)
( A’l%lfg ; j>i )’( ))’ )
with expectation
I,-j(6, r) ) )

E ( /R o, AR (e NSNS
taking conditional expectations on .77/ and on J7;
o I,'j(é, r) ) ) ) )
- E (;/RZXR+ l(S,)}L(S}) A’(Sl)l(sj)dg(sl)dg(sj)> (13)

=E (/RZX]R+ 1{0<|s,~—s,-<(5,r)}d£(s,-)d€(sj))
— (6(4) x T)re?,

where £(-) denotes the Lebesgue measure. Therefore,

E[R¥(8,r)] = n6%r (14)
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that is the same as the expectation of K(8,r) in (7), when the intensity used for the
weighting is the true generator model.

The weighted version of the estimator of the local spatio-temporal K-function
defined in (8) is given by

KY(8,r) =

7 L T (4

A2 e( T

inf

We note that the expectation of K* (8, r) is the same as the expectation of K;(8,r)

in (8), when the intensity used for the weighting is the true generator model. Indeed,
taking the conditional expectation with respect to J¢;

. L;;(8,7) B Al%lf 1 .
)Llnf (/Rzﬂh md%) B }»(si)E/RzXﬂh A(s;) 1ij(8,r)A(s;)ds;

A
— 52 rmi(A)TA(s;
/'L ( Si) r ( ) (sl)’
since varying the index j while keeping fixed i, the integral depends on the intensity
of points around the point s;. Therefore, after some algebra, the expectation of (15) is
given by

E(KY(8,r)) = n&r, (16)

which equals that of the non-weighted version in (9).

This result shows that the local spatio-temporal K-function estimator for a general
point process, weighted by the frue intensity function, has the same expectation of the
local spatio-temporal K-function under the Poisson case. Therefore, we can use this
weighted estimator as a diagnostic tool for general space-time point processes. Indeed,
this result develops a new approach for diagnostics in a local scale, useful also for
general (not necessary Poisson) point processes with a generic conditional intensity
function A(+), since the local weighted K-function behaves as the corresponding non-
weighted one of a homogeneous Poisson process. Thus departures from this expected
value directly suggest the unsuitability of the conditional intensity function used in
the weighting scheme. In other words, and in an inferential context, if the estimated
intensity function used for weighting in (15) is the true one, then the local weighted K-
function should behave as the corresponding non-weighted function of a homogeneous
Poisson process, that corresponds to the reference model.

For completeness, we show in the next section several results on the asymptotic
equivalence of distributions of these residual and weighted estimates using martingale
techniques.

4.1 Martingale characterisation for the local weighted K-function

A key theorem for the convergence of martingales, rephrased from Hall and Heyde
(1980), is here introduced to further prove some converge features of the proposed
statistic in equation (15).
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Theorem 1 Central limit theorem for martingales
Ifthe martingale difference stochastic process {X,,, 76, }_,, with 7, = (X1, X2, ..., Xp)
and E[X;|76-1] =0, i = 2,3,..., satisfies the following conditions:

1. Lindeberg condition: E[(X;)?] < o0, i =1,2,... such that for any € > 0

1
lim (
n—roo l

with S2 = var[Y_, X;] — o0 as n — .
2. EIE[X?| || =07, i=2,3,...

Then - Y, Xi % N(0,1).

E [Xizl{x,->ss,,}]> =0,

S
1=

Il
—_

. I," 5,}’)
Let us now define, for any 7, I}(6,r) = WMS;) and [pa, g, 1}7(6,r)|dN; as the

number of pairs of points with elements occurring both up to 7;, that is the last point
less than or equal to #; such that, focussing on the time dimension, no points are in
(Ti,Ti+71),1e., T, =sup{7: N(t) = 1,N(7,7+r) = 0,7+ 8 < ;}, letting 7, = 0 if no
such 7 exists. In other words, 7; is the left end-point of the last gap prior to #; of size
at least r.

Define the process Z(s;) = [z, [}}(6,7)|cdN(j) — Aj, ;w8*rl(A)T;, for any i,
assuming that such kind of gaps exists. The existence of a gap of size r corresponding
to each #; guarantees that, conditioning on Z(s;_1 ), no pair of points within distance r
crosses s;_ and therefore the knowledge about the past up to any point s;_; does not
give any information about s;. Note that for each i, 7; is an /% -stopping time, and thus
Z(s;) is measurable (see e.g. Corollary A3.4.VIII on p.430 of Daley and Vere-Jones
(2003)).

Theorem 2 Martingale characterisation

Let N be a spatio-temporal point process with conditional intensity function A (s| ),
positive and bounded away from zero. Let Z(s;) = [p2, g, 1}7(6,r)|5dN; — liifﬂ:yrﬁ(A) T;
for any i=1,....,n, 6,r >0, with fszR+ I,-VJV(S, r)|dN; the number of pairs of
points with elements occurring both up to T; and t; = sup{7 : N(t) = 1,N(1,7+7r) =

0,74+r <t}
Then Z(s;) is a martingale with respect to a filtration J, i.e.,
E[Z(Si)—Z(S,;[”Z(S,;])] =0. (17)
Proof

E[Z(si) —Z(si—1)|Z(si-1)]

<\/]Rz><R+ Iiv;(67 r)‘T,-de a /RzXRJr I;;((s’ r)|Tilde)

_ },l%lfﬂ'52r(f,' — T[_l)f(A)‘Z(Si_l)]

=FE

=E [/ 1(8,7)| (AN} = iy w8 rl(A) (T, — Ti1) ’Z(Sil)]
RZxR ’

=0.
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Therefore, starting form the martingale characterisation of its components, and ex-
tending results of Theorem 1 as in Adelfio and Schoenberg (2009), it is possible to state
the asymptotic normal distribution of I%lw (8, r), according to the following corollary.

Corollary 1 Let N be a spatio-temporal point process in R> x R, with conditional in-
tensity function A.(s|.7€), positive and bounded away from zero, such that E[N?(ds;)|. /)
Vi is bounded, and there exists an o > 0 such that E[N**%(ds;)|. 5% Vi is also bounded.
Moreover, considering the temporal dimension, assume that for any i there exists
T =sup{t:N(t)=1,N(t,7+r)=0,7+r <t;}, r > 0.

Then the local weighted spatio-temporal K-function defined as in (15) is asymp-
totically normally distributed.

5 Model checking: simulation studies

The local weighted K-function is obtained by weighting the process by the inverse
of the conditional intensity function of the generator model of the data. Since in
simulations the weights are obtained by considering the real intensity function, the
weighted statistics are expected to behave as the ones of a homogeneous Poisson
process. Indeed, if departures from a such behaviour were observed, then the data
would be supposed to come from a model identified by a conditional intensity function
different from the one used in the weighting procedure. We consider three different
scenarios, in which the K-function is weighted by (a) the real intensity function,
known in simulations, (b) the estimated intensity by maximum likelihood, that is the
intensity function with MLE estimates of unknown parameters, and (c) the intensity
function estimated for a homogeneous Poisson process (wrong model). For each one
of these scenarios, we consider both global (Section 5.1) and local (Section 5.2) spatio-
temporal weighted K-functions. In Section 5.3 we consider an application to real data.

5.1 Global space-time diagnostics

Consider first a spatio-temporal inhomogeneous Poisson process with intensity func-
tion
A(x,y,t) = exp(a—4y —2t)

with a = 8.25. Figure 3 shows representations of the points in space, space-time and
the accumulative number of points in time. Figure 4 reports the difference between the
observed values of the global weighted spatio-temporal K-function K (8, r) reported
in eq. (12) and the expected ones in eq. (14), weighting by, respectively, the true
intensity (left), the MLE intensity (middle), and a constant intensity, which is a wrong
model (right). We note that the 2 statistic, computed over a fixed grid that covers the
region of interest, evaluates this distance. The same interpretation is possible for the
corresponding 2 statistic values reported in subsection 5.2. We obtain y% = 0.617
(under the true intensity), x> = 0.614 (under the MLE intensity), and > = 33.654
(under the constant intensity). It is evident that this difference is significantly larger in
the latter case corresponding to the wrong model. This indicates that when weighting
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the spatio-temporal K-function by the true or estimated intensity its expected value
resembles to that of a Poisson process, but if we use a wrong model for the intensity,
the expected value is far from the Poisson one.

By looking at Figure 4, it is interesting to note that the weighted K-function ob-
tained when the true model is used for weighting and the one computed considering the
estimated intensity function are very similar, suggesting that the effect on the second-
order statistics of estimating the true model is quite negligible. Similar conclusions
can be reported from Figures 5, 7 and 8 that justify the practical use of these methods,
when the true model is estimated rather than known.

xy-locations cumulative number

exp(a-4*y-2*) - a=8.23

100~

300~

200
> 050~

(@ (b)

Fig. 3: A spatio-temporal inhomogeneous Poisson process with intensity function
A(x,y,t) = exp(a — 4y —2t) with a = 8.25.

Repeating the above procedure for 100 simulations of a spatio-temporal inho-
mogeneous Poisson process with the previous intensity function, we can evaluate
the distribution of the y? statistic based on the differences between the weighted
K-functions and the theoretical expected values. The results are shown in Figure 5,
and highlight the bad result when in the weighting scheme the wrong homogeneous
Poisson intensity is used.

To provide more precise information on the errors associated to the test, we have
completed a simulation study for the inhomogeneous Poisson case using a global
statistic. In particular, we propose the following hypothesis test:

Hy:A(-) =Au(4)
Hy:A() # (')
with A(-) the conditional intensity function that characterises the generating process,

and A, (+) the conditional intensity function used in the weighted scheme. As described
above, the x? statistic, measuring the distance between observed and expected values
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Fig. 4: Difference between the global weighted spatio-temporal K-function (see eq.
12) and the expected one (see eq. 14) weighting by, respectively, the true intensity
(left), the MLE intensity (middle), and a constant intensity, which is a wrong model
(right).
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Fig. 5: Distribution of the x? statistic computed for assessing the differences between
the weighted K-functions and the theoretical expected value, calculated from 100
simulations of a spatio-temporal inhomogeneous Poisson process weighting by, re-
spectively, the true intensity (left), the MLE intensity (middle), and a constant intensity,
which is a wrong model (right).

of the local K-functions, is used to evaluate this hypothesis test. The test statistic
is computed over a fixed grid that covers the region of interest. Figure 5 shows the
distribution of the test statistic under the null hypothesis (Figures 5a,b) and under the
alternative (Figure 5c¢) for the Poisson case. Therefore, to obtain significance levels
under the null hypothesis and power values under the alternative we run 50 replicates
of 100 simulations each for an inhomogeneous Poisson process under the null and

80
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alternative hypothesis (see Table 3). We note that the statistical test reports quite exact

Table 3: Significance levels and power of the test based on the x? statistic computed
for a global statistic, under the null (columns (a) and (b)) and the alternative hypothesis
(column (c)) for an inhomogeneous Poisson process with intensity function defined
in Sect 5.1

(a) (®) (©)
0.054 | 0.053 | 0.945

significance levels (very close to 0.05) and a power almost 0.95, confirming that we
can use our testing procedure as a goodness-of-fit analysis for spatio-temporal point
processes. It is also interesting to note that columns (a) and (b) report basically the
same value, which confirms what we have noticed and reported in the comments of
Fig. 4; the estimation of the true model seems to have a negligible effect on the second
order statistics, since the weighted K-function obtained when the true model is used
for weighting and the one computed considering the estimated intensity function have
very similar behaviour.

Note that the same study could be done for the other cases (Poisson local, ETAS
global/local) analysed thereafter in this subsection and in Subsection 5.2, but we have
only reported the Poisson case to save space, and also because these are quite time-
consuming computations.

For completeness, we also consider a more complex model for the data. In par-
ticular, we simulate point patterns from a general ETAS model (Ogata 1988; Adelfio
and Chiodi 2015a), with conditional intensity function

ko exp (a(m;—my)) -
o(a.) = 1y (2) + X 0 (t_t]+c) D {(@—22+d} ¢ (9
J

where f(z) is the spatial density of the background/long term component, stationary
in time. The aftershock induced component is the product of the density of aftershocks
in time, i.e. the Omori law representing the occurrence rate of aftershocks at time ¢,
following the earthquake of time 7; and magnitude m;, and the density of aftershocks
in space. In particular, m; is the magnitude of the j-th event and myq the threshold
magnitude, i.e. the lower bound for which earthquakes with higher values of magnitude
are surely recorded in the catalogue. The rest of elements of (18) are as follows: o
measures the influence on the relative weight of each sequence, ko is a normalising
constant, ¢ and p are characteristic parameters of the seismic activity of the given
region (p is useful for characterising the pattern of seismicity, indicating the decay
rate of aftershocks in time), and finally d and g are two parameters related to the spatial
influence of the mainshock.

The induced spatial distribution conditioned to the magnitude of the generating
event is of the form

—_7.)2 -4
K(z—zj|mj):{(zzj))+d} (19)

ey (mj7m0
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relating the occurrence rate of aftershocks to the mainshock magnitude m, through the
parameter Y that, as ¢, measures the influence on the relative weight of each sequence.
In this paper we assume, without loss of generality, that ¥ = 0 (see Chiodi and Adelfio
(2017) for a more complete formulation of the ETAS model).

The ML estimation of the background and the triggered intensity components of
an Epidemic type model has been performed by the FLP approach (Chiodi and Adelfio
2011, 2017), which is a nonparametric estimation procedure based on the subsequent
increments of the log-likelihood obtained adding one observation at a time, to account
for the information and dependence of the previous observations on the next one.

Figure 6 reports a simulated spatio-temporal point pattern using an ETAS model
with parameters @ = (U, ko, c, p, &,d,q) =(0.079,0.004,0.013,1.2,0.5,0.424,1.165).
This figure shows representations of the points in space, space-time and the accumu-
lative number of points in time.

2000

-
g
g

<
~ 1500

1000

(@ (b)

Fig. 6: Simulated spatio-temporal point pattern using an ETAS model with parameters
0 = (u,ko,c,p,a,d,q) =(0.079,0.004,0.013,1.2,0.5,0.424,1.165).

Figure 7 reports the difference between the global weighted spatio-temporal K-
function (see eq. 12) and the expected one (see eq. 14) weighting by, respectively, the
true intensity from the ETAS model (left), the MLE intensity (middle), and a constant
intensity, which is a wrong model (right). Again, the difference was evaluated by
a x? statistic to provide some more evidence, obtaining y> = 68.14 (under the true
intensity), xz =73.27 (under the MLE intensity), and xz = 586.38 (under the constant
intensity). It is evident that this difference is significantly larger in the latter case
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corresponding to the wrong model. This indicates that when weighting the spatio-
temporal K-function by the true or estimated intensity its expected value resembles to
that of a Poisson process, but if we use a wrong model for the intensity, the expected
value is far from the Poisson one. It is important to note that this result stands the same
independently of the process governing the point pattern.

015

0.15
0.1!

0.05
0.05
0.05

(a) (b) (©

Fig. 7: Difference between the global weighted spatio-temporal K-function (see eq.
12) and the expected one (see eq. 14) weighting by, respectively, the true intensity from
the ETAS model(left), the MLE intensity (middle), and a constant intensity, which is
a wrong model (right).

Finally, repeating again the above procedure for 100 simulations of a spatio-
temporal ETAS process with the previous parameter specifications, we evaluate the
distribution of the y? statistic based on the differences between the weighted K-
functions and the theoretical expected values. The results are shown in Figure 8§,
and highlight the bad result when in the weighting scheme the wrong homogeneous
Poisson intensity is used.

5.2 Local space-time diagnostics

We now focus on the properties of the local weighted spatio-temporal K-function
reported in Section 4, and in particular we focus on the theoretical expected value
provided in equation 16. We assess these properties through simulations. We first con-
sider an inhomogeneous Poisson process with the same previous intensity A (x,y,t) =
exp(a — 4y —2t) with a = 8.25, and estimated the local weighted spatio-temporal K-
function as in (15), using the three weighting schemes as above (true, estimated and
constant intensities). Note that as these are local characteristics, we do have a surface
per individual point of the point pattern. Thus, we can follow the same procedure as
in Section 5.1 but for each point, computing the corresponding y? statistic for the
difference between the estimated local weighted spatio-temporal K-function reported
in eq. (15) and the corresponding theoretical expected value in eq. (16), over a fixed
grid that covers the region of interest.
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Fig. 8: Distribution of the ? statistic computed for assessing the differences between
the weighted K-functions and the theoretical expected value, calculated from 100
simulations of an ETAS process.

Figure 9 shows the distribution of the x statistics for each point of a spatio-
temporal inhomogeneous Poisson process with the above intensity function.

If an individual point of the pattern would show a different spatio-temporal surface
(e.g. because it is an outlier) its corresponding y? statistic would reflect that difference
and would show a larger value. Also, we note in Figure 9 for the local space-time
K-function that the x? statistic takes much larger values under a constant intensity
weighting, detecting thus the wrong model. To highlight this behaviour, we selected
those four individual points in the point pattern that provided the worst, i.e. the largest,
x? statistic for the simulated pattern. Figures 10-12 show the surface of the difference
between the estimated local weighted spatio-temporal K-function and the theoretical
expected value for each one of these selected points, under the three different weighting
schemes.

To avoid random fluctuations in the estimation of the K-function coming from
just one realisation, we repeated the above procedure for 100 simulations of a spatio-
temporal inhomogeneous Poisson process with the previous intensity function. We
then evaluated the distribution of the y? statistic based on the differences between the
local weighted K-functions and the theoretical expected values for each individual
point and for each realisation, using the three weighting schemes. The results are
shown in Figure 13, and it basically reports the same general behaviour as in Figure
9 where it is highlighted the bad results when in the weighting scheme the wrong
homogeneous Poisson intensity is used.

We again considered an ETAS spatio-temporal model, as in Section 5.1 to analyse
if the results stand the same for a more complex model. We first considered only
one simulation of a point pattern from a general ETAS model and evaluated the >

3000
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Fig. 9: Distribution of the y? statistic computed for assessing the differences between
the local weighted K-functions and the theoretical expected value, calculated for each
individual point from a simulation of an inhomogeneous Poisson process, and for the
three weighting schemes.

statistic for the difference between every local surface of the weighted spatio-temporal
K-function and its theoretical expected value (see Figure 14).

We selected those two individual points in the point pattern that provided the worst,
i.e. the largest, x statistic for the simulated pattern. Figures 15-17 show the surface of
the difference between the estimated local weighted spatio-temporal K-function and
the theoretical expected value for each one of these selected points, under the three
different weighting schemes.

Finally, we repeated the above scenario for 100 simulations of an ETAS model,
obtaining the distribution of the y? statistic evaluated for the difference between
empirical and expected surfaces for each individual in each realisation (see Figure
18).

5.3 Data application: seismic activity in Italy

In this section, we show an application to real data concerning the description of the
seismic activity of the Italian area, from 2005 to 2013. Italy is a very active area and, in
the considered period, several strong events have occurred, causing deaths and relevant
damages to both modern and historical building (e.g. the Reggio Emilia sequence in
2012 (north of Italy), L’ Aquila earthquake in 2009 (in the center of Italy)). Different
kind of activity is observed around the Etna Volcano, where a quite continuous activity
is recorded.
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Fig. 10: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of four individual points
of the inhomogeneous Poisson pattern that showed the largest x statistic, and when
the weighting is through the true intensity.

The seismicity of Italy consists mainly of aftershock sequences and more seldom of
isolated events. Starting from this catalog, we fit a space-time ETAS model, estimating
the triggered intensity function and the background component using the FLP approach
(etasFLP approach Chiodi and Adelfio (2017)). The observed seismicity together
with the spatial diagnostic results are reported in Fig. 19. This diagnostic is based on a
residual measure obtained by the comparison of the estimated and theoretical intensity
computed over a fixed grid (see Adelfio and Chiodi (2015b) for more details).

From previous studies (Adelfio and Chiodi 2015b,a) we have observed that, al-
though the estimated ETAS model for the whole area is generally satisfying mostly for
the background seismicity, some characteristics are not well caught in the description
of the space-time triggered part. Indeed, from these studies, we noted that the FLP
improves the fitting of the background, that in general appears very appropriate for
data, both in time and space, while some lack is still evident for the offspring compo-
nent, mostly in the spatial domain. This would suggest the importance of modifying
the ETAS model also in the induced component.

The diagnostics in ?? (b) of the estimated background and triggered intensity
functions for Italy show high residual values in correspondence of some focal areas of
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Fig. 11: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of four individual points
of the inhomogeneous Poisson pattern that showed the largest x statistic, and when
the weighting is through the estimated intensity.

the Italian seismicity, e.g. L’ Aquila and Reggio Emilia, suggesting that a definition of
an intensity function more coherent with some known tectonic structures is necessary
for describing a such complex structure.

Performing a local diagnostic, as proposed in this paper, we localise the worst
individual surfaces obtained by the comparison between the estimated local weighted
spatio-temporal K-function and the theoretical expected value (see Fig. 20).

In Figure 21 we also report the map of Italy together with the observed events (in
black) and the evidence of those points (in red) corresponding to the surfaces of Fig.
20.

As expected, the events for which the bad fitting is more evident are the earthquakes
occurred in the main sequences of the observed region, confirming that a more complex
model and a more flexible model for both the components of the ETAS model seems
crucial in the presence of such inhomogeneous patterns.
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Fig. 12: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of four individual points
of the inhomogeneous Poisson pattern that showed the largest x statistic, and when
the weighting is through the constant intensity.

6 Conclusions and discussion

Alternatively to the more classical diagnostic methods based on transformation of
the data into residuals as a result of a thinning or a rescaling procedure, we here
have presented weighted second-order measures in the spatio-temporal domain. One
attractive feature of weighted second-order statistics is that they directly apply to data
without assuming homogeneity nor transforming the data into residuals, eliminating
thus the sampling variability due to the use of a transforming procedure. We have
provided theoretical arguments reinforced by a number of simulation studies. We
have proved and also have shown by simulations that our methods do not rely on any
particular model assumption on the data, and thus they can be applied for whatever is
the generator model of the process. We believe that our method can be used routinely
in the goodness-of-fit analysis for spatio-temporal point processes.

Investigations of convergence rates and of the sample sizes required to reach the
asymptotic regime are not discussed here, and they are considered important issues
for future work. Moreover, we have verified that a positive correlation seems to exist
between the 2 statistics and the value of the conditional intensity function A (-) for
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Fig. 13: Distribution of the y? statistic computed for assessing the differences be-
tween the local weighted K-functions and the theoretical expected value, calculated
from 100 simulations of a spatio-temporal inhomogeneous Poisson process weighting
by, respectively, the true intensity (left), the MLE intensity (middle), and a constant
intensity, which is a wrong model (right).

each point, both for the true and the estimated cases. In our opinion this point would
require more investigation and further reflection to be extended for deeper comments.
Other second-order measures, such as the pair-correlation, can be also considered
as an alternative to the K-function. Finally, extensions to the marked case are very
welcome in this context.

Acknowledgements This paper has been partially supported by the national grant of the Italian Ministry of
Education University and Research (MIUR) for the PRIN-2015 program, ‘Complex space-time modelling
and functional analysis for probabilistic forecast of seismic events’.



26

Adelfio,Siino, Mateu, Rodriguez-Cortés

100

%2
(@

5

200

()

Froquency
©

100

%2
(©)

Fig. 14: Distribution of the y? statistic computed for assessing the differences between
the local weighted K-functions and the theoretical expected value, calculated for each
individual point from a simulation of an ETAS process, and for the three weighting

schemes.

Fig. 15: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of two individual points
of the ETAS pattern that showed the largest x> statistic, and when the weighting is

through the true intensity.
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Fig. 16: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of two individual points
of the ETAS pattern that showed the largest y? statistic, and when the weighting is
through the estimated intensity.

Fig. 17: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for each one of two individual points
of the ETAS pattern that showed the largest x> statistic, and when the weighting is
through the constant intensity.
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Fig. 18: Distribution of the y? statistic computed for assessing the differences between
the local weighted K-functions and the theoretical expected value, calculated from
100 simulations of a spatio-temporal ETAS model weighting by, respectively, the true
intensity (left), the MLE intensity (middle), and a constant intensity, which is a wrong
model (right).

Total Intensity with observed points Standardized differences between
Circles area proportional to magnitude; red: recent, bluolder theoretical and observed frequency (whole model)
M

~

y-latitude
y.grid

Fig. 19: Observed seismicity in Italy from 2005 to 2013, with m > 3 (a); Spatial
diagnostics for the estimated space-time ETAS model by the etasFLP approach (b)
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Fig. 20: Surface of difference between the estimated local weighted spatio-temporal
K-function and the theoretical expected value for individual points of the ETAS pattern
that showed the largest y? statistic, and when the weighting is through the estimated
ETAS intensity.
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Fig. 21: Individuation of the ‘bad’ points
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