
ISTITUTO ITALIANO DI TECNOLOGIA

Computational Statistics and Machine
Learning Department

UNIVERSITÀ DEGLI STUDI DI GENOVA

Mathematics Department

PHD PROGRAM IN MATHEMATICS AND APPLICATIONS

Efficient Lifelong Learning Algorithms:
Regret Bounds and Statistical Guarantees

by

Giulia Denevi

Thesis submitted for the degree of Doctor of Philosophy (32◦ cycle)

November 23, 2019

Prof. Massimiliano Pontil Supervisor
Prof. Stefano Vigni Head of the PhD program

Thesis Reviewers:
Prof. Nicolò Cesa-Bianchi, Università degli Studi di Milano External examiner
Prof. Francesco Orabona, Boston University External examiner

To my family

Declaration

I hereby declare that, except where specific reference is made to the work of others, the contents
of this dissertation are original and they have not been submitted, in whole or in part, for any
other degree or qualification in this. This dissertation is my own work and it contains nothing
which is the outcome of work done in collaboration with others, except as specified in the text
and in the Acknowledgments.

Giulia Denevi, November 2019

Acknowledgements

First, I would like to acknowledge my supervisor Massimiliano Pontil for his guidance and
for the time he dedicated to me during the PhD. Then, I would like to thank Carlo Ciliberto,
Dimitris Stamos and Riccardo Grazzi for their collaboration to the topics in this thesis and for
their hospitality at the Imperial College and the University College in London. Finally, I would
like to thank my brother Fabio and my parents, Cinzia and Italo, for their love and for their steady
support.

Vorrei innanzitutto ringraziare il mio supervisore Massimiliano Pontil per la sua guida e per il
tempo che mi ha dedicato durante il dottorato. Vorrei poi ringraziare Carlo Ciliberto, Dimitris
Stamos e Riccardo Grazzi per la loro collaborazione agli argomenti in questa tesi e per la loro
ospitalità presso Imperial College e University College a Londra. Infine, vorrei ringraziare il mio
fratellone Fabio e i miei genitori, Cinzia e Italo, per il loro amore e per il loro costante supporto.

Abstract

We study the Meta-Learning paradigm where the goal is to select an algorithm in a prescribed
family – usually denoted as inner or within-task algorithm – that is appropriate to address a class
of learning problems (tasks), sharing specific similarities. More precisely, we aim at designing a
procedure, called meta-algorithm, that is able to infer this tasks’ relatedness from a sequence of
observed tasks and to exploit such a knowledge in order to return a within-task algorithm in the
class that is best suited to solve a new similar task.

We are interested in the online Meta-Learning setting, also known as Lifelong Learning. In this
scenario the meta-algorithm receives the tasks sequentially and it incrementally adapts the inner
algorithm on the fly as the tasks arrive. In particular, we refer to the framework in which also
the within-task data are processed sequentially by the inner algorithm as Online-Within-Online

(OWO) Meta-Learning, while, we use the term Online-Within-Batch (OWB) Meta-Learning to
denote the setting in which the within-task data are processed in a single batch.

In this work we propose an OWO Meta-Learning method based on primal-dual Online Learning.
Our method is theoretically grounded and it is able to cover various types of tasks’ relatedness
and learning algorithms. More precisely, we focus on the family of inner algorithms given by a
parametrized variant of Follow The Regularized Leader (FTRL) aiming at minimizing the within-
task regularized empirical risk. The inner algorithm in this class is incrementally adapted by a
FTRL meta-algorithm using the within-task minimum regularized empirical risk as the meta-loss.
In order to keep the process fully online, we use the online inner algorithm to approximate the
subgradients used by the meta-algorithm and we show how to exploit an upper bound on this
approximation error in order to derive a cumulative error bound for the proposed method. Our
analysis can be adapted to the statistical setting by two nested online-to-batch conversion steps.
We also show how the proposed OWO method can provide statistical guarantees comparable to
its natural more expensive OWB variant, where the inner online algorithm is substituted by the
batch minimizer of the regularized empirical risk. Finally, we apply our method to two important
families of learning algorithms parametrized by a bias vector or a linear feature map.

Contents

List of Figures vii

List of Symbols viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 List of Publications . 5
1.4 Outline . 6

2 Background 7
2.1 Online Single-Task Learning . 7
2.2 Online-Within-Online Meta-Learning . 13
2.3 Multi-Task Learning . 18

3 The Proposed Online-Within-Online Meta-Learning Method 23
3.1 Setting . 23
3.2 Preliminaries: Primal-Dual Online Learning 26
3.3 Method and Analysis in the Non-Statistical Setting 28
3.4 Method and Analysis in the Statistical Setting 38
3.5 Related Work . 45
3.6 Discussion . 47

4 An Online-Within-Batch Variant of the Method in the Statistical Setting 48
4.1 Method and Analysis in the Statistical Setting 48
4.2 Related Work . 56
4.3 Discussion . 58

5 Example 1. Bias 59
5.1 Deriving the Method . 60

Contents vi

5.2 Method and Analysis in the Non-Statistical Setting 65
5.3 Method and Analysis in the Statistical Setting 67
5.4 The Statistical Online-Within-Batch Variant 70
5.5 Discussion . 72
5.6 Experiments . 74

6 Example 2. Feature Map 79
6.1 Deriving the Method . 79
6.2 Method and Analysis in the Non-Statistical Setting 85
6.3 Method and Analysis in the Statistical Setting 87
6.4 The Statistical Online-Within-Batch Variant 90
6.5 Discussion . 92
6.6 Experiments . 95

7 Conclusion and Future Directions 99

Appendix A Convex Analysis 101

Appendix B Primal-Dual Online Learning 110

Appendix C Experimental Details 118

Bibliography 125

List of Figures

1.1 Lifelong Learning by an Image . 2

5.1 Synthetic Experiments, Bias . 77
5.2 Real Experiments, Bias . 78

6.1 Experiments, Feature Map . 98

List of Symbols

w.r.t. with respect to
i.i.d. independently identically distributed
OWO Online-Within-Online
OWB Online-Within-Batch
ITL Independent-Task Learning
MTL Multi-Task Learning
ERM Empirical Risk Minimizer
RERM Regularized Empirical Risk Minimizer
O(·) limiting behavior when the argument (or some parts of it) tends to infinity
Rd the d dimensional Euclidean space
Rd×T the set of the real d × T matrices
Sd the set of the real d × d symmetric matrices
Sd

+ the set of the real d × d symmetric and positive semi-definite matrices

∥ · ∥2 the Euclidean or ℓ2 norm, defined for any w ∈ Rd as ∥w∥2 =
√∑d

i=1 w2
i

∥ · ∥1 the ℓ1 norm, defined for any w ∈ Rd as ∥w∥1 = ∑d
i=1 |wi|

∥ · ∥∞ the ℓ∞ norm, defined for any w ∈ Rd as ∥w∥∞ = maxi=1,...,d |wi|
Tr(·) the trace operator
Ran(·) the range operator
·⊤ the transpose operator
·∗ the conjugate or adjoint operator
·† the pseudo-inverse operator
·1/2 the square root operator
Σ(W) the singular values’ vector of the matrix W ∈ Rd×T

∥ · ∥F the Frobenius norm, defined for any W ∈ Rd×T as ∥W∥F = ∥Σ(W)∥2

∥ · ∥Tr the trace norm, defined for any W ∈ Rd×T as ∥W∥Tr = ∥Σ(W)∥1

∥ · ∥∞ the operator norm, defined for any W ∈ Rd×T as ∥W∥∞ = ∥Σ(W)∥∞

ιS(·) the indicator function of the set S, taking value 0 over S and +∞ otherwise
V generic Euclidean space, a finite dimensional real vector space

ix

⟨·, ·⟩ generic scalar product over V
∥ · ∥ generic norm over V
∥ · ∥∗ the dual norm of ∥ · ∥, defined for any α ∈ V as ∥α∥∗ = supv∈V:∥v∥≤1 ⟨v, α⟩
Domf the domain of a function f

Γ0(V) the set of the proper, closed and convex functions over V
n number of within-task points
i ∈ {1, . . . n} within-task index
T number of tasks
t ∈ {1, . . . , T} outer-task index
X ⊆ Rd the input (feature) space
Y ⊆ R the output (label) space
Z = X × Y the data space
z generic datapoint, z = (x, y) ∈ Z
Z = (zi)n

i=1 generic dataset of n points, zi = (xi, yi) ∈ Z
Zt = (zt,i)n

i=1 dataset of n points for the task t, zt,i = (xt,i, yt,i) ∈ Z
Z = (Zt)T

t=1 meta-dataset, collection of tasks’ datasets
µ probability distribution over Z
z ∼ µ a point z sampled from µ

Z ∼ µn a collection of n points i.i.d. according to µ

ρ meta-distribution over the space of the probability distributions over Z
M Euclidean space of meta-parameters
Θ ⊆ M subset of meta-parameters parametrizing the class of within-task algorithms
|||·||| generic norm over M
|||·|||∗ the dual norm of |||·|||
Aθ within-task algorithm associated to the meta-parameter θ ∈ Θ
A meta-algorithm working on the class of within-task algorithms {Aθ : θ ∈ Θ}
ℓ within-task loss function
λ within-task regularization parameter
f(·, θ) within-task regularizer parametrized by the meta-parameter θ ∈ Θ
∥ · ∥θ a norm over Rd parametrized by the meta-parameter θ ∈ Θ
∥ · ∥θ,∗ the dual norm of ∥ · ∥θ

RZ empirical risk over Z by the loss ℓ, see Eq. (2.1)
ŵ minimum norm minimizer of RZ over Rd, see below Eq. (2.1)
Rθ,Z empirical risk RZ regularized by λf(·, θ), see Eq. (2.23)
ŵθ minimizer of Rθ,Z over Rd, see Eq. (2.24)
EZ(A) average regret of the within-task algorithm A over Z, see Eq. (2.2)

x

Eθ,Z(A) average regret EZ(A) regularized by λf(·, θ), see Eq. (3.5)
Rµ (true) risk over µ by the loss ℓ, see Eq. (2.4)
wµ minimum norm minimizer of Rµ over Rd, see below Eq. (2.4)
Rθ,µ (true) risk Rµ regularized by λf(·, θ), see Eq. (3.29)
wθ,µ minimizer of Rθ,µ over Rd, see Eq. (3.30)
Eµ(A) expected excess risk of the within-task algorithm A over µ, see Eq. (2.6)
Eθ,µ(A) expected excess risk Eµ(A) regularized by λf(·, θ), see Eq. (3.29)
(wθ,i)n

i=1 iterates generated by the online within-task algorithm Aθ over Z

w̄θ average of the above iterates, see Eq. (2.5)
LZ meta-objective over Z, see Eq. (2.23)
η meta-regularization parameter
F meta-regularizer
(θt)T

t=1 iterates generated by the online meta-algorithm A over Z
θ̄ average of the above iterates, see Eq. (2.14)
θ̂ optimal meta-parameter in Θ in the non-statistical setting, see below Eq. (2.11)
θρ optimal meta-parameter in Θ in the statistical setting, see below Eq. (2.13)
θITL the meta-parameter in Θ corresponding to ITL

Chapter 1

Introduction

We start this introductory chapter by giving the motivation for Lifelong Learning in Sec. 1.1.
After that, in Sec. 1.2 and in Sec. 1.3, we briefly summarize the contributions of this work and
the list of the publications during the PhD, respectively. Finally, in Sec. 1.4, we describe how this
thesis is organized.

1.1 Motivation

Given a collection of datapoints (dataset) Z deriving from a specific problem (task), classic
learning systems usually apply a learning algorithm A over the dataset, in order to produce a
model f = A(Z) that is able to capture the underlying structure of the data for that problem.
However, this procedure can require a large amount of data in order to get a model returning
satisfactory performance. This aspect makes classic learning systems rather limited, especially,
when it comes to tackle a sequence of learning problems, a situation naturally arising in many
real-world scenarios. Overcoming this limitation can have a broad impact in artificial intelligence,
as it can save the expensive preparation of large training samples, often humanly annotated,
needed by current machine learning methods. In contrast, humans can quickly adapt knowledge
gained when learning past tasks, in order to solve novel tasks more efficiently, from just few
examples.

All these observations motivated the rise of the so-called Meta-Learning or Learning-To-Learn

paradigm, which has received increasing attention, both from applied (Finn et al., 2017; Ravi
and Larochelle, 2017; Thrun and Mitchell, 1995) and theoretical perspective (Alquier et al., 2017;

1.1 Motivation 2

Figure 1.1 Representing Lifelong Learning by an image.

Baxter, 1998; Gupta and Roughgarden, 2017; Maurer, 2005; Maurer et al., 2016; Thrun and
Pratt, 1998). In such a framework the aim is to design learning systems that are able to transfer
information among several related problems in order to improve the overall performance, instead
of building a new model from scratch for every new learning task.

More formally, Meta-Learning aims at designing a procedure, called meta-algorithm, able to infer
the similarities shared among a class of related problems (tasks), which are only partially observed
via a finite collection of training examples (datasets). These similarities are then exploited in
order to select an algorithm in a prescribed family that is best suited to address a new similar task.
Throughout this work, to highlight the difference between the meta-algorithm and an element of
the prescribed family, we will refer to the latter as inner or within-task algorithm. Moreover, as
we will see in the following, the choice of a specific class of inner algorithms naturally implies a
corresponding type of tasks’ relatedness.

The flavor is similar to the motivation behind Multi-Task Learning (MTL), see e.g. (Caruana,
1997). The difference is that, in MTL, the idea is to consider all given tasks jointly and transfer
information among them in order to select a good algorithm making the learning process for those
tasks more efficient, while, in Meta-Learning, the main goal of the learner is not to perform well
on the observed tasks, but rather, to extract some information from them that would be useful for
solving new tasks. Obviously, for this goal to make sense, as described above, one has to assume
some relatedness between the observed tasks and the new ones. In other words, from a more
practical point of view, in MTL, the performance of the selected inner algorithm is tested on the

1.1 Motivation 3

same set of tasks used to select such an algorithm, while, in Meta-Learning, the performance is
tested on a new yet-to-be-seen task.

A key aspect for the success of the information transfer process is the level of relatedness of the
tasks. The strong connection between the two frameworks above have suggested to adapt many
relatedness assumptions usually used in the multi-task literature to the Meta-Learning setting. In
this work, for instance, we will particularly focus on two classic settings in which the tasks are
assumed to have small variance, see (Evgeniou and Pontil, 2004), or to share a low-dimensional
linear representation or feature map, see (Argyriou et al., 2008a).

In order to evaluate the effectiveness of a Meta-Learning approach different aspects must be taken
into account. A good Meta-Learning approach should be memory efficient, e.g. it should not
require to memorize the previous data, it should be time efficient, e.g. it should run in polynomial
time with respect to (w.r.t.) the dimension of the problem and the number of data, and, finally, it
should be also theoretically grounded. An effective Meta-Learning approach is also expected
to bring substantial improvement over learning in isolation – also known as Independent-Task

Learning (ITL) – when the tasks satisfy the similarity assumption the method is trying to infer
from the data and the sample size per task is small, a setting which naturally arises in many
applications. Furthermore, when the tasks are not similar as guessed, the method should be able
to avoid the so-called negative tansfer effect, i.e. it should return performance that are not worse
than the performance one would get by solving those tasks independently.

We think that one of the key aspect motivating the theoretical research should be always its
applicability to real-world scenarios. In these cases, learning naturally becomes an ongoing
(and possibly never ending) process. As a matter of fact, many applications deal with evolving
settings, in which data naturally arrive sequentially. We can think for instance to recommendation
systems, robotics, autonomous vehicles, financial and weather forecasting or, more generally, to
applications stemming from models based on time series. Moreover, in other cases, even when
data are available in one entire batch, we may want to process them only few at the time because
of limited computational resources.

Even though dealing with learning in an online fashion becomes fundamental from a practical
point of view, until very recently, Meta-Learning was mainly studied in the batch statistical
setting, where data are assumed to be independently sampled from some distribution and they
are processed in one entire batch, see for instance (Baxter, 2000; Maurer, 2009; Maurer et al.,
2013, 2016; Pentina and Lampert, 2014). Only recently, a lot of interest raised in investigating
more efficient methods, combining ideas from Online Learning and Meta-Learning, see (Alquier
et al., 2017; Balcan et al., 2019; Bullins et al., 2019; Denevi et al., 2018a,b, 2019a; Finn et al.,

1.2 Contributions 4

2019; Pentina and Urner, 2016). In this setting, which is sometimes referred to as Lifelong

Learning, the tasks are observed sequentially – via corresponding sets of training examples – and
the meta-algorithm incrementally updates the inner algorithm on the fly as the tasks arrive. In
Fig. 1.1 we report a schematic representation of this process. Key to this setting is for the method
to rapidly incorporate new observations into the model as they arrive, without keeping them in
memory and without over-fitting them. In other words, the method must be able to avoid the
so-called catastrophic forgetting, the phenomenon in which the inner algorithm is usually adapted
to address only the most recent observations, loosing its effectiveness on the previous ones.

There are different ways to deal with Meta-Learning in an online framework: the so-called
Online-Within-Batch (OWB) framework, where the tasks are processed online but the data within
each task are processed in one batch – see e.g. (Alquier et al., 2017; Balcan et al., 2019; Bullins
et al., 2019; Denevi et al., 2018a,b; Finn et al., 2019; Khodak et al., 2019) – or the so-called
Online-Within-Online (OWO) framework, where data are processed sequentially both within and
across the tasks – see e.g. (Alquier et al., 2017; Balcan et al., 2019; Denevi et al., 2019a; Finn
et al., 2019; Khodak et al., 2019). In this dissertation we will mainly focus on the most appealing
OWO setting, but sometimes we will also discuss about the OWB framework.

In the next section, we describe the main contributions of this work.

1.2 Contributions

Previous work on Meta-Learning mainly analyzed specific settings or gave only a partial study
of their methods. The main goal of this work is to propose an OWO Meta-Learning approach
that can be adapted to a broad family of standard learning algorithms and to provide a complete
analysis for its computational and learning guarantees. We consider both the non-statistical

setting, where we do not have further assumption on our data, and the statistical setting, where
data are assumed to be sampled from some distribution. The generality, the provable guarantees
and the computational and memory efficiency are strengths of our approach.

In our OWO method, we consider a parametrized class of inner algorithms based on primal-dual
Online Learning. Specifically, we discuss in detail the case of Follow The Regularized Leader,
where the regularizer belongs to a general family of strongly convex functions parametrized by
a meta-parameter. The inner algorithm is adapted by a meta-algorithm, which also consists in
applying Follow The Regularized Leader on the meta-objective given by the within-task minimum
regularized empirical risk.

1.3 List of Publications 5

The interplay between the meta-algorithm and the inner algorithm plays a key role in our analysis.
The latter is used to compute a good approximation of the meta-subgradient which is supplied to
the former. A key novelty of our analysis is to show that, exploiting a closed form expression of
the error on the meta-subgradients, we can automatically derive a cumulative error bound for the
entire procedure in the non-statistical setting, without additional assumptions. Our analysis can
be also adapted to the statistical setting by two nested online-to-batch conversions.

We also show how, in the statistical setting, the proposed OWO method can provide comparable
guarantees as its more expensive OWB variant, where the inner online algorithm is substituted by
the batch minimizer of the regularized empirical risk.

Finally, we show how our general method and the corresponding analysis can be directly applied
to two important families of learning algorithms in which the meta-parameter is either a bias
vector or a linear feature map shared across the tasks.

1.3 List of Publications

The following main publications were completed during the course of the PhD.

1. Online-Within-Online Meta-Learning. G. Denevi, D. Stamos, C. Ciliberto, M. Pontil.
Conference on Neural Information Processing Systems (NeurIPS), 2019. See (Denevi et al.,
2019b).

2. Learning-To-Learn Stochastic Gradient Descent with Biased Regularization. G. Denevi, C.
Ciliberto, R. Grazzi, M. Pontil. International Conference on Machine Learning (ICML),
2019. See (Denevi et al., 2019a).

3. Learning-To-Learn Around A Common Mean. G. Denevi, C. Ciliberto, D. Stamos, M.
Pontil. Conference on Neural Information Processing Systems (NeurIPS), 2018. See
(Denevi et al., 2018b).

4. Incremental Learning-To-Learn with Statistical Guarantees. G. Denevi, C. Ciliberto, D.
Stamos, M. Pontil. Conference on Uncertainty in Artificial Intelligence (UAI), 2018. See
(Denevi et al., 2018a).

5. Iterative Algorithms For a Non-Linear Inverse Problem in Atmospheric LiDAR. G. Denevi,
S. Garbarino, A. Sorrentino. Inverse Problems, 2017. See (Denevi et al., 2017).

1.4 Outline 6

This thesis is mainly based on the material taken from the first work above. In such a paper, we
present a more general framework which can be specified in order to include also the setting
presented in the second work in the list. We will discuss during the thesis how the third and the
fourth work fit in the main framework described in this dissertation. Finally, the last paper is
not related to the topic presented here, but it comes from the activity developed during my MSc
thesis, where I mainly worked on Inverse Problems. For this reason, it will be not mentioned
during this dissertation.

1.4 Outline

This dissertation is organized as follows. In Chpt. 2 we start by recalling some background on
the standard Online Single-Task Learning setting which leads the basis for the formulation of
the OWO Meta-Learning problem, described immediately after. We conclude the chapter by
recalling the Multi-Task Learning framework, from which we take inspiration for designing our
OWO Meta-Learning method, described and analyzed in the following Chpt. 3. The method is
computationally appealing in that it processes the data sequentially both within and across the
tasks, without requiring their memorization. At the same time, in the statistical setting, we are able
to provide theoretical guarantees for our method which can be comparable to those of its more
expensive variant described in Chpt. 4 in which the data within each task are processed in one
batch. In Chpt. 5 and Chpt. 6 we show that specializing the above method and the corresponding
analysis to two important examples in which the tasks are all close to a common bias vector or
share a common simple linear representation, respectively, we get meaningful results, both from
the theoretical and the experimental point of view. Finally, in Chpt. 7 we draw conclusion and we
discuss future research directions.

The proofs omitted from the main body are postponed to the appendices. In particular, in App. A
we provide some basic tools from convex analysis that we use in order to prove our statements
and in App. B we describe the material from primal-dual Online Learning that is used to analyze
the proposed method. Finally, in App. C we clarify some experimental details regarding the
implementation of our method.

In the following chapter we provide the background material used during this dissertation.

Chapter 2

Background

In this chapter we first introduce the standard online Single-Task Learning problem in Sec. 2.1
and then, in parallel way, we formalize the Online-Within-Online Meta-Learning problem in
Sec. 2.2. As described in the following, we consider both the non-statistical and the statistical
setting. We conclude the chapter in Sec. 2.3 by recalling the Multi-Task Learning framework
which inspires the design of our OWO Meta-Learning method in the next Chpt. 3.

2.1 Online Single-Task Learning

In many applications, data are naturally received sequentially and we are required to exploit the
information collected up to that moment in order to return a response on the fly. Other times, even
when data are available in one batch, we may want to process them only few at the time because of
limited computational resources. All these reasons motivate the importance of the study of Online
Learning, where the target is usually to design an online algorithm A that makes predictions
through time from past information, processing the data sequentially. We refer to (Cesa-Bianchi
and Lugosi, 2006; Hazan, 2016; Shalev-Shwartz, 2007; Shalev-Shwartz and Ben-David, 2014;
Shalev-Shwartz et al., 2012) and references therein for a detailed discussion about the topic.

More formally, given an input space X and an output space Y , we will consider the following
online problem over the dataspace Z = X × Y . At each step i ∈ {1, . . . , n}:

1. the learner A receives a datapoint zi = (xi, yi) ∈ X × Y ,

2. it outputs a label ŷi,

2.1 Online Single-Task Learning 8

3. it incurs the error ℓi(ŷi) = ℓ(ŷi, yi), where ℓ : Y × Y → R is a loss function.

To simplify our presentation, throughout this work we let X ⊆ Rd (the features’ space), Y ⊆ R
(the labels’ space) and we consider algorithms that perform linear predictions of the form
ŷi = ⟨xi, wi⟩, where ⟨·, ·⟩ denotes the standard inner product in Rd and (wi)n

i=1 is a sequence of
weight vectors which is updated by the algorithm at each iteration during an additional final step:

4. a new weight vector wi+1 is computed by the learner.

Precise assumptions are made in the following. In our case, we are especially interested in
efficient algorithms which can update the weight vectors (wi)n

i=1 online, with limited time and
space capabilities. In the rest of this work, we will denote by Z = (zi)n

i=1 = (xi, yi)n
i=1 the

collection of datapoints processed by our algorithm and, often, in order to simplify the notation,
we will not emphasize the dependency of the vectors (wi)n

i=1 on the data Z. Regarding this point,
we precise that, by construction, for any i ∈ {1, . . . , n}, the vector wi generated by an online
algorithm as above depends only on the datapoints (zj)i−1

j=1. We remark also that the process
described above is a slightly different variant of the classic Online Learning paradigm, where
usually the learner receives the true label yi only after making the prediction ŷi.

In order to evaluate the performance of the learner above, we have, first of all, to clarify the target
problem that we would like to solve. In order to do this, we have to make a distinction according
to the nature of our data.

2.1.1 Non-Statistical Setting

In the non-statistical setting we do not have further assumptions on the data processed by the
learned. In this case, we define as the problem that we would like to solve the one of minimizing
the empirical risk associated to the entire batch dataset Z, i.e.

min
w∈Rd

RZ(w) RZ(w) = 1
n

n∑
i=1

ℓi(⟨xi, w⟩). (2.1)

In the following, we will always assume that the above minimum is in fact attained and we will
denote by ŵ or ŵ(Z) (when we want to emphasize the dependency on Z) the empirical risk
minimizer (ERM) with minimum norm. We remark that this choice is made to simplify the
presentation, since the bounds we will give in the following will hold for a generic empirical risk
minimizer.

2.1 Online Single-Task Learning 9

In this case, we evaluate the performance of the online learner A described above over the data
sequence Z by giving a bound on its average regret

EZ(A) = 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(ŵ), (2.2)

which corresponds to the difference between the cumulative error incurred by the vectors (wi)n
i=1

returned by the online learner and the batch minimum, normalized by the number of points n. In
other words, from the optimization point of view, we are evaluating how much we are loosing
because of processing the points sequentially instead of in one batch.

An online learner A is considered effective when it is able to approach the performance of the
target vector ŵ, as the number of observed points n increases. We can equivalently express
this condition by requiring that the average regret of the algorithm in Eq. (2.2) vanishes as the
number of points n increases to +∞. In particular, from the efficiency point of view, we are also
interested at the speed at which such quantity vanishes. Regarding this aspect, it is well-known
that, under appropriate Lipschitz assumptions of the loss function, standard rates for the above
average regret are O(n−1/2) when the functions are convex – see e.g. (Shalev-Shwartz, 2007;
Shalev-Shwartz and Singer, 2007a; Shalev-Shwartz et al., 2012; Zinkevich, 2003) – and (up to
logarithmic factors) O(σ−1n−1) when the functions are σ-strongly convex (with σ > 0) – see e.g.
(Hazan et al., 2007; Shalev-Shwartz and Kakade, 2009; Shalev-Shwartz and Singer, 2007b).

Before proceeding, we make the following remark which will be useful for the statistical setting
below.

Remark 1 (Weaker Regret). The above definition in Eq. (2.2) is sometimes called in literature

worst case regret, in the sense that we are testing the performance of the online learner in

the worst case scenario in which the competitor coincides with the best vector in hindsight ŵ.

However, sometimes in the following, for our aim, it will be sufficient to consider a weaker notion

of regret, in which the best vector ŵ in Eq. (2.2) is substituted by another fixed vector w ∈ Rd.

Obviously, by definition, we have

EZ(A) = 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − min
w∈Rd

RZ(w) = max
w∈Rd

{ 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(w)
}

. (2.3)

As a consequence, a worst case regret bound automatically translates into a regret bound w.r.t.

any fixed competitor w ∈ Rd.

2.1 Online Single-Task Learning 10

2.1.2 Statistical Setting

Differently from above, in the statistical setting, the data Z processed by the online learner are
assumed to be independently identically distributed (i.i.d.) according to a distribution (or task) µ

over the dataspace Z . In the following we will use the short-hand notation Z ∼ µn to denote this
sampling process. Such a distribution in practice is unknown and it is only partially observed by
these i.i.d. samples. In this case, the problem that we would like to solve is to minimize the (true)

risk associated to the task µ, namely

min
w∈Rd

Rµ(w) Rµ(w) = E(x,y)∼µ ℓ(⟨x, w⟩, y). (2.4)

Again, in the following, we will assume that the above minimum is in fact attained and we will
denote by wµ the minimizer with minimum norm.

In this case, given the online learner A described above, we evaluate its performance by giving a
bound on the expected excess risk over the task µ of the average

w̄ = 1
n

n∑
i=1

wi (2.5)

of the returned vectors (wi)n
i=1, namely,

Eµ(A) = EZ∼µn Rµ(w̄) − Rµ(wµ). (2.6)

From the statistical point of view, we are evaluating the generalization (predictive) ability of the
estimator w̄, i.e. the error that we incur on a new point z = (x, y) sampled from µ and independent
form Z when we predict ⟨x, w̄⟩ instead of the true label y. We stress again that, throughout this
work, in order to simplify the notation, we usually do not emphasize the dependency of w̄ on Z.

In this case, we say that the online learner A is effective when the average of its iterations is
a consistent estimator approaching the performance of the target vector wµ as the number of
points increases. This condition can be equivalently formulated as requiring that the expected
excess risk in Eq. (2.6) vanishes as the number of points n increases to +∞. In particular, it is
well-known that, under appropriate standard assumptions of the loss function, standard rates for
the bound above are O(n−1/2), see e.g. (Shalev-Shwartz et al., 2009; Shamir and Zhang, 2013).

We remark that, obviously, the expected excess risk in Eq. (2.6) can be defined and evaluated
at a generic vector w ∈ Rd. At this point of the discussion the reader may wonder why, in
order to evaluate the performance of the online algorithm, we do choose to analyze the expected

2.1 Online Single-Task Learning 11

excess risk in Eq. (2.6) of the average of its iterations w̄, instead of any other vector w ∈ Rd.
The motivation is essentially due to the following standard result linking the performance of the
iterations generated by an online learner in the non-statistical setting to the performance of the
corresponding average in the statistical setting. This allows us to automatically pass from the
non-statistical to the statistical setting, without additional assumptions.

Proposition 1 (Online-To-Batch Conversion, see (Littlestone, 1989)). Consider an online al-

gorithm A that, when applied to a sequence Z of points, returns a sequence of vectors (wi)n
i=1

as described above and denote by EZ(A) its average regret defined in Eq. (2.2), where, for any

y ∈ Y , the loss function ℓ(·, y) is convex. Then, if the points processed by A are i.i.d. according

to a distribution µ over the dataspace Z , we have

Eµ(A) ≤ EZ∼µn EZ(A), (2.7)

where Eµ(A) denotes the expected excess risk of the vector w̄, the average of the iterations in

Eq. (2.6).

Proof. We start from observing that, by definition of Eµ(A) and EZ(A), the statement above is
equivalent to the following

EZ∼µn Rµ(w̄) − Rµ(wµ) ≤ EZ∼µn

 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(ŵ)
. (2.8)

We now observe that, the following relations hold

EZ∼µn Rµ(w̄) ≤ 1
n

n∑
i=1

EZ∼µn Rµ(wi) = EZ∼µn

 1
n

n∑
i=1

ℓi(⟨xi, wi⟩)
, (2.9)

where, in the inequality we have applied Jensen’s inequality (see Lemma 39 in App. A) to
the convex function Rµ and in the equality we have exploited the relation EZ∼µn Rµ(wi) =
EZ∼µn ℓi(⟨xi, wi⟩) (consequence of the fact that, by construction, wi depends only on the points

2.1 Online Single-Task Learning 12

(zj)i−1
j=1 and Z ∼ µn). The desired statement derives from the following steps:

EZ∼µn Rµ(w̄) − Rµ(wµ) ≤ EZ∼µn

 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − Rµ(wµ)


= EZ∼µn

 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(wµ)


≤ EZ∼µn

 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(ŵ)
,

(2.10)

where, in the first inequality we have applied Eq. (2.9), the equality is due to the relation
EZ∼µn RZ(wµ) = Rµ(wµ) (consequence of the fact that wµ does not depend on the data Z and
Z ∼ µn), and, finally, the second inequality directly derives from the definition of ŵ, according
to which RZ(ŵ) ≤ RZ(wµ).

The above result in Prop. 1 ensures that whenever we have an online algorithm with an average
regret bound, the same bound in expectation w.r.t. the sampling of the data holds in the statistical
setting for the expected excess risk of the average of the iterations. In particular, a standard
average regret bound O(n−1/2) translates into an equivalent standard excess risk bound for the
average in the convex statistical setting.

We observe that, in our case, we consider bounds in expectations. However, combining Martin-
gales’ arguments and concentration inequalities, it is possible to get more sophisticate variants of
the above result in Prop. 1 that hold in high probability w.r.t. the sampling of the points, see e.g.
(Cesa-Bianchi and Gentile, 2006; Cesa-Bianchi et al., 2004). Regarding this aspect, we remark
that, for σ-strongly convex functions (σ > 0), in order to keep the faster rate O(σ−1n−1) during
the online-to-batch conversion in high probability, it is necessary to apply different concentration
inequalities; we refer to (Kakade and Tewari, 2009) for more details about this. In expectation,
this problem does not subsist, since the faster rate is automatically maintained, by simply keeping
the expectation of the average regret bound.

We also remark that an online-to-batch conversion can be performed when convexity is missing.
In such a case, one possible candidate vector in the statistical setting is no more the average, but a
vector sampled uniformly from the whole pool of the iterations (wi)n

i=1 generated by the online
algorithm. However, in this case, it is necessary to add randomness to the process and, when
the number of points is not known in advance, it is also necessary to memorize all the previous
vectors in order to perform the uniform sampling. On the contrary, in the convex case, the average
of the iterations can be efficiently computed on the fly without memorizing the previous vectors.

2.2 Online-Within-Online Meta-Learning 13

Finally, we want to highlight the following fact about the statement in Prop. 1.

Remark 2 (Online-To-Batch Conversion by Weaker Regret). Looking above at the second row in

Eq. (2.10), the reader can immediately note that, in order to have an expected excess risk bound

Eµ(A) on the average of the iterations, one does not necessarily use a worst case regret bound,

but it is sufficient to take the expectation of a weaker regret bound w.r.t. the competitor vector wµ

(see Rem. 1). This fact will be used in the sequel of this work.

After introducing the standard online Single-Task Learning setting, describing how we tackle the
problem by an online algorithm and how we measure its performance, we now are ready to move
to the Online-Within-Online Meta-Learning framework.

2.2 Online-Within-Online Meta-Learning

As anticipated in Chpt. 1, in the OWO Meta-Learning setting, we have a family of inner (within-
task) online algorithms Aθ identified by a meta-parameter θ, belonging to a prescribed parameter
set Θ, and the goal is to adapt the inner algorithm Aθ (i.e. the meta-parameter θ) to a sequence
of T online related tasks, in an online fashion. More formally, throughout this work, Θ will be
a closed, convex and non-empty subset of an Euclidean space M. The broad goal here is to
transfer the information gained when learning previous tasks, in order to help learning future
similar tasks. For this purpose, we propose a Meta-Learning procedure A, which will be denoted
in the following by meta-algorithm, acting across the tasks and modifying the inner algorithm
one task after another.

More formally, we assume that all the tasks share the same data space Z = X × Y , where
X ⊆ Rd and Y ⊆ R. For each task t ∈ {1, . . . , T}, we sequentially observe a dataset Zt =
(zt,i)n

i=1 = (xt,i, yt,i)n
i=1

1 where, to simplify the presentation, each dataset Zt is composed by the
same number of points n. At each step t ∈ {1, . . . , T}:

1. the meta-learner A incrementally receives a task dataset Zt,

2. it runs the inner online algorithm Aθt with meta-parameter θt on Zt, returning the vectors
(wθt,i)n

i=1,

3. it incrementally incurs the errors ℓt,i(⟨xt,i, wθt,i⟩) = ℓ(⟨xt,i, wθt,i⟩, yt,i) measuring the
performance on the task t,

1Throughout this work we will use the double subscript notation “t,i”, to denote the {outer, inner} task index.

2.2 Online-Within-Online Meta-Learning 14

4. the meta-parameter θt (and consequently the inner algorithm) is updated in θt+1.

In the rest of this work we will denote by Z = (Zt)T
t=1 the meta-dataset, i.e. the collection of all

the datasets processed by our meta-algorithm A. Moreover, in order to simplify the notation, the
dependencies of the meta-parameters (θt)T

t=1 on the data will be not made explicit. Regarding this
point, we precise that, by construction, for any t ∈ {1, . . . , T}, the meta-parameter θt generated
by an online meta-algorithm as above depends only on the datasets (Zj)t−1

j=1.

In order to evaluate the performance of the meta-algorithm, we have to take into account the
performance of the resulting inner algorithms and, as we have seen for the Single-Task Learning
setting in Sec. 2.1, this requires to make a distinction according to the nature of our data.

2.2.1 Non-Statistical Setting

We recall that, in the non-statistical setting, as described in the previous Sec. 2.1.1, given an
online within-task algorithm A, we evaluate its performance over a data sequence Z by giving a
bound on its average regret, which is defined in Eq. (2.2) as

EZ(A) = 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(ŵ). (2.2)

This suggests to us a very natural way to define the problem we would like to solve as the one of
minimizing, over the class of our inner algorithms, the above quantity accumulated by a fixed
algorithm over all the datasets. Namely, assuming the existence of the minimum below, the
problem we aim to solve in this case is the following

min
θ∈Θ

1
T

T∑
t=1

EZt(Aθ). (2.11)

This formulation allows us to formally define an optimal algorithm in our class as an algorithm
associated to any meta-parameter minimizing the above quantity. Also in this case, when such a
meta-parameter is not unique, we apply some choice rule to select one of them. In the following
we will denote this representative optimal meta-parameter depending on the data Z by θ̂.

2.2 Online-Within-Online Meta-Learning 15

In this case, given the online meta-algorithm A described above, we evaluate its performance by
analyzing the following quantity

1
T

T∑
t=1

EZt(Aθt) − min
θ∈Θ

1
T

T∑
t=1

EZt(Aθ). (2.12)

In the above equation, we are computing the difference between the average regrets accumulated
by the within-task algorithms (Aθt)T

t=1 returned by the meta-learner over the sequence of datasets
Z = (Zt)T

t=1 and the corresponding quantity accumulated by the optimal algorithm in the class.
Then, everything is normalized by the number of observed tasks T . Throughout this work, we
will refer to the first term above in Eq. (2.12) as average meta-regret, while we will denote the
second term evaluated at any meta-parameter θ ∈ Θ by average across-tasks regret.

An online meta-learner A is considered to be effective when the overall performance of the
returned algorithms (Aθt)T

t=1 is comparable to the performance of the best algorithm in the class
Aθ̂ when n ≪ T . This is in fact the effective setting for Meta-Learning. As a matter of fact, in
such a case, due to the lack of within-task datapoints, solving each task in isolation is difficult but,
on the other hand, the number of observed tasks is sufficiently large to allow our meta-algorithm
to learn and to leverage an eventual relatedness among them in order to make the learning process
easier for each similar task. The above definition can be roughly reformulated as requiring that,
for a fixed value of within-task points n, the corresponding quantity in Eq. (2.12) vanishes as
the number of tasks T increases to +∞. However, differently from the Single-Task Learning
setting described in Sec. 2.1.1, in this case, at this level of the presentation, we do not manage
to establish a standard rate at which the above quantity should usually vanish. As we will see
in the following, the rates will vary according to the specific characteristics of the problem. For
instance, for the bias setting (see Ex. 1 in Chpt. 3 and Chpt. 5 below), the gap above will vanish
as O(T −1/2), for the feature map one (see Ex. 2 in Chpt. 3 and Chpt. 6 below), as O(T −1/4).

One important point to remark is the following. The class of inner algorithms we will consider
in our settings will contain also the algorithm that corresponds to solve each task independently
(ITL). In the following we will denote by θITL the corresponding meta-parameter. This means
that, according to the degree of similarity of our tasks, the optimal strategy could be also to solve
each task independently. As a consequence, if our meta-algorithm solves the problem according
to the formulation above, the corresponding performance can not be worse (at least equivalent)
than the one of the ITL algorithm in the class. This means that our meta-learner is not prone to
negative transfer.

In the following section, we describe the statistical OWO Meta-Learning setting.

2.2 Online-Within-Online Meta-Learning 16

2.2.2 Statistical Setting

Following the framework outlined in (Baxter, 2000; Maurer, 2005), we assume that, for any
t ∈ {1, . . . , T}, the within-task dataset Zt is an i.i.d. sample from a distribution µt over the data
space Z , and, in turn, these distributions (µt)T

t=1 are an i.i.d. sample from a meta-distribution ρ

which is often called in literature environment. Hence, the meta-sequence Z processed by our
meta-algorithm is assumed to be generated by these two nested sampling processes.

In this case, as described in the previous Sec. 2.1.2, given the online within-task algorithm A

processing a sequence of points Z ∼ µn, we evaluate its performance by giving a bound on the
expected excess risk of the average w̄ of its iterations over that distribution µ, which is defined in
Eq. (2.6) as

Eµ(A) = EZ∼µn Rµ(w̄) − Rµ(wµ). (2.6)

This suggests to us a very natural way to define the problem we would like to solve as that one of
minimizing, over the class of our inner algorithms, the expectation of the above quantity w.r.t.
the sampling of the distribution µ from the meta-distribution ρ. Namely, assuming the existence
of the minimum below, the problem we aim to solve in this case is the following

min
θ∈Θ

Eµ∼ρ Eµ(Aθ). (2.13)

This formulation allows us, also in this statistical framework, to formally define an optimal
algorithm in our class as an algorithm associated to any meta-parameter minimizing the quantity
above. The choice of a single representative optimal parameter θρ ∈ Θ must be intended as
described above in the non-statistical framework.

In this case, given the online meta-algorithm A described above, we consider

θ̄ = 1
T

T∑
t=1

θt, (2.14)

the average of its iterations, and we evaluate its performance by analyzing the following quantity

EZ Eµ∼ρ Eµ(Aθ̄) − min
θ∈Θ

Eµ∼ρ Eµ(Aθ), (2.15)

where the external expectation is w.r.t. the nested sampling of the meta-dataset Z used by the
meta-algorithm to compute the meta-parameter θ̄. In the equation above we are computing the
difference between the expected excess risk of the algorithm associated to the meta-parameter

2.2 Online-Within-Online Meta-Learning 17

θ̄ estimated by the meta-algorithm and the corresponding quantity accumulated by the optimal
algorithm in the class. Then, we take the expectation w.r.t. the sampling µ ∼ ρ and w.r.t. the
data used by the meta-algorithm. Throughout this work, we will refer to the first term above in
Eq. (2.15) as expected meta-excess risk, while we will denote the second term evaluated at any
meta-parameter θ ∈ Θ by expected across-tasks excess risk.

In this case, we say that an online meta-learner A is effective when the resulting algorithm Aθ̄

provides performance which are comparable to those of the best algorithm in the class Aθρ , when
n ≪ T . Again, this can be reformulated in an alternative way requiring that the corresponding
quantity in Eq. (2.15) is consistent as T → +∞, for fixed values of n. The comments on the
rates and the negative transfer effect made above for the non-statistical setting hold also for this
framework.

The choice of the average of the meta-parameters is motivated by similar reasons as those
described in Sec. 2.1.2 aiming at adapting the results from the non-statistical setting to the
statistical one, by the application of two nested online-to-batch conversions, one within and one
across the tasks. When the inner loss function satisfies the convexity assumption, the within-task
conversion is direct, by taking the average of the iterations of the within-task algorithm and
applying Jensen’s inequality as described in the previous Prop. 1. The delicate step is usually
the across-tasks conversion, where the application of Jensen’s inequality is usually not allowed
because of the lack of convexity w.r.t. the meta-parameter, even when the within-task loss is
convex. However, in the following Prop. 10 (in Chpt. 3), we will see that, for our method,
relying on appropriate surrogate functions, we will manage to guarantee the convexity w.r.t.
the meta-parameter and, in fact, this will allow us to provide guarantees for the average of the
meta-parameters, which has, as already observed at the end of Sec. 2.1.2, practical and theoretical
advantages w.r.t. other estimators that are usually considered in the non-convex case.

We conclude this section with the following observation regarding the notation.

Remark 3 (Transfer Risk of an Algorithm). In literature (see e.g. (Maurer, 2005, 2009; Maurer

et al., 2013, 2016)), for a generic algorithm A returning a vector A(Z) over a dataset Z, the first

term

Eµ∼ρ EZ∼µn Rµ(A(Z)) (2.16)

appearing in the definition of the quantity Eµ∼ρ Eµ(A) is often called transfer risk of the learning

algorithm A. In Chpt. 4, we will consider this quantity also for a family of batch inner algorithms.

We now briefly recall the Multi-Task Learning framework which will inspire the design of our
OWO Meta-Learning method in the next Chpt. 3.

2.3 Multi-Task Learning 18

2.3 Multi-Task Learning

As described above, in the statistical Meta-Learning framework, the goal is to select an algorithm
that performs well on a new similar task sampled from the meta-distribution. This can be formally
reformulated as solving the problem in Eq. (2.13):

min
θ∈Θ

Eµ∼ρ Eµ(Aθ). (2.13)

Instead, in the statistical Multi-Task Learning (MTL), given a prescribed (deterministic) set of
tasks (µt)T

t=1 and the corresponding i.i.d. datasets (Zt)T
t=1 with Zt ∼ µn

t , we aim at selecting
an algorithm that is well suited to address such a set of tasks. This goal can be equivalently
expressed as the one of minimizing over the class of algorithms the averaged expected excess
risk associated to the prescribed set of tasks, i.e.

min
θ∈Θ

1
T

T∑
t=1

Eµt(Aθ), (2.17)

where, as usual, for simplicity, the minimum above is assumed to be attained. More explicitly,
denoting by (Aθ(Zt))T

t=1 the linear predictors generated by the algorithm Aθ over the tasks’
datasets (Zt)T

t=1, the MTL problem above reads as follows

min
θ∈Θ

1
T

T∑
t=1

EZt∼µn
t

Rµt(Aθ(Zt)) − Rµt(wµt), (2.18)

where wµt denotes the minimum norm minimizer of the (true) risk Rµt of the task µt.

In the discussion above, the predictor vectors for the tasks are generated by applying the same
inner algorithm Aθ for each task over the corresponding dataset. We now show that this is not a
restrictive assumption, since many Multi-Task Learning methods in literature naturally lead to
such a formulation. For this target, we start from observing the following. In order to solve the
target MTL problem

min
W ∈Rd×T

1
T

T∑
t=1

Rµt(wt), (2.19)

where wt ∈ Rd denotes the t–th column of the matrix W , a standard approach in literature
consists in solving the surrogate empirical problem

min
W ∈Rd×T

1
T

T∑
t=1

RZt(wt) + λΩ(W), (2.20)

2.3 Multi-Task Learning 19

where λ > 0 is a regularization parameter and Ω is a multi-task regularizer encoding specific
similarity assumptions that the tasks are guessed to satisfy and providing the existence of a
minimum above. We now observe that most of the widely used multi-task regularizers in
literature, see e.g. (Argyriou et al., 2008a; Ciliberto et al., 2015; Jacob et al., 2009), can be
reformulated in the following variational formulation

Ω(W) = min
θ∈Θ

1
T

T∑
t=1

f(wt, θ), (2.21)

where Θ is an appropriate set of meta-parameters and f is an appropriate function. As a
consequence, exploiting Eq. (2.21), we can rewrite the surrogate empirical problem in Eq. (2.20)
as follows

min
θ∈Θ

1
T

T∑
t=1

LZt(θ), (2.22)

where, for any dataset Z and meta-parameter θ ∈ Θ, we have introduced the within-task minimum
regularized empirical risk

LZ(θ) = min
w∈Rd

Rθ,Z(w) Rθ,Z(w) = RZ(w) + λf(w, θ). (2.23)

As we will see in the following, f will be an appropriate complexity term ensuring the existence
and the uniqueness of the above regularized empirical risk minimizer (RERM)

ŵθ = argmin
w∈Rd

Rθ,Z(w). (2.24)

Throughout this work, we will use both the notation ŵθ or ŵθ(Z) (when we need to stress the
dependency on the data). We observe that in Eq. (2.22) the tasks’ vectors (wt)T

t=1 act separately
and the similarity assumption among the tasks is encoded by the shared meta-parameter θ ∈ Θ.
Thus, the last formulation in Eq. (2.22) tells us that, in fact, in many multi-task frameworks, the
weight predictors of all the tasks are estimated by an appropriate RERM algorithm ŵθ as above,
applied to the corresponding dataset. This immediately suggests a Meta-Learning framework
in which the family of inner algorithms is the one described above associated to the set of
meta-parameters Θ and the meta-algorithm attempts to solve the problem in Eq. (2.22), in order
to infer a good similarity parameter θ from the data.

One naive approach used in literature to follow this intuition has been the one of casting the
observed tasks at every time step T as a multi-task problem. In such a case, the meta-algorithm
aims at optimizing Eq. (2.22) on the data observed up to the time T , it uses the inferred meta-
parameter θ for solving new tasks and it repeats the process whenever new data arrive. However,

2.3 Multi-Task Learning 20

the main drawback of this approach is the fact that it requires re-training a meta-parameter from
scratch whenever every new task arrives. In addition, in order to perform the optimization step, it
requires memorizing all the encountered datasets. This is obviously prohibitive when we have to
face with a long (potentially never ending) stream of tasks. In such cases, one needs to efficiently
update the underlying inner algorithm (i.e. the corresponding meta-parameter), in incremental
way, as new data arrive, without memorizing the previous data.

In the following Chpt. 3 we will described how to convert this approach into a more efficient
OWO Meta-Learning framework in which the data are processed sequentially both within and
across the tasks. In particular, we will design a framework in which the meta-algorithm processes
the tasks once at the time, using the functions (LZt)T

t=1 as meta-objectives and the batch family
of inner RERM algorithms is substituted by an online counterpart, able to process the data inside
each task sequentially.

Before describing in detail our method, we conclude this chapter by giving some well-known
examples included in the formulation above. In order to do this, we require some additional
notation. We let ∥ · ∥2, ∥ · ∥F , ∥ · ∥Tr, ∥ · ∥∞, be the Euclidean, Frobenius, trace, and operator
norm, respectively. We also let ·† be the pseudo-inverse, Tr(·) be the trace, Ran(·) be the range
and Sd (resp. Sd

+) be the set of symmetric (resp. positive semi-definite) matrices in Rd×d. Finally,
throughout this work, we will denote by ⟨·, ·⟩ the standard inner product in Rd or Sd and we will
consider extended real-valued functions, such as the indicator function ιS of a set S , taking value
0 when the argument belongs to S and +∞ otherwise.

Various assumptions on tasks’ relatedness have been exploited in the multi-task literature. One
of the simplest assumption is that the target vectors corresponding to the tasks have small
variance. This idea was introduced in (Evgeniou and Pontil, 2004) with application to the Support
Vector Machines (SVM) problem and, then, adapted also to the online perceptron algorithm in
(Cavallanti et al., 2010). In this case, the regularizer enforcing such a relation is the so-called
variance regularizer, which can be expressed as in Eq. (2.21) in the following way

Ω(W) = min
θ∈Rd

1
T

T∑
t=1

f(wt, θ) f(wt, θ) = 1
2 ∥wt − θ∥2

2. (2.25)

The above regularizer enforces the tasks’ vectors (i.e. the columns of the matrix W) to stay
all closed to a common bias vector θ ∈ Rd. We highlight that such a restriction could not be
appropriate for scenarios in which the tasks are separate in disjoint groups far away one each
other. In such cases more flexible models should be considered, such as the graph regularizer

2.3 Multi-Task Learning 21

proposed in (Evgeniou et al., 2005), which requires, however, prior knowledge about the level of
similarity between the tasks.

Another widely used assumption on tasks’ relatedness is that the predictors for all tasks lay in a
low-dimensional subspace, see (Argyriou et al., 2007, 2008a). In this case, the regularizer used to
enforce such a relation is the well-known (square) trace norm regularizer, which can be expressed
according to the formulation in Eq. (2.21) – see (Argyriou et al., 2008a, Eq. (13)) – as follows

Ω(W) = ∥W∥2
Tr = min

θ∈S

1
T

T∑
t=1

f(wt, θ)

f(wt, θ) = 1
2 ⟨wt, θ†wt⟩ + ιRan(θ)(wt) + ιS(θ) S =

{
θ ∈ Sd

+ : Tr(θ) ≤ 1
}
.

(2.26)

The square root of the above regularizer coincides with the ℓ1 norm of the singular values’ vector
of the matrix W and it enforces all the tasks’ vectors to stay in the range of a low-rank (more
precisely a 1-trace norm) matrix θ ∈ Sd

+. In the rest of this work we will refer to the matrix θ as
representation or feature map, because by the change of variable wt 7→ θ1/2vt, with vt ∈ Rd, its
action can be interpreted as that of a linear feature map acting over the predictors (wt)T

t=1.

A slightly different variant of the relatedness described above is the one according to which all
the tasks share a common small subset of significant features, see (Argyriou et al., 2007, 2008a).
In this case, the appropriate regularizer to use is the so-called ℓ2,1 norm

∥W∥2,1 =
d∑

i=1
∥wi∥2, (2.27)

where wi denotes the i–th row of the matrix W . This regularizer enforces the matrix W to have
many rows (those associated to non-significant features) equal to zero and its square can be
rewritten in the same variational formulation of ∥W∥2

Tr in Eq. (2.26), by adding to the set S also
the diagonal constraint:

Sdiag =
{
θ ∈ Sd

+ : Tr(θ) ≤ 1, θ is diagonal
}
. (2.28)

These regularization methods were further extended in order to capture more general types of
tasks’ relatedness, such as regularizers enforcing disjoint (Argyriou et al., 2008b) or overlapping
(Kumar and Daumé III, 2012) grouping effects among the tasks. We mention also the wide family
of structured sparsity regularizers (Argyriou et al., 2008c; McDonald et al., 2016; Micchelli et al.,
2013), enforcing particular structures on the subspace containing the predictors or on the sparsity

2.3 Multi-Task Learning 22

pattern of the significant features. Such regularizers can be expressed by the above variational
formulation in Eq. (2.26), by choosing in an appropriate way the set S.

The theoretically grounded success of the above regularizers in the multi-task and transfer learning
framework, see e.g. (Kuzborskij and Orabona, 2013, 2017; Maurer, 2006; Maurer et al., 2014;
Pontil and Maurer, 2013), motivated the development and the study of Meta-Learning approaches
aiming at inferring these various types of tasks’ relatedness directly from the data, in a batch or in
an online framework. We mention for instance (Balcan et al., 2015; Bullins et al., 2019; Denevi
et al., 2018a; Maurer, 2009; Maurer et al., 2013, 2016; Pentina and Lampert, 2014; Ruvolo and
Eaton, 2013, 2014), where the authors attempt to infer a low-dimensional representation shared
among the tasks, or (Denevi et al., 2018b, 2019a; Pentina and Lampert, 2014), where the goal is
to estimate a common bias vector closed to all tasks’ predictors.

After this introductory chapter, we now have all the ingredients necessary to describe our OWO
Meta-Learning method and to analyze its performance. This is done in the following chapter.

Chapter 3

The Proposed Online-Within-Online
Meta-Learning Method

In this chapter we present and analyze our OWO Meta-Learning method. Specifically, after
describing the setting in Sec. 3.1, in Sec. 3.2 we give some tools from primal-dual Online
Learning which will be necessary for the analysis of the method. After that, in Sec. 3.3 and
Sec. 3.4 we analyze the proposed method in the non-statistical and statistical setting, respectively.
We conclude the chapter in Sec. 3.5 and Sec. 3.6, where we present a discussion about previous
work and our method, respectively. The material of this chapter is taken from our paper (Denevi
et al., 2019b).

3.1 Setting

Our OWO Meta-Learning method takes inspiration from the Multi-Task Learning framework
described in the former Sec. 2.3. As we have described there, assuming to have all the datasets
Z = (Zt)T

t=1 in hindsight, many MTL methods can be written as in Eq. (2.22):

min
θ∈Θ

1
T

T∑
t=1

LZt(θ), (2.22)

where we recall that, according to Eq. (2.23), for any dataset Z and meta-parameter θ ∈ Θ,

LZ(θ) = min
w∈Rd

Rθ,Z(w) Rθ,Z(w) = RZ(w) + λf(w, θ), (2.23)

3.1 Setting 24

with λ > 0 a regularization parameter and f an appropriate complexity term ensuring the
existence and the uniqueness of the above minimizer introduced in Eq. (2.24):

ŵθ = argmin
w∈Rd

Rθ,Z(w). (2.24)

In order to deduce our OWO Meta-Learning method, we will consider the following regularized
variant of the problem in Eq. (2.22) over the entire meta-parameter space M

min
θ∈M

T∑
t=1

LZt(θ) + ηF (θ), (3.1)

in which η > 0 is a meta-regularization parameter and F is an appropriate meta-regularizer
ensuring, also in this case, the existence and the uniqueness of the above minimizer. Throughout
this work, we will use the short-hand notation Lt = LZt .

We stress again that, in the OWO setting, data are received sequentially, both within and across
the tasks. The above formulation inspires us to take a within-task online algorithm that mimics
well the batch objective LZ in Eq. (2.23) and defining as meta-objectives for the online meta-
algorithm the functions (Lt)T

t=1. Obviously, in this setting, the meta-objectives (and consequently
their subgradients used by the meta-algorithm) are computed only up to an approximation error,
depending on the specific properties of the inner algorithm we are using. In the following, we
will show how to control and exploit this approximation error in the analysis.

In the sequel, for an Euclidean space V , we let Γ0(V) be the set of proper, closed and convex
functions over V and, for any f ∈ Γ0(V), we denote by Domf its domain (see App. A and
references therein for basic notions on convex analysis). In this work, we make the following
standard assumptions about the within-task problem in Eq. (2.23) and the outer-tasks problem in
Eq. (3.1). In order to state the following assumptions, we introduce two abstract norms ∥ · ∥θ and
|||·||| that will be made explicit in two relevant applications below.

Assumption 1 (Loss and Regularizer). Let ℓ(·, y) be a convex and closed real-valued function

for any y ∈ Y and let f ∈ Γ0(Rd × M) be such that, for any θ ∈ Θ, f(·, θ) is 1-strongly convex

w.r.t. a norm ∥ · ∥θ over Rd, infw∈Rd f(w, θ) = 0 and, for any θ /∈ Θ, Domf(·, θ) = ∅.

Assumption 2 (Meta-Regularizer). Let F be a closed and 1-strongly convex function w.r.t. a

norm |||·||| over M such that infθ∈M F (θ) = 0 and DomF = Θ.

Notice that the norm w.r.t. which the function f(·, θ) is assumed to be strongly convex may vary
with θ. Moreover, it is immediate to see that, under Asm. 1, for any θ ∈ Θ, the function Rθ,Z

3.1 Setting 25

in Eq. (2.23) is proper, closed and λ-strongly convex w.r.t. the norm ∥ · ∥θ. As a consequence,
by Lemma 54 in App. A, we can in fact ensure the existence and the uniqueness of the RERM
introduced in Eq. (2.24), for any θ ∈ Θ. We also observe that, thanks to Asm. 1, the function
LZ results to be defined as the partial minimum (w.r.t. the variable w) of a joint function
in the variables (w, θ) belonging to Γ0(Rd × M). This implies the property LZ ∈ Γ0(M)
(see e.g. (Bauschke and Combettes, 2011, Lemma 1.29, Prop. 8.26)), supporting the choice
of this function as the meta-objective for our meta-algorithm, and it guarantees the existence
and the uniqueness of the minimizer in Eq. (3.1), by similar arguments as the ones made
before for Rθ,Z . Furthermore, according to the observations made in the following Rem. 4, the
assumptions infw∈Rd f(w, θ) = 0 and infθ∈M F (θ) = 0 can be made without loss of generality:
when these assumptions do not hold, it is sufficient to work with the translated regularizers
f − infw∈Rd f(w, θ) and F − infθ∈M F (θ). Finally, we observe that the last requirement in
Asm. 1 implies Θ = DomLZ . This last equivalence is not strictly necessary (to get our results it
is sufficient to have Θ ⊆ DomLZ), but it will simplify the presentation.

We conclude this section by describing in detail two examples included in the framework above
and already announced in Sec. 2.3. The first one is inspired by the MTL variance regularizer, see
Eq. (2.25) and (Evgeniou et al., 2005), while the second example, which, as already observed,
can be easily extended to more general MTL regularizers such as in (Argyriou et al., 2008c;
McDonald et al., 2016; Micchelli et al., 2013), relates to the MTL trace norm regularizer, see
Eq. (2.26) and (Argyriou et al., 2007, 2008a). As we will see in the following, in the first example
the tasks’ predictors are encouraged to stay close to a common bias vector, in the second example
they are encouraged to lie in the range of a low-rank feature map.

Example 1 (Bias). We choose M = Θ = Rd, F (·) = 1
2 ∥ · ∥2

2, satisfying Asm. 2 with |||·||| = ∥ · ∥2

and f(·, θ) = 1
2 ∥ · −θ∥2

2, satisfying Asm. 1 with ∥ · ∥θ = ∥ · ∥2 for every θ ∈ Rd.

Example 2 (Feature Map). We choose M = Sd, Θ = S where S = {θ ∈ Sd
+ : Tr(θ) ≤ 1}. For

a fixed θ0 ∈ S, we set F (·) = 1
2 ∥ · −θ0∥2

F + ιS(·), satisfying Asm. 2 with |||·||| = ∥ · ∥F and

f(·, θ) = 1
2 ⟨·, θ†·⟩ + ιRan(θ)(·) + ιS(θ), satisfying Asm. 1 with ∥ · ∥θ =

√
⟨·, θ†·⟩ for any θ ∈ S.

We will return to these examples in Chpt. 5 and Chpt. 6, specializing our method and our analysis
to these settings. Before describing in detail the proposed OWO Meta-Learning method, in the
next section, we provide some material from primal-dual Online Learning that will be necessary
to introduce and analyze the method.

3.2 Preliminaries: Primal-Dual Online Learning 26

Algorithm 1 Primal-Dual Online Algorithm – Linearized Follow The Regularized Leader

Input (gm)M
m=1, (Am)M

m=1, (cm)M
m=1, (ϵm)M

m=1, r as described in the text

Initialization α1 = (), v1 = ∇r∗(0) ∈ Dom r

For m = 1 to M

Receive gm, Am, cm+1, ϵm

Suffer gm(Amvm) and compute α′
m ∈ ∂ϵmgm(Amvm)

Update αm+1 = (αm, α′
m)

Define vm+1 = ∇r∗
(

− 1/cm+1
∑m

j=1 A∗
jαm+1,j

)
∈ Dom r

Return (αm)M+1
m=1 , (vm)M+1

m=1

3.2 Preliminaries: Primal-Dual Online Learning

Our OWO Meta-Learning method consists in the application of two nested primal-dual online
algorithms, one operating within the tasks and one operating across the tasks. More precisely,
in this work, we consider Follow The Regularized Leader algorithm. In this section we briefly
recall some material from the primal-dual interpretation of the linearized variant of this algorithm
that will be used in our subsequent analysis. The material from this section is an adaptation from
(Shalev-Shwartz and Kakade, 2009; Shalev-Shwartz and Singer, 2007a,b; Shalev-Shwartz et al.,
2012); we refer to App. B for a more detailed presentation dealing also with the non-linearized
variant of the algorithm.

The linearized variant of Follow The Regularized Leader algorithm on a (primal) problem can
be derived from the following primal-dual framework in which we introduce an appropriate
dual algorithm. Specifically, at each iteration m ∈ {1, . . . , M}, we consider the following
instantaneous primal optimization problem

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) =
m∑

j=1
gj(Ajv) + cmr(v) (3.2)

where V is an Euclidean space, cm > 0, r ∈ Γ0(V) is a 1-strongly convex function w.r.t. a norm
∥ · ∥ over V (with dual norm ∥ · ∥∗) such that infv∈V r(v) = 0, for any j ∈ {1, . . . , M}, letting
Vj an Euclidean space, gj ∈ Γ0(Vj) and Aj : V → Vj is a linear operator with adjoint A∗

j . As
explained in App. B, the corresponding dual problem is given by

D̂m+1 = inf
α∈V1×···×Vm

Dm+1(α) Dm+1(α) =
m∑

j=1
g∗

j (αj) + cmr∗
(

− 1
cm

m∑
j=1

A∗
jαj

)
, (3.3)

3.2 Preliminaries: Primal-Dual Online Learning 27

where, g∗
j and r∗ are respectively the conjugate functions of gj and r. After this, we define the

dual scheme in which the dual variable αm+1 is updated by a greedy coordinate descent approach
on the dual, setting αm+1 = (αm, α′

m), where α′
m ∈ ∂ϵmgm(Amvm) is an ϵm-subgradient of gm at

Amvm and vm is the current primal iteration. The primal variable is then updated from the dual
one by a variant of the Karush–Kuhn–Tucker (KKT) or optimality conditions, see Alg. 1. It is
possible to show that the corresponding primal iterates generated in this way belong to Dom r

and they coincide with Follow The Regularized Leader applied to the linearized loss functions
v 7→ ⟨v, A∗

mα′
m⟩. We recall that such a scheme includes many well-known algorithms, when

one specifies the complexity term r in an appropriate way, see (Shalev-Shwartz et al., 2012) and
references therein. We also point out that, in the original papers mentioned above, the author
refers to such a scheme using the name lazy online Mirror Descent, however, throughout this
dissertation, we choose to use the term linearized Follow The Regularized Leader, which is
historically more accurate.

The behavior of Alg. 1 is analyzed in the next result which will be a key tool for our analysis.
The statement is a collection and slightly different adaptation of results from (Shalev-Shwartz
and Kakade, 2009; Shalev-Shwartz and Singer, 2007a,b; Shalev-Shwartz et al., 2012). We state
it here, since we did not find it in literature in this form. More precisely, the first point of the
statement below is an adaptation of (Shalev-Shwartz, 2007, Lemma 1), while, for the second
point, we refer to (Shalev-Shwartz and Kakade, 2009, Lemma 5). For the interested reader, we
report the proof in App. B.

Theorem 2 (Dual Optimality Gap for Alg. 1). Let (vm)M
m=1 be the primal iterates returned by

the primal-dual online Alg. 1 when applied to the generic problem in Eq. (3.2) and let

∆Dual = DM+1(αM+1) − D̂M+1 (3.4)

be the corresponding (non-negative) dual optimality gap at the last dual iterate αM+1.

1. If, for any m ∈ {1, . . . , M}, cm+1 ≥ cm, then,

∆Dual ≤ −
M∑

m=1
gm(Amvm) + P̂M+1 + 1

2

M∑
m=1

1
cm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm.

2. If, for any m ∈ {1, . . . , M}, cm = ∑m
j=1 λj for some λj > 0, then,

∆Dual ≤ −
M∑

m=1

{
gm(Amvm) + λmr(vm)

}
+ P̂M+1 + 1

2

M∑
m=1

1
cm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm.

3.3 Method and Analysis in the Non-Statistical Setting 28

The first (resp. second) inequality in Thm. 2 links the dual optimality gap of the last dual iterate
generated by Alg. 1, with the (resp. regularized) cumulative error of the corresponding primal
iterates. Note that, as we will stress in the following, this result can be readily used to bound
the cumulative error (or its regularized version) of Alg. 1 by the regularized error of the optimal
batch comparative P̂M+1 and additional terms.

Remark 4 (Non-negativity of the Regularizer). We point out that, in the setting above, the

assumption infv∈V r(v) = 0 can be made without loss of generality. As a matter of fact, when

such assumption does not hold, the framework above applies to the regularizer r − infv∈V r(v).
In this case, the algorithm is the same reported in Alg. 1 and the bounds given in Thm. 2 must be

adapted accordingly, substituting the regularizer r with its translated version r − infv∈V r(v).

We now have all the ingredients necessary to describe and analyze our OWO Meta-Learning
method. This is done in the following section.

3.3 Method and Analysis in the Non-Statistical Setting

In this section we present the proposed OWO Meta-Learning method and we theoretically analyze
its performance in the non-statistical setting. As anticipated in Sec. 3.1, the method consists in
the application of Alg. 1 both to the within-task problem in Eq. (2.23) and to the across-tasks
problem in Eq. (3.1), corresponding, as we will show in the following, to Alg. 2 and Alg. 3,
respectively.

As described in Sec. 2.2.1, we measure the performance of our OWO Meta-Learning method by
analyzing the gap in Eq. (2.12)

1
T

T∑
t=1

EZt(Aθt) − min
θ∈Θ

1
T

T∑
t=1

EZt(Aθ), (2.12)

where (θt)T
t=1 is the sequence of meta-parameters returned by the meta-learner in Alg. 3 and,

for any θ ∈ Θ, Aθ is the corresponding inner Alg. 2. We recall that, for an online within-task
algorithm A returning the sequence (wi)n

i=1 when applied to a dataset Z, EZ(A) is the average
regret of its iterations, which is defined in Eq. (2.2) as

EZ(A) = 1
n

n∑
i=1

ℓi(⟨xi, wi⟩) − RZ(ŵ). (2.2)

3.3 Method and Analysis in the Non-Statistical Setting 29

Algorithm 2 Within-Task Algorithm

Input λ > 0, θ ∈ Θ, Z = (zi)n
i=1

Initialization sθ,1 = (), wθ,1 = ∇f(·, θ)∗(0)

For i = 1 to n

Receive the datapoint zi = (xi, yi)
Compute s′

θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩) ⊆ R

Define (sθ,i+1)i = s′
θ,i, γi = λ(i + 1)

Update wθ,i+1=∇f(·, θ)∗
(

−1/γi

i∑
j=1

xjs
′
θ,j

)

Return (wθ,i)n+1
i=1 , w̄θ = 1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 3 Meta-Algorithm

Input η > 0, Z = (Zt)T
t=1

Initialization θ1 = ∇F ∗(0)
For t = 1 to T

Receive incrementally the dataset Zt

Run Alg. 2 with θt over Zt

Compute sθt,n+1

Compute ∇′
θt

as in Prop. 6 using sθt,n+1

Update θt+1 = ∇F ∗
(

− 1/η
∑t

j=1 ∇′
θj

)
Return (θt)T +1

t=1 , θ̄ = 1
T

T∑
t=1

θt

In the subsequent analysis, we will investigate about the performance of our method, by com-
paring two upper bounds for the two terms in Eq. (2.12). More precisely, we will give two
stronger (because of the non-negativity of f by Asm. 1) upper bounds holding for the regularized
versions of the above quantities, in which, for any inner algorithm A, the average regret EZ(A) is
substituted by the corresponding regularized version Eθ,Z(A), defined as

Eθ,Z(A) = 1
n

n∑
i=1

{
ℓi(⟨xi, wi⟩) + λf(wi, θ)

}
− RZ(ŵ). (3.5)

In order to give these upper bounds, we start from explaining the origin of the inner Alg. 2 and
analyzing its behavior on a single task.

Proposition 3 (Dual Optimality Gap for Alg. 2). Let Asm. 1 hold. Then, Alg. 2 coincides with

the primal-dual online Alg. 1 applied to the non-normalized within-task problem in Eq. (2.23).
Let now (wθ,i)n

i=1 be the iterates computed by Alg. 2 with meta-parameter θ ∈ Θ over the data

sequence Z = (xi, yi)n
i=1, by means of the subgradients (s′

θ,i)n
i=1, with s′

θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩). Then,

wθ,i ∈ Domf(·, θ) for any i ∈ {1, . . . , n} and the following upper bound for the associated dual

optimality gap ∆Dual introduced in Thm. 2 holds

∆Dual ≤ ϵθ (3.6)

ϵθ = −n

 1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
− LZ(θ)

 + 1
2λ

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
. (3.7)

3.3 Method and Analysis in the Non-Statistical Setting 30

As a direct consequence, since by definition ∆Dual is non-negative, the following upper bound

holds on the (regularized) average cumulative error of the iterates

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
≤ LZ(θ) + 1

2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
. (3.8)

Proof. We first note that the non-normalized within-task problem in Eq. (2.23) is of the form in
Eq. (3.2) with m = M , once we make the identifications

j i, M n, v w, V Rd, gj ℓi, Aj x⊤
i , cm nλ, r(·) f(·, θ).

Specifically, adding to the notation the further dependency on θ ∈ Θ, we can rewrite the
corresponding primal problem in Eq. (3.2) as follows

n LZ(θ) = min
w∈Rd

Pn+1(w, θ) Pn+1(w, θ) =
n∑

i=1
ℓi(⟨xi, w⟩) + λnf(w, θ). (3.9)

Moreover, by the identification α s for the dual variable, the associated dual problem
introduced in Eq. (3.3) reads as follows

inf
s∈Rn

Dn+1(s, θ) Dn+1(s, θ) =
n∑

i=1
ℓ∗

i (si) + λnf(·, θ)∗
(

− 1
λn

n∑
i=1

xisi

)
, (3.10)

where ℓ∗
i and f(·, θ)∗ denote the conjugate function of ℓi and f(·, θ), respectively. Thus, exploiting

these observations, it is immediate to see that the inner Alg. 2 coincides with Alg. 1 applied to the
non-normalized within-task problem in Eq. (2.23), once one makes the identification α′

m s′
θ,i

for the (exact) subgradients used by the algorithm. As a consequence, for any i ∈ {1, . . . , n},
wθ,i ∈ Domf(·, θ) and, in order to get the bound in Eq. (3.6), it is sufficient to combine the second
point of Thm. 2 with these observations. Finally, as explained in the statement, the deduction of
Eq. (3.8) is direct, by moving the terms and normalizing by the number of points n.

Before proceeding, we want to bring to the attention of the reader the following aspect.

Remark 5 (Surrogate Function, Non-Statistical Setting). Looking at the non-statistical target

problem in Eq. (2.11):

min
θ∈Θ

1
T

T∑
t=1

EZt(Aθ), (2.11)

3.3 Method and Analysis in the Non-Statistical Setting 31

we observe that, for any dataset Z, the dependency on θ in the function EZ(Aθ) is contained only

in the first term
1
n

n∑
i=1

ℓi(⟨xi, wθ,i⟩) (3.11)

coinciding with the average cumulative error of the iterates (wθ,i)n
i=1 generated by the algorithm

Aθ over the dataset Z. At this point of the presentation, the reader may wonder why we do not

choose directly such a function as meta-objective for our meta-algorithm. From a practical point

of view, the main issue in using the above quantity in Eq. (3.11) as meta-objective is the fact

that, very often, such a quantity is non-convex w.r.t. the meta-parameter θ. The above result in

Eq. (3.8) tells us that, for a fixed value of λ, when the last term is bounded (corresponding, as we

will see in the following, to a Lipschitz assumption for the loss and to a boundedness assumption

for the inputs), the inner algorithm attempts to mimic the minimum regularized empirical risk LZ

in Eq. (2.23), as the number of points n increases. As a consequence, in such a case, the choice

of the function LZ as meta-objective is reasonable in that such a function can be interpreted as a

convex upper bound for the average cumulative error of our inner algorithm.

As explained in the following corollary, from Eq. (3.8) we can immediately deduce the following
(regularized) average single-task regret bound for the inner Alg. 2 with appropriate values of
θ ∈ Θ.

Corollary 4 (Single-Task Regret Bound for Alg. 2). Let Asm. 1 hold. Fix a dataset Z = (xi, yi)n
i=1

and consider the minimum norm empirical risk minimizer ŵ associated to the dataset Z. For any

θ ∈ Θ, let Aθ be the corresponding Alg. 2 and let (wθ,i)n
i=1 be the iterates computed by Aθ over

the data sequence Z, by means of the subgradients (s′
θ,i)n

i=1, with s′
θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩). Then, for

any θ ∈ Θ such that f(ŵ, θ) < +∞, the following (regularized) average regret bound holds for

the above iterates

Eθ,Z(Aθ) ≤ λf(ŵ, θ) + 1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
. (3.12)

Proof. We start from observing that, for any θ ∈ Θ such that f(ŵ, θ) < +∞, the following
inequalities hold

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
≤ LZ(θ) + 1

2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗

≤ RZ(ŵ) + λf(ŵ, θ) + 1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
,

(3.13)

3.3 Method and Analysis in the Non-Statistical Setting 32

where in the first inequality we have applied Eq. (3.8) and in the second inequality we have
exploited the definition of LZ in Eq. (2.23) as the minimum of the regularized empirical risk.
The desired statement derives from the last inequality above by moving the term RZ(ŵ) on the
left.

In the statistical setting described in the subsequent Sec. 3.4, we will exploit the following
observation.

Remark 6 (Weaker Single-Task Regret Bound for Alg. 2). Looking at Eq. (3.13) in the proof

above, the reader can immediately see that the worst case regret bound given in Cor. 4 can be

immediately stated in the following weaker form (see Rem. 1) for a generic competitor vector

w ∈ Rd:

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
− RZ(w) ≤ λf(w, θ) + 1

2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
, (3.14)

where, in this case, θ ∈ Θ is such that f(w, θ) < +∞.

The method we propose in this work relies on the application of Alg. 1 also to the meta-problem
in Eq. (3.1) as the tasks are sequentially observed, using the functions (Lt)T

t=1 as meta-objectives.
A key difficulty here is that the meta-objective is defined via the inner batch problem in Eq. (2.23),
hence, it is not available exactly, but, as observed in Rem. 5, it is only approximately approached
by the within-task online algorithm. From a practical point of view, this means that the application
of Alg. 1 to the meta-problem in Eq. (3.1), differently from the inner algorithm, has to deal with
an error on the meta-subgradients of the meta-objectives at each iteration. In order to describe in
detail this aspect and the meta-algorithm, we need the following technical lemma.

Lemma 5 (Strong Duality for the Within-Task Problem). Let Asm. 1 hold. For any dataset

Z = (xi, yi)n
i=1 and any meta-parameter θ ∈ Θ, consider the primal and the dual within-task

problems in Eq. (3.9) and Eq. (3.10), respectively. Then, the dual problem in Eq. (3.10) admits a

solution

ŝθ ∈ argmin
s∈Rn

Dn+1(s, θ). (3.15)

Moreover, the following statements hold.

1. Strong duality holds, namely, we have

n LZ(θ) = − min
s∈Rn

Dn+1(s, θ). (3.16)

3.3 Method and Analysis in the Non-Statistical Setting 33

2. The KKT conditions read as follows

ŵθ = ∇f(·, θ)∗
(

− 1
λn

n∑
i=1

xiŝθ,i

)
ŝθ ∈ ∂

(n∑
i=1

ℓi

)(
⟨x1, ŵθ⟩, . . . , ⟨xn, ŵθ⟩

)
, (3.17)

where, we recall that ŵθ is the RERM in Eq. (2.24), coinciding with the solution of the

primal problem in Eq. (3.9).

Proof. We rely on the standard result reported in Prop. 62 in App. A.1 according to which,
the desired statements hold for the couples of within-task primal-dual problems above if, for
any θ ∈ Θ, 1) the primal problem admits a solution and 2) there exist a point in Domf(·, θ)
where the function

∑n
i=1 ℓi(⟨xi, ·⟩) is continuous. Regarding the point 1), as already observed,

the existence of the primal solution ŵθ is ensured by Asm. 1. Regarding the point 2), we observe
that, thanks to Asm. 1, the function

∑n
i=1 ℓi(⟨xi, ·⟩) is real-valued. As a consequence, since a

convex real-valued function is continuous over the entire space (see Lemma 40 in App. A), also
the continuity requirement above is satisfied. Hence, the desired statement directly derives from
specializing Prop. 62 in App. A to our context, observing that the strong convexity of f(·, θ) is
equivalent to the Lipschitz-smoothness of f(·, θ)∗ (see Lemma 57 in App. A).

Our next result describes how, leveraging on the dual optimality gap for the inner Alg. 2, we can
compute an ϵ-subgradient of the meta-objective LZ in Eq. (2.23), where ϵ is (up to normalization
by n) the value stated in Prop. 3. This will allow us to develop an efficient method which is
computationally appealing and fully online.

Proposition 6 (Computation of an ϵ-Subgradient of LZ). Let Asm. 1 hold and let sθ,n+1 be the

output of Alg. 2 with θ ∈ Θ over the dataset Z. Consider ∇θ ∈ ∂{−Dn+1(sθ,n+1, ·)}(θ), where

Dn+1 is the function in Eq. (3.10). Then, ∇′
θ = ∇θ/n ∈ ∂ϵθ/nLZ(θ), where ϵθ is the value in

Prop. 3.

Proof. We start from recalling that, for any θ ∈ Θ, the function Dn+1(·, θ) reported in Eq. (3.10)
is the objective of the dual problem associated to the non-normalized within-task problem in
Eq. (3.9). Since in our assumptions, strong duality holds for this couple of problems (see Lemma 5
above), we can rewrite

LZ(θ) = max
s∈Rn

D̃n+1(s, θ) D̃n+1(s, θ) = − 1
n

Dn+1(s, θ). (3.18)

3.3 Method and Analysis in the Non-Statistical Setting 34

Thanks to Prop. 3, we know that the dual vector sθ,n+1 returned by Alg. 2 is an ϵθ-minimizer of
the dual objective Dn+1(·, θ), where ϵθ is given in Prop. 3. Consequently, sθ,n+1 is an (ϵθ/n)-
maximizer of the function D̃n+1(·, θ) defined above. We now observe that, for any θ′ ∈ Θ, we
have

LZ(θ′) = max
s∈Rn

D̃n+1(s, θ′) ≥ D̃n+1(sθ,n+1, θ′)

≥ D̃n+1(sθ,n+1, θ) +
〈∇θ

n
, θ′ − θ

〉
≥ LZ(θ) − ϵθ

n
+

〈∇θ

n
, θ′ − θ

〉
,

where, in the second inequality we have exploited the assumption ∇θ ∈ ∂
{

−Dn+1(sθ,n+1, ·)
}
(θ),

implying ∇θ/n ∈ ∂D̃n+1(sθ,n+1, ·)(θ), and in the last inequality we have used the fact that sθ,n+1

is an (ϵθ/n)-maximizer of the function D̃n+1(·, θ) as explained above and strong duality again.
By definition of ϵ-subgradients, the above inequality proves the desired statement.

We remark that the procedure described above to compute an ϵ-subgradient has been also used in
(Denevi et al., 2019a) for the statistical setting in Ex. 1. Here, with a different proof technique,
we show that it can be extended also to more general inner regularizers.

Leveraging on the closed form of the error on the meta-subgradients computed as described in
Prop. 6, we now show how we can deduce in a natural way an upper bound on the regularized
variant of the first term in Eq. (2.12), without any additional assumptions. This automatically
translates into a (regularized) average meta-regret bound for the OWO Meta-Learning procedure
we are proposing.

Theorem 7 (Meta-Regret Bound). Let Asm. 1 and Asm. 2 hold. Then, Alg. 3 coincides with

the generic primal-dual Alg. 1 applied to the meta-problem in Eq. (3.1). Fix now a meta-data

sequence Z = (Zt)T
t=1, where Zt = (xt,i, yt,i)n

i=1 and denote by (ŵt)T
t=1 the minimum norm

empirical risk minimizers associated to the datasets (Zt)T
t=1. Denote by (θt)T

t=1 the iterates

computed by Alg. 3 over Z, by means of the approximated meta-subgradients (∇′
θt

)T
t=1 computed

as described in Prop. 6. For any θ ∈ Θ, let Aθ be the corresponding Alg. 2 and let (wθt,i)n
i=1 be

the iterates returned by the inner algorithm Aθt over the dataset Zt, by means of the subgradients

(s′
θt,i)n

i=1, with s′
θt,i ∈ ∂ℓt,i(⟨xt,i, wθt,i⟩). Then, for any t ∈ {1, . . . , T}, θt ∈ Θ and, for any

θ ∈ Θ such that f(ŵt, θ) < +∞ for any t ∈ {1, . . . , T}, the following (regularized) average

meta-regret bound holds for the iterates above

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ λ

T

T∑
t=1

f(ŵt, θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

θt,∗

+ ηF (θ)
T

+ 1
2ηT

T∑
t=1

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗
.

(3.19)

3.3 Method and Analysis in the Non-Statistical Setting 35

Proof. We first note that the outer-task problem in Eq. (3.1) is of the form in Eq. (3.2) with
m = M , once we make the identifications

j t, M T, v θ, V M, gj Lt, Aj I, cm η, r F, (3.20)

where I denotes the identity operator. Thus, exploiting these observations, it is immediate to
see that the meta-algorithm in Alg. 3 coincides with Alg. 1 applied to the outer-tasks problem in
Eq. (3.1), once one makes the identification α′

m ∇′
θt

for the (approximated) meta-subgradients
used by the algorithm. As a consequence, θt ∈ DomF = Θ for any t ∈ {1, . . . , T}. Moreover,
denoting by ∆Dual the associated dual optimality gap introduced in Thm. 2, specializing the first
point of Thm. 2 to this setting and exploiting the non-negativity of ∆Dual, we can write

0 ≤ −
T∑

t=1
Lt(θt) + min

θ∈M

{ T∑
t=1

Lt(θ) + ηF (θ)
}

+ 1
2η

T∑
t=1

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗

+
T∑

t=1

ϵθt

n
, (3.21)

where, according to Prop. 3 (applied to the task t),

ϵθt

n
= −

 1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i⟩) + λf(wθt,i, θt)

}
− Lt(θt)

 + 1
2λn

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

θt,∗
. (3.22)

Substituting this closed form into Eq. (3.21), one immediately observes that the term
∑T

t=1 Lt(θt)
erases, coming to

T∑
t=1

1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i⟩) + λf(wθt,i, θt)

}
≤ min

θ∈M

{ T∑
t=1

Lt(θ) + ηF (θ)
}

+ 1
2η

T∑
t=1

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗

+ 1
2λn

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

θt,∗
.

Now we observe that, by definition of Lt as minimum of the regularized empirical risk associated
to the dataset Zt, for any θ ∈ Θ such that f(ŵt, θ) < +∞ for any t ∈ {1, . . . , T}, we can write

T∑
t=1

Lt(θ) ≤
T∑

t=1
RZt(ŵt) + λ

T∑
t=1

f(ŵt, θ). (3.23)

Combining the two last inequalities above, moving the terms and normalizing by the number of
tasks T , we get the desired statement.

As we will see later, the term
∣∣∣∣∣∣∣∣∣∇′

θt

∣∣∣∣∣∣∣∣∣2
∗

in Thm. 7 may hide a dependency w.r.t. λ or n and, in these
cases, the resulting bound must be analyzed according to the specific setting at hand. On contrary,
when the terms

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗

and
∥∥∥xt,is

′
θt,i

∥∥∥2

θt,∗
can be upper bounded by a constant (not depending on

3.3 Method and Analysis in the Non-Statistical Setting 36

λ or n), using the inequality
∑n

i=1 1/i ≤ log(n) + 1 and assuming the complexity terms f and F

bounded, the bound above can be majorized as follows

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ O

λ + log(n) + 1
λn

+ η

T
+ 1

η

. (3.24)

Hence, for the choice of hyper-parameters λ ≈ n−1/2 and η ≈ T 1/2, we recover a reasonable rate

O

√
log(n) + 1

n

 + O

√
1
T

. (3.25)

Obviously, the above reasoning is rough, since, as we will see in the sequel, the constants in the
bound above will play a key role in our analysis.

Similarly to what observed in Rem. 6, in the statistical setting described in the following Sec. 3.4,
we will exploit the observation below.

Remark 7 (Weaker Meta-Regret Bound). Looking at Eq. (3.23) in the proof above, the reader

can immediately see that the worst case meta-regret bound given in Thm. 7 can be immediately

stated in the following weaker form for a generic sequence of competitor vectors (wt)T
t=1:

1
T

T∑
t=1

{ 1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i⟩) + λf(wθt,i, θt)

}
− RZt(wt)

}

≤ λ

T

T∑
t=1

f(wt, θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

θt,∗

+ ηF (θ)
T

+ 1
2ηT

T∑
t=1

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗
,

(3.26)

where, in this case, θ ∈ Θ is such that f(wt, θ) < +∞ for any t ∈ {1, . . . , T}.

In the next subsection, we introduce a way to measure the performance of our OWO Meta-
Learning approach. More formally, we give an upper bound on the second term in Eq. (2.12).

3.3 Method and Analysis in the Non-Statistical Setting 37

3.3.1 The Benchmark for the Method

As described in Sec. 2.2, we would like to compare the performance of our method with the
performance of the best algorithm in our class, solving the problem in Eq. (2.11):

min
θ∈Θ

1
T

T∑
t=1

EZt(Aθ), (2.11)

where Aθ denotes the inner Alg. 2 and EZt(Aθ) represents its average regret over the dataset Zt.
In the following result we give an upper bound for the regularized variant of the quantity above
for a meta-parameter θ in a subset of Θ containing, as we will see in the following, the optimal
meta-parameter θ̂. This bound automatically translates into a (regularized) average across-tasks
regret bound deriving from the application of Alg. 2 with an appropriate meta-parameter θ fixed
in hindsight for any tasks. Such a bound will be used as benchmark for the corresponding bound
we have obtained in Thm. 7 for our Meta-Learning procedure.

Theorem 8 (Across-Tasks Regret Bound for Alg. 2). Let Asm. 1 hold. Fix a meta-data sequence

Z = (Zt)T
t=1, where Zt = (xt,i, yt,i)n

i=1 and denote by (ŵt)T
t=1 the minimum norm empirical risk

minimizers associated to the datasets (Zt)T
t=1. For any θ ∈ Θ, let Aθ be the corresponding

Alg. 2 and let (wt,i)n
i=1 be the iterates returned by the inner algorithm Aθ over the dataset Zt, by

means of the subgradients (s′
t,i)n

i=1, with s′
t,i ∈ ∂ℓt,i(⟨xt,i, wt,i⟩). Then, for any θ ∈ Θ such that

f(ŵt, θ) < +∞ for any t ∈ {1, . . . , T}, the following (regularized) average across-tasks regret

bound holds for the above iterates

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ λ

T

T∑
t=1

f(ŵt, θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
t,i

∥∥∥2

θ,∗
. (3.27)

Proof. The statement directly derives from summing over the tasks the single-task regret bound
in Eq. (3.12) and normalizing by the number of tasks T .

We observe that the bound for our method in Eq. (3.19) is composed by two main parts: one part
(the first row) is similar to the benchmark bound in Eq. (3.27), the other part (the second row)
can be considered as the additional effort due to the estimation of the meta-parameter from the
data. As we will see in the following Chpt. 5 and Chpt. 6 for the specific settings in Ex. 1 and
Ex. 2, this last part of the bound can be made decreasing w.r.t. T , by choosing in an appropriate
way the hyper-parameter η. However, since, as already observed, the bounds may hide delicate
dependencies, at this point of the presentation, it is difficult to make a detailed and fair comparison
between the bounds. We postpone this discussion later to more explicit settings.

3.4 Method and Analysis in the Statistical Setting 38

We conclude this section with the following observation which will be used in the statistical
setting below.

Remark 8 (Weaker Across-Tasks Regret Bound for Alg. 2). Summing over the tasks the weaker

regret bound given in Rem. 6 with a generic sequence of competitor vectors (wt)T
t=1 and normal-

izing by the number of tasks T , we get the weaker form of the result in Thm. 8 above:

1
T

T∑
t=1

{ 1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wt,i⟩) + λf(wt,i, θ)

}
− RZt(wt)

}

≤ λ

T

T∑
t=1

f(wt, θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
t,i

∥∥∥2

θ,∗
,

(3.28)

where, in this case, θ ∈ Θ is such that f(wt, θ) < +∞ for any t ∈ {1, . . . , T}.

In the next section we provide theoretical guarantees for our OWO Meta-Learning method in the
statistical setting.

3.4 Method and Analysis in the Statistical Setting

As described in Sec. 2.2.2, letting Aθ the inner Alg. 2, in the statistical setting, we measure the
performance of our OWO Meta-Learning procedure by analyzing the gap in Eq. (2.15):

EZ Eµ∼ρ Eµ(Aθ̄) − min
θ∈Θ

Eµ∼ρ Eµ(Aθ), (2.15)

where θ̄ is the average of the meta-parameters returned by the meta-learner in Alg. 3 and, for any
θ ∈ Θ, Aθ is the corresponding inner Alg. 2. We recall that, for an online within-task algorithm A

returning the sequence (wi)n
i=1 when applied to a dataset Z ∼ µn, Eµ(A) is the expected excess

risk of the average w̄ of its iterations, which is defined in Eq. (2.6) as

Eµ(A) = EZ∼µn Rµ(w̄) − Rµ(wµ). (2.6)

In the subsequent analysis, we will investigate about the performance of our method, by comparing
two upper bounds for the two terms above in Eq. (2.15). More precisely, also in this case, we will
give two stronger upper bounds holding for the regularized versions of the above quantities, in
which the expected excess risk Eµ(A) of the inner algorithm A is substituted by the corresponding

3.4 Method and Analysis in the Statistical Setting 39

regularized version Eθ,µ(A), defined as

Eθ,µ(A) = EZ∼µn Rθ,µ(w̄) − Rµ(wµ) Rθ,µ(w) = Rµ(w) + λf(w, θ) w ∈ Rd. (3.29)

Also in this case, by arguments similar to the ones made for the existence of the RERM in
Eq. (2.24), exploiting Asm. 1, we manage to ensure the existence and the uniqueness of the
regularized (true) risk minimizer above

wθ,µ = argmin
w∈Rd

Rθ,µ(w) (3.30)

for any θ ∈ Θ. Before proceeding, we observe the following.

Remark 9 (Surrogate Function, Statistical Setting). Looking at the statistical target problem in

Eq. (2.13):
min
θ∈Θ

Eµ∼ρ Eµ(Aθ), (2.13)

we observe that for any task µ, the dependency on θ in the function Eµ(Aθ) is contained only in

the first term

EZ∼µn Rµ(w̄θ) (3.31)

coinciding with the expected (true) risk of the average w̄θ of the iterates (wθ,i)n
i=1 generated by

the algorithm Aθ over the dataset Z. As observed in Rem. 5, also in this case, very often, such

a quantity is non-convex w.r.t. the meta-parameter θ and for this reason it is not well-suited

as meta-objective for a stochastic meta-algorithm. This issue is overcome, by considering the

function EZ∼µn LZ(θ) as alternative meta-objective. This choice is reasonable in that, by similar

arguments as those made in Rem. 9, such a function can represent a convex upper bound for the

expected (true) risk of our inner algorithm. As a matter of fact, taking the expectation of Eq. (3.8)
w.r.t. the sampling of Z ∼ µn and combining with Eq. (2.9), we immediately get

EZ∼µn Rµ(w̄θ) ≤ EZ∼µn LZ(θ) + EZ∼µn

1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
. (3.32)

In the following result we give an upper bound on the regularized variant of the first term in
Eq. (2.15) which automatically translates into an (regularized) expected meta-excess risk bound
for w̄θ̄, the average of the estimators generated from the combination of the inner Alg. 2 with the
meta-algorithm in Alg. 3.

Theorem 9 (OWO Meta-Excess Risk Bound). Consider the statistical setting. Let Asm. 1 and

Asm. 2 hold. Let Aθ̄ be the inner Alg. 2 with meta-parameter θ̄, the average of the meta-parameters

returned by the meta-algorithm in Alg. 3 using the data Z = (Zt)T
t=1 with Zt = (xt,i, yt,i)n

i=1, by

3.4 Method and Analysis in the Statistical Setting 40

means of the approximated meta-subgradients (∇′
θt

)T
t=1, computed as described above in Prop. 6.

For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)n
i=1 ∼ µn independent from Z. Let w̄θ̄ be

the average of the iterates (wθ̄,i)n
i=1 generated by applying Aθ̄ to the dataset Z by means of the

subgradients (s′
θ̄,i

)n
i=1, with s′

θ̄,i
∈ ∂ℓi(⟨xi, wθ̄,i⟩). Then, in expectation w.r.t. the sampling of the

data Z, recalling the minimum norm (true) risk minimizer wµ associated to a distribution µ ∼ ρ,

for any θ ∈ Θ such that Eµ∼ρ f(wµ, θ) < +∞, the following (regularized) expected meta-excess

risk bound holds for w̄θ̄

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ λ Eµ∼ρ f(wµ, θ) + 1
2λnT

EZ

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

θt,∗

+ ηF (θ)
T

+ 1
2ηT

EZ

T∑
t=1

∣∣∣∣∣∣∣∣∣∇′
θt

∣∣∣∣∣∣∣∣∣2
∗

+ EZ Eµ∼ρ EZ∼µn

1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ̄,i

∥∥∥2

θ̄,∗
.

(3.33)

The proof of the statement above exploits the (regularized) average meta-regret bound for our
OWO Meta-Learning procedure and two nested online-to-batch conversion steps, see e.g. (Cesa-
Bianchi and Gentile, 2006; Cesa-Bianchi et al., 2004; Littlestone, 1989), one within-task and
one across-tasks. Specifically, looking at the proof below, the reader can note that the first two
rows of the bound above coincide with the expectation of the (regularized) average meta-regret
bound for our method, while the additional term in the last row derives from the online-to-batch
conversions. As we will see in the following, this further term can be treated in a similar way as
the last term in the first row and, as a consequence, it will not affect the overall behavior of the
final bound. We now provide the online-to-batch conversions necessary for the proof of Thm. 9.

Proposition 10 (Online-To-Batch Meta-Conversion). Under the same assumptions of Thm. 9, in

expectation w.r.t. the sampling of the data Z = (Zt)T
t=1, it holds

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ EZ
1
T

T∑
t=1

Eθt,Zt(Aθt) + EZ Eµ∼ρ EZ∼µn

1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ̄,i

∥∥∥2

θ̄,∗
.

Proof. Throughout this proof, for any θ ∈ Θ, we will need to make explicit the dependency
w.r.t. the dataset in the RERM ŵθ in Eq. (2.24), in the iterations (wθ,i)n

i=1 generated by Alg. 2
and in their average w̄θ. We will also use the short-hand notation

C = EZ Eµ∼ρ EZ∼µn

1
2λn

n∑
i=1

1
i

∥∥∥xis
′
θ̄,i

∥∥∥2

θ̄,∗
. (3.34)

3.4 Method and Analysis in the Statistical Setting 41

Recalling that ŵt denotes the minimum norm minimizer of the empirical risk associated to the
dataset Zt, the desired statement can be written more explicitly as follows

EZ Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z)) − Eµ∼ρ Rµ(wµ) ≤

EZ
1
T

T∑
t=1

1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i(Zt)⟩) + λf(wθt,i(Zt), θt)

}
− EZ

1
T

T∑
t=1

RZt(ŵt) + C.

(3.35)

In order to prove the statement above, we will prove the following two partial results.

EZ Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z)) ≤ EZ
1
T

T∑
t=1

1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i(Zt)⟩) + λf(wθt,i(Zt), θt)

}
+ C

(3.36)
and

EZ
1
T

T∑
t=1

RZt(ŵt) ≤ Eµ∼ρ Rµ(wµ). (3.37)

In the following, we will explicitly write the expectation EZ in the statements above as

Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T
. (3.38)

We now prove Eq. (3.36). We start from observing that, for any dataset Z ∼ µn and for any
θ ∈ Θ not depending on Z, recalling the subgradients (s′

θ,i)n
i=1, s′

θ,i ∈ ∂ℓi(⟨xi, wθ,i(Z)⟩), used by
Alg. 2 over Z, we can write

EZ∼µn Rθ,µ(w̄θ(Z)) ≤ EZ∼µn

1
n

n∑
i=1

Rθ,µ(wθ,i(Z))

= EZ∼µn

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i(Z)⟩) + λf(wθ,i(Z), θ)

}

≤ EZ∼µn

[
LZ(θ) + 1

2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗

]
.

(3.39)

In the first inequality above we have applied Jensen’s inequality (see Lemma 39 in App. A) to the
convex function Rθ,µ, the equality holds by standard online-to-batch arguments, more precisely,
since wθ,i(Z) depends only on the points (zj)i−1

j=1, thanks to the fact Z ∼ µn, we have

EZ∼µn Rθ,µ(wθ,i(Z)) = EZ∼µn

[
ℓi(⟨xi, wθ,i(Z)⟩) + λf(wθ,i(Z), θ)

]
, (3.40)

3.4 Method and Analysis in the Statistical Setting 42

and, finally, the last inequality derives from Eq. (3.8). Hence, rewriting LZ(θ) = Rθ,Z(ŵθ(Z))
for any θ ∈ Θ, we can write the following

Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T
Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z))

≤ Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T
Eµ∼ρ EZ∼µn Rθ̄,Z(ŵθ̄(Z)) + C

≤ Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T

1
T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸ +C,

(3.41)

where, in the first inequality we have applied Eq. (3.39) with θ = θ̄ and in the second in-
equality we have applied Jensen’s inequality (see Lemma 39 in App. A) to the convex function
Eµ∼ρ EZ∼µn LZ . We now observe that, by definition of ŵθt(Z) and wθt,µ, we can write the
following

EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸ ≤ EZ∼µn Rθt,Z(wθt,µ) = EZ∼µn Rθt,µ(wθt,µ)

≤ EZ∼µn Rθt,µ(w̄θt(Z))︸ ︷︷ ︸ .
(3.42)

Substituting in Eq. (3.41), we can write the following

Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T
Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z))

≤ Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T

1
T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸ +C

≤ Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T

1
T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,µ(w̄θt(Z))︸ ︷︷ ︸ +C

= 1
T

T∑
t=1

Eµ1,...,µt−1∼ρt−1 EZ1∼µn
1 ,...,Zt−1∼µn

t−1
Eµt∼ρ EZt∼µn

t
Rθt,µt(w̄θt(Zt)) + C

≤ 1
T

T∑
t=1

Eµ1,...,µt−1∼ρt−1 EZ1∼µn
1 ,...,Zt−1∼µn

t−1
Eµt∼ρ EZt∼µn

t

1
n

n∑
i=1

Rθt,µt(wθt,i(Zt)) + C

= Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T

1
T

T∑
t=1

1
n

n∑
i=1

{
ℓt,i(⟨xt,i, wθt,i(Zt)⟩) + λf(wθt,i(Zt), θt)

}
+ C

where, in the first equality we have exploited the fact that θt depends only on the datasets (Zj)t−1
j=1

and the i.i.d. sampling of the datasets, in the third inequality we have applied Jensen’s inequality
(see Lemma 39 in App. A) to the convex function Rθt,µt and, finally, in the second equality
we have exploited the fact that wθt,i(Zt) depends only on the points (zt,j)i−1

j=1 and, consequently,

3.4 Method and Analysis in the Statistical Setting 43

thanks to the fact Zt ∼ µn
t , as already observed in Eq. (3.40),

EZt∼µn
t

Rθt,µt(wθt,i(Zt)) = EZt∼µn
t

[
ℓt,i(⟨xt,i, wθt,i(Zt)⟩) + λf(wθt,i(Zt), θt)

]
. (3.43)

This provides the first necessary statement in Eq. (3.36). The second statement in Eq. (3.37) is a
direct consequence of the following steps

Eµ1,...,µT ∼ρT EZ1∼µn
1 ,...,ZT ∼µn

T

1
T

T∑
t=1

RZt(ŵt) ≤ 1
T

T∑
t=1

Eµt∼ρ EZt∼µn
t

RZt(wµt)

= Eµ∼ρ EZ∼µn RZ(wµ)

= Eµ∼ρ Rµ(wµ),

(3.44)

where in the inequality we have exploited the definition of the vectors ŵt, in the first equality we
have leveraged the i.i.d. sampling of the datasets and in the second equality we have used the fact
that Z ∼ µ and the independence of wµ on the data Z. Combining Eq. (3.36) and Eq. (3.37) we
get Eq. (3.35) which is the desired statement.

The above result in Prop. 10 is a different version of (Alquier et al., 2017, Thm. 6.1) and (Balcan
et al., 2019, Thm. 3.3), where the authors give statistical guarantees for the meta-parameter
defined by sampling uniformly from the whole pool of the meta-parameters (θt)T

t=1 returned by
their method. Their result is consequently in expectation w.r.t. the data and w.r.t. this uniform
sampling. On the contrary, in our case, leveraging on the convexity of our surrogate functions and
the fact that we derived a regularized average cumulative error bound for the inner algorithm (see
Prop. 3), we have been able to obtain statistical guarantees for the average of the meta-parameters,
without adding randomness and without the need of memorizing the previous meta-parameters.

Similarly to what already observed in Rem. 2 for the Single-Task Learning setting, in order to
prove Thm. 9, we will use the following observation.

Remark 10 (Online-To-Batch Meta-Conversion by Weaker Meta-Regret). Looking above at the

second row in Eq. (3.44), the reader can note that, in order to have a meta-excess risk bound, one

does not necessarily use a worst case meta-regret bound as the one in Thm. 7, but it is sufficient

to take the expectation of a weaker meta-regret bound as the one in Rem. 7 w.r.t. the sequence of

the competitor vectors (wµt)T
t=1.

We now have all the ingredients necessary to prove Thm. 9.

3.4 Method and Analysis in the Statistical Setting 44

Proof of Thm. 9. The statement derives from applying Prop. 10 as described in Rem. 10 and
observing that, when we take the expectation w.r.t. the i.i.d. sampling of the data Z in the weaker
(regularized) average meta-regret bound in Rem. 7, we have

Eµ1,...,µT ∼ρT

1
T

T∑
t=1

f(wµt , θ) = Eµ∼ρ f(wµ, θ). (3.45)

In the next subsection, we introduce a way to measure the performance of our OWO Meta-
Learning approach in the statistical setting. More formally, we give an upper bound on the
regularized variant of the second term in Eq. (2.15).

3.4.1 The Benchmark for the Method

As described in Sec. 2.2, we would like to compare the performance of our method with the
performance of the best algorithm in our class, solving the problem in Eq. (2.13):

min
θ∈Θ

Eµ∼ρ Eµ(Aθ) (2.13)

where Aθ denotes the inner Alg. 2 and Eµ(Aθ) represents the expected excess risk of the average
of its iterations over the task µ ∼ ρ. In the following result we give an upper bound for the
regularized variant of the quantity above for a meta-parameter θ in a subset of Θ containing, as
we will see in the following, the optimal meta-parameter θρ. This bound automatically translates
into an (regularized) expected across-tasks excess risk bound for w̄θ , the average of the iterations
generated by Alg. 2 with an appropriate meta-parameter θ fixed in hindsight for any task. Such a
bound will be used as benchmark for the corresponding bound we have obtained in Thm. 9 for
the meta-parameter estimated by our Meta-Learning procedure.

Theorem 11 (Across-Tasks Excess Risk Bound for Alg. 2). Consider the statistical setting and

let Asm. 1 hold. For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)n
i=1 ∼ µn. For any θ ∈ Θ, let

Aθ be the corresponding inner Alg. 2 and let (wθ,i)n
i=1 be the iterates returned by Aθ over the

dataset Z, by means of the subgradients (s′
θ,i)n

i=1, with s′
θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩). Then, recalling the

minimum norm (true) risk minimizer wµ associated to a distribution µ ∼ ρ, for any θ ∈ Θ such

that Eµ∼ρ f(wµ, θ) < +∞, the following (regularized) expected across-tasks excess risk bound

3.5 Related Work 45

holds for w̄θ

Eµ∼ρ Eθ,µ(Aθ) ≤ λ Eµ∼ρ f(wµ, θ) + 1
2λn

Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
. (3.46)

Proof. We start from observing that, applying the weaker regret bound in Rem. 6 with the
competitor vector w = wµ, we can write

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
≤ RZ(wµ) + λf(wµ, θ) + 1

2λn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

θ,∗
.

Taking the expectation of the above bound w.r.t. µ ∼ ρ and Z ∼ µn, recalling that, as already
observed in Eq. (3.39),

EZ∼µn Rθ,µ(w̄θ) ≤ EZ∼µn

1
n

n∑
i=1

{
ℓi(⟨xi, wθ,i⟩) + λf(wθ,i, θ)

}
(3.47)

and recalling that EZ∼µn RZ(wµ) = Rµ(wµ), we obtain the desired statement.

Looking at the bound in Eq. (3.33) for our method and the benchmark performance in Eq. (3.46),
the conclusions and the comments we can derive are similar to the ones we have given above for
the performance of our method in the non-statistical setting.

In the next section, we describe how our OWO Meta-Learning method fits in the recent literature.

3.5 Related Work

One of the first OWO Meta-Learning framework has been presented in (Alquier et al., 2017). In
that case, the proposed setting can cover a quite broad family of inner algorithms and, as observed
before, it can be adapted by online-to-batch arguments to the statistical framework. However, the
main drawback of that work is the fact that the proposed meta-algorithm is not efficient, since it
requires memorizing the entire data sequence.

In the more recent work (Finn et al., 2019), the authors consider under the Meta-Learning
perspective the problem of the so-called fine tuning, in which the goal is to estimate a good
starting point for a prescribed iterative inner algorithm. Specifically, they consider as inner
algorithm one step of gradient descent from the point θ, namely, for an appropriate step size

3.5 Related Work 46

γ > 0, wθ = θ − γ∇f̂(θ), where f̂ is some function, for instance an approximation of the (true)
risk. Then, in order to estimate the initial point θ, they consider a meta-objective of the form
L(θ) = f(θ − γ∇f̂(θ)), where f is another function with the same intuition of f̂ . The main
result in (Finn et al., 2019) is to show that, under strong assumptions on the functions f and f̂ ,
such meta-objective is (strongly) convex in the meta-parameter θ. Once proven this, they propose
to estimate the starting point applying as meta-algorithm Follow-The-Leader on the sequence
of these functions and, relying on the well-known analysis for this algorithm, they state a regret
bound for it.

Perhaps closer in spirit to our work is (Balcan et al., 2019). In that work, the authors consider as
inner algorithm linearized Follow The Regularized Leader with constant step size and a penalty
term given by a Bregman divergence parametrized by a meta-parameter. On the contrary, our
inner algorithm corresponds to fixing the step size as 1/(λ(i+1)) at each iteration and this allows
us to derive a regularized regret bound. This, as already observed, brings benefits in the statistical
setting. Furthermore, the proposed meta-algorithm here is different from the one in (Balcan
et al., 2019), in that it works on different objective functions. In their case, as meta-objectives,
they consider the sequence of Bregman divergences evaluated at the empirical risk minimizer
of the corresponding task, while in our case, we consider the minimum of the entire regularized
empirical risk. Such a choice, combined with the primal-dual interpretation of Follow The
Regularized Leader and the concept of approximated subgradients, allows us to develop an OWO
method without needing to add further assumptions. On the other hand, in (Balcan et al., 2019),
in order to extend their work to the fully online setting, the authors need additional assumptions
(specifically a growth condition on the empirical error). We also mention the very recent paper
(Khodak et al., 2019), which is a sequel of the work mentioned above. In (Khodak et al., 2019),
the authors consider a setting similar to the one described in (Balcan et al., 2019) and they propose
a Meta-Learning approach to estimate also the step size of the inner algorithm. However, also
in this case, the basic version of their method requires to compute a batch within-task empirical
risk minimizer and, in order to extend their framework to the fully online setting, they need to
introduce additional assumptions on the loss functions.

At last, we briefly discuss the framework analyzed in the other paper (Denevi et al., 2019a)
published during the PhD. As we will see in Chpt. 5, the method and the analysis proposed there
can be recovered from the OWO framework described above for the specific case of Ex. 1 in
the statistical setting. In the framework described in the previous section, we develop a different
analysis which allows us to extend the study to more general family of learning algorithms, also
in the non-statistical setting.

3.6 Discussion 47

3.6 Discussion

In this chapter we have presented our general OWO Meta-Learning method. We have analyzed
its performance in the non-statistical setting and we have shown how these guarantees can be
adapted to the statistical setting by online-to-batch arguments. The results in this chapter are
not jet ready to be interpreted, since they could hide some delicate dependencies, but, as we
will see in the following Chpt. 5 and Chpt. 6, when specified to the settings in Ex. 1 and Ex. 2,
they will return interesting results, showing that the general analysis performed in this chapter is
meaningful.

Chapter 4

An Online-Within-Batch Variant of the
Method in the Statistical Setting

The method we have proposed in the previous Chpt. 3 is an Online-Within-Online method, i.e.
it processes the data sequentially both within and across the tasks. Looking at many work in
literature dealing with the statistical Online-Within-Batch (OWB) Meta-Learning framework – see
e.g. (Balcan et al., 2019; Bullins et al., 2019; Denevi et al., 2018a,b; Khodak et al., 2019; Maurer
et al., 2013, 2016) – one natural question arising is how much we are loosing in considering inner
algorithms processing the data sequentially instead of in one batch. In this chapter, we investigate
this aspect. Specifically, in Sec. 4.1, we introduce the natural OWB variant of our method and
we study its guarantees in the statistical setting. We then discuss the most related work to this
framework in Sec. 4.2 and, finally, we summarize the content of this chapter in Sec. 4.3.

4.1 Method and Analysis in the Statistical Setting

In this section, we introduce the OWB variant of our OWO method, where we substitute the
family of inner algorithms in Alg. 2, given by (linearized) Follow The Regularized Leader applied
to the within-task problem in Eq. (2.23), with the family of the batch minimizers of the same
problem. Namely, for any meta-parameter θ ∈ Θ and any dataset Z, we consider the batch inner
algorithm given by the regularized empirical risk minimizer (RERM) introduced in Eq. (2.24).
More precisely, we assume to be able to compute an exact solution ŝθ of the corresponding dual
problem in Eq. (3.15). We recall that the existence of such a dual solution is guaranteed by

4.1 Method and Analysis in the Statistical Setting 49

Lemma 5 and such a dual solution uniquely determines the corresponding (primal) RERM by the
KKT conditions in Eq. (3.17).

In order to select a good algorithm in this new RERM family, i.e. in order to estimate a good
meta-parameter from the data, we apply again the meta-algorithm outlined in Alg. 3, working
this time with exact meta-subgradients. More precisely, the meta-subgradients are computed as
described in the following proposition which differs from Prop. 6 only in the dual variable used.
In Prop. 6 the dual variable is the last dual iteration of Alg. 2, corresponding to an approximated

solution of the dual problem in Eq. (3.10), while, in the following proposition the dual variable is
an exact solution of the dual problem in Eq. (3.10).

Proposition 12 (Computation of a Subgradient of LZ). Let Asm. 1 hold and let ŝθ be a solution

of the within-task dual problem in Eq. (3.10) with θ ∈ Θ on the dataset Z. Consider ∇̂θ ∈
∂{−Dn+1(ŝθ, ·)}(θ), where Dn+1 is the function in Eq. (3.10). Then, ∇̂′

θ = ∇̂θ/n ∈ ∂LZ(θ).

Proof. The proof proceeds as in Prop. 6. We recall that, the function Dn+1(·, θ) in Eq. (3.10)
is the objective of the dual problem associated to the non-normalized within-task problem in
Eq. (3.9) and, by strong duality (see Lemma 5), for any θ ∈ Θ,

LZ(θ) = max
s∈Rn

D̃n+1(s, θ) D̃n+1(s, θ) = − 1
n

Dn+1(s, θ). (4.1)

We also stress that, by definition, ŝθ is a maximizer of the function D̃n+1. We now observe that,
for any θ′ ∈ Θ, we can write

LZ(θ′) = max
s∈Rn

D̃n+1(s, θ′) ≥ D̃n+1(ŝθ, θ′)

≥ D̃n+1(ŝθ, θ) +
〈∇̂θ

n
, θ′ − θ

〉
= LZ(θ) +

〈∇̂θ

n
, θ′ − θ

〉
,

where, in the first equality we have exploited strong duality, in the second inequality we have
exploited the assumption ∇̂θ ∈ ∂{−Dn+1(ŝθ, ·)}(θ), implying that ∇̂θ/n ∈ ∂D̃n+1(ŝθ, ·)(θ),
and in the last equality we have used the fact that ŝθ is by definition a maximizer of the function
D̃n+1(·, θ) defined above and strong duality again. By definition of subgradients, the above
inequality proves the desired statement.

In the rest of this section, we study the guarantees for the variant of the method described above
in the statistical setting. Similarly to what described in Sec. 3.4 for our OWO Meta-Learning
method, also in this OWB variant, we measure the performance of our procedure by analyzing

4.1 Method and Analysis in the Statistical Setting 50

the gap
EZ Eµ∼ρ Eµ(Aθ̄) − min

θ∈Θ
Eµ∼ρ Eµ(Aθ), (2.15)

where, this time, θ̄ is the average of the meta-parameters returned by the meta-learner in Alg. 3
working with exact meta-subgradients computed as described in Prop. 12 and, for any θ ∈ Θ, Aθ

is the corresponding inner RERM in Eq. (2.24) and Eµ(Aθ) is its expected excess risk over the
task µ ∼ ρ:

Eµ(Aθ) = EZ∼µn Rµ(ŵθ) − Rµ(wµ). (4.2)

Differently to what we have done before, in the subsequent analysis, we will give two upper
bounds for the two terms above in Eq. (2.15), without additional regularization terms. These
upper bounds will be then compared to the ones we have obtained in Chpt. 3 for the OWO variant
of our method.

We start from giving an upper bound for the first term in Eq. (2.15). In order to do this, we
first need to study the generalization error of the batch RERM algorithm in Eq. (2.24), i.e. the
discrepancy between the (true) risk and the empirical risk of the corresponding estimator. This is
done in the following result where we exploit stability arguments, more precisely the so-called
hypothesis stability, see (Bousquet and Elisseeff, 2002, Def. 3).

Proposition 13 (Generalization Error of the RERM Algorithm in Eq. (2.24)). Consider the

statistical setting and let Asm. 1 hold. For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)n
i=1 ∼ µn

and, for any i ∈ {1, . . . , n}, fix a datapoint z′
i = (x′

i, y′
i) ∼ µ independent from Z. For any θ ∈ Θ,

let ŵθ(Z) be the corresponding RERM in Eq. (2.24) over Z and let s′
θ,i ∈ ∂ℓ(·, y′

i)(⟨x′
i, ŵθ(Z)⟩).

Then, the following generalization error bound holds for ŵθ(Z)

EZ∼µn

[
Rµ(ŵθ(Z)) − RZ(ŵθ(Z))

]
≤ 2

λn
EZ∼µn Ez′

i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
. (4.3)

Proof. During this proof, we need to make explicit the dependency of the RERM ŵθ in Eq. (2.24)
w.r.t. the dataset Z. For any i ∈ {1, . . . , n}, consider the dataset Z(i), a copy of the original
dataset Z in which we exchange the point zi = (xi, yi) with the new i.i.d. point z′

i = (x′
i, y′

i). For
a fixed θ ∈ Θ, we analyze how much this perturbation affects the outputs of the RERM algorithm
in Eq. (2.24). In other words, we study the discrepancy between ŵθ(Z) and ŵθ(Z(i)). We start
from observing that, since by Asm. 1 Rθ,Z is λ-strongly convex w.r.t. ∥ · ∥θ, by growth condition

4.1 Method and Analysis in the Statistical Setting 51

(see Lemma 56 in App. A) and the definition of the RERM algorithm, we can write the following

λ

2
∥∥∥ŵθ(Z(i)) − ŵθ(Z)

∥∥∥2

θ
≤ Rθ,Z(ŵθ(Z(i))) − Rθ,Z(ŵθ(Z))

λ

2
∥∥∥ŵθ(Z(i)) − ŵθ(Z)

∥∥∥2

θ
≤ Rθ,Z(i)(ŵθ(Z)) − Rθ,Z(i)(ŵθ(Z(i))).

(4.4)

Hence, summing the two inequalities above, we get

λ
∥∥∥ŵθ(Z(i)) − ŵθ(Z)

∥∥∥2

θ

≤ Rθ,Z(ŵθ(Z(i))) − Rθ,Z(i)(ŵθ(Z(i))) + Rθ,Z(i)(ŵθ(Z)) − Rθ,Z(ŵθ(Z))

= A + B
n

,

(4.5)

where we have introduced the terms

A = ℓ(⟨x′
i, ŵθ(Z)⟩, y′

i) − ℓ(⟨x′
i, ŵθ(Z(i))⟩, y′

i)

B = ℓ(⟨xi, ŵθ(Z(i))⟩, yi) − ℓ(⟨xi, ŵθ(Z)⟩, yi).
(4.6)

Now, exploiting the assumption s′
θ,i ∈ ∂ℓ(·, y′

i)(⟨x′
i, ŵθ(Z)⟩), applying Holder’s inequality (see

Lemma 32 in App. A) and introducing a subgradient sθ,i ∈ ∂ℓ(·, yi)(⟨xi, ŵθ(Z(i))⟩), we can write

A ≤
〈
x′

is
′
θ,i, ŵθ(Z) − ŵθ(Z(i))

〉
≤

∥∥∥x′
is

′
θ,i

∥∥∥
θ,∗

∥∥∥ŵθ(Z(i)) − ŵθ(Z)
∥∥∥

θ

B ≤
〈
xisθ,i, ŵθ(Z(i)) − ŵθ(Z)

〉
≤

∥∥∥xisθ,i

∥∥∥
θ,∗

∥∥∥ŵθ(Z(i)) − ŵθ(Z)
∥∥∥

θ
.

(4.7)

Combining these last two inequalities with Eq. (4.5) and simplifying, we get the following

∥∥∥ŵθ(Z(i)) − ŵθ(Z)
∥∥∥

θ
≤ 1

λn

(∥∥∥x′
is

′
θ,i

∥∥∥
θ,∗

+
∥∥∥xisθ,i

∥∥∥
θ,∗

)
. (4.8)

Hence, combining the first row in Eq. (4.7) with Eq. (4.8), we can write

ℓ(⟨x′
i, ŵθ(Z)⟩, y′

i) − ℓ(⟨x′
i, ŵθ(Z(i))⟩, y′

i) ≤ 1
λn

(∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
+

∥∥∥x′
is

′
θ,i

∥∥∥
θ,∗

∥∥∥xisθ,i

∥∥∥
θ,∗

)
. (4.9)

Now, taking the expectation w.r.t. Z ∼ µn and z′
i ∼ µ of the left side member above, according

to (Bousquet and Elisseeff, 2002, Lemma 7), we get

EZ∼µn Ez′
i∼µ

[
ℓ(⟨x′

i, ŵθ(Z)⟩, y′
i) − ℓ(⟨x′

i, ŵθ(Z(i))⟩, y′
i)

]
= EZ∼µn

[
Rµ(ŵθ(Z)) − RZ(ŵθ(Z))

]
.

4.1 Method and Analysis in the Statistical Setting 52

Finally, taking the expectation of the right side member, exploiting the fact that the points are
i.i.d. according µ, we get

EZ∼µn Ez′
i∼µ

1
λn

∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
+

∥∥∥x′
is

′
θ,i

∥∥∥
θ,∗

∥∥∥xisθ,i

∥∥∥
θ,∗

 ≤ 2
λn

EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
, (4.10)

where we recall that s′
θ,i ∈ ∂ℓ(·, y′

i)(⟨x′
i, ŵθ(Z)⟩). The statement derives from combining the two

last statements above with the expectation w.r.t. Z ∼ µn and z′
i ∼ µ of Eq. (4.9).

We now have all the ingredients necessary to give an upper bound for the first term in Eq. (2.15),
which is equivalent to give an expected meta-excess risk bound for ŵθ̄, the RERM algorithm in
Eq. (2.24) with the meta-parameter θ̄, the average of the meta-parameters returned by the variant
of our Alg. 3 working with exact meta-subgradients computed ad described above in Prop. 12.

Theorem 14 (OWB Meta-Excess Risk Bound). Consider the statistical setting. Let Asm. 1 and

Asm. 2 hold. Let Aθ̄ be the inner RERM algorithm in Eq. (2.24) with meta-parameter θ̄, the

average of the meta-parameters (θt)T
t=1 returned by the meta-algorithm in Alg. 3 using the data

Z = (Zt)T
t=1 with Zt = (xt,i, yt,i)n

i=1, by means of the exact meta-subgradients (∇̂′
θt

)T
t=1, com-

puted as described above in Prop. 12. For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)n
i=1 ∼ µn

independent from Z and, for any i ∈ {1, . . . , n}, fix a datapoint z′
i = (x′

i, y′
i) ∼ µ independent

from Z and Z. Let ŵθ̄ be the output generated by applying Aθ̄ to the dataset Z and consider

s′
θ̄,i

∈ ∂ℓ(·, y′
i)(⟨x′

i, ŵθ̄⟩). Then, in expectation w.r.t. the sampling of the data Z, recalling the

minimum norm (true) risk minimizer wµ associated to a distribution µ ∼ ρ, for any θ ∈ Θ such

that Eµ∼ρ f(wµ, θ) < +∞, the following expected meta-excess risk bound holds for ŵθ̄

EZ Eµ∼ρ Eµ(Aθ̄) ≤ λ Eµ∼ρ f(wµ, θ) + 2
λn

EZ Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ̄,i

∥∥∥2

θ̄,∗

+ ηF (θ)
T

+ 1
2ηT

EZ

T∑
t=1

∣∣∣∣∣∣∣∣∣∇̂′
θt

∣∣∣∣∣∣∣∣∣2
∗
.

(4.11)

Proof. For any θ ∈ Θ, we consider the following decomposition

EZ Eµ∼ρ Eµ(Aθ̄) = EZ Eµ∼ρ EZ∼µn

[
Rµ(ŵθ̄) − Rµ(wµ)

]
= A + B + C (4.12)

4.1 Method and Analysis in the Statistical Setting 53

where we have introduced the following terms

A = EZ Eµ∼ρ EZ∼µn

[
Rµ(ŵθ̄) − RZ(ŵθ̄)

]
B = EZ Eµ∼ρ EZ∼µn

[
RZ(ŵθ̄) − Rθ,Z(ŵθ)

]
C = Eµ∼ρ EZ∼µn

[
Rθ,Z(ŵθ) − Rµ(wµ)

]
.

(4.13)

We bound the term A by applying Prop. 13 with θ = θ̄. In this way, we obtain

A ≤ 2
λn

EZ Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ̄,i

∥∥∥2

θ̄,∗
. (4.14)

We now observe that, for any θ ∈ Θ such that Eµ∼ρ f(wµ, θ) < +∞, by definition of ŵθ, since
wµ does not depend on the dataset Z, we can write

Eµ∼ρ EZ∼µn Rθ,Z(ŵθ) ≤ Eµ∼ρ EZ∼µn RZ(wµ) + λ Eµ∼ρ f(wµ, θ)

= Eµ∼ρ Rµ(wµ) + λ Eµ∼ρ f(wµ, θ).
(4.15)

Moving the terms in the above inequality, we get the following upper bound for the term C:

C ≤ λ Eµ∼ρ f(wµ, θ). (4.16)

We now bound the term B. Similarly to what observed in Thm. 7, making the identification
α′

m ∇̂′
θt

for the (exact) meta-subgradients, the meta-algorithm we are using coincides with the
primal-dual Alg. 1 applied to the outer-task problem in Eq. (3.1), but this time, with exact meta-
subgradients. Hence, specializing the first point of Thm. 2 to this setting, since the associated
dual optimality gap ∆Dual introduced in Thm. 2 is non-negative by definition, normalizing by the
number of tasks T , for any θ ∈ Θ, we get

1
T

T∑
t=1

Lt(θt) ≤ 1
T

min
θ∈M

{ T∑
t=1

Lt(θ) + ηF (θ)
}

+ 1
2ηT

T∑
t=1

∣∣∣∣∣∣∣∣∣∇̂′
θt

∣∣∣∣∣∣∣∣∣2
∗

≤ 1
T

T∑
t=1

Lt(θ) + ηF (θ)
T

+ 1
2ηT

T∑
t=1

∣∣∣∣∣∣∣∣∣∇̂′
θt

∣∣∣∣∣∣∣∣∣2
∗
.

(4.17)

Rearranging the terms, we get

1
T

T∑
t=1

(
Lt

(
θt

)
− Lt(θ)

)
≤ ηF (θ)

T
+ 1

2ηT

T∑
t=1

∣∣∣∣∣∣∣∣∣∇̂′
θt

∣∣∣∣∣∣∣∣∣2
∗
. (4.18)

4.1 Method and Analysis in the Statistical Setting 54

The bound on the term B derives from the following relations.

B = EZ Eµ∼ρ EZ∼µn

[
RZ(ŵθ̄) − Rθ,Z(ŵθ)

]
≤ EZ Eµ∼ρ EZ∼µn

[
Rθ̄,Z(ŵθ̄) − Rθ,Z(ŵθ)

]
= EZ Eµ∼ρ EZ∼µn

[
LZ(θ̄) − LZ(θ)

]
≤ EZ

1
T

T∑
t=1

Eµ∼ρ EZ∼µn

[
LZ(θt) − LZ(θ)

]

= EZ
1
T

T∑
t=1

(
Lt(θt) − Lt(θ)

)

≤ ηF (θ)
T

+ 1
2ηT

EZ

T∑
t=1

∣∣∣∣∣∣∣∣∣∇̂′
θt

∣∣∣∣∣∣∣∣∣2
∗
.

(4.19)

In the first inequality above we have exploited the non-negativity of f provided by Asm. 1, in
the second equality we have used the definition of LZ , in the second inequality we have applied
Jensen’s inequality (see Lemma 39 in App. A) to the convex function Eµ∼ρ EZ∼µn LZ , in the third
equality we have exploited the i.i.d. sampling of the datasets and the fact that θt depends only
on (Zj)t−1

j=1 and, finally, in the last inequality we have applied Eq. (4.18). The desired statement
derives from combining the bounds in Eq. (4.14), Eq. (4.16) and Eq. (4.19).

The bound we have obtained in Thm. 9 for our OWO method and the bound in Thm. 14 for the
corresponding OWB variant present a similar structure, hiding possible delicate dependencies. In
the settings we will consider in the following, the norm of the approximated meta-subgradients
and the norm of the exact ones will be upper bounded by the same value. Thus, the difference
between the bounds will be due to the different terms going as 1/λ. As we will see, this difference
will translate into an additional logarithmic factor log(n) in the OWO bound.

In the next subsection, we introduce a way to measure the performance of the OWB variant of
our Meta-Learning approach. In other words, we give an upper bound on the second term in
Eq. (2.15).

4.1.1 The Benchmark for the Method

As done for the OWO Meta-Learning method described in the chapter above, we compare the
performance of the OWB variant with the best algorithm in our class, solving the problem in
Eq. (2.13):

min
θ∈Θ

Eµ∼ρ Eµ(Aθ), (2.13)

4.1 Method and Analysis in the Statistical Setting 55

where, this time, Aθ denotes the inner RERM in Eq. (2.24) and Eµ(Aθ) represents its expected
excess risk over the task µ ∼ ρ. In the following result we give an upper bound for the above
quantity for a meta-parameter in a subset of Θ containing, as we will see in the following, the
optimal meta-parameter θρ. This bound automatically translates into an expected across-tasks
excess risk bound for the batch RERM inner algorithm ŵθ in Eq. (2.24) with an appropriate
meta-parameter θ fixed in hindsight for any task. Such a bound will be used as benchmark for
the corresponding bound we have obtained in Thm. 14 for the meta-parameter estimated by our
OWB Meta-Learning procedure.

Theorem 15 (Across-Tasks Excess Risk Bound for the RERM Algorithm in Eq. (2.24)). Consider

the statistical setting and let Asm. 1 hold. For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)n
i=1 ∼

µn and, for any i ∈ {1, . . . , n}, fix a datapoint z′
i = (x′

i, y′
i) ∼ µ independent from Z. For any

θ ∈ Θ, let Aθ be the corresponding inner RERM algorithm in Eq. (2.24). Let ŵθ be the output

returned by Aθ over the dataset Z and let s′
θ,i ∈ ∂ℓ(·, y′

i)(⟨x′
i, ŵθ⟩). Then, recalling the minimum

norm (true) risk minimizer wµ associated to a distribution µ ∼ ρ, for any θ ∈ Θ such that

Eµ∼ρ f(wµ, θ) < +∞, the following expected across-tasks excess risk bound holds for ŵθ

Eµ∼ρ Eµ(Aθ) ≤ λ Eµ∼ρ f(wµ, θ) + 2
λn

Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
. (4.20)

Proof. For any θ ∈ Θ such that Eµ∼ρ f(wµ, θ) < +∞, we consider the following decomposition

EZ∼µn

[
Rµ(ŵθ) − Rµ(wµ)

]
= A + B (4.21)

where we have introduced the terms

A = EZ∼µn

[
Rµ(ŵθ) − RZ(ŵθ)

]
B = EZ∼µn

[
RZ(ŵθ) − Rµ(wµ)

]
.

(4.22)

We bound the term A by Prop. 13, getting

A ≤ 2
λn

Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

θ,∗
. (4.23)

Regarding the term B, exploiting the non-negativity of f (provided by Asm. 1) and applying the
same reasoning in Eq. (4.15), we get

B = EZ∼µn

[
RZ(ŵθ) − Rµ(wµ)

]
≤ EZ∼µn

[
Rθ,Z(ŵθ) − Rµ(wµ)

]
≤ λf(wµ, θ).

(4.24)

4.2 Related Work 56

The desired statement derives from combining the two terms in Eq. (4.23) and Eq. (4.24) above
and taking the expectation w.r.t. µ ∼ ρ in Eq. (4.21).

At this point of the presentation, the observations that we can give on the comparison between
the performance of the OWB Meta-Learning method in Eq. (4.11) and the guarantees for the
benchmark method in Eq. (4.20) are similar to the ones we have given in the previous Chpt. 3
for the OWO setting. Moreover, the benchmark bounds in Eq. (3.46) for the online Alg. 2 and
the one in Eq. (4.20) for the batch RERM algorithm in Eq. (2.24) differ only in the term 1/λ.
Also in this case, as we will see in the following, this difference will translate into an additional
logarithmic factor log(n) for the bound regarding the online Alg. 2.

In the next section, we describe how this OWB variant of our method fits in the recent literature.

4.2 Related Work

In (Bullins et al., 2019) the authors consider the statistical OWB setting for the family of
the RERM algorithms in Eq. (2.24) with the same regularizer f introduced in Ex. 2 with a
Lipschitz loss function. In order to estimate from the data the matrix θ ∈ Sd

+ parametrizing the
inner algorithm, the authors propose to apply as meta-algorithm Frank-Wolfe or Exponentiated-
Weighted by using the same meta-objectives (Lt)T

t=1 considered in this work. As we will see in
the following Chpt. 6, the meta-algorithm we will use for this setting will be different.

We now briefly describe the content of the other two papers, (Denevi et al., 2018a) and (Denevi
et al., 2018b), published during the PhD.

In (Denevi et al., 2018a) we focus on the statistical setting where the inner algorithm is Ridge
Regression parametrized by a matrix θ ∈ Sd

+ as in Ex. 2. In other words, we consider the family
of the within-task RERM algorithms in Eq. (2.24) with the same regularizer f introduced in Ex. 2
and with the square loss, i.e.

ŵθ(Z) = argmin
w∈Ran(θ)

RZ(w) + λ

2 ⟨w, θ†w⟩ RZ(w) = 1
2n

n∑
i=1

(⟨xi, w⟩ − yi)2. (4.25)

The meta-algorithm we propose to learn this matrix consists in a stochastic projected gradient
descent scheme aiming at solving the surrogate problem

min
θ∈S

Eµ∼ρ EZ∼µn RZ(ŵθ(Z)), (4.26)

4.2 Related Work 57

where S = {θ ∈ Sd
+ : Tr(θ) ≤ 1} as in Ex. 2. The proposed approach processes one dataset

(task) at the time, without the need to store previously encountered datasets. We observe that, in
this case, differently from the setting described in the previous section, the surrogate function we
use coincides with the empirical error RZ(ŵθ(Z)) (without regularization term) incurred by the
above variant of Ridge Regression in Eq. (4.25). While in general nothing can be said about the
convexity of the above problem in Eq. (4.26), in this case, exploiting the specific closed form of
the inner algorithm in Eq. (4.25), we manage to show that the above surrogate problem is a convex
problem w.r.t. the meta-parameter θ. This allows us to give a non-asymptotic bound for the
excess risk of the algorithm resulting from our procedure. A remarkable feature of our learning
bound is that it is comparable to previous bounds for batch Meta-Learning. This is confirmed
also by the experiments, where our OWB Meta-Learning method results to be competitive with
the more expensive batch counterpart and outperforms solving the tasks independently, when
the tasks satisfy the similarity assumption of sharing a low-rank linear feature map. The proof
technique used in this work leverages previous work on Meta-Learning (specifically, the work
(Maurer, 2009)) with tools from Online Learning.

In (Denevi et al., 2018b) we consider again the statistical setting, but this time, as in Ex. 1,
we consider the family of inner algorithms given by a variant of Ridge Regression, in which
the regularizer is the square distance to an unknown bias vector θ ∈ Rd. In other words, we
consider the family of the within-task RERM algorithms in Eq. (2.24) with the same regularizer
f introduced in Ex. 1 and with the square loss, i.e.

ŵθ(Z) = argmin
w∈Rd

RZ(w) + λ

2 ∥w − θ∥2
2 RZ(w) = 1

2n

n∑
i=1

(⟨xi, w⟩ − yi)2. (4.27)

Motivated by recent empirical studies on few shot-learning and Meta-Learning (Finn et al., 2017;
Ravi and Larochelle, 2017), the meta-algorithm we propose to learn this bias vector from the
data splits each dataset Z into two subsets (Ztr, Zte) used to train and to test the inner algorithm
(respectively) and then it applies stochastic gradient descent on the surrogate problem

min
θ∈Rd

Eµ∼ρ EZ=(Ztr,Zte)∼µn RZte(ŵθ(Ztr)), (4.28)

where RZte(ŵθ(Ztr)) is the empirical error over the test set Zte of the inner algorithm ŵθ in
Eq. (4.27) trained over the training set Ztr. Also in this case, the meta-algorithm processes
one dataset (task) at the time and it does not need to store the previous datasets. A key aspect
of our analysis is the fact that, exploiting the specific closed form of the inner algorithm in
Eq. (4.27) (an affine transformation of the meta-parameter θ), we manage to show that the above
surrogate problem in Eq. (4.28) is a Least Squares function w.r.t. the meta-parameter θ. This

4.3 Discussion 58

allows us to provide, under specific assumptions, a statistical analysis for the proposed approach,
which highlights the role of the splitting parameter, namely, the number of points we use to
train the inner algorithm. Preliminary experiments confirm our theoretical findings, highlighting
the advantage of our approach w.r.t. solving the tasks independently when the tasks satisfy the
similarity assumption of having a small variance. Our proof technique leverages previous work
on stochastic optimization for Least Squares (specifically, the work (Dieuleveut et al., 2017))
with tools from classic Meta-Learning theory, such as the ones in (Baxter, 2000; Maurer, 2005,
2009; Maurer et al., 2016).

4.3 Discussion

In this section we have introduced the corresponding OWB variant of our OWO Meta-Learning
method and we have analyzed its guarantees in the statistical setting. Similarly to the OWO
setting, also in this case, the results are not jet ready to be interpreted, because of the presence of
some possible hidden dependencies. For this reason, we postpone a detailed discussion about the
results we have obtained to the specific settings of Ex. 1 and Ex. 2, analyzed in the following
Chpt. 5 and Chpt. 6, respectively. As we will see, in these settings, we will manage to show
that, in determined regimes, the guarantees provided by the more expensive OWB variant can be
comparable to the ones for the more efficient OWO variant. This is a supporting point for our
fully online method.

Chapter 5

Example 1. Bias

In this chapter we specify our Meta-Learning framework to the setting in Ex. 1 outlined at the
end of Sec. 3.1. We recall that, in such a case, the meta-parameter coincides with a bias vector
θ ∈ Rd and, as we will see in the following, the tasks’ similarity translates into the existence of a
bias vector closed to the tasks’ target vectors. We start this chapter by specializing in Sec. 5.1
our general OWO method described in Chpt. 3 to Ex. 1, deriving the corresponding inner and
meta-algorithm. The method is then analyzed in Sec. 5.2 and Sec. 5.3, where we specify the
meta-regret bound in Thm. 7 and the meta-excess risk bound in Thm. 9, respectively. After this,
in the subsequent Sec. 5.4, we describe the OWB variant of our method introduced in Chpt. 4.
Finally, in Sec. 5.5 and Sec. 5.6, we discuss the results and we report the numerical evaluation of
our method, respectively.

In this chapter, we will require the following assumption, which is for instance satisfied by the
absolute loss ℓ(ŷ, y) = |ŷ − y| and the hinge loss ℓ(ŷ, y) = max{0, 1 − yŷ}, where y, ŷ ∈ Y .

Assumption 3 (Lipschitz Loss). Let ℓ(·, y) be L-Lipschitz for any y ∈ Y , where L > 0.

In addition to this, for any task t ∈ {1, . . . , T}, we introduce the following quantities related to
the inputs’ covariance matrices

Ct = 1
n

n∑
i=1

xt,ix
⊤
t,i Ĉt =

n∑
i=1

1
i

xt,ix
⊤
t,i Ctot = 1

T

T∑
t=1

Ct Ĉtot = 1
T

T∑
t=1

Ĉt (5.1)

∥Ctot∥∞,a = 1
T

T∑
t=1

∥Ct∥a
∞ with a = 1, 2. (5.2)

5.1 Deriving the Method 60

Algorithm 4 Within-Task Algorithm for Ex. 1

Input λ > 0, θ ∈ Rd, Z = (zi)n
i=1

Initialization sθ,1 = (), wθ,1 = θ

For i = 1 to n

Receive the datapoint zi = (xi, yi)
Compute s′

θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩) ⊆ R

Define (sθ,i+1)i = s′
θ,i, γi = λ(i + 1)

Define pθ,i = xis
′
θ,i + λ(wθ,i − θ)

Update wθ,i+1 = wθ,i − 1/γi pθ,i

Return (wθ,i)n+1
i=1 , w̄θ = 1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 5 Meta-Algorithm for Ex. 1

Input η > 0, Z = (Zt)T
t=1

Initialization θ1 = 0 ∈ Rd

For t = 1 to T

Receive incrementally the dataset Zt

Run Alg. 4 with θt over Zt

Compute sθt,n+1

Define ∇′
θt

= X⊤
t sθt,n+1/n

Update θt+1 = θt − ∇′
θt

/η

Return (θt)T +1
t=1 , θ̄ = 1

T

T∑
t=1

θt

In the statistical setting, we let also

Cρ = Eµ∼ρ E(x,y)∼µ xx⊤. (5.3)

5.1 Deriving the Method

We start from specializing the generic inner algorithm in Alg. 2 and the generic meta-algorithm in
Alg. 3 to the setting outlined in Ex. 1. The algorithms we obtain are reported in Alg. 4 and Alg. 5,
respectively, where, Xt ∈ Rn×d denotes the input vectors’ matrix of the task t, having as i–th row
the input vector xt,i. The deduction is reported in Lemma 16 and Lemma 17 below, respectively.

We start from the deduction of the inner algorithm in Alg. 4.

Lemma 16 (Derivation of the Inner Alg. 4, Bias). For any i ∈ {0, . . . , n}, let wθ,i+1 be the

update of the (primal) variable deriving from applying Alg. 2 to the dataset Z = (xi, yi)n
i=1 in the

setting outlined in Ex. 1 with bias θ ∈ Rd. Let s′
θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩) be the subgradient used by

such an algorithm to compute wθ,i+1. Then, wθ,1 = θ and, for any i ∈ {1, . . . , n}, introducing

the subgradient of the regularized loss

pθ,i = xis
′
θ,i + λ(wθ,i − θ) ∈ ∂

(
ℓi(⟨xi, ·⟩) + λ

2 ∥ · −θ∥2
2

)
(wθ,i), (5.4)

5.1 Deriving the Method 61

we have

wθ,i+1 = wθ,i − 1
λ(i + 1) pθ,i. (5.5)

Proof. We start from observing that, according to the choices made in Ex. 1, for any θ, w, u ∈ Rd,
we have

f(w, θ) = 1
2 ∥w − θ∥2

2 f(·, θ)∗(u) = 1
2 ∥u∥2

2 + ⟨u, θ⟩ ∇f(·, θ)∗(u) = u + θ.

Consequently, according to the definition of wθ,1 in Alg. 2, we have

wθ,1 = ∇f(·, θ)∗(0) = θ. (5.6)

We now show the desired closed form of wθ,i+1 for any i ∈ {1, . . . , n}. In such a case, denoting
by X1:i ∈ Ri×d the matrix containing the first i input vectors as rows, by definition of wθ,i+1 in
Alg. 2, we can write

wθ,i+1 = ∇f(·, θ)∗
(

− 1
λ(i + 1) X⊤

1:isθ,i+1

)
= − 1

λ(i + 1) X⊤
1:isθ,i+1 + θ. (5.7)

For i = 1 the statement holds, as a matter of fact, since wθ,1 = θ, exploiting Eq. (5.7) and
introducing the subgradient pθ,1 = x1s

′
θ,1 + λ(wθ,1 − θ) = x1s

′
θ,1, we can write

wθ,2 = − 1
2λ

x1s
′
θ,1 + θ = wθ,1 − 1

2λ
pθ,1. (5.8)

Now, we show that the statement holds also for i ∈ {2, . . . , n}. Since X⊤
1:isθ,i+1 = X⊤

1:i−1sθ,i +
xis

′
θ,i, we can write the following

wθ,i+1 = − 1
λ(i + 1) X⊤

1:isθ,i+1 + θ = − 1
λ(i + 1)

(
X⊤

1:i−1sθ,i + xis
′
θ,i

)
+ θ

= λi

λ(i + 1)

(
− 1

λi
X⊤

1:i−1sθ,i

)
−

xis
′
θ,i

λ(i + 1) + θ

=
λ(i + 1)(wθ,i − θ) − xis

′
θ,i − λ(wθ,i − θ)

λ(i + 1) + θ

= λ(i + 1)wθ,i − pθ,i

λ(i + 1) = wθ,i − 1
λ(i + 1)pθ,i,

(5.9)

where, in the first and the fourth equality, we have exploited Eq. (5.7) and in the fifth equality we
have exploited the form of the subgradient pθ,i = xis

′
θ,i + λ(wθ,i − θ).

We now proceed with the deduction of the meta-algorithm in Alg. 5.

5.1 Deriving the Method 62

Lemma 17 (Derivation of the Meta-Algorithm in Alg. 5, Bias). For any t ∈ {0, . . . , T}, let θt+1

be the update of the variable deriving from applying Alg. 3 to the data Z = (Zt)T
t=1 in the setting

outlined in Ex. 1. Let ∇′
θt

be the approximated meta-subgradient computed as described in Prop. 6

and used by the algorithm to compute θt+1. Then, θ1 = 0 ∈ Rd and, for any t ∈ {1, . . . , T}, we

have

θt+1 = θt − 1
η

∇′
θt

. (5.10)

Moreover, for any t ∈ {1, . . . , T}, we have

∇′
θt

= 1
n

X⊤
t sθt,n+1, (5.11)

where sθt,n+1 ∈ Rn is the output of Alg. 5 with bias vector θt over the dataset Zt and, under

Asm. 3, according to the notation in Eq. (5.1),

∥∥∥∇′
θt

∥∥∥2

2
≤ L2∥Ct∥∞. (5.12)

Finally, the updating step and the bound above hold also for the exact meta-subgradients computed

as described in Prop. 12, which are given, for any t ∈ {1, . . . T}, by

∇̂′
θt

= 1
n

X⊤
t ŝθt = −λ(ŵθt − θt), (5.13)

where ŵθt and ŝθt denote, respectively, the RERM algorithm in Eq. (2.24) and a solution of the

associated dual problem with meta-parameter θt and dataset Zt for the setting in Ex. 1.

Proof. We start from observing that, according to the choices made in Ex. 1, for any k, θ, u ∈ Rd,
we have

F (θ) = 1
2 ∥θ∥2

2 F ∗(k) = 1
2 ∥k∥2

2 ∇F ∗(k) = k f(·, θ)∗(u) = 1
2 ∥u∥2

2 + ⟨u, θ⟩.

Consequently, according to the definition of θ1 in Alg. 3, we have

θ1 = ∇F ∗(0) = 0. (5.14)

We now show the desired closed form of θt+1, for any t ∈ {1, . . . , T}. In such a case, by the
definition of θt+1 in Alg. 3, we can write

θt+1 = ∇F ∗
(

−1
η

t∑
j=1

∇′
θj

)
= −1

η

t∑
j=1

∇′
θj

. (5.15)

5.1 Deriving the Method 63

For t = 1 the statement holds, as a matter of fact, since θ1 = 0, exploiting Eq. (5.15), we can
write

θ2 = −1
η

∇′
θ1 = θ1 − 1

η
∇′

θ1 . (5.16)

For t ∈ {2, . . . , T}, we observe that, according to Eq. (5.15), we have

θt+1 = −1
η

t∑
j=1

∇′
θj

= −1
η

t−1∑
j=1

∇′
θj

− 1
η

∇′
θt

= θt − 1
η

∇′
θt

. (5.17)

Obviously, the above steps hold also when we substitute the approximated meta-subgradients
(∇′

θt
)T

t=1 with the exact counterparts (∇̂′
θt

)T
t=1. We now specify the closed form of the approxi-

mated meta-subgradients, computed as described in Prop. 6 for Ex. 1. We start from observing
that adding to the notation in Prop. 6 the further task index t, by strong duality (see Lemma 5),
we can rewrite

Lt(θ) = max
s∈Rn

D̃t,n+1(s, θ) D̃t,n+1(s, θ) = − 1
n

Dt,n+1(s, θ) (5.18)

where, according to Eq. (3.10), in the setting outlined in Ex. 1,

−Dt,n+1(s, θ) = −
n∑

i=1
ℓ∗

t,i(si) − λnf(·, θ)∗
(

− 1
λn

n∑
i=1

xt,isi

)

= −
n∑

i=1
ℓ∗

t,i(si) − λnf(·, θ)∗
(

− 1
λn

X⊤
t s

)

= −
n∑

i=1
ℓ∗

t,i(si) − 1
2λn

∥∥∥Xt
⊤s

∥∥∥2

2
+

〈
Xt

⊤s, θ
〉
.

(5.19)

Consequently, recalling that the output sθt,n+1 of the inner algorithm coincides with the last iterate
of the corresponding dual inner iteration, according to Prop. 6, we have

∇θt = Xt
⊤sθt,n+1 (5.20)

and, consequently,
∇′

θt
= ∇θt/n ∈ ∂ϵθt

/n Lt(θt), (5.21)

where ϵθt is outlined in Prop. 6 and it must be specified to Ex. 1. In order to prove Eq. (5.12),
we start from observing that sθt,n+1 is the vector in Rn having as component i the subgradient
s′

θt,i ∈ ∂ℓt,i(⟨xt,i, wθt,i⟩). Hence, under Asm. 3, exploiting Lemma 50 in App. A, any component
of sθt,n+1 is absolutely bounded by L, and, consequently, ∥sθt,n+1∥2 ≤ L

√
n. This allows us to

get the desired bound by applying Holder’s inequality (see Lemma 32 in App. A) to the matrices’

5.1 Deriving the Method 64

scalar product as follows

∥∥∥∇′
θt

∥∥∥2

2
= 1

n
Tr

(1
n

n∑
i=1

xt,ix
⊤
t,isθt,n+1s

⊤
θt,n+1

)
≤ 1

n

∥∥∥∥ 1
n

n∑
i=1

xt,ix
⊤
t,i

∥∥∥∥
∞

∥sθt,n+1∥2
2

≤ L2
∥∥∥∥ 1

n

n∑
i=1

xt,ix
⊤
t,i

∥∥∥∥
∞

= L2∥Ct∥∞,

where in the last equality we have introduced the definition of Ct in Eq. (5.1). Finally, regarding
the exact meta-subgradients, the first closed form in Eq. (5.13) directly derives from Prop. 12 and
the former discussion, while the second closed form is deduced by the first KKT condition in
Eq. (3.17) specified to Ex. 1 and to the task t:

ŵθt = − 1
λn

X⊤
t ŝθt + θt ŝθ ∈ ∂

(n∑
i=1

ℓi

)(
⟨x1, ŵθ⟩, . . . , ⟨xn, ŵθ⟩

)
. (5.22)

Moreover, thanks to the second KKT condition above, under Asm. 3, by Lemma 43 and Lemma 50
in App. A, any component of ŝθt is absolutely bounded by L. Consequently, repeating the same
steps above, the bound in Eq. (5.12) holds also for the exact meta-subgradients in Eq. (5.13).

We observe that the inner Alg. 4 we have deduced is a slightly different version of the inner
algorithm used in (Denevi et al., 2019a) in the statistical setting, where the step size decreases as
1/(λi) instead of 1/(λ(i + 1)). Instead, the meta-algorithm in Alg. 5 we have retrieved is exactly
the same analyzed in that work. We refer to the discussion in Sec. 3.5 for more details about that
work.

We note also that the bound we have given in Lemma 17 on the norm of the exact meta-
subgradients and the approximated ones is the same. This tells us that, from our bounds, the
error we introduce with such an approximation should not affect the overall performance of our
Meta-Learning method. As we will see in the following, this statement will be confirmed also by
our experiments, where the trick we use to approximate the meta-subgradients will reveal to be
an effective strategy to keep the process fully online.

We also observe that for the setting in Ex. 1, our Meta-Learning method in Alg. 4 and Alg. 5
scales linearly with the dimension of the input space. We thus expect that, in this setting, the
method will be appropriate also for datasets in more rich observation spaces.

In the next section, we analyze the performance of our OWO Meta-Learning method applied to
Ex. 1, in the non-statistical setting.

5.2 Method and Analysis in the Non-Statistical Setting 65

5.2 Method and Analysis in the Non-Statistical Setting

In the next result we specify Thm. 7 to Ex. 1, that is, we provide a (regularized) average meta-
regret bound for the procedure deriving from combining Alg. 4 with Alg. 5.

Corollary 18 (Meta-Regret Bound, Bias). Let Asm. 3 hold and consider the setting in Thm. 7

applied to Ex. 1. In particular, for any θ ∈ Rd, let Aθ be the corresponding inner Alg. 4 and let

(θt)T
t=1 be the sequence of the bias vectors estimated by the meta-algorithm in Alg. 5 over the

data Z = (Zt)T
t=1. Recall also the minimum norm empirical risk minimizers (ŵt)T

t=1 associated

to the datasets (Zt)T
t=1. Then, introducing the empirical variance of the vectors (ŵt)T

t=1 w.r.t. a

bias vector θ ∈ Rd

V̂ (θ) = 1
2T

T∑
t=1

∥ŵt − θ∥2
2, (5.23)

according to the notation in Eq. (5.1) and Eq. (5.2), the following (regularized) average meta-

regret bound holds for any θ ∈ Rd

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ λV̂ (θ) + L2Tr(Ĉtot)
2λn

+ η∥θ∥2
2

2T
+ L2∥Ctot∥∞,1

2η
. (5.24)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√Tr(Ĉtot)
2nV̂ (θ)

η =
L

√
T ∥Ctot∥∞,1

∥θ∥2
, (5.25)

we get
1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ L


√

2V̂ (θ)Tr(Ĉtot)
n

+ ∥θ∥2

√
∥Ctot∥∞,1

T

. (5.26)

Proof. Specializing Thm. 7 to the quantities outlined in Ex. 1, exploiting the bound on the norm
of the approximated meta-subgradients given in Eq. (5.12) (exploiting Asm. 3) and using the
notation in Eq. (5.23) and Eq. (5.2), for any θ ∈ Rd, we get

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ λV̂ (θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

2
+ η∥θ∥2

2
2T

+ L2∥Ctot∥∞,1

2η
. (5.27)

The statement derives from the above inequality observing that, under Asm. 3 using the definition
of Ĉtot in Eq. (5.1), we can write

1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

2
≤ L2Tr

(1
T

T∑
t=1

n∑
i=1

1
i

xt,ix
⊤
t,i

)
= L2Tr(Ĉtot). (5.28)

5.2 Method and Analysis in the Non-Statistical Setting 66

Before continuing with the theoretical analysis of our method, in the following remark, we stress
an important aspect regarding the tuning of the hyper-parameters in our method.

Remark 11 (Hyper-parameters Tuning in Our Method). We want to point out to the attention

of the reader that the bound in Eq. (5.26) in the statement above requires oracle tuning of the

hyper-parameters. As a matter of fact, the choice of hyper-parameters in Eq. (5.25) for which

such a bound holds requires knowledge of quantities depending on the optimal competitors and

the future sequence of data and, thus, not available in practice in our OWO Meta-Learning

setting. As observed in previous literature, see e.g. (Shalev-Shwartz, 2007), when an estimate

(upper bound) of these quantities is available in practice, the bound above and the corresponding

interpretation we will give in the following must be intended with such quantities replaced with

the corresponding estimates. In the more complicate setting in which such estimates are not

available in practice, how to address the choice of the hyper-parameters in our method in a

more effective and theoretically grounded way than tuning them over a grid of values becomes

a fundamental and still open problem. In such a case, it would be desirable to have a method

in which such quantities are stably estimated on the fly directly from the data and the hyper-

parameters are self-tuned. A possible direction to reach this target may be to adapt the so-called

‘parameter-free methods’ proposed in (Mcmahan and Streeter, 2012; McMahan and Orabona,

2014; Orabona, 2014; Orabona and Pál, 2016; Zhuang et al., 2019) for the Single-Task Learning

setting to an appropriate Meta-Learning setting. On the other hand, as already proven for the

single task setting in (Mcmahan and Streeter, 2012), we expect, at least, that this self-tuning of

the hyper-parameters will come at the price of unavoidable additional logarithmic terms. As the

reader can note proceeding with the reading, the observations in this remark apply also to the

bounds reported in the following, also in the statistical setting.

In order to evaluate the quality of the bound above in Cor. 18, we specify Thm. 8 to Ex. 1, that
is, we provide a (regularized) average across-tasks regret bound for the procedure deriving from
running the within-task Alg. 4 with a bias vector fixed in hindsight for any task.

Corollary 19 (Across-Tasks Regret Bound for Alg. 4, Bias). Let Asm. 3 hold and consider the

setting in Thm. 8 applied to Ex. 1. In particular, for any θ ∈ Rd, let Aθ be the corresponding inner

Alg. 4. Then, according to the notation in Eq. (5.23) and Eq. (5.1), the following (regularized)

average across-tasks regret bound holds for any θ ∈ Rd

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ λV̂ (θ) + L2Tr(Ĉtot)
2λn

. (5.29)

5.3 Method and Analysis in the Statistical Setting 67

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√√√√Tr(Ĉtot)
2nV̂ (θ)

, (5.30)

we get
1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ L

√
2V̂ (θ)Tr(Ĉtot)

n
. (5.31)

Proof. Specializing Thm. 8 to the quantities outlined in Ex. 1, using the notation in Eq. (5.23),
for any θ ∈ Rd, we get

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ λV̂ (θ) + 1
2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
t,i

∥∥∥2

2
. (5.32)

The statement derives from the above inequality observing that, under Asm. 3, using the definition
of Ĉtot in Eq. (5.1), we can write

1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
t,i

∥∥∥2

2
≤ L2Tr

(1
T

T∑
t=1

n∑
i=1

1
i

xt,ix
⊤
t,i

)
= L2Tr(Ĉtot). (5.33)

We postpone to Sec. 5.5 a discussion about the results we reported above. In the next section, we
analyze the performance of our OWO Meta-Learning method applied to Ex. 1, in the statistical
setting.

5.3 Method and Analysis in the Statistical Setting

In the result below we specify Thm. 9 to Ex. 1, that is, we provide a (regularized) expected
meta-excess risk bound for the average w̄θ̄ of the estimators returned by the combination of Alg. 4
with Alg. 5.

Corollary 20 (OWO Meta-Excess Risk Bound, Bias). Let Asm. 3 hold and consider the statistical

setting in Thm. 9 applied to Ex. 1. In particular, let Aθ̄ be the inner Alg. 4 with bias θ̄, the average

of the vectors returned by the meta-algorithm in Alg. 5 using the data Z = (Zt)T
t=1. Recall also

the minimum norm risk minimizer wµ associated to a task µ ∼ ρ. Then, introducing the exact

5.3 Method and Analysis in the Statistical Setting 68

variance of the vectors wµ w.r.t. a bias vector θ ∈ Rd

Vρ(θ) = 1
2 Eµ∼ρ ∥wµ − θ∥2

2, (5.34)

according to the notation in Eq. (5.2) and Eq. (5.3), the following (regularized) expected meta-

excess risk bound holds for any θ ∈ Rd

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ λVρ(θ) + (log(n) + 1)L2Tr(Cρ)
λn

+ η∥θ∥2
2

2T
+ L2EZ ∥Ctot∥∞,1

2η
. (5.35)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√(log(n) + 1)Tr(Cρ)
nVρ(θ) η =

L
√

T EZ ∥Ctot∥∞,1

∥θ∥2
, (5.36)

we get

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ L

2
√

(log(n) + 1)Vρ(θ)Tr(Cρ)
n

+ ∥θ∥2

√
EZ ∥Ctot∥∞,1

T

. (5.37)

Proof. Specializing Thm. 9 to the quantities outlined in Ex. 1, exploiting the bound on the norm
of the approximated meta-subgradients given in Eq. (5.12) (exploiting Asm. 3) and using the
notation in Eq. (5.34) and Eq. (5.2), the following bound holds for any θ ∈ Rd

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ λVρ(θ) + 1
2λnT

EZ

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

2

+ η∥θ∥2
2

2T
+ L2EZ ∥Ctot∥∞,1

2η
+ 1

2λn
EZ Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥xis
′
θ̄,i

∥∥∥2

2
.

The desired statement derives from the above inequality and from observing that, thanks to
Asm. 3 and the i.i.d. sampling of the data, using the inequality

∑n
i=1 1/i ≤ log(n) + 1 and the

definition of Cρ in Eq. (5.3), we have

EZ
1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥xt,is
′
θt,i

∥∥∥2

2
≤ L2EZ Tr

(1
T

T∑
t=1

n∑
i=1

1
i

xt,ix
⊤
t,i

)
≤ L2(log(n) + 1)Tr(Cρ)

EZ Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥xis
′
θ̄,i

∥∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

(n∑
i=1

1
i

xix
⊤
i

)
≤ L2(log(n) + 1)Tr(Cρ).

5.3 Method and Analysis in the Statistical Setting 69

In order to evaluate the quality of the bound above, we specify Thm. 11 to Ex. 1, that is, we
provide an (regularized) expected across-tasks excess risk bound for w̄θ, the average of the
iterations returned by running the within-task Alg. 4 with bias vector θ fixed in hindsight for any
task.

Corollary 21 (Across-Tasks Excess Risk Bound for Alg. 4, Bias). Let Asm. 3 hold and consider

the statistical setting in Thm. 11 applied to Ex. 1. In particular, for any θ ∈ Rd, let Aθ be the

corresponding inner Alg. 4. Then, according to the notation in Eq. (5.34) and Eq. (5.3), the

following (regularized) across-tasks excess-risk bound holds for any θ ∈ Rd

Eµ∼ρ Eθ,µ(Aθ) ≤ λVρ(θ) + L2(log(n) + 1)Tr(Cρ)
2λn

. (5.38)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√√√√(log(n) + 1)Tr(Cρ)
2nVρ(θ) , (5.39)

we get

Eµ∼ρ Eθ,µ(Aθ) ≤ L

√
2(log(n) + 1)Vρ(θ)Tr(Cρ)

n
. (5.40)

Proof. Specializing Thm. 11 to the quantities outlined in Ex. 1, using the notation in Eq. (5.34),
for any θ ∈ Rd, we get

Eµ∼ρ Eθ,µ(Aθ) ≤ λVρ(θ) + 1
2λn

Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

2
.

The statement derives from the above inequality observing that, under Asm. 3, exploiting the i.i.d.
sampling of the data and the inequality

∑n
i=1 1/i ≤ log(n) + 1, introducing the definition of Cρ

in Eq. (5.3), we can write

Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥xis
′
θ,i

∥∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

(n∑
i=1

1
i

xix
⊤
i

)
≤ L2(log(n) + 1) Tr(Cρ).

Also in this case, the comments to the bounds above are postponed in the following Sec. 5.5. In
the section below, we specify to Ex. 1 the OWB variant of our Meta-Learning method and the
corresponding analysis.

5.4 The Statistical Online-Within-Batch Variant 70

5.4 The Statistical Online-Within-Batch Variant

In this section, we consider the within-task batch RERM algorithm in Eq. (2.24) applied to the
setting outlined in Ex. 1, i.e., for any θ ∈ Rd and any dataset Z, we consider

ŵθ = argmin
w∈Rd

RZ(w) + λ

2 ∥w − θ∥2
2. (5.41)

In the following, we specify Thm. 14 to Ex. 1, that is, we provide an expected meta-excess risk
bound for ŵθ̄, the RERM in Eq. (5.41) with bias vector θ̄, the average of the vectors returned by
the meta-algorithm in Alg. 5 working with exact meta-subgradients computed by Eq. (5.13).

Corollary 22 (OWB Meta-Excess Risk Bound, Bias). Let Asm. 3 hold and consider the statistical

setting in Thm. 14 applied to Ex. 1. In particular, let Aθ̄ be the inner RERM algorithm in Eq. (5.41)
with bias θ̄, the average of the vectors returned by the meta-algorithm in Alg. 5 using the data

Z and the exact meta-subgradients in Eq. (5.13). Then, according to the notation in Eq. (5.34),
Eq. (5.2) and Eq. (5.3), the following expected meta-excess risk bound holds for any θ ∈ Rd

EZ Eµ∼ρ Eµ(Aθ̄) ≤ λVρ(θ) + L2Tr(Cρ)
λn

+ η∥θ∥2
2

2T
+ L2EZ ∥Ctot∥∞,1

2η
.

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√Tr(Cρ)
nVρ(θ) η =

L
√

T EZ ∥Ctot∥∞,1

∥θ∥2
, (5.42)

we get

EZ Eµ∼ρ Eµ(Aθ̄) ≤ L

2
√

Vρ(θ) Tr(Cρ)
n

+ ∥θ∥2

√
EZ ∥Ctot∥∞,1

T

.

Proof. Specializing Thm. 14 to the quantities outlined in Ex. 1, exploiting the bound on the norm
of the exact meta-subgradients given in Eq. (5.12) (exploiting Asm. 3) and using the notation in
Eq. (5.34) and Eq. (5.2), for any θ ∈ Rd, we get

EZ Eµ∼ρ Eµ(Aθ̄) ≤ λVρ(θ) + 2
λn

EZ Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ̄,i

∥∥∥2

2

+ η∥θ∥2
2

2T
+ L2EZ ∥Ctot∥∞,1

2η
.

5.4 The Statistical Online-Within-Batch Variant 71

The statement derives from the above inequality observing that, under Asm. 3, exploiting the i.i.d.
sampling of the data and introducing the definition of Cρ in Eq. (5.3), we can write

EZ Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ̄,i

∥∥∥2

2
≤ L2Eµ∼ρ Ez′

i∼µ Tr(x′
ix

′
i

⊤) = L2Tr(Cρ). (5.43)

In order to evaluate the quality of the bound above, we specify Thm. 15 to Ex. 1, that is, we
provide an expected across-tasks excess risk bound for ŵθ, the within-task RERM algorithm in
Eq. (5.41) with bias vector θ fixed in hindsight for any task.

Corollary 23 (Across-Tasks Excess Risk Bound for the RERM Algorithm in Eq. (5.41), Bias).
Let Asm. 3 hold and consider the statistical setting in Thm. 15 applied to Ex. 1. In particular, for

any θ ∈ Rd, let Aθ be the corresponding inner RERM algorithm in Eq. (5.41). Then, according

to the notation in Eq. (5.34) and Eq. (5.3), the following expected across-tasks excess risk bound

holds for any θ ∈ Rd

Eµ∼ρ Eµ(Aθ) ≤ λVρ(θ) + 2L2Tr(Cρ)
λn

. (5.44)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√√√√2Tr(Cρ)
nVρ(θ) , (5.45)

we get

Eµ∼ρ Eµ(Aθ) ≤ 2L

√
2Vρ(θ) Tr(Cρ)

n
. (5.46)

Proof. Specializing Thm. 15 to the quantities outlined in Ex. 1, using the notation in Eq. (5.34),
for any θ ∈ Rd, we get

Eµ∼ρ Eµ(Aθ) ≤ λVρ(θ) + 2
λn

Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

2
. (5.47)

The statement derives from the above inequality observing that, under Asm. 3, introducing the
definition of Cρ in Eq. (5.3), we can write

Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥x′
is

′
θ,i

∥∥∥2

2
≤ L2Eµ∼ρ Ez′

i∼µ Tr(x′
ix

′
i

⊤) = L2Tr(Cρ). (5.48)

5.5 Discussion 72

In the following section we present a detailed discussion about the bounds we have reported in
the above sections.

5.5 Discussion

We start from discussing the results in Cor. 19, Cor. 21 and Cor. 23, where the bias vector used by
the inner algorithm is fixed in hindsight for any task.

Advantage of Selecting the Right Bias. Looking at the bounds in Cor. 19, Cor. 21 and Cor. 23,
we can state that the advantage in using one bias vector θ ∈ Rd in comparison to the others is
determined by the associated empirical variance V̂ (θ) in Cor. 19 or by the corresponding exact
variance Vρ(θ) in Cor. 21 and Cor. 23. This inspires us to consider as the best algorithm in our
class (oracle) the algorithm associated to the bias vector minimizing the above quantities:

θ̂ = argmin
θ∈Rd

V̂ (θ) = 1
T

T∑
t=1

ŵt, (5.49)

for the non-statistical setting in Cor. 19, and

θρ = argmin
θ∈Rd

Vρ(θ) = Eµ∼ρ wµ, (5.50)

for the statistical setting in Cor. 21 and Cor. 23. For clarity of exposition, we remark that the
above vectors do not coincide with the optimal meta-parameters defined in Sec. 2.2, but they are
two sub-optimal choices in that they minimize just un upper bound of the quantity we would
like to minimize. In the following, we will consider these two reasonable vectors as benchmark
in order to evaluate the quality of the bias returned by our Meta-Learning procedures. For this
reason, in order to avoid further notation, we over-write the symbols used in Sec. 2.2 for the true
optimal meta-parameters, to denote these sub-optimal versions.

On the other hand, solving the tasks independently (ITL), in this case, corresponds to the unbiased
case, i.e. to the application of the inner Alg. 4 with bias θITL = 0 ∈ Rd for any task. In particular,
from the above bounds, we can say that there is an advantage in using the optimal bias w.r.t.
solving each task independently, when the tasks are similar in the sense that the variance of the
associated target vectors is much smaller than their second moment, i.e. when

V̂ (θ̂) = min
θ∈Rd

1
2T

T∑
t=1

∥ŵt − θ∥2
2 = 1

2T

T∑
t=1

∥ŵt − θ̂∥2
2 ≪ 1

2T

T∑
t=1

∥ŵt∥2
2 = V̂ (0) (5.51)

5.5 Discussion 73

for the non-statistical setting and

Vρ(θρ) = min
θ∈Rd

Eµ∼ρ
1
2 ∥wµ − θ∥2

2 = Eµ∼ρ
1
2 ∥wµ − θρ∥2

2 ≪ Eµ∼ρ
1
2 ∥wµ∥2

2 = Vρ(0) (5.52)

for the statistical setting. Finally, we observe that, inline with the origin of our Meta-Learning
method, the quantity V̂ (θ̂) above coincides with the MTL variance regularizer in Eq. (2.25)
associated to the matrix in Rd×T with columns the tasks’ target vectors (ŵt)T

t=1 and the quantity
Vρ(θρ) can be interpreted as its continuous or exact statistical variant.

We now can make the following observations about the bounds we have obtained in Cor. 18,
Cor. 20 and Cor. 22 for our Meta-Learning procedures.

Bias Resulting from our Meta-Learning Methods. Looking at the bounds in Cor. 18, Cor. 20
and Cor. 22, we can state that our Meta-Learning methods are effective, because, when the
number of training tasks is sufficiently large w.r.t. the number of points n (hence the term T −1/2 is
negligible), with an appropriate tuning of the hyper-parameters λ and η, the bias vector estimated
by our methods can provide comparable guarantees as those for the corresponding best bias vector
in hindsight in Cor. 19, Cor. 21 and Cor. 23. As a consequence, when the tasks are similar as
explained above, our methods can provide a significant advantage w.r.t. ITL. These observations
are in line with (Denevi et al., 2019a), where we only consider the statistical setting and we
present the same bound in Cor. 20 with slightly worse constants.

Finally, in order to investigate the impact of considering the OWO framework instead of the OWB
one, we compare Cor. 20 and Cor. 21 to Cor. 22 and Cor. 23. We recall that all these statements
hold for the statistical setting.

Comparison Between OWO and OWB. Comparing the bound in Cor. 21 to the bound in
Cor. 23, we can expect that, in the statistical setting, running the batch RERM algorithm in
Eq. (5.41) with a fixed bias θ in hindsight for any task will outperform the twin method with
the online Alg. 4 by a factor (log(n) + 1)Vρ(θ). As a consequence, for a fixed value of n, the
gap between the performance of the two methods will depend on the quantity Vρ(θ) which can
amplify or reduce the discrepancy. In particular, for the optimal choice θ = θρ in Eq. (5.50), the
corresponding gap between the two methods can be insignificant when the variance Vρ(θρ) of
the tasks’ target vectors is small. The same observation can be made also for the Meta-Learning
methods analyzed in Cor. 20 and Cor. 22. In this case, the bias controlling the above gap is the
one determining the optimal hyper-parameters used by the methods.

5.6 Experiments 74

5.6 Experiments

In this section, we test the effectiveness of the Meta-Learning approach proposed in this work on
synthetic and real data in the statistical setting of Ex. 11.

We recall that, in the proposed framework, the within-task regularization parameter λ and the
meta-step size η must be appropriately chosen. In the following experiments, we validated
these two hyper-parameters over a grid of discrete values looking at the performance of the
corresponding estimated meta-parameters, according to the procedure described in App. C.1.
In order to do this, the proposed OWO Meta-Learning method uses the inner online Alg. 2 in
two ways (i) to estimate the meta-subgradients during meta-training as described in Prop. 6 and
(ii) to evaluate the meta-parameter during the meta-validation / testing phase. In the following
experiments, we compared the proposed OWO Meta-Learning approach with variants based on
the batch RERM algorithm in Eq. (2.24). More precisely, in the setting outlined in Ex. 1, we
evaluated the performance of the following three methods:

• META - OWO: our Online-Within-Online Meta-Learning method described in Chpt. 3,
where we use the inner online Alg. 4 both during meta-training and meta-validation / testing
phases;

• META - Hybrid: the hybrid Meta-Learning method in which we use exact meta-subgradients
(computed by the batch RERM in Eq. (5.41), as described in Prop. 12) during the meta-
training phase, but we apply the online inner Alg. 4 during the meta-validation / testing
phases;

• META - OWB: the Online-Within-Batch variant of our Meta-Learning method described
in Chpt. 4, where we use the batch inner RERM algorithm in Eq. (5.41) both for the
meta-training process (to compute the exact meta-subgradients) and the meta-validation /
testing phases.

We also added to the comparison the following methods, where the bias vector θ is fixed in
hindsight for any task:

• ITL - B: we use the batch RERM algorithm in Eq. (5.41) with the ITL bias θITL = 0 for
any task;

• ITL - O: we use the online Alg. 4 with the ITL bias θITL = 0 for any task;
1The code is available at https://github.com/prolearner/onlineLTL

https://github.com/prolearner/onlineLTL

5.6 Experiments 75

• Oracle - B: we use the batch RERM algorithm in Eq. (5.41) with the optimal bias θρ in
Eq. (5.50) for any task (only in synthetic experiments, in which this quantity is available);

• Oracle - O: we use the online Alg. 4 with the optimal bias θρ in Eq. (5.50) for any task
(only in synthetic experiments in which this quantity is available).

We compared the above methods in the following synthetic and real experimental settings, where,
as described in App. C.2, we computed an approximation of the RERM algorithm in Eq. (5.41)
by applying Fast Iterative Shrinkage-Thresholding Algorithm (FISTA, see (Beck and Teboulle,
2009, Sec. 4)) on the associated within-task dual problem. The following experimental settings
are exactly the same considered in (Denevi et al., 2019a). The only difference is the choice
of the inner step size for the inner Alg. 4: here the step size is 1/(λ(i + 1)), instead of 1/(λi)
as in (Denevi et al., 2019a). However, as the reader can observe, this difference results to be
insignificant for the overall performance of the method.

Synthetic Data. We considered two different settings, regression with the absolute loss and
binary classification with the hinge loss. In both cases, we generated an environment of tasks
in which the introduction of an appropriate bias is expected to bring a substantial benefit in
comparison to the unbiased case (ITL). Motivated by our observations in Sec. 5.5, we generated
Ttot = 800 linear tasks with target vectors characterized by a variance which is significantly
smaller than their second moment. Specifically, for each task µ, we created a target vector wµ

from a Gaussian distribution with mean θρ given by the vector in Rd with all components equal to
4 and standard deviation

√
Vρ(θρ) = 1. For each task we generated a dataset (xi, yi)ntot

i=1 , where
xi ∈ Rd with d = 30 and ntot = 110. In the regression case, the inputs were uniformly sampled
on the unit sphere and the labels were generated as y = ⟨x, wµ⟩ + ϵ, with ϵ sampled from a
zero-mean Gaussian distribution, with standard deviation chosen to have signal-to-noise ratio
equal to 10 for each task. In the classification case, the inputs were uniformly sampled on the
unit sphere, excluding those points with margin |⟨x, wµ⟩| smaller than 0.5 and the binary labels
were generated according to a logistic model where P(y = 1) =

(
1 + 10 exp(−⟨x, wµ⟩)

)−1
. The

inner regularization parameter λ and the meta-step size η were validated following the procedure
described in App. C.1. Specifically, we considered 10 candidates values for both λ and η in the
range [10−6, 103] with logarithmic spacing and we evaluated the performance of the estimated
bias vectors by using T = Ttr = 500, Tva = 100, Tte = 200 of the above tasks for meta-training,
meta-validation and meta-testing, respectively. Moreover, in order to train and to test the inner
algorithm, we used n = ntr = 10 and nte = 100 points in each dataset.

The results, reported in Fig. 5.1, confirm our theoretical findings. First of all, we observe that all
the Meta-Learning methods (META - OWO, META - Hybrid, META - OWB) perform better

5.6 Experiments 76

than solving each task independently (ITL - B and ITL - O) by a large margin, and, as expected,
they tend to match the performance of the optimal algorithms in the class (Oracle - B and Oracle -
O) as the number of training tasks increases. We also point out that the OWB Meta-Learning
method (META - OWB) achieves lower error than the other two Meta-Learning methods (META
- OWO and META - Hybrid), but the difference is almost negligible and this is coherent with the
results obtained in Chpt. 4. In addition to this, we also observe that the performance of META -
OWO and META - Hybrid are comparable. This confirms, as already observed from the theory,
that the way in which we approximated the meta-subgradients is an effective way to keep the
process fully online. Finally, we observe that the gap between the lines ITL - O and ITL - B is
wider than the gap between the lines Oracle - O and Oracle - B. This is inline with our theoretical
findings according to which running the batch RERM algorithm in Eq. (5.41) with a fixed bias
outperforms the twin method with the online Alg. 4 by a factor (log(n) + 1)Vρ(θ). Since in our
setting Vρ(θ) ≪ Vρ(0), this explains the different gaps between the horizontal lines above.

Real Data. We ran experiments on the computer survey data from (Lenk et al., 1996), in
which Ttot = 180 people (tasks) rated the likelihood of purchasing one of ntot = 12 different
personal computers. The input represents d = 13 different computer characteristics (price, CPU,
RAM, etc.), while, the output is an integer rating from 0 to 10. Similarly to the synthetic data
experiments, we considered a regression setting with the absolute loss and a classification setting
with the hinge loss. In the latter case each task is to predict whether the rating is above 5. Also in
this case, in order to validate the hyper-parameters λ and η, we followed the procedure described
in App. C.1. Specifically, we considered 30 candidates values for both λ and η in the range
[10−3, 103] with logarithmic spacing and we evaluated the performance of the estimated bias
vectors by splitting the tasks into T = Ttr = 100, Tva = 40, Tte = 40 tasks for meta-training,
meta-validation and meta-testing, respectively. Moreover, in order to train and to test the inner
algorithm, we splitted each within-task dataset into n = ntr = 8 and nte = 4 points.

We compared all the methods we described above over this dataset. The results are reported in
Fig. 5.2. The figures are in line with the results obtained on synthetic experiments, indicating that
the bias Meta-Learning framework proposed in this work is effective for these data. Furthermore,
the results for regression are in line with what observed for the Multi-Task Learning setting
with variance regularization in (McDonald et al., 2016). The classification setting has not been
used before and has been created ad-hoc for our purpose. In this case, we have a wider variance
probably due to the fact that the splitted datasets are highly unbalanced.

5.6 Experiments 77

Figure 5.1 Synthetic Data. Test error of different methods as the number of training tasks increases. (Top)
Regression with absolute loss. (Bottom) Classification with hinge loss. The results are averaged over 10
independent generations of the data.

5.6 Experiments 78

Figure 5.2 Lenk Dataset. Test error of different methods as the number of training tasks increases. (Top)
Regression with absolute loss. (Bottom) Classification with hinge loss. The results are averaged over 30
independent splits of the data.

Chapter 6

Example 2. Feature Map

In this chapter we specify our Meta-Learning framework to the setting in Ex. 2 outlined at the end
of Sec. 3.1. We recall that, in such a case, the meta-parameter coincides with a linear feature map
θ ∈ Sd

+ and, as we will see in the following, the tasks’ similarity translates into the existence of a
low-rank linear feature map containing in its range the tasks’ target vectors. We start this chapter
by specializing in Sec. 6.1 our general OWO method described in Chpt. 3 to Ex. 2, deriving the
corresponding inner and meta-algorithm. The method is then analyzed in Sec. 6.2 and Sec. 6.3,
where we specify the meta-regret bound in Thm. 7 and the meta-excess risk bound in Thm. 9,
respectively. After this, in the subsequent Sec. 6.4, we describe the OWB variant of our method
introduced in Chpt. 4. Finally in Sec. 6.5 and Sec. 6.6, we discuss the results and we report the
numerical evaluation of our method, respectively.

In this chapter we will use Asm. 3 and the notation in Eq. (5.1), Eq. (5.2) and Eq. (5.3) introduced
in the former Chpt. 5.

6.1 Deriving the Method

We start from specializing the generic inner algorithm in Alg. 2 and the generic meta-algorithm
in Alg. 3 to the setting outlined in Ex. 2. The algorithms we obtain are reported in Alg. 6 and
Alg. 7, respectively, where, projS is the Euclidean projection over the set S and we recall that
Xt ∈ Rn×d denotes the input vectors’ matrix of the task t, having as i–th row the input vector
xt,i. The deduction is reported in Lemma 24 and Lemma 25 below, respectively.

6.1 Deriving the Method 80

Algorithm 6 Within-Task Algorithm for Ex. 2

Input λ > 0, θ ∈ S, Z = (zi)n
i=1

Initialization sθ,1 = (), wθ,1 = 0
For i = 1 to n

Receive the datapoint zi = (xi, yi)
Compute s′

θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩) ⊆ R

Define (sθ,i+1)i = s′
θ,i, γi = λ(i + 1)

Define pθ,i = xis
′
θ,i + λθ†wθ,i

Update wθ,i+1 = wθ,i − 1/γi θpθ,i

Return (wθ,i)n+1
i=1 , w̄θ = 1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 7 Meta-Algorithm for Ex. 2

Input η > 0, Z = (Zt)T
t=1, θ0 ∈ S

Initialization θ1 = θ0, P1 = 0 ∈ Sd

For t = 1 to T

Receive incrementally the dataset Zt

Run Alg. 6 with θt over Zt

Compute sθt,n+1

Define ∇′
θt

= − qtq
⊤
t

2λn2 qt = Xt
⊤sθt,n+1

Update Pt+1 = Pt + ∇′
θt

Update θt+1 = projS
(
−Pt+1/η + θ0

)
Return (θt)T +1

t=1 , θ̄ = 1
T

T∑
t=1

θt

We start from the deduction of the inner-algorithm in Alg. 6.

Lemma 24 (Derivation of the Inner Alg. 6, Feature Map). For any i ∈ {0, . . . , n}, let wθ,i+1 be

the update of the (primal) variable deriving from applying Alg. 2 to the dataset Z = (xi, yi)n
i=1 in

the setting outlined in Ex. 2 with feature map θ ∈ S . Let s′
θ,i ∈ ∂ℓi(⟨xi, wθ,i⟩) be the subgradient

used by such an algorithm to compute wθ,i+1. Then, wθ,i+1 ∈ Ran(θ). Moreover, wθ,1 = 0 ∈ Rd

and, for any i ∈ {1, . . . , n}, introducing the subgradient of the regularized loss

pθ,i = xis
′
θ,i + λθ†wθ,i ∈ ∂

(
ℓi(⟨xi, ·⟩) + λ

2 ⟨·, θ†·⟩
)

(wθ,i), (6.1)

we have

wθ,i+1 = wθ,i − 1
λ(i + 1)

(
θxis

′
θ,i + λwθ,i

)
= wθ,i − 1

λ(i + 1) θpθ,i. (6.2)

Proof. We start from observing that, according to the choices made in Ex. 2, for any θ ∈ S and
for any w, u ∈ Rd, we have

f(w, θ) = 1
2⟨w, θ†w⟩ + ιRan(θ)(w) f(·, θ)∗(u) = 1

2 ∥θ1/2u∥2
2 ∇f(·, θ)∗(u) = θu. (6.3)

6.1 Deriving the Method 81

As a consequence, as observed in Prop. 3, for any θ ∈ Θ, we get that wθ,i+1 ∈ Domf(·, θ) =
Ran(θ), for any i ∈ {0, . . . , n}. Moreover, according to the definition of wθ,1 in Alg. 2, we have

wθ,1 = ∇f(·, θ)∗(0) = 0. (6.4)

We now show the closed form of wθ,i+1 for any i ∈ {1, . . . , n}. In such a case, denoting by
X1:i ∈ Ri×d the matrix containing the first i input vectors as rows, by definition of wθ,i+1 in
Alg. 2, we can write

wθ,i+1 = ∇f(·, θ)∗
(

− 1
λ(i + 1) X⊤

1:isθ,i+1

)
= − 1

λ(i + 1) θX⊤
1:isθ,i+1. (6.5)

For i = 1 the statement holds, as a matter of fact, since wθ,1 = 0, exploiting Eq. (6.5) and
introducing the subgradient pθ,1 = x1s

′
θ,1 + λθ†wθ,1 = x1s

′
θ,1, we can write

wθ,2 = − 1
2λ

θx1s
′
θ,1 = wθ,1 − 1

2λ
θpθ,1. (6.6)

Now, we show that the statement holds also for i ∈ {2, . . . , n}. Since X⊤
1:isθ,i+1 = X⊤

1:i−1sθ,i +
xis

′
θ,i, we can write the following

wθ,i+1 = − 1
λ(i + 1) θX⊤

1:isθ,i+1 = − 1
λ(i + 1)

(
θX⊤

1:i−1sθ,i + θxis
′
θ,i

)

= λi

λ(i + 1)

(
− 1

λi
θX⊤

1:i−1sθ,i

)
−

θxis
′
θ,i

λ(i + 1)

=
λ(i + 1)wθ,i − θxis

′
θ,i − λwθ,i

λ(i + 1)

= wθ,i − 1
λ(i + 1)

(
θxis

′
θ,i + λwθ,i

)
= wθ,i − 1

λ(i + 1) θpθ,i,

(6.7)

where, in the first and the fourth equality, we have exploited Eq. (6.5) and in the sixth equality
we have exploited the form of the subgradient pθ,i = xis

′
θ,i + λθ†wθ,i and the fact that wθ,i ∈

Ran(θ).

We now proceed with the deduction of the meta-algorithm in Alg. 7.

Lemma 25 (Derivation of the Meta-Algorithm in Alg. 7, Feature Map). For any t ∈ {0, . . . , T},

let θt+1 be the update of the variable deriving from applying Alg. 3 to the data Z = (Zt)T
t=1 in the

setting outlined in Ex. 2. Let ∇′
θt

be the approximated meta-subgradient computed as described

in Prop. 6 and used by the algorithm to compute θt+1. Then, θt+1 ∈ S. Specifically, we have

6.1 Deriving the Method 82

θ1 = θ0 and, for any t ∈ {1, . . . , T},

θt+1 = projS
(

−1
η

t∑
j=1

∇′
θj + θ0

)
. (6.8)

Moreover, for any t ∈ {1, . . . , T},

∇′
θt

= − 1
2λn2 Xt

⊤sθt,n+1s
⊤
θt,n+1Xt, (6.9)

where sθt,n+1 ∈ Rn is the output of Alg. 7 with feature map θt over the dataset Zt and, under

Asm. 3, according to the notation in Eq. (5.1),

∥∥∥∇′
θt

∥∥∥2

F
≤ L4∥Ct∥2

∞
4λ2 . (6.10)

Finally, the updating step and the bound above hold also for the exact meta-subgradients computed

as described in Prop. 12, which are given, for any t ∈ {1, . . . T}, by

∇θt = − 1
2λn2 Xt

⊤ŝθt ŝ
⊤
θt

Xt = −λ

2 θ†
t ŵθtŵ

⊤
θt

θ†
t , (6.11)

where ŵθt and ŝθt denote, respectively, the RERM algorithm in Eq. (2.24) and a solution of the

associated dual problem with meta-parameter θt and dataset Zt for the setting in Ex. 2.

Proof. We start from observing that, according to the choices made in Ex. 2, according to
Lemma 57 in App. A, for any K ∈ Sd, θ ∈ S and u ∈ Rd, we have

F (θ) = 1
2∥θ − θ0∥2

F + ιS(θ)

F ∗(K) = max
θ∈S

⟨θ, K⟩ − 1
2 ∥θ − θ0∥2

F

∇F ∗(K) = argmax
θ∈S

⟨θ, K⟩ − 1
2 ∥θ − θ0∥2

F = argmin
θ∈S

1
2 ∥θ − θ0∥2

F − ⟨θ, K⟩

= argmin
θ∈S

1
2 ∥θ − (K + θ0)∥2

F − 1
2 ∥K∥2

F + ⟨θ − θ0, K⟩ − ⟨θ, K⟩

= argmin
θ∈S

1
2 ∥θ − (K + θ0)∥2

F − 1
2 ∥K∥2

F − ⟨θ0, K⟩

= projS(K + θ0)

f(·, θ)∗(u) = 1
2 ∥θ1/2u∥2

2.

(6.12)

6.1 Deriving the Method 83

Consequently, according to the definition of θ1 in Alg. 3, we have

θ1 = ∇F ∗(0) = θ0. (6.13)

The desired closed form of θt+1 for any t ∈ {1, . . . , T} directly derives from the definition of
θt+1 in Alg. 3, according to which

θt+1 = ∇F ∗
(

−1
η

t∑
j=1

∇′
θj

)
= projS

(
−1

η

t∑
j=1

∇′
θj + θ0

)
. (6.14)

Obviously, the above steps hold also when we substitute the approximated meta-subgradients
(∇′

θt
)T

t=1 with the exact counterparts (∇̂′
θt

)T
t=1. We now specify the closed form of the approxi-

mated meta-subgradients, computed as described in Prop. 6 for Ex. 2. We start from observing
that adding to the notation in Prop. 6 the further task index t, by strong duality (see Lemma 5),
we can rewrite

Lt(θ) = max
s∈Rn

D̃t,n+1(s, θ) D̃t,n+1(s, θ) = − 1
n

Dt,n+1(s, θ) (6.15)

where, according to Eq. (3.10), in the setting outlined in Ex. 2,

−Dt,n+1(s, θ) = −
n∑

i=1
ℓ∗

t,i(si) − λnf(·, θ)∗
(

− 1
λn

n∑
i=1

xt,isi

)

= −
n∑

i=1
ℓ∗

t,i(si) − λnf(·, θ)∗
(

− 1
λn

Xt
⊤s

)

= −
n∑

i=1
ℓ∗

t,i(si) − 1
2λn

s⊤XtθXt
⊤s.

(6.16)

Consequently, recalling that the output sθt,n+1 of the inner algorithm coincides with the last iterate
of the corresponding dual inner iteration, according to Prop. 6, we have

∇θt = − 1
2λn

Xt
⊤sθt,n+1s

⊤
θt,n+1Xt (6.17)

and, consequently,
∇′

θt
= ∇θt/n ∈ ∂ϵθt

/nLt(θt), (6.18)

where ϵθt is outlined in Prop. 6 and it must be specified to Ex. 2. In order to prove Eq. (6.10),
we start from observing that sθt,n+1 is the vector in Rn having as component i the subgradient
s′

θt,i ∈ ∂ℓt,i(⟨xt,i, wθt,i⟩). Hence, under Asm. 3, by Lemma 50 in App. A, any component of
sθt,n+1 is absolutely bounded by L, and, consequently, ∥sθt,n+1∥2 ≤ L

√
n. This allows us to get

the desired bound by applying Holder’s inequality (see Lemma 32 in App. A) to the matrices’

6.1 Deriving the Method 84

scalar product as follows

∥∥∥∇′
θt

∥∥∥
F

= 1
2λn

Tr
(1

n

n∑
i=1

xt,ix
⊤
t,isθt,n+1s

⊤
θt,n+1

)
≤ 1

2λn

∥∥∥∥ 1
n

n∑
i=1

xt,ix
⊤
t,i

∥∥∥∥
∞

∥sθt,n+1∥2
2

≤ L2

2λ

∥∥∥∥ 1
n

n∑
i=1

xt,ix
⊤
t,i

∥∥∥∥
∞

= L2∥Ct∥∞

2λ
,

where in the last equality we have introduced the definition of Ct in Eq. (5.1). Finally, regarding
the exact meta-subgradients, the first closed form in Eq. (6.11) directly derives from Prop. 12 and
the former discussion, while the second closed form is deduced by the first KKT condition in
Eq. (3.17) specified to Ex. 2 and to the task t:

ŵθt = − 1
λn

θtX
⊤
t ŝθt ∈ Ran(θt) ŝθ ∈ ∂

(n∑
i=1

ℓi

)(
⟨x1, ŵθ⟩, . . . , ⟨xn, ŵθ⟩

)
. (6.19)

Moreover, thanks to the second KKT condition above, under Asm. 3, by Lemma 43 and Lemma 50
in App. A, any component of ŝθt is absolutely bounded by L. Consequently, repeating the same
steps above, the bound in Eq. (6.10) holds also for the exact meta-subgradients in Eq. (6.11).

We observe that the meta-algorithm we have retrieved in Alg. 7 is a slightly different version
of that one proposed in (Denevi et al., 2018a), where we consider only an OWB statistical
Meta-Learning framework. We refer to the discussion in Sec. 4.2 for more details about that
work.

Also in this case, in Lemma 25, we provide the same upper bound for the norm of the exact
meta-subgradients and the approximated ones. As a consequence, the error we introduce with
such an approximation will not affect the final bound for our OWO method. Again, this theoretical
suggestion will be confirmed by our experiments.

We observe that for the setting in Ex. 2, our Meta-Learning method in Alg. 6 and Alg. 7 requires to
compute the eigenvalue decomposition of a rank one perturbation of the current matrix. Rank-one
updates can be performed using methods such as the ones described in (Stange, 2008), which
essentially scale quadratically with respect to the input dimension, instead of the standard cubic
rate. As done in (Bullins et al., 2019), a cheaper alternative here may be to use as meta-algorithm
Frank-Wolfe, which requires to compute only the maximum eigenvalue. However, the better
scaling property of this method comes at the price of a slower learning and convergence rate.

In the next section, we analyze the performance of our OWO Meta-Learning method applied to
Ex. 2, in the non-statistical setting.

6.2 Method and Analysis in the Non-Statistical Setting 85

6.2 Method and Analysis in the Non-Statistical Setting

In the next result we specify Thm. 7 to Ex. 2, that is we provide a (regularized) average meta-regret
bound for the procedure deriving from combining Alg. 6 with Alg. 7.

Corollary 26 (Across-Tasks Regret Bound, Feature Map). Let Asm. 3 hold and consider the

setting in Thm. 7 applied to Ex. 2. In particular, for any θ ∈ S, let Aθ be the corresponding

inner Alg. 6 and let (θt)T
t=1 be the sequence of the feature maps estimated by the meta-algorithm

in Alg. 7 over the data Z = (Zt)T
t=1. Recall also the minimum norm empirical risk minimizers

(ŵt)T
t=1 associated to the datasets (Zt)T

t=1. Then, introducing the empirical covariance matrix of

the vectors (ŵt)T
t=1

B̂ = 1
T

T∑
t=1

ŵtŵ
⊤
t , (6.20)

according to the notation in Eq. (5.2), the following (regularized) average meta-regret bound

holds for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ),

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ λTr(θ†B̂)
2 +

L2Tr(Ĉtot
θ1:T

)
2λn

+ η∥θ − θ0∥2
F

2T
+ L4∥Ctot∥∞,2

8λ2η
, (6.21)

where, according to the notation in Eq. (5.1), we have defined the matrix

Ĉtot
θ1:T

= 1
T

T∑
t=1

θtĈt. (6.22)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√√ 1
Tr(θ†B̂)

Tr(Ĉtot
θ1:T

)
n

+ ∥θ − θ0∥F

√
∥Ctot∥∞,2

T

 η =
L2

√
T ∥Ctot∥∞,2

2λ∥θ − θ0∥F

, (6.23)

we get

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ L

√√√√√ Tr(θ†B̂)
Tr(Ĉtot

θ1:T
)

n
+ ∥θ − θ0∥F

√
∥Ctot∥∞,2

T

. (6.24)

Proof. Specializing Thm. 7 to the quantities outlined in Ex. 2, exploiting the bound on the norm
of the approximated meta-subgradients given in Eq. (6.10) (exploiting Asm. 3) and using the

6.2 Method and Analysis in the Non-Statistical Setting 86

notation in Eq. (6.20) and Eq. (5.2), for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ), we get

1
T

T∑
t=1

Eθt,Zt(Aθt) ≤ λTr(θ†B̂)
2 + 1

2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥θt
1/2xt,is

′
θt,i

∥∥∥2

2

+ η∥θ − θ0∥2
F

2T
+ L4∥Ctot∥∞,2

8λ2η
.

(6.25)

The statement derives from the above inequality observing that, under Asm. 3 using the definition
of Ĉtot

θ1:T
in Eq. (6.22), we can write

1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥θt
1/2xt,is

′
t,i

∥∥∥2

2
≤ L2Tr

(1
T

T∑
t=1

θt

n∑
i=1

1
i
xt,ix

⊤
t,i

)
= L2Tr(Ĉtot

θ1:T
). (6.26)

Also in this case, in order to evaluate the quality of the bound above, we specify Thm. 8 to Ex. 2,
that is, we provide a (regularized) average across-tasks regret bound for the procedure deriving
from running the within-task Alg. 6 with a feature map fixed in hindsight for any task.

Corollary 27 (Across-Tasks Regret Bound for Alg. 6, Feature Map). Let Asm. 3 hold and

consider the setting in Thm. 8 applied to Ex. 2. In particular, for any θ ∈ S, let Aθ be the corre-

sponding inner Alg. 6. Then, according to the notation in Eq. (6.20) and Eq. (5.1), the following

(regularized) average across-tasks regret bound holds for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ)

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ λTr(θ†B̂)
2 + L2Tr(θĈtot)

2λn
. (6.27)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√√√√Tr(θĈtot)
nTr(θ†B̂)

, (6.28)

we get

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ L

√
Tr(θ†B̂) Tr(θĈtot)

n
. (6.29)

6.3 Method and Analysis in the Statistical Setting 87

Proof. Specializing Thm. 8 to the quantities outlined in Ex. 2, using the notation in Eq. (6.20),
for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ), we get

1
T

T∑
t=1

Eθ,Zt(Aθ) ≤ λTr(θ†B̂)
2 + 1

2λnT

T∑
t=1

n∑
i=1

1
i

∥∥∥θ1/2xt,is
′
t,i

∥∥∥2

2
.

The statement derives from the above inequality observing that, under Asm. 3 using the definition
of the matrix Ĉtot in Eq. (5.1), we can write

1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥θ1/2xt,is
′
t,i

∥∥∥2

2
≤ L2Tr

(
θ

1
T

T∑
t=1

n∑
i=1

1
i

xt,ix
⊤
t,i

)
= L2Tr(θĈtot). (6.30)

We postpone to Sec. 6.5 a discussion about the results we have reported above. In the next section,
we analyze the performance of our OWO Meta-Learning method applied to Ex. 2, in the statistical
setting.

6.3 Method and Analysis in the Statistical Setting

In the result below we specify Thm. 9 to Ex. 2, that is, we provide a (regularized) expected
meta-excess risk bound for the average w̄θ̄ of the estimators returned by the combination of Alg. 6
with Alg. 7.

Corollary 28 (OWO Meta-Excess Risk Bound, Feature Map). Let Asm. 3 hold and consider the

statistical setting in Thm. 9 applied to Ex. 2. In particular, let Aθ̄ be the inner Alg. 6 with feature

map θ̄, the average of the feature maps returned by the meta-algorithm in Alg. 7 using the data Z.

Recall also the minimum norm risk minimizer wµ associated to a task µ ∼ ρ. Then, introducing

the exact covariance matrix of the vectors wµ

Bρ = Eµ∼ρwµw⊤
µ , (6.31)

according to the notation in Eq. (5.2) and Eq. (5.3), the following (regularized) expected meta-

excess risk bound holds for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ)

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ λTr(θ†Bρ)
2 +

L2(log(n) + 1)Tr
(
EZ θ̄Cρ

)
λn

+ η∥θ − θ0∥2
F

2T
+ L4EZ ∥Ctot∥∞,2

8λ2η
.

(6.32)

6.3 Method and Analysis in the Statistical Setting 88

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√√ 1
Tr(θ†Bρ)

2(log(n) + 1)Tr
(
EZ θ̄Cρ

)
n

+ ∥θ − θ0∥F

√
EZ ∥Ctot∥∞,2

T

 (6.33)

η =
L2

√
T EZ ∥Ctot∥∞,2

2λ∥θ − θ0∥F

, (6.34)

we get

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ L

√√√√√ Tr(θ†Bρ)
2(log(n) + 1) Tr

(
EZ θ̄Cρ

)
n

+ ∥θ − θ0∥F

√
EZ ∥Ctot∥∞,2

T

.

Proof. Specializing Thm. 9 to the quantities outlined in Ex. 2, exploiting the bound on the norm
of the approximated meta-subgradients given in Eq. (6.10) (exploiting Asm. 3) and using the
notation in Eq. (6.31) and Eq. (5.2), for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get the
following

EZ Eµ∼ρ Eθ̄,µ(Aθ̄) ≤ λTr(θ†Bρ)
2 + 1

2λnT
EZ

T∑
t=1

n∑
i=1

1
i

∥∥∥θt
1/2xt,is

′
θt,i

∥∥∥2

2

+ η∥θ − θ0∥2
F

2T
+ L4EZ ∥Ctot∥∞,2

8λ2η

+ 1
2λn

EZ Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥θ̄1/2xis
′
θ̄,i

∥∥∥2

2
.

(6.35)

The desired statement derives from the above inequality and from observing that, thanks to
Asm. 3, the i.i.d. sampling of the data and the fact that θt depends only on the previous datasets
(Zj)t−1

j=1, using the inequality
∑n

i=1 1/i ≤ log(n) + 1 and the definition of Cρ in Eq. (5.3), we have

EZ
1
T

T∑
t=1

n∑
i=1

1
i

∥∥∥θt
1/2xt,is

′
θt,i

∥∥∥2

2
≤ L2EZ Tr

(1
T

T∑
t=1

θt

n∑
i=1

1
i

xt,ix
⊤
t,i

)
= L2(log(n) + 1)Tr

(
EZ θ̄Cρ

) (6.36)

EZ Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥θ̄xis
′
θ̄,i

∥∥∥2

2
≤ L2EZ Eµ∼ρ EZ∼µn Tr

(
θ̄

n∑
i=1

1
i

xix
⊤
i

)
= L2(log(n) + 1)Tr

(
EZ θ̄Cρ

)
.

(6.37)

6.3 Method and Analysis in the Statistical Setting 89

In order to evaluate the quality of the bound above, we specify Thm. 11 to Ex. 2, that is, we
provide an (regularized) expected across-tasks excess risk bound for w̄θ, the average of the
iterations returned by running the within-task Alg. 6 with an appropriate feature map θ fixed in
hindsight for any task.

Corollary 29 (Across-Tasks Excess Transfer Risk Bound for Alg. 6, Feature Map). Let Asm. 3

hold and consider the statistical setting in Thm. 11 applied to Ex. 2. In particular, for any θ ∈ S ,

let Aθ be the corresponding inner Alg. 6. Then, according to the notation in Eq. (6.31) and

Eq. (5.3), the following (regularized) expected across-tasks excess risk bound holds for any θ ∈ S
such that Ran(Bρ) ⊆ Ran(θ)

Eµ∼ρ Eθ,µ(Aθ) ≤ λTr(θ†Bρ)
2 + L2(log(n) + 1)Tr(θCρ)

2λn
. (6.38)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√√√√(log(n) + 1)Tr(θCρ)
nTr(θ†Bρ) , (6.39)

we get

Eµ∼ρ Eθ,µ(Aθ) ≤ L

√
(log(n) + 1)Tr(θ†Bρ)Tr(θCρ)

n
.

Proof. Specializing Thm. 11 to the quantities outlined in Ex. 2, using the notation in Eq. (6.31),
for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get the following

Eµ∼ρ Eθ,µ(Aθ) ≤ λTr(θ†Bρ)
2 + 1

2λn
Eµ∼ρ EZ∼µn

n∑
i=1

1
i

∥∥∥θ1/2xis
′
θ,i

∥∥∥2

2
.

The desired statement derives from the above inequality and from observing that, under Asm. 3,
exploiting the i.i.d. sampling of the data and the inequality

∑n
i=1 1/i ≤ log(n) + 1, introducing

the definition of the matrix Cρ in Eq. (5.3), we can write

Eµ∼ρ Ezn∼µn

n∑
i=1

1
i

∥∥∥θ1/2xis
′
θ,i

∥∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

(
θ

n∑
i=1

1
i

xix
⊤
i

)
≤ L2(log(n) + 1)Tr(θCρ).

(6.40)

6.4 The Statistical Online-Within-Batch Variant 90

Also in this case, the comments to the bounds above are postponed in the following Sec. 6.5. In
the section below, we specify to Ex. 2 the OWB variant of our Meta-Learning method and the
corresponding analysis.

6.4 The Statistical Online-Within-Batch Variant

In this section, we consider the within-task batch RERM algorithm in Eq. (2.24) applied to the
setting outlined in Ex. 2, i.e., for any θ ∈ S and any dataset Z, we consider

ŵθ = argmin
w∈Ran(θ)

RZ(w) + λ

2 ⟨w, θ†w⟩. (6.41)

In the following, we specify Thm. 14 to Ex. 2, that is, we provide an expected meta-excess
risk bound for ŵθ̄, the RERM in Eq. (6.41) with feature map θ̄, the average of the feature maps
returned by the meta-algorithm in Alg. 7 working with exact meta-subgradients computed by
Eq. (6.11).

Corollary 30 (OWB Meta-Excess Risk Bound, Feature Map). Let Asm. 3 hold and consider the

statistical setting in Thm. 14 applied to Ex. 2. In particular, let Aθ̄ be the inner RERM algorithm

in Eq. (6.41) with feature map θ̄, the average of the feature maps returned by the meta-algorithm

in Alg. 7 using the data Z and the exact meta-subgradients in Eq. (6.11). Then, according to the

notation in Eq. (6.31), Eq. (5.2) and Eq. (5.3), the following expected meta-excess risk bound

holds for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ)

EZ Eµ∼ρ Eµ(Aθ̄) ≤ λTr(θ†Bρ)
2 +

2L2Tr
(
EZ θ̄Cρ

)
λn

+ η∥θ − θ0∥2
F

2T
+ L4EZ ∥Ctot∥∞,2

8λ2η
. (6.42)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√√ 1
Tr(θ†Bρ)

4Tr
(
EZ θ̄Cρ

)
n

+ ∥θ − θ0∥F

√
EZ ∥Ctot∥∞,2

T

 η =
L2

√
T EZ ∥Ctot∥∞,2

2λ∥θ − θ0∥F

,

we get

EZ Eµ∼ρ Eµ(Aθ̄) ≤ L

√√√√√ Tr(θ†Bρ)
4Tr

(
EZ θ̄Cρ

)
n

+ ∥θ − θ0∥F

√
EZ ∥Ctot∥∞,2

T

. (6.43)

6.4 The Statistical Online-Within-Batch Variant 91

Proof. Specializing Thm. 14 to the quantities outlined in Ex. 2, exploiting the bound on the norm
of the exact meta-subgradients given in Eq. (6.10) (exploiting Asm. 3) and using the notation in
Eq. (6.31) and Eq. (5.2), for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get

EZ Eµ∼ρ Eµ(Aθ̄) ≤ λTr(θ†Bρ)
2 + 2

λn
EZ Eµ∼ρ EZ∼µn Ez′

i∼µ

∥∥∥θ̄1/2x′
is

′
θ̄,i

∥∥∥2

2

+ η∥θ − θ0∥2
F

2T
+ L4EZ ∥Ctot∥∞,2

8ηλ2 .

The statement derives from the above inequality, observing that, under Asm. 3, exploiting the
i.i.d. sampling of the data and introducing the definition of Cρ in Eq. (5.3), we can write

EZ Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥θ̄1/2x′
is

′
θ̄,i

∥∥∥2

2
≤ L2EZ Eµ∼ρ EZ∼µn Tr(θ̄x′

ix
′
i

⊤) = L2Tr
(
EZ θ̄Cρ

)

Also in this case, in order to evaluate the quality of the bound above, we specify Thm. 15 to Ex. 2,
that is, we provide an expected across-tasks excess risk bound for ŵθ, the within-task RERM
algorithm in Eq. (6.41) with feature map θ fixed in hindsight for any task.

Corollary 31 (Across-Tasks Excess Risk Bound for the RERM Algorithm in Eq. (6.41), Feature
Map). Let Asm. 3 hold and consider the statistical setting in Thm. 15 applied to Ex. 2. In

particular, for any θ ∈ S , let Aθ be the corresponding inner RERM algorithm in Eq. (6.41). Then,

according to the notation in Eq. (6.31) and Eq. (5.3), the following expected across-tasks excess

risk bound holds for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ)

Eµ∼ρ Eµ(Aθ) ≤ λTr(θ†Bρ)
2 + 2L2Tr(θCρ)

λn
. (6.44)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = 2L

√√√√ Tr(θCρ)
nTr(θ†Bρ) , (6.45)

we get

Eµ∼ρ Eµ(Aθ) ≤ 2L

√
Tr(θ†Bρ) Tr(θCρ)

n
. (6.46)

6.5 Discussion 92

Proof. Specializing Thm. 15 to the quantities outlined in Ex. 2, using the notation in Eq. (6.31),
for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get the following

Eµ∼ρ Eµ(Aθ) ≤ λTr(θ†Bρ)
2 + 2

λn
Eµ∼ρ EZ∼µn Ez′

i∼µ

∥∥∥θ1/2x′
is

′
θ,i

∥∥∥2

2
. (6.47)

The statement derives from the above inequality observing that, under Asm. 3, introducing the
definition of Cρ in Eq. (5.3), we can write

Eµ∼ρ EZ∼µn Ez′
i∼µ

∥∥∥θ1/2x′
is

′
θ,i

∥∥∥2

2
≤ L2Tr(θCρ). (6.48)

In the following section we present a detailed discussion about the bounds we have reported in
the above sections.

6.5 Discussion

We start from discussing the results in Cor. 27, Cor. 29 and Cor. 31, where the feature map used
by the inner algorithm is fixed in hindsight for any task.

Advantage of Selecting the Right Feature Map. We first comment the bounds in the statistical
setting in Cor. 29 and Cor. 31. In this case, proceeding in the same way as described for
Ex. 1, we should define the best algorithm in our class (oracle) the algorithm associated to the
feature map minimizing the bound in Cor. 29 or Cor. 31. However, in our case, to simplify the
analysis we consider as the oracle the algorithm associated to the feature map θρ minimizing
only a part of the above bound which is available is closed form. Specifically, appealing to the
infimal formulation of the MTL trace norm regularizer in Eq. (2.26) and to (Argyriou et al.,
2008a, Eq. (13)), we minimize only the term Tr(θ†Bρ) over the subset of the feature maps
{θ ∈ S : Ran(Bρ) ⊆ Ran(θ)} for which our bound holds:

min
θ∈S:Ran(Bρ)⊆Ran(θ)

Tr(θ†Bρ) = Tr(B1/2
ρ)2 = ∥Wρ∥2

Tr, (6.49)

where Wρ is a square root of Bρ. We consider as the optimal feature map the corresponding
minimizer

θρ = argmin
θ∈S:Ran(Bρ)⊆Ran(θ)

Tr(θ†Bρ) = Wρ

Tr(Wρ) . (6.50)

6.5 Discussion 93

Similarly to what observed in Sec. 5.5 for the setting in Ex. 1, we will consider this feature map as
benchmark in order to evaluate the performance of our Meta-Learning procedures. Furthermore,
also in this case, in order to avoid further notation, we over-write the symbol used in Sec. 2.2 for
the true optimal feature map, to denote this sub-optimal version. With such a choice of feature
map θρ, the bounds in Cor. 29 (up to logarithmic factors) and in Cor. 31 become proportional to

√
Tr(θρ

†Bρ) Tr(θρCρ)
n

≤ ∥Wρ∥Tr

√
∥Cρ∥∞

n
, (6.51)

where, in the inequality above, we have applied Holder’s inequality (see Lemma 32 in App. A) to
the matrices’ scalar product and we have exploited the fact Tr (θρ) = 1.

On the other hand, solving the tasks independently (ITL), in this case, corresponds to apply Alg. 6
with the feature map θITL = I/d for any task. Substituting this value, the bounds above become
proportional to

∥Wρ∥F

√
Tr(Cρ)

n
. (6.52)

Comparing the bounds in Eq. (6.51) and Eq. (6.52), we can conclude that there is an advantage in
using the optimal feature map w.r.t. solving each task independently, when the tasks are similar

in the sense that ∥Cρ∥∞ ≪ Tr (Cρ) (e.g. when the inputs are high-dimensional) and ∥Wρ∥Tr

is comparable to ∥Wρ∥F (i.e. when the matrix Wρ is low-rank), meaning that the tasks’ target
vectors are expected to lie in a low-dimensional subspace, i.e. the range of the optimal feature
map. This is inline with previous literature, such as (Denevi et al., 2018a; Maurer et al., 2013,
2016).

Regarding the non-statistical setting, in order to comment the average meta-regret bound in
Cor. 27, one can proceed as above introducing the corresponding sub-optimal algorithm in the
class associated to the corresponding sub-optimal feature map θ̂. The associated bound, in this
case, becomes proportional to

∥Ŵ∥Tr

√
∥Ĉtot∥∞

n
, (6.53)

where Ŵ is a square root of B̂. Comparing this last bound to the corresponding bound for ITL

∥Ŵ∥F

√
Tr (Ĉtot)

n
, (6.54)

we see that there is an advantage in using our Meta-Learning method w.r.t. solving each task
independently, when ∥Ĉtot∥∞ ≪ Tr(Ĉtot) and ∥Ŵ∥Tr is comparable to ∥Ŵ∥F (i.e. Ŵ is low-
rank). The first condition on the weighted input covariance matrix Ĉtot = 1

T

∑T
t=1

∑n
i=1

1
i

xt,ix
⊤
t,i

6.5 Discussion 94

is less clear to interpret than the more natural one ∥Ctot∥∞ ≪ Tr (Ctot) with the standard
empirical input covariance matrix Ctot = 1

T

∑T
t=1

1
n

∑n
i=1 xt,ix

⊤
t,i. However, in certain data

configurations these two input covariance matrices, may still be closed one to each other. We
think that this issue is avoidable by choosing the inner step size in different way and we will
address it in future work.

We now can make the following observations about the bounds we have obtained in Cor. 26,
Cor. 28 and Cor. 30 for our Meta-Learning procedures.

Bounds for the Feature Map Resulting from our Meta-Learning Methods. In order to ana-
lyze the effectiveness of our Meta-Learning methods, we investigate whether they mimic the
performance of the best algorithm in the class, when the number of training tasks is sufficiently
large w.r.t. the number of within-task points. In such a case, the term T −1/4 is negligible and,
applying Holder’s inequality and exploiting the fact that Tr(θ̄) ≤ 1 as described above, the bounds
in Cor. 28 (up to logarithmic factors) and Cor. 30 can be upper bounded by

√
Tr(θ†Bρ)Tr(Cρ)

n
, (6.55)

where θ ∈ S is the fixed feature map in the statement, defining the optimal choice of the hyper-
parameters for our method. In particular, choosing θ = θρ in Eq. (6.50), the quantity above in
Eq. (6.55) can be upper bounded by the bound in Eq. (6.51) for the best algorithm in the class.
As a consequence, when the tasks are similar as explained above, our methods can provide a
significant advantage w.r.t. ITL in the statistical setting. We conclude observing that the average
meta-regret bound in Cor. 26 for the non-statistical setting is less clear to interpret because of the
presence of the modified version of the covariance matrix Ĉtot

θ1:T
. Future work may be devoted to

investigate this point, which could be either an artifact of our analysis or due to some intrinsic
characteristics of the feature learning problem we are considering.

Finally, in order to investigate the impact of considering the OWO framework instead of the OWB
one, we compare Cor. 28 and Cor. 29 to Cor. 30 and Cor. 31. We recall that all these statements
hold for the statistical setting.

Comparison Between OWO and OWB. Comparing the OWO bound in Cor. 29 to the OWB
bound in Cor. 31, we can expect that running the batch RERM algorithm in Eq. (6.41) with a
fixed feature map θ in hindsight for any task will outperform the twin method with the online
Alg. 6 by a factor (log(n) + 1)Tr(θ†Bρ)Tr(θCρ). As a consequence, for a fixed value of n, the
gap between the performance of the two methods will depend on the feature map θ used by the
algorithm which can amplify or reduce the discrepancy. In particular, for the optimal feature

6.6 Experiments 95

map θ = θρ in Eq. (6.50), this quantity can be upper bounded (up to logarithmic factors) as in
Eq. (6.51). Hence, for such a choice, the corresponding gap between the two methods can be
insignificant when the associated quantities ∥Wρ∥Tr and ∥Cρ∥∞ are small. A similar observation
can be made also for the Meta-Learning methods analyzed in Cor. 28 and Cor. 30. In this case,
the gap above is proportional to (log(n) + 1)Tr(θ†Bρ)Tr(EZ θ̄Cρ), where θ is the fixed feature
map determining the hyper-parameters used in the methods and θ̄ is the average feature map
estimated the meta-algorithm. As already observed, for the optimal feature map θ = θρ, this
quantity can be upper bounded (up to logarithmic factors) as described above in Eq. (6.51) and
the same considerations hold.

Finally, note that the bounds we have obtained for the feature map setting in Ex. 2 converge, as
the number of tasks grows, to the corresponding bounds for the best algorithm at a rate O(T −1/4),
whereas, the corresponding bounds for the bias setting in Ex. 1 yield a faster rate O(T −1/2),
suggesting that the feature learning problem is more difficult than the bias one.

6.6 Experiments

In this section we test the performance of the Meta-Learning method described in this work on
synthetic and real data in the statistical setting of Ex. 21.

Also in this case, we validated the hyper-parameters λ and η by the procedure described in
App. C.1 and we compared the proposed OWO Meta-Learning approach with methods based on
the batch RERM algorithm in Eq. (6.41). More precisely, we evaluated the performance of the
following methods:

• META - OWO: our Online-Within-Online Meta-Learning method described in Chpt. 3,
where we use the inner online Alg. 6 both during meta-training and meta-validation / testing
phases;

• META - Hybrid: the hybrid Meta-Learning method in which we use exact meta-subgradients
(computed by the batch RERM in Eq. (6.41), as described in Prop. 12) during the meta-
training phase, but we apply the online inner Alg. 6 during the meta-validation / testing
phases;

• ITL - O: we use the online Alg. 6 with the ITL feature map θITL = I/d for any task;

1 The code is available at https://github.com/dstamos/Adversarial-LTL

https://github.com/dstamos/Adversarial-LTL

6.6 Experiments 96

• Oracle - O: we use the online Alg. 6 with the optimal feature map θρ in Eq. (6.50) for any
task (only in synthetic experiments in which this quantity is available).

We compared the above methods in the following synthetic and real experimental settings, where,
as described in App. C.2, also in this case, we computed an approximation of the RERM algorithm
in Eq. (6.41) by applying FISTA (see (Beck and Teboulle, 2009, Sec. 4)) on the associated within-
task dual problem. In all the experiments, we fixed the starting point for the meta-algorithm
Alg. 7 equal to the ITL feature map θ0 = θITL = I/d.

Synthetic data. We tested the performance of the above methods over regression tasks, measuring
the errors by the absolute loss. Specifically, we generate Ttot = 3600 tasks, where, for each task,
the corresponding dataset (xi, yi)ntot

i=1 of ntot = 80 points was generated according to the linear
regression equation y = ⟨x, wµ⟩ + ϵ, with x sampled uniformly on the unit sphere in Rd with
d = 20 and ϵ sampled from a zero-mean Gaussian distribution with standard deviation 0.2. The
tasks’ target vectors wµ were generated as wµ = Pw̃µ with the components of w̃µ ∈ Rd/5 sampled
from a zero-mean Gaussian distribution with standard deviation 1 and then w̃µ normalized to have
unit norm, with P ∈ Rd×d/5 a matrix with orthonormal columns. In this setting, the operator norm
of the input covariance Cρ in Eq. (5.3) is small (equal to 1/d) and the target vectors’ covariance
matrix Bρ in Cor. 28 is low-rank, a favorable setting for our method, according to our theory. In
order to validate the inner regularization parameter λ and the meta-step size η, we followed the
procedure described in App. C.1. Specifically, we considered 14 candidates values for both λ

and η in the range [10−5, 105] with logarithmic spacing and we evaluated the performance of the
estimated feature maps by using T = Ttr = 3000, Tva = 100, Tte = 500 of the above tasks for
meta-training, meta-validation and meta-testing, respectively. Moreover, in order to train and to
test the inner algorithm, we used n = ntr = 50% ntot and nte = 50% ntot points in each dataset.

In Fig. 6.1 (Top) we reported the test error for all the methods above. The results are inline with
those in Sec. 5.6 for the setting outlined in Ex. 1. More specifically, looking at the results, we
can state that, in this setting, our OWO Meta-Learning method (META - OWO) outperforms
Independent-Task Learning (ITL - O) and it tends to the best algorithm in the class (Oracle - O)
as the number of training tasks increases. Moreover, the performance of the methods META -
OWO and META - Hybrid are comparable, suggesting that, also in this case, our approximation
of the meta-subgradients is an effective way to keep the entire process fully online.

Real data. We evaluated our method on the Movielens 100k dataset containing the ratings
of different users to different movies2. We considered each user as a task and, removing all

2See https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

6.6 Experiments 97

movies that have been seen less than 20 times, we ended with a total number of Ttot = 939
users and ntot = 939 movies. We casted each task as a regression problem, where the labels
are the ratings of the users and the raw features are simply the index of the movie (i.e. we
reformulated the problem in a matrix completion setting, where d = n). Also in this case, we
used the absolute loss to measure the errors. To validate the hyper-parameters λ and η, following
the procedure described in App. C.1, we considered 14 candidates values for both λ and η in the
range [10−5, 105] with logarithmic spacing and we evaluated the performance of the estimated
feature maps by splitting the tasks into T = Ttr = 700, Tva = 100, Tte = 139 tasks used for
meta-training, meta-validation and meta-testing, respectively. Moreover, in order to train and
to test the inner algorithm, we splitted each within-task dataset into n = ntr = 75% ntot and
nte = 25% ntot points.

In the above experiment, we observed that the performance of the algorithm ITL - O was very
bad. In fact, looking at the closed form of Alg. 6 with θITL = I/d, it is possible to show that,
in the considered formulation of the problem, the algorithm ITL - O is not able to predict any
rate for the films without any observed rate. This explains the bad performance we got. For this
reason, in order to evaluate the performance of the Meta-Learning methods (META - OWO and
META - Hybrid), we decided to substitute this silly method with a more challenging strategy for
this particular formulation of the problem. Specifically, we introduced a batch Meta-Learning
method in which, for the films without any observed rate, we predicted, at the end of the entire
sequence of tasks, the rate coinciding with the average of the rates of all the observed users. We
denoted this method as META - B (Batch).

The results we got are reported in Fig. 6.1 (Bottom) and they are consistent with the synthetic
experiments above, showing the effectiveness of our feature map Meta-Learning method also in
real-life scenarios. In particular, we note that both the online Meta-Learning methods (META -
OWO and META - Hybrid) outperform the batch Meta-Learning method (META - B) described
above, as the number of training tasks increases.

6.6 Experiments 98

Figure 6.1 Synthetic Data (Top) and Movielens Dataset (Bottom). Test error of different methods as
the number of training tasks increases. Regression with absolute loss. The results are averaged over 10
independent generations / splits of the data.

Chapter 7

Conclusion and Future Directions

Starting from recalling the standard Single-Task Learning setting, we introduced and formalized
the Meta-Learning problem. In such a problem the broad goal is to select an algorithm in a
prescribed family (within-task algorithm) that is well suited to address a class of similar learning
problems (tasks). Practically, this goal can be addressed by designing a Meta-Learning procedure
(meta-algorithm) aiming at inferring the tasks’ similarity from a sequence of observed tasks. Such
information is then exploited in order to select an appropriate within-task algorithm in the family.

In this dissertation, we focused on the so-called Online-Within-Online (OWO) Meta-Learning
setting in which data are received and processed sequentially both within and across the tasks.
Specifically, inspired by a common formulation shared by many Multi-Task Learning problems,
we presented an OWO Meta-Learning method, stemming from primal-dual Online Learning. The
method can cover various types of tasks’ relatedness and it can be adapted to a wide class of
learning algorithms. By means of a new analysis technique, we derived a meta-regret bound for
our method, based on which, it is also possible to obtain guarantees in the statistical setting by
online-to-batch arguments. We also showed that, in specific settings, the proposed method can
provide comparable statistical guarantees as its more expensive variant in which the within-task
data are processed in one single batch. Finally, we illustrated our framework with two important
examples in which the method attempts to infer a bias vector or a feature map shared among
the tasks, recovering or improving upon state-of-the-art results. We think that the generality of
our framework and our method of proof could be a valuable starting point for future theoretical
investigations on Meta-Learning.

In the future, it would be valuable to investigate the tightness of our bounds with respect to
the number of within-task points and the number of tasks. In this case, it is not clear whether

100

summing over the tasks pre-existing lower bounds for a fixed single task algorithm – such as the
bounds presented in (Mcmahan and Streeter, 2012; McMahan and Orabona, 2014) – can return
an accurate benchmark or something more sophisticate, taking into account the interplay between
the inner and the meta-algorithm, is required.

Another open point is to extend the analysis we developed in this work also to non Lipschitz
loss functions, such as the square and the logistic loss. In such a case, the main difficulty arising
is how to control in the bounds the norm of the subgradients and the approximation error on
them. Inspired by (Shalev-Shwartz and Ben-David, 2014, Eq. 12.6), we tried to control these
quantities exploiting the self-boundedness and the non-negativity of the loss functions above, but
this approach did not reveal to be effective as the Lipschitz assumption, returning bounds with
quantities we did not manage to effectively control, such as

∑T
t=1 Lt(θt).

In addition to this, it would be interesting to explore even more flexible and effective Meta-
Learning strategies, which can be applied more naturally to real world scenarios. Regarding this
aspect, as already pointed out in Rem. 11, one important point to tackle is to investigate how the
choice of the hyper-parameters in our method could be addressed in practice in a more effective
and theoretically grounded way. A possible starting step for answering this question could be to
understand whether the so-called ‘parameter-free methods’ proposed in (Mcmahan and Streeter,
2012; McMahan and Orabona, 2014; Orabona, 2014; Orabona and Pál, 2016; Zhuang et al., 2019)
for the Single-Task Learning setting could be adapted to address and to cover a Meta-Learning
framework similar to the one presented here. However, since the methods above seem to be quite
different from the primal-dual Online Learning framework considered here, at the moment, the
solution of this problem does not seem straightforward.

Another interesting point is to study how our framework can be adapted to more realistic settings
in which data deriving from different tasks are received simultaneously and the inner algorithm is
updated more frequently (not necessarily at the end of each task as described in this work). In
this case, to provide the method with a memory able to efficiently keep track of the tasks already
encountered in the past seems to be a necessary step for the success of the project. Moreover, the
meta-objectives (Lt)T

t=1 used here seem to be not appropriate for this evolving setting, since they
are defined over a continuous stream of data coming from the same task.

Finally, another possible research direction may be to study the applicability of the proposed
framework to time series and meta-reinforcement learning. However, since the formulation of the
problem in these settings is different from the one considered in this work, at the moment, such
extension does not seem straightforward and it requires further investigation.

Appendix A

Convex Analysis

In this appendix we recall some basic concepts of convex analysis. We refer to (Bauschke and
Combettes, 2011; Bertsekas et al., 2003; Borwein and Lewis, 2010; Boyd and Vandenberghe,
2004; Jean-Baptiste, 2010; Peypouquet, 2015) for a complete and detailed overview.

Let V be an Euclidean space, i.e a finite dimensional real vector space endowed with an inner
product ⟨·, ·⟩. Moreover, for a generic norm ∥ · ∥ over V , we recall that its dual norm ∥ · ∥∗ at the
point α ∈ V is defined as

∥α∥∗ = sup
v∈V:∥v∥≤1

⟨α, v⟩. (A.1)

As direct consequence of the definition above, we have the following standard fact.

Lemma 32 (Generalized Holder’s Inequality). For any α, w ∈ V ,

⟨α, w⟩ ≤ ∥α∥∗ ∥w∥. (A.2)

Proof. We start from observing that ∥w∥ = 0 if, and only if, w = 0. If w = 0, the statement
above is obvious. Thus, we consider the case w ̸= 0. In such a case, by definition of the dual
norm, we can write the following

⟨α, w⟩ = ∥w∥
〈

α,
w

∥w∥

〉
≤ ∥w∥ ∥α∥∗. (A.3)

This coincides with the desired statement.

102

In the following, we consider extended real-valued functions. We start from giving the following
basic definitions, which are frequently used in this dissertation.

Definition 33 (ϵ-Minimizer). A point v̂ϵ ∈ V is an ϵ-minimizer (with ϵ ≥ 0) of a function

f : V → R ∪ {+∞} if, for any v ∈ V ,

f(v̂ϵ) ≤ f(v) + ϵ. (A.4)

The concept of exact minimizer is retrieved from the definition above by setting ϵ = 0. Moreover,
an ϵ-maximizer of a function f must be intended as an ϵ-minimizer of the opposite function −f .

Definition 34 (Domain of a Function, see e.g. (Peypouquet, 2015, Sec. 2.1)). For a given

function f : V → R ∪ {+∞}, define its domain as

Domf =
{

v ∈ V : f(v) < +∞
}

⊆ V . (A.5)

Definition 35 (Epigraph of a Function, see e.g. (Peypouquet, 2015, Sec. 2.1)). For a given

function f : V → R ∪ {+∞}, define its epigraph as

Epif =
{

(v, t) ∈ V × R : f(v) ≤ t
}

⊆ V × R. (A.6)

The above quantities are now exploited to introduce the following basic definitions.

Definition 36 (Proper Function, see e.g. (Peypouquet, 2015, Sec. 2.1)). A function f : V →
R ∪ {+∞} is proper if Domf ̸= ∅.

Definition 37 (Closed or Lower Semi-Continuous Function, see e.g. (Peypouquet, 2015, Sec.
2.2)). A function f : V → R ∪ {+∞} is closed or lower semi-continuous if Epif is a closed set

of V × R.

Definition 38 (Convex Function, see e.g. (Peypouquet, 2015, Sec. 2.3)). A function f : V →
R ∪ {+∞} is convex if, for any t ∈ [0, 1] and any v, v′ ∈ Domf ,

f(tv + (1 − t)v′) ≤ tf(v) + (1 − t)f(v′). (A.7)

The above inequality is known as Jensen’s inequality and it can be extended to combinations of
more points or expectations of random variables in the following way.

103

Lemma 39 (Convex Functions and Generalized Jensen’s Inequality, see e.g. (Boyd and Van-
denberghe, 2004, Sec. 3.1.8)). Let f : V → R ∪ {+∞} be a convex function and consider a

random variable X taking values in Domf with probability 1. Then, provided that the following

expectations exist,

f(E X) ≤ E f(X). (A.8)

In particular, in the discrete case, for any sequence of vectors (vj)m
j=1 ∈ Vm and weights

(aj)m
j=1 ∈ Rm such that aj ≥ 0 for any j ∈ {1, . . . , m} and

∑m
j=1 aj = 1, we have

f
(m∑

j=1
ajvj

)
≤

m∑
j=1

ajf(vj). (A.9)

One key property of convex functions is the following.

Lemma 40 (Convex Functions and Continuity, see e.g. (Peypouquet, 2015, Prop. 3.5)). Let

f : V → R ∪ {+∞} be a convex function. Then, f is continuous on the interior of its domain. In

particular, a (real-valued) convex function f : V → R is continuous on the entire space V .

We now have all the ingredients necessary to introduce the set of functions

Γ0(V) =
{

f : V → R ∪ {+∞} : f is proper, closed and convex
}

. (A.10)

We now recall the following definition, which is frequently used in the dissertation.

Definition 41 (ϵ-Subdifferential of a Function, see e.g. (Peypouquet, 2015, Sec. 3.4)). Let

ϵ ≥ 0. Then, the ϵ-subdifferential of f ∈ Γ0(V) at the point v ∈ Domf is the collection of the

ϵ-subgradients at that point, namely,

∂ϵf(v) =
{

α ∈ V : f(v′) ≥ f(v) + ⟨α, v′ − v⟩ − ϵ, for any v′ ∈ Domf
}

. (A.11)

The standard subdifferential ∂f is retrieved from the above definition by setting ϵ = 0. The
following result is a direct consequence of the definition above and it links the concept of the
ϵ-subdifferential of a function to the corresponding set of ϵ-minimizers.

Lemma 42 (Fermat Rule, see e.g. (Jean-Baptiste, 2010, Thm. 1.1.5)). v̂ϵ ∈ V is an ϵ-minimizer

of f ∈ Γ0(V) if, and only if, 0 ∈ ∂ϵf(v̂ϵ).

The behavior of the subdifferential of separable functions is described in the following.

104

Lemma 43 (Separable Functions and Subdifferential, see e.g. (Bauschke and Combettes, 2011,
Prop. 16.8)). Let V1, . . . , Vm be Euclidean spaces. For any v = (v1, . . . , vm) ∈ V1 × · · · × Vm,

let

f(v) =
m∑

j=1
fj(vj), (A.12)

with fj ∈ Γ0(Vj). Then, for any v = (v1, . . . , vm) ∈ Domf , the subdifferential of f at v coincides

with the following Cartesian product

∂f(v) = ∂f1(v1) × · · · × ∂fm(vm). (A.13)

Before proceeding, we recall the definition of the Fenchel conjugate of a function.

Definition 44 (Fenchel Conjugate of a Function, see e.g. (Peypouquet, 2015, Sec. 3.6)). Let

f ∈ Γ0(V). Then, its Fenchel conjugate f ∗ : V → R ∪ {+∞} is defined at α ∈ V as

f ∗(α) = sup
v∈V

⟨v, α⟩ − f(v). (A.14)

In our proofs, we exploit the following standard properties of the conjugate function.

Lemma 45 (Fenchel Conjugate and Rescaling, see e.g. (Boyd and Vandenberghe, 2004, Sec.
3.3.2)). Let f ∈ Γ0(V) and c > 0. Then, for any α ∈ V , (cf)∗(α) = cf ∗(α/c).

Lemma 46 (Separable Functions and Fenchel Conjugate, see e.g. (Boyd and Vandenberghe, 2004,
Sec. 3.3.2)). Let V1, . . . , Vm be Euclidean spaces. For any v = (v1, . . . , vm) ∈ V1 × · · · × Vm,

let

f(v) =
m∑

j=1
fj(vj), (A.15)

with fj ∈ Γ0(Vj). Then, for any α = (α1, . . . , αm) ∈ V1 × · · · × Vm, we have

f ∗(α) =
m∑

j=1
f ∗

j (αj). (A.16)

Lemma 47 (Fenchel Conjugate and Monotonicity, see e.g. (Peypouquet, 2015, Prop. 3.50)). Let

f1, f2 ∈ Γ0(V) such that f1 ≤ f2. Then, f ∗
1 ≥ f ∗

2 .

105

Lemma 48 (Young-Fenchel Inequality, see e.g. (Jean-Baptiste, 2010, Prop. 1.2.1)). Let f ∈
Γ0(V) and consider v ∈ Domf . Then, α ∈ ∂ϵf(v) if, and only if,

f ∗(α) − ⟨α, v⟩ ≤ −f(v) + ϵ. (A.17)

We now introduce a further definition which is used throughout this work.

Definition 49 (Lipschitz Function, see e.g. (Shalev-Shwartz and Ben-David, 2014, Def. 12.6)).
A function f : V → R ∪ {+∞} is L-Lipschitz (with L > 0) w.r.t. a norm ∥ · ∥ over V if, for any

v, v′ ∈ Domf , ∣∣∣f(v) − f(v′)
∣∣∣ ≤ L ∥v − v′∥. (A.18)

The above definition implies the following bound on the dual norm of the subgradients.

Lemma 50 (Lipschitz Functions and Bounded Subgradients, see e.g. (Shalev-Shwartz and
Ben-David, 2014, Lemma 14.7)). Let ∥ · ∥ be a norm over V and let ∥ · ∥∗ be its dual. A function

f : V → R∪ {+∞} with open domain is L-Lipschitz w.r.t. ∥ · ∥ if, and only if, for any v ∈ Domf

and for any α ∈ ∂f(v), ∥α∥∗ ≤ L.

Another definition we need is the following.

Definition 51 (Lipschitz Smooth Function). Let ∥ · ∥ be a norm over V and let ∥ · ∥∗ be its

dual. A (real-valued) function f : V → R is β-Lipschitz smooth (with β > 0) w.r.t. ∥ · ∥ if it is

differentiable and, for any v, v′ ∈ V , it holds that

∥∥∥∇f(v) − ∇f(v′)
∥∥∥

∗
≤ β ∥v − v′∥. (A.19)

The following result describes a well-known property of Lipschitz smooth functions.

Lemma 52 (Lipschitz Smooth Functions and Descent Lemma, see e.g. (Peypouquet, 2015,
Lemma 1.30)). Let f : V → R be a β-Lipschitz smooth function w.r.t. a norm ∥ · ∥ over V . Then,

for any v, v′ ∈ V ,

f(v′) ≤ f(v) + ⟨∇f(v), v′ − v⟩ + β

2 ∥v′ − v∥2. (A.20)

Before proceeding, we strengthen the notion of convexity as follows.

Definition 53 (Strongly Convex Function, see e.g. (Peypouquet, 2015, Sec 2.3)). A function

f : V → R ∪ {+∞} is σ-strongly convex (with σ > 0) w.r.t. a norm ∥ · ∥ over V if, for any

106

t ∈ [0, 1] and any v, v′ ∈ Domf ,

f(tv + (1 − t)v′) ≤ tf(v) + (1 − t)f(v′) − σ

2 t(1 − t) ∥v − v′∥2. (A.21)

The following two results describe two key properties of strongly convex functions.

Lemma 54 (Strongly Convex Functions and Minimizers, see e.g. (Peypouquet, 2015, Prop.
3.23)). Let f : V → R ∪ {+∞} be a proper, closed and σ-strongly convex function w.r.t. a norm

∥ · ∥ over V . Then, f admits a minimizer over V and such a minimizer is unique.

Lemma 55 (Strongly Convex Functions and Ascent Lemma, see e.g. (Peypouquet, 2015, Prop.
3.23)). Let f : V → R ∪ {+∞} be a σ-strongly convex function w.r.t. a norm ∥ · ∥ over V . Then,

for any v, v′ ∈ Domf and any α ∈ ∂f(v), we have

f(v′) ≥ f(v) + ⟨α, v′ − v⟩ + σ

2 ∥v′ − v∥2. (A.22)

The following standard fact links the optimality w.r.t. the function values with the optimality w.r.t.
the variables for a strongly convex function.

Lemma 56 (Strongly Convex Functions and Growth Condition). Let f : V → R ∪ {+∞} be

a proper, closed and σ-strongly convex function w.r.t. a norm ∥ · ∥ over V and denote by v̂ its

(exact) minimizer. Then, for any v ∈ V ,

σ

2 ∥v − v̂∥2 ≤ f(v) − f(v̂). (A.23)

Proof. We first note that, by Lemma 54, the minimizer of f in fact exists and it is unique. The
statement immediately follows from applying Lemma 55 with v = v̂, the minimizer of f , and
α = 0 ∈ ∂f(v̂), thanks to Lemma 42.

We now give two key results for our proofs. The first one describes the duality between strong
convexity and Lipschitz smoothness, the second one allows us to study the scaling effect on the
Fenchel conjugate function.

Lemma 57 (Duality Between Strong Convexity and Lipschitz Smoothness, see e.g. (Kakade
et al., 2009, Thm. 6), (Shalev-Shwartz and Kakade, 2009, Lemma 3)). Let ∥ · ∥ be a norm over

V and let ∥ · ∥∗ be its dual. Let f : V → R ∪ {+∞} be a proper, closed and σ-strongly convex

107

function w.r.t. ∥ · ∥. Then, f ∗ is (1/σ)-Lipschitz smooth w.r.t. ∥ · ∥∗. Moreover, for any α ∈ V ,

∇f ∗(α) = argmax
v∈V

⟨α, v⟩ − f(v) ∈ Domf. (A.24)

Lemma 58 (Fenchel Conjugate and Scaling Effect, see e.g. (Shalev-Shwartz and Kakade, 2009,
Lemma 4)). Let ∥ · ∥ be a norm over V and let ∥ · ∥∗ be its dual. Let f ∈ Γ0(V) be a strongly

convex function w.r.t. ∥ · ∥ and consider c1, c2 > 0. Then, for any α ∈ V , introducing the vector

vc2 = ∇f ∗(α/c2), we have

(c2f)∗(α) − (c1f)∗(α) = c2f
∗(α/c2) − c1f

∗(α/c1) ≤ (c1 − c2)f(vc2). (A.25)

We conclude by recalling the definition of proximity operator of a function and two well known
properties that will be used for the experimental implementation.

Definition 59 (Proximity Operator, see e.g. (Bauschke and Combettes, 2011, Def. 12.23)). For a

function f ∈ Γ0(V), its proximity operator with parameter γ > 0 at the point α ∈ V is defined as

proxγf (α) = argmin
v∈V

f(v) + γ

2 ∥v − α∥2
2. (A.26)

Lemma 60 (Separable Functions and Proximity Operator, see e.g. (Bauschke and Combettes,
2011, Prop. 23.30)). Let V1, . . . , Vm be Euclidean spaces. For any v = (v1, . . . , vm) ∈ V1 ×
· · · × Vm, let

f(v) =
m∑

j=1
fj(vj), (A.27)

with fj ∈ Γ0(Vj). Then, for any α = (α1, . . . , αm) ∈ V1 × · · · × Vm, proxγf (α) ∈ Rm and, for

any j ∈ {1, . . . , m}, (
proxγf (α)

)
j

= proxγfj
(αj). (A.28)

Lemma 61 (Moreau Identity, see e.g. (Bauschke and Combettes, 2011, Thm. 14.3)). Consider

f ∈ Γ0(V) and let f ∗ ∈ Γ0(V) its conjugate. Then, for any α ∈ V and any γ > 0, we have

proxγf∗(α) = α − γ proxf/γ(α/γ). (A.29)

In the following section we briefly recall the main results we need from Fenchel Duality.

A.1 Fenchel Duality 108

A.1 Fenchel Duality

For the content in this section, the reader can refer to (Peypouquet, 2015, Sec. 3.6.2). Given
two Euclidean spaces V and U , a linear operator A : V → U and two functions J ∈ Γ0(V) and
G ∈ Γ0(U), consider the primal problem

P̂ = inf
v∈V

P (v) P (v) = G(Av) + J(v). (A.30)

The associated dual problem reads as follows

D̂ = inf
α∈U

D(α) D(α) = G∗(α) + J∗(−A∗α), (A.31)

where A∗ : U → V is the adjoint operator of A and G∗ and J∗ are the Fenchel conjugates of G

and J , respectively. We recall also that the duality gap associated to two generic points v ∈ V
and α ∈ U is defined as

P (v) + D(α). (A.32)

It is well know that, for any v ∈ V and α ∈ U , the above quantity is always non-negative, i.e.

− D(α) ≤ P (v). (A.33)

As a consequence, we have

sup
α∈U

{−D(α)} = − inf
α∈U

D(α) = −D̂ ≤ inf
v∈V

P (v) = P̂ . (A.34)

The following proposition studies when the above inequality is in fact an equality.

Proposition 62 (Strong Duality, see e.g. (Peypouquet, 2015, Thm. 3.51)). Consider the primal

and the dual problems in Eq. (A.30) and Eq. (A.31). Assume that there exist a point v ∈ DomJ

such that G is continuous at Av and assume that the primal problem in Eq. (A.30) admits a

solution

v̂ ∈ argmin
v∈V

P (v). (A.35)

Then, the dual problem in Eq. (A.31) admits a solution

α̂ ∈ argmin
α∈U

D(α). (A.36)

Moreover, the following statements hold.

A.1 Fenchel Duality 109

1. Strong duality holds, namely,

− min
α∈U

D(α) = −D(α̂) = −D̂ = min
v∈V

P (v) = P̂ (v̂) = P̂ . (A.37)

2. The optimality conditions, also known as the Karush–Kuhn–Tucker (KKT) conditions, read

as follows

v̂ ∈ ∂J∗(−A∗α̂) α̂ ∈ ∂G(Av̂). (A.38)

Appendix B

Primal-Dual Online Learning

In this appendix we recall the primal-dual Online Learning framework. Specifically, in App. B.1
we report some background material which is then used in the following App. B.2 for the proof of
Thm. 2 in Sec. 3.2 in the main body. The material in this appendix is based on (Shalev-Shwartz
and Kakade, 2009; Shalev-Shwartz and Singer, 2007a,b; Shalev-Shwartz et al., 2012).

Many online algorithms on a (primal) problem can be derived from the following primal-dual
framework. At each iteration m ∈ {1, . . . , M}, a) we define a pair of instantaneous primal-dual
problems, b) we update the dual variable according to an appropriate greedy coordinate descent
procedure on the dual, c) we update the new primal variable by evaluating the KKT conditions at
the current dual variable. We now describe the above steps in detail. Throughout this appendix,
we will let V be an Euclidean space endowed with a scalar product ⟨·, ·⟩ and a generic norm ∥ · ∥
with dual ∥ · ∥∗.

a) The Primal and the Dual Problems. Regarding the first step, for any iteration m ∈
{1, . . . , M}, consider the primal problem of the following form as in Eq. (3.2)

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) =
m∑

j=1
gj(Ajv) + cmr(v), (B.1)

where cm > 0, r ∈ Γ0(V) is a σr-strongly convex function (with σr > 0) w.r.t. a norm ∥ · ∥ such
that infv∈V r(v) = 0, for any j ∈ {1, . . . , M}, letting Vj an Euclidean space, gj ∈ Γ0(Vj) and
Aj : V → Vj is a linear operator with adjoint A∗

j . Even though it is not necessary, to simplify the
presentation, we set P1 ≡ 0. Introducing the following linear operator

Am : V → V1 × · · · × Vm v ∈ V 7→ (A1v, . . . , Amv) ∈ V1 × · · · × Vm (B.2)

111

and the function Gm ∈ Γ0(V1 × . . . Vm) defined, for any α = (α1, . . . , αm) ∈ V1 × · · · × Vm, as

Gm(α) =
m∑

j=1
gj(αj), (B.3)

we can rewrite the problem in Eq. (B.1) as

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) = Gm(Amv) + cmr(v). (B.4)

Hence, according to what observed in App. A.1, exploiting the separability of Gm (see Lemma 46
in App. A), using the scaling properties of the conjugate (see Lemma 45 in App. A) and observing
that the adjoint operator of Am is give by

A∗
m : V1 × · · · × Vm → V α = (α1, . . . , αm) ∈ V1 × · · · × Vm 7→

m∑
j=1

A∗
jαj ∈ V , (B.5)

the dual of the problem in Eq. (B.1) is given by

D̂m+1 = inf
α∈V1×···×Vm

Dm+1(α) Dm+1(α) =
m∑

j=1
g∗

j (αj)︸ ︷︷ ︸
G∗

m(α)

+ cmr∗
(

− 1
cm

m∑
j=1

A∗
jαj

)
︸ ︷︷ ︸

(cmr)∗(−A∗
mα)

, (B.6)

where g∗
j and r∗ represent the conjugate function of gj and r, respectively. To simplify, we set

also in this case D1 ≡ 0. We observe that, when the above problems satisfy the assumptions in
Prop. 62 in App. A, since the strong convexity of r is equivalent to the Lipschitz-smoothness of
r∗ (see Lemma 57 in App. A), denoting by v̂m+1 and α̂m+1 a solution of the primal and the dual
problem above, respectively, the corresponding KKT conditions read as follows

v̂m+1 = ∇r∗
(

− 1
cm

A∗
mα̂m+1

)
α̂m+1 ∈ ∂Gm(Amv̂m+1), (B.7)

where, more explicitly, we recall that

A∗
mα̂m+1 =

m∑
j=1

A∗
j α̂m+1,j. (B.8)

We observe that, under the assumptions above, the primal objective Pm+1 results to be proper,
closed and strongly convex w.r.t. the norm ∥ · ∥. As a consequence, by Lemma 54 in App. A, we
can in fact ensure the existence and the uniqueness of the primal solution v̂m+1.

We now are ready to describe the dual and the primal updating steps.

112

Algorithm 8 Primal-Dual Online Algorithm (more general version of Alg. 1 in Sec. 3.2)

Input (gm)M
m=1, (Am)M

m=1, (cm)M
m=1, (ϵm)M

m=1, r as described in the text

Initialization α1 = (), v1 = ∇r∗(0) ∈ Dom r

For m = 1 to M

Receive gm, Am, cm+1, ϵm

Suffer gm(Amvm) and compute α′
m ∈ ∂ϵmgm(Amvm)

Update αm+1 according to Eq. (B.9) by using α′
m

Define vm+1 = ∇r∗
(

− 1
cm+1

A∗
mαm+1

)
= ∇r∗

(
− 1

cm+1

m∑
j=1

A∗
jαm+1,j

)
∈ Dom r

Return (αm)M+1
m=1 , (vm)M+1

m=1

b) c) The Updating Rules. The algorithm updates the dual variable αm+1 in a such way that, for
a given parameter ϵm ≥ 0, there exist α′

m ∈ ∂ϵmgm(Amvm) such that

Dm+1(αm+1) ≤ Dm+1(αm,1 , . . . , αm,m−1︸ ︷︷ ︸ , α′
m) = Dm+1(αm︸︷︷︸ , α′

m). (B.9)

The primal variable is then updated by the KKT conditions from the dual one. More precisely,
following (Shalev-Shwartz and Singer, 2007b), in this last step we use a slightly different version
of the KKT conditions in which we divide by cm+1 instead of cm as in Eq. (B.7). For more details
we refer to Alg. 8, which is a more general version of Alg. 1 given in the main body in Sec. 3.2.
We also observe that, by definition, thanks to Lemma 57 in App. A, the primal variables (vm)M

m=1

generated by the algorithm are guaranteed to belong to Dom r.

Note that the requirement above about the dual update in Eq. (B.9) is satisfied (with the equality)
by the update described in the main body αm+1 = (αm, α′

m). As already underlined, the resulting
primal algorithm coincides in this case with Follow The Regularized Leader applied to the
linearized loss functions v 7→ ⟨v, A∗

mα′
m⟩. However, we stress that Eq. (B.9) is satisfied also by

other more aggressive dual steps, including for example the one generating the primal Follow
The Regularized Leader updating scheme applied to the original loss functions. We refer to
(Shalev-Shwartz and Kakade, 2009; Shalev-Shwartz and Singer, 2007a,b; Shalev-Shwartz et al.,
2012) for more details about this.

We finally conclude by observing that the framework above is a slightly different version of
the standard primal-dual Online Learning setting described in the papers mentioned above.
The differences in our presentation are the introduction of the linear operators (Am)M

m=1 inside
the functions (gm)M

m=1 and the possibility to deal with an approximation of the subdifferential

B.1 Main Inequality on the Dual Gap 113

∂gm(Amvm). These two modifications will allow us to adapt the theory above to the Meta-
Learning setting described in the main body.

B.1 Main Inequality on the Dual Gap

In the next proposition we study the behavior of the gap between two consecutive iterations on
the dual objective for Alg. 8 (or Alg. 1). This statement will be the main tool used in App. B.2 in
order to prove Thm. 2 in Sec. 3.2.

Proposition 63 (Dual Gap, see (Shalev-Shwartz, 2007, Lemma 1)). Let (αm)M+1
m=1 and (vm)M+1

m=1

be the iterates returned by Alg. 8 (or Alg. 1). Then,

∆1 = D2(α2) − D1(α1) ≤ −g1(A1v1) + 1
2σrc1

∥∥∥A∗
1α

′
1

∥∥∥2

∗
+ ϵ1. (B.10)

Furthermore, for any m ∈ {2, . . . , M}, we have

∆m = Dm+1(αm+1) − Dm(αm)

≤ − gm(Amvm) + 1
2σrcm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+ ϵm

+ cmr∗
(

− 1
cm

A∗
m−1αm

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
.

(B.11)

Proof. We first prove Eq. (B.10). Thanks to the updating rule in Eq. (B.9), the closed form of
the dual objective in Eq. (B.6) and the definition D1 ≡ 0, we can write

∆1 = D2(α2) − D1(α1) = D2(α2) ≤ D2(α′
1) = g∗

1(α′
1) + c1r

∗
(

− 1
c1

A∗
1α

′
1

)
, (B.12)

where α′
1 ∈ ∂ϵ1g1(A1v1) is the approximated subgradient used by Alg. 8 (or Alg. 1). But, thanks

to Lemma 57 in App. A, the σr-strong convexity of r w.r.t. ∥ · ∥ is equivalent to the (1/σr)-
Lipschitz smoothness of r∗ w.r.t. ∥ · ∥∗, hence, applying Lemma 52 in App. A, exploiting the
assumption r∗(0) = infv∈V r(v) = 0 and the definition of v1 in Alg. 8 (or Alg. 1), we have

r∗
(

− 1
c1

A∗
1α

′
1

)
≤ r∗(0) − 1

c1

〈
∇r∗(0), A∗

1α
′
1

〉
+ 1

2σrc2
1

∥∥∥A∗
1α

′
1

∥∥∥2

∗

= − 1
c1

⟨v1, A∗
1α

∗
1⟩ + 1

2σrc2
1

∥∥∥A∗
1α

′
1

∥∥∥2

∗
.

(B.13)

B.1 Main Inequality on the Dual Gap 114

Substituting in Eq. (B.12), we get the statement

∆1 ≤ g∗
1(α′

1) + c1r
∗
(

− 1
c1

A∗
1α

′
1

)
≤ g∗

1(α′
1) − ⟨v1, A∗

1α
∗
1⟩ + 1

2σrc1

∥∥∥A∗
1α

′
1

∥∥∥2

∗

≤ −g1(A1v1) + ϵ1 + 1
2σrc1

∥∥∥A∗
1α

′
1

∥∥∥2

∗
,

(B.14)

where, in the last inequality, we have exploited the fact that α′
1 ∈ ∂ϵ1g1(A1v1) and Lemma 48 in

App. A. We now prove the statement for m ∈ {2, . . . M}. By Eq. (B.9), the closed form of the
dual objective in Eq. (B.6) and the rewriting

A∗
mαm+1 = A∗

m−1αm + A∗
mα′

m, (B.15)

with α′
m ∈ ∂ϵmgm(Amvm) the approximated subgradient used by Alg. 8 (or Alg. 1), we have

∆m = Dm+1(αm+1) − Dm(αm) ≤ Dm+1(αm , α′
m) − Dm(αm)

= g∗
m(α′

m) + cmr∗
(

− 1
cm

A∗
m−1αm− 1

cm

A∗
mα′

m

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
.

(B.16)

Again, thanks to Lemma 57 in App. A, the σr-strong convexity of r w.r.t. ∥ · ∥ is equivalent to
the (1/σr)-Lipschitz smoothness of r∗ w.r.t. ∥ · ∥∗, hence, applying Lemma 52 in App. A and
exploiting the definition of vm in Alg. 8 (or Alg. 1), we have

r∗
(

− 1
cm

A∗
m−1αm − 1

cm

A∗
mα′

m

)
≤ r∗

(
− 1

cm

A∗
m−1αm

)
− 1

cm

〈
∇r∗

(
− 1

cm

A∗
m−1αm

)
, A∗

mα′
m

〉
+ 1

2σrc2
m

∥∥∥A∗
mα′

m

∥∥∥2

∗

= r∗
(

− 1
cm

A∗
m−1αm

)
− 1

cm

⟨vm, A∗
mα′

m⟩ + 1
2σrc2

m

∥∥∥A∗
mα′

m

∥∥∥2

∗
.

Substituting into Eq. (B.16), we can write the following

∆m ≤ g∗
m(α′

m) + cmr∗
(

− 1
cm

A∗
m−1αm − 1

cm

A∗
mα′

m

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
≤ g∗

m(α′
m) − ⟨vm, A∗

mα′
m⟩ + 1

2σrcm

∥∥∥A∗
mα′

m

∥∥∥2

∗

+ cmr∗
(

− 1
cm

A∗
m−1αm

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
≤ −gm(Amvm) + ϵm + 1

2σrcm

∥∥∥A∗
mα′

m

∥∥∥2

∗

+ cmr∗
(

− 1
cm

A∗
m−1αm

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
,

B.2 Proof of Thm. 2 115

where, in the last inequality, we have exploited the fact that α′
m ∈ ∂ϵmgm(Amvm) and Lemma 48

in App. A. The last inequality above coincides with the desired statement.

B.2 Proof of Thm. 2

In this section, starting from the result described above in Prop. 63, we present the proof of
Thm. 2 reported in the main body. More precisely, we provide the proof of a more general
statement with a generic strong convexity parameter σr > 0 for the function r. For convenience
of the reader, we restate Thm. 2 here. Finally, as the reader can immediately observe from the
proof, the statement below holds for the more general Alg. 8, not only for Alg. 1.

Theorem 2 (Dual Optimality Gap for Alg. 1). Let (vm)M
m=1 be the primal iterates returned by

the primal-dual online Alg. 1 when applied to the generic problem in Eq. (3.2) and let

∆Dual = DM+1(αM+1) − D̂M+1 (3.4)

be the corresponding (non-negative) dual optimality gap at the last dual iterate αM+1.

1. If, for any m ∈ {1, . . . , M}, cm+1 ≥ cm, then,

∆Dual ≤ −
M∑

m=1
gm(Amvm) + P̂M+1 + 1

2

M∑
m=1

1
cm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm.

2. If, for any m ∈ {1, . . . , M}, cm = ∑m
j=1 λj for some λj > 0, then,

∆Dual ≤ −
M∑

m=1

{
gm(Amvm) + λmr(vm)

}
+ P̂M+1 + 1

2

M∑
m=1

1
cm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm.

B.2.1 Proof of Thm. 2 Point 1.

In this subsection we prove the first point of Thm. 2, namely, the bound linking the optimality
reached by the last dual iteration of Alg. 8 (or Alg. 1) to the cumulative error of the corresponding
primal iterates.

B.2 Proof of Thm. 2 116

Proof of Thm. 2 Point 1. We first show that, for any m ∈ {1, . . . , M},

∆m ≤ −gm(Amvm) + 1
2σrcm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+ ϵm. (B.17)

As described in Prop. 63, the statement above in Eq. (B.17) holds for the case m = 1. For
m ∈ {2, . . . , M}, we observe the following. Thanks to the choice of the increasing parameters
cm+1 ≥ cm and the non-negativity of r, according to Lemma 47 in App. A, we have

cmr∗
(

− 1
cm

A∗
m−1αm

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
= (cmr)∗(−A∗

m−1αm) − (cm−1r)∗(−A∗
m−1αm) ≤ 0.

(B.18)

Substituting this last inequality in Prop. 63, we get the statement in Eq. (B.17) for m ∈
{2, . . . , M}. Now, we observe that, thanks to the definition D1 ≡ 0, we can write

DM+1(αM+1) =
M∑

m=1
∆m + D1(α1) =

M∑
m=1

∆m. (B.19)

Thus, summing Eq. (B.17) over m ∈ {1, . . . , M}, we obtain that

DM+1(αM+1) ≤ −
M∑

m=1
gm(Amvm) + 1

2σr

M∑
m=1

1
cm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm. (B.20)

The desired statement now follows by summing to this last inequality the following relation

− D̂M+1 ≤ P̂M+1, (B.21)

coinciding with the non-negativity of the duality gap in Eq. (A.34).

B.2.2 Proof of Thm. 2 Point 2.

In this subsection we prove the second point of Thm. 2, namely, the bound linking the optimality
reached by the last dual iteration of Alg. 8 (or Alg. 1) to the regularized cumulative error of the
corresponding primal iterates.

Proof of Thm. 2 Point 2. We first show that, for any m ∈ {1, . . . , M},

∆m ≤ −
(
gm(Amvm) + λmr(vm)

)
+ 1

2σrcm

∥∥∥A∗
mα′

m

∥∥∥2

∗
+ ϵm. (B.22)

B.2 Proof of Thm. 2 117

Thanks to the definition v1 = ∇r∗(0) in Alg. 8 (or Alg. 1), Lemma 57 in App. A and the
assumption infv∈V r(v) = 0, we can write r(v1) = r(∇r∗(0)) = infv∈V r(v) = 0. As a
consequence, by Prop. 63, the above statement in Eq. (B.22) holds for the case m = 1. For any
m ∈ {2, . . . , M}, introducing the notation λ1:m = ∑m

j=1 λj , we can write

cmr∗
(

− 1
cm

A∗
m−1αm

)
− cm−1r

∗
(

− 1
cm−1

A∗
m−1αm

)
≤ (cm−1 − cm) r

(
∇r∗

(
− 1

cm

A∗
m−1αm

))
= (λ1:m−1 − λ1:m) r

(
∇r∗

(
− 1

λ1:m
A∗

m−1αm

))
= (λ1:m−1 − λ1:m) r(vm) = −λmr(vm),

(B.23)

where, in the inequality we have applied Lemma 58 in App. A to c1 cm−1, c2 cm,
f r, α −A∗

m−1αm, in the first equality we have introduced the definition of the parameter
cm = λ1:m and in the second equality we have exploited the definition of vm in Alg. 8 (or
Alg. 1). Substituting this last inequality in Prop. 63, we get the statement in Eq. (B.22) for
m ∈ {2, . . . , M}. Now, we observe again that, thanks to the definition D1 ≡ 0, we have

DM+1(αM+1) =
M∑

m=1
∆m + D1(α1) =

M∑
m=1

∆m. (B.24)

Thus, summing Eq. (B.22) over m ∈ {1, . . . , M}, we obtain

DM+1(αM+1) ≤ −
(M∑

m=1
gm(Amvm) + λmr(vm)

)
+ 1

2σr

M∑
m=1

1
λ1:m

∥∥∥A∗
mα′

m

∥∥∥2

∗
+

M∑
m=1

ϵm.

Also in this case, the desired statement follows by summing to this last inequality the following
relation

− D̂M+1 ≤ P̂M+1, (B.25)

coinciding the non-negativity of the duality gap in Eq. (A.34).

Appendix C

Experimental Details

In this chapter we provide some experimental details we skipped in the main body. We start from
describing in App. C.1 how we tuned the hyper-parameters in our Lifelong Learning method in
the statistical setting, after that, in App. C.2, we describe how we computed an approximation of
the batch RERM inner algorithm in Eq. (2.24) and, finally, in App. C.3 we give some closed form
expressions that we used for the implementation.

C.1 Hyper-Parameters Tuning in Lifelong Learning

Denote by θ̄T,λ,η the average of the meta-parameters computed with T iterations (hence T datasets
and tasks) of our meta-algorithm with hyper-parameters λ and η. In all the experiments, we
obtained this meta-parameter by learning it on a collection Ztr of Ttr training datasets (tasks),
each comprising a dataset Ztr of n = ntr input-output pairs z = (x, y) ∈ Z = X × Y . We
performed this meta-training for different values of λ ∈ {λ1, . . . , λp} and η ∈ {η1, . . . , ηr} and
we selected the best meta-parameter based on the prediction error measured on a separate set Zva

of Tva validation datasets (tasks). Once such optimal λ and η values were selected, we reported
the error of the corresponding estimator on a set Zte of Tte test datasets (tasks).

Note that the tasks in the test and validation sets Zte and Zva were all provided with a training
inner dataset Ztr of ntr points and a test inner dataset Zte of nte points, both sampled from the
same distribution. Indeed, in order to evaluate the performance of a meta-parameter θ, we needed
first to train the corresponding algorithm Aθ on the training dataset Ztr, and then, to test the

C.2 Approximating RERM by FISTA 119

performance of the resulting vector Aθ(Ztr), by computing the empirical risk RZte(Aθ(Ztr)) on
the test set Zte.

In addition to this, since we considered the online setting, the training datasets arrived one at
the time, therefore model selection was performed online: the system kept track of all candidate
values θ̄Ttr,λj ,ηk

, j ∈ {1, . . . , p}, k ∈ {1, . . . , r}, and, whenever a new training task was presented,
these meta-parameters were all updated by incorporating the corresponding new observations.
The best meta-parameter θ was then returned at each iteration, based on its performance on
the validation set Zva, as explained before. The previous procedure describes how to tune
simultaneously both λ and η. When the meta-parameter θ we used was fixed a priori (e.g. in
ITL), we just needed to tune the hyper-parameter λ; in such a case the procedure was analogous
to that one described above.

C.2 Approximating RERM by FISTA

In this section we describe how we applied FISTA (see (Beck and Teboulle, 2009, Sec. 4)) on
the dual within-task problem in Eq. (3.10) in order to compute an approximation of the RERM
algorithm in Eq. (2.24). We start from the setting outlined in Ex. 1 and then we focus on Ex. 2.

In the sequel, in order to simplify the presentation, we will exploit the following assumption
which is, in fact, satisfied in all the experimental settings we considered in the main body.

Assumption 4 (Bounded Inputs). Let X ⊆ B(0, R), where B(0, R) =
{
x ∈ Rd : ∥x∥2 ≤ R

}
,

with R > 0 .

C.2.1 Example 1. Variance

We start from recalling the (primal) RERM within-task problem in Eq. (3.9) for Ex. 1

ŵθ = argmin
w∈Rd

Pn+1(w, θ) Pn+1(w, θ) =
n∑

i=1
ℓi(⟨xi, w⟩) + λn

2 ∥w − θ∥2
2 (C.1)

and we rewrite its dual in Eq. (3.10) as follows

ŝθ ∈ argmin
s∈Rn

Dn+1(s, θ) Dn+1(s, θ) = G(s) + Jθ(s), (C.2)

C.2 Approximating RERM by FISTA 120

where, denoting by X ∈ Rn×d the matrix containing as rows the input vectors (xi)n
i=1, we have

introduced the following functions

G(s) =
n∑

i=1
ℓ∗

i (si) Jθ(s) = 1
2λn

∥∥∥X⊤s
∥∥∥2

2
−

〈
X⊤s, θ

〉
. (C.3)

We applied FISTA to this dual problem, treating Jθ as the smooth part and G as the non-smooth
proximable part. More precisely, we observe that, thanks to Asm. 4, for any θ ∈ Rd, Jθ is
(R2/λ)-Lipschitz smooth w.r.t. the ℓ2 norm. As a matter of fact, for any s ∈ Rn, we have

∇Jθ(s) = 1
λn

XX⊤s − Xθ (C.4)

and, consequently, for any s1, s2 ∈ Rn, we can write

∥∥∥∇Jθ(s1) − ∇Jθ(s2)
∥∥∥

2
= 1

λn

∥∥∥XX⊤(s1 − s2)
∥∥∥

2
≤ 1

λn
∥XX⊤∥∞∥s1 − s2∥2

≤ R2

λ
∥s1 − s2∥2,

(C.5)

where, the first inequality derives from the definition of operator norm and the second inequality
is a consequence of Asm. 4, implying ∥XX⊤∥∞ ≤ nR2. The term G plays the role of the
non-smooth part and, thanks to Lemma 60 in App. A, for any step size γ > 0, any i ∈ {1, . . . , n}
and any s ∈ Rn, (

proxγG(s)
)

i
= proxγℓ∗

i
(si), (C.6)

where, by Lemma 61 in App. A, for any a ∈ R,

proxγℓ∗
i
(a) = a − γ proxℓi/γ(a/γ). (C.7)

The primal variable was defined from the dual one by evaluating the KKT conditions in Eq. (5.22)
at the current dual iteration. The algorithm is reported in Alg. 9. In the following result we study
the objective accuracy reached by the last dual iteration of Alg. 9.

Lemma 64 (Approximate Dual Solution by FISTA, Bias). Let Asm. 1, Asm. 3 and Asm. 4 hold.

For θ ∈ Rd, consider the output sθ,K of Alg. 9, coinciding with FISTA applied to the objective

Dn+1(·, θ) of the within-task dual problem of Ex. 1 in Eq. (C.2). Then, sθ,K is an ϵ̂θ-minimizer of

Dn+1(·, θ), where

ϵ̂θ = 2L2R2n

λ(K + 1)2 . (C.8)

C.2 Approximating RERM by FISTA 121

Algorithm 9 Approximation of RERM for Ex. 1

Input λ > 0, θ ∈ Rd, Z = (zi)n
i=1, R > 0 as described in the text

Initialization sθ,0 = pθ,1 = 0 ∈ Rn, t1 = 1
For k = 1 to K

Update sθ,k = proxγG

(
pθ,k − γ∇Jθ(pθ,k)

)
, where γ = λ/R2

Define wθ,k = − 1
λn

X⊤sθ,k + θ

Update tk+1 =
1 +

√
1 + 4t2

k

2
Update pθ,k+1 = sθ,k + tk − 1

tk+1
(sθ,k − sθ,k−1)

Return wθ,K , sθ,K

Proof. Combining the upper bound R2/λ on the Lipschitz-smoothness constant of Jθ (see
above) and the upper bound ∥ŝθ∥2 ≤ L

√
n (see at the end of the proof of Lemma 17) with the

convergence rate in objective value for FISTA in (Beck and Teboulle, 2009, Thm. 4.4), we get

Dn+1(sθ,K , θ) − Dn+1(ŝθ, θ) ≤ ϵ̂θ, (C.9)

where ϵ̂θ is the value in Eq. (C.8). By definition of ϵ-minimizer, this last inequality coincides with
the desired statement.

C.2.2 Example 2. Feature Map

We start from recalling the (primal) RERM within-task problem in Eq. (3.9) for Ex. 2

ŵθ = argmin
w∈Rd

Pn+1(w, θ) Pn+1(w, θ) =
n∑

i=1
ℓi(⟨xi, w⟩) + λn

2 ⟨w, θ†w⟩+ιRan(θ)(w) (C.10)

and we rewrite its dual in Eq. (3.10) as follows

ŝθ ∈ argmin
s∈Rn

Dn+1(s, θ) Dn+1(s, θ) = G(s) + Jθ(s), (C.11)

C.2 Approximating RERM by FISTA 122

where we have introduced the following quantities

G(s) =
n∑

i=1
ℓ∗

i (si) Jθ(s) = 1
2λn

∥∥∥θ1/2X⊤s
∥∥∥2

2
. (C.12)

Also in this case, we applied FISTA to this dual problem, treating Jθ as the smooth part and G as
the non-smooth proximable part. More precisely, proceeding as described above for Ex. 1, one
can immediately note that, thanks to Asm. 4, for any θ ∈ S , Jθ is (∥θ∥∞R2/λ)-Lipschitz smooth
w.r.t. the ℓ2 norm and, for any s ∈ Rn, its gradient is given by

∇Fθ(s) = 1
λn

XθX⊤s. (C.13)

The algorithm is reported in Alg. 10, where, as before, the primal variable is updated from the
dual one by the KKT in Eq. (6.19). Also in this case, in the following lemma, we study the
objective accuracy reached by the last dual iteration of Alg. 10.

Lemma 65 (Approximate Dual Solution by FISTA, Feature Map). Let Asm. 1, Asm. 3 and Asm. 4

hold. For θ ∈ S, consider the output sθ,K of Alg. 10, coinciding with FISTA applied to the

objective Dn+1(·, θ) of the within-task dual problem of Ex. 2 in Eq. (C.11). Then, sθ,K is an

ϵ̂θ-minimizer of Dn+1(·, θ), where

ϵ̂θ = 2L2R2n∥θ∥∞

λ(K + 1)2 . (C.14)

Proof. Combining the upper bound R2∥θ∥∞/λ on the Lipschitz-smoothness constant of Jθ (see
above) and the upper bound ∥ŝθ∥2 ≤ L

√
n (see at the end of the proof of Lemma 25) with the

convergence rate in objective value for FISTA in (Beck and Teboulle, 2009, Thm. 4.4), we get

Dn+1(sθ,K , θ) − Dn+1(ŝθ, θ) ≤ ϵ̂θ, (C.15)

where ϵ̂θ is the value in Eq. (C.14). By definition of ϵ-minimizer, this last inequality coincides
with the desired statement.

We now make some observations, regarding the above implementations.

The results in Lemma 64 and Lemma 65 guarantee that, by applying the procedure described
in Prop. 6 in Sec. 3.3 with the last dual FISTA iteration sθ,K+1, one can compute an (ϵ̂θ/n)-
subgradient of the meta-objective LZ at the point θ, where ϵ̂θ is the value specified above. Thus,
the corresponding approximation error on the meta-subgradients can be made negligible by just

C.2 Approximating RERM by FISTA 123

Algorithm 10 Approximation of RERM for Ex. 2 by FISTA

Input λ > 0, θ ∈ S, Z = (zi)n
i=1, R > 0 as described in the text

Initialization sθ,0 = pθ,0 = 0 ∈ Rn, t1 = 1
For k = 1 to K

Update sθ,k = proxγG

(
pθ,k − γ∇Jθ(pθ,k)

)
, where γ = λ/(∥θ∥∞R2)

Define wθ,k = − 1
λn

θX⊤sθ,k

Update tk+1 =
1 +

√
1 + 4t2

k

2
Update pθ,k+1 = sθ,k + tk − 1

tk+1
(sθ,k − sθ,k−1)

Return wθ,K , sθ,K

increasing the number of iterations K. Specifically, in the experiments reported in the main body,
we ran Alg. 9 and Alg. 10 until the duality gap was lower than a prescribed tolerance.

We also observe that the implementation of FISTA described above is based on the use of the
standard ℓ2 norm in the computation of the proximity operator and the Lipschitz-smoothness or
strong-convexity constants. In particular, by standard primal-dual arguments (see e.g. (Villa et al.,
2013, Eq. (6.5) and Rem. 5)), it is possible to show that the following relation holds

σ(θ)λn

2
∥∥∥wθ,K − ŵθ

∥∥∥2

2
≤ Dn+1(sθ,K , θ) − Dn+1(ŝθ, θ), (C.16)

where σ(θ)λn is the strong-convexity parameter of the primal within-task objective w.r.t. the
ℓ2 norm. As a consequence, dividing by σ(θ)λn, the dual objective converge rates given in
Lemma 64 and Lemma 65 automatically translate into a convergence rate on the square approx-
imation error of the corresponding primal variables. However, in the setting outlined in Ex. 2,
the strategy described above yields to a convergence rate for the primal iterates in which the
minimum non-zero eigenvalue of the matrix θ (coinciding with the strong convexity parameter
σ(θ)) appears at the denominator. We guess that this tedious dependency in the bound may be
removed relying on more sophisticated primal-dual tools, such as the ones in (Dünner et al.,
2016), or investigating about the application of FISTA with generic norms, as done for our OWO
Meta-Learning framework described in Chpt. 3. However, since the convergence properties we
observed in practice revealed to be satisfactory and comparable to those returned by the convex
solver CVX, we decided to leave the investigation of this technical aspect for the future.

C.3 Closed Forms for the Implementation 124

C.3 Closed Forms for the Implementation

At last, we report the closed forms for the conjugate, the subdifferential and the proximity operator
of the absolute and the hinge loss used in our experiments.

Example 3 (Absolute Loss for Regression and Binary Classification). Let Y ⊆ R or Y = {±1}.

For any ŷ, y ∈ Y , let ℓ(ŷ, y) = |ŷ − y| and denote ℓy(·) = ℓ(·, y). Then, we have

∂ℓy(ŷ) =


{1} if ŷ − y > 0

{−1} if ŷ − y < 0

[−1, 1] if ŷ − y = 0.

(C.17)

Moreover, for any y ∈ Y , ℓy is 1-Lipschitz, and, for any u, a ∈ R, γ > 0, we have that

ℓ∗
y(u) = ι[−1,1](u) + uy (C.18)

proxℓy/γ(a) =


a − 1/γ if a − y > 1/γ

y if a − y ∈
[

− 1/γ, 1/γ
]

a + 1/γ if a − y < −1/γ.

(C.19)

Example 4 (Hinge Loss for Binary Classification). Let Y = {±1}. For any ŷ, y ∈ Y , let

ℓ(ŷ, y) = max{0, 1 − yŷ} and denote ℓy(·) = ℓ(·, y). Then, we have

∂ℓy(ŷ) =


{−y} if 1 − yŷ > 0

{0} if 1 − yŷ < 0

[−1, 1]{−y} if 1 − yŷ = 0.

(C.20)

Moreover, for any y ∈ Y , ℓy is 1-Lipschitz, and, for any u, a ∈ R, γ > 0, we have that

ℓ∗
y(u) = u

y
+ ι[−1,0]

(
u

y

)
(C.21)

proxℓy/γ(a) =


a + y/γ if ya < 1 − y2/γ

1/y if ya ∈
[
1 − y2/γ, 1

]
a if ya > 1.

(C.22)

Bibliography

Pierre Alquier, The Tien Mai, and Massimiliano Pontil. Regret bounds for lifelong learning.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pages 261–269, 2017.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning.
In Advances in neural information processing systems, pages 41–48, 2007.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008a.

Andreas Argyriou, Andreas Maurer, and Massimiliano Pontil. An algorithm for transfer learning
in a heterogeneous environment. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 71–85. Springer, 2008b.

Andreas Argyriou, Massimiliano Pontil, Yiming Ying, and Charles A Micchelli. A spectral
regularization framework for multi-task structure learning. In Advances in neural information
processing systems, pages 25–32, 2008c.

Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Efficient representations for lifelong
learning and autoencoding. In Conference on Learning Theory, pages 191–210, 2015.

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pages 424–433,
2019.

Heinz H Bauschke and Patrick L Combettes. Convex Analysis and Monotone Operator theory in
Hilbert Spaces, volume 408. Springer, 2011.

Jonathan Baxter. Theoretical models of learning to learn. In Learning to Learn, pages 71–94.
1998.

Jonathan Baxter. A model of inductive bias learning. J. Artif. Intell. Res., 12(149–198):3, 2000.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Dimitri P Bertsekas, Angelia Nedi, and Asuman Ozdaglar. Convex analysis and optimization.
Athena Scientific, 2003.

Jonathan M Borwein and Adrian S Lewis. Convex analysis and nonlinear optimization: theory
and examples. 2010.

Bibliography 126

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Brian Bullins, Elad Hazan, Adam Kalai, and Roi Livni. Generalize across tasks: Efficient
algorithms for linear representation learning. In Algorithmic Learning Theory, pages 235–246,
2019.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Linear algorithms for online
multitask classification. Journal of Machine Learning Research, 11:2901–2934, 2010.

Nicolò Cesa-Bianchi and Claudio Gentile. Improved risk tail bounds for on-line algorithms. In
Advances in Neural Information Processing Systems, pages 195–202, 2006.

Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Carlo Ciliberto, Youssef Mroueh, Tomaso Poggio, and Lorenzo Rosasco. Convex learning of
multiple tasks and their structure. In International Conference on Machine Learning, pages
1548–1557, 2015.

Giulia Denevi, Sara Garbarino, and Alberto Sorrentino. Iterative algorithms for a non-linear
inverse problem in atmospheric lidar. Inverse Problems, 33(8):085010, 2017.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Incremental learning-
to-learn with statistical guarantees. In Proc. 34th Conference on Uncertainty in Artificial
Intelligence (UAI), 2018a.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn
around a common mean. In Advances in Neural Information Processing Systems, pages
10190–10200, 2018b.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pages 1566–1575, 2019a.

Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-within-online
meta-learning. In Advances in Neural Information Processing Systems, pages 13089–13099,
2019b.

Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger
convergence rates for least-squares regression. The Journal of Machine Learning Research, 18
(1):3520–3570, 2017.

Celestine Dünner, Simone Forte, Martin Takáč, and Martin Jaggi. Primal-dual rates and certifi-
cates. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning-Volume 48, pages 783–792. JMLR. org, 2016.

Bibliography 127

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 109–117, 2004.

Theodoros Evgeniou, Charles A Micchelli, and Massimiliano Pontil. Learning multiple tasks
with kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1126–1135. PMLR, 2017.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning, pages 1920–1930, 2019.

Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection.
SIAM Journal on Computing, 46(3):992–1017, 2017.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2016.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clustered multi-task learning: A convex
formulation. In Advances in neural information processing systems, pages 745–752, 2009.

Hiriart-Urruty Jean-Baptiste. Convex analysis and minimization algorithms: advanced theory
and bundle methods. SPRINGER, 2010.

Sham Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On the duality of strong convexity and
strong smoothness: Learning applications and matrix regularization. Unpublished Manuscript,
http://ttic. uchicago. edu/shai/papers/KakadeShalevTewari09. pdf, 2(1), 2009.

Sham M Kakade and Ambuj Tewari. On the generalization ability of online strongly convex
programming algorithms. In Advances in Neural Information Processing Systems, pages
801–808, 2009.

Mikhail Khodak, Maria Florina-Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. arXiv preprint arXiv:1906.02717, 2019.

Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learning.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pages 1723–1730. Omnipress, 2012.

Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In Interna-
tional Conference on Machine Learning, pages 942–950, 2013.

Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses.
Machine Learning, 106(2):171–195, 2017.

Peter J Lenk, Wayne S DeSarbo, Paul E Green, and Martin R Young. Hierarchical bayes conjoint
analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing
Science, 15(2):173–191, 1996.

Bibliography 128

Nick Littlestone. From on-line to batch learning. In Proceedings of the second annual workshop
on Computational learning theory, pages 269–284, 1989.

Andreas Maurer. Algorithmic stability and meta-learning. Journal of Machine Learning Research,
6:967–994, 2005.

Andreas Maurer. Bounds for linear multi-task learning. Journal of Machine Learning Research,
7(Jan):117–139, 2006.

Andreas Maurer. Transfer bounds for linear feature learning. Machine Learning, 75(3):327–350,
2009.

Andreas Maurer, Massi Pontil, and Bernardino Romera-Paredes. Sparse coding for multitask and
transfer learning. In International Conference on Machine Learning, 2013.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. An inequality with
applications to structured sparsity and multitask dictionary learning. In Conference on Learning
Theory, pages 440–460, 2014.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. The Journal of Machine Learning Research, 17(1):2853–2884, 2016.

Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos. New perspectives on k-support
and cluster norms. Journal of Machine Learning Research, 17(155):1–38, 2016.

Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online convex
optimization. In Advances in neural information processing systems, pages 2402–2410, 2012.

H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory,
pages 1020–1039, 2014.

Charles A Micchelli, Jean M Morales, and Massimiliano Pontil. Regularizers for structured
sparsity. Advances in Computational Mathematics, 38(3):455–489, 2013.

Francesco Orabona. Simultaneous model selection and optimization through parameter-free
stochastic learning. In Advances in Neural Information Processing Systems, pages 1116–1124,
2014.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In Advances
in Neural Information Processing Systems, pages 577–585, 2016.

Anastasia Pentina and Christoph Lampert. A PAC-Bayesian bound for lifelong learning. In
International Conference on Machine Learning, pages 991–999, 2014.

Anastasia Pentina and Ruth Urner. Lifelong learning with weighted majority votes. In Advances
in Neural Information Processing Systems, pages 3612–3620, 2016.

Juan Peypouquet. Convex optimization in normed spaces: theory, methods and examples.
Springer, 2015.

Massimiliano Pontil and Andreas Maurer. Excess risk bounds for multitask learning with trace
norm regularization. In Conference on Learning Theory, pages 55–76, 2013.

Bibliography 129

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In I5th
International Conference on Learning Representations, 2017.

Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In International
Conference on Machine Learning, pages 507–515, 2013.

Paul Ruvolo and Eric Eaton. Online multi-task learning via sparse dictionary optimization. In
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

S Shalev-Shwartz. Online learning: theory, algorithms, and applications [ph. d. thesis]. Hebrew
Univ., Jerusalem, 2007.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

Shai Shalev-Shwartz and Sham M Kakade. Mind the duality gap: Logarithmic regret algorithms
for online optimization. In Advances in Neural Information Processing Systems, pages 1457–
1464, 2009.

Shai Shalev-Shwartz and Yoram Singer. Convex repeated games and fenchel duality. In Advances
in neural information processing systems, pages 1265–1272, 2007a.

Shai Shalev-Shwartz and Yoram Singer. Logarithmic regret algorithms for strongly convex
repeated games. The Hebrew University, 2007b.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
optimization. In COLT, 2009.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Con-
vergence results and optimal averaging schemes. In International Conference on Machine
Learning, pages 71–79, 2013.

Peter Stange. On the efficient update of the singular value decomposition. In PAMM: Proceedings
in Applied Mathematics and Mechanics, volume 8, pages 10827–10828. Wiley Online Library,
2008.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems,
15(1-2):25–46, 1995.

Sebastian Thrun and Lorien Pratt. Learning to Learn. Springer, 1998.

Silvia Villa, Saverio Salzo, Luca Baldassarre, and Alessandro Verri. Accelerated and inexact
forward-backward algorithms. SIAM Journal on Optimization, 23(3):1607–1633, 2013.

Zhenxun Zhuang, Ashok Cutkosky, and Francesco Orabona. Surrogate losses for online learning
of stepsizes in stochastic non-convex optimization. In International Conference on Machine
Learning, pages 7664–7672, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

	Contents
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 List of Publications
	1.4 Outline

	2 Background
	2.1 Online Single-Task Learning
	2.2 Online-Within-Online Meta-Learning
	2.3 Multi-Task Learning

	3 The Proposed Online-Within-Online Meta-Learning Method
	3.1 Setting
	3.2 Preliminaries: Primal-Dual Online Learning
	3.3 Method and Analysis in the Non-Statistical Setting
	3.4 Method and Analysis in the Statistical Setting
	3.5 Related Work
	3.6 Discussion

	4 An Online-Within-Batch Variant of the Method in the Statistical Setting
	4.1 Method and Analysis in the Statistical Setting
	4.2 Related Work
	4.3 Discussion

	5 Example 1. Bias
	5.1 Deriving the Method
	5.2 Method and Analysis in the Non-Statistical Setting
	5.3 Method and Analysis in the Statistical Setting
	5.4 The Statistical Online-Within-Batch Variant
	5.5 Discussion
	5.6 Experiments

	6 Example 2. Feature Map
	6.1 Deriving the Method
	6.2 Method and Analysis in the Non-Statistical Setting
	6.3 Method and Analysis in the Statistical Setting
	6.4 The Statistical Online-Within-Batch Variant
	6.5 Discussion
	6.6 Experiments

	7 Conclusion and Future Directions
	Appendix A Convex Analysis
	A.1 Fenchel Duality

	Appendix B Primal-Dual Online Learning
	B.1 Main Inequality on the Dual Gap
	B.2 Proof of dualoptimality

	Appendix C Experimental Details
	C.1 Hyper-Parameters Tuning in Lifelong Learning
	C.2 Approximating RERM by FISTA
	C.3 Closed Forms for the Implementation

	Bibliography

