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Objectives: We utilized the database of the Defining Antibiotic Levels in Intensive care unit patients (DALI)
study to statistically compare the pharmacokinetic/pharmacodynamic and clinical outcomes between pro-
longed-infusion and intermittent-bolus dosing of piperacillin/tazobactam and meropenem in critically ill patients
using inclusion criteria similar to those used in previous prospective studies.

Methods: This was a post hoc analysis of a prospective, multicentre pharmacokinetic point-prevalence study
(DALI), which recruited a large cohort of critically ill patients from 68 ICUs across 10 countries.

Results: Of the 211 patients receiving piperacillin/tazobactam and meropenem in the DALI study, 182 met
inclusion criteria. Overall, 89.0% (162/182) of patients achieved the most conservative target of 50% fT.MIC

(time over which unbound or free drug concentration remains above the MIC). Decreasing creatinine clearance
and the use of prolonged infusion significantly increased the PTA for most pharmacokinetic/pharmacodynamic
targets. In the subgroup of patients who had respiratory infection, patients receiving b-lactams via prolonged
infusion demonstrated significantly better 30 day survival when compared with intermittent-bolus patients
[86.2% (25/29) versus 56.7% (17/30); P¼0.012]. Additionally, in patients with a SOFA score of ≥9, administration
by prolonged infusion compared with intermittent-bolus dosing demonstrated significantly better clinical cure
[73.3% (11/15) versus 35.0% (7/20); P¼0.035] and survival rates [73.3% (11/15) versus 25.0% (5/20); P¼0.025].

Conclusions: Analysis of this large dataset has provided additional data on the niche benefits of administration of
piperacillin/tazobactam and meropenem by prolonged infusion in critically ill patients, particularly for patients
with respiratory infections.

Introduction

b-Lactam antibiotics are routinely prescribed for severe infections
in the ICU. As time-dependent antibiotics, the most important
pharmacokinetic (PK)/pharmacodynamic (PD) index for their
activity is the duration of time over which the unbound (or free)

drug concentration remains above the MIC (fT.MIC).1 Intermittent-
bolus (IB) dosing, the standard method of b-lactam administration,
commonly produces suboptimal drug concentrations in critically ill
patients with conserved renal function.2–4 Such patients generally
exhibit extreme physiological derangements, which may alter the
b-lactam PK and consequently reduce its exposure.5,6 Numerous
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PK/PD simulation studies suggest that optimal b-lactam exposures
are readily obtained via continuous infusion or an extended 2–4 h
infusion.2–4,7 Continuous infusion and extended infusion are jointly
referred to as prolonged infusion, with either approach considered
to be potentially advantageous compared with traditional IB
administration.

Owing to persisting poor sepsis-related clinical outcomes in the
ICU, there has been growing concern that conventional antibiotic
dosing in critically ill patients is suboptimal. If this notion is true,
global antibiotic prescribing practices may need to change
accordingly. Aiming to improve antibiotic treatment in the ICU,
the Defining Antibiotic Levels in Intensive care unit patients
(DALI) study,8 a large multinational PK point-prevalence study,
was undertaken to determine whether conventional dosing of
b-lactam antibiotics attains drug concentrations associated
with therapeutic benefits in critically ill patients. The implications
of the study are profound; 16% of the patients did not achieve the
most conservative PK/PD target and these patients were 32%
more likely to demonstrate negative clinical outcomes. Although
these data led to the conclusion that different dosing strategies
are needed in the ICU, they were not discretely analysed to ascer-
tain the potential merits of altered b-lactam infusion in critically ill
patients. Of note, with the exception of piperacillin/tazobactam
and meropenem, the other six b-lactam antibiotics included in
the DALI study were almost exclusively administered by IB dosing,
which signifies its ‘authority’ over prolonged-infusion dosing in
current prescribing practices.

Despite compelling pre-clinical and PK/PD data, clinical com-
parative trials have failed to demonstrate the perceived clinical
advantage of prolonged-infusion over IB dosing.9 Furthermore,
most meta-analyses of the clinical trials are still indecisive over
the notion of the clinical superiority of prolonged-infusion over
IB dosing.10 – 18 There are currently four recent meta-analyses
that report significant improvement in clinical cure10,11,13 and
survival10,11,15 favouring prolonged-infusion administration.
However, their findings should be interpreted with caution as
these meta-analyses have included a considerable number of

retrospective and non-randomized studies in their pooled analysis.
Given the above uncertainty, we utilized the database of the DALI
study with the primary aim of distinguishing the relative abilities of
prolonged-infusion and IB dosing of piperacillin/tazobactam and
meropenem to achieve specific PK/PD exposure targets in relation
to the offending pathogen MIC during antibiotic therapy. Secondary
aims were to describe clinical response and 30 day survival for both
administration approaches and which patient subgroups were
most likely to benefit from this intervention.

Methods

Study design
This is a post hoc analysis of the DALI study, for which the detailed study
protocol has been described elsewhere.8,19 Briefly, during a single dosing
interval on the investigation day, each patient had two blood samples
drawn for the b-lactams they were receiving (mid-dose and a trough con-
centration). Various demographic, clinical and treatment-related variables
were collected on the day of investigation. CLCR was estimated using the
Cockcroft–Gault formula.20

Patients were included if they received either piperacillin/tazobactam
or meropenem, which were administered by prolonged infusion (either
continuous or extended infusion) or IB dosing. We followed the inclusion
criteria used in previous randomized clinical trials of this intervention,21 – 23

which meant that patients who received any form of extracorporeal renal
support were excluded as patients with reduced drug clearances are less
likely to benefit from altered administration approaches.24 – 26 For clinical
outcome assessment, only patients who received antibiotic for treatment
of infection, as opposed to prophylaxis, were included.

The lead site was The University of Queensland, Australia (ethics
approval number 201100283). Informed consent was obtained from
each eligible patient.

Sample integrity and bioanalysis
Blood samples were processed and stored per protocol prior to shipment
to the Burns, Trauma and Critical Care Research Centre, The University of
Queensland, Australia, where they were assayed. The details concerning
bioanalysis have been described in detail elsewhere.27

Table 1. Definitions used for PK/PD endpoints and clinical outcome variables

Primary PK/PD endpointsa,b Definition

50% fT.MIC free drug concentration maintained above the MIC for the pathogen for at least 50% of the dosing interval
50% fT.4×MIC free drug concentration maintained .4× the MIC for the pathogen for at least 50% of the dosing interval
100% fT.MIC free drug concentration maintained above the MIC for the pathogen throughout the dosing interval
100% fT.4×MIC free drug concentration maintained .4× the MIC for the pathogen throughout the dosing interval

Secondary endpoints Definition and description

Clinical response
clinical cure completion of treatment course without change or addition of antibiotic therapy, and with no additional

antibiotics commenced within 48 h of cessation
clinical failure any clinical outcome other than clinical cure

30 day survival survival at day 30 following entry to the study

aThe PK/PD exposure targets have all been identified in clinical studies recruiting critically ill patients in which achieving these targets would increase the
probability of clinical efficacy.
bActual MIC values, provided by the local microbiology laboratory, were used when available. Where a pathogen was isolated, but the MIC was
unavailable, the ‘surrogate’ MIC was defined by EUCAST MIC90 data. Where no pathogen was formally identified, the MIC breakpoints for
Pseudomonas aeruginosa (16 mg/L for piperacillin/tazobactam and 2 mg/L for meropenem) were inferred as the surrogate MIC, which reflects the
least susceptible pathogen that could be encountered during b-lactam therapy.
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PK/PD and clinical outcome measures
The primary endpoint, which was PK/PD target attainment, is described
in detail in Table 1. Briefly, to assess the relative dosing adequacy of
prolonged-infusion and IB administration, the observed unbound anti-
biotic concentrations were compared against the causative pathogens
actual or ‘surrogate’ MIC.

The secondary endpoints, clinical response and 30 day survival, were
assessed using definitions described in Table 1. Additionally, to investigate
clinical differences between prolonged-infusion and IB dosing within the
subgroup of patients with the highest illness severity, as described by
Lodise et al.,28 we performed a classification and regression tree (CART) ana-
lysis to further stratify patients based on SOFA score to identify the patients
who were at the greatest risk of clinical failure and 30 day mortality.

Statistical analysis
Data are presented as median values with IQR for continuous variables
and number and percentage for categorical variables. A multivariate logis-
tic regression model (manual entry and stepwise, backward elimination)
was constructed to identify significant predictors associated with the pri-
mary and secondary endpoints, with OR and 95% CI reported. Biologically

plausible variables with a P value of≤0.15 on univariate analysis were con-
sidered for model building. However, the administered b-lactam and the
method of administration were forced into the regression models regard-
less of the univariate analysis results. Goodness of fit was assessed using
the Hosmer–Lemeshow statistic. A two-sided P value of ,0.05 was
considered statistically significant in all analyses. Statistical analysis
was performed using IBM SPSS Statistics v22 (IBM Corporation, Armonk,
NY, USA).

Results
A total of 211 patients received either piperacillin/tazobactam or
meropenem and were considered for study inclusion. Twenty-
nine patients were excluded as they received extracorporeal
renal support during ICU stay. The patient inclusion and exclusion
process is depicted in Figure 1 and the baseline characteristics of
the 182 included patients are presented in Table 2. For clinical out-
come assessment, 37 patients who were only receiving antibiotic
prophylaxis were further excluded.

Of the 182 included patients, 110 (60.4%) received piperacillin/
tazobactam. Additionally, 60.4% (110/182) of patients also received

Assessed for study inclusion (n = 384)

Eligible for study inclusion (n = 211)

IB dosing (n = 135)

Excluded

•  Not receiving either piperacillin

   or meropenem (n = 173)

Prolonged infusion (n = 76)

•  Continuous infusion (n = 27)

•  Extended infusion (n = 49)

PK/PD assessment (n = 115)

Excluded from analysis

•  Received extracorporeal renal

   support (n = 20)

Clinical outcome assessment for all

treated patients (n = 87)

Excluded from analysis

•  Received antibiotic as prophylaxis

   (n = 28)

Clinical outcome assessment for all

treated patients (n = 58)

•  Continuous infusion (n = 38)

•  Extended infusion (n = 20)

Excluded from analysis

•  Received antibiotic as prophylaxis

   (n = 9)

PK/PD assessment (n = 67)

•  Continuous infusion (n = 23)

•  Extended infusion (n = 44)

Excluded from analysis

•  Received extracorporeal renal

   support (n = 9)

Figure 1. Study flow chart demonstrating the number of patients who were included and excluded in each stage of the planned analysis.
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concomitant antibiotic therapy as part of their treatment. The most
common administration method was IB; 63.2% (115/182) of the
patients received b-lactams via this approach. Among the 67
prolonged-infusion patients, 23 (34.3%) and 44 (65.7%) were
continuous-infusion and extended-infusion patients, respectively.
Figure 2 illustrates the preferred method of dosing by participating
country. Although most countries favoured IB dosing, two countries,
Belgium and France, had more than half of the patients receiving
the b-lactams by prolonged-infusion dosing.

Of 182 patients who received b-lactams, 70 (38.5%) were pre-
scribed them for either presumed or confirmed respiratory infec-
tion. Of the patients treated for infection (n¼145), 114 (78.6%)
had at least one causative pathogen isolated and 40.4% (46/114)
of them had actual MIC values for the causative pathogens identi-
fied. The numbers of patients with actual MIC data were similar
between prolonged-infusion and IB treatment arms [37.5%
(18/48) and 42.4% (28/66), respectively; P¼0.769]. The distribution
of the isolated pathogens was similar between the treatment arms
and most of the isolates were Gram-negative bacteria [prolonged
infusion 79.2% (38/48), IB 80.3% (53/66); P¼0.881]. Of the 114 iso-
lated pathogens, the most prevalent Gram-negative and -positive
pathogens were Pseudomonas aeruginosa (24/91; 26.4%) and
Staphylococcus aureus (6/23; 26.1%), respectively.

PK/PD and clinical outcome measures

Overall, 89.0% (162/182) of patients achieved the lower PK/PD
target of 50% fT.MIC. For the higher thresholds of 100% fT.MIC

and 100% fT.4×MIC, 63.2% (115/182) and 27.5% (50/182) of
patients, respectively, achieved these PK/PD targets. Although
prolonged-infusion patients generally demonstrated numerically
higher target attainment rates compared with IB patients across
all PK/PD indices, a statistically significant difference was only
observed at 100% fT.MIC: 50% fT.MIC [prolonged infusion 91.0%
(61/67) versus IB 87.8% (101/115); P¼0.532]; 50% fT.4×MIC [pro-
longed infusion 62.7% (42/67) versus IB 49.6% (57/115);

Table 2. Baseline demographics and characteristics

Characteristic All patients (n¼182) Prolonged infusion (n¼67) IB (n¼115) P valuea,b

Age (years), median (IQR) 61 (47–74) 56 (47–75) 64 (48–74) 0.417
Male, n (%) 113 (62.1) 44 (65.7) 69 (60.0) 0.447
Weight (kg), median (IQR) 73 (65–84) 73 (64–88) 74 (65–80) 0.646
APACHE II, median (IQR) 18 (13–25) 20 (13–26) 18 (14–24) 0.215
SOFA, median (IQR) 5 (3–8) 5 (3–8) 5 (3–8) 0.797
Serum creatinine concentration (mmol/L), median (IQR) 71 (52–125) 64 (48–140) 73 (53–119) 0.726
Cockroft–Gault CLCR (mL/min), median (IQR) 85 (46–131) 95 (42–141) 82 (48–130) 0.510
Pre-ICU hospital stay (days), median (IQR) 2 (1–9) 1 (1–9) 2 (1–9) 0.260
Duration of antibiotic therapy (days), median (IQR) 9 (4–14) 8 (4–13) 9 (4–14) 0.371
Concomitant antibiotic usage, n (%) 110 (60.4) 39 (58.2) 71 (61.7) 0.733
Surgery within 24 h of antibiotic sampling, n (%) 33 (18.1) 14 (20.9) 19 (16.5) 0.460
Organisms identified, n (%) 121 (66.5) 50 (74.6) 71 (61.7) 0.103
Polymicrobial infection, n (%) 29 (15.9) 11 (16.4) 18 (15.7) 0.577

Primary infection site, n (%)
respiratory 70 (38.5) 33 (49.3) 37 (32.2) 0.041
abdominal 50 (27.5) 16 (23.9) 34 (29.6) 0.593
blood 23 (12.6) 6 (9.0) 17 (14.8) 0.664
urinary 21 (11.5) 6 (9.0) 15 (13.0) 0.231
CNS 8 (4.4) 4 (6.0) 4 (3.5) 0.639
others 10 (5.5) 2 (3.0) 8 (7.0) 0.082

aRepresents the P value between prolonged-infusion versus IB dosing and the value in bold indicates a significant difference between the two dosing
groups (P,0.05).
bLinear variables were compared using the Mann–Whitney U-test as data were non-normally distributed as indicated by the Kolmogorov–Smirnov test.
Dichotomous variables were compared using the Pearson x2 test or Fisher’s exact test as appropriate.
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Figure 2. Method of piperacillin/tazobactam and meropenem
administration according to participating countries.
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P¼0.106]; 100% fT.MIC [prolonged infusion 73.1% (49/67) versus
IB 57.4% (66/115); P¼0.045]; and 100% fT.4×MIC [prolonged infu-
sion 31.3% (21/67) versus IB 25.2% (29/115); P¼0.357]. When
only patients with actual MIC data were analysed, those who
received b-lactams via prolonged-infusion dosing also demon-
strated numerically higher target attainment rates, albeit not
statistically significantly higher, compared with IB patients across
all PK/PD indices.

The clinical cure and 30 day survival rate of patients who
received antibiotics for treatment of infection (n¼145) was
73.1% (106/145) and 73.1% (106/145), respectively. Table 3
presents the differences in patient characteristics between

those who demonstrated positive and negative clinical out-
comes in this study. The clinical outcomes were mostly similar
between prolonged-infusion and IB patients receiving antibiotics
for treatment of infection (Figures 3 and 4). However, in the sub-
group of patients who had respiratory infection (n¼59), patients
receiving b-lactams via prolonged-infusion dosing demon-
strated significantly better 30 day survival when compared
with IB patients [86.2% (25/29) and 56.7% (17/30), respectively;
P¼0.012].

Patients who had a SOFA score ≥9 were identified by CARTana-
lysis to have the greatest risk of clinical failure [clinical cure rates
were 80.0% (88/110) in patients with a SOFA score ,9 versus

Table 3. Differences in patient characteristics and treatment-related variables between those who demonstrated positive and negative clinical outcome

Variable

Clinical cure
Significance

P valuea,b

30 day survival

P valuea,byes (n¼106) no (n¼39) alive (n¼106) deceased (n¼39)

Age (years), median (IQR) 65 (50–75) 64 (51–79) 0.297 59 (47–74) 65 (56–77) 0.048c

Male, n (%) 67 (63.2) 24 (61.5) 0.929 66 (62.3) 25 (64.1) 0.890
Weight (kg), median (IQR) 73 (63–86) 75 (65–81) 0.927 75 (65–88) 71 (60–76) 0.074c

APACHE II score, median (IQR) 19 (15–25) 18 (15–24) 0.643 18 (14–25) 21 (16–24) 0.499
SOFA score, median (IQR) 5 (2–7) 7 (4–9) 0.029c 4 (2–7) 7 (4–10) 0.001c

Serum creatinine (mmol/L), median (IQR) 65 (51–144) 87 (53–130) 0.457 64 (48–130) 92 (64–143) 0.101
Cockcroft–Gault CLCR (mL/min), median (IQR) 86 (41–130) 78 (39–131) 0.445 93 (45–147) 59 (36–93) 0.014c

Duration of treatment (days), median (IQR) 9 (5–13) 7 (4–10) 0.030c 10 (5–14) 8 (4–12) 0.217
Pre-ICU hospital stay (days), median (IQR) 2 (1–8) 6 (2–12) 0.005c 2 (1–9) 3 (1–12) 0.046c

Surgery within 24 h, n (%) 12 (11.3) 6 (15.4) 0.420 14 (13.2) 4 (10.3) 1.000
Culture positive, n (%) 83 (78.3) 31 (79.5) 0.759 85 (80.2) 29 (74.4) 0.387
Gram-negative pathogen, n (%) 61 (73.5) 30 (96.8) 0.036c 64 (75.3) 27 (93.1) 0.039c

Polymicrobial infection, n (%) 16 (19.3) 7 (22.6) 0.536 20 (23.5) 7 (24.1) 0.824

Primary infection site, n (%)
respiratory 40 (37.7) 19 (48.7) 0.303 42 (39.6) 17 (43.6) 0.591
abdominal 30 (28.3) 12 (30.8) 0.695 31 (29.2) 11 (28.2) 0.639
blood 14 (13.2) 5 (12.8) 1.000 13 (12.3) 6 (15.4) 0.542
urinary 14 (13.2) 0 (0.0) 0.035 11 (10.4) 3 (7.7) 0.515
CNS 4 (3.8) 1 (2.6) 1.000 4 (3.8) 1 (2.6) 1.000
others 4 (3.8) 2 (5.1) 1.000 5 (4.7) 1 (2.6) 1.000

b-Lactam antibiotics, n (%)
piperacillin 60 (56.6) 26 (66.7) 0.295c 62 (58.5) 24 (61.5) 0.787
meropenem 46 (43.4) 13 (33.3) 44 (41.5) 15 (38.5)

Concomitant antibiotics, n (%) 58 (54.7) 32 (82.1) 0.020c 60 (56.6) 30 (76.9) 0.023c

Dosing method, n (%)
prolonged infusion 44 (41.5) 14 (35.9) 0.641c 47 (44.3) 12 (30.8) 0.156c

IB 62 (58.5) 25 (64.1) 59 (55.7) 27 (69.2)

PK/PD ratiod, median (IQR)
50% fT.MIC 7.1 (2.2–13.0) 3.5 (2.1–10.0) 0.097c 5.3 (1.9–11.7) 8.1 (2.9–15.0) 0.383
100% fT.MIC 2.2 (0.6–7.1) 1.7 (0.5–3.1) 0.280 1.7 (0.5–5.3) 3.2 (1.1–7.2) 0.060c

aLinear variables were compared using the Mann–Whitney U-test as data were non-normally distributed as indicated by the Kolmogorov–Smirnov test.
Dichotomous variables were compared using the Pearson x2 test or Fisher’s exact test as appropriate.
bBold values indicate statistical significance (P,0.05).
cRepresents variable that was included in the multivariate logistic regression model.
dPK/PD ratios observed at 50% and 100% of the dosing interval. These indices were defined as the ratio between the unbound plasma concentration
(piperacillin/tazobactam or meropenem) at 50% or 100% of the dosing interval and the causative pathogen MIC. Actual MIC values were used when
available. Where the MIC was unavailable or no pathogen was formally identified, surrogate MIC values were assumed.
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51.4% (18/35) in patients with a SOFA score ≥9; P¼0.004] and
30 day mortality [mortality rates were 18.2% (20/110) in patients
with a SOFA score ,9 versus 54.3% (19/35) in patients with a
SOFA score ≥9; P¼0.001]. In patients with a SOFA score ≥9
(n¼35), those receiving b-lactams via prolonged-infusion dosing
demonstrated significantly higher clinical cure [prolonged infusion
73.3% (11/15) versus IB 35.0% (7/20); P¼0.035] and 30 day
survival rates [prolonged infusion 73.3% (11/15) versus IB
25.0% (5/20); P¼0.025].

Outcome measure predictors

Based on the most parsimonious model, decreasing CLCR values
significantly increased the PTA for all PK/PD targets: 50% fT.MIC,
OR 0.97, 95% CI 0.98–0.99, P¼0.007; 50% fT.4×MIC, OR 0.97,
95% CI 0.98 –0.99, P¼0.014; 100% fT.MIC, OR 0.97, 95% CI
0.98–0.99, P,0.001; and 100% fT.4×MIC, OR 0.97, 95% CI
0.96–0.98, P,0.001. The use of prolonged-infusion dosing, as
opposed to IB dosing, significantly increased the PTA for 100%
fT.MIC (OR 2.78, 95% CI 1.24–6.24, P¼0.013).

The results of all multivariate logistic regression models for
clinical cure and 30 day survival are available in Table 4. Based
on the most parsimonious logistic regression model, SOFA score
(OR 0.89, 95% CI 0.80–0.99, P¼0.029) and concomitant anti-
biotic use (OR 0.31, 95% CI 0.10–0.96, P¼0.043) were identified
as significant factors associated with clinical cure whilst only SOFA
score (OR 0.82, 95% CI 0.73–0.92, P¼0.001) was identified as a
factor associated with 30 day survival.

Discussion
Altered b-lactam PK is widely reported among ICU patients,
potentially leading to suboptimal antibiotic exposures when
‘standard’ b-lactam dosing is applied in the cohort.5,6,29 In this
study, the majority of patients achieved a lower PK/PD target of
50% fT.MIC and the attainment rates were similarly high across
the two administration methods and antibiotics. However, clinical
data from critically ill patients have suggested that such exposure
should be regarded as the minimum, with larger exposures asso-
ciated with improved outcomes.30 – 33 A more prudent target of
100% fT.MIC should be considered and this was not achieved by
one-third of the study patients. Nonetheless, the patients in this
cohort were 3-fold more likely to achieve 100% fT.MIC when
receiving b-lactams via prolonged-infusion dosing (OR 2.78,
95% CI 1.24– 6.24, P¼0.013). Although such an observation
was anticipated, our current work remains unique given that the
data were derived from a broad range of ICU environments across
10 countries and the strength of association was established and
supported by multivariate regression analyses.

As the b-lactams are predominantly cleared by the kidney, ele-
vated renal function as observed in augmented renal clearance
(ARC) may likely lead to suboptimal PK/PD target attainment.34–36

In our cohort, increasing values of the estimated CLCR significantly
reduced the PTA for all PK/PD indices. Moreover, the observed rela-
tionship between CLCR and suboptimal PK/PD exposure was rela-
tively strong in both univariate and multivariate analysis for all
PK/PD indices. The probability of attaining 100% fT.MIC would be
reduced by 3% with every 1 mL/min increase in the estimated
CLCR (OR 0.97, 95% CI 0.98–0.99, P,0.001). The median CLCR of
patients who did not attain 100% fT.MIC was 132 mL/min and
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Figure 3. Clinical cure rate comparison between prolonged-infusion
and IB dosing for patients who received antibiotics for treatment of
infections, stratified according to subgroups. An asterisk indicates a
significant difference between prolonged-infusion and IB dosing
(P,0.05). n, number of patients in the subgroup.
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only 28.2% (11/39) of those with a CLCR ≥132 mL/min achieved the
target. Such patients, who are at risk and usually have apparently
‘normal’ renal function, need to be identified early so that appropri-
ate dose modification can occur. Young trauma patients
(,60 years), without significant organ dysfunction (SOFA ≤4),37,38

were more likely to develop ARC and these factors were also evident
in our patients who manifested elevated CLCR; median age was 45
(IQR 35–57) and median SOFA was 4 (IQR 2–7).

The significance of illness severity for clinical outcome is also
highlighted in this study. In this context, higher SOFA scores
were independently associated with greater likelihood of develop-
ing clinical failure and death at 30 days after antibiotic sampling.
An increase in SOFA score by 1 point reduced the probability of
clinical cure and survival by 11.0% and 18.0%, respectively
(Table 4). Accordingly, we also observed that patients with a

SOFA score ≥9 were more likely to demonstrate negative clinical
outcomes and, when only these patients were tested, those
receiving b-lactams via prolonged-infusion dosing demonstrated
significantly better outcomes compared with IB dosing (Figures 3
and 4). Higher survival rates favouring prolonged-infusion dosing
were also seen in the subgroup of patients with respiratory infec-
tion, and our findings further substantiate similar claims of earlier
studies that suggested potential benefits of prolonged-infusion
administration in severely ill patients with pneumonia.39 – 41 As
inappropriate antibiotic treatment has been associated with
reduced survival in patients with severe pneumonia,31,32,42,43

prompt antibiotic administration, with an optimal dosing sched-
ule, is therefore an essential intervention in this population. In
this respect, the application of prolonged-infusion dosing could
have the merit of enhancing b-lactam penetration into the

Table 4. Factors predicting clinical cure and 30 day survival for all patients who received antibiotics for treatment of infections (n¼145)

Variable

All factors included in the model Final model

OR (95% CI) P value OR (95% CI) P value

Factors predicting clinical cure
SOFA score (per 1 point increase) 0.90 (0.80–1.01) 0.071 0.89 (0.80–0.99) 0.029
concomitant antibiotic therapya 0.24 (0.07–0.84) 0.025 0.31 (0.10–0.96) 0.043
duration of antibiotic therapy (per 1 day increase) 1.08 (0.98–1.18) 0.115 — —
Gram-negative pathogenb 0.35 (0.06–1.87) 0.218 — —
50% fT.MIC

c (per 1 point increase) 1.02 (0.97–1.08) 0.405 — —
piperacillind 0.84 (0.28–2.46) 0.746 — —
prolonged infusione 0.86 (0.31–2.43) 0.782 — —
pre-ICU hospital stay (per 1 day increase) 1.00 (0.97–1.03) 0.966 — —

Goodness of fit
Hosmer–Lemeshow test x2¼6.00, df¼8 0.647 x2¼8.41, df¼8 0.394

Factors predicting 30 day survival
SOFA score (per 1 point increase) 0.83 (0.73–0.96) 0.009 0.82 (0.73–0.92) 0.001
concomitant antibiotic therapya 0.24 (0.05–1.04) 0.056 — —
piperacillind 2.70 (0.86–8.49) 0.090 — —
age (per 1 year increase) 0.96 (0.92–1.01) 0.099 — —
weight (per 1 kg increase) 1.03 (0.99–1.07) 0.119 — —
Gram-negative pathogenb 0.32 (0.05–2.05) 0.228 — —
pre-ICU hospital stay (per 1 day increase) 0.98 (0.95–1.01) 0.232 — —
estimated Cockcroft–Gault CLCR (per mL/min) 1.00 (0.99–1.01) 0.675 — —
prolonged infusione 1.10 (0.33–3.67) 0.878 — —
100% fT.MIC

f (per 1 point increase) 1.00 (0.92–1.08) 0.960 — —

Goodness of fit
Hosmer–Lemeshow test x2¼6.57, df¼8 0.584 x2¼5.05, df¼8 0.751

df, degrees of freedom.
When available, actual MIC values were used.
Dashes indicate there was no variable output in the model.
aOR ratio compares concomitant antibiotic therapy relative to antibiotic monotherapy.
bOR compares Gram-negative relative to Gram-positive pathogens.
cRatio between unbound plasma concentration (either piperacillin or meropenem) at 50% of the dosing interval and the causative pathogen MIC (actual
or assumed values).
dOR compares piperacillin relative to meropenem.
eOR compares prolonged-infusion relative to IB dosing.
fRatio between unbound plasma concentration (either piperacillin or meropenem) at 100% of the dosing interval and the causative pathogen MIC
(actual or assumed values).
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interstitial fluid of the infected lung tissues,26,44,45 where the
antibiotic–bacteria interactions occur.46 Furthermore, optimal
antibiotic dosing is crucial in this population as it may be directly
linked with patient outcomes,47,48 whilst for other infection sites,
such as intra-abdominal and surgical-site infections, effective
source control and the role of the surgeon are probably more
crucial in predicting positive outcomes.

However, it is also important to mention that the sample size
of patients in these two subgroups was relatively small compared
with the number of clinically evaluable patients (,60 versus 145,
respectively) and thus the observed statistical significance could
have been the result of random chance, although the findings
do agree with previous published data.28 Furthermore, due to
the relatively small number of patients in the two subgroups,
logistic regression analyses could not be performed and therefore
the conclusion that prolonged infusion provided clinical benefits
was based on unadjusted analyses, which do not consider the
influence of potential confounders. Hence, it is important to high-
light that the median pre-ICU days for prolonged-infusion patients
in the two subgroups were significantly shorter compared with IB
patients (prolonged infusion 2 days, IQR 1–8; IB 7 days, IQR 2–12;
P¼0.039), and the large difference might skew the results in
favour of prolonged infusion. Indeed, our clinical findings provide
further evidence that prolonged-infusion dosing of b-lactam anti-
biotics may not be beneficial for all but rather for a specific subset
of critically ill patients with severe infections. Interestingly, no sub-
group had worse outcomes with prolonged-infusion dosing, sug-
gesting that widespread use of such an intervention is not likely to
have an inferior effect compared with the current standard
practice. We believe that this study generates an interesting
‘therapeutic’ signal, signifying potential clinical superiority of
prolonged-infusion dosing in patients with higher SOFA scores
and in patients with respiratory infections. Accordingly, future clin-
ical studies should focus on and test the hypotheses of prolonged-
infusion dosing benefits specifically in these patient groups. As has
been demonstrated by a recent randomized controlled trial,
Dulhunty et al.21 showed that continuous infusion demonstrated
better PK/PD and clinical outcomes when compared with IB dos-
ing, and these findings may stem from the strategic approach of
only recruiting patients with a higher acuity of illness and in
patients not receiving renal replacement therapy.

In this study, concomitant antibiotic therapy reduced the prob-
ability of clinical cure by 69.0% (Table 4). Although the reasons
were unclear, we hypothesize that the more severely ill the patient
was, the more likely it was that the patient received multiple anti-
biotics in an attempt to ‘reverse’ the impending poor prognosis
associated with such patients. Our notion was corroborated by
the higher median SOFA score observed in patients who received
concomitant antibiotics compared with those who did not (SOFA
6, IQR 3–9, and SOFA 4, IQR 1–7, respectively; P¼0.048). Whilst
data on concomitant antibiotics were available, we did not specif-
ically evaluate the duration of therapy with these antibiotics and
assess their PK/PD, all of which could have confounded the find-
ings in this study.

This study has several limitations that we would like to declare.
It is imperative to clarify that in 60% of the patients ‘surrogate’
MIC values were assumed from population estimates, and such
an approach could markedly inflate, or even deflate, the magni-
tudes of PK/PD target non-attainment observed in this study.
In addition, this approach would adversely affect the target

attainment rates of IB patients more than those for the
prolonged-infusion patients if the surrogate MIC values were
indeed higher than the actual MIC values. However, when we
employed actual MIC data in our analysis, the findings were con-
sistent with our main approach, where prolonged-infusion
patients demonstrated numerically higher target attainment
rates, albeit not statistically significantly higher, compared with
IB patients across all PK/PD indices. Actual MIC values would
have been preferable, although we believe that our present
approach closely mimics the real-life clinical approach, in which
the MIC for a pathogen is rarely available upon antibiotic treat-
ment initiation. We also acknowledge the limitation of the
Cockcroft–Gault formula in estimating the measures of renal
function in this cohort, and that measured CLCR would be more
appropriate, particularly in patients with ARC. The post hoc nature
of this analysis also limits our ability to establish a causal relation-
ship between the methods of b-lactam administration and clin-
ical outcomes. As the antibiotic dosing regimen and all
subsequent patient management were at the discretion of the
treating physician, this might have introduced potential bias
towards better patient management among prolonged-infusion
patients in this study.

Conclusions

This study provides additional PK/PD and clinical outcome data to
support the practice of administration of piperacillin/tazobactam
and meropenem by prolonged infusion in critically ill patients, par-
ticularly for patients with respiratory infections. However, future
clinical studies should focus on and test the potential clinical
superiority of altered b-lactam dosing approaches in a specific
subset of critically ill patients with severe infections who are not
receiving renal replacement therapy.
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Torino, Italy.
Ilaria Mastromauro, Universitaria S. Giovanni Battista della Città di
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