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A B S T R A C T

Electron quantum optics is a fast growing research field which aims
at preparing, controlling and coherently manipulating single- to few-
electrons states in mesoscopic condensed matter systems, in the same
way as single photons can be manipulated in conventional quantum
optics. Recently developed coherent single-electron sources are used
to generate few-electron excitations in ballistic conductors, where their
propagation is not affected by backscattering and phase coherence is
preserved.

Among several interesting problems related to electron quantum
optics, an important question is whether and how interaction effects
can influence the evolution of single-electron excitations generated by
coherent sources. This will be the main topic of this thesis, where we
investigate the properties of excitations created by applying a voltage
pulse to a quantum conductor. The thesis can be conceptually divided
into two main blocks, depending on which kind of interactions are
taken into account.

At first we consider a couple of conduction channels coupled by
repulsive electron-electron interactions, focusing on two scenarios.
Initially, co-propagating edge channels in the integer quantum Hall
effect are considered, followed by counterpropagating channels emerg-
ing at the edge of a quantum spin Hall insulators. In both systems,
electronic interactions induce a fractionalization process causing the
initially generated excitations to split into smaller ones, carrying only
a fraction of the injected charge. These fractionalized excitations are
carefully analyzed both in the time domain as well as in energy and
momentum space, which allows to access their particle-hole content.
The analysis is based on an analytic approach relying on Luttinger
liquid theory and bosonization techniques and applies to any voltage
drive. Moreover, specializing to the relevant case of excitations created
by quantized Lorentzian voltage pulses, known as Levitons, we show
that the noise generated when they are partitioned at a scatterer is
minimal, regardless of interactions.

Further on, a completely different kind of interaction is addressed,
namely superconducting correlations. In particular, we investigate
the transport properties of a superconducting tunnel junction under
the effect of an arbitrary periodic drive, showing that Levitons do
minimize the low frequency noise in this kind of device too.
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R É S U M É

L’optique quantique électronique est un domaine de recherche en
pleine croissance qui vise à préparer, contrôler et manipuler de ma-
nière cohérente des états à électrons uniques dans des systèmes mé-
soscopiques en matière condensée, de la même manière que les pho-
tons peuvent être manipulés dans le domaine de l’optique quantique
conventionnelle. Des sources d’électrons uniques, récemment dévelop-
pées, peuvent être utilisées afin de générer des excitations à quelques
électrons dans des conducteurs balistiques, où la propagation n’est pas
affectée par la rétrodiffusion et la cohérence de phase est préservée.

Parmi les nombreux problèmes liés à l’optique quantique électro-
nique, une question particulièrement importante est celle de com-
prendre les effets des intéractions électroniques sur l’évolution des
excitations produites par les sources d’électrons. Cela sera le sujet
principal de cette thèse, dans laquelle on étudie les propriétés des ex-
citations créées dans un conducteur quantique grâce à des impulsions
de tension.

Tout d’abord on considère une couple de canaux conducteurs en
présence d’intéractions répulsives, en distinguant deux scénarios. Le
premier est rélatif au cas de canaux co-propageants, tels que l’on
les trouve dans les états de bord de l’effet Hall quantique entier. Le
deuxième concerne une couple de canaux contre-propageants qui
émergent dans l’effet Hall quantique de spin. Dans les deux cas, les
intéractions sont telles que les excitations initiellement introduites
dans le système à cause de l’impulsion de tension se séparent en des
composants ayant une fraction de la charge originaire. Ces excita-
tions “fractionnées” sont étudiées soit dans le domaine temporel soit
dans la représentation énérgie, ce qui permet d’obtenir des informa-
tions rélatives au contenu de couples particule-trou. On utilise une
approche analytique, valable pour des impulsions de tension quel-
conques, basée sur la théorie du liquide de Luttinger et la technique
de la bosonisation. En plus, en considérant des excitations générées
par des impulsions de forme lorentzienne, connues comme Lévitons,
on démontre que le bruit dû à la présence d’un centre de diffusion est
minimisé, indépendemment des intéractions.

Ensuite, on adresse des systèmes où les corrélations électroniques
sont tout à fait differentes, c’est-à-dire des supraconducteurs. En par-
ticulier, on étudie les propriétés de transport d’une jonction tunnel
supraconductrice amenée hors de l’équilibre par des impulsions de
tension périodiques de forme arbitraire et on démontre que les Lé-
vitons minimisent le bruit à basse fréquence dans ce système aussi.
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R É S U M É D E L A T H È S E

optique quantique électronique

Le développement technologique dans les dispositifs à semiconduc-
teurs a permis d’observer des effets quantiques cohérents et a amené
au contrôle de plus en plus précis des propriétés quantiques à l’échelle
des électrons uniques. Ceci a ouvert des scénarios très intéressants,
l’un desquels est sans doute représenté par l’optique quantique électro-
nique. Ce domaine de recherche assez récent vise à préparer, contrôler
et manipuler de manière cohérente des états à électrons uniques dans
des systèmes mésoscopiques en matière condensée, de la même ma-
nière que les photons peuvent être manipulés dans le domaine de
l’optique quantique “conventionnelle”. Une telle possibilité est sans
doute très intéressante en elle-même, mais elle est aussi importante du
point de vue applicatif. Deux exemples sont représentés par la métro-
logie, où le contrôle des courants au niveau d’électrons uniques peut
être utilisé pour une définition précise de l’ampère, et par le calcul
quantique, dans la mesure où l’information pourrait être codifiée et
manipulée à travers des états à électrons uniques.

Afin que le programme de l’optique quantique électronique puisse
être réalisé, trois ingrédients au minimum doivent être disponibles :
des sources capables d’émettre des électrons uniques, des canaux
balistiques où ils peuvent se propager en préservant leur cohérence
de phase (de façon que les effets quantiques ne soient pas perdus)
et, enfin, l’équivalent des séparateurs de faisceau pour faire de l’in-
terférométrie. Tous ces composants sont disponibles du point de vue
expérimental, ce qui a permis dans les dernières années de réaliser plu-
sieurs expériences. Avant de présenter comment ces trois composants
sont réalisés dans les systèmes en matière condensée, il vaut la peine
de souligner que l’optique quantique électronique n’est pas une simple
reproduction de celle conventionnelle avec les photons, étant donné
que, au-delà des similarités entre elles, des différences évidentes sont
aussi présentes. Il y a tout d’abord une différence dans la statistique
entre électrons et photons, ce qui amène à des résultats différents si
on fait de l’interférométrie. En plus, l’état fondamental d’un système
d’électrons dans un matériel n’est pas le vide, mais la mer de Fermi,
et donc l’émission d’un électron dans un tel état n’est pas la même
chose que la création d’un photon dans le vide. Enfin, au contraire
des photons, les électrons interagissent entre eux, ce qui peut être
important pour l’interprétation des résultats expérimentaux. L’étude
des interactions dans le domaine de l’optique quantique électronique
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Figure R.1 : Résumé de la phénoménologie de l’effet Hall quantique entier.
Un champ magnetique est appliqué perpendiculièrement à un
gaz bidimensionnel d’électrons. Une mesure de la résistence de
Hall RH montre des plateaux dont les valeurs sont quantifiées :
RH = h/(νe2), où ν ∈N est connu comme facteur de remplis-
sage. Ce phénoméme est accompagné de la présence d’états
métalliques localisés au bords du système, pour ça appelés états
de bord. Leur présence est expliquée en considérant un potentiel
de confinement (dû à la finitude de l’échantillon) qui modifie les
niveaux de Landau près des bords, où ils sont par conséquent
croisés par le niveau de Fermi EF.

est précisément le sujet principal de cette thèse et sera développé dans
les trois derniers Chapitres.

Canaux balistiques : l’effet Hall quantique entier

Des canaux balistiques unidimensionnels peuvent être obtenus à par-
tir d’un système bidimensionnel dans le régime de l’effet Hall quan-
tique entier. Cet effet se manifeste alors qu’un gaz bidimensionnel
d’électrons est soumis à un champ magnétique très intense, appliqué
perpendiculairement au plan de l’échantillon. Comme découvert
par von Klitzing en 1980, si on impose un courant le long d’une di-
rection et on mesure la résistence dans la direction perpendiculaire
à celle du courant, appelée résistence de Hall (RH), on obtient le ré-
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sultat montré en Fig. R.1. Après un comportement linéaire à faibles
champs magnétiques, RH développe des plateaux dont les valeurs
ne dépendent que de deux constantes fondamentales et un nombre
entier : RH = h/(ne2). Ici, h est la constante de Planck, −e la charge
de l’électron et ν ∈N est appelé facteur de remplissage et représente
le nombre de niveaux de Landau qui sont remplis1. Les niveaux de
Landau (étudiés pour la première fois par L. Landau, d’où leur nom)
émergent de la description quantique-mécanique d’un système d’élec-
trons indépendants sous l’effet d’un champ magnétique. La solution
de l’équation de Schrödinger montre que le spectre du système est
composé de niveaux équidistants, séparés par un écart qui augmente
linéairement avec le champ magnétique. Pourtant, une conséquence
de cette description est que le système devrait être isolant, ce qui est
évidemment incompatible avec les mesures expérimentales.

Cette contradiction a été expliquée et résolue par l’introduction de
l’idée de canaux de bord, c’est-à-dire des états métalliques émergeants
aux bords du système. Donc, la conduction de courant n’est possible
que le long des bords de l’échantillon, tandis que l’intérieur reste effec-
tivement isolant. Il y a plusieurs façons de comprendre comment les
états de bord émergent ; ici on n’adresse qu’une. L’ingrédient fonda-
mental est la présence d’un potentiel de confinement pour les électrons,
que l’on doit nécessairement considérer parce que un système réel
n’est pas infini. Ce potentiel de confinement est pratiquement absent à
l’intérieur du système mais il croît très rapidement près des ses bords.
Par conséquent, les niveaux de Landau sont “pliés” vers le haut et
donc le niveau de Fermi les croise près des bords, comme montré en
Fig. R.1. En observant cette figure il est aussi évident que le nombre
de canaux pour chaque bord est lié à la position du niveau de Fermi
et, donc, au nombre des niveaux de Landau remplis, qui est determiné
à son tour du facteur de remplissage.

La propriété la plus importante des états de bord est leur protection
topologique. Le terme “topologique” est emprunté aux mathéma-
tiques, où il est utilisé pour indiquer des propriétés globales des objets
géométriques, celles qui ne dépendent pas des détails locales. De la
même façon, en matière condensée une phase topologique est un état
de la matière dont les propriétés sont à attribuer à quelque caracté-
ristique “globale” tout à fait indépendante des détails particuliers du
système où cet état est réalisé, comme par exemple le type d’échan-
tillon ou la présence de désordre. Cela est exactement ce qui se passe
dans l’effet Hall quantique entier, le premier exemple de phase topo-
logique de la matière du point de vue historique. La découverte des
propriétés topologiques de l’effet Hall quantique (entier initialement
et fractionnaire quelques années après) a été extrêmement importante,
car elle nous a fait comprendre que les transitions de phase ne peuvent

1 En géneral, ν n’est pas un nombre entier, mais la phénoménologie que l’on décrit ici
se vérifie dans cette condition.
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pas toujours être attribuées au cassement d’une symétrie. L’effet Hall
a donc amené la topologie dans la physique de la matière condensée
et aujourd’hui la recherche de nouveux matériaux topologiques est
très active dans la communauté scientifique.

L’origine topologique de l’effet Hall quantique est la raison pour
laquelle la quantification de la résistance RH est extrêmement précise
(jusqu’à une partie par milliard). Il est aussi possible de démontrer
que cela implique que la propagation des électrons le long des canaux
de bord doit être balistique et la rétrodiffusion absente. Du point de
vue pratique, des libres parcours moyens de plusieurs micromètres
ont été mesurés dans les systèmes Hall. Cette brève discussion montre
que les canaux de bord représentent un outil idéal pouvant jouer le
rôle de guide d’onde en optique quantique électronique.

Sources d’électrons uniques

Les sources cohérentes d’électrons uniques représentent le développe-
ment expérimental fondamental qui a marqué la naissance de l’optique
quantique électronique. En particulier, deux approches principales ont
été employées : le condensateur mésoscopique (2007) et une source
qui exploite des impulsions de tensions (2013). Dans ce résumé on ne
décrit que la deuxième approche, qui est la seule considérée dans la
partie originale de la thèse.

L’idée à la base de cette source est assez simple. Si on applique
une impulsion de tension V(t) dépendant du temps à un conducteur
balistique unidimensionnel, une excitation est générée dans le canal.
En particulier, pour un canal non-interagissant, la réponse en cou-
rant est I(t) = e2h−1V(t). Par conséquent, la charge (divisée par −e)
transportée par l’excitation créée dans le système est

q = −
e

h

∫+∞
−∞ dt V(t) .

Toutefois, même si q est un nombre entier, on ne peut pas dire de
n’avoir excité que q électrons. En fait, il est en général très probable
que des paires électron/trou accompagnent l’excitation générée par
l’impulsion V(t). Il est néanmoins possible de modeler la forme du
signal de façon que exactement q électrons soient excités au dessus de
la mer de Fermi et aucune paire électron/trou ne soit présente. Cette
prédiction, due à Levitov et collaborateurs, établit que la forme du
signal V(t) doit être lorentzienne :

V(t) = −
nh

2πe

2w

w2 + t2
, n ∈N ,

où w est une échelle temporelle determinant la largeur de l’impulsion.
La charge associée à ce signal est évidemment q = n et les excita-
tions qu’il génère ont été appelées Lévitons. Un Léviton est donc une
excitation minimale.
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(a)

(b)

Figure R.2 : En haut (a) : schéma de la configuration employée pour la
détection des Lévitons. En bas (b) : représentation de la fonction
d’onde d’un Léviton et de sa distribution en énergie.

La prédiction de Levitov a été confirmée en 2013 par le groupe
expérimental de D. C. Glattli qui a exploité le fait que le nombre en
excès de paires électron/trou générées par un signal V(t) peut être
obtenu en mesurant le bruit de courant qui se crée quand les exci-
tations dues à V(t) sont envoyées vers une barrière qui les transmet
avec un probabilité que l’on peut contrôler. Le système utilisé pour
la mesure est un contact ponctuel quantique dans le régime balistique,
representé en Fig. R.2 (en haut). Ici, le contact ponctuel quantique
joue un double rôle : il crée le canal unidimensionnel et il agit aussi
comme séparateur de rayon, en transmettant les excitations, qui ar-
rivent du términal où V(t) est appliqué, avec un probabilité D. En
mesurant le bruit de courant dans le terminal qui se trouve après le
contact ponctuel quantique, les expérimentateurs ont démontré que le
nombre de paires électron/trou dues au signal lorentzien proposé per
Levitov dévient zéro, différemment des autres signaux. Cela signifie
que le Léviton est véritablement une excitation minimale décrivant un
électron au dessus de la mer de Fermi, comme on voit en Fig. R.2 (en
bas).
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Figure R.3 : Comparaison schématique entre les systèmes unidimension-
nels et ceux à dimensionnalité plus haute. Dans le dernier cas
(gauche), des excitations de quasi-particule sont possibles. Au
contraire, dans les systèmes unidimensionnels (droite) on n’a
que des excitations collectives, parce que le mouvement d’un
électron influence nécessairement celui des autres particules, à
cause des interactions.

intéractions dans les systèmes unidimensionnels

Quand on considère les effets des interactions électroniques, les sys-
tèmes unidimensionnels ont un comportement très different et tout à
fait particulier par rapport à ce qui se passe en dimensionnalités plus
hautes. En fait, au lieu de la théorie du liquide de Fermi (développée
par le physicien russe L. Landau), les systèmes unidimensionnels sont
décrits par la théorie du liquide de Luttinger qui prévoit des effets très
particuliers, dont la “fractionalisation” de charge et la séparation de
charge et spin sont les plus éclatants. La fractionalisation de charge
sera illustrée en détail dans les prochaines Sections de ce résumé.
Pour l’instant, on veut simplement donner une idée intuitive de la
raison pour laquelle les systèmes unidimensionnels sont spéciaux. Un
résumé schématique de ça est présenté en Fig. R.3.

La théorie du liquide de Fermi, valable pour décrire les interactions
électroniques en dimensions d > 1, est basée sur l’idée de quasi-
particule. En bref, une quasi-particule est une excitation individuelle
qui peut être regardée comme un électron (avec des paramètres renor-
malisés) habillé par une nuage de fluctuations de densité de charge.
Ces quasi-particules interagissent très faiblement entre elles, ce qui
implique qu’un gaz d’électrons interagissant en d > 1 préserve plus
ou moin les mêmes propriétés qualitatives que l’on observe dans un
gaz de Fermi non-interagissant.

Les péculiarités des systèmes unidimensionnels interagissant ré-
sident dans le fait qu’il n’est pas possible d’avoir des excitations
individuelles, ce qui rend l’idée de quasi-particule inapplicable. Au
contraire, les excitations sont uniquement collectives et ont un carac-
tère bosonique. En fait, il est possible de démontrer que l’opérateur
férmionique peut s’exprimer à travers d’un partenaire bosonique.
Cette procédure, connue comme bosonisation, est à la base du traite-
ment exact des interactions électroniques dans théorie du liquide de
Luttinger.
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Figure R.4 : Fractionalisation de charge dans un couple de canaux co-
propageants. Une excitation introduite dans le système en posi-
tion x0 se divise en quatre parties, chacune desquelles emporte
avec soi un fraction de la charge originaire. Ces fractions dé-
pendent des interactions à travers du paramètre χ.

canaux co-propageants en présence d’interactions

Dans le Chapitre 3 on étudie l’effet des interactions dans un couple de
canaux co-propageants, tels que l’on les trouve dans l’effet Hall quan-
tique à facteur de remplissage ν = 2. On considère un modèle proposé
par Levkivskyi and Sukhorukhov, qui s’inspire de la théorie de Lut-
tinger et prends en compte des interactions locales densité-densité.
La solution du modèle montre que les deux canaux originaires se

mélangent entre eux à cause des interactions et les excitations du
système sont des fluctuations de charge se propageant à deux vitesses,
v+ et v−. Ceci est la raison à la base de la fractionalisation de charge,
montrée dans la Fig. R.4. Par conséquent, si on introduit une excita-
tion sur le canal externe, elle évolue se séparant en quatre parties qui
emportent chacune une fraction de la charge originaire. Ces fractions
sont

f1,− = sin2χ , f1,+ = cos2χ ,

f2,− = −
sin 2χ
2

, f2,+ =
sin 2χ
2

.

Ici, le paramètre χ est appelé angle de mélange et peut varier entre
χ = 0 (pas d’interactions) et χ = π/4 (couplage maximal entre les deux
canaux du système). Il vaut la peine de noter que la charge totale sur
le canal interne est toujours zéro, les charges de ses deux excitations
étant égales et opposées. Ça est dû au fait que l’interaction entre les
deux canaux est capacitive et donc il n’est pas possible de transférer
de la charge du canal externe à celui interne.

On a étudié les propriétés des excitations en utilisant la fonction de
Wigner, qui permet de voir au même temps le procès de fractionali-
sation et le contenu énergetique des excitations. Il est donc possible
à travers de cet outil de s’apercevoir si elles sont minimales ou pas.
Comme on peut s’attendre, on a des excitations minimales au moment
où leur charge est un multiple entier de la charge électronique élé-
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mentaire ; par ailleurs, des paires électron/trou sont excitées dans le
système dans le cas de charge non entière.

Du point de vue expérimental, on ne peut pas contrôler la charge
des excitations “fractionalisées”, mais uniquement celle de l’excitation
initiellement introduite dans le système, c’est-a-dire q. Pourtant, en
exploitant le lien q2,± = ±q sinχ cosχ entre q et les charges q2,± des
excitations se propageant dans le canal interne, on peut montrer qu’il
est possible d’obtenir des informations sur l’interaction à partir de
mesures de bruit. Spécifiquement, on a considéré d’ajouter un contact
ponctuel quantique, polarisé de telle manière que le canal externe
est complètement transmis, tandis que celui interne est partiellement
refléchi. Le bruit du courant rétrodiffusé en cette configuration permet
d’obtenir des informations intéressantes. Tout d’abord, il peut être lié
au nombre d’électrons et trous excités par le signal V(t). Ensuite, on
démontre qu’il peut être utilisé pour définir une quantité X ayant des
maxima en correspondence des valeurs entières et démi-entières de
q2,+. Ce comportement, se vérifiant dans le cas où V(t) est une onde
rectangulière, permet d’extraire la valeur de χ : en fait, en mesurant
les valeurs q = q̄ pour lesquelles X a des maxima, on obtient χ du lien
q2,+ = q̄ sinχ cosχ, en sachant que q2,+ sont des nombres entiers ou
démi-entiers.

canaux contre-propageants dans l’effet hall quantique

de spin

Grâce aux récents développements expérimentaux, d’autres systèmes
différant des états de l’effet Hall quantique pourraient être intéressants
afin d’étendre le domaine de l’optique quantique électronique. L’un
d’entre eux est représenté par les états de bord de l’effet Hall quantique
de spin. Cette phase de la matière a aussi des propriétés topologiques,
mais elle diffère de l’effet Hall quantique dans la mesure où ses états
de bord sont contre-propageants (au lieu de co-propageants) et la
projection du spin des électrons est liée à la direction de propagation
le long du canal. Cette propriété, connue sous l’expression anglaise de
spin-momentum locking, est topologiquement protégée par la présence
de la symétrie d’inversion temporelle, qui est un ingrédient fonda-
mental pour que cette phase de la matière puisse être achevée. Une
représentation de l’effet Hall de spin est donnée en Fig. R.5.

Dans le Chapitre 4 on étudie comment les interactions entre les
deux canaux contre-propageants influencent une excitation générée
par une impulsion de tension. De façon similaire à ce que l’on a décrit
dans la Section précédente, les interactions prises en compte dans le
modèle de Luttinger mélangent les canaux originaires : le système est
décrit par des fluctuations de charge qui se propagent en directions
opposées, avec une vitesse renormalisée. Par conséquent, le procès de
fractionalisation de l’excitation créée par le signal V(t) est diffèrent
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Figure R.5 : L’effet Hall quantique de spin vu comme combinaison de deux
états de l’effet Hall quantique à ν = 1 ayant des chiralités
opposées.

Figure R.6 : Procès de fractionalisation d’une succession d’excitations géné-
rées au point x = 0 par un signal périodique V(t).

par rapport à ce que l’on a vu pour les canaux co-propageants et
il est représenté en Fig. R.6. La figure a été réalisée dans le cas
d’un signal V(t) périodique, comme considéré dans le Chapitre 4.
Les deux canaux originaires, qui se propageraient vers droite (R) et
gauche (L) en absence d’interactions, sont dessinés comme s’ils étaient
spatialement séparés, tandis qu’en réalité ils ne sont distingués que
par la projection du spin des électrons, grâce au spin-momentum locking.

De toute façon, quatre excitations émergent dans le système, deux
se propageant vers la droite [(R,+) et (L,+)] et deux vers la gauche
[(R,−) et (L,−)]. Leurs charges sont

qR,+ = q
1+K

2
= −qL,− ,

qR,− = q
1−K

2
= −qL,+ ,

où q est la charge pour période associée au signal V(t). La quantité K
est le paramètre fondamental de ce modèle : elle est appelée constante
de couplage de Luttinger et décrit l’intensité des interactions dans
ce modèle. Un système non-interagissant correspond à K = 1, tandis
que K < 1 décrit le cas d’interactions répulsives. Il est à noter que si
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K = 1, seulement les excitations (R,+) et (L,−) sont présentes et ont
une charge q et −q, respectivement.

Comme déjà noté précédemment, l’évolution en espace réel des
excitations fractionalisées ne permet d’avoir aucune information sur
leur contenu en termes de paires électron/trou. Afin d’avoir une telle
description, on a étudié la fonction spectrale en excès des excitations,
c’est-à-dire la fonction spectrale obtenue après la subtraction de la
contribution d’équilibre, qui évidemment ne peut pas dépendre du
signal V(t). Des excitations minimales ont une fonction spectrale en
excès qui a partout le même signe que celui de leur charge. Les
résultats que l’on a obtenus montrent que des excitations de forme
lorentzienne avec une charge entière ne sont minimales que pour les
canaux (R,+) et (L,−).

Pourtant, le bruit en excès associé au partitionnement d’une excita-
tion lorentzienne ayant une charge entière est toujours zéro, tant pour
le canal (R,+) que pour (L,+). Cette propriété n’est donc due qu’à
la particulière forme du signal lorentzien et ne dépend pas des inter-
actions. Ceci démontre que, dans les systèmes interagissant, on doit
faire attention à associer les zéros du bruit en excès à des excitations
minimales. Il est néanmoins possible d’exploiter les Lévitons pour
extraire la constante de Luttinger décrivant l’intensité des interactions,
d’une façon similaire à celle presentée dans la Section précédente.
En fait, étant donné que le bruit en excès dû au partitionnement des
excitations sur le canal (R,+) est annulé quand qR,+ = n ∈ N, ça
signifie que les zéros se trouvent en correspondence des valeurs de
charge

q =
2n

1+K
.

Par conséquant, en mesurant la valeur de q correspondant au n-ème
zéro, on peut trouver celle de K en résolvant l’équation précédente.

effets liés à la supraconductivité

Ayant étudié les effets des interactions électroniques répulsives en
deux systèmes differents, dans cette dernière partie on considère des
correlations tout à fait differentes, c’est-à-dire celles que l’on trouve
en présence des supraconducteurs. En particulier, on veut voir si les
Lévitons préservent les propriétés que l’on a précédemment décrites,
notamment pour ce qui concerne le bruit en présence d’un contact
ponctuel quantique.

Pour cette raison, on considère le système représenté en Fig. R.7, où
deux électrodes supraconducteurs sont rapprochés en formant une
jonction tunnel, c’est-à-dire que les deux parties du système sont très
faiblement couplées entre elles. Des impulsions de tension périodiques
sont appliquées à l’électrode de gauche et amènent le système hors de
l’équilibre.



résumé de la thèse xxiii

Figure R.7 : Un contact ponctuel supraconducteur. Le système est amené
hors de l’équilibre par l’application d’un signal périodique V(t)
qui crée des excitations qui sont ensuite transmises avec une
certaine probabilité de la partie gauche à vers la droite, où on
mesure le courant et le bruit.

Le calcul du courant I et du bruit S conduit au résultat suivant :

I = I0 + ζ2q(I1 + IJ) ,

S = S0 + ζ2qS1 ,

où ζz = 1 si z ∈ Z et ζz = 0 autrefois. Les termes I0 et S0 sont
associés au transfert de quasi-particules de Bogoloibov à travers de
la jonction. Ils sont des fonctions continues de la charge q. Les autres
contributions au courant et au bruit ne sont présentes que pour des
valeurs démi-entier de q. En particulier IJ est un courant non dissipatif
se réduisant au courant de Josephson quand V(t) = 0 et il est associé
à un transfert cohérent de paires de Cooper. Comme on peut noter,
il n’a pas un partenaire dans le bruit. Les termes I1 et S1 ont une
interpretation plus compliquée aillant au-délà du but de ce résumé.
Ici en fait on ne veut que souligner deux résultats.

Le premier est que l’on obtient une expression pour IJ qui généralise
le courant de Josephson pour un signal V(t) périodique arbitraire.
Cette expression devient très simple dans le cas où le gap énergétique
du supraconducteur est l’échelle énergétique la plus importante. On
obtient dans ce cas une séquence de courants de Josephson aux valeurs
entières et démi-entières de la charge q et la hauteur rélative des
valeurs atteintes par IJ à des différents q n’est déterminée que par des
coefficients dépendant du signal V(t). Il est intéressant de mentionner
qu’il est toujors possible de dériver une si simple expression pour
les Lévitons, sans qu’aucune hypothèse sur la valeur du gap soit
nécessaire.

Le deuxième est que le bruit en excès, ∆S = S− 2eI, devient zéro
pour les Lévitons, indépendemment des valeurs du gap et de la fré-
quence du signal V(t). Ayant observé cette propriété dans tous le
systèmes considérés dans cette thèse, on peut conclure qu’elle n’est
due qu’à la particulière forme du signal lorentzien et les interactions
ne jouent aucun rôle afin que le bruit en excès devienne zéro.
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perspectives

Dans cette thèse, on a étudié l’effet des interactions électroniques sur
des excitations générées dans un conducteur quantique balistique par
des impulsions de tension, avec une attention particulière au cas d’un
signal lorentzien qui crée des excitations connues comme Lévitons.
Les differents systèmes considérés sont les canaux de bord de l’effet
Hall quantique à facteur de remplissage ν = 2, les canaux contre-
propageants de l’effet Hall quantique de spin et un jonction entre
deux supraconducteurs. Le premier d’entre eux a déjà été employé
pour des expériences d’optique quantique électronique et des effets
liés aux interactions ont été observés. Les canaux contre-propageants
représentent un possible système pour étendre le domaine de l’op-
tique quantique électronique : des développements très recents ayant
réalisé un contact ponctuel quantique dans un isolant topologique bi-
dimensionnel sont très importants pour atteindre cet objectif. Enfin les
résultats du dernier Chapitre représentent une première généralisation
de l’optique quantique électronique à systèmes supraconducteurs et
peuvent être utilisés comme point de départ pour considérer des supra-
conducteurs topologiques, où la présence des fermions de Majorana
pourrait se traduire en des nouveux et intéressants effets physiques.



I N T R O D U C T I O N

The technological progress in semiconductor devices has lead to the
observation of coherent quantum effects in mesoscopic systems and,
interestingly, also to the more and more precise control of quantum
properties, down to the single-electron level. This has opened exciting
scenarios, one of which is certainly represented by electron quantum
optics [1–3]. This is a fast growing research field which aims at prepar-
ing, controlling and coherently manipulating single- to few-electrons
states in mesoscopic condensed matter systems, in the same way as
single photons can be manipulated in conventional quantum optics.
In order for such a program to succeed, the minimal necessary ingre-
dients are: sources able to reliably generate single-electron excitations,
waveguides where electrons can propagate retaining their phase coher-
ence and beamsplitters allowing the implementation of interferometric
setups. Quite amazingly, all these components are currently available
from an experimental point of view.

Single-electron sources are actually the experimental breakthrough
that gave rise to electron quantum optics. In particular, two main
approaches have been developed. The first one has been implemented
by Fève et al. [4] in 2007 and relies on a driven quantum dot that
alternatively emits single electrons and holes. A pictorial representa-
tion of this source is provided in the left panel of Fig. I.1. Integrating
such sources in systems hosting one-dimensional conducting channels
playing the role of waveguides, has made it possible to implement
interferometric setups for single electrons, as sketched in the right
panel of Fig. I.1.

More recently, in 2013, Dubois et al. [5] have experimentally con-
firmed a previous theoretical prediction by Levitov and coworkers
[6–8] that single-electron excitations can be generated by properly en-
gineering the shape of an external drive applied to a one-dimensional
quantum conductor. In particular, they showed that Lorentzian pulses
carrying a charge which is an integer multiple of the electronic
one, generate minimal purely electronic excitations, free of spurious
electron-hole pairs. After the experimental confirmation of Levitov’s
prediction, these “clean” excitations have been called Levitons.

Concerning waveguides, their condensed matter analogue is repre-
sented by the so-called edge states. They are metallic one-dimensional
states which, as their name suggests, emerge at the edge of peculiar
two-dimensional systems. First discovered in the context of the integer
quantum Hall effect [9–13], it is nowadays understood that edge states
are a signature of topological systems [14], which currently are of
great interest in the condensed matter community [15, 16] and whose

xxv
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Figure I.1: Left: artistic view of a single-electron source, injecting electrons
in a quantum conductor. Right: two single-electron sources are
used together in order to perform an interference experiment,
where electrons are emitted into chiral edge channels and collide
at a quantum point contact. This picture summarizes the main
ingredients of electron quantum optics: single-electron sources
create excitations, edge channels are waveguides for their prop-
agation and quantum point contacts play the role of beamsplit-
ters. Credits: B. Plaçais’s Mesoscopic Physics group at lpa-ens

(http://www.phys.ens.fr/~placais).

importance is nicely witnessed by the 2016 Nobel prize for Physics.
The word topological is borrowed from mathematics and is used to in-
dicate that systems in this peculiar phase of matter can be described by
properties that are insensitive to local details. As a result, topological
systems are extremely robust with respect to local perturbations. For
instance, in quantum Hall edge states, backscattering is forbidden, a
fact which makes them ideal waveguides for electron quantum optics.
They have indeed been exploited in several experiments, as reviewed
in Ref. [3].

However, quantum Hall edge states do not represent the only in-
stance of topologically protected channels: another notable example is
provided by helical edge states emerging in two-dimensional topolog-
ical insulators. Proposed in 2006 [17] and soon after experimentally
confirmed [18], these systems have non-trivial topological bulk proper-
ties which reflect in the presence of edge states featuring the so-called
spin-momentum locking. This means that the direction of propagation
of electrons along the edge is inherently related to their spin projection.
Moreover, they are topologically protected as long as time reversal
symmetry is preserved. These features make helical edge states a very
appealing platform for extending electron quantum optics beyond
quantum Hall systems and the recent implementations of quantum
point contacts in two-dimensional topological insulators [19, 20] are a
promising step forward in this direction.

Among several interesting problems related to electron quantum
optics, an important question is whether and how interaction effects
can influence the evolution of single-electron excitations generated
by coherent sources. This is the main subject of this thesis, where

http://www.phys.ens.fr/~placais
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we investigate the interplay between single-electron excitations and
interactions in different systems which are of relevance to electron
quantum optics, either for current experimental setups (quantum
Hall channels) or for potential future applications (helical edge states,
superconducting systems).

The study of interaction effects is particularly important in one-
dimensional systems, which have a completely different behavior with
respect to higher-dimensional ones. The latter are well described by
Landau’s theory of Fermi liquid [21], whose fundamental ingredient is
the concept of quasiparticle, which can be regarded as an almost free
electron with renormalized parameters. On the contrary, the low en-
ergy excitations in one-dimensional interacting systems are collective
and have a bosonic character. This results in a different paradigm, the
Luttinger liquid theory [22], within which exotic phenomena emerge,
such as charge fractionalization [23, 24] and spin-charge separation
[25]. In view of what will be discussed in this thesis, it is important to
mention that interaction effects are relevant not only from a theoretical
point of view, but have also experimental evidence, both in integer
quantum Hall edge channels [23, 26] (where electron quantum optics
experiments have already been performed) and in helical systems, as
recently demonstrated [27, 28].

In this thesis, the analysis of single-electron excitations in the pres-
ence of interactions will be focused on excitations generated by voltage
pulses, with particular attention to the Lorentzian drive generating
Levitons. Indeed, the common topic to the Chapters representing the
original part of this work is the investigation of how Levitons are af-
fected by the presence of interactions in different cases. Specifically, we
consider as interacting systems: integer quantum Hall edge channels,
counterpropagating helical modes and superconductors. While the
former are relevant to current experiments, the other two examples
represent interesting possibilities to broaden the domain of electron
quantum optics. In particular, our study of Levitons in the presence of
superconductivity can be taken as a starting point to address the case
of topological superconductors, where the emergence of Majorana
zero modes can lead to new physical effects.

The thesis is composed of five Chapters, the last three of which
contain the original part of this work and are based on the publications
listed on page vii.

In chapter 1 we introduce the main ideas behind electron quan-
tum optics in non-interacting systems, discussing both theoretical
aspects and some experimental results. In particular, we illustrate
the fermionic analogues of waveguides, beamsplitters and photon
sources. As far as the latter are concerned, we focus on single-electron
excitations generated by voltage pulses and the properties of Levitons
in non-interacting systems are presented in detail. This Chapter also
contains a brief discussion of the quantum Hall effect, which is an
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ideal playground for implementing electron quantum optics setups
as it provides natural waveguides for electrons, namely topologically
protected chiral edge states.

In chapter 2 we review the theoretical description of interactions
in one-dimensional fermionic systems, which are well explained by
Luttinger liquid theory instead of Landau’s Fermi liquid theory which
applies in higher-dimensions. In view of the subsequent Chapters,
the Luttinger model for co- and counterpropagating one-dimensional
channels is introduced and charge fractionalization in both cases is
discussed.

In chapter 3 a pair of copropagating chiral quantum Hall chan-
nels at filling factor ν = 2 is considered and interactions between them
are taken into account. We investigate the generation of excitations by
voltage pulses and we study in detail the properties of the different
wave packets which emerge due to charge fractionalization. In partic-
ular, we address their particle-hole content and discuss the conditions
under which minimal excitations are introduced in the system. Finally,
we show that by measuring the charge current noise due to the ad-
ditional presence of a quantum point contact, it is possible to extract
information about interactions between the two edge channels. This
Chapter is based on our original results published in Refs. [29, 30].

In chapter 4 we consider a pair of interacting counterpropagating
helical channels and we investigate the interplay between interactions
and non-equilibrium effects due to an external voltage drive. Charge
fractionalization also occurs in this context due to interactions and we
analyze the spectral functions of the different excitations emerging
in the system. Through this analysis, we show that, unlike what
happens in non-interacting systems, the minimization of the noise
resulting from the partitioning of Lorentzian-shaped excitations is not
necessarily related to a minimal excitation. Nevertheless, a minimal
noise is in any case achieved when the fractionalized excitations are
Lorentzian-shaped and carry an integer charge, a fact that can be
exploited to extract information about the interaction strength in the
system. This Chapter is based on our publication [31].

In chapter 5 we investigate the effect of superconducting corre-
lations on Levitons. To this end we study the effect of an external
periodic drive on a so-called superconducting point contact, namely
a constriction between two superconductors, much shorter than the
superconducting coherence length. We derive general results for arbi-
trary shapes of the drive and then apply them to the case of Levitons.
In particular, we show that a train of Lorentzian pulses with quantized
area minimizes the noise also in the presence of a superconducting
background, further strengthening the result that this peculiar prop-
erty of Levitons is uniquely due to the particular shape of the drive
and is robust with respect to interactions. These findings have been
published in Ref. [32].



1
E L E C T R O N Q UA N T U M O P T I C S I N
N O N - I N T E R A C T I N G S Y S T E M S

In this Chapter we provide a general overview of Electron Quantum
Optics (EQO) [1–3], together with a theoretical description of its basic
aspects. This relatively new field of research in condensed matter
physics aims at preparing, manipulating and measuring quantum
states at the single-electron level, thus having potential relevant im-
plications for quantum information processing [33–35]. The introduc-
tory theoretical description presented in this Chapter is the simplest
possible and is limited to non-interacting free fermions. Effects of
electron-electron interactions will be extensively investigated in the
following Chapters and constitute the main focus of this thesis.

The Chapter is organized as follows. In Sec. 1.1 we introduce EQO

and the electronic version of a beamsplitter. In Sec. 1.2, we describe
the Integer Quantum Hall Effect (IQHE), emphasizing that its origin is
of topological nature and explaining why this fact is interesting and
useful in EQO. Sec. 1.3 is dedicated to an overview of different single-
electron sources. Sec. 1.4 then specializes to a voltage source emitting
single-electron excitations called Levitons. Finally, the theoretical ma-
chinery for describing EQO in non-interacting systems is presented in
Sec. 1.5, while Sec. 1.6 describes how Levitons were experimentally
observed.

1.1 introduction

As suggested by the name, EQO is inspired to a great deal by “conven-
tional” quantum optics with photons. Indeed, the main idea which has
initially driven the birth and development of EQO was to reproduce
in solid-state systems optics-like experiments where single photons
can be coherently emitted and manipulated. Such a possibility is very
interesting in itself and potentially relevant from the point of view
of quantum information. Indeed, in the same way as the coherent
manipulation of photons allows to study entanglement, non local-
ity and quantum cryptography [36, 37], the possibility of coherently
operating on single-electron states can be in principle exploited to
build quantum logic gates [38]. A comprehensive review of the current
progress in coherent single-electron control, together with relevant
applications, can be found in the recent paper [39].

The essential tools to build a quantum optic setup are coherent
sources to generate single-photon states, waveguides to control their
propagation and beamsplitters that can be used to partition incoming

1
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waves and recombine them to perform interferometric experiments.
Quite amazingly, all these ingredients have a condensed matter coun-
terpart and this makes it possible to implement quantum optics-like
experiments with electrons. In particular:

• beamsplitters are replaced by Quantum Point Contact (QPC)s;

• waveguides can be implemented by relying on topological edge
channels;

• coherent photon sources are replaced by on-demand single
electron sources, which have been a major experimental break-
through of the late 2000’s.

All of these will be introduced in this Chapter. Before doing so, how-
ever, an important point to emphasize is that EQO also allows to go
beyond the standard paradigm of “conventional” quantum optics.
Indeed, together with strong and appealing analogies, some differ-
ences and peculiarities are also noteworthy. First of all, electrons are
fermions while photons are bosons and this difference in the particles
statistics can produce relevant effects. Moreover, whereas photons
are emitted in vacuum, we always have to remember the presence
of the underlying Fermi sea when we think of electrons propagating
in solid-state devices. Last but not least, electrons do interact with
each other and this can be a source of new and interesting effects and
produce a richer phenomenology. We will come back to this point in
the following Chapters.

The electronic analog of a beamsplitter is the so-called QPC, which
has been developed in the 80’s as a way to create one-dimensional
electronic systems starting from two-dimensional ones [40–45]. In
particular, a QPC can be implemented by depositing metallic gates on
the surface of a Two-Dimensional Electron Gas (2DEG) which can be
formed at the interface of a semiconductor heterostructure (GaAs/Al-
GaAs being the prototypical one). As the name suggests, in a 2DEG

the motion of electrons is confined in a plane, due to the formation
of a potential barrier at the interface between the materials com-
posing the heterostructure. By acting on the gates and imposing a
negative voltage polarization, a depletion in the underlying electron
fluid occurs, in such a way that the system exhibits the behavior of a
One-Dimensional (1D) quantum conductor. Indeed, depending on the
polarization of the QPC, a certain number of quantum channels forms
in the constriction, as it is shown in Fig. 1.1. Here, the 2DEG lies in the
plane of the Figure and the QPC is represented by the two metallic side
gates (grey regions). Due to the confinement in the vertical direction,
1D conduction channels form across the region of the QPC. It is impor-
tant to emphasize that QPCs are very versatile tools, since by tuning
the voltage polarization applied to the gates, the transmission of the
constriction can be varied continuously, closing or opening conduction
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Figure 1.1: Quantum conduction channels formed in a 2DEG due to the
presence of a QPC (grey metallic gates). The central region dis-
plays simulated data, while the side bands are obtained from
actual measurements. This shows the close agreement between
the measure and its description in terms of quantum channels.
Credits: National Science Foundation; image taken from https:

//www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=51672&from=.

channels. Suppose for instance to set the QPC in such a way that a
single conduction channel is present in the system. Then, by further
acting on the gate polarization, the transmission of this channel can be
modified at will. As a result, if an excitation is created in the channel
and sent towards the constriction, the QPC will act as a beamsplitter as
that excitation will be transmitted or reflected with a certain probabil-
ity. We will see an implementation of such a setup when describing an
important experimental result [5] about EQO in Sec. 1.6. Of course, in
this case, the reflected excitation goes back to the direction from where
it came. However, there are systems where electron can propagate
along veritable “waveguides” whose shape can be controlled. Such
waveguides are naturally provided by topologically protected edge
channels in the IQHE, which we introduce in the following Section.
Thus by integrating a QPC in these systems, it is possible to implement
an electronic beamsplitter in which the reflected excitations do not
come back to the emission point [2].

1.2 topological edge channels in the integer quantum

hall effect

We now want to discuss how it is possible to engineer in solid-state
devices actual waveguides for electrons. The first obvious requirement
for this purpose is that electrons must not lose their phase coherence
during their motion, otherwise any coherent quantum effect would be
washed out. In this respect 2DEGs in GaAs/AlGaAs heterostructures
are the natural playground, since they have very high mobilities [46,
47] (up to 35× 106 cm2V−1s−1 at a temperature θ ≈ 300 mK [48])
and very long mean free path and phase coherence length (up to

https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=51672&from=
https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=51672&from=
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10-20 µm at θ ≈ 20mK [49]). By means of electrostatic gates placed
on top of the heterostructure it is possible to design in these systems
“rails” allowing to shape electron trajectories. However, a much more
convenient platform can be exploited and will be discussed in detail in
this Section. Here we anticipate the result: when a 2DEG is exposed to a
high magnetic field at low temperature, it enters the IQHE regime and
conducting edge channels arise at the boundary of the 2DEG. These
channels have the notable property of being topologically protected
in such a way that backscattering is forbidden and the propagation
along them is therefore chiral. The word topological is borrowed from
mathematics, where it denotes “global” properties which are insen-
sitive to local details. It is used in this context to emphasize that the
edge states protection is very robust and independent of the sample’s
details (disorder, impurities and so on).

The discovery of the IQHE has been a real revolution in condensed
matter physics: it was indeed the first example of a topological state
and changed our understanding of the phases of matter, paving the
way to the search for topological materials. We are now going to
review the main aspects of the IQHE, whose edge states play a major
role in EQO. The discussion is aimed at emphasizing the topological
properties behind the quantization of the Hall conductance.

In 1980 von Klitzing, Dorda and Pepper [9] discovered a totally
unexpected behavior when a 2DEG at low temperature is placed under
a very high perpendicular magnetic field. They measured the Hall
resistance RH as a function of the applied magnetic field intensity B
and observed a very strange phenomenon. While at low B the Hall
resistance increases linearly with the magnetic field, as expected from
the classical Hall effect prediction, by increasing B to higher intensities
it becomes quantized, displaying plateaus at the values

RH = ρxy =
h

e2
1

m
, m ∈N , (1.1)

where h is the Planck’s constant and −e the electron charge. This be-
havior is shown in Fig. 1.2 (top right). The transition between different
plateaus is quite sharp and the quantization of the Hall resistance
according to (1.1) is astonishingly precise: up to a part in a billion,
independently of the particular sample. For this reason, the IQHE has
also had applications in metrology [50, 51]. In correspondance of each
plateau, the longitudinal resistance ρxx vanishes, while it is finite at
the transition between consecutive plateaus. The conductivity tensor
σ = ρ−1 features a quantized Hall conductanceThe Hall

conductance is
quantized and

depends only on
universal constants.

σH = σxy = m
e2

h
(1.2)

and a vanishing longitudinal conductance σxx = 0. The integer m is
called filling factor and counts the number of the filled Landau levels.
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Figure 1.2: The IQHE. Top left: sketch of a quantum Hall bar: a 2DEG (light-
blue region) is exposed to a strong perpendicular magnetic field.
By driving a current I through the sample, the Hall and longitu-
dinal resistances are measured. Top right: behavior of the Hall
resistance RH and the longitudinal resistance ρxx as a function
of the magnetic field intensity B. RH displays quantized plateaus
in correspondence of which ρxx vanishes. Bottom: the 2DEG is
insulating in the bulk, but metallic gapless edge states emerge
at the boundaries of the system. This point will be addressed in
Sec. 1.2.2. The transition between two consecutive plateaus is a
quantum phase transition and comes together with the removal
or addition of an edge state. Image adapted from [52].
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The fact that σH only depends on universal constants and its quan-
tization is extremely precise cannot be a coincidence and must be
related to some deep property of the system. This is where topology
comes into play. We now briefly review how the Hall conductivity is
directly related to a topological invariant known as the Chern number.
This important result was established in a seminal paper by Thou-
less, Kohmoto, Nightingale and den Nijs [53]; due to this work, the
Chern number in the context of IQHE is also referred to as the tknn

invariant.

1.2.1 Hall conductivity and topology

Before making contact with the tknn paper, we need to introduce the
notion of Berry phase, discussed by Berry in 1984 [54] and anticipated
in an earlier work by the Indian physicist Pancharatnam [55]. Suppose
that the Hamiltonian H describing the system we are interested in
depends on a set of parameters ~ζ = (ζ1, . . . , ζN). These are simply
labels and not dynamical variables. Then, for every set of parameters,
we can find a set of eigenstates |φn(~ζ)〉 satisfying

H(~ζ) |φn(~ζ)〉 = En(~ζ) |φn(~ζ)〉 . (1.3)

Suppose now that the quantum state |ψ(0)〉 of the system at t = 0

is the n-th eigenstate: |ψ(0)〉 = |φn[~ζ(0)]〉 and assume that it is non-
degenerate. What happens now if we perform an adiabatic evolution
~ζ(t) in the parameter space? The adiabatic theorem [56] ensures1 that
the evolved state |ψ(t)〉 follows the time evolution of the eigenstate
|φn〉, at most picking a phase factor:

|ψ(t)〉 = eiθ
(n)(t) |φn[~ζ(t)]〉 . (1.4)

The phase can be calculated by plugging this expression for |ψ(t)〉 into
the Schrödinger equation:

i h
d
dt

[
eiθ

(n)(t) |φn[~ζ(t)]〉
]
= H[~ζ(t)] |φn[~ζ(t)]〉

= En[~ζ(t)]eiθ
(n)(t) |φn[~ζ(t)]〉 .

(1.5)

By now taking the inner product with 〈φn[~ζ(t)]| and performing a
time integration we find

θ(n)(t) = −
1
 h

∫t
0

En[~ζ(τ)]dτ+ i
∫t
0

〈
φn[~ζ(τ)]

∣∣∣∣ d
dτ
φn[~ζ(τ)]

〉
dτ . (1.6)

The first term is the well known dynamical phase; the second is a
geometric one, known as the Berry phase, and can be written as a

1 The statement is true if there is a gap between the eigenstate under investigation and
the rest of the spectrum. In other words, one has to be sure that during the adiabatic
evolution level crossing is avoided.
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line integral along the path P described by the evolution ~ζ(t) in the
parameter space:

γ(n) =

∫
P

~A(n)(~ζ) ·d~ζ , ~A(n)(~ζ) = i
〈
φn(~ζ)

∣∣∣∇~ζ

∣∣∣φn(~ζ)〉 . (1.7)

Being a line integral, γ(n) does not depend on how the path in the Berry phase and
Berry connection.parameter space is covered (provided of course that the evolution

is such that the adiabatic theorem holds), but just on the path itself.
The quantity ~A(n)(~ζ) is called the Berry connection and it is always
real2. There is a close analogy between the Berry connection and
the electromagnetic vector potential (hence the choice of notation for
indicating it). Indeed, under a gauge transformation of the eigenstates

|φn(~ζ)〉 → eif(~ζ) |φn(~ζ)〉 , (1.8)

with f a smooth function of the parameters, the Berry connection
transforms as

~A(n)(~ζ)→ ~A(n)(~ζ) −∇~ζ f(
~ζ) . (1.9)

Let us now consider a closed loop P in the parameter space. Then
|φn[~ζ(0)]〉 = |φn[~ζ(t0)]〉, t0 being the time at which the system returns
to the initial parameter configuration3. Such a property has to be
maintained by every gauge transformation:

eif[~ζ(0)] |φn[~ζ(0)]〉 = eif[~ζ(t0)] |φn[~ζ(t0)]〉 . (1.10)

This is equivalent to say that

f[~ζ(0)] − f[~ζ(t0)] = 2πp , p ∈ Z . (1.11)

On the other hand, if we look at Eq. (1.7) we realize that the last The Berry phase is
gauge-invariant
modulo 2π.

equation is nothing but the variation of the Berry phase under the
gauge transformation. We then conclude that, for a closed loop P,
the Berry phase is gauge-invariant modulo 2π. This means that the
Berry phase cannot be gauged away and must have physical relevance.
Further exploting the electromagnetic analogy, it is possible to define
a Berry curvature which is a gauge-invariant quantity

Ω
(n)
αβ = ∂αA

(n)
β − ∂β A

(n)
α , (1.12)

2 Indeed, from the condition
〈
φn(~ζ)

∣∣∣φn(~ζ)〉 = 1 (eigenstate normalization) it follows

0 = ∇~ζ

〈
φn(~ζ)

∣∣∣φn(~ζ)〉 =
〈
∇~ζ
φn(~ζ)

∣∣∣φn(~ζ)〉+〈φn(~ζ) ∣∣∣∇~ζ
φn(~ζ)

〉
∝ Im~A(n)(~ζ) .

3 This is because eigenstates are assumed to be single-valued functions in the parameter
space, so that, if ~ζ(0) = ~ζ(t0), the associated eigenstates must also be equal. It is not
always possible to choose |φn(~ζ)〉 as globally single-valued over the whole parameter
space. In this case, one has to resort to local overlapping patches where a single-valued
parametrization can be found [14, 57].
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where ∂α is a shorthand notation for ∂/∂ζα . Now, if we assume that
the Berry connection is smooth over the parameter space, we can write

γ(n) =

∮
P=∂S

~A(n)(~ζ) · d~ζ =
∫∫
S

Ω
(n)
αβdζα ∧ dζβ , (1.13)

where S is a simply connected surface whose boundary is P = ∂S (for
a three-dimensional parameter space, the above equation is just the
usual Stokes theorem and the Berry curvature is simply the curl of the
Berry connection).

What happens when S is a surface with no boundaries? One would
be tempted to conclude that the integral in the r.h.s. of (1.13) vanishes
because ∂S = ∅. However, this is wrong and a theorem in differential
geometry ensures that∫∫

S

Ω
(n)
αβdζα ∧ dζβ = 2πCn , (1.14)

where Cn is a topological invariant known as the first Chern number
and is an integer (for a proof see for instance [14, 57]). The reason whyThe integral of the

Berry curvature over
a closed surface is

quantized and gives
the Chern number.

the integral (1.14) can be non-zero is that the application of the Stokes
theorem in (1.13) requires that the Berry connection be a smooth
function everywhere on S and this is not the case when the topology
of the system is non-trivial [14, 57–59]. This is why a nonvanishing
Chern number can be seen as a “topological obstruction” preventing
the application of the Stokes theorem. The reason for introducing
the Berry curvature is that it allows to make contact with the tknn

invariant which is proportional to the Hall conductivity σH and is
exactly the integral of the Berry curvature over a close surface, namely
the Brillouin zone appearing in band theory.

In the work by tknn [53], Bloch electrons in a rectangular 2D lattice
in the presence of a perpendicular magnetic field were considered.
This is also known as the Hofstadter problem. The presence of the
lattice periodic potential is essential in order to exploit Bloch’s theorem
[60, 61], which guarantees that the eigenstates have the form

|φn〉 = ei~k·~r
∣∣∣u(n)~k

〉
, (1.15)

where ~r = (x,y), ~k = (kx,ky) and |u
(n)
~k
〉 are Bloch states, n denoting

the band index. In order to have a well-defined quasi-momentum ~k, it
is necessary to choose ϕ = abBe/ h = p/q, with p,q ∈ Z. Here, a and
b are the sizes of the unit cell in the two directions, B is the magnetic
field and ϕ is the dimensionless magnetic flux per unit cell. This
choice of ϕ, which is required in order for the translation operators
to commute with each other and the Hamiltonian, comes together
with a modified Brillouin zone, defined by kx ∈ (−π/qa,π/qa] and
ky ∈ (−π/b,π/b], and is called magnetic Brillouin zone [53, 59, 62,
63]. The spectrum of this problem is highly non trivial as a function of
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ϕ and is known as the Hofstadter’s butterfly [64, 65], which displays
fractal properties when ϕ is irrational. By using the Kubo formula [66]
in linear response theory, tknn showed that the Hall conductance
can be expressed as Connection between

the Hall conductivity
and the tknn

invariants.σH =
e2

 h

∑
n

∫∫
T2

d2k

i〈∂u(n)~k

∂kx

∣∣∣∣∣∣ ∂u
(n)
~k

∂ky

〉
− i

〈
∂u

(n)
~k

∂ky

∣∣∣∣∣∣ ∂u
(n)
~k

∂kx

〉 .

(1.16)

Here, the integral is computed over the magnetic Brillouin zone, which
is a 2D torus T2, and the sum runs over all the occupied bands.
Importantly, in this problem there is a band gap, i.e. the system is a
band insulator. The term in square brackets is nothing but the Berry
curvature: to see this it is sufficient to use the definitions (1.12) and (1.7)
and notice that in our case the parameter space is two-dimensional, ~ζ
being replaced by ~k and the generic eigenstates |φn(~ζ)〉 by Bloch states.
Now, from (1.14), we know that the integrals in (1.16) are quantized
and then the Hall conductivity is given by the sum of the Chern
numbers of occupied bands:

σH =
e2

h

∑
n

Cn ≡ C
e2

h
. (1.17)

The computation of the Chern number Cn of a given band is very
complicated and the reader is referred to the literature for details
about this point [14, 62]. Here we simply notice that, by comparing
(1.2) and (1.17), we have the identification between the total Chern
number and the filling factor: m = C [15].

We thus have come to the conclusion that there is a deep connection
between a physical observable, the Hall conductivity, and a topologi-
cal invariant, the Chern number. This explains the extremely precise
quantization of σH and also its independence of the sample’s details:
these are indeed local features; on the contrary, topological properties
are global and unaffected by local deformations. In particular, the The quantization of

the Hall conductivity
is topologically
protected.

Chern number can change only in integer steps and, in order for that
to happen, a “global” action on the system is needed. Such a tran-
sition involves a gap closure: indeed, topologically equivalent Bloch
Hamiltonians H(~k) are those which can be adiabatically deformed
into one another without closing the gap in the spectrum. Therefore, a
transition between topologically distinct phases has to go through a
gap closure. This is exactly what happens between two consecutive
plateaus in the IQHE.

As a further remark, we mention that there is a close analogy be-
tween the Berry curvature defined in (1.12) and the Gaussian curvature
of a 2D surface. In the same way as the Chern number is a topological
invariant, the Gauss-Bonnet theorem [58] states that the integral of the
Gaussian curvature over a closed compact 2D surface gives the Euler
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characteristics, which is an integer number: χ = 2(1− g) (g is called
the genus of the surface and classifies topologically distinct classes
of surfaces, basically counting the holes). Differently from the Euler
characteristic, the Chern number is not a property of the surface over
which the Berry curvature is integrated (the Brillouin zone), but is
rather associated with the manifold of the eigenstates |u

(n)
~k
〉 defined

over it.
Before continuing the description of the IQHE state, it is important

to mention that this is not the only system featuring a quantized Hall
conductance. Actually it is not even necessary to have a magnetic
field for this to happen. All that matters is the breaking of time-
reversal symmetry. Systems with a band gap still exhibiting a finite
Hall response (and thus having a non vanishing Chern number) are
known as Chern insulators and their behavior is called Quantum
Anomalous Hall Effect [67, 68].

1.2.2 Edge states

It is now time to address an important question: what happens at
the edges of the sample? This question is relevant both from the
experimental and the theoretical point of view. In the first case, because
in an actual setup there is a finite sample, to which metallic contacts
are connected in order to perform the measurement. On the theoretical
side, this question is deeply connected with another important point
yet unexplored, which is the following. In the Hofstadter problem
considered by tknn (and also in other models having a non zero Hall
response) the system is gapped and, as such, insulating. The same is
true in its continuum limit (i.e. no lattice potential), where there is a
gap between consecutive Landau Levels. How is then possible to have
a finite conductance? The answer lies precisely in the presence of the
edges, where metallic states appear as a consequence of the non-trivial
topology of the system. A simple but very general argument, based
on the discussion in the previous Section, can help us understand
why such states have to be there. Consider bringing two systems in
topologically distinct phases close to each other. By going across the
interface between them, the topological invariant (the Chern number,
say) changes its value. But we know that in order for this to happen,
the system must undergo a gap closure, otherwise the topological
invariant cannot change. Therefore, we come to the general conclusionMetallic edge states

emerge at the
interface between

topologically distinct
phases.

that, at the interface between two topologically distinct phases, gapless
edge states have to be present. This is precisely what happens in the
IQHE: the system is in contact with the vacuum (or a trivial insulator),
which has Chern number C = 0. Then, depending on what the Chern
number of the IQHE state is, a corresponding number of edge channels
emerge at the boundary of the system, as shown in Fig. 1.2.
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This rather abstract argument can be made more rigorous and there
are different ways of quantitatively discussing the edge channels. In
the following we just sketch one of them and refer the reader to the
literature for further details [10–13, 63]. We work in the continuum
limit, neglecting the lattice potential. So we consider free electrons
in the xy plane (Lx and Ly being the sizes of the sample in the
two directions), under a perpendicular magnetic field ~B = Bẑ. The
Hamiltonian is H = (~p+ e~A)2/(2me), with ~p = −i h(∂x,∂y, 0), ~A the
magnetic vector potential and me the electron mass. The spectrum of
the system is given by the Landau levels [69]

Em =  hωc

(
m+

1

2

)
, (1.18)

where 0 6 m ∈ N and ωc = eB/me is the cyclotron frequency.
These levels are highly degenerate and can accomodate Ndeg = ϕ/ϕ0
electrons, with ϕ = BLxLy the magnetic flux through the sample and
ϕ0 = h/e the flux quantum. In order to prove this, we have to compute
the wavefunctions of the problem. Unlike the energy spectrum (1.18),
they do depend on the particular gauge choice for the vector potential
~A, which has therefore to be specified. In the Landau gauge ~A = −Byŷ,
the wavefunctions must have the form

φm,k(x,y) = eikxYm,k(y) (1.19)

because the Hamiltonian does not depend on x. By assuming periodic
boundary conditions in the x direction, the momentum k is quantized
in the usual way

k =
2πr

Lx
, r ∈ Z . (1.20)

By using the expression (1.19), the Hamiltonian becomes

H =
p2y

2me
+
1

2
ωc
(
y− k`2B

)
, (1.21)

where `B =
√

 h/eB is called the magnetic length. The above result
describes a harmonic oscillator, whose potential is centered at the
position y = k`2B. Therefore, the wavefunctions Ym,k(y) in (1.19) are
given by [69]

Ym,k(x,y) = N exp
[
−
(y− k`2B)

2

2`2B

]
Hm(y− k`2B) , (1.22)

where N is a normalization factor and Hm are the Hermite polynomi-
als [70]. The important thing to notice about this expression is that the
spatial localization of the states depends on k: each wavefunction is
localized at y0 = k`2B. Thus, by imposing that |y0| < Ly/2 (meaning
that the center each harmonic oscillator has to be inside the sample)
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Figure 1.3: Bending of the Landau levels (1.18) at the edge of the sample due
to the confining potential Uc(y). When m Landau levels are filled
(i. e. the filling factor is ν = m), the Fermi energy intersects the
spectrum in m couples of points and m chiral channels emerge at
each edge of the Hall bar (the cases m = 1 and m = 2 are shown
here).

and using (1.20), one finds |r| < LxLy/(4π`
2
B). Thus, the number of

states in each Landau level is given by Ndeg = ϕ/ϕ0, as stated before.
An important quantity in the quantum Hall effect is the filling factor4

ν, defined as the fraction of filled Landau levels. If we denote by N
the total number of electron in the system, the filling factor is clearly
given by

ν =
N

Ndeg
=
hne

eB
, (1.23)

ne being the electron density in the system.
The last ingredient we need in order to explain edge states is a

confining potential in the y direction to describe the finiteness of
the sample. Thus we add to the Hamiltonian a term Uc(y), with the
properties of being zero inside the sample and increasing at its edges
(i. e. at y = ±Ly/2) to keep the electrons confined. If we further assume
that Uc(y) is slowly varying on the scale of the magnetic length, the
energy of each eigenstate (1.22) will be raised by the quantity Uc(y0).
As a consequence, Landau levels corresponding to states close to the
edges are bent, so that the spectrum as a function of k assumes the
structure sketched in Fig. 1.3.

4 Here we use the letter ν for the filling factor, differently from the letter m used in
(1.1). The reason for this is that the filling factor ν in (1.23) can also assume fractional
values, while m is an integer number.
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From this picture we can finally understand the conductance quan-
tization from an “edge perspective”: when the Fermi energy lies in the
gap between the first and second Landau levels, it intersect the bent
spectrum in two points, roughly at k = ±Ly/(2`2B). As a consequence,
we have two states with a non vanishing and opposite group velocities:
a right-moving state, with positive group velocity and a left-moving
one, with negative group velocity. Moreover, given the proportionality
between k and y, we know that those states are located at the edges
of the sample (near y = ±Ly/2) and, therefore, spatially separated. The
situation at filling factor ν = 1 we have just described is represented
in Fig. 1.3 (top left), where it can be seen that a conduction channel
appears at the edges of the Hall bar, while the bulk is insulating. The
right-moving channel is located on the upper edge of the sample,
because the state with positive group velocity in the bent spectrum
is at k = +Ly/(2`

2
B). Conversely, for the same reason, the left-moving

channel is located on the lower edge of the sample. The bottom part of
Fig. 1.3 pictures the case of filling factor ν = 2. Here, the Fermi level
intersects the spectrum four times and consequently four edge states
are formed, two right-moving and two left-moving. Therefore, two
copropagating channels emerge at each edge of the sample. Edge states in the

IQHE are chiral and
backscattering is
forbidden.

The spatial separation of edge edge states with different chiralities
has the important consequence that backscattering between them is
exponentially suppressed with the transverse size of the sample Ly and
in practice is forbidden; therefore, electrons move chirally along the
edges in perfectly transmitting channels. From the Landauer picture
of quantum transport [71, 72], we know that each of such channels
bears a conductance quantum5 GQ = e2/h. Moreover, from Fig. 1.3,
it is obvious that when an integer number of Landau levels is filled,
i. e. ν = m ∈ N, the Fermi energy intersects the spectrum m times
and therefore m channels emerge at each edge. On the whole, the
conductance of the system is then nothing but the Hall conductance
(1.2). Remarkably, disorder effects unavoidably present in realistic
samples, actually help (if they are not too strong) stabilizing the edge
channels [11] and obtaining better defined plateaus.

In conclusion, we have seen that the IQHE naturally provides chiral
edge channels which are real one-way waveguides for electrons and,
as such, a perfect playground for EQO purposes. Moreover, they have
been known almost since the discovery of the IQHE and the systems
where they emerge are experimetally well mastered. For this reason,
the majority of EQO experiments have indeed been performed in IQHE

edge channels.
However, these are not the only possibility and other kinds of edge

states have later been discovered in new topological materials. One
notable example is the Fractional Quantum Hall Effect (FQHE), discov-

5 Here there is no factor 2 since electrons are spin-polarized as a consequence of the
high magnetic field.
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ered in 1982 [73]: this peculiar state exhibits a fractionally quantized
Hall conductance σH = νe2/h, with ν ∈ Q. Just as in the integer
case, it is a topological phase, but a very peculiar one, as it requires
strong electronic correlations. The simplest FQHE states are described
by the so-called Laughlin sequence (ν = 1/(1+ 2p), with p integer)
[74], where a single chiral channel emerges at the edge of the system,
while the edge states for other filling factors are more complicated
[75, 76] and, in some cases, still debated [77–79]. Extensions of EQO

towards fractional filling factors in the Laughlin sequence have been
considered in the literature [80–88], but will not be discussed in this
thesis. A further interesting possibility is represented by helical edge
states emerging at the boundaries of Two-Dimensional Topological
Insulators (2DTI)s [17]. This subject will be addressed in Chapter 4.

1.3 single-electron sources : overview

As we have seen, the condensed matter counterparts of beamsplitters
(QPCs) and waveguides have been known since a long time (at least
as far as edge channels in the IQHE are concerned). It was not until
recently, though, that coherent on-demand single-electron sources
became available and well established. There are nowadays a few
ways of generating and controlling single-electron wave packets in
quantum conductors and they are nicely reviewed in Ref. [39]. In
summary, the state of the art concerning single-electron sources is the
following.

• Mesoscopic capacitor. This source is based on a driven Quantum
Dot (QD), coupled to a 2DEG in the IQHE regime and is able to
inject single electrons with well defined energy above the Fermi
sea. It was the first single-electron source to be implemented.

• Leviton source. It is based on the application of a properly
engineered voltage pulse to a 1D quantum conductor. It has
the advantage that it can inject multiple electrons at the same
time and its implementation does not require nanolithography
techniques.

• Dynamical quantum dots. This source exploits a QD whose con-
fining potential can be modulated in order to trap and release
electrons in a cyclic way. It is typically implemented by relying
on two parallel electrostatic gates deposited on top of a 2DEG,
with a small opening between them that defines the QD region.
This source generates electrons far above the Fermi sea (the typi-
cal energy of electrons ejected from the QD is 100 meV, while the
Fermi energy is about 10 meV) [89–91].

• Surface acoustic waves. Like in the previous case, electrons are
first trapped in a QD and then emitted by the application of a sur-
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face acoustic wave, generated via the piezo-electric effect, which
kicks electrons out of the QD [92, 93]. This source is difficult to
implement, but was shown to be very accurate and allows for
single shot detection of electrons.

Here, I will briefly introduce the mesoscopic capacitor [4] and present
in more detail the Leviton source [5], the latter being the most relevant
one for the purpose of the present thesis. We refer to the review [39]
for further information about the last two entries of the previous list.

1.3.1 Mesoscopic capacitor

Figure 1.4: Setup and operating mechanism of the mesoscopic capacitor
source. Image taken from [4].

In 2007, G. Fève et al. at Laboratoire Pierre Aigrain accomplished
the implementation of the first on-demand single-electron source. This
emitter is based on a non-adiabatically driven mesoscopic capacitor [4,
94]. The system is sketched in Fig. 1.4 and is realized in a GaAs/Al-
GaAs 2DEG in the IQHE regime. By means of metallic gates a part of the
2DEG is confined and a QD is created, whose transmission is controlled
by the gate polarization voltage VG. A coupling between the QD and
the edge states of the 2DEG is therefore present. In particular, the gate
potential VG is set in such a way that inner edge states6 are fully
reflected so that only one edge mode couples to the QD. Finally, an
additional top gate (yellow region above the QD in Fig. 1.4) can be
used to shift the chemical potential of the QD with respect to the Fermi
level of the 2DEG.

Due to confinement, the spectrum of the QD is made of discrete
energy levels, spaced by a characteristic scale ∆. Typical experimental
values are ∆ ≈ 2 - 4 K [4]. By acting on the top gate with a step
voltage eVexc(t) of amplitude ∆/2, these energy levels are shifted in

6 The experiment was performed at filling factor ν = 2, thus two edge channels are
present in the Hall bar.
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Figure 1.5: Real-time average current describing the emission of single elec-
trons and holes from the mesoscopic capacitor into the edge
channel of the 2DEG. Image taken from [4].

such a way that the uppermost occupied level of the QD is abruptly
brought above the Fermi level (step 1); thus the electron tunnels into
the edge state of the 2DEG (step 2), with a typical time scale τ, which is
controlled by the transmission D between the dot and the edge mode.
Finally, the QD levels are brought back to their original position and
an electron tunnels from the edge mode into the dot, i. e. a hole is
emitted in the 2DEG (step 3). By cyclically repeating this precedure, the
periodic emission of single electrons and holes into the edge channel
is achieved.

Real-time measurements in Fig. 1.5 show an exponentially decreas-
ing average current [4]

〈I(t)〉 = ±e
τ

e−t/τ

1+ e−T/2τ
, (1.24)

where T is the period of the cycle and the plus (minus) sign in front
of the previous expression applies in the first (second) half of the
cycle. Provided that τ� T , the integral per half-period of the previous
relation gives precisely an elementary charge, thus suggesting that
a veritable emission of single electrons and holes is achieved. In
order to be completely sure of this statement, one has to go beyond
average current measurements, so as to rule out the possibility that the
above mentioned quantization is just an average effect (for instance an
electron is emitted in the first half period, no electrons in the third, two
electrons in the fifth, thus compensating for the missing emission in
the third). This can be done by considering current correlations [95, 96].
In particular, it has been shown that the accuracy of the mesoscopic
capacitor as a single-electron source strongly depends on its operating
regime [97]. The two extreme conditions are represented in Fig. 1.6.
The left panel is the so-called optimal regime, where the energy of
the uppermost occupied level of the QD is at ∆/2 below the Fermi
level of the 2DEG. In this regime the mesoscopic capacitor operates as
a real single-electron emitter. This is not the case when the situation is
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Figure 1.6: Two different operating conditions of the mesoscopic capacitor.
Left: optimal regime. Right: resonant regime. Image taken from
[95].

as represented in the right panel, i. e. the so-called resonant regime.
Here, there is always a QD level at resonance with the Fermi energy
and the device can be shown to produce unwanted electron-hole pair
excitations, visible in the noise spectrum [95].

As a final remark, we emphasize that the mesoscopic capacitor is an
emitter providing single electrons with a well defined energy, which
is clearly related to the level spacing ∆ in the QD. In particular, in
the optimal emission regime, the energy of the injected electron is
centered at ε0 = ∆/2 and distributed as a Lorentzian. On the contrary,
from Fig. 1.5 it is transparent that the emission is not localized in time.
We will see in Sec. 1.3.2 that a complementary source exists, providing
a localized emission in time and, consequently, an energy which is not
well defined.

After the full understanding of the different properties and operat-
ing regimes of the mesoscopic capacitor had been achieved, several
EQO experiments exploiting this single-electron source have been im-
plemented [2, 3, 23, 26, 98, 99]. In particular, the electronic version of
the Hanbury Brown-Twiss (HBT) experiment [100], where a stream of
single electrons is excited along the edge and subsequently partitioned
at a QPC was reported [2]. Further on, also the electronic Hong-Ou-
Mandel (HOM) interferometer [101] was implemented [98]. In this case,
the geometry is more complicated and requires two operating single
electron sources with a tunable delay between them, as depicted in Fig.
1.7. This kind of setup can be used to probe the indistinguishability
of incoming states and the output is very different for photons and
electrons. In the first case there is a so-called bunching effect: when
two identical photons arrive at the same time at the beamsplitter, they
stick together and exit the interferometer on the same arm. Therefore
the coincidence counts rate in the output arms vanishes. Conversely,
identical electrons impinging on the beamsplitter at the same time
are forced to exit on different arms, due to the Pauli principle. As
a consequence the coincidence counts rate is doubled with respect
to the one observed at a time delay larger than the wave packets
temporal extension. This effect is referred to as anti-bunching. Its ex-
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(a) Experimental image of an electronic
HOM interferometer. Image taken
from [26].

(b) Expected coincidence counts, in the
two cases of photons and electrons.
Taken from [39].

Figure 1.7: Electronic HOM interferometer.

perimental observation has been one of the major achievements in
EQO. This was done through noise measurements: instead of looking
at the coincidence rate, one looks at its fluctuations. In the case of
electrons, fluctuations should be completely suppressed, as the two
identical particles would always exit the interferometer on different
arms and detected in coincidence. The partial noise suppression ex-
perimentally observed in Ref. [98] was later attributed to the effect of
interactions along the quantum Hall edge states [102], thus indicating
that electronic correlations can play an important role.

1.3.2 Voltage pulse source

A perhaps conceptually simpler way of generating excitations in a 1D

quantum conductor exploits the application of a very short voltage
pulse to the system. As the conductance of a ballistic quantum channel
is (neglecting spin) the conductance quantum GQ = e2/h, it follows
that charge carried by the excitation generated by V(t) is simply

C =
e2

h

∫+∞
−∞ V(t)dt . (1.25)

Equivalently, the number q of electrons associated with the excitation
is

q =
C

−e
= −

e

h

∫+∞
−∞ V(t)dt . (1.26)

However, this does not mean that any voltage drive such that the
previous integral gives q = n ∈ N actually injects n electrons. This
is because, while on average it is certainly true that n electrons are
injected, the integral (1.26) tells us nothing about the possible creation
of neutral particle-hole pair excitations.

The goal is then to find a shape of V(t) ensuring that no such neutral
excitations are created. This seemingly very complicated task has a



1.4 levitons as minimal excitations 19

quite simple solution, first found by L. Levitov and coworkers [6, 7]
well before the birth of EQO. The answer is that the voltage pulse has
to be a superposition of Lorentzian functions with quantized area and
the same sign:

V(t) = ∓
 h

e

n∑
p=1

2wp

w2p + (t− tp)2
. (1.27)

Here, wp is a parameter describing the temporal extension of each
Lorentzian pulse and tp is the emission time. When the negative
(positive) sign in (1.27) is chosen, this drive generates n electrons
(holes), without any particle-hole pair excitations. After Levitov, such
excitations have been dubbed Levitons [5].

We will prove this result in Sec. 1.4, which is dedicated to a quite
detailed analysis of Levitons in a non-interacting system. At this stage,
we just show in Fig. 1.8 the sketch of the experimental implementa-
tion [5] which confirmed the theoretical prediction, together with a
schematic representation of the main properties of a single-Leviton
wavefunction. The experiments employed a periodic train of quantized
Lorentzian pulses, applied to a contact connected to a 2DEG. The 1D

conductor is created by means of a QPC, with tunable transmission D,
as depicted in Fig. 1.8a. The current fluctuations due to the presence
of the QPC are measured in the right contact and allow to probe the
“cleanness” of the produced excitations [7, 8]. From Fig. 1.8b we ob-
serve that the temporal profile of the current is a Lorentzian, while the
energy distribution of the excitation is a decreasing exponential which
leaves the Fermi sea untouched. Thus a Leviton is a single-electron
excitation on top of the Fermi sea.

1.4 levitons as minimal excitations

In this Section we begin to set the theoretical tools for describing
electron quantum optics setups. In particular, we prove that Lorentizan
pulses with quantized area do indeed generate minimal excitations.
From now on, we choose units in which  h = 1.

As stated at the beginning of the Chapter, here the analysis will be
limited to non-interacting electrons. For this reason, we consider the
simplest possible 1D conductor, i. e. a single quantum Hall chiral edge
channel. By setting the chemical potential to zero, the Hamiltonian of
this system is

H0 =

∫+∞
−∞ dxΨ†(x)(−ivF∂x)Ψ(x) , (1.28)

where ψ(x) is the fermionic annihilation field operator, destroying
an electron at position x, and vF is the Fermi velocity along the edge.
Note that this Hamiltonian has a linear spectrum

ω(k) = vFk . (1.29)
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(a) Sketch of the experimental setup: a periodic train of Lorentzian
pulses is applied to the left contact. A stream of single electrons
is generated in a 1D channel, created in a 2DEG by means of a
QPC with tunable transmission D.

(b) Sketch of the temporal profile of a Leviton wavefunction and
its energy distribution. As we can observe, the Fermi sea is
untouched.

Figure 1.8: Sketch of the experimental setup for used for detecting Levi-
tons and main properties of a single-Leviton wavefunction. Both
images are taken from [5].
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Even if the dispersion relation along the edge could deviate from this
behavior, it is always possible to assume the linear relation (1.29) if we
are interested in the low-energy physics of the system.

In order to find the voltage drive generating minimal excitations,
we have first to understand how a generic V(t) influences the time
evolution Ψ(x, t) of the electron field operator. We consider the situa-
tion depicted in Fig. 1.9, where a the time-dependent potential V(t) is
applied to the edge channel in the region x ∈ (−∞, 0). We describe this

Figure 1.9: Voltage pulse source applied to a chiral edge channel. The poten-
tial V(t) is applied uniformly in the region (−∞, 0) and generates
excitations propagating to the right, due to the chirality of the
edge mode.

with the function U(x, t) = Θ(−x)V(t), where Θ(x) is the Heaviside
step function. The voltage couples to the charge density on the edge
via the Hamiltonian

Hg = −e

∫+∞
−∞ dx U(x, t)Ψ†(x)Ψ(x) . (1.30)

Before finding the time evolution Ψ(x, t), we want to better specify
the setting of the problem with some general remarks. We assume
that at t = −∞ the system is in thermal equilibrium, with no applied
drive, and thus is characterized by the time-independent equilibrium
density matrix ρ̂0, stemming uniquely from the Hamiltonian H0. Then,
at t = −∞+ ε (with ε an infinitesimal time), the drive V(t) is switched
on. In the remainder of this Section, we adopt the Heisenberg picture,
so that the time evolution is entirely attributed to operators. As a
result, the quantum average of any operator O(x, t) will be performed
as

〈O(x, t)〉0 = Tr[ρ̂0O(x, t)] , (1.31)

where the time evolution O(x, t) has to be determined with the full
Hamiltonian H = H0 +Hg.

Let us now return to the time evolution of the fermionic field. It is
easy to derive the following Heisenberg equation of motion from the
Hamiltonian H = H0 +Hg:

i(∂t + vF∂x)Ψ(x, t) = −eU(x, t)Ψ(x, t) . (1.32)
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Consider first the simple case of equilibrium, where U(x, t) = 0. In
this situation, the solution to the above equation is simply

Ψ(x, t) = ψ(x− vFt, 0) = ψ
(
0, t−

x

vF

)
. (1.33)

Thanks to the chirality in the time evolution of the equilibrium solu-
tion, we can use interchangeably ω and k as conjugate variables. In
particular, the usual Fourier representation of the fermionic field as
an integral over momenta can also be written as

ψ(x− vFt, 0) =
1√
2πvF

∫+∞
−∞ dω e−i

(
t−ωx

vF

)
c(ω) , (1.34)

where c(ω) is the operator annihilating an electron at energy ω. These
operators satisfy the equilibrium average〈

c†(ω)c(ω ′)
〉
0
= Tr[ρ̂0c†(ω)c(ω ′)] = δ(ω−ω ′)nF(ω) , (1.35)

where nF(ω) = 1/(1+ eω/kBθ) is the Fermi function at temperature θ
and kB the Boltzmann constant.

We now come to the general solution of Eq. (1.32) in the presence
of the driving term U(x, t). It can be shown that the time evolution
Ψ(x, t) in this case is given by (see Appendix A.1 for details)

Ψ(x, t) = ψ(x− vFt, 0)eie
∫t
−∞ dt ′ U[x−vF(t−t

′),t ′] . (1.36)

By taking into account the spatial dependence of U(x, t), the previous
result can be further written, for x > 0, as

Ψ(x, t) = ψ(x− vFt, 0)e
iα
(
t− x

vF

)
, α(τ) = e

∫τ
−∞ dt ′ V(t ′) . (1.37)

Notice that, even in the presence of the drive V(t) the time evolution
of the fermionic operator is chiral. This is indeed an inherent property
of quantum Hall edge states. As a consequence, we can write

Ψ(x, t) =
1√
2πvF

∫+∞
−∞ dω e−iω

(
t− x

vF

)
C(ω) , (1.38)

where C(ω) is a fermionic operator. Its explicit expression can be
obtained in this way. We define the Fourier transform

p(ω) =

∫+∞
−∞ dτ eiα(τ)eiωτ (1.39)

and make use of the representation (1.34) in (1.37), arriving at

C(ω) =
1

2π

∫+∞
−∞ dω ′ p(ω ′)c(ω−ω ′) . (1.40)

Thus, we see that C(ω) is built as a superposition of operators c(ω),
shifted at all possible energies ω ′ and weigthed by the (complex)
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coefficient p(ω ′) which depends on the voltage drive. Notice that
when V(t) = 0 we have from (1.39) p(ω) = 2πδ(ω) and therefore
C(ω) = c(ω), as it should be.

This discussion shows that the effects of the drive can be included in
the new operators C(ω), which define a modified occupation number
distribution

f(ω) =
〈
C†(ω)C(ω)

〉
0
= Tr[ρ̂0C†(ω)C(ω)] . (1.41)

By using (1.40) and the equilibrium average (1.35), we readily find

f(ω) =

∫+∞
−∞

dω ′

(2π)2

∣∣p(ω ′)∣∣2 nF(ω−ω ′) , (1.42)

This result tells us that the new occupation number distribution is
obtained as superposition of equilibrium Fermi functions, shifted at
all possible energies ω ′ and weigthed by the probability density that
the drive creates an excitation at energy ω ′. This interpretation of the
Fourier transform |p(ω)|2/(2π)2 as a probability density is supported
by the normalization condition∫+∞

−∞
dω
(2π)2

|p(ω)|2 = 1 , (1.43)

which can be readily obtained from the definition (1.39).
We now have all we need to formalize the request that no holes are

generated by the drive V(t). Since a finite temperature can generate
particle-hole pairs, let us consider the zero temperature limit, where
any potential hole can be generated only by the drive (no holes are
present at equilibrium). We can understand how to achieve our goal
in two different ways. The first one is to notice that, if p(ω ′) = 0

for ω ′ < 0, then from (1.42) we observe that only upward shifts
of the Fermi function nF are allowed and, since at θ = 0 we have
nF(ω−ω ′) = Θ(ω ′ −ω), it is impossible to modify the occupation
number at negative energies ω < 0. As a consequence, the Fermi sea
remains untouched and no holes are generated. We can arrive at the
same conclusion by calculating the number of holes Nh in the system,
given by

Nh =

∫0
−∞ dω

〈
C(ω)C†(ω)

〉
0

. (1.44)

A straightforward calculation yields

Nh =
1

(2π)2

∫0
−∞ dω

∫ω
−∞ dω ′

∣∣p(ω ′)∣∣2 (1.45)

and shows that Nh = 0 ⇐⇒ p(ω) = 0 for ω < 0, as claimed before.
By looking back at the definition (1.39), is it clear that this is a

constraint on the function eiα(t). In particular, this function must be
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analytic in the lower complex plane (when t is regarded as a complex
variable) and must have at least one pole in the upper part of it
to prevent p(ω) from vanishing everywhere. Finally, being a phase,
|eiα(t)| = 1. Thus we choose

eiα(t) =
t− t0 + iw

t− t0 − iw
, t0 ∈ R, w > 0 . (1.46)

From this we arrive at the final result

V(t) = −
i

e

d
dt

ln eiα(t) = −
1

e

2w

w2 + (t− t0)2
, (1.47)

which is precisely (1.27), for n = 1 (recall that here  h = 1). The
generalization to more electrons is straightforward. We simply have
to add more poles in the upper complex plane when constructing the
function eiα(t), together with corresponding zeros in the lower plane
in order to have a unitary modulus:

eiα(t) =
n∏
p=1

t− tp + iwp
t− tp − iwp

, tp ∈ R, wp > 0 . (1.48)

This leads to the complete Eq. (1.27), with the minus sign. Finally, by
following the same steps, it is now easy to show that a single-hole
excitation is obtained by requiring that eiα(t) has a pole in the lower
complex plane, which amounts to reverse the sign of each wp, thus
obtaining the second option in (1.27).

1.5 first-order coherence function

In this Section we introduce some key quantities in EQO theory, i. e.
coherence functions. After presenting the general definitions, we will
specify to the case of a Lorentzian drive, further investigating the
properties of Levitons. The idea of electronic coherence functions was
proposed by Grenier et al. [1] and aims at transposing in the context of
mesoscopic physics the formalism of optical coherences developed by
Glauber [103–105]. In this Section we will consider the simplest case of
first-order coherence functions. While it is possible, by direct analogy
with Glauber’s theory, to define also higher-order coherences [106–
109], we will not consider them in this thesis. The electric field ampli-
tude used in optics is replaced in EQO by the electronic annihilation
and creation field operators.

1.5.1 Definition and representations

1.5.1.1 Time representation

First-order coherence functions are defined as follows [1, 110]:

G<(x1, x2; t1, t2) =
〈
Ψ†(x2, t2)Ψ(x1, t1)

〉
ρ̂

(1.49)
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is the first-order electron coherence, while

G>(x1, x2; t1, t2) =
〈
Ψ(x1, t1)Ψ†(x2, t2)

〉
ρ̂

(1.50)

is the first-order hole coherence. Our notation is chosen to emphasize
that these quantities are directly proportional to the lesser and greater
Green functions. The above definitions are general and, in particular,
the quantum averages are performed with respect to a generic density
matrix ρ̂, possibly describing a non-equilibrium state. From the above
definitions, the following symmetry properties are easily shown:

G≷(x1, x2; t1, t2) = G≷(x2, x1; t2, t1)∗ . (1.51)

Moreover, electron and hole coherences are related by

G<(x1, x2; t, t) + G>(x2, x1; t, t) = δ(x1 − x2) , (1.52)

as a direct consequence of the canonical anticommutation relations of
fermion fields. For a single-channel chiral conductor as the one we are
considering in this Chapter, field operators do not depend on space
and time separately, but only via the chiral combination x− vFt. We
already encountered an explicit example of such behavior in (1.37).
This is a great simplification. For instance, (1.54) can be also extended
at different times and becomes

G<(x1, x2; t1, t2)+G>(x2, x1; t2, t1) = δ((x1− vFt1)− (x2− vFt2)) .

(1.53)

Actually, given the relation between position and time, we can directly
eliminate the spatial dependence from (1.49) and (1.50) and care only
about time variables. This is done by considering a particular position
x1 = x2 = x along the chiral channel and is a particularly appropriate
choice when considering local measurements, which probe the system
at a given space position.

In most cases in EQO we are interested in the effects of an external
perturbation (e. g. a voltage pulse or an electron injected by the meso-
scopic capacitor) on the equilibrium many-body system. This is why
it is useful to define excess coherences

∆G≷(t1, t2) = G≷(t1, t2) − G
≷
0 (t1, t2) , (1.54)

in order to discard the contribution of the Fermi sea, characterizing
the equilibrium system:

G<0 (t1, t2) =
〈
Ψ†(t2)Ψ(t1)

〉
0

, (1.55a)

G>0 (t1, t2) =
〈
Ψ(t1)Ψ

†(t2)
〉
0

. (1.55b)

Here, equilibrium averages are performed with respect to the density
matrix ρ̂0, characterizing the equilibrium state. A first quantity which
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is directly accessible from coherence functions in the time representa-
tion is the excess charge density7 at time t, that is

∆ρ(t) = −e∆G<(t, t) , (1.56)

Moreover, given the chirality of the system, this quantity is directly
proportional to the excess charge current ∆J(t) = vF∆ρ(t).

1.5.1.2 Energy representation

A different way to look at electron coherences is the energy represen-
tation. It is defined by taking the following double Fourier transform

G̃≷(ω1,ω2) =
∫+∞
−∞ dt1

∫+∞
−∞ dt2 G≷(t1, t2)ei(ω1t1−ω2t2) . (1.57)

By using the representation

Ψ(t) =
1√
2πvF

∫+∞
−∞ dω e−iωtC(ω) (1.58)

it is immediate to find

G̃<(ω1,ω2) =
2π

vF

〈
C†(ω1)C(ω2)

〉
ρ̂

, (1.59)

which shows that the energy representation is more suitable for ac-
cessing the occupation number distribution (obtained for ω1 = ω2).
The equilibrium coherence function in energy representation is purely
diagonal and reduces to

G̃<0 (ω1,ω2) =
2π

vF
nF(ω1)δ(ω1 −ω2) . (1.60)

Once again, we can define the excess coherence function as

∆G̃<(ω1,ω2) = G̃<(ω1,ω2) − G̃<0 (ω1,ω2) . (1.61)

1.5.1.3 Wigner representation

Finally, there is a third and very useful way of describing of electron
coherences. It is called the Wigner function representation and retains
information about both the time dependence of excitations and their
energy content. It was originally introduced by E. Wigner in 1932

[111] and allows a phase space representation of quantum mechanical
particles in terms of a quasi-probability distribution function [112].
More details about this point are given in Appendix B.1. Here it is
enough to say that (possible) negative values in the Wigner function
are a hallmark of non-classical states. We will come back to this point
when discussing a specific example.

7 The excess charge density ∆ρ has not to be confused with the density matrix ρ̂!
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In the framework of EQO electron and hole Wigner functions are
defined as [113]

W≷(t,ω) =
1

2π

∫+∞
−∞ dτG≷

(
t+

τ

2
, t−

τ

2

)
eiωτ (1.62)

and are real quantities owing to the property (1.51) 8. In a chiral
conductor they are not independent as they are related by

vF [W
<(t,ω) +W>(t,−ω)] = 1 , (1.63)

which is a consequence of (1.53). From the definition (1.62) it is imme-
diate to observe that the charge current can be obtained by integrating
the electron Wigner function over the energy variable:

J(t) = −evF

∫+∞
−∞ dωW<(t,ω) . (1.64)

Conversely, by using (1.58) it is also possible to show that the integra-
tion with respect to time yields the occupation number distribution:

f(ω) = vF

∫+∞
−∞ dtW<(t,ω) . (1.65)

Therefore, J(t) and f(ω) can be seen as marginal distributions obtained
from the Wigner function. Finally, W<(t,ω) is normalized to the
average number of electrons in the system. Thus, if we define the
excess Wigner function in the usual way,

∆W≷(t,ω) =W≷(t,ω) −W
≷
0 (t,ω) , (1.66)

the number of extra electrons present in the system due to the effect
of a source is expressed as

∆N = vF

∫+∞
−∞ dt

∫+∞
−∞ dω∆W<(t,ω) . (1.67)

Despite this normalization, it is not possible to regard the Wigner func-
tion as a probability distribution because it can also assume negative
values, as we will see in an explicit example.

8 Indeed, by using (1.51) we find

2π ImW≷(t,ω) =

∫+∞
−∞ dτ

[
G≷
(
t+

τ

2
, t−

τ

2

)
eiωτ − G≷

(
t+

τ

2
, t−

τ

2

)∗
e−iωτ

]
=

∫+∞
−∞ dτ

[
G≷
(
t+

τ

2
, t−

τ

2

)
eiωτ − G≷

(
t−

τ

2
, t+

τ

2

)
e−iωτ

]
= 0
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1.5.2 Application to the study of Levitons

We now apply the above introduced general tools to the specific case
of a voltage pulse source discussed in Sec. 1.4, focusing in particular
on Levitons. Let us start with the coherence function in time represen-
tation. We will consider the zero-temperature limit θ = 0. Recall that
the Heisenberg-picture time evolution of the fermionic field Ψ(t) in
the presence of a drive V(t) reads [cf. Eq. (1.37)]

Ψ(t) = eiα(t)ψ(t) , (1.68)

where ψ(t) is the evolution when no drive is applied. Then, the excess
coherence function (1.54) in this particular case becomes9

∆G<(t1, t2) =
(

e−iα(t2)eiα(t1) − 1
)
G<0 (t1, t2) . (1.69)

The equilibrium contribution at zero temperature is

G<0 (t1, t2) =
〈
ψ†(t2)ψ(t1)

〉
0
=

1

2πivF

1

t2 − t1 + i0+
, (1.70)

so that the excess coherence reads

∆G<(t1, t2) =
(

eie
∫t1
t2

dt ′V(t ′)
− 1

)
1

2πivF

1

t2 − t1 + i0+
. (1.71)

By using

1

t+ i0+
= P

(
1

t

)
− iπδ(t) (1.72)

and noticing that the δ function does not contribute because the term
in parentheses in (1.71) vanishes for t1 = t2, we can write

∆G<(t1, t2) =
(

eie
∫t1
t2

dt ′V(t ′)
− 1

)
1

2πivF
P

(
1

t2 − t1

)
. (1.73)

According to (1.56), the diagonal limit t1 = t2 = t gives the excess
charge density or, equivalently, the current:

∆J(t) = −evF∆G
<(t, t) =

e2

2π
V(t) . (1.74)

This is the expected result, as a single chiral channel has a conductance
of e2/(2π). Notice that this result holds for any drive V(t) and not only
for Levitons. If we specify to the case of a Lorentzian drive injecting
a single electron, the phase exp[iα(t)] in (1.69) is given by (1.46) and
the excess electron coherence becomes

∆G<(t1, t2) =
(
t1 + iw

t1 − iw

t2 − iw

t2 + iw
− 1

)
1

2πivF
P

(
1

t2 − t1

)
=

w

πvF

1

t1 − iw

1

t2 + iw
=
1

vF
φ1(t1)φ

∗
1(t2) ,

(1.75)

9 Recall the discussion on page 21 about how averages are computed in the presence
of the drive V(t)
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where we defined10

φ1(t) =

√
w

π

1

t− iw
. (1.76)

Since the dependence on t1 and t2 is factorized, the excess occu-
pation number distribution has a very simple form. By plugging the
above result into (1.57) we obtain

∆f(ω) =
vF

2π
∆G̃<(ω,ω) =

1

2π

∣∣φ̃1(ω)
∣∣2 , (1.77)

where we defined the Fourier-transformed wavefunction

φ̃1(ω) =

∫+∞
−∞ dt

√
w

π

1

t− iw
eiωt = 2i

√
πwΘ(ω)e−ωw , (1.78)

with Θ(ω) the Heaviside step function. The possibility of expressing
∆f(ω) as a square modulus is a direct consequence of the factorization
of the excess electron coherence (1.75) in the time representation and
is not common to any drive. We note that φ̃1(ω) is non zero only at
positive energies, consistently with the fact that a Leviton is a single
electron-excitation which leaves the Fermi sea unaffected. Indeed,
φ̃1(ω) can be interpreted as the energy-space wavefunction associated
with the single-Leviton state. The occupation number distribution
∆f(ω) in energy space is exponentially decreasing, signaling that a
Leviton is emitted close to the Fermi energy. In Fig. 1.10 we plot the
particle current profile je(t) = J(t)/(−e) for different values of the
pulse width w and the corresponding ∆f(ω). The more localized in
time the pulse, the broader its distribution in energy.

Figure 1.10: Left: particle current profile je(t) = J(t)/(−e) as a function
of time for different values of the width w. Right: probability
density in energy space ∆f as a function ofω for the same values
of w as in the left panel.

If a single hole is injected, by following the lines of what was done
above, it is easy to show that the single electron coherence becomes

∆G<(t1, t2) = −φ∗1(t1)φ1(t2) (1.79)

10 The reason for the subscript in φ1 will become evident later.
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and, consequently,

∆f(ω) = −
1

2π

∣∣φ̃1(−ω)
∣∣2 . (1.80)

This shows that the excess occupation number distribution is always
negative and is nonvanishing only for ω < 0. This behavior is exactly
what we expect for the injection of a single hole.

How do these results generalize to a multi-particle state with n
electrons or holes? From what we have discussed in Sec. 1.4, such a
state can be simply built by applying to the quantum conductor a
superposition of Lorentzian pulses with the same sign, as in (1.27).
When considering the simultaneous injection of n identical electrons
or holes, (1.27) becomes11

V(t) = ∓n
e

2w

w2 + t2
(n > 0) , (1.81)

where we recall that the minus (plus) sign applies to electron (hole)
states. Since this drive is just n times a single Lorentzian pulse, from
(1.74) it follows that the current signal is not very different from the
single-Leviton state. It is actually the same, apart from an overall factor
of n. We may still ask how the n electrons or holes are distributed
in energy space. Here things turn out to be much more interesting.
We will investigate this problem by considering the Wigner function
introduced in Sec. 1.5.1.3.

First of all we have to generalize the result (1.75). By using (1.48) in
the case of a purely electronic state (with the same emission time and
width for each Lorentzian), it is immediate to obtain

∆G<(t1, t2) =
[(
t1 + iw

t1 − iw

)n(
t2 − iw

t2 + iw

)n
− 1

]
1

2πivF
P

(
1

t2 − t1

)
.

(1.82)

Now, starting from (1.75), it is possible to prove by induction that the
previous equation can be written as [114–116]

∆G<(t1, t2) =
1

vF

n∑
j=1

φj(t1)φ
∗
j (t2) , (1.83)

where the wavefunctions

φj(t) =

√
w

π

(t+ iw)j−1

(t− iw)j
(1.84)

form a complete and orthonormal set, in the sense that∫+∞
−∞ dtφ∗j (t)φk(t) = δj,k . (1.85)

11 Referring to Eq. (1.27), we take the parameters tp = 0 and wp = w, for all p.
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Notice that the wavefunction with j = 1 in (1.84) is precisely the
single-Leviton wavefunction introduced in (1.76). This explains the
notation we have used there. By taking the Fourier transform of (1.84)
we obtain

φ̃j(ω) = 2i
√
πwΘ(ω)Lj−1(2ωw)e−ωw , (1.86)

which is the generalization of (1.78). Here, Lj denotes the j-th Laguerre
polynomial [70]. These functions enter the energy representation of
the coherence function, which is, in a sense, the “dual” of (1.83):

∆G̃<(ω1,ω2) =
1

vF

n∑
j=1

φ̃j(ω1)φ̃
∗
j (ω2) . (1.87)

Let us now come to the discussion of the Wigner function for these
multi-particle states. Starting from the expression (1.83) it is possible
to analytically evaluate it. This is done in Appendix B.2 and here we
simply quote the answer and discuss the result. For the n-electron
state the excess Wigner function is [113]

∆W<(t,ω) = Θ(ω)
1

vF
√
π

e−2ωw

×
n−1∑
j=0

j∑
p=0

1

p!

[
2ωw√
ωt

]2p+1
L
(2p)
j−p (4ωw)Jp+ 1

2
(2ωt) ,

(1.88)

where L(k)j are generalized Laguerre polynomials and Jp is the Bessel
function of order p [70]. The first thing to note is that W<(t,ω) ∝
Θ(ω), as expected for a purely electronic state. Moreover, there is an
overall exponential decrease as a function of ω, whose rapidity is
determined by the temporal extension w of the pulse. Apart from this,
the analytic expression is quite involved. In order to have a better
feeling of what is going on, we show in Fig. 1.11 the plots of (1.88) for
n ranging from 1 to 4. It is evident that the Wigner function captures
the familiar time dependence of the Lorentzian pulse (cfr. the real-time
current profile in Fig. 1.10, left panel), the signal being stronger near
the emission time t = 0 and progressively vanishing when |t|→∞.

It is interesting to see what happens when n is increased. The top
left panel shows the case of a single-electron state: as we can see the
signal is concentrated around the emission time t = 0 and at an energy
close to the Fermi level (dark spot). If now we look at the case n = 2,
we see that another spot appears, which is localized around t = 0, but
at higher energy. This scheme repeats in the bottom panels. Each new
electron is added at a higher energy with respect to the previous one.
This is of course due to the Pauli principle, as it is impossible to put
two electrons at the same energy at the same time. With the help of
the Wigner function we can see how states at different energies are
filled by increasing the number of injected electrons; in particular, low
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Figure 1.11: Electronic Wigner function W<(t,ω) in (1.88) for multi-Leviton
states, with n ranging from 1 to 4, as explicited above each panel.
This representation allows to access both the energy content and
the time profile of the excitations. Negative values (blue regions
in the plots) are a signature of non-classical states.

Figure 1.12: Plots of the distribution ∆f(ω) in (1.90) for different values of
the electron number n, as specified in the label. The energy
profile is an exponential modulated by polynomial functions,
which are responsible for the additional bumps that appear
when increasing n.
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energy states are filled first. It is transparent from the plots that the
behavior as a function of energy is completely different from what
happens as a function of time, where the current profile for n electrons
is just n times the signal for a single one (cfr. Eqs. (1.74) and (1.81)).
A final remark about Fig. 1.11 is that the Wigner function is negative
in some regions (blue parts of the plot). This is a signature of the
quantum character of the state and prevents from interpreting the
Wigner function as a probability density [113].

Before concluding this Section, let us have a look at the behavior
of the occupation number distribution ∆f(ω). As we have discussed,
it can be obtained by integrating Eq. (1.88) over time. Despite the
appearances, the result is quite simple and is a direct generalization
of the expression (1.77) found for a single-Leviton state:

∆f(ω) =
1

2π

n∑
j=1

∣∣φ̃j(ω)
∣∣2 . (1.89)

Notice that this simple result can be more easily obtained from the en-
ergy representation (1.87). After expliciting the wave functions φ̃j(ω)

through Eq. (1.86) we obtain this final form:

∆f(ω) = 2wΘ(ω)

n−1∑
j=0

L2j (2ωw)e
−2ωw . (1.90)

This function features an exponentially decreasing envelope, modu-
lated by the square of Laguerre polynomials. Some plots are shown
in Fig. 1.12 and, apart from the Θ(ω) already discussed, we can see
that additional bumps at higher energies appear when n increases,
just as happens in the Wigner function. We can also check that ∆f(ω)

is normalized to the total number of electrons injected by the drive,
namely∫+∞

−∞ dω∆f(ω) = n . (1.91)

This follows from the orhogonality of Laguerre polynomials with
respect to the weight function exp(−x):∫+∞

0

dx Lj(x)Lk(x)e−x = δj,k . (1.92)

By applying this relation with j = k we see that the integral of each
term in the sum (1.90) is equal to 1 and thus (1.91) is fulfilled.

1.6 experimental evidence for levitons

After having discussed the properties of Levitons in detail, we con-
clude this Chapter by mentioning very briefly how the existence of
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Figure 1.13: HBT setup in a 2DEG for detecting Levitons. A QPC (grey gates) is
set in such a way that a conduction channel is created across the
2DEG. Within this channel, the propagation is not chiral and both
right- and left-moving fermions are present. The gate voltage of
the QPC can be used to tune the probabilities for an excitation
incoming from the reservoir 1 to be transmitted across the QPC

(T) or reflected (R = 1− T).

these peculiar excitations was experimentally confirmed [5]. This was
done in the group of D. C. Glattli through noise measurements in the
so-called HBT setup, which is sketched in Fig. 1.13. The experiment
was not performed in the IQHE regime, but relies on the possibility
of creating conduction channels in a 2DEG by means of a QPC, as dis-
cussed in Sec. 1.1. As depicted in Fig. 1.13, the QPC is set in such a way
that a single conduction channel is created in the system. Contrary to
IQHE edge states, here the propagation is not chiral and, thus, both
right- and left-moving fermions are present in the conduction channel.
The system is connected to two terminals (yellow regions). A drive
V(t) is applied to terminal 1 and generates excitations propagating to
the right, while terminal 2 is grounded. Moreover, here the QPC also
acts as a beamsplitter because it can be tuned in order for excitations
incoming from terminal 1 to be transmitted across the constriction,
with probability T, or reflected, with probability R = 1−T, as sketched
in the Figure.

For experimental reasons, a periodic drive V(t) = V(t+ T) is used,
because the measurement requires several cyclic repetitions to increase
the signal-to-noise ratio. Thus, rather than the single-pulse excitations
depicted in Fig. 1.13, a stream of such excitations is actually sent
towards the QPC. Given this difference with respect to what we have
discussed until now, instead of the total charge excited by the drive,
the meaningful parameter is the charge per period. In particular, the
number of charges (charge in units of −e) is

q = −
e

2π

∫T/2
−T/2

dt V(t) . (1.93)

A QPC is used as a beamsplitter, with tunable transmission T, and
excitations incoming from the right are partly transmitted and partly
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reflected. With this setup it is possible to measure the autocorrelation
noise of the current J2(t) entering terminal 2, i. e. in the right part of
Fig. 1.13, after the QPC. This quantity is defined as

S22 =

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

〈
δJ2(t)δJ2(t

′)
〉

, (1.94)

where δJ2(t) = J2(t) − 〈J2(t)〉 denotes fluctuations of the current with
respect to its average value and T is the period of the drive. The
zero-temperature result for the above autocorrelation noise in the HBT

configuration is proven in Appendix C.1 and reads

SHBT = e2v2FT(1− T)

∫+T/2
−T/2

dt
T

∫+∞
−∞dt ′

[
G<R (t

′, t)G>0,L(t, t
′)+

+G<0,L(t
′, t)G>R (t, t

′)
]

,

(1.95)

where, as usual, the subscript 0 indicates equilibrium correlators,
while the index R (L) refers to the right- (left-) moving fermions in the
conduction channel. In order to evaluate these quantities, we simply
notice that the time evolution of right-movers is [cf. Eq. (1.68)]

ΨR(t) = ψR(t)eiα(t) , α(t) = e

∫t
−∞ dτV(τ) , (1.96)

while the operator for left-movers satisfies the free evolution ΨL(t) =
ψL(t), since no drive is applied to terminal 2. Therefore

G
≷
R (t, t

′) = eie
∫t
t ′ dτV(τ)G

≷
0,R(t, t

′) (1.97)

and the equilibrium coherence functions are

G<0,R/L(t, t
′) =

〈
ψ
†
R/L

(t ′)ψR/L(t)
〉
0
=

∫+∞
−∞

dω
2πvF

eiω(t ′−t)nF(ω) ,

(1.98a)

G>0,R/L(t, t
′) =

〈
ψR/L(t)ψ

†
R/L

(t ′)
〉
0
=

∫+∞
−∞

dω
2πvF

eiω(t−t ′)nF(ω) .

(1.98b)

We can proceed further by decomposing the voltage drive V(t) into
dc and ac contributions as follows

V(t) = Vdc + Vac(t) ,
∫T/2
−T/2

dt Vac(t) = 0 , (1.99)

where Vdc is a constant dc bias related to the charge per period q
defined in (1.93) by qΩ = −eVdc, Ω = 2πT−1 being the angular
frequency of the drive. Moreover, by exploiting the periodicity of V(t)
it is possible to write the following Fourier decomposition [114, 117]

eie
∫t
0 dτV(τ) = e−iqΩt

∑
`∈Z

p` e−i`Ωt , (1.100)
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where the coefficients p` are called photo-assisted amplitudes and are
defined as

p` =

∫T/2
−T/2

dt
T

ei`Ωteie
∫t
0 dτVac(τ) . (1.101)

For ` < 0 (` > 0), they represent the probability amplitude for an
electron to emit (absorb) |`| quanta of energy Ω [114]. Notice that they
can also be seen as a discrete version of Eq. (1.39), which we used for
a generic non-periodic drive. By using the decomposition (1.100) into
(1.97), after a lengthy but straightforward calculation one shows that
the HBT noise in Eq. (1.95) assumes the simple form [cf. App. C.1]

SHBT =
e2T(1− T)

T

∑
`∈Z

|p`|
2|`+ q| . (1.102)

Likewise, the noise Sdc obtained for a purely time-independent dc
bias, V(t) = Vdc, is given by

Sdc =
e2T(1− T)

T
|q| ≡ S0|q| , (1.103)

This result can be directly obtained from (1.102) by setting p` = δ`,0,
which readily follows from (1.101) when Vac = 0. We can finally define
the excess noise

∆S = SHBT − Sdc = S0
∑
`<−q

|p`|
2|`+ q| , (1.104)

where q > 0 was assumed, for the sake of simplicity.
This quantity can be experimentally probed and actually is con-

nected to the number of unwanted particle-hole pairs generated by
the drive. The key result is the following: in a non-interacting system,
the number of extra electron-hole pairs is directly proportional to the
excess noise ∆S [7, 8]. Therefore, the excess noise ∆S has to vanish for
Lorentzian pulses with integer q. From a mathematical point of view,
this happens because the Lorentzian drive is the only one for which
p` = 0 for ` < −q.

A vanishing excess noise is precisely what was measured in the
experiment, whose result is shown in Fig. 1.14. The plots show the
excess noise as a function of q, for three kind of signals: a sine, a
square wave and a Lorentzian drive. Since the experiment is done at
finite temperature, particle-hole pairs can also be thermally excited
and this effect must be taken into account, as here we want to investi-
gate whether such pairs are created as a consequence of the applied
drive and not by thermal effect. It is possible to have an estimate of
the thermally-excited pairs by generalizing Eq. (1.104) to finite tem-
peratures, see Eq. (C.15) in App. C.1. The dashed lines in the plots
show the expected thermal contribution obtained in such a way. As
we can see, the Lorentzian drive is the only one whose excess noise



1.6 experimental evidence for levitons 37

Figure 1.14: Experimental evidence for Levitons. Both panels show excess
noise measurements for different kind of drives, as a function
of the number of charges per period q. Dashed lines indicate
the finite-temperature contribution to the excess noise and show
that for a Lorentzian drive this is actually the only contribution,
thus confirming the expected behavior of Levitons. Image taken
from [5].

at integer q is entirely due to thermal contributions, thus implying
that no particle-hole pair is generated as an effect of the drive and
confirming the minimal character of Levitons. The experiment also
shows a clear hierarchy between the three different drives, with the
square wave being the noisiest one.





2
I N T E R A C T I N G 1 D F E R M I O N I C S Y S T E M S

In the previous Chapter, we introduced EQO in non-interacting 1D

fermion systems. Despite that context already enables the investiga-
tion of interesting physical effects, this thesis aims at giving a contri-
bution to extend EQO studies to systems where interaction effects are
important. This Chapter is therefore dedicated to a presentation of
interacting 1D fermionic systems, together with the theoretical tools
needed to describe them.

2.1 introduction

When it comes to interaction effects, 1D systems behave very differently
with respect to what happens in higher dimensions. There, interact-
ing electrons are well described by the Fermi liquid theory [118],
introduced by L. Landau in 1956 [21]. According to this theory, the
interacting electron liquid basically retains the qualitative properties
of a free system and can be described in terms of quasi-particles with
renormalized parameters, which constitute the stable low-energy exci-
tations of the system. These quasi-particles are essentially electrons
dressed by density fluctuations around them and they interact very
weakly with each other, even when the electron-electron Coulomb
interaction is intense. This explains the success of Fermi liquid theory
in describing several different materials.

However, as far as 1D systems are concerned, Landau’s theory fails.
A pictorial intuition of why this is the case is provided in Fig. 2.1,
showing in an effective way the deep difference between 1D and
higher dimensional systems. In the latter case, dressed quasi-particles

Figure 2.1: Comparison between interacting electrons in 1D and higher di-
mensions. Panel (a): in high dimensions, individual quasi-particle
excitations are possible. Panel (b): in 1D, the motion of an indi-
vidual electron has an effect on all the others, thus resulting in a
collective excitation. Image adapted from [119].

39
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are weakly interacting and can move without affecting each other too
much. On the contrary, in 1D systems any individual motion influences
all other particles, dragging or pushing them due to interactions. As a
result, individual excitations are not well defined and the physics has
therefore to be very different. From a more formal point of view, it can
be shown that, for a quasi-particle of energy ξ� EF (measured from
the Fermi level EF), the decay rate is Γ ∝ ξ in 1D, while Γ ∝ ξ2/EF

in higher dimensions [118, 120]. Then, in the latter case Γ � ξ and
the energy of the quasi-particle is well defined, making it a stable
excitation, while in the former one the same reasoning does not apply
and no stable quasi-particles exist.

A new theoretical paradigm replacing the Fermi liquid must then be
introduced in order to describe 1D interacting system: it is the Luttinger
Liquid (LL) concept. The model from which this theory originated was
first studied by Tomonaga [121] and Luttinger [122]. This model of
interacting fermions in 1D has the notable property of being exactly
solvable by bosonization techniques [123], as we will show in the next
Section. An important further development was made by Haldane
[22], who suggested that the model would actually describe any 1D

system at sufficiently low energy and proposed the term Luttinger
Liquid to describe this universal low-energy theory. Its validity has
been verified in several instances, by observing exotic phenomena
such as anomalous tunneling effects [124], spin-charge separation [25,
125] and charge fractionalization [24, 126–128], all accounted for by LL

theory. This success in describing several 1D interacting systems can
be further understood insofar as the LL has been shown to be the fixed
point of the renormalization group flow for interacting fermions in
1D, in the same way as Landau’s theory is in higher dimensions [129].
Moreover, since excitations in 1D have essentially a bosonic character,
LL theory also applies to the description of interacting bosons [119].

In what follows we illustrate the Luttinger model and its solution,
by focusing on the two cases of interest for the present thesis, namely
counter-propagating channels and co-propagating chiral ones, and
referring to the wide literature for further details and generalizations
[22, 119, 123, 130, 131]. Throughout the Chapter we set  h = 1.

2.2 spinless luttinger liquid

Let us consider N spinless fermions in a system of length L, subject to
periodic boundary conditions. The Hamiltonian

H = H0 +Hint , (2.1)

is composed of a free part

H0 =

∫L/2
−L/2

dxΨ†(x)ε(−i∂x)Ψ(x) , (2.2)
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Figure 2.2: Linearization of the spectrum around the Fermi points k = ±kF.
Starting from a generic dispersion (green curve), right (blue curve)
and left (red curve) energy branches are obtained. Dashed lines
indicate the addition of unphysical states, which are needed in
order to apply the bosonization technique.

associated with the single particle spectrum ε(k), and an interaction
term

Hint =

∫L/2
−L/2

dx
∫L/2
−L/2

dyΨ†(x)Ψ†(y)U(x− y)Ψ(y)Ψ(x) , (2.3)

U(x− y) being the two-body interaction potential. In both previous
formulas, Ψ(x) is a fermionic field operator annihilating an electron at
position x.

2.2.1 Linearization of the spectrum

The explicit form of the dispersion relation ε(k) is not very important,
because the first key approximation of the Luttinger model is to
linearize the spectrum around the Fermi energy EF, which is perfectly
consistent in order to describe the low-energy physics of the system.
The linearization procedure is sketched in Fig. 2.2 and defines the
following two energy branches:

εr(k) = EF + vF(ϑrk− kF) , vF =
dε
dk

∣∣∣∣
k=kF

, (2.4)

with r = R/L, ϑR/L = ±1 and kF the Fermi momentum. In this way,
two distinct fermionic species are introduced: right-moving electrons,
with positive group velocity, and left-moving ones, with opposite
group velocity. At this stage the momentum k for the right (left)
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branch is restricted to positive (negative) values. However, in order
for the bosonization technique by which the model is solved to be
applicable, the spectrum has to be unbounded [123]. Therefore, the
second approximation of the model consists in extending the range
of the momentum to k ∈ (−∞,+∞) for both branches εr(k). This
operation introduces an infinite number of unphysical states, which
are represented by the dashed lines in the spectrum of Fig. 2.2.

After the described procedure, the linearized free Hamiltonian be-
comes

H0 = vF
∑
r=R,L

∫L/2
−L/2

dxΨ†r(x)(−iϑr∂x)Ψr(x) , (2.5)

where we have introduced the fields Ψr(x) annihilating an electron at
position x on the branch r. These fields satisfy the canonical anticom-
mutation relations{

Ψr(x),Ψr ′(x ′)
}
=
{
Ψ†r(x),Ψ

†
r ′(x

′)
}
= 0{

Ψr(x),Ψ
†
r ′(x

′)
}
= δr,r ′δ(x− x

′)
(2.6)

and have the following plane-wave decomposition

Ψr(x) =
1√
L

+∞∑
k=−∞ eiϑrkxck,r , (2.7)

where the operator ck,r annihilates an electron with momentum ϑrk

on the branch r. By exploiting this relation, H0 is rewritten as

H0 = vF
∑
r=R,L

+∞∑
k=−∞k c

†
k,rck,r , (2.8)

from which we immediately recognize that the expectation value of
this operator on its ground state (all levels with energy below EF filled)
is divergent. This is an unphysical effect due to the introduction of
an infinite number of negative-energy states and we can deal with
this issue by considering normal ordered operators, obtained from
the bare ones by subtracting their expectation value on a reference
state, which is usually the ground state |GS〉. For instance, the normal
ordered number operator is

Nr =

+∞∑
k=−∞ :c†k,rck,r : =

+∞∑
k=−∞

[
c
†
k,rck,r −

〈
GS
∣∣∣ c†k,rck,r

∣∣∣GS〉] (2.9)

and counts the number of electrons on the branch r, with respect to the
ground state. In the same way, the expression for H0 has to be normal
ordered to obtain meaningful results in calculations.

The Hamiltonian (2.5) describes a system composed of two coun-
terpropagating channels hosting spinless fermions, as sketched in Fig.



2.2 spinless luttinger liquid 43

2.3. For this reason the model we are describing is called the spinless
LL. We anticipate, however, that the very same Hamiltonian can also
be used to describe another important system of spinful fermions
which we will investigate in Chapter 4. As we will see, this system is
related to a topological phase of matter called Quantum Spin Hall Ef-
fect (QSHE) and has the very peculiar property that the spin projection
of electrons is directly related to their propagation direction, this effect
being known as spin-momentum locking. In order to describe such
a system it is sufficient to assume that R-branch (L-branch) electrons
have spin up (down). This system in the presence of interactions is
called Helical Luttinger Liquid (HLL) and has first been studied in Ref.
[132].

Figure 2.3: Sketch of a spinless LL: the system is composed of two counter-
propagating channels, associated with the linearized dispersions
(2.4). Notice that here we have drawn the two channels in separate
space positions for graphical purposes, but, unlike what happens
in the IQHE, they are not spatially separated in reality.

2.2.2 Bosonization

The free Hamiltonian H0 in Eq. (2.5) can be converted in a different but
completely equivalent language, by using the bosonization identity
[22, 123, 133], which expresses fermionic operators in terms of bosonic
ones:

Ψr(x) =
Fr√
2πa

eiϑrkFxe−i
√
2πΦr(x) . (2.10)

Here, a ∼ k−1F is a short length cutoff, Fr are called Klein factors1 and
bosonic fields Φr(x) are represented as2

Φr(x) =
i√
L

∑
q>0

e−aq/2
√
q

(
bq,reiqϑrx − b†q,re

−iqϑrx
)
= Φ†r(x) , (2.11)

with creation and annihilation operators satisfying[
bq,r,bq ′,r ′

]
=
[
b†q,r,b

†
q ′,r ′

]
= 0 ,[

bq,r,b
†
q ′,r ′

]
= δq,q ′δr,r ′ .

(2.12)

1 We are going to discuss their role in the following.
2 From the exponential factor e−aq/2 in (2.11), we see that the inverse of the cutoff, a−1,

plays the role of an upper bound to the momentum q associated with particle-hole
pairs created by operators b†q,r; see also Eq. (2.13).
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They are related to the fermionic operators by

b†q,r =

√
2π

Lq

+∞∑
k=−∞ c

†
k+q,rck,r ,

bq,r =

√
2π

Lq

+∞∑
k=−∞ c

†
k−q,rck,r ,

(2.13)

which show that b†q,r creates a superposition of particle-hole pairs
with momentum q on the branch r. From the definition (2.11) and the
commutators (2.12), the following commutation rules for fields Φr(x)
can be obtained3

[
Φr(x),Φr ′(x ′)

]
=
iϑr

π
δr,r ′ tan−1

(
x− x ′

a

)
→ iϑr

2
δr,r ′sgn(x− x ′) .

(2.14)

We now discuss the role of Klein factors Fr appearing in the bosoniza-
tion identity (2.10). They are essential for a proper representation of
fermionic fields in terms of bosonic ones. As a matter of fact, Ψr(x)
removes an electron from the system, whereas Φr(x) cannot modify
the particle number because

[
b†q,r,Nr

]
=

√
2π

Lq

∑
k,k ′

[
c
†
k+q,rck,r, :c

†
k ′,rck ′,r :

]

=

√
2π

Lq

∑
k,k ′

(
c
†
k+q,r

[
ck,r, c

†
k ′,r

]
ck ′,r + c

†
k ′,r

[
c
†
k+q,r, ck ′,r

]
ck,r

)

=

√
2π

Lq

∑
k

(
c
†
k+q,rck,r − c

†
k+q,rck,r

)
= 0 .

(2.15)

This is why Klein factors are needed in (2.10). They are unitary opera-
tors, F†rFr = FrF

†
r = 1, which obey the algebra [123]{

Fr, F
†
r ′

}
= 2δr,r ′{

F†r, F
†
r ′

}
= {Fr, Fr ′} = 0 for r 6= r ′

(2.16)

and ensure that the canonical anticommutation relations (2.6) are
satisfied. Moreover, Klein factors commute with operators bq,r, b

†
q,r

and [
F†r,Nr ′

]
= −δr,r ′F

†
r , [Fr,Nr ′ ] = δr,r ′Fr , (2.17)

showing that F†r (Fr) adds (removes) a particle to (from) the branch r.
Notice, however, that they are not fermionic operators because F2r 6= 0.

3 In obtaining this result, the limit |x− x ′|� L has to be taken.
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By using the above introduced machinery, we can rewrite all fermionic
operators in a bosonized form. In what follows we focus on three of
them we are particularly interested in.

density operator The particle density operator of the branch r
is defined as4

ρ
(e)
r (x) = :Ψ†r(x)Ψr(x) : (2.18)

By using Eq. (2.7) we can write

ρ
(e)
r (x) =

1

L

∑
k,k ′

:c†k ′,rck,r : eiϑr(k−k
′)x

=
Nr

L
+
1

L

∑
q>0

∑
k

(
c
†
k+q,rck,re−iqϑrx + c

†
k−q,rck,reiqϑrx

)
.

(2.19)

Thus, from Eqs. (2.13) and (2.11), the following representation in terms
of the bosonic field Φr(x) follows

ρ
(e)
r (x) =

Nr

L
−

ϑr√
2π
∂xΦr(x) , (2.20)

which describes density fluctuations on top of a constant background
term.

free hamiltonian It is possible to show that the Hamiltonian
H0 becomes [123, 130]

H0 = vF
∑
r=R,L

∫L/2
−L/2

dx :Ψ†r(x)(−iϑr∂x)Ψr(x) :

=
vF

2

∑
r=R,L

∫L/2
−L/2

dx : [∂xΦr(x)]
2 : +

vFπ

L

∑
r=R,L

Nr(Nr + 1) .

(2.21)

The second term is usually referred to as the zero-mode contribution,
while the first one is associated with bosonic excitations at fixed
particle number. In the zero-mode part, the linear term in Nr can
be reabsorbed in a shift of the chemical potential and will thus be
dropped.

interaction hamiltonian The great advantage of the bosoniza-
tion technique is that it allows to express the four-fermion-operator
Hamiltonian (2.3) as a quadratic form of the bosonic fields. In particular,
by assuming a contact interaction potential

U(x− y) = U0δ(x− y) , (2.22)

4 We use the notation ρ(e)r (x) for the particle density operator in order to distinguish it
from the charge density operator ρr(x) = −eρ

(e)
r (x).
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it can be shown that the most relevant terms are such that Eq. (2.3)
becomes Hint ' H2 +H4, where H2 and H4 are density-density cou-
plings [119, 130]:

H2 = g2

∫L/2
−L/2

dx :ρ
(e)
R (x)ρ

(e)
L (x) : , (2.23a)

H4 =
g4
2

∑
r=R,L

∫L/2
−L/2

dx :
[
ρ
(e)
r (x)

]2
: . (2.23b)

Here, the notation for the coupling constants is chosen according
to the classification of interaction processes knows as the g-ology
[119]. The two terms H2 and H4 describe inter- and intra-channel
interactions respectively. By using the relation (2.20) into (2.23) and
taking (2.21) into account, the complete Hamiltonian assumes the form

H = H0 +H2 +H4 = HN +HB , (2.24)

with

HN =
vFπ

L

(1+ g4
2πvF

) ∑
r=R,L

N2r +
g2
vFπ

NRNL

 (2.25)

and

HB =

∫L/2
−L/2

dx

(vF

2
+
g4
4π

)∑
r=R,L

: [∂xΦr(x)]
2 : +

g2
2π

:∂xΦR(x)∂xΦL(x) :

 .

(2.26)

Here, HB describes bosonic excitations, while HN is the zero-mode
Hamiltonian. As we can see, the intra-channel coupling g4 simply
results in a renormalization of the Fermi velocity and, in the absence
of g2, the model describes a system of free fermions with a velocity
vF + g4/(2π).

2.2.3 Diagonalization

Since the Hamiltonian is quadratic in the bosonic fields, it can now be
easily diagonalized by means of a Bogoliubov transformation(

ΦR(x)

ΦL(x)

)
=

(
coshγ sinhγ

sinhγ coshγ

)(
Φ+(x)

Φ−(x)

)
. (2.27)

This is a canonical transformation and preserves the commutation
rules of bosonic fields: in other words, by assuming (2.14) and using
(2.27) one obtains[

Φη(x),Φη ′(x ′)
]
=
iη

2
sgn(x− x ′) (with η = ±) . (2.28)
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In doing the calculation it is easy to realize that the transformation
(2.27) has indeed to be parametrized with hyperbolic functions for
the above commutation rules to be ensured. This is a because we are
describing a system with counterpropagating channels. In Sec. 2.3 we
will see that a different transformation has to be employed in the case
of copropagating modes.

By substituting Eq. (2.27) into (2.26), one finds that the condition
for the Hamiltonian HB to be diagonal with respect to the new fields
Φη(x) is

tanh 2γ =
g2

2πvF + g4
=⇒ γ = −

1

2
lnK , (2.29)

where we introduced the Luttinger parameter

K =

√
2πvF − g2 + g4
2πvF + g2 + g4

(2.30)

which measures the interaction strength. In the case of free fermions
K = 1, while for repulsive (attractive) interactions K < 1 (K > 1).

The Hamiltonian HB in diagonal form reads

HB =
u

2

∑
η=±

∫L/2
−L/2

dx : [∂xΦη(x)]2 : , (2.31)

where u is a renormalized velocity

u =
1

2π

√
(2πvF + g4)2 − g

2
2 , (2.32)

which simplifies to u = vF/K if g2 = g4. The Bogoliubov transforma-
tion (2.27) expressed in terms of the Luttinger parameter K becomes

Φr(x) =
∑
η=±

AηϑrΦη(x) , (2.33)

where we introduced the coefficients5

A+ = coshγ =
1

2

(
1√
K
+
√
K

)
, (2.34a)

A− = sinhγ =
1

2

(
1√
K
−
√
K

)
. (2.34b)

They obviously satisfy the relation

A2+ = 1+A2− > 1 (2.35)

for every value of K. For completeness, we also diagonalize the zero-
mode term HN in (2.25), even if it will not be considered in the
forthcoming Chapters. This is achieved very simply by introducing
the operators N± = NR ±NL, in terms of which

HN =
πu

2L

(
1

K
N2+ +KN2−

)
. (2.36)

5 The notation Aηϑr
in (2.33) does not mean that the coefficients Aηϑr

form a matrix.
Indeed, the subscript index appearing in (2.34) is simply given by the product of the
values of indices η and ϑr. Thus, A++ = A−− → A+ and A+− = A−+ → A−.
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chiral operators It is important to stress that, in the presence
of interactions, the original fields ΦR/L(x) are no more right- and
left-moving, respectively. This is because, unlike in the non-interacting
case, the Hamiltonian is not diagonal with respect to these fields.
This property is instead verified by the new fields Φη(x), which there-
fore evolve chirally. Indeed, their Heisenberg’s equations of motion
obtained from (2.31) read

(∂t + ηu∂x)Φη(x, t) = 0 (2.37)

and are solved by

Φη(x, t) = Φη(x− ηut, 0) = Φη
(
0, t−

ηx

u

)
. (2.38)

These fields can be used to define chiral density operators: by neglect-
ing zero-mode contributions, the time evolution of the total particle
density can indeed be expressed as

ρ(e)(x, t) = ρ(e)R (x, t) + ρ(e)L (x, t)

=
1√
2π

[ΦL(x, t) −ΦR(x, t)]

=
A+ −A−√

2π
∂x [Φ−(x, t) −Φ+(x, t)]

= ρ
(e)
+ (x, t) + ρ(e)− (x, t) ,

(2.39)

where we have introduced

ρ
(e)
η (x, t) = −η

√
K

2π
∂xΦη(x, t) (2.40)

and Eqs. (2.20), (2.34) have been used. Thus, the total density has been
written as a sum of two chiral operators which describe excitations
propagating in opposite directions. The following important relations
are also satisfied

ρ
(e)
η (x) =

1+ ηK

2
ρ
(e)
R (x) +

1− ηK

2
ρ
(e)
L (x) , (2.41a)

ρ
(e)
r (x) =

ϑr

K

[
1+ ϑrK

2
ρ
(e)
+ (x) −

1− ϑrK

2
ρ
(e)
− (x)

]
(2.41b)

and can be obtained directly from Eqs. (2.20), (2.34) and (2.40). While
in the non-interacting case ρ(e)

R/L
(x) = ρ

(e)
± (x), in the presence of inter-

actions the particle density operator on channel r is a combination of
the two chiral densities. This fact already suggests that if a r-branch
electron is injected into the system, it will split up into two counter-
propagating excitations which, as a consequence, have a fractional
charge. This phenomenon is generally referred to as charge fractional-
ization [134–140] and we are now going to briefly review it.
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2.2.4 Charge fractionalization

If we denote by |GS〉 the ground state of the LL, the state obtained by
adding an electron at position x0 in the branch r is Ψ†r(x0) |GS〉. By
exploiting the bosonization identity (2.10), together with Eq. (2.34),
the time evolution of the fermionic operator is expressed as

Ψ†r(x0, t) =
Fr√
2πa

eiϑrkFx0e−i
√
2π[A+Φ+(x0−ut,0)+A−Φ−(x0+ut,0)] ,

(2.42)

which clearly shows that the action of Ψ†r(x0) on the ground state
results in the creation of two excitations with different chiralities,
associated with the action of the bosonic fields Φ±(x0).

Further and more precise information can be obtained in the follow-
ing way [134]. Consider the commutator[

ρ(e)(x),Ψ†r(x0)
]
=
∑
r ′

[
:Ψ†r ′(x)Ψr ′(x) : ,Ψ

†
r(x0)

]
= δ(x− x0)Ψ

†
r(x0) ,

(2.43)

which is directly obtained from the anticommutation relations (2.6).
The above equation is a manifestation of the fact that Ψ†r(x0) indeed
creates an electron at position x0 in the LL. What happens at later
times? We can answer the question by looking at the commutator[
ρ(e)(x, t),Ψ†r(x0, 0)

]
=
∑
η=±

[
ρ
(e)
η (x− ηut, 0),Ψ†r(x0, 0)

]
=
∑
η=±

∑
r ′=R,L

1+ ηϑrK

2

[
ρr ′(x− ηut, 0),Ψ†r(x0, 0)

]
=
∑
η=±

1+ ηϑrK

2
δ[(x− x0) − ηut]Ψ

†
r(x0, 0) ,

(2.44)

whose result has been obtained with the help of Eqs. (2.39), (2.41a),
(2.43) and by exploiting the chirality of density operators ρ(e)± (x, t).
From this result we then come to the following conclusion: the injection
of an electron on the branch r creates two excitations moving in
opposite directions with respect to the injection point x0 and bearing
a fraction of the initial electron charge. Explicitly, the fractionalization
factors are given by

f+ =
1+ ϑrK

2
, (2.45a)

f− =
1− ϑrK

2
. (2.45b)

Importantly, as clearly emphasized in Ref. [134], these fractional values
are not a result of a quantum average, as they come from Eq. (2.44)
which is an operator identity.
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Figure 2.4: Sketch of the charge fractionalization process in a LL. An electron
on the R-branch is injected into the LL at position x0 (grey packet)
and splits into two counterpropagating excitations carrying a
fraction of its charge (f+ and f−, depending on the direction
of propagation, as indicated in the picture). The majority of the
charge travels to the right for every value of K.

In Fig. 2.4 we sketch the fractionalization process for the injection
of an electron on the branch R: a fraction f+ = (1+K)/2 of the initial
charge travels to the right, while a fraction f− = (1−K)/2 propagates
to the left. In the absence of interactions f+ = 1 and f− = 0, as
expected because in that case excitations on the R-branch are truly
right-moving. Notice also that f+ > 1/2 and f− 6 1/2 when a R-
electron is injected, while the opposite is true if a L-electron is added
to the system. Therefore, the majority of the charge always travels in a
direction which is in agreement with the “original character” of the
injected electron.

energy partitioning Before closing this Section, we would like
to mention that, in LL theory, charge is not the only quantity subject
to fractionalization processes. As an example, if we refer again to Fig.
2.4, we can ask how the energy of the injected electron is divided into
the two emerging fractional excitations. The answer, first provided in
[141], turns out to be non universal and depends also on the detailes
of the injection process. In particular, the behavior in the case of
a localized injection is quite different from what happens for an
extended tunneling. In the first situation, the fraction εη of the energy
propagating in the η-direction is [141, 142]

εη =
(1+ ηK)2

2(1+K2)
, (2.46)

where the injection of a R-electron has been assumed. Since ε+ > 1/2,
this means that the majority of the energy travels to the right. On the
contrary, when a completely non-local injection is considered, it is
possible that the energy mainly flows to the left. In [142] we studied
the energy partitioning problem by considering the injection of a
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single electron from the mesoscopic capacitor into a LL. In particular,
we derived the time-resolved profile of energy wave packets and
characterized the crossover between the two limiting cases considered
in [141] (namely a completely local injection and a fully delocalized
one).

2.3 luttinger model for copropagating channels

In this Section we present the LL theory for describing interactions
in copropagating chiral channels. The system we have in mind is
sketched in Fig. 2.5(a), representing the IQHE state at filling factor
ν = 2. In this state, two Landau levels are filled and, therefore, two
channels are present at each edge of the sample. There is only one
possible direction of propagation along the edges, which is determined
by the sign of the applied orthogonal magnetic field B needed to bring
the system in the IQHE regime. Importantly, as discussed in Sec. 1.2.2,
the copropagating edge channels are spatially separated and thus it
perfectly makes sense to talk about inner and outer channels. The
theory we are going to present was proposed in Ref. [143] and is a
chiral version of the LL we have previously described. However, we
prefer to avoid using the term “chiral Luttinger liquid”, as this usually
refers to Wen’s theory [144] for FQHE states in the Laughlin’s sequence,
which will not be considered in this thesis.

2.3.1 The model and its diagonalization

Let us now discuss the model. For the sake of simplicity, here we will
just consider a single edge: in particular, we describe the right-moving
channels in the upper edge of Fig. 2.5(a). These channels emerge in the
system because at filling factor ν = 2 the Fermi energy EF intersects
the Landau levels in two pairs of points, as sketched in Fig. 2.5(b).
Here, we have taken the Zeeman coupling into account. Therefore,
besides the separation  hωc = εn+1 − εn between two consecutive
Landau levels, the spin degeneracy is lifted and each level εn is split
into two levels εn,↑ and εn,↓, separated by the Zeeman energy  hωZ.
The typical experimental situation is such that ωZ ≈ 0.1ωc [145]: as
a result, the two edge channels depicted in Fig. 2.5(a) have opposite
spin polarizations, as they come from the two lowest-energy levels
ε0,↓ and ε0,↑, as shown in Fig. 2.5(b). The propagation velocities along
the two edge channels are obtained in the usual way

v1 =
∂ε0,↓(k)

∂k

∣∣∣∣
k=kF,↓

,

v2 =
∂ε0,↑(k)

∂k

∣∣∣∣
k=kF,↑

,
(2.47)
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(a) (b)

Figure 2.5: The IQHE state at filling factor ν = 2. Panel (a): two chiral edge
channels emerge at the edges of the sample, the propagation
direction along which is determined by the sign of the applied
magnetic field B. Panel (b): energy levels of the system. Each
Landau level εn(k) is split by the Zeeman coupling which lifts
the spin degeneracy by an amount  hωZ. As a result, the edge
modes sketched in (a) have opposite spin polarizations.

where v1 (v2) refers to the outer (inner) channel and the momenta
kF,↓↑ are those in correspondence of which the levels ε0,↓,↑ cross the
Fermi energy EF, as shown in Fig. 2.5(b). These velocities are in general
different due to the different slope of the energy levels at the Fermi
energy.

The starting point of the model is the linear-dispersion Hamiltonian

H0 =
∑
β=1,2

vβ

∫L/2
−L/2

dx :Ψ†β(x)(−i∂x)Ψβ(x) : , (2.48)

where L is the length of the system, the index β = 1 (β = 2) labels
the outer (inner) channel on the edge and Ψβ(x) is the fermionic field
operator annihilating an electron at position x on channel β. Moreover,
the velocities vβ are assumed to be already taking into account possible
intra-channel density-density interactions. As a matter of fact, we
showed in Sec. 2.2.2 that the intra-channel coupling described by
the Hamiltonian (2.23b) simply renormalizes the free propagation
velocity. Next, we consider a density-density short-range inter-channel
interaction term

H2 = 2πV12

∫L/2
−L/2

dx :ρ
(e)
1 (x)ρ

(e)
2 (x) : , (2.49)

where V12 is the coupling constant between the two channels and

ρ
(e)
β (x) = :Ψ†β(x)Ψβ(x) : (2.50)

is the particle density operator on channel β. As discussed in the previ-
ous Section, bosonic fields Φβ(x) are introduced via the bosonization
identity

Ψβ(x) =
Fβ√
2πa

eikFxe−i
√
2πΦβ(x) (2.51)
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where we recall that a is a short-length cutoff and Fβ a Klein factor.
Bosonic fields can be used to express the particle density operators,
which become6

ρ
(e)
β (x) = −

1√
2π
∂xΦβ(x) . (2.52)

If we compare this expression with Eq. (2.20), we notice that here the
sign is the same for both channels β = 1, 2, while a sign difference
was present in the former case. This is because now we are dealing
with copropagating channels and not counterpropagating ones. This
difference is also reflected in the commutator[

Φβ(x),Φβ ′(x ′)
]
=
i

2
δβ,β ′sgn(x− x ′) , (2.53)

where, again, the sign of the r.h.s. is the same for both values of β,
unlike in (2.14).

The bosonized version of the full Hamiltonian H = H0 +H2 reads

H =
1

2

∫L/2
−L/2

dx :
(
∂xΦ1(x) ∂xΦ2(x)

)( v1 V12

V12 v2

)(
∂xΦ1(x)

∂xΦ2(x)

)
: ,

(2.54)

where the off-diagonal terms are obtained directly by substituting
(2.52) into (2.49), while the diagonal ones follow from the bosonized
form (2.21) discussed in the previous Section. The Hamiltonian can be
straightforwardly diagonalized by the following transformation(

Φ1(x)

Φ2(x)

)
=

(
cosχ − sinχ

sinχ cosχ

)(
Φ+(x)

Φ−(x)

)
, (2.55a)(

Φ+(x)

Φ−(x)

)
=

(
cosχ sinχ

− sinχ cosχ

)(
Φ1(x)

Φ2(x)

)
, (2.55b)

which introduces two new bosonic fields Φ±(x) satisfying the com-
mutation relations[

Φη(x),Φη ′(x ′)
]
=
i

2
δη,η ′sgn(x− x ′) (η = ±) . (2.56)

Notice that the transformation (2.55) is different from (2.27) and is
parametrized by trigonometric functions instead of hyperbolic ones.
This is because here we are dealing with copropagating channels and
the transformation must preserve the commutation relations (2.53)
instead of (2.14). The parameter χ is called the mixing angle and it is
determined by the requirement that the Hamiltonian be diagonal in
the basis of the new fields. This leads to the equation

tan 2χ =
2V12
v1 − v2

. (2.57)

6 Zero modes are neglected in this Section.
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The mixing angle ranges in χ ∈ [0,π/2); in the non-interacting case
χ = 0 and Φ1,2(x) = Φ±(x) so the two edge channels do not mix,
as expected. On the contrary, the maximal mixing is achieved at
θ = π/4, which is usually referred to as the “strongly interacting”
limit and seems to be the relevant case in different experimental
implementations [3, 26, 114]. Notice, however, that Eq. (2.57) indicates
that this situation can be achieved for any finite value of the inter-
channel coupling V12, provided that the difference v1 − v2 is small
enough.

The Hamiltonian in diagonal form reads

H =
1

2

∑
η=±

vη

∫L/2
−L/2

dx : [∂xΦη(x)]
2 : , (2.58)

where the renormalized velocities are given by

v± =
v1 + v2
2

± v1 − v2
2 cos 2χ

=
v1 + v2
2

± V12
sin 2χ

=
1

2

[
v1 + v2 ±

√
(v1 − v2)2 + 4V

2
12

]
.

(2.59)

Here v+ > v−, so the Hamiltonian (2.58) describes slow and fast
bosonic modes, propagating at velocities v− and v+ respectively. More-
over, from the chirality of the system, we have the constraint v± > 0
as all excitations must propagate in the right direction. This gives the
following bound on the inter-channel coupling strength [146]

V12 6
√
v1v2 . (2.60)

This relation further strengthen the previous comment about the
“strongly interacting” limit (χ = π/4): it is a situation which cannot
arise from an arbitrarily strong inter-channel interaction and, for this
reason, we prefer to refer to it as maximal mixing.

2.3.2 Charge fractionalization

Just like in the spinless LL described in Sec. 2.2, charge fractionalization
is also predicted to occur in copropagating channels as an interaction
effect [147–149]. In order to see how this happens, we follow the same
reasoning as in Sec. 2.2.4. Suppose that an electron is injected into the
outer channel (β = 1) at position x0. This is described by the action of
the operator Ψ†1(x0), which indeed satisfies the commutators[

ρ
(e)
1 (x),Ψ†1(x0)

]
= δ(x− x0)Ψ

†
1(x0) ,[

ρ
(e)
2 (x),Ψ†1(x0)

]
= 0 .

(2.61)

In order to understand what happens at later times, one has to cal-
culate again the above commutators with the time-evolved operators
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ρ
(e)
1,2(x, t). The latter can be simply evaluated by relying on the fact

that the transformation (2.55) implies(
ρ
(e)
1 (x)

ρ
(e)
2 (x)

)
=

(
cosχ − sinχ

sinχ cosχ

)(
ρ
(e)
+ (x)

ρ
(e)
− (x)

)
, (2.62a)(

ρ
(e)
+ (x)

ρ
(e)
− (x)

)
=

(
cosχ sinχ

− sinχ cosχ

)(
ρ
(e)
1 (x)

ρ
(e)
2 (x)

)
, (2.62b)

where we defined

ρ
(e)
η (x) = −

1√
2π
∂xΦη(x) . (2.63)

Now, bosonic operators Φη(x) have a simple time evolution as their
Heisenberg’s equations of motion, deduced from Eq. (2.58), read

(∂t + vη∂x)Φη(x, t) = 0 (2.64)

and are solved by

Φη(x, t) = Φη(x− vηt, 0) = Φη

(
0, t−

x

vη

)
. (2.65)

As a consequence, ρ(e)η (x, t) = ρ(e)η (x− vηt, 0). Therefore we can easily
calculate the commutators

Cβ ≡
[
ρ
(e)
β (x, t),Ψ†1(x0, 0)

]
, (2.66)

with β = 1, 2. By repeatedly using Eq. (2.62) we find

C1 = cosχ
[
ρ
(e)
+ (x− v+t, 0),Ψ

†
1(x0, 0)

]
− sinχ

[
ρ
(e)
− (x− v−t, 0),Ψ

†
1(x0, 0)

]
= cos2χ

[
ρ
(e)
1 (x− v+t, 0),Ψ

†
1(x0, 0)

]
+ sin2χ

[
ρ
(e)
1 (x− v−t, 0),Ψ

†
1(x0, 0)

]
=
{

cos2χ δ[(x− x0) − v+t] + sin2χ δ[(x− x0) − v−t]
}
Ψ
†
1(x0, 0)

(2.67)

and, in the same way,

C2 =
sin 2χ
2

{δ[(x− x0) − v+t] − δ[(x− x0) − v−t]}Ψ
†
1(x0, 0) . (2.68)

The meaning of these commutators is that two different excitations
propagating at different velocities emerge on both the outer and the
inner channel. Once again, they carry a fraction of the initial electron
charge, which can be read directly from the above equations:

f1,− = sin2χ , f1,+ = cos2χ ,

f2,− = −
sin 2χ
2

, f2,+ =
sin 2χ
2

.
(2.69)
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Figure 2.6: Charge fractionalization in copropagating channels. An electron
injected into the outer channel at position x0 splits into fractional
excitations, propagating in the same direction (due to the chirality
of the system) but with different velocities.

Here, fβ,η denotes the fraction carried by the excitation propagating at
velocity vη on channel β. The above equations correctly reproduce the
non-interacting limit when χ = 0, in which case we have f1,+ = 1 and
f1,− = f2,± = 0, as expected because the channels are decoupled. In
Fig. 2.6 we have sketched the fractionalization process just described.
It is worth noting that f1,− + f1,+ = 1 for every value of the mixing
angle. This is of course due to charge conservation, because these
excitations originate from the electron injected at x = x0. Likewise,
f2,+ = −f2,−, meaning that no net charge is transferred from the
outer to the inner channel. Indeed, the two channels are capacitively
coupled via Coulomb interactions, which cannot lead to a variation of
the particle number on each channel.

We also note that at maximal mixing (χ = π/4) the injected electron
splits into two identical excitations as the fractionalization factors
for the outer channel reduce to f1,+ = f1,− = 1/2. Moreover, the
situation is the same also on the inner channel: f2,± = ±1/2. As
a consequence, the mode made of the two fast excitations (those
propagating with velocity v+) has exactly the same charge as the
injected electron, while the slow mode (made of the two excitations
propagating at v−) carries no charge on the whole. This is why in the
literature it is common to encounter the terms “charged” and “neutral
modes” [23] associated with fractionalization in integer quantum Hall
channels: they refer precisely at the scenario depicted in Fig. 2.6 at the
mixing angle χ = π/4. Last, but not least, evidence for the presence of
fractional charges in copropagating quantum Hall channels has been
recently reported by different groups [23, 26, 150, 151], demonstrating
that the LL theory for copropagating quantum Hall edge states is
successful in explaining experimental results [152]. In addition, a
behavior consistent with the LL model was also observed in very
recent measurements of non-equilibrium energy distributions [153].



3
S I N G L E - E L E C T R O N E X C I TAT I O N S I N
C O P R O PA G AT I N G I N T E R A C T I N G C H A N N E L S

In this Chapter we address the problem of generating single-electron
excitations in the IQHE regime at filling factor ν = 2, in the presence
of interactions between the two copropagating edge channels. We
consider the case in which excitations are created by means of a
voltage pulse. Based on what we discussed in Sec. 2.3.2, we expect
these excitations to undergo a fractionalization process, which we
are going to show explicitly by calculating the charge density in the
presence of the drive. We also go beyond this picture, by analyzing
the fractional excitations in momentum space and discussing their
particle-hole content. We also obtain complementary information by
addressing the time evolution of the Wigner function. Finally, we
consider a QPC geometry and demonstrate that it is possible to extract
the mixing angle characterizing the interaction between the edge
channels from noise measurements. The material presented in this
Chapter includes our original findings discussed in Refs. [29, 30].

3.1 model and equations of motion

We consider a quantum Hall bar at filling factor ν = 2, as sketched
in Fig. 3.1. The system is described according to the LL model for
copropagating channels presented in the previous Chapter. Here, due
to the geometry of the bar, there is an additional edge that has to be
taken into account. As a result, the Hamiltonian we are going to use
is composed of two copies of the single-edge Hamiltonian discussed
in Sec. 2.3.1. In particular

H0 =
∑
r=R,L

∑
β=1,2

vβ

∫+∞
−∞ dx :Ψ†r,β(x)(−i∂x)Ψr,β(x) : (3.1)

is the free part and1

H2 = 2πV12
∑
r=R,L

∫+∞
−∞ dx :ρ

(e)
r,1 (x)ρ

(e)
r,2 (x) : (3.2)

is the interaction term. In these expressions, the index r = R (r =

L) refers to the right-moving (left-moving) channels on the upper
(lower) edge, while the index β = 1 (β = 2) labels the outer (inner)
channel on each edge. As we have seen in Sec. 2.3.1, by using the

1 The notation H2 for inter-channel interactions is the same as in Chapter 2.

57
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Figure 3.1: Sketch of the setup: a quantum Hall bar at filling factor ν = 2

is coupled to a voltage pulse source V(t), creating excitations
at terminal 1. By means of a tunable gate, only outer channel
excitations are actually transferred at x = −d (grey pulse). Due to
interactions, the original pulse is split into fractional excitations
(blue, red and green pulses).

bosonization identity it is possible to introduce bosonic fields Φr,β(x)

and subsequently diagonalize the Hamiltonian, which becomes

H0 +H2 =
1

2

∑
r=R,L

∑
η=±

vη

∫+∞
−∞ dx : [∂xΦr,η(x)]

2 : , (3.3)

where Φr,η(x) are the bosonic fields related to the original ones by the
transformation (2.55):(

Φr,+(x)

Φr,−(x)

)
=

(
cosχ sinχ

− sinχ cosχ

)(
Φr,1(x)

Φr,2(x)

)
, (3.4)

χ being the mixing angle.
Next, we want to describe a voltage-pulse-generated excitation on

the upper-edge outer channel. In the case of a mesoscopic capacitor,
this would have been the natural scenario, since the quantum dot used
for injecting the electron would have been coupled to the outer channel
(see, e. g., the setup in Fig. 1.7a). Here, the situation is a bit trickier as
there is no particular reason why a voltage drive would be selectively
coupled only to one channel. It is possible to circumvent this problem
by considering the additional presence of a gate (green part of Fig. 3.1)
acting as a filter right after terminal 1, in the same spirit of what was
implemented in Ref. [151]. By acting on the gate, only the excitation
created on the outer channel is transmitted at x = −d. Therefore, in
the described situation, everything goes as if the drive V(t) was only
coupled to the outer channel. Thus, we introduce the Hamiltonian

Hg = −e

∫+∞
−∞ dxU(x, t)ρ(e)R,1(x) , (3.5)
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with

U(x, t) = Θ(−x− d)V(t) (3.6)

and, as usual, ρ(e)R,1(x) denotes the particle density operator on channel
1 and edge R. By writing this operator in terms of the bosonic field
ΦR,1(x) with the help of Eq. (2.52) and subsequently using the inverse
of the transformation (3.4), the full Hamiltonian H = H0 +H2 +Hg
can be expressed in terms of the chiral fields Φr,η(x):

H =
1

2

∑
r=R,L

∑
η=±

vη

∫+∞
−∞ dx : [∂xΦr,η(x)]

2 :

+
e√
2π

∫+∞
−∞ dxU(x, t) [cosχ∂xΦR,+(x) − sinχ∂xΦR,−(x)] .

(3.7)

Starting from this Hamiltonian, we solve the equations of motion for
φr,η and obtain their time evolution, which reads (see App. A.2)

ΦR,+(x, t) = φR,+(x− v+t, 0) −
e cosχ√
2π

∫t
−∞ dt ′U(x− v+(t− t ′), t ′) ,

ΦR,−(x, t) = φR,−(x− v−t, 0) +
e sinχ√
2π

∫t
−∞ dt ′U(x− v−(t− t ′), t ′) ,

ΦL,+(x, t) = φL,+(x− v+t, 0) ,

ΦL,−(x, t) = φL,−(x− v−t, 0) .
(3.8)

Here, low-case fields denote the free time evolution in the absence of
the drive. Notice that L-fields evolve freely, since V(t) acts only on
the upper edge and thus the lower one is at equilibrium. Finally, the
bosonization identity (2.51) allows us to express the time evolution of
fermionic fields as (we set kF = 0)

ΨR,1(x, t) = ψR,1(x, t)eie[cos2χϕ+(x,t)+sin2χϕ−(x,t)] ,

ΨR,2(x, t) = ψR,2(x, t)eie sinχ cosχ[ϕ+(x,t)−ϕ−(x,t)] ,

ΨL,1(x, t) = ψL,1(x, t) ,

ΨL,2(x, t) = ψL,2(x, t) ,

(3.9)

where we have defined the functions

ϕ±(x, t) =
∫t
−∞ dt ′U(x− v±(t− t ′), t ′) (3.10)

and, once again, ψr,β(x, t) denotes the time evolution with respect to
the Hamiltonian H0 +H2.

At this point, the dynamics of the system is completely determined
by the above results, which allow us to calculate any expectation
value we are interested in. Recall that, since we adopt the Heisenberg
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picture, such quantum averages are calculated with respect to the time-
independent equilibrium density matrix at t = −∞, which stems from
the Hamiltonian H0 +H2. We will denote these averages with 〈. . .〉
and omit the standard subscript 0 on the average symbol, because we
will only compute expectation values with respect to the equilibrium
density matrix and thus there is no ambiguity. In what follows we are
going to study different quantities in order to characterize the wave
packets excited by the drive.

3.2 charge density

The simplest observable to address is the charge density, because it
can be computed with little effort. The first thing to do is to evaluate
the time evolution of particle density operators, which is easily done
by using the inverse of (3.4):

ρ
(e)
r,1 (x, t) = −

ϑr√
2π
∂xΦr,1(x, t)

= −
ϑr√
2π

[cosχ∂xΦr,+(x− ϑrv+t, 0) − sinχ∂xΦr,−(x− ϑrv−t, 0)] ,

(3.11a)

ρ
(e)
r,2 (x, t) = −

ϑr√
2π
∂xΦr,2(x, t)

= −
ϑr√
2π

[sinχ∂xΦr,+(x− ϑrv+t, 0) + cosχ∂xΦr,−(x− ϑrv−t, 0)] .

(3.11b)

Starting from these expressions, it is also immediate to write down
the charge current densities Jr,β(x, t), which are determined by the
continuity equations

−e∂tρ
(e)
r,β(x, t) + ∂xJr,β(x, t) = 0 (3.12)

and we report here for a later use:

Jr,1(x, t) =
e√
2π

[v+ cosχ∂xΦr,+(x− ϑrv+t, 0)

−v− sinχ∂xΦr,−(x− ϑrv−t, 0)] , (3.13a)

Jr,2(x, t) =
e√
2π

[v+ sinχ∂xΦr,+(x− ϑrv+t, 0)

+v− cosχ∂xΦr,−(x− ϑrv−t, 0)] . (3.13b)

Coming now back to the particle density, since we are interested in
the non-equilibrium effects due to the drive V(t), we define the excess
density by subtracting the equilibrium contribution:

∆ρ
(e)
r,β(x, t) = −

ϑr√
2π

(〈
∂xΦr,β(x, t)

〉
−
〈
∂xφr,β(x, t)

〉)
. (3.14)
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Given the solution in Eq. (3.8), the equilibrium terms cancel and
the particle density is expressed as a combination of derivatives of
the functions defined in Eq. (3.10). By expliciting the form of U(x, t)
according to (3.6) and recalling that the excess charge densities are

∆ρr,β(x, t) = −e∆ρ
(e)
r,β(x, t) , (3.15)

we readily arrive this result for the upper-edge excitations:

∆ρR,1(x, t) =
e2

2π
Θ(x+ d)

[
cos2χ
v+

V

(
t+ −

d

v+

)
+

sin2χ
v−

V

(
t− −

d

v−

)]
(3.16a)

∆ρR,2(x, t) =
e2 sin 2χ
4π

Θ(x+ d)

[
1

v+
V

(
t+ −

d

v+

)
−
1

v−
V

(
t− −

d

v−

)]
(3.16b)

having defined the chiral combinations t± = t− x/v±. Concerning
the lower edge, it is immediate to see that ∆ρL,β(x, t) = 0, meaning
that no excitation with respect to equilibrium is present. In the same
way we can obtain the excess charge currents, which read

∆JR,1(x, t) =
e2

2π
Θ(x+ d)

[
cos2χV

(
t+ −

d

v+

)
+ sin2χV

(
t− −

d

v−

)]
,

(3.17a)

∆JR,2(x, t) =
e2 sin 2χ
4π

Θ(x+ d)

[
V

(
t+ −

d

v+

)
− V

(
t− −

d

v−

)]
,

(3.17b)

while the lower-edge excess currents vanish. Both results (3.16) and
(3.17) describe a situation which is fully consistent with the charge
fractionalization phenomenon we have described in Sec. 2.3.2 and
sketched in Fig. 2.6: two excitations propagating at different velocities
emerge on each upper-edge channel. Moreover, they are weighted
with the fractionalization factors we derived in (2.69), as it should be.
Finally, the excess particle densities and currents are nonvanishing
only for x > −d, which is due to the chirality of the system, and retain
the same shape of the drive V(t), thanks to the linear dispersion.

Before proceeding further, we give in Fig. 3.2 an illustrative example
of Eqs. (3.16) and (3.17). We consider a single-pulse Gaussian drive

V(t) = −V0 e−t
2/w2 , (3.18)

where V0 is a positive amplitude and w parametrizes the width of
the Gaussian. Let us focus at the moment on the outer channel. In
Fig. 3.2a we plot the excess particle density as a function of position
and at different times. In the four snapshots we can observe how
the wave packets start to form and progressively separate from each
other during the propagation along the channel due to their different
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t = 0.1w

t = 2w

t = w

t = 4w

(a) Real-space time evolution of the outer-channel excess particle density, in units of
ρ0 = eV0/v−, for the Gaussian drive (3.18). The different panels are snapshots
referring to the time indicated in the embedded labels. From these plots we clearly
observe the phase where the wave packets are created, followed by the separation
due to the different velocities along the edge.

(b) Time resolved excess particle current on the outer channel, in units of J0 = eV0, for
the Gaussian drive (3.18). Different panels refer to the detection point x0 specified
in the embedded labels. The bigger pulse observed at earlier times corresponds to
the fast excitation and is followed by a smaller signal associated with the slow one.
The ratio of the peaks height is determined by tan2χ. The farther the detection
point, the larger the time interval between the arrival of the two current pulses.

Figure 3.2: Excess particle density and current on the outer channel. In all
plots we set χ = π/8 and v+ = 5v−.



3.2 charge density 63

velocities. A similar process happens on the inner channel, where two
wave packets with opposite sign are excited. The plots are obtained for
a mixing angle χ = π/8 and a velocity ratio v+/v− = 5. The different
spatial extension of the two wave packets is a consequence of the
terms x/v± entering the expression (3.16a) and the relative height of
the two pulses is influenced not only by the fractionalization factors
cos2χ and sin2χ, but also by the presence of v−1± multiplying V(t).

In Fig. 3.2b we look instead at the excess particle current (i. e. the
charge current divided by the electron charge −e) as a function of
time, for two different detection points x0 which must be located
away enough from the point x = −d where excitations are generated.
Differently from what is observed in Fig. 3.2a, here the temporal
extension of the two pulses is the same, because no velocity factor
multiplies the variable t in (3.17a). Likewise, the relative height of the
pulses is simply determined by the fractionalization factors. Moreover,
since the faster pulse arrives first at the detection point, a bigger spike
is observed in the current, followed by a lower one related to the
slower excitation. Finally, the time at which the peaks are observed
clearly depends on the distance between the injection point x = −d

and the detection point x = x0.
What is the excited charge on each channel? As the above example

should help visualize, there are two equivalent ways of computing
this quantity. The first is to integrate the charge density at time t over
all space. The second is to integrate the charge current detected at a
given point x0 over time, from −∞ to t. In either way we find

C1(t) =

∫+∞
−∞ dx∆ρR,1(x, t) =

e2

2π

∫t
−∞ dτV(τ) ,

C2(t) =

∫+∞
−∞ dx∆ρR,2(x, t) = 0 .

(3.19)

If we wait until the injection is over2, which in practice means t� w,
with w the typical time scale of the drive V(t), we obtain the total
excited charge

C1 = lim
t→∞C1(t) =

e2

2π

∫+∞
−∞ dτV(τ) . (3.20)

By introducing the parameter

q = −
e

2π

∫+∞
−∞ dt V(t) , (3.21)

we clearly have C1 = −eq. This parameter then represents the number
of electronic charges injected into the system by the drive V(t). Even
if q is a number, with a little abuse of language it is customary to refer

2 Of course this is not possible if the drive is periodic, in which case the meaningful
quantity to define is the charge per period. We will deal with this situation later in
the Chapter.
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to it also as a charge, by meaning a charge in units of −e. The number
of charges qβ,± carried by the fractionalized pulse moving at velocity
v± on channel β is expressed in terms of q as

q1,− = q sin2χ , q1,+ = q cos2χ ,

q2,− = −q
sin 2χ
2

, q2,+ = q
sin 2χ
2

.
(3.22)

These expressions can be easily derived by integrating over space
the terms in the charge density (3.16) associated with the different
excitations.

The above description of fractionalization relies on integrated quan-
tities and, as such, does not give any information on the detailed
structure of the excitations. In particular, it is not sensitive to their
particle-hole content. In order to investigate these features, we have
to go beyond the charge density and consider correlations in space or
time, which are encoded in the coherence functions. In particular, we
are going to investigate the non-equilibrium momentum distribution
and the Wigner function, through which a microscopic investigation
of the interplay between non-equilibrium dynamics and interaction ef-
fects can be performed. In the following two Sections, we will consider
only the dynamics of the upper edge, where the voltage is applied
and excitations are generated. We therefore fix the edge index to r = R
and drop it for notational convenience.

3.3 momentum distribution

The excess momentum distribution on channel β is defined as

∆nβ(k, t) =
〈
c
†
β(k, t)cβ(k, t)

〉
−n

(0)
β (k) , (3.23)

with n(0)
β (k) the stationary equilibrium distribution and cβ(k) the

operator annihilating an electron with momentum k on channel β.
Just as happens for the particle current, also this observable can be
expressed in terms of the coherence functions defined in Eqs. (1.49)
and (1.50). In particular (we set kF = 0)

∆nβ(k, t) =
1

2π

∫+∞
−∞ dx

∫+∞
−∞ dξ e−ikξ∆G<β

(
x+

ξ

2
, x−

ξ

2
; t, t

)
. (3.24)

Thus, the momentum distribution is linked to spatial correlations
at different points. It is important to remark that, in general, it has
a non-trivial time dependence, due to the fact that V(t) drives the
system out of equilibrium. Moreover, since ∆nβ(k, t) is defined as
a variation with respect to equilibrium, positive values in the excess
momentum distribution indicate the presence of additional electronic
excitations in the system. Conversely, negative values are a signature
of a reduced number of electrons and are thus associated with the
presence of holes.
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The calculation of the excess coherence function appearing in (3.24)
relies on bosonization techniques: by using the results (3.9) and (3.10)
in order to express the time evolution of fermionic fields we find

∆G<1

(
x+

ξ

2
, x−

ξ

2
; t, t

)
=

e2π[cos2χG+(−ξ)+sin2χG−(−ξ)]

2πa

×
{

exp
[
−ie

(
cos2χ∆ϕ+(x, ξ; t) + cos2χ∆ϕ−(x, ξ; t)

)
+
]
− 1
}

,
(3.25a)

∆G<2

(
x+

ξ

2
, x−

ξ

2
; t, t

)
=

e2π[sin2χG+(−ξ)+cos2χG−(−ξ)]

2πa

× {exp [−ie cosχ sinχ (∆ϕ+(x, ξ; t) +∆ϕ−(x, ξ; t))+] − 1} ,
(3.25b)

where we have defined the differences

∆ϕ±(x, ξ; t) = ϕ±

(
x−

ξ

2
, t
)
−ϕ±

(
x+

ξ

2
, t
)

(3.26)

with ϕ±(x, t) given in Eq. (3.10). Moreover, we also introduced the
equilibrium bosonic Green functions

G±(x) = 〈φ±(x, 0)φ±(0, 0)〉−
〈
φ2±(0, 0)

〉
, (3.27)

which are calculated in App. D and read [cf. Eq. (D.23)]

G±(x) =
1

2π
ln
[

a

a− ix

πkBθx/v±
sinh(πkBθx/v±)

]
, (3.28)

where θ is the temperature of the edge channels. The above results
are completely general and allows us to calculate the momentum
distribution for any drive V(t). However, we are particularly interested
in the Lorentzian drive, in order to investigate how Levitons are
affected by interactions. Therefore, in the following we are mainly
going to consider

V(t) = −
q

e

2w

w2 + t2
, (3.29)

where w parametrizes the width of the pulse. As we have seen in Sec.
1.4, when q is a positive (negative) integer, this drive generates pure
electron-like (hole-like) excitations in non-interacting systems [5–8].
The evaluation of coherence functions (3.25) in the presence of the
drive (3.29) leads to

∆G<β

(
x+

ξ

2
, x−

ξ

2
; t, t

)
=

1

2πiξ

∏
η=±

[
πkBθξ/vη

sinh(πkBθξ/vη)

]ζβ,η

×

{∏
η=±

∏
ε=±

[
ivηw− ε(vηtη + εξ/2)

ivηw+ ε(vηtη + εξ/2)

]qβ,η

− 1

}
,

(3.30)

with qβ,η given in (3.22), tη = t − x/vη, ζ1,+ = ζ2,− = cos2χ and
ζ1,− = ζ2,+ = sin2χ. In obtaining this expression, the approximation
t & w was used. This means that we wait until the injection process is
over. We are now going to consider two different regimes.
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3.3.1 Regime of full spatial separation

As we have seen in Sec. 3.2, the pulses excited on the edge channels
become more and more spatially separated as they propagate along
the edge, due to the fact that v+ > v− (see Fig. 3.2). In this subsection,
we assume that enough time has elapsed since the application of V(t)
for the excitations to be very well separated. Explicitly, if we assume
that V(t) is a pulse centered around t = 0, we have the condition

t� w
v+ + v−
v+ − v−

. (3.31)

Indeed, fast/slow pulses are centered around x± = v±t and have a spa-
tial extension δx± = wv±. Then, the separation condition |x+ − x−|�
|δx+ + δx−| yields the above relation. In this regime, the expression
(3.30) greatly simplifies and, consequently, the evaluation of momen-
tum distributions is easier. Indeed, it was proved in Refs. [154, 155]
that a function with the structure of (3.30) can be separated as

∆G<β

(
x+

ξ

2
, x−

ξ

2
; t, t

)
→ ∆G<β+(t+, ξ) +∆G<β−(t−, ξ) , (3.32)

where

∆G<β,η (tη, ξ) =
1

2πiξ

∏
ε=±

[
πkBθξ/vε

sinh(πkBθξ/vε)

]ζβ,ε

×

{∏
ε=±

[
ivηw− ε(vηtη + εξ/2)

ivηw+ ε(vηtη + εξ/2)

]qβ,η

− 1

}
,

(3.33)

Thus, the coherence function (3.30) has been converted from a product
into a sum of two terms depending on the combinations t− x/v±. In
practice, the separation (3.32) means that fast and slow excitations on
a given channel β are treated independently from one another, which
is reasonable when their overlap in space is negligible.

As a consequence of Eq. (3.32), we see from the definition (3.24) that

∆nβ(k, t)→ ∆nβ+(k) +∆nβ−(k) . (3.34)

where

∆nβ,±(k) =
1

2π

∫+∞
−∞ dx

∫+∞
−∞ dξ e−ikξ∆G<β,± (t±, ξ) (3.35)

are time-independent distributions because the functions ∆G<β± de-
pend on space and time only via the combinations x− v±t and thus
any dependence on t is lost when computing the integral over x in
(3.35). This shows that the non-equilibrium distribution ∆nβ(k, t) ac-
tually reaches a stationary limit when the excitations are spatially
well separated. Moreover, the functions ∆nβ,±(k) defined in (3.35) can



3.3 momentum distribution 67

be considered as the momentum distributions of the single excita-
tions taken independently from each other. Finally, they satisfy the
following symmetry relations [which follow from (3.35) and (3.33)]

v−∆n1,+(k/v+) = v+∆n1,−(k/v−) , (3.36a)

v−∆n2,+(k/v+) = −v+∆n2,−(−k/v−) . (3.36b)

minimal excitations for integer charges Let us now con-
sider the zero-temperature case. By investigating the momentum dis-
tributions in this regime, it is possible to have information about the
particle-hole content of the excitations propagating in the system, ex-
cluding thermal particle-hole pairs. We now show that the condition
for having “clean” excitations (purely electron-like or hole-like) is
that the numbers qβ,± defined in (3.22) be integer. Thus, it is not the
charge q [cf. Eq. (3.21)] carried by the original pulse V(t) the quantity
that matters, but rather the charges renormalized by interactions. In
order to see that this is indeed the case, it is sufficient to notice that
when qβ,± are integer numbers, the zero-temperature expressions of
the correlators (3.33) become identical to Eq. (1.82). As a result, they
admit the representation

∆G<1,±(t±, ξ) =
1

v±

m±∑
j=1

Πj

(
t± −

ξ

2v±

)
Π∗j

(
t± +

ξ

2v±

)
, (3.37a)

∆G<2,±(t±, ξ) =
±1
v±

n∑
j=1

Π
(±)
j

(
t± −

ξ

2v±

)
Π
(∓)
j

(
t± +

ξ

2v±

)
,

(3.37b)

where we have assumed q1+ = m+, q1− = m− and q2± = ±n,
with m±,n ∈N. Moreover Π(+)

j ≡ Πj and Π(−)
j ≡ Π∗j . The functions

Πj have been defined in Eq. (1.84) and here are denoted differently
not to make confusion with the bosonic fields φβ,±. By using the
Fourier representation (1.86) it is finally straightforward to show that
the zero-temperature momentum distributions obtained from (3.35)
read

∆n1±(k) = 2wv±Θ(k)

m±−1∑
j=0

∣∣Lj(2wv±k)∣∣2 e−2wv±k ,

∆n2±(k) = ±2wv±Θ(±k)
n−1∑
j=0

∣∣Lj(±2wv±k)∣∣2 e∓2wv±k ,

(3.38)

where Lj are Laguerre polynomials. It is easy to verify that the total
charge of each wave packet is recovered by integrating its distribution
over k.

The result (3.38) shows that both wave packets on channel 1 and the
fast one on channel 2 are made only of electron-like excitations above
the Fermi level, while the slow wave packet on the inner channel is
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(a) (b)

Figure 3.3: Distribution ∆n2,+(k) (in units of wv+) at fixed interaction angle
parameter χ = π/4. In this case the charge carried by the fractional
excitation is −eq2,+ = −eq/2, which is an integer multiple of −e
for q ∈ 2N. Panel (a): zero temperature result; for integer charges,
the distribution is given by (3.38) and describes a purely electronic
excitation, with no associated holes. In contrast, when q2,+ is not
an integer, a divergence appears near k = 0. Panel (b): finite
temperature distributions for kBθw = 0.05. The divergence near
the Fermi momentum is washed out. Still, hole contributions do
appear in the case of non integer charges, while in the integer
case the distribution is always positive.

made only of hole-like excitations below the Fermi level. It is worth
underlining that this feature is peculiar of Lorentzian voltage pulses
and it is not shared by generic wave packets generated by other
drives, which would contain electron-hole pair contributions. As a last
comment, we note that the charges of the outer-channel excitations
can be simultaneously integer only if q itself is. Indeed

m+ = q1,+ = q cos2χ

m− = q1,− = q sin2χ
=⇒ q = m+ +m− ∈N . (3.39)

This condition, however, can be achieved only for particular values of
the mixing angle, such that tan2χ = m−/m+, in agreement with Ref.
[114]. On the inner channel, instead, given any interaction strength it
is possible to have both excitations with integer charge if

q =
2n

sin 2χ
, (3.40)

with n ∈ N and no further constraints. Thus, even starting from a
non-integer q, which describes a non-minimal excitation, two clean
pulses with opposite charges can be created on the inner channel, due
to interactions. By building upon this observation, we will show in Sec.
3.5 that it is possible to construct a quantity from which the mixing
angle χ can be extracted.

generic charges and finite temperature We now describe
what happens when the charge of a given excitation is not an in-
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teger multiple of −e. In this situation the momentum distribution
features particle-hole pair contributions, indicating that the excitation
is not clean. An example is shown in Fig. 3.3(a), where we plot the
zero-temperature distribution ∆n2,+(k) for χ = π/4 and compare the
case of integer (q2,+ = 1) and non-integer (q2,+ = 1/2) charges. In
the latter case the distribution is evaluated numerically and clearly
features a divergence around k = 0, with negative contributions for
k < 0 signaling the presence of hole excitations.

We can actually prove that the divergence around k = 0 is common
to all distributions ∆nβ±. In order to evaluate the small-k behavior
of ∆nβ,±(k), we have to consider the dominant contribution in the
integral (3.35) as |ξ|→∞. It is possible to show that the leading order
is (at zero temperature)∫+∞

−∞ dx∆G<β,±(t±, ξ) ≈
|ξ|→∞

|ξ|

2πiξ

[
e2πiqβ,±sgn(ξ) − 1

]
. (3.41)

Thanks to this estimate we find

∆nβ±(k→ 0) ≈
1− cos(2πqβ,±)

2π2
1

k
. (3.42)

Thus, for non-integer qβ±, particle-hole pairs distributed as 1/k near
the Fermi momentum arise in ∆nβ,±(k). Notice that the previous
expression vanishes for integer charges. This does not mean that the
distributions vanish near k = 0, but simply that sub-leading orders
in the expansion (3.41) have to be kept. By integrating Eq. (3.42) over
k, we see that the number of particle-hole pairs is logarithmically
divergent [6–8], a manifestation of the orthogonality catastrophe [6].
Finally, in Fig. 3.3(b) we present finite-temperature results, showing
that the zero-temperature divergence disappears and the distributions
are smeared around k = 0.

3.3.2 Transient regime

When the wave packets are not completely separated in space, some
effects due to their overlap can modify the picture we have presented
above. In this subsection we investigate this regime, by focusing on
the dynamics of the inner channel (for the sake of simplicity and also
because in Sec. 3.5 we will calculate the noise due to the partitioning of
inner-channel excitations). Since in this transient regime the separation
(3.32) cannot be made, the momentum distribution acquires a time
dependence. We can decompose it as

∆n2(k, t) = ∆n2,+(k) +∆n2,−(k) +∆n2,X(k, t) , (3.43)
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where the whole time dependence is encoded in the term ∆n2,X(k, t),
associated with the overlap of the fast and slow wavapackets. It is
defined as

∆n2,X(k, t) =
1

2π

∫+∞
−∞ dx

∫+∞
−∞ dξ e−ikξ

×

[
∆G<2

(
x+

ξ

2
, x−

ξ

2
; t, t

)
−
∑
η=±

∆G<2,η(tη, ξ)

]
.

(3.44)

Notice that if the separation (3.32) can be made, the above expression
vanishes. Thus ∆n2,X is really associated with the transient regime
where the wave packets are overlapping. Eq. (3.44) must be evaluated
numerically, in general, but can be simplified in the case of integer
charges, i. e. q2,+ = n. Indeed, with the help of (3.37), one obtains [29]

∆n2,X(k, t) =
∫+∞
−∞

dx
v+v−

∫+∞
−∞ dξ(−iξ)e−ikξ

×
n∑

s,p=1

∏
η=±

Π
(η)
s

(
t± −

ηξ

2v±

)
Π
(η)
p

(
t± +

ηξ

2v±

)

= γ

n∑
s,p=1

∂k

∣∣∣∣∫+∞
−∞

dω

2π
Π̃s(ω)Π̃∗p(γω− v−k)e

iωt(γ−1)

∣∣∣∣2 ,

(3.45)

where

γ =
v−

v+
< 1 (3.46)

and Π̃s(ω) is the Fourier transform of Πs(t) [cf. Eq. (1.86)]. The sim-
plest case is represented by the choice q2,+ = 1, for which the above
general expression reduces to

∆n2,X(k, t) = −
8wγ(γ+ 1)−2

1+ t2

w2

(
1−γ
1+γ

)2 ∑
η=±

ηvηΘ(ηk)e
−2ηvηwk . (3.47)

As shown in Fig. 3.4, this mixed term describes electron excitations
(∆n2,X > 0) at k < 0 and hole excitations (∆n2,X < 0) at k > 0.
This means that the effect of the overlap between the two oppositely-
charged pulses carrying integer charges results in an effective re-
duction of the overall number of electron and hole excitations, with
respect to the case of completely separated wave packets. Note that
the time-dependent overlap contribution (3.47) becomes negligible at
times t� w1+γ1−γ , which is precisely the condition (3.31) discussed in
the stationary regime.

We conclude this Section by addressing the number ∆Nh(t) of ex-
cited holes at time t due to the effect of the drive. At zero temperature,
this quantity is given by

∆Nh(t) = −

∫0
−∞ dk∆n2(k, t) . (3.48)
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Figure 3.4: The different components of the momentum distribution
∆n2(k, t), in the case q2,+ = 1. The blue (green) dashed (dot-
dashed) line represents ∆n2,− (∆n2,+), while the full red line is
10∆n2,X for t/w = 5. In this plot we have used γ = 1/5.

Figure 3.5: Total number of injected holes as a function of q2,+ = q cosχ sinχ
at zero temperature, in the case of a Lorentzian drive. Different
curves refer to (from bottom to top) t/w = 5, 10, 20, 30, 50. The
ratio between slow and fast velocities is γ = 1/5.

The calculation is performed in Appendix E.1 and yields

∆Nh(t) =
1

(2π)2

∫+∞
−∞ dx

∫+∞
−∞ dy

1

(a+ iy)2

× cos

[
e
q2,+

q

(∫t+− y
2v+

t++ y
2v+

dt ′V(t ′) −

∫t−− y
2v−

t−+ y
2v−

dt ′V(t ′)

)]
.

(3.49)

This quantity is plotted in Fig. 3.5, for different values of t/w. By
increasing t/w, ∆Nh(t) → q2,+ when q2,+ is integer, as expected
from the previous analysis in the regime of well-separated pulses.
Indeed in this situation the slow excitation is purely hole-like and
carries a charge q2,− = −q2,+. For intermediate times, instead, this
quantity reflects the effective charge reduction discussed above due to
the overlap contribution ∆n2,X(k, t). Moreover, for non-integer values
of q2,+, we clearly see that ∆Nh(t) grows upon increasing t/w. By
choosing a non-integer charge value and considering several times,
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one realizes that (for sufficiently large t/w), this increase is logarithmic
in t or, equivalently, in the propagation distance along the edge. This
feature is in agreement with the scaling behavior (3.42), appearing
in the stationary regime: Eq. (3.42) indeed results in a logarithmic
divergence of the number of produced holes.

3.4 wigner function

As we have seen in Sec. 1.5.1, the Wigner function is a very powerful
tool to access the energy content of an excitation, while keeping
track of its time evolution. It is then perfectly suited to investigate
the fractionalization problem we are dealing with in this Chapter.
Therefore, in this Section we give results for the Wigner function of
the fractionalized excitations, confirming from another perspective
what we previously discussed.

The excess (electron) Wigner function of channel β is defined as

∆W<
β (x, t;ω) =

1

2π

∫+∞
−∞ dτ∆G<β

(
x, x; t+

τ

2
, t−

τ

2

)
eiωτ (3.50)

and it is thus related to time correlations rather than spatial ones as
in the case of the momentum distribution, [cf. Eq. (3.24)]. We have
already all we need in order to evaluate ∆W<

β . Indeed, the excess
coherence appearing in the integral (3.50) can be calculated along the
lines of what has been done in Sec. 3.3 and the result is similar to Eq.
(3.30):

∆G<β

(
x, x; t+

τ

2
, t−

τ

2

)
=

i

2πiτ

πkBθτ

sinh(πkBθτ)

∏
η=±

(
1

vη

)ζβ,η

×

{∏
η=±

∏
ε=±

[
iw− ε(xη/vη − ετ/2)

iw+ ε(xη/vη − ετ/2)

]qβ,η

− 1

}
,

(3.51)

with qβ,η given in (3.22), xη = x− vηt and we recall that ζ1,+ = ζ2,− =

cos2χ and ζ1,− = ζ2,+ = sin2χ. Just as we have done in Eq. (3.32),
it is possible to separate the above correlator into a sum of terms
depending only on x− vηt, when the condition (3.31) is met. In this
way, one obtains

∆W<
β (x, t;ω) =

∑
η=±

∆W<
β,η(x− vηt;ω) , (3.52)

where ∆W<
β,η is the excess Wigner function of the excitation propagat-

ing at velocity vη on channel β. It is also possible to derive analytic
expressions when qβ,η are integer numbers, by repeating a calculation
which is essentially the same as the one presented in Appendix B.2.
However, here we will directly show and comment some results in
the transient regime, where the Wigner function has to be numerically
computed from Eqs. (3.50) and (3.51).
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Figure 3.6: Time evolution of the outer-channel excess Wigner function
∆W<1 (x, t;ω), in the case of a Lorentzian drive. All panels are
snapshots at a given time, as indicated on each density plot.
The mixing angle is fixed to χ = π/4 and the velocity ratio
is v+/v− = 5. The upper group of plots refer to the situation
q1,+ = q1,− = 1. In this case both excitations are clean Levitons
and no holes are created. The lower group of plots refers instead
to the case q1,+ = q1,− = 1/2. Here, the charge being non-integer,
the excitations are not clean and hole contributions emerge at
ω < 0. From these plots the charge fractionalization process is
transparent.
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In Fig. 3.6 we show some density plots of the outer-channel excess
Wigner function ∆W<

1 (x, t;ω), as a function of x and ω, for different
times. We have chosen the mixing angle χ = π/4, corresponding to
maximal coupling, and we have considered v+/v− = 5. We recall that,
at maximal coupling, the charges of the outer-channel excitations are
q1,+ = q1,− = q/2 [see Eq. (3.22)], where q is defined in (3.21) and is
determined by the drive V(t) [see Eq. (3.29)]. In the Figure we have
put two groups of panels, corresponding to different situations. Before
describing the differences between them, let us immediately notice
that the charge fractionalization process is evident from both groups:
we can observe how excitations are generated and how they split and
separate as they propagate along the edge channel.

The upper group refers to q = 2, as an example of the case where
the charge of each excitation is integer (here q1,+ = q1,− = 1). It shows
that even in this interacting system a superposition3 of Lorentzian
pulses carrying integer charges of the same sign is a clean excitation.
Indeed, from the plots of the Wigner function we clearly observe no
signal at ω < 0, indicating that no holes are excited in the system.
It is intuitive to understand from the picture that, by waiting long
enough, the two pulses will be eventually very well separated and the
Wigner function of the system would be the sum of two independent
contributions looking exactly as the Wigner function for a single-
Leviton state we plotted in Fig. 1.11 (top left). On the contrary, in
the lower group of panels we have considered the situation q = 1,
meaning that q1,+ = q1,− = 1/2. In this case hole contributions at
negative energy are clearly visible.

In Fig. 3.7 we report the very same plots, but this time for the inner-
channel excess Wigner function ∆W<

2 (x, t;ω). In all plots, the main
positive peak represents the fast pulse with positive charge, while the
main negative peak is associated with the hole-like slow excitation. In
Fig. 3.7 it is not immediate to see the difference between the case q = 2

and q = 1, unlike for Fig. 3.6. This is because the excitations on the
inner channel always have an opposite charge and thus paricle and
hole contributions must be present somewhere. However, with a more
attentive look at the fast pulse, we can see that the signal atω < 0 right
below it is suppressed in the upper group of plots, corresponding to
the integer case q2,+ = −q2,− = 1. This is because the more the pulses
are separated from each other, the more the situation on the channel
is described by a purely electron-like excitation followed by a purely
hole-like one. On the other hand, negative values at ω < 0 below the
fast peak in the case q2,+ = −q2,− = 1/2 indicate that excitations are
not clean.

3 The term superposition refers to the fact that two pulses emerge due to fraction-
alization and does not indicate that the original drive V(t) is made of multiple
pulses.
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Figure 3.7: Time evolution of the inner-channel excess Wigner function
∆W<2 (x, t;ω). All panels are snapshots at a given time, as in-
dicated on each density plot. The mixing angle is fixed to χ = π/4

and the velocity ratio is v+/v− = 5. The upper group of plots
refers to the situation q2,+ = −q2,− = 1. The lower group of plots
refers instead to the case q2,+ = −q2,− = 1/2.



76 single-electron excitations in copropagating interacting channels

Figure 3.8: HBT setup for partitioning inner-channel excitations. A QPC is
polarized in such a way that the outer channel is completely
transmitted, while the inner one is partially reflected. The system
is driven by V(t) at terminal 1 and the excitations are parti-
tioned after having travelled for a distance d along the edge. The
backscattered current J2(t) entering terminal 2 is measured and
used to compute the noise.

3.5 noise in a qpc geometry

Having discussed in detail the properties of the excitations generated
by the Lorentzian drive (3.29), we now turn our attention to the noise
produced when they are partitioned at an electronic beamsplitter. As
we will show in this Section, the inner-channel partitioning noise turns
out to be very useful to extract the mixing angle χ.

We consider the setup sketched in Fig. 3.8, which is the same as in
Fig. 3.1 except for the addition of a QPC at x = 0, acting as a beamsplit-
ter. The system being only driven at terminal 1, this setup is known as
the HBT configuration [2]. The noise generated by partitioning outer-
channel excitations at a QPC has been considered in some works in the
literature [114, 149, 150]. Here, we focus on the inner channel, since it
is more suitable to probe interactions. To this end, the QPC is assumed
to be polarized so as to completely transmit the outer channel and
weakly reflect the inner one.

We will then consider the following Hamiltonian

Ht = ΛΨ
†
R,2(0)ΨL,2(0) + H.c. , (3.53)

accounting for tunneling processes between the upper- to lower-edge
inner channel, and assume that the tunnel amplitude Λ is small (weak
backscattering regime). The Hamiltonian (3.53) will be thus considered
as a perturbation with respect to the Hamiltonian H defined in (3.7).
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3.5.1 Relation with the number of holes

We want to calculate the zero-frequency autocorrelation noise in ter-
minal 2. It is defined as

S = 2

∫+∞
−∞ dt

∫+∞
−∞ dτ [〈J2(t+ τ)J2(t)〉− 〈J2(t+ τ)〉 〈J2(t)〉] , (3.54)

where J2(t) = JL,2(−d, t) is the backscattered current entering in the
terminal and JL,2(x, t) is given in Eq. (3.13b). Within the perturbative
approach, the time evolution O(t) of a generic operator is built as a
power series in the tunnel amplitude Λ. In particular, up to second
order one finds

O(t) = O(0)(t) − i

∫t
−∞ dτ

[
O(0)(t),H(0)

t (τ)
]

−

∫t
−∞ dt ′

∫t ′
−∞ dt ′′

[
H

(0)
t (t ′′),

[
H

(0)
t (t ′),O(0)(t)

]]
,

(3.55)

where the superscript (0) denotes the time evolution with respect to
the Hamiltonian H in (3.7). By applying this formula to JL,2(−d, t)
and plugging the result into (3.54), we arrive at the result

S =
4e2|Λ|2

(2πa)2

∫+∞
−∞ dt

∫+∞
−∞ dτ

(
a

a+ iv−τ

πθτ

sinhπθτ

)2
× cos

[
e
q2,+

q

(∫t
t−τ

dt ′V(t ′) −

∫t+τd
t−τ+τd

dt ′V(t ′)

)]
,

(3.56)

where

τd = d

(
1

v+
−
1

v−

)
. (3.57)

The calculation leading to this formula is detailed in App. E.2. The
first thing to note about Eq. (3.56) is that it is formally equivalent to
the HBT noise obtained with the modified voltage

Ṽ(t) = V(t) − V(t− τd) , (3.58)

describing the arrival from the left side of the QPC of two identical but
oppositely-charged excitations, separated by a time delay τd, which
is controlled by the propagation distance and the velocity mismatch
between fast and slow modes. As discussed in App. C.2, this situation
is equivalent to the HOM noise obtained when two identical and equally-
charged pulses arrive at the QPC from opposite sides, after having been
excited at terminals 1 and 4. Our HBT setup thus simulates a HOM

interferometry of fractional excitations.
As a second remark, we notice that the formula (3.56) at zero tem-

perature is very similar, though not identical, to the result (3.49) for
the number of excited holes at time t. This resemblance then suggests
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Figure 3.9: Equivalence between the investigated HBT setup at ν = 2 (left)
and a non-interacting HOM setup at ν = 1 (right). In the first
one, the two oppositely-charged excitations on the inner channel
arrive at a QPC from the left side and are separated due to the
fractionalization phenomena. In the second one, two excitations
with the same charge arrive at a QPC from opposite sides and
are separated due to the time delay between the drive applied at
terminal 1 and the one at terminal 4.

that a relation between the t and τd can be found in such a way that S
and ∆Nh be proportional. As a matter of fact, by evaluating Eqs. (3.56)
and (3.49) in the case of a Lorentzian drive such that q2,+ is integer,
the following relation is found4

S

S0
= 2Nh(t

?) ,
t?

w
=

√
γ

(γ− 1)2

(τd
w

)2
− 1 , (3.59)

where S0 = 2e2|Λ|2/v2− and γ is given in (3.46). The noise as a func-
tion of q2,+ behaves in the same way as in Fig. 3.5. In particular, S/S0
approaches the value 2q2,+ at integer q2,+, upon increasing the prop-
agation distance d. This can be very easily interpreted from the HOM

perspective: the greater the propagation distance, the better the two
wave packets are separated and the greater is τd. Therefore, in this
regime two Levitons of charge q2,+ arrive at the QPC separated by a
very long time, thus contributing independently to the noise, which
becomes twice as big as what a single Leviton would produce. On the
contrary, the anti-bunching effect is responsible for a noise reduction
in the regime of non-negligible overlap [117].

3.5.2 Periodic pulses

In this final part of the Chapter we want to investigate whether it is
possible from noise measurements to obtain information about the
mixing angle χ describing electronic interactions in the model we
are considering. In order to be closer to an experimental situation,
we address the case of a periodic stream of pulses, V(t) = V(t+ T).
As discussed in Sec. 1.6, this calls for slightly different definitions
of some quantities. First of all, the t-integration in (3.54) is replaced
by an average over the drive period, because the correlators are now

4 Of course this relation is not general and depends on the particular drive, as the
presence of the parameter w in (3.59) shows.
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periodic functions of t and cannot be integrated on the whole real axis.
In this way the definition of the noise becomes

S = 2

∫T/2
−T/2

dt
T

∫+∞
−∞ dτ [〈J2(t+ τ)J2(t)〉− 〈J2(t+ τ)〉 〈J2(t)〉] . (3.60)

Secondly, instead of (3.21), we now define a charge per period, as in
(1.93).

q = −
e

2π

∫T/2
−T/2

dt V(t) . (3.61)

Thirdly, and most importantly, the periodic voltage drive V(t) is de-
composed be relying on the photoassisted coefficients as in Eq. (1.100)

eie
∫t
0 dτV(τ) = e−iqΩt

∑
`∈Z

p`(q) e−i`Ωt , (3.62)

whereΩ = 2πT−1. Finally, the overlap between two consecutive pulses
is controlled by the ratio η = w/T between the typical temporal
extension of each pulse composing the periodic train and the period
of the drive. For instance, a periodic train built from Lorentzian pulses
(3.29) can be written as

V(t) = −
qΩ

eπ

+∞∑
p=−∞

η

η2 + (t/T − p)2
, (3.63)

and its photoassisted coefficients read [81, 117]

p`(q) = qe
−2πη`

+∞∑
s=0

Γ(q+ `+ s)

Γ(q+ 1− s)

(−1)se−4πηs

s!(`+ s)!
, (3.64)

where Γ(z) is Euler’s Gamma function. For a detailed derivation of
this formula, see the PhD thesis of L. Vannucci [52] or F. Ronetti [156].

By using the decomposition (3.62) into (3.56) and following the lines
of the calculation presented in App. C.1, it can be straightforwardly
shown that

S

S0
=
1

T

+∞∑
`=−∞ |p̃`(q2,+, τd)|2 ` coth

(
`Ω

2kBθ

)
, (3.65)

where the modified photoassisted coefficients are the same as in a
HOM setup and read [cf. Eq. (C.20)]

p̃`(q2,+, τd) =
+∞∑

m=−∞p`+m(q2,+)p
∗
`(q2,+)e

2πimτd/T . (3.66)

As we can see, unlike (3.56), this result is periodic in τd/T , so that
τd cannot be increased at will and the maximal separation between
consecutive pulses is achieved at τd/T = 1/2. In this context, the
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Figure 3.10: The function X in Eq. (3.67) at zero temperature and with τd =

T/2 for the Lorentzian drive (3.63). We note that the zeros (in
the neighborhood of which X is decreasing) are more and more
precisely localized at integer values of q2,+ when η is decreased.

overlap at a given period can be reduced by diminishing the width of
the pulse, namely the ratio η = w/T .

We now argue that the quantity

X(q) = 2π
2S(q) − S(2q)

S0Ω
(3.67)

can be used to extract the mixing angle χ. Consider indeed the
Lorentzian drive: from what we have discussed in Sec. 3.3.2, we ex-
pect that S(q2,+) → q2,+ for integer values of q2,+, provided that
η is small enough (negligible overlap between consecutive pulses).
Thus X(q2,+) would vanish whenever q2,+ ∈ N. By recalling that
q2,+ = q sinχ cosχ, it would be then possible to recover the value of χ
by looking at the positions of the zeros of the quantity X as a function
of the experimentally tunable parameter q. Explicitly, if q = qn is the
position of the n-th zero of X(q), then χ would be obtained by solving
qn = n cosχ sinχ.

Fig. 3.10 shows the quantity X as a function of q2,+ in the case of
a Lorentzian drive (3.63), for different values of η. We can see that
X(q2,+) does not vanish only at integer values of q2,+, but this is not
the only problem. While it is clearly visible that, by decreasing η, the
zeros we are interested in are more and more precisely localized at
integer values of q2,+, we note that significant deviations from this
ideal situation already appear for η = 0.05, which is a quite small
value. Therefore, the Lorentzian drive is not well suited for the purpose
of extracting χ from a practical point of view.

However, one may wonder whether other drives do exhibit more
stable signatures. This happens to be the case for the rectangular wave.
Within a period, this signal reads

V(t) = −
qΩ

2eη
[Θ(t) +Θ(ηT − t)] , t ∈ [0, T) (3.68)
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(b)

(a)

Figure 3.11: The quantity X, defined in (3.67), as a function of q2,+ for the
rectangular wave (3.68). Panel (a): zero-temperature result for
different values of η = 0.2, 0.1, 0.05 (from bottom to top). Princi-
pal maxima are very well located at half-integer q2,+ already for
η = 0.1. In addition, the smaller η the bigger the amplitude of
oscillations. Panel (b): different curves for temperatures ranging
from zero to kBθ = Ω/2 and η = 0.05. In both panels the time
delay is set to τd = T/2.

and its photoassisted coefficients are calculated in Ref. [157] and read

p`(q) =
q

π

eiπ[η`+q(η−1)] sin{π[η`+ q(η− 1)]}
(q+ `)[η`+ q(η− 1)]

. (3.69)

In Fig. 3.11(a) we show X(q) for this drive, in the case of optimal
maximal time delay τd = T/2 and at zero temperature. We observe,
after a transient at small values of q2,+, a regular oscillating pattern,
with local maxima in correspondence of integer q2,+ and principal
maxima better and better located at half-integer values of q2,+ the
more η is decreased. Finite-temperature effects are taken into account
in Fig. 3.11(b), and are shown to progressively reduce the amplitude
of oscillations, but have very little influence on the position of the
maxima, which is the feature of interest for our purpose. We can
also investigate what happens if the time delay is not the maximum
possible. This is shown in Fig. 3.12, where we can see that a change in
τd has two effects. First of all, it slightly reduces the amplitude of the
oscillations, the maximum amplitude being achieved at the optimal
value τd = T/2. Secondly, it also shifts the positions of the maxima,
which are therefore less precisely localized at integer and half-integer
values of q2,+. We stress, however, that this effect is quite small and
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η = 0.05

η = 0.1

η = 0.2

Figure 3.12: Effect of the time delay. In each panel we plot the quantity
X(q), at a given value of η as specified in the pictures, for three
different values of the delay τd/T = 0.25, 0.35, 0.5 (from the
bottom to the top curve). As we can see, the main effect a
non-maximal time delay is to reduce a little the amplitude of
the oscillations and to induce a less precise localization of the
maxima at integer and half-integer values of q2,+. The latter
effect is weakened by decreasing η (cf. top and bottom panel).

becomes more and more irrelevant as the value of η is decreased, as it
clearly emerges by comparing the top and bottom panels of Fig. 3.12.

This discussion shows that the rectangular wave (3.68) enables
to determine the value of the mixing angle χ from the quantity X

introduced in (3.67), by plotting it as a function of the tunable external
parameter q and looking for the values of q at which X has principal
or secondary maxima. For those values the charge number q2,+ =

q cosχ sinχ, must be integer or half-integer, thus allowing to extract
the parameter χ.



4
I N T E R A C T I N G H E L I C A L C H A N N E L S D R I V E N B Y
P E R I O D I C V O LTA G E P U L S E S

In this Chapter we turn our attention to a different interacting system,
namely we investigate the dynamics of Lorentzian pulses in a couple
of counterpropagating helical channels. This system will be described
by means of the LL theory presented in Sec. 2.2 and some physical
effects are conceptually similar to what has been discussed in the
previous Chapter. In particular, based on what we have seen in Sec.
2.2.4, we expect a fractionalization process to occur also in helical
channels as a result of interactions. We are going to show that this is
indeed the case and we will investigate the properties of fractional
excitations by computing their spectral functions. Finally, we propose
a possible setup, based on scanning tunneling spectroscopy, which
enables to probe the different features of the spectral function, as well
as to extract the Luttinger parameter encoding the interaction strength.
The results presented in this Chapter are based on our publication
[31].

Before entering the description of the model, it is worth reviewing
briefly how helical channels emerge at the edge of 2DTIs and why they
are topologically protected in a similar way as chiral edge states in the
IQHE.

4.1 two-dimensional topological insulators

After the discovery of the IQHE and FQHE – and their interpretation as
topological phases [53, 158, 159] – no such new phases were discovered
for a long time. Things changed in the mid 2000’s when the QSHE

was theoretically predicted, first in graphene [160, 161] and then in
HgTe/CdTe quantum wells [17]. Quite amazingly, the latter prediction
was experimentally confirmed soon after by L. Molenkamp’s group
[18]; it was the first evidence of a 2DTI. Since these pioneering works,
it was understood that maybe topological phases are not so rare
as one could think at first and this stimulated a veritable quest for
topological materials. Just to mention an example, QSHE was also
predicted in InAs/GaSb composite quantum wells [162] and soon after
experimentally observed [163, 164]. But 2DTIs are just the beginning
of the story and by now we are aware of several different classes of
topological materials [165–168].

For the purpose of this thesis, however, we will limit here to the
QSHE state. In the following, we describe how it can emerge and how
time reversal symmetry protects it.

83



84 interacting helical channels driven by periodic voltage pulses

4.1.1 Time reversal symmetry and Kramer’s theorem

The effect of time reversal operator Θ is to reverse the arrow of time.
Then, positions in space are left unchanged, while momenta are re-
versed. This means that the action of Θ on position and momentum
operators x and p must be

ΘxΘ−1 = x , ΘpΘ−1 = −p . (4.1)

As a consequence we obtain

Θi hΘ−1 = Θ[x,p]Θ−1 = −[x,p] = −i h , (4.2)

or ΘiΘ−1 = −i. Therefore time reversal must involve complex con-
jugation and is an anti-unitary operator. It can be then represented
as

Θ = UK , (4.3)

where K is complex conjugation and U a unitary operator, satisfying
UU† = 1. By applying Θ twice we obtain

Θ2 = UKUK = UU∗ = U(UT )
−1

= Φ , (4.4)

where Φ cannot be anything else than a diagonal matrix of phases,
since by applying time reversal twice we must come back to the initial
state, up to a phase. By taking the transpose of the previous equation
we readily find UT = UΦ and U = ΦUT , hence

U = ΦUT = ΦUΦ , (4.5)

and this can only happen if Φ = ±1. In conclusion, Θ2 = ±1.
We can further show that the first sign applies to bosons, while the

second to fermions. In order to see why, we start from the observation
that, since the spin of a particle is like an angular momentum, it
must be flipped under time reversal. This request, together with the
constraint that Θ be proportional to K, fixes the representation of time
reversal to be [14]

Θ = e−iπSyK , (4.6)

where Sy is the y component of the particle’s spin (the choice of the y
direction is just conventional). By squaring this expression, one obtains

Θ2 = e−2iπSy (4.7)

and this tells us that Θ2 = +1 for integer spins, while Θ2 = −1 for
half-integer spins, as announced.

The minus sign appearing in the case of fermions has an important
consequence i. e. the Kramer’s theorem. Its statement is: in a time
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reversal invariant system of fermions, the spectrum must be always
doubly degenerate. To prove the theorem we note that in the presence Kramer’s theorem.

of time reversal symmetry [Θ,H] = 0 so that, for every eigenstate |φ〉,
also Θ |φ〉 is an eigenstate with the same energy. Consider now the
overlap between these two states:

〈φ |Θφ〉 =
∑
mn

φ∗mUmnKφn =
∑
mn

φ∗mUmnφ
∗
n

=
∑
mn

[φ∗mUmnφ
∗
n]
T =
∑
mn

φ∗n(−Unm)φ∗m

= −
∑
mn

φ∗nUnmKφm = − 〈φ |Θφ〉 = 0 .

(4.8)

Therefore, the two states are orthogonal and this completes the proof.
The crucial step is the second equality in the second line, where we
used U = −UT , as Eq. (4.4) requires when Φ = −1. This rather simple
theorem is very important, as it protects the existence of edge states
in 2DTIs, as we will see in the next Section.

4.1.2 Quantum Spin Hall Effect

Here, we just want to give an intuitive picture of what the QSHE is,
without giving basically any details, for which the reader is referred
to the extensive literature on the topic (e. g. [15, 16] and references
therein). We can think of the QSHE as two copies of an IQHE state
at filling factor 1 with different chiralities, as schematically depicted
in Fig. 4.1. As a result, edge states where the chirality is related to

Figure 4.1: QSHE as a combination of two IQHE states with opposite chiralities.
Image adapted from [169].

the spin projection can be obtained and the total magnetic field in
the system vanishes, thus preventing time reversal symmetry from
being broken. The direct relation between spin projection and chirality
has been called spin-momentum locking [132]. In 2005, Kane and
Mele [160] realized that such a system can be actually obtained in
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Figure 4.2: Band structure of the BHZ model. In the normal regime, the
system is gapped and is a trivial insulator. In the inverted regime,
a couple of helical states emerges in the bulk gap. The crossing of
these states is protected by time reversal symmetry. Figure taken
from [170].

graphene, as a result of spin-orbit interaction1. However, this was
a proof of concept since the spin orbit coupling in graphene is too
weak for the effect to be observed. Soon after the work of Kane and
Mele, a proposal for observing the QSHE in a realistic material was put
forward by Bernevig, Hughes and Zhang (BHZ model) [17] and later
experimentally confirmed [18].

The BHZ model describes the low-energy properties of a CdTe/HgTe
quantum well, depicted in Fig. 4.2. CdTe is a normal semiconductor,
where the conduction band arising from electrons in s-orbitals is above
the valence band arising from electrons in p-orbitals. On the contrary,
in heavy materials such as HgTe, the s-like and p-like bands are in-
verted due to the effect of a very large spin-orbit coupling. By relying
on an effective model built with these two bands, the authors were
able to show that a phase transition occurs due to the band inversion
induced when a quantum well with a thick enough HgTe component
is realized. As we can see in Fig. 4.2, when the thickness of the HgTe is
d < 6.5nm, the quantum well is in the normal regime and the system
is an insulator. However, for d > 6.5nm, the quantum well enters the
inverted regime and a couple of gapless states emerges in the bulk gap.

1 In the derivation of their model, they also showed that the system can be actually
seen as composed of two copies of the Haldane model for the Chern insulator [67].
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Moreover, states with different slopes (i. e. with opposite velocities
along the edge of the quantum well) are associated with opposite spin
projections. Therefore, we obtain a very peculiar 1D conductor along
the edge of the system (see Fig. 4.1), where the propagation direction
of electrons is directly related to their spin projection: this property is
known as spin-momentum locking. However, until now the two spin
sectors of the Hamiltonian are considered as independent and one
would expect that any coupling between them would open a gap at
the level crossing, eventually destroying the edge modes. But this is
impossible because of Kramer’s theorem, as we now discuss.

Time reversal symmetry requires that the Bloch Hamiltonian sat-
isfies ΘH(k)Θ−1 = H(−k), where the momentum k takes values in
the Brillouin zone and Θ is the time-reversal operator. In other words,
the spectrum must be symmetric with respect to k = 0. As we have
seen, Kramer’s theorem further requires a double degeneracy, with
the consequence that level crossing must happen at k = 0 and at
the edge of the Brillouin zone (because due to Bloch periodicity the
momenta at the edge of the Brillouin zone have to be identified). We
then understand that the crossing inside the bulk gap in Fig. 4.2 is
protected by time reversal symmetry and cannot be gapped without
violating Kramer’s theorem.

From the point of view of the bulk topological properties, the Chern
number introduced in Sec. 1.2.1 vanishes (because of time reversal
symmetry), but there is still a Z2 topological invariant µ. Differently
from the Chern number, µ can assume only the values 0 or 1. The
existence of only two different topological classes can be understood by
a simple argument, relying on the bulk-boundary correspondence [15].
It has to do with the possible ways in which bands can be connected
at the time reversal invariant momenta. In particular, supposing the

Figure 4.3: The two possibile ways of connecting the Kramer-degenerate
points k = 0 and k = π/a (degeneracies at other momenta are
always split by the spin-orbit interaction). Image adapted from
[15].

presence of edge states, there are only two ways to connect the two-
fold degenerate states at k = 0 and k = π/a (here a is the spacing of
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the underlying lattice). This is shown in Fig. 4.3, where only half of
the Brillouin zone is drawn, as the other half is mirror symmetric. If
the states are pairwise connected as in panel (a), it is then possible
to push them upwards or downwards into the conduction or valence
bands, thus connecting the spectrum to the one of a trivial insulator.
This is why the configuration with an even pair of helical edge modes
is equivalent to no edge modes at all. This is the situation in which
the topological invariant is µ = 0. On the other hand, if the states
are connected as in panel (b), there is no way of getting rid of the
edge modes without violating Kramer’s theorem. In this case, the
system is topologically non-trivial and the invariant µ = 1. Being no
other possibilities, this explains why there is a Z2 classification of the
system.

In conclusion, the QSHE is a topological phase of matter where
helical modes emerge at the boundaries of the system. These states
are characterized by the spin-momentum locking – relating the spin
degree of freedom to the chirality of the mode – and are topologically
protected.

4.2 model and charge fractionalization

We consider a pair of interacting helical channels, capacitively coupled
to an external voltage source, as schematically depicted in Fig. 4.4. Due
to the spin-momentum locking, electrons on channel R are associated
with spin up, while electrons on channels L have an opposite spin
projection. Short range interactions between channels R and L are
considered (represented by the wiggly lines in Fig. 4.4). As shown in
Chapter 2, the Hamiltonian describing the helical system reads

HHLL =
u

2

∑
η=±

∫+∞
−∞ dx [∂xΦη(x)]2 , (4.9)

Figure 4.4: Sketch of a couple of interacting helical channels coupled to an
external drive. Wiggly lines represent the interaction between the
two channels.
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where Φη(x) are the chiral bosonic fields defined in Sec. 2.2.3, which
are related to the bosonic fields Φr(x) associated with channel r via
the relation (2.33), which we rewrite here:

Φr(x) =
∑
η=±

AηϑrΦη(x) , A± =
1

2

(
1√
K
±
√
K

)
. (4.10)

Recall that K is the Luttinger parameter [cf. (2.30)] quantifying the in-
teraction strength and it assumes the value K = 1 in the non-interacting
case, while K < 1 for repulsive interactions.

Although interesting in itself, the investigation of electronic corre-
lations in the QSHE state can be important also from an experimental
point of view. Recent results do indeed indicate that interaction effects
can be relevant in QSHE systems: a Luttinger parameter K = 0.42 was
reported in Bismuthene on SiC substrate [28]. In addition, evidence for
interaction effects in the QSHE state realized in an InAs/GaSb quantum
well was also reported in a previous work, claiming that K = 0.22
in that system [27]. Despite a later theoretical interpretation demon-
strated that the experimental data could also be consistent with a
value K = 0.8 [171], indicating weak electronic correlations, interaction
effects still seem to be relevant.

The last ingredient present in Fig. 4.4 is the external drive, which is
modeled by the Hamiltonian

Hg = −e

∫+∞
−∞ dxU(x, t)[ρ(e)R (x) + ρ

(e)
L (x)] , (4.11)

where U(x, t) encodes the spatial and temporal profile of the external
voltage. Hereafter we assume

U(x, t) = Θ(−x)V(t) (4.12)

so that the drive V(t) is applied in the region (−∞, 0). Moreover, we
consider a periodic train of pulses with period T ,

V(t) =
∑
j∈Z

V(0)(t− jT) , (4.13)

specifying only later the precise form of the pulse V(0)(t). The charge
per period of the pulse (in units of −e) is

q =

∫T/2
−T/2

−e

2π
V(t)dt . (4.14)

As shown in detail in App. A.2, the equations of motion for fields
Φη (obtained from HHLL +Hg) are

(∂t + uη∂x)Φη(x, t) = −e

√
K

2π
Θ(−x)V(t) (4.15)
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and their solution reads

Φ+(x, t) = φ+(x− ut, 0)

− e

√
K

2π

[
Θ(x)

∫t− x
u

−∞ dt ′V(t ′) +Θ(−x)
∫t
−∞ dt ′V(t ′)

]
(4.16a)

Φ−(x, t) = φ−(x+ ut, 0) − e

√
K

2π
Θ(−x)

∫t
t+ x

u

dt ′V(t ′). (4.16b)

Here, as in the previous Chapter, φ±(x∓ ut, 0) denotes the chiral
evolution of bosonic fields when no drive is applied. The time evolu-
tion of fermion operators Ψr(x, t) is thus obtained by using (4.10) and
the bosonization identity (2.10). Finally, a generic expectation value
of an operator O(t), is obtained as 〈O(t)〉 = Tr[ρ̂O(t)]. Here, ρ̂ is the
time-independent equilibrium density matrix at t = −∞ when no
voltage is applied and thus originating only from the Hamiltonian
HHLL.

4.2.1 Excess particle density

The expectation value of the particle density〈
ρ(e)(x, t)

〉
=
〈
ρ
(e)
R (x, t) + ρ(e)L (x, t)

〉
(4.17)

give us immediate information about the space profile of the excita-
tions generated by the drive. In particular, we are interested in the
deviations from the equilibrium situation

∆ρ(e)(x, t) =
〈
ρ(e)(x, t)

〉
−
〈
ρ
(e)
0 (x, t)

〉
, (4.18)

with ρ(e)0 (x, t) denoting the time evolution of the particle density op-
erator in the absence of the drive. The evaluation of (4.18) is straight-
forward by writing ρ(e)(x, t) = ρ(e)+ (x, t) + ρ(e)− (x, t), where the chiral
density operators have been defined in (2.40):

ρ
(e)
η (x, t) = −η

√
K

2π
∂xΦη(x, t) . (4.19)

Thus, from (4.16) we readily find

∆ρ(e)(x, t) =
∑
η=±

∆ρ
(e)
η (x, t) = −e

∑
η=±

ηK

2πu
V
(
t− η

x

u

)
Θ(ηx) . (4.20)

This shows that the effect of the drive is to induce excitations propa-
gating both to the right (η = +) and to the left (η = −). Notice that
this expression is independent of the temperature and that the chiral
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Figure 4.5: Sketch of the space profile of the excess charge density due to the
periodic voltage V(t), with q > 0. Excitations originating at x = 0
on both channels r = R,L propagate in the positive or negative
direction of the x axis, depending on the value of the index η. The
charge per period (in units of −e) carried by each excitation is
qr,η, as given in (4.23). Red pulses indicate excitations which are
also present in the non-interacting case, while blue ones refer to
those originating only as a result of interactions.

right- (left-) moving excitation contributes only at x > 0 (x < 0), as
shown in Fig. 4.5. Moreover, from the relation [cf. Eq. (2.41b)]

∆ρ
(e)
r (x, t) =

ϑr

K

[
1+ ϑrK

2
∆ρ

(e)
+ (x, t) −

1− ϑrK

2
∆ρ

(e)
− (x, t)

]
, (4.21)

we understand that excitations for each chirality η are composed
of contributions coming from both channels r = R,L. Finally, by
combining (4.20) and (4.21), the spatial profile of the excitation on
channel r moving in the η direction is

∆ρ
(e)
r,η(x, t) =

−eϑr
2πu

1+ ηϑrK

2
V
(
t− η

x

u

)
Θ(ηx) , (4.22)

as schematically depicted in Fig. 4.5. All the contributions described
by the above formula can be distinguished, since R and L channels
have opposite spin projections.

When K = 1, only ∆ρ(e)R,+ and ∆ρ(e)L,− are present (red pulses), consis-
tently with the fact that for free fermions R and L channels do not mix
and are right- and left-moving, respectively. On the contrary, in the
interacting case also the (R,−) and (L,+) channels are involved (blue
pulses), due to charge fractionalization phenomena [25, 125, 126, 134,
138, 139]. The charge2 per period qr,η carried on each channel is ob-
tained by integrating over one period the corresponding contribution
to the current flowing away from the point x = 0. Thus, by fixing a
detection point d > 0, we find

qr,η = u

∫T/2
−T/2

∆ρ
(e)
r,η(ηd, t)dt = ϑr

1+ ηϑrK

2
q = ϑr

√
KAηϑrq , (4.23)

2 With a little abuse of language, we shall systematically refer to qr,η as the charge of
the excitations, actually meaning the charge in units of −e.
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where (4.14) has been used and coefficients Aηϑr are defined in (4.10).
The charge qr,η carried by each excitation is an interaction-dependent
fraction of the charge q injected by the drive V(t), which is the ex-
perimentally tunable parameter. Notice that ±q would be the charge
carried in the non-interacting system (K = 1) by the excitation on
channel (R,+)/(L,−). We emphasize that the effect of interactions
goes well beyond the simple renormalization of the charge carried
on each channel. Indeed, interacting correlation functions contain
interaction-dependent power-laws which are not present in the K=1

case [119, 130]. As detailed in the next Section, this leads to quali-
tative differences in the spectral properties between interacting and
non-interacting systems.

4.3 non-equilibrium spectral function

Following the same logic adopted in Chapter 3, we now go beyond the
description of excitations in terms of their spatial profile – given by
the excess particle density – and we investigate their energy content.
While in the previous Chapter we considered both the momentum
distribution (Sec. 3.3) and the Wigner function (Sec. 3.4), here we
address the spectral functions of the fractionalized excitations, which
can be directly probed via scanning tunneling spectroscopy, as we will
show in Sec. 4.4.

4.3.1 General properties

Unlike the momentum distribution, which is related to correlations at
equal time and different space points, the spectral function is obtained
from the coherence function at different times and the same space
point. Since we are interested in the non-equilibrium effects induced
by the drive, we consider the excess coherence functions

∆G<r (x, x; t1, t2) =
〈
Ψ†r(x, t2)Ψr(x, t1)

〉
eie
∫t2
t1
U(x,t ′)dt ′

−
〈
ψ†r(x, t2)ψr(x, t1)

〉
, (4.24a)

∆G>r (x, x; t1, t2) =
〈
Ψr(x, t1)Ψ†r(x, t2)

〉
eie
∫t2
t1
U(x,t ′)dt ′

−
〈
ψr(x, t1)ψ†r(x, t2)

〉
. (4.24b)

Here, ψr(x, t) denotes the time evolution of the fermion operator for
r-electrons in the absence of the drive. The exponential factor appear-
ing in the previous equation is a Wilson line, ensuring that coherence
functions are gauge-invariant [172, 173]. Due to V(t), the Green func-
tions depend both on the difference τ = t1 − t2 and on the average
time t = (t1 + t2)/2. Therefore, we define the local (excess) spectral
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functions as a Fourier transform with respect to τ, accompanied by an
average over the period of the drive T :

∆A
≷
r (ω; x) =

∫T/2
−T/2

dt
T

∫+∞
−∞

dτ
2π

eiωτ∆G≷
r

(
x, x; t+

τ

2
, t−

τ

2

)
. (4.25)

By resorting to standard bosonization techniques [119, 123], the
excess coherence functions can be written as (see App. F.1)

∆G
≷
r

(
x, x; t+

τ

2
, t−

τ

2

)
=
∑
η=±

Θ(ηx)∆G
≷
r,η

(
tη +

τ

2
, tη −

τ

2

)
, (4.26)

where tη = t− ηx/u and the contribution of the excitation on the
channel (r,η) has the structure

∆G
≷
r,η

(
tη +

τ

2
, tη −

τ

2

)
= G

≷
0 (τ)P

≷
r,η(τ)Ξr,η(tη, τ) , (4.27)

which we now comment step by step. Firstly, due to the function
Θ(ηx), the term related to the excitation with η = +(−) contributes
only at positive (negative) values of x. Taking advantage of this fact,
we can write the relation

∆A
≷
r (ω; x) =

∑
η=±

Θ(ηx)∆A
≷
r,η(ω) , (4.28)

which defines the greater/lesser spectral function ∆A≷
r,η(ω) associated

with the excitation (r,η) as3

∆A
≷
r,η(ω) =

∫T/2
−T/2

dt
T

∫+∞
−∞

dτ
2π

eiωτG≷
0 (τ)P

≷
r,η(τ)Ξr,η(t, τ). (4.29)

Moreover, the factor

G<0 (τ) =
〈
ψ†r(x, 0)ψr(x, τ)

〉
=

1

2π(a− iuτ)

[
a

a− iuτ

]2A2−
= G>0 (−τ)

(4.30)

represents the equilibrium coherence function at zero temperature and
is independent of the channel index r (see App. D for the derivation
of this expression). The term

P<r,η(τ) =
iηuτ− aϑr
iηuτ

= P>r,η(−τ) (4.31)

stems from the point splitting procedure and ensures that the excess
particle density

∆ρ
(e)
r (x, t) = lim

τ→0
∆G<r

(
x, x; t+

τ

2
, t−

τ

2

)
(4.32)

3 Notice that, thanks to the integration with respect to t (and the fact that the integrand
function depends on this variable only via the combination tη = t − ηx/u), any
dependence on x is lost. This is why we directly wrote Ξr,η(t, τ) in Eq. (4.29), instead
of Ξr,η(tη, τ).
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is correctly reproduced in the diagonal limit. This point is discussed
in detail in App. F.2 and (in a different context) in Ref. [154]. We
emphasize that the factor (4.31) is only relevant at small values of τ
and thus affects the corresponding spectral function ∆A≷

r,η(ω) only at
high energies.

The last term appearing in (4.27) is the phase factor Ξr,η(t, τ), which
encodes all the dependence on the external drive and can be written
as

Ξr,η(t, τ) = exp

[
−ieη

√
KAηϑr

∫t−τ/2
t+τ/2

V(t ′)dt ′
]
− 1 , (4.33)

where we recognize the fractionalization factors
√
KAηϑr already en-

countered when discussing the excess particle density [cf. also (4.10)].
By combining Eqs. (4.30), (4.31), (4.33) and plugging them into

(4.29) we thus obtain an expression for the excess spectral functions
∆A

≷
r,η(ω) which is entirely general. From this expression it is then

possible to derive some general properties which we now discuss.

symmetry relations The excess spectral functions obtained
for the different possible combination of indices r and η are not
independent. It is indeed straightforward to see from the above results
that

∆A<r,η(ω)
∣∣
q
= ∆A<−r,−η(ω)

∣∣
−q

= ∆A>r,η(−ω)
∣∣
−q

. (4.34)

Here, we have explicitly indicated the dependence on the parameter q:
the notation ∆A≷

r,η(ω)
∣∣
q

means that the spectral function is evaluated
with a voltage V(t) bearing a charge q [see Eq. (4.14)]. Thus, going
from positive to negative q simply means flipping the sign of V(t).
Concerning instead the index r, it has to be understood that −R = L

and viceversa. Thanks to (4.34) we can simply focus on two spectral
functions and obtain from those all other contributions by properly
changing the sign of q and ω. In particular, we will investigate in
detail ∆A<R,±(ω,q).

In addition to Eq. (4.34), other symmetries are present in the non-
interacting case K = 1:

∆A<r,η(ω)
∣∣
q
= − ∆A>r,η(ω)

∣∣
q
= − ∆A<r,η(−ω)

∣∣
−q

,

(r,η) = (R,+) or (L,−) .
(4.35)

As a consequence, the total excess spectral function, defined as

∆Ar,η(ω)|q = ∆A<r,η(ω)
∣∣
q
+ ∆A>r,η(ω)

∣∣
q

= ∆A<r,η(ω)
∣∣
q
+ ∆A<r,η(−ω)

∣∣
−q

,
(4.36)

vanishes when K = 1 independently of the drive. In the presence of
interactions, instead, ∆Ar,η(ω) 6= 0. Therefore, a measure sensitive to
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∆Ar,η(ω) would be able to clearly distinguish between an interacting
and a non-interacting system. Such a possibility will be addressed in
Sec. 4.4.

sum rule and minimality The next general property is an im-
portant sum rule obtained by integrating the excess spectral functions
overω. By looking at (4.27) it is obvious that such an integration yields
a δ(τ). Thanks to this Dirac delta function, the remaining integrals are
then easily computed: the small-τ expansion of the phase factor (4.33)
for small τ compensates the divergence arising from the factor (4.31)
and the final result reads

qr,η = uT

∫+∞
−∞ ∆A<r,η(ω)dω = −uT

∫+∞
−∞ ∆A>r,η(ω)dω . (4.37)

This indicates that the integral over energies of the lesser excess spec-
tral function on channel r,η gives the charge per period carried by the
excitation on that channel, in the same way as the integral over time
of the excess charge density in Eq. (4.23).

Due to (4.37), we can introduce the notion of minimality of an excita-
tion, by requiring that the corresponding excess spectral function has
everywhere the same sign as the one dictated by its sum rule. The moti-
vation for this definition lies in the fact that every ∆A≷

r,η(ω) physically
represents a perturbation (with respect to equilibrium) which is glob-
ally larger if the function has somewhere a different sign compared
to what (4.37) requires. As an example, if the excess spectral function
∆A<R,+(ω) of an excitation carrying a charge qR,+ > 0 is somewhere
negative, this negativity region shows the presence of negative charges,
which must be compensated because the integral over all energies is
fixed to be qR,+ > 0. Thus the perturbation represented by ∆A<R,+(ω)

is globally larger with respect to the case of a positive-definite excess
spectral function.

periodic drive As discussed in previous Chapters, in the pres-
ence of a periodic drive, it is possible to exploit the Fourier decompo-
sition [117, 157]

eie
∫t
0V(t ′)dt ′ = e−iqΩt

∑
`∈Z

p`(q) e−i`Ωt , (4.38)

where we recall that Ω = 2π/T . By using (4.38) it is easy to show that∫T/2
−T/2

dt
T
Ξr,η(t, τ) = −1+

∑
`∈Z

|p`(qr,η)|
2e−iηϑrτ(`+qr,η)Ω . (4.39)

Moreover, if we let τ = 0 in this expression and consider that Eq. (4.33)
implies Ξr,η(t, 0) = 0, we find the following very useful relation∑

`∈Z

|p`(qr,η)|
2 = 1 . (4.40)
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This result can be intuitively understood from the physical meaning
of the photoassisted coefficients. Indeed, since p` is a probability
amplitude for the process where an electron emits or absorbs ` energy
quanta, the l.h.s. of (4.40) then represents the sum of the probabilities
of all possible processes, which then have to sum up to one. Another
useful sum rule is∑

`∈Z

` |p`(qr,η)|
2 = 0 (4.41)

and can be obtained by taking the τ-derivative of both sides of (4.39)
and calculating the result for τ = 0.

By plugging (4.39) into (4.29) for ∆A<r,η(ω), we finally obtain the
following expression:

∆A<r,η(ω) =
a2A

2
−

4π2

∑
`∈Z

|p`(qr,η)|
2

×
∫+∞
−∞ dτ

eiτ(ω−ηϑrΩ`) − eiωτ

(a− iuτ)1+2A
2
−

iηuτ− aϑr
iηuτ

,

(4.42)

with Ω` = (`+ qr,η)Ω. Notice that the photoassisted coefficients de-
pend on the charge qr,η of the different excitations.

4.3.2 Lorentzian pulses

As thoroughly discussed in Secs. 1.4–1.6, periodic trains of properly
quantized Lorentzian pulses play a special role in the context of EQO [5,
116] and are currently the object of intense investigation due to their
peculiar properties [30, 33, 34, 81, 85, 108, 117, 157, 174–182]. Here, we
will thus focus on this particular kind of drive, so as to better highlight
which differences arise due to the presence of repulsive interactions.
The real-time shape of a single Lorentzian pulse is

V(0)(t) =
q

−e

2w

w2 + t2
(4.43)

and its photoassisted coefficients have been reported in (3.64). By
plugging them into (4.42) it is thus possible to obtain the spectral
functions by computing the integral (in general numerically).

As a first step, we now address the situation where the charge qr,η

of the excitation on channel (r,η) assumes an integer value4. As a
consequence of the particular form of the photoassisted coefficients
of the Lorentzian drive, the spectral function shows some remarkable
properties for these integer values. The behavior of the excess lesser
spectral function ∆A<R,+ for right-moving wave packets is shown in

4 Since these charges depend on the interaction strength K according to (4.23), it is not
possible that all qr,η be simultaneously integer, unless for very specific values of K.
The case of a non-integer charge will be consider later in this Section.
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Figure 4.6: Lesser spectral function ∆A<R,+(ω), in units ofw(uT)−1, as a func-
tion of ωw. Charges are qR,+ = ±1, as specified on each panel
and different values of the interaction strength K are indicated in
the label. In all plots we set a representative value for the period
T = 50w and a = 0.01uw.

Fig. 4.6 for different values of the interaction strength K. Note that this
contribution is present also in the non-interacting case (K = 1), where
qR,+ = q. Different panels correspond to integer but opposite values
of the injected charge qR,+ = ±1 [we recall that qR,+ = q

√
KA+, ac-

cording to (4.23)]. In the absence of interactions (K = 1), (4.35) dictates
that the spectral function with qR,+ = −1 can be obtained by reversing
the one with qR,+ = +1 with respect to both axes. This results in a
vanishing total spectral function ∆AR,+ = ∆A<R,+ + ∆A>R,+ = 0. On
the other hand, a manifest asymmetry appears in the presence of
interactions (K < 1), where the excess lesser spectral functions for
positive and negative charges become independent. Another clear
feature in Fig. 4.6(b) is that ∆A<R,+(ω) ∝ Θ(−ω) when qR,+ = −1,
independently of interactions. This behavior is uniquely due to the
specific shape of integer Lorentzian pulses and, in particular, to the
following peculiar property of their photoassisted coefficients:

p`(q) = 0 ∀ ` sign(q) < −|q| , q ∈ Z . (4.44)

In the non-interacting case, K = 1, the additional symmetry relation
(4.35) is responsible for the appearance of a Θ(+ω) also at the positive
charge value qR,+ = +1, a feature which disappears when K < 1,
where ∆A<R,+(ω) is finite for both ω ≷ 0 [Fig. 4.6(a)].

Importantly, in the non-interacting case only the channels (R,+) and
(L,−) have a finite spectral weight, while for K < 1 other two channels
are also present. The presence of these additional contributions in
the non-equilibrium spectral function and in its variation are thus a
unique fingerprint of interactions. The variation ∆A<R,−(ω) is shown
for different interaction strengths K < 1 in Fig. 4.7, where, again, the
two panels refer to opposite injected integer charges qR,− = ±1 [we
recall that qR,− = q

√
KA−, according to (4.23)]. The plots show that

∆A<R,−(ω) is nonvanishing for both ω ≷ 0 when its charge is negative,
while a Θ(−ω) appears for a positive charge. This shows once more
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Figure 4.7: Lesser spectral function ∆A<R,−(ω), in units of w(uT)−1, as a
function of ωw. Charges are qR,− = ±1, as specified on top of
each panel and different values of the interaction strength K are
indicated in the label. In all plots we set a representative value
T = 50w for the period and a = 0.01uw.

that the presence of interactions results in an asymmetric behavior
of the non-equilibrium spectral function in response to positive or
negative excitations.

Further information can be obtained from Figures 4.6 and 4.7 by
looking at the sign of the spectral functions. We have already pointed
out in (4.37) that the integral of ∆A<r,η(ω) yields the charge qr,η. By
inspecting the plots, we see that for the channel (R,+) in Fig. 4.6 the
sign of ∆A<R,+ is everywhere the same as the one of its integral. We
actually prove in App. F.3 that the spectral function is always positive-
definite for integer and positive qR,+. This shows that, as far as the
channel (R,+) is concerned, Lorentzian pulses with associated integer
charges remain minimal even in the presence of interactions. On the
contrary, when we look at ∆AR,−, we immediately notice that at low
ω its sign is actually the opposite of the one required by the sum
rule, meaning that a change of sign at high energies must take place
in order for (4.37) to be fulfilled. This is explicitly shown in App. F.3
too. For this reason, the function ∆A<R,− is not minimal also in the
case of associated integer charges. The main properties of the spectral
functions ∆A<R± are summarized in Table 4.1.

Having described the peculiarities of Lorentzian pulses with as-
sociated integer charges qr,η, a comment on a generic situation of
non-integer charge is in order. In this case qualitative differences ap-
pear and have to be considered, since it is in general not possible to
have all charges qr,η simultaneously integer, unless for very specific
values of the interaction strength. As an example, in Fig. 4.8 we plot
the function ∆A<R,+(ω) for qR,+ = ±0.6, directly obtained from (4.42).
The main difference to be appreciated with respect to the integer case
in Fig. 4.6 is the absence of the Θ(−ω) and that the sign of ∆A<R,+(ω)

is not defined, showing a non-minimal character.



4.3 non-equilibrium spectral function 99

Properties of ∆A<R,+(ω)

qR,+ K = 1 K < 1

+1
∝ Θ(+ω) always finite

minimal minimal

−1
∝ Θ(−ω) ∝ Θ(−ω)

minimal minimal

Properties of ∆A<R,−(ω)

qR,− K = 1 K < 1

+1 zero
∝ Θ(−ω)

non-minimal

−1 zero
always finite

non-minimal

Table 4.1: Summary of the main properties of the spectral functions for
integer charges. In the non-interacting case K = 1, no charge is
injected on the (R,−) channel and therefore ∆A<R,−(ω) vanishes
everywhere. The properties of the other spectral functions can be
obtained by using the symmetry relations (4.34).

Figure 4.8: Excess lesser spectral fuction ∆A<R,+(ω), in units of w(uT)−1, as a
function of ωw. Here, we show an example of non-integer charge,
with qR,+ = ±0.6. We set T = 50w and a = 0.01uw.
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Figure 4.9: Sketch of the proposed setup. The interacting helical channels
are driven by the periodic time-dependent voltage V(t), applied
in the region x < 0. A spin-polarized tip is placed at d > 0

and allows the spin-preserving tunneling of electrons, selecting
their spin according to its polarization. The tip is modeled as
a non-interacting system and is biased with a voltage Vtip with
respect to the chemical potential of the helical channels. This
setup measures the tunnel current between the system and the
tip.

4.4 possible experimental signatures

In this Section we show how the intrinsic properties of the spectral
functions can be probed by relying on a scanning tunneling setup
with a spin-polarized tip, kept at a given (but tunable) bias Vtip with
respect to the helical channels. As a result of this coupling, a tunnel
current flows between the tip and the system. The spin polarization of
the tip allows us to access all possible channels of the helical liquid,
by exploiting the spin-momentum locking [183, 184]. Recently, this
technique has been successfully used to probe the surface states of
three-dimensional topological insulators [185–187].

We consider a spin-polarized tip, placed at a fixed position d > 0, as
sketched in Fig. 4.9. The tip is coupled to the system via the tunneling
Hamiltonian

Ht =
∑
σ=↑,↓

[
λ
(
α↑Ψ

†
R(d)ξ↑ +α↓Ψ

†
L(d)ξ↓

)
+ H.c.

]
, (4.45)

where ξσ is the annihilation operator for electrons of the tip with spin
projection σ. The spin-up polarization of the tip is described by α↑ = 1
and α↓ = 0, the spin-down one by α↑ = 0 and α↓ = 1. Notice that ξ↑
and ξ↓ are only coupled to ΨR and ΨL, respectively, because we only
include spin-preserving tunneling [183].

The tunnel current flowing between the system and the tip, when
the latter is polarized with spin ↑ or ↓, can be written as

Itip,R/L = ieλΨ†
R/L

(d)ξ↑/↓ + H.c. (4.46)
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The noise associated with its fluctuations is

Stip,r = 2

∫T/2
−T/2

dt
T

∫+∞
−∞ dτ

〈
δItip,r

(
t+

τ

2

)
δItip,r

(
t−

τ

2

)〉
, (4.47)

where δItip,r(t) = Itip,r(t) − 〈Itip,r(t)〉.
Both quantities Ītip,r =

∫T/2
−T/2

dt
T 〈Itip,r(t)〉 and Stip,r are evaluated by

assuming that the tunneling Hamiltonian is a small perturbation. This
allows one to use the perturbative expansion (3.55) and calculate the
average current and noise to lowest order in the coupling constant λ.
The calculation is essentially the same as the one presented in App.
E.2, but it is shorter. The result, expressed by means of coherence
functions, reads5

Ītip,r =
e|λ|2

T

∫T/2
−T/2

dt
∫+∞
−∞ dτ

[
G<r

(
d,d; t+

τ

2
, t−

τ

2

)
G>tip(−τ)

−G<tip(τ)G
>
r

(
d,d; t−

τ

2
, t+

τ

2

)]
,

Stip,r =
2e2|λ|2

T

∫T/2
−T/2

dt
∫+∞
−∞ dτ

[
G<r

(
d,d; t+

τ

2
, t−

τ

2

)
G>tip(−τ)

+G<tip(τ)G
>
r

(
d,d; t−

τ

2
, t+

τ

2

)]
,

(4.48)

where the tip coherence functions,

G<tip(τ) = 〈ξ†σ(0)ξσ(τ)〉 (4.49a)

G>tip(τ) = 〈ξσ(0)ξ†σ(−τ)〉 (4.49b)

are independent of the spin σ. By taking the Fourier transform, it is
now easy to relate the average current and the zero frequency noise to
an overlap of spectral functions:

Ītip,r = 2πe|λ|
2

∫+∞
−∞ dω

[
A<r (ω;d)A>tip(ω− eVtip)

−A>r (ω;d)A<tip(ω− eVtip)
]

, (4.50)

Stip,r = 4πe
2|λ|2

∫+∞
−∞ dω

[
A<r (ω;d)A>tip(ω− eVtip)

+A>r (ω;d)A<tip(ω− eVtip)
]

. (4.51)

Here, A≷
r (ω,d) = A

≷
0 (ω) + ∆A

≷
r (ω,d), with ∆A≷

r (ω,d) defined in
(4.25) and the equilibrium term A

≷
0 (ω) is the Fourier transform of

(4.30):

A
≷
0 (ω) =

∫+∞
−∞

dτ
2π

eiωτG≷
0 (τ) =

1

2πu

e−
a|ω|
u

Γ(1+ 2A2−)
Θ(±ω)

[
a|ω|

u

]2A2−
.

5 Notice that the expression for the noise has the same formal structure of the second
term in (C.7). This is a general structure when current and noise are calculated at
second order in the tunneling (or at all orders with scattering matrix theory in a
non-interacting system).
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(4.52)

Since d > 0, spectral functions are only related to the excitation on the
channel (r,+) [see Eq. (4.26)]. For notational convenience, we will not
include the index + in this Section, since there is no ambiguity. The
equilibrium spectral functions of the tip are defined as

A
≷
tip(ω) =

1

2π

∫+∞
−∞ dτG≷

tip(τ) eiωτ , (4.53)

and can be calculated from from (4.52), with A− = 0 and u = vF,
because the tip is considered as non-interacting. Then, for a → 0,
A

≷
tip(ω) = (2πvF)

−1Θ(±ω). Therefore, the deviations ∆Ītip,r in the
current (4.50) due to the only effect of the drive V(t) can be expressed
as

∆Ītip,r(Vtip) =
e|λ|2

vF

[∫+∞
eVtip

dω∆A<r (ω)
∣∣
q
−

∫eVtip

−∞ dω∆A<r (−ω)
∣∣
−q

]
.

(4.54)

Similarly, the deviations ∆Stip,r in the noise (4.51) read

∆Stip,r(Vtip) =
2e2|λ|2

vF

[∫+∞
eVtip

dω∆A<r (ω)
∣∣
q
+

∫eVtip

−∞ dω∆A<r (−ω)
∣∣
−q

]
.

(4.55)

It is important emphasizing that ∆Ītip,r 6= 0 even at zero static bias
(Vtip = 0), because the system is driven out of equilibrium by the
presence of V(t), which has a non-zero dc component. In addition,
while in general the deviations ∆Ītip,r and ∆Stip,r are different from
Ītip,r and Stip,r obtained in (4.50) and (4.51), the difference disappears
at Vtip = 0. Finally, we introduce the excess noises by combining the
last two equations:

∆S
(±)
exc,r(Vtip) = ∆Stip,r(Vtip)∓ 2e∆Ītip,r(Vtip)

= ±4e
2|λ|2

vF

∫eVtip

∓∞ dω ∆A≷
r (ω)

∣∣∣
q

.
(4.56)

These quantities represent the deviations of the noise from its Poisso-
nian limiting value.

We have now defined all the quantities we need in order to probe
the spectral properties of the helical channels that we have discussed
in detail in Sec. 4.3. First of all, the variation of the total spectral
distribution ∆Ar(ω) = ∆A<r (ω) +∆A>r (ω) can be obtained from the
excess differential conductance, namely

∆Ar(ω) = −
vF

e2|λ|2
∂∆Ītip,r(Vtip)

∂Vtip

∣∣∣∣∣
eVtip=ω

. (4.57)
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Figure 4.10: Excess differential conductance gR =
∂∆Ītip,R(Vtip)

∂Vtip
in units of

g0 =
e2|λ|2w
vFuT

, as a function of eVtip, in units of w−1. These
plots are obtained for a Lorentzian drive with qR,+ = 1 and
T = 50w and directly give, up to a sign, the total excess spectral
function ∆AR(ω), as established by (4.57). Notice that in the
non-interacting case, the result is zero, due to the symmetry
(4.35) of the spectral functions.

This quantity behaves differently depending whether the system is
interacting or not. Indeed, recall that (4.36) implies that ∆Ar(ω) = 0 in
the absence of interactions, regardless the shape of the drive. This does
not hold anymore as soon as interactions are present. As an example,
by considering a Lorentzian drive, we show in Fig. 4.10 the variation
of the differential conductance for different values of the interaction
strength, in the case where the tip is polarized with σ =↑. Thanks to
the sharply different behavior between interacting and non-interacting
case, it is thus possible from a measurement of the current ∆Itip,r to
probe whether the system is interacting or not.

Additional information can be obtained by taking the derivative of
the excess noise introduced in (4.56):

∆A
≷
r (ω,q) = ± vF

4e3|λ|2
∂∆S

(±)
exc,r(Vtip)

∂Vtip

∣∣∣∣∣
eVtip=ω

. (4.58)

This relation makes it possible, by varying Vtip, to reconstruct both
the greater and lesser spectral functions and access all the features
presented in Sec. 4.3. Notice also that the spectral functions of both
channels R and L can be investigated by changing the polarization of
the tip.

Further information about the excess noise can be extracted from
(4.56). At Vtip = 0, the two quantities ∆S(±)exc,R(0) vanish when the
excitation on the channel (R,+) is a Lorentzian with integer charge. In
particular ∆S(+)

exc,R(0) = 0 when qR,+ is a positive integer (electron-like

excitation, with q > 0), while ∆S(−)
exc,R(0) = 0 when qR,+ is a negative

integer (hole-like excitation, with q < 0). This is due to the fact that
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(a) (b)

Figure 4.11: Panel (a): excess noise ∆S(+)
exc,R(0), in units of S0 = e2Ω|λ|2/(πu2),

as a function of q, for different values of the interaction K. The
zeros are located at the points given by (4.59), namely when
qR,+ is a positive integer. Panel (b): excess noise ∆S(+)

exc,L(0), in
units of S0. Here, the zeros are located according to (4.60). Note
that no signal is present at K = 1. In both panels we set w = 0.1T
and u(aΩ)−1 = 10.

∆A>R (ω)|qR,+=+1 ∝ Θ(ω), while ∆A<R (ω)|qR,+=−1 ∝ Θ(−ω) (see Fig.

4.6). Through the same reasoning we see that ∆S(±)exc,L(0) = 0when qL,+

is a negative [q > 0, see (4.23)] or positive (q < 0) integer, respectively.
Let us focus on ∆S(+)

exc,r(0) and analyze the conditions for it to vanish.
When r = R, we need qR,+ = n, with n ∈N+. In terms of the initial
injected value q, this means

q =
2n

1+K
. (4.59)

Likewise, when r = L, we need qL,+ = −m, with m ∈N+, namely

q =
2m

1−K
. (4.60)

In Fig. 4.11 we present the behavior of excess noise ∆S(+)
exc,R/L(0) as

a function of the externally tunable parameter q, showing that the
zeros are indeed located at the points given by (4.59) and (4.60). By
varying the interaction, the zeros in panel (a) move to higher values
of q, as required by (4.59), while the opposite is true in panel (b),
according to (4.60). In the latter case we do not have any signal at
K = 1, since the spectral function on the L channel vanishes. This
discussion demonstrates that a measurement of the excess noise could
be used to extract the value of the interaction strength. Indeed, by
looking for instance at the value of q at which the n-th zero in Fig.
4.11(a) occurs, the Luttinger parameter can be determined by solving
(4.59) for K.

As a side comment, it is perhaps useful to recall that a vanishing
excess noise in the case of Lorentzian pulses producing excitations
with integer charge has been already reported in a QPC geometry for
non-interacting systems [5, 8, 117] as well as in the integer [29, 114]
and fractional quantum Hall effect [81]. Indeed, one can recognize
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that expressions for the excess noise of a QPC are equivalent to the
ones in (4.50) and (4.51). We emphasize however that interactions in
counterpropagating helical channels result in a richer phenomenology
in the excess noise, as the positions of the zeros depend on K.

We conclude this Chapter by underlining an important point con-
cerning the relation between the concept of minimality and a vanish-
ing excess noise. As it is clear from the above discussion, a vanishing
excess noise is only due to the presence of proper Θ functions in
the spectral functions. This property is uniquely determined by the
Lorentzian drive and is therefore robust with respect to the presence
of interactions. Indeed a vanishing excess noise can be achieved at any
interaction strength, provided that the conditions in (4.59) or (4.60)
are met.

In a non-interacting system a vanishing excess noise directly im-
plies that ∆A<R (ω) has a definite sign, because the excess noise can
be directly related to the number the unwanted particle-hole pairs.
In other words, we have a one-to-one correspondence between the
concept of minimal excitation and a vanishing excess noise. This is
not anymore true if K 6= 1. To be more precise, it is still true as far as
the “dominant” channels (R,+) and (L,−) are concerned, while this
is not the case for channels (R,−) and (L,+). As an example, when
a Lorentzian pulse with qL,+ a negative integer is generated on the
channel (L,+), both ∆A≷

L,+(ω) do not have a definite sign, but still

∆S
(+)
exc,L(0) = 0, as we see in Fig. 4.11. Similar considerations can be

also done when qL,+ is a positive integer. We conclude that, apart
from the case K = 1, a vanishing excess noise is not necessarily related
to a minimal spectral function (in the sense of absence of additional
positive/negative charge). Phenomena related to this observation were
already noticed in a different context [188].





5
L E V I T O N S I N A S U P E R C O N D U C T I N G
B A C K G R O U N D

In this Chapter we investigate the effect of superconducting correla-
tions on Leviton-like excitations. For this purpose we consider the
nonequilibrium transport properties of a junction between two su-
perconductors, where one terminal is driven by an arbitrary periodic
voltage. The main result we will show is that the excess noise due
to quasiparticle transfers across the junction is again minimized by
properly quantized Lorentzian pulses, which shows that this property
is very robust as it survives in different kind of interacting systems.
The model we use for describing the system relies on earlier studies
in the literature of superconducting weak links, whose revision is
well beyond the scope of this thesis. Therefore, we will just present
this model as a starting point for our calculations, referring to the
literature for details and thorough discussions. The work presented in
this Chapter is based on our publication [32] and can be seen as a pre-
liminary study towards the extension of EQO ideas to superconducting
systems.

5.1 introduction

The interest of the scientific community in transport properties of
weakly coupled superconductors [189–191] dates back to the very
first years following Josephson’s famous prediction [192] that a non-
dissipative supercurrent can flow in a junction of two superconductors
separated by an insulating layer as a result of a coherent tunneling
of Cooper pairs. With the experimental advances in nanofabrication
processes, it became possible to realize the so-called Superconducting
Quantum Point Contact (SQPC) [193–198], i.e. a system where two
superconducting regions are connected by a narrow constriction whose
length is much smaller than the superconducting coherence length.
The breaking junction technique [199–202] has turned out to be the
most effective way of implementing SQPCs and paved the way to the
realization of several experiments in this field [203–207]. Alternatively,
the split gate technology in 2DEGs proximitized by superconducting
electrodes [208] or in more exotic two-dimensional materials [209]
exhibiting superconductivuty can also be emplyed.

From a theoretical point of view, a unified approach to the descrip-
tion of superconducting junctions under the effect of a constant voltage
bias was developed in the mis 90s [210]. In this context, multiple An-
dreev reflections [211, 212] were identified as the key ingredient to
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explain the subgap structure experimentally observed in the current-
voltage characteristic. Other interesting effects arise when such junc-
tions are subject to microwave radiations, a situation which has been
extensively investigated, from early experiments by Shapiro [213] until
much more recent research activity [214–218], witnessing a renewed
interest in this topic.

Before going presenting our calculations, it is worth recalling (very
briefly and without any aim for completeness) some basic aspects
related to superconductivity and the Josephson effect, which will be
useful in order to better understand our results.

order parameter and cooper pairs A superconductor is de-
scribed by a complex order parameter [219], which is decom-
posed as ∆ eiϑ, where ∆ is called the superconducting gap and
ϑ is the phase. The gap ∆ is related to the binding energy of a
Cooper pair [220]. The latter is the fundamental building block
of a superconductor and is a bound state of two electrons which
feel an effective attractive interaction mediated by phonons (at
energies close to the Fermi level).

josephson’s relations In 1962 Josephson derived the basic rela-
tions which describe the behaviour of a junction between two
superconductors [192]. They are summarized by these two for-
mulas

I(t) = IJ(t) + I0(t) = Ic sin[φ(t)] + I0(t), (5.1a)

φ̇(t) = 2eV(t). (5.1b)

Here, I0(t) ∼ V(t)/R is a normal dissipative current, while IJ(t) is
called supercurrent because it is dissipationless. The amplitude
Ic is called critical current and is proprotional to the gap ∆.
Finally, φ is the phase difference between the two superconductors
forming the junction and V(t) is the voltage bias across it.

dc josephson effect The first surprising prediction arising from
the previous relations is that a Josephson junction carries a
current even in the absence of an external bias: indeed even for
V(t) = 0, if a phase difference φ0 is present, we have

I = Ic sinφ0 (5.2)

This current is dissipationless and is due to a coherent tunneling
of Cooper pairs.

ac josephson effect Another striking prediction is that a Joseph-
son junction biased with a constant potential V0 develops an
alternating current response. This is clearly seen by integrating
(5.1b) and substituting the result into (5.1a):

IJ(t) = Ic sin(φ0 + 2eV0t). (5.3)
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The frequency ωJ = 2eV0 entering this expression is called
the Josephson frequency. Of course, in any dc measure, the
alternating supercurrent (5.3) would average to zero.

inverse ac josephson effect When a combination of a dc bias
and an alternating drive,

V(t) = V0 + VS cos(ωSt), (5.4)

is applied to a Josephson junction, dc supercurrent peaks appear
at particular values of the bias V0. Indeed, by integrating (5.1b)
we have φ(t) = φ0 +ωJt+ (2eVS/ωS) sin(ωSt). By plugging
this result into (5.1a) one finds

IJ(t) = Ic
∑
n∈Z

(−1)nJn

(
2eVS
ωS

)
sin(ωJt+nωSt+φ0) , (5.5)

where Jn are Bessel functions. This expression shows that the
interplay of the dc bias V0 and the alternating cosine drive results
in a dc supercurrent

IJ = Ic
∑
n∈Z

(−1)nJn

(
2eVS
ωS

)
sinφ0 (5.6)

whenever ωJ = nωS or, equivalently,

V0 =
nωS
2e

, n ∈ Z. (5.7)

Thus, the current-voltage characteristics of a junction driven by a
signal (5.4) exhibits supercurrent spikes at voltages V0 which are
commensurate with the driving frequency ωS according to (5.7).
These are known as Shapiro spikes (if the junction is voltage
biased) or Shapiro steps (if the junction is current biased) [213].

5.2 model and setup

We now start illustrating our calculation. The system we are interested
in is a driven SQPC [194, 197], schematically depicted in Fig. 5.1, repre-
senting a junction between two superconducting regions, the left one
being subject to a periodic but otherwise arbitrary time-dependent
voltage

V(t) = Vdc + Vac(t) = V(t+ T), (5.8)

with angular frequency Ω = 2πT−1. Here Vdc is the dc contribution
and Vac(t) the ac part satisfying∫T/2

−T/2
dt Vac(t) = 0. (5.9)
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Figure 5.1: Sketch of the considered setup. A narrow constriction between
two superconducting electrodes implements a quantum point
contact geometry. A time-dependent voltage V(t) is applied to the
left side of the junction (shaded region), while the right electrode
is grounded. Note that the schematic peaks depicted in the left
contact refer to the applied voltage bias.

The starting point of our calculations is the model developed in Ref.
[210], according to which the essential features of our system can be
described by considering a single quantum channel, with the following
Hamiltonian: [210, 221, 222]

H(t) = HL +HR + λ
∑
σ=↑,↓

(
eiφ(t)c

†
LσcRσ + H.c.

)
. (5.10)

Here, HL and HR are the BCS Hamiltonians of the uncoupled super-
conducting electrodes [223] and the tunnel term accounts for electron
transfers between them. As shown in [221]

We consider a symmetric junction, meaning that the modulus of
the superconducting gap ∆ is equal in both right and left parts. The
presence of an external bias can be included in the hopping amplitudes,
which acquire a time dependence [224, 225] (see also App. G.1) and
can be written as

φ(t) = −
φ0
2

+ e

∫t
0

dt ′ V(t ′), (5.11)

where φ0 is the bare superconducting phase difference between the
electrodes.

The average current across the junction is given by

I(t) = ieλ
∑
σ=↑,↓

(
eiφ(t)

〈
c
†
Lσ(t)cRσ(t)

〉
− H.c.

)
, (5.12)

whereas the zero-frequency noise is defined as

S(t) = 2

∫+∞
−∞ dt ′C(t+ t ′, t) , (5.13)

with C(t, t ′) = 〈I(t)I(t ′)〉− 〈I(t)〉 〈I(t ′)〉. Both current and noise can
be expressed via nonequilibrium Keldysh Green functions [226–228].
In particular, the relevant Keldysh components we need are expressed
as matrices in the Nambu representation [229]:

Ĝ+−
i,j (t, t ′) = i

〈c†j↑(t ′)ci↑(t)〉 〈
cj↓(t

′)ci↑(t)
〉〈

c
†
j↑(t

′)c†i↓(t)
〉 〈

cj↓(t
′)c†i↓(t)

〉 (5.14)
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with i, j = R,L and Ĝ−+
i,j (t, t ′) = [Ĝ+−

j,i (t, t ′)]†. Starting from the defini-
tion (5.12) it is straightforward to show that

I(t) = eTr[σ̂3Ŵ(t)Ĝ+−
RL (t, t) − σ̂3Ĝ

+−
LR (t, t)Ŵ†(t)] , (5.15)

where σ̂3 is the third Pauli matrix and the hopping matrix Ŵ(t) is
defined as

Ŵ(t) =

(
λ eiφ(t) 0

0 −λ e−iφ(t)

)
. (5.16)

As far as the noise is concerned, an equally straightforward though
longer calculation relying on the repeated application of Wick’s theo-
rem allows one to derive the following result: [210, 230]

C(t, t ′) = 2e2Tr
[
σ̂3Ŵ(t)Ĝ−+

RR (t, t
′)σ̂3Ŵ

†(t ′)Ĝ+−
LL (t ′, t)

− σ̂3Ŵ(t)Ĝ−+
RL (t, t

′)σ̂3Ŵ(t ′)Ĝ+−
RL (t

′, t)

+ σ̂3Ŵ
†(t)Ĝ−+

LL (t, t ′)σ̂3Ŵ(t ′)Ĝ+−
RR (t

′, t)

−σ̂3Ŵ
†(t)Ĝ−+

LR (t, t ′)σ̂3Ŵ†(t ′)Ĝ+−
LR (t ′, t)

]
.

(5.17)

In a perturbative scheme regarding the coupling term λ in Eq. (5.10)
as a small parameter, the full Green functions Ĝ are obtained from the
unperturbed ones ĝ describing the uncoupled electrodes via Dyson’s
equations (see App. G.2 for more details). In the energy domain, the
advanced and retarded components of the latter are [210]

ĝa/r(ω) =
1

E
√
∆2 − (ω∓ iε)2

(
−ω∓ iε ∆

∆ −ω∓ iε

)
, (5.18)

where ε = 0+ and the energy scale E ∼ 1/πD(EF) is related to the
normal density of states D(EF) at the Fermi energy [210]. Other com-
ponents of Green functions are related to the above ones by

ĝ+−(ω) = 2i Im[ĝa(ω)]nF(ω), (5.19a)

ĝ−+(ω) = −2i Im[ĝa(ω)]nF(−ω), (5.19b)

with nF(ω) the Fermi function.

5.3 dc current and noise

We now come to the evaluation of the dc current and noise. They are
defined as

I = T −1

∫T /2

−T /2
dt I(t), (5.20a)

S = T −1

∫T /2

−T /2
dt S(t), (5.20b)
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where T is a measurement time, much longer than all the other
time scales in the system. We consider the tunnel regime where the
transmission of the junction is very small, so that current and noise
can be evaluated to lowest order in the tunneling amplitude λ. The
result can be expressed as:

I = I0 + ζ2q(I1 + IJ) , (5.21a)

S = S0 + ζ2qS1 . (5.21b)

As already seen in several instances, we recall that qΩ = −eVdc, with
Vdc = T

−1
∫T
0 dtV(t) the dc component of the drive, while the factor

ζx is defined as

ζx =

1 if x ∈ Z,

0 if x /∈ Z.
(5.22)

All contributions in Eq. (5.21) can be expressed in terms of the
photoassisted amplitudes which we encountered several times. Here,
however, we write the decomposition (3.62) in a slightly more general
fashion [117, 157]

eie
∫t
0 dt ′V(t ′) = e−iqΩt

∑
`∈Z

p`(α)e−i`Ωt . (5.23)

In this expression, by analogy with the definition of q, we introduced
a parameter α = −eV0ac/Ω, where V0ac is the characteristic amplitude
of the ac component of the drive Vac(t), see Eq. (5.8). As an example,
for a harmonic drive we have V(t) = Vdc +V

0
ac cos(Ωt). The difference

with respect to the decomposition (3.62) used in the previous Chapters
is that now the photoassisted amplitudes depend on α and not on q.
The reason for keeping α 6= q is that the dc and ac parts of the drive
can obviously be separately tuned and this possibility will turn out
to be useful in order to perform a spectroscopic analysis of the p`
coefficients, as we discuss in Sec. 5.5.

When the temperature θ is low enough for the gap ∆ to be consid-
ered independent of it, i. e. ∆ � kBθ, all terms in Eq. (5.21) can be
expressed as a single integral over energies (see App. G.2). Moreover,
at zero temperaure it is possible to obtain analytical results, which we
report below. The terms appearing in the current Eq. (5.21a) read

I0 =
4eλ2

πw2

∑
`∈Z

|p`|
2Θ(1− |∆`|)Ω` J(∆`) (5.24)

I1
∆

= −
4eλ2

πw2

∑
`∈Z

Re[eiφ0p`p−`−2q]Θ(1− |∆`|)∆`K(∆̃`) (5.25)

IJ
∆

=
4eλ2

πw2

∑
`∈Z

Im[eiφ0p`p−`−2q]|∆`|

×
[
Θ(1− |∆`|)K(∆`) − iΘ(|∆`|− 1)F

(
ϕ`, ∆̃`

)] (5.26)
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Figure 5.2: Sketch of typical processes involved in the dc current. Left panel:
out-of gap process contributing to I0. A quasiparticle gains an
energy qΩ = −eVdc (straight line) from the dc part of the drive
and absorbs ` photons (wiggly line) to overcome the energy gap,
thanks to the additional energy contribution `Ω. This process is
weighted by the probability |p`|

2, appearing in the expression for
I0. Right panel: sub-gap process contributing to IJ. This process
globally results in a transfer of a Cooper pair. Both electrons
gain from the dc part of the drive an energy qΩ, with q = n/2,
n ∈N. Then the process is an interference between one electron
absorbing ` photons (with amplitude p`, ` > 0) and the other
emitting `+n photons (with amplitude p−`−2q = p−`−n). Finally
the two electrons recombine to form a Cooper pair.

where Θ(x) is the Heaviside step function and we have defined the
quantities

Ω` = (`+ q)Ω, ∆` =
2∆

Ω`
,

∆̃` =
√
1−∆2` , ϕ` = arcsin

(
1

∆̃`

)
.

(5.27)

Moreover, F(ϕ, x) is the incomplete elliptic integral of the first kind and
J(x) = E(

√
1− x2)− x2K(

√
1− x2)/2, with K(x) and E(x) the complete

elliptic integrals of the first and second kind, respectively [70, 231].
Expressions for noise contributions in Eq. (5.21b) are quite similar:

S0 =
8e2λ2

πw2

∑
`∈Z

|p`|
2Θ(1− |∆`|) |Ω`| J(∆`) , (5.28)

S1
∆

= −
8e2λ2

πw2

∑
`∈Z

Re[eiφ0p`p−`−2q]Θ(1− |∆`|)|∆`|K(∆̃`) . (5.29)

All the above expressions are general and apply to any periodic drive
as different signals are simply distinguished by their photoassisted
amplitudes p` but, apart from that, no other dependence on the drive
enters the formulas we have derived.

Let us now comment on results in Eq. (5.21) and their explicit
expressions given below. Both the current and the noise contain a
continuous contribution as a function of q (I0 and S0) and terms
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(a)

(b)

Figure 5.3: Total current I, in units of eTΩ/π, as a function of q and for
two values of ∆/Ω, as indicated in the plots. T = 4λ2/E2 is
the transmission of the junction. (a): the case of a Lorentzian
drive with η = 0.1 [see Eq. (5.38)]. (b): the case of a sine drive
V(t) = Vdc[1− cos(Ωt)]. In both panels we set φ0 = π/4.

appearing only at discrete values of the dc voltage, namely when 2q
is integer. The latter are Shapiro step contributions [190, 213] and are
due to the interplay of the ac Josephson effect and the frequency Ω
of the external drive, that together give rise to a dc contribution (see
the discussion about the inverse ac Josephson effect on page 109). The
external bias appears in all terms via the combination Ω` = (`+ q)Ω,
a typical signature of photoassisted transport.

The current I0 is due to quasiparticle transfers across the junction;
it involves only out-of-gap processes (due to the Θ function enforcing
the “effective voltage” Ω` = (`+ q)Ω to be greater than gap width
2∆) and is independent of the superconducting phase difference φ0. A
typical process contributing to I0 is depicted in Fig. 5.2 (left panel). It
is easy to see that, in the metallic limit ∆ = 0, I0 is the only surviving
contribution to the current and reduces to the well known result
I0 = T(2e2/h)Vdc [117], where T = 4λ2/E2 is the transmission of the
junction in the tunnel limit [210] and 2e2/h is the conductance of a
spinful quantum channel.

Concerning the phase-dependent terms, IJ is the only contribution
involving also sub-gap processes [second Θ function in Eq. (5.26)]
and is a generalization of the dc Josephson current in the presence
of an arbitrary periodic drive. It involves a transfer of Cooper pairs
across the junction. From the dependence p`p−`−2q (see Eq. (5.26)),
we can interpret each transfer as an interference between processes
where an electron absorbs ` photons, with amplitude p` and another
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one emits (`+n) photons, with amplitude p−`−2q and 2q = n, which
is the condition enforced by the factor ζ2q in Eq. (5.21). Since both
electrons also gain an energy qΩ = nΩ/2 from the dc part of the
voltage, we then see that the final energies of the two electrons are
equal and opposite, so that they recombine into a Cooper pair. This
kind of process is also sketched in Fig. 5.2 (right panel). In the limit of
a purely dc bias, which is obtained by replacing p` = δ`,0, IJ reduces
to

IJ = δq,0T
e∆

2
sin(φ0) (5.30)

and we recover the dc Josephson effect, with supercurrent flowing at
zero bias [192, 225]. Of course, IJ is the only surviving contribution if
no drive is applied to the system. The remaining term, I1, has the same
origin as the contribution proportional to cosφ0 in the ac Josephson
effect and can be interpreted as describing quasiparticle processes
involving a superimposed pair transfer [190, 225, 232] (this term has
not been discussed in the introduction in Sec. 5.1 and we refer the
reader to the cited References for more information).

In Fig. 5.3 we show a representative behavior of the total current I
as a function of q. We chose a Lorentzian and a sine drive, which will
be discussed in detail in Sec. 5.4 in relation to the excess noise. From
the plots in Fig. 5.3 we clearly observe the continuous contribution I0,
characterized by some discontinuities due to the Θ functions in the
sum in Eq. (5.24). On top of that, Shapiro spikes at half-integer values
of q appear. They come almost completely from IJ, since I1 is found
to be negligible for a wide range of parameters.

Finally, concerning the noise, S0 and S1 are the counterparts to
I0 and I1, respectively, and are generated by the same processes
contributing to I0 and I1. In particular, S0 is associated with the
partitioning of quasiparticles excited above the gap by the driving
voltage. There is however no term in the noise associated with sub-gap
processes appearing in IJ, which are therefore noiseless [224, 225]. In
the following we analyze the above general results in two different
regimes.

5.4 excess noise and lorentzian drive

As we have seen in several instances across this thesis, Lorentzian
pulses play a special role in the context of EQO and are being exten-
sively studied [5, 29, 33–35, 82, 85, 117, 175, 233–235]. For such a reason
it is then natural to ask whether their peculiar properties survive in the
presence of superconducting correlations. One of the most important
of them, is the minimization of the noise, which is the main point we
are now going to address. In this Section we consider the ac and dc
amplitudes of the drive to be equal, namely α = q.
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For a generic drive, the excess noise can be defined as [81, 117]:

∆S = S− 2eI . (5.31)

The above definition involves the total current and noise and can be
decomposed as

∆S = ∆S0 +∆S1 − 2eIJ, (5.32)

with ∆S0,1 = S0,1 − 2eI0,1. In particular, ∆S0 only refers to quasiparti-
cle terms and will constitute the main focus of our discussion. As a
matter of fact, S1, I1 and IJ are defined only for half-integer values of
q and depend on the superconducting phase difference φ0. Therefore,
in a setup where φ0 is not fixed, it is in principle possible to isolate S0
and I0. Indeed, I1 and S1 will vary as cos(φ0), while IJ as sin(φ0) and
then these contributions can be subtracted by averaging over different
measurements. For these reasons we focus our attention on ∆S0. We
also mention that Eq. (5.31) can be considered as a rewriting of the
Fano factor F ≡ S/2eI. Indeed if the latter quantity is used instead of
our definition, we obtain F = 1 for Levitons carrying an integer charge.
This constitutes a signature that quasiparticles with unit charge tunnel
at the QPC. In the tunnel limit which we are considering here, this is
the only relevant process as multiple Andreev reflections are absent
(higher order processes in λ would be needed in order to access them).
From Eq. (5.24) and Eq. (5.28) we immediately find:

∆S0 =
16e2λ2

πw2

∑
`<−q

|p`|
2Θ(1− |∆`|)Ω|`+ q|J(∆`) . (5.33)

Before moving to the discussion of Lorentzian pulses, it is instruc-
tive to highlight a deeper connection between the excess noise and
single-electron properties, which we have already encountered in the
previous Chapter. Very generally, by starting from Eq. (5.17) and using
Dyson’s equations (G.11) and (G.13), one can show that the excess
noise ∆S0 can be written in terms of Green function as

∆S0 =
4e2λ2

π

∫+∞
−∞ dωg+−

0 (ω)
∑
`∈Z

|p`|
2g−+
0 (ω−Ω`) . (5.34)

Here, the subscript 0 in Green functions denotes the term proportional
to the identity matrix σ̂0 in Nambu space. Recall also that Ω` =

(`+ q)Ω. This formula has the typical structure of the Tien-Gordon
effect [236] and involves an overlap between two Green functions:
g+−
0 (ω) at equilibrium and g−+

0 (ω), shifted by the dc bias qΩ as
well as all energies `Ω corresponding to photoassisted processes and
weighted by the probability |p`|

2.
It is possible to link Eq. (5.34) to electron energy distributions which

are usually employed in the context of EQO [1, 113]. In particular, here
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Figure 5.4: Excess noise ∆S0 for different values of ∆/Ω as a function of q,
in units of 2e2TΩ/π. The width of Lorentzian pulses is η = 0.1.
Full red curves refer to Lorenzian pulses, dashed blue ones to a
sine drive V(t) = Vdc[1− cos(Ωt)], with qΩ = eVdc.

we refer to nonequilibrium energy distribution of the left side of the
SQPC. We refer to Appendix G.1 for the details and here we simply
state the result:

∆S0 ∝
∫+∞
−∞ dωf<eq(ω)f>(ω) . (5.35)

This formula is essentially the same as Eq. (4.51), which we derived in
the previous Chapter. It is a general result that, at lowest order in the
tunneling, the noise can be written as an overlap between two spectral
distributions. Roughly speaking, g+−

0 (ω) gives the electron energy
distribution at equilibrium f<eq(ω), while the sum in (5.34) containing
g−+
0 (ω−Ω`) represents the hole energy distribution f>(ω) in the

presence of the drive. Their explicit expressions at zero temperature
are

f<eq(ω) =
−2ω

E
√
ω2 −∆2

Θ(−ω−∆) ,

f>(ω) =
∑
`∈Z

|p`|
2

E

2(ω−Ω`)√
(ω−Ω`)2 −∆2

Θ(ω−Ω` −∆) .
(5.36)

As a final remark, we notice that a similar procedure can be followed
for ∆S1. Indeed, despite this term is not relevant to our discussion, it
can be shown that (assuming that p` ∈ R, which can be always done
by a proper choice of the time origin)

∆S1 ∝ cosφ0
∫+∞
−∞ dωg+−

1 (ω)
∑
`∈Z

p`p−`−2qg
−+
1 (ω−Ω`) , (5.37)

where g1 is the off-diagonal component of the Green function in
Nambu space. The above expression can be obtained by starting from
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anomalous correlators of the form
〈
cL↓(t

′)cL↑(t)
〉

and following the
calculation which is presented in Appendix G.1.

Let us now discuss in detail the relevant case of a Lorentzian drive.
A train of Lorentzian-shaped pulses has the form (3.63)

V(t) =
Vdc

π

∑
k∈Z

η

η2 + (t/T − k)2
, (5.38)

where η is the ratio between the width of a pulse and the period
T of the drive. Its photoassisted coefficients p` are given by (3.64)
and have the peculiar property that they vanish for ` < −q in the
case of quantized pulses, i.e. for integer values of q [cf. Eq. (4.44)].
Consequently, I1 and S1 vanish for integer Levitons. This is because
the combination of photoassisted coefficients appearing in Eq. (5.25)
and Eq. (5.29) becomes in this case

p`p−`−2q = ζqδ`,−qp
2
−q, (5.39)

enforcing ` = −q and, eventually, I1 = S1 = 0 due to the action of
the Θ functions. This means that, unlike any other drive, the noise for
quantized Lorentzian pulses is independent of the bare superconduct-
ing phase difference φ0. Moreover, another interesting property is that
the IJ contribution reduces to

IJ = T
e∆

2
p2−q sin(φ0) (5.40)

for integer Levitons. This is a very simple Josephson-like relation,
where the supercurrent peaks occurring at integer q are weighted by
the photoassisted amplitude p2−q.

Concerning the behavior of the excess noise, Eq. (5.33) shows that it
vanishes for Levitons with integer charge, in the same way as in the
free-electron case [5, 117]. This is a direct consequence of the properties
of their p` coefficients. In Fig. 5.4 we plot the excess noise ∆S0 for
different values of the ratio ∆/Ω, comparing Lorentzian and cosine
drives. In the metallic limit ∆ = 0 [Fig. 5.4(a)] we recover well-known
behaviors (cf. Fig. C.2 in App. C.1), while at finite gap we observe the
appearence of sharp discontinuities [Figs. 5.4(b)–(d)] which are due to
the BCS density of states, as we will argue in the following. Still, we
clearly observe that quantized Lorentzian pulses minimize the excess
noise, in contrast to the harmonic voltage.

By increasing the ratio ∆/Ω, we observe a progressive overall sup-
pression of the signal for both drives. This can be understood by
noticing that, in the adiabatic limit ∆ � Ω, eVdc, no contribution
other than IJ can survive, since no transport across the gap is possible
anymore and IJ is the only term involving also sub-gap processes (see
Sec. 5.5 for a more thorough discussion). For this reason, even though
only quantized Levitons minimize the excess noise (strictly speaking),
the major differences between integer Lorentzian pulses and any other
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Figure 5.5: Overlap between equilibrium distribution f<eq(ω) (black dashed
curve) and out-of-equilibrium distribution f>(ω) (both in units
of 2/E) for ∆/Ω = 0.25 and: Lorentzian drive at q = 1 (red curve),
Lorentzian drive at q = 0.5 (blue curve) and sine drive at q = 1

(green curve). The width of Lorentzian pulses is η = 0.1. Notice
that the equilibrium distribution has been reduced by a factor of
4 to better appreciate the contributions from f>(ω), which are
quite small in the region ω < −∆.

drive are best appreciated if the ratio ∆/Ω is at most of the order of
unity. We comment about this constraint in Sec. 5.6. By increasing
∆/Ω, we progressively enter the adiabatic regime and the transport
properties of the junction become qualitatively similar for any drive,
as we will discuss in the following Section.

Finally, we illustrate the behavior of the distribution functions in Eq.
(5.36), which are related to the excess noise by Eq. (5.35). Fig. 5.5 shows
the overlap of these distributions for some values of q and a fixed ∆/Ω.
It is always zero for quantized Levitons because in this case p` = 0 for
` < −q. This means that f>(ω) is nonzero only for ω > ∆+ `Ω, with
` > 0 and the overlap vanishes because f<eq(ω) is nonzero for ω < −∆.
This is no longer the case for non-quantized Lorentzians or any other
drive, for which f>(ω) is nonvanishing also in the region ω < −∆.
The structure of functions in Eq. (5.36) also allows us to understand
the discontinuities observed in Fig. 5.4. Indeed, both f<eq and f> show
signatures of the square root singularity of the BCS density of states.
The singularity of the equilibrium distribution is at ω = −∆, while
those of f> depend on the values of ` and q. When a singularity of
f>(ω) enters/leaves the region ω < −∆, an abrupt increase/decrease
of the overlap between the two distribution occurs. At a given `, this
happens when q = −`− 2∆/Ω, which are precisely the values where
discontinuities in ∆S0 are observed (see Fig. 5.4).

As a concluding comment, it is worth mentioning that a complete
characterization of the excitations induced in the system by the drive
would require the investigation of complementary quantities such as
the electron distribution and the anomalous correlator in the k-space,
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which are beyond the purpose of this Chapter, where we simply in-
vestigate the transport properties of the SQPC. Unfortunately, such
quantities are difficult to be addressed experimentally. This constitutes
the main motivation to investigate current fluctuations – in particu-
lar ∆S0 – which is directly connected to the photo-assisted (out of
equilibrium) energy distribution f>(ω). Although less transparent
from the point of view of fully characterizing the induced excitations,
this quantity is still very interesting and routinely investigated in
experiments.

5.5 large gap : adiabatic limit

Let us now analyze the situation where the superconducting gap is
the most relevant energy scale in the problem. This, in particular,
means that both the excitation frequency Ω and eVdc have to be much
smaller than the gap ∆. In this limit all contributions to the current
and noise but IJ are progressively suppressed. Mathematically, this is
because the bigger the gap, the higher the value that the index ` has to
assume to prevent Θ functions from vanishing. Although ` can assume
any value in principle, in practice contributions at high ` are strongly
suppressed due to the p` coefficients. More physically and intuitively,
this means that when ∆ is by far the biggest energy scale, the drive
cannot provide enough energy to the system for out-of-gap processes
to be possible, even with the photoassisted tunneling mechanism.
Therefore the relevant quantity in the adiabatic regime is the part of
IJ involving sub-gap processes. Thanks to the limit ∆� Ω, eVdc, Eq.
(5.26) for IJ considerably simplifies and becomes

IJ = T
e∆

2

∑
`∈Z

Im[p`p−`−2qeiφ0 ] = T
e∆

2
p−2q(2α) sin(φ0) , (5.41)

where we assumed, without loss of generality, that photoassisted
coefficients are real and we used the general property∑

`∈Z

p`(α)p−`+x(α) = px(2α) . (5.42)

This result has the same structure of Eq. (5.40), to which it reduces in
the case of a Lorentzian drive, since p−2q(2q) = p2−q(q) for integer
q. We emphasize, though, that in the case of integer Levitons Eq.
(5.40) holds for any value of the ratio Ω/∆, without restrictions. Eq.
(5.41) describes a series of supercurrent spikes appearing whenever
2q is integer, whose amplitude is determined by the photoassisted
coefficient p−2q(2α) (recall that α is related to the ac amplitude of the
drive). The condition 2q ∈ Z means that the dc amplitude of the drive
has to satisfy Vdc = nΩ/2e, with integer n. This is nothing buth the
condition fo the appearance of Shapiro spikes in the current-voltage
characteristics, as discussed on page 109 in the case of a harmonic
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drive. Here, we recover the same kind of effect, but in the presence
of an arbitrary periodic drive. The photoassisted coefficient p−2q(2α)
replaces and generalizes the Bessel functions appearing in (5.6).

We also notice that the relation in Eq. (5.41) could be used as a tool
to operate a “spectroscopy” of photoassisted absorption and emission
probabilities by varying independently α and q, in the same spirit of
what has been proposed in Ref. [117]. It is indeed possible to vary
the ac amplitude of the drive (and hence α) in correspondence of the
fixed dc amplitudes where Shapiro spikes occur, thus recovering p`
coefficients from the amplitude of the spike.

5.6 summary

The results presented in this Chapter can be regarded as a preliminary
study for the extension of EQO ideas to systems with superconducting
correlations. In particular, here we characterized the transport proper-
ties (current and noise) of a SQPC in the tunnel limit, under the effect
of a generic periodic drive.

When the angular frequency of the drive Ω is comparable to the su-
perconducting gap ∆, sharp differences between quantized Lorentzian
pulses and every other signal occur. Indeed, the former drive is the
only one for which the excess noise associated with quasiparticle
processes vanishes. Remarkably enough, this well known property of
ballistic metallic systems still persist when entering the superconduct-
ing regime. Moreover, the total noise becomes independent of the bare
superconducting phase difference φ0.

From the experimental point of view, the constraint ∆/Ω . 1 is
quite challenging but not unreachable. In SQPCs realized with the
break junction technique, the typical regime is more towards the op-
posite case [206] (with the gap in the range of hundreds of µeV and
ν = Ω/2π in the range of a few tens of GHz). However, some recent
experiments [209] are extremely promising for the investigation of
regime ∆/Ω . 1, due to the quite small superconducting gap achiev-
able at the interface LaAlO3/SrTiO3. Indeed, in the split gate SQPC

geometry implemented in Ref. [209], a gap ∆ ≈ 22µeV was observed,
corresponding to a frequency ν ≈ 5.3 GHz, which perfectly fits the
typical range where measurements in the electron quantum optics
domain have been performed [5]. For more conventional superconduct-
ing materials it is in principle possible to reduce the gap by applying
a magnetic field.

Finally, in the adiabatic limit (large gap) we obtain a very simple
Josephson-like relation for the supercurrent, describing Shapiro spikes
whose height is proportional to the photoassisted amplitude of the
drive considered. All other contributions to current and noise are
strongly suppressed and ultimately vanish in this regime, since they
involve quasiparticle transfers across the gap.





C O N C L U S I O N S A N D P E R S P E C T I V E S

In this thesis, we have investigated the role of electron-electron cor-
relations in electron quantum optics setups. In Chapter 1 we have
reviewed the main ideas of electron quantum optics in non-interacting
systems. In particular, we have focused our attention on the single-
electron excitations known as Levitons, the properties of which we
have presented from the theoretical point of view and also from an
experimental side, with a brief description of the measurements which
have confirmed their existence.

Chapter 2 has been devoted to the introduction of the theoretical
tools which are needed in order to describe electron-electron inter-
actions in one-dimensonal systems, which are the playground of the
analysis carried out in the thesis. The subsequent Chapters constitute
the original part of the thesis and are dedicated to the investigation of
how the properties of Levitons are influenced by interactions in dif-
ferent systems. Two of them, namely the integer quantum Hall effect
and the quantum spin Hall effect states are an example of topological
systems, where the non-trivial topological properties of the bulk result
in the emergence of one-dimensional conducting edge channels, where
backscattering is forbidden. They are thus an ideal playground for
implementing electron quantum optics setups.

In Chapter 3 we have considered a quantum Hall system with two
interacting copropagating channels, where a voltage-pulse-generated
excitation is introduced on the outer one. As a result of interactions,
the initial pulse fractionalizes and creates smaller excitations carrying
an interaction-dependent fraction of the original charge. By resorting
to nonequilibrium momentum distributions and the Wigner functions,
we have carefully studied the properties of these fractionalized excita-
tions, showing that when they are generated by a Lorentzian drive and
carry an integer charge, they are minimal excitations. Moreover, the
inner-channel excitations always having equal and opposite charges,
we showed that it is possible to extract the mixing angle describ-
ing the interaction strength from the noise generated when they are
partitioned at a quantum point contact.

Chapter 4 presents the analysis of the properties of voltage-pulse
generated excitations in an interacting helical liquid, namely a quan-
tum spin Hall state where electron-electron interactions between coun-
terpropagating channels are taken into account. As in the previous
case of co-propagating channels, the presence of interactions induces
a fractionalization process, making the initially excited pulse split into
smaller ones, the properties of which we investigated by evaluating
their non-equilibrium spectral functions. In contrast to what happens

123



124 conclusions and perspectives

in a non-interacting situation, Lorentzian pulses carrying an integer
charge are not necessarily associated with a spectral function with
definite sign, a fact that shows that care has to be taken in extending
the concept of minimal excitation. Nevertheless, the excess noise for
such pulses always vanishes and it is possible to take advantage of
this fact in order to extract the Luttinger parameter describing the
interaction strength in the system.

In Chapter 5 we have investigated the effect of superconducting
correlations on Levitons, by considering a superconducting quantum
point contact in the presence of an arbitrary periodic drive. In par-
ticular, we showed how a train of Lorentzian pulses with quantized
area minimizes the noise also in this system, thus strengthening the
result of the previous Chapters, namely that this peculiar property of
Levitons is uniquely due to the particular shape of the drive and does
not suffer from the presence of an interacting background.

Finally, we would like to mention some possible developments in
the field of electron quantum optics. As we have seen, the properties
of Levitons are well established in non-interacting systems, both theo-
retically [7, 8, 117] and experimentally [5]. Very recent experimental
results in the fractional quantum Hall regime [237] are very promis-
ing in order to eventually test the theoretical predictions for filling
factors in the Laughlin’s sequence which have been put forward in
the past few years [81, 82, 85, 87]. Moreover, the exotic physics of the
fractional quantum Hall effect makes it possible to address composite-
edge structures, where neutral upstream modes [238], propagating
in opposite direction with respect to the charged ones, could lead
to new interesting effects related to the energy flow associated with
single-electron excitations.

Concerning the domain of two-dimensional topological insulators, a
recent experimental breakthrough [19, 20] has demonstrated that quan-
tum point contacts can be integrated in systems supporting helical
edge channels, thus opening the possibility of conceiving interfero-
metric measurements of single-electron excitations in these systems.

Concerning the properties of Levitons in the presence of supercon-
ductivity, a natural extension to what we have discussed in Chapter 5

would be to consider topological superconductors, where the emer-
gence of Majorana zero modes [239] could give rise to interesting
effects in the transport properties of the superconducting quantum
point contact.



A
T I M E E V O L U T I O N O F F E R M I O N I C A N D B O S O N I C
O P E R AT O R S

In this Appendix we evaluate the time evolution of fermionic and
bosonic operators due to the effect of a voltage drive in different
configurations.

a.1 non-interacting case

This is the case we considered in Sec. 1.4, where a drive was applied
to a right-moving chiral channel. Here, we will address at the same
time the case of right- and left-moving channels. The free Hamiltonian
is

H0,r =

∫+∞
−∞ dxΨ†r(x)(−ivFϑr∂x)Ψr(x) , (A.1)

where r = R/L for right/left-movers and ϑR/L = ±1. Next, we consider
a time-dependent voltage V(t) applied in the region x < −d, with
d > 0. This is described by the Hamiltonian

Hg,r = −e

∫+∞
−∞ dxU(x, t)ρ(e)r (x) , (A.2)

with U(x, t) = Θ(−x− d)V(t) and ρ(e)r (x) =:Ψ†r(x)Ψr(x) : the particle
density operator on channel r.

The equations of motion determining the time evolution Ψr(x, t)
operators are obtained by calculating the commutator [H0,r +Hg,r,Ψr].
This is easily done by using the identity [A,BC] = {A,B}C− B{A,C},
as well as the canonical anticommutation relations. We have

[Ψr(x),H0,r] = −iϑrvF∂xΨr(x) , (A.3a)

[Ψr(x),Hg,r] = −eU(x, t)Ψr(x) , (A.3b)

resulting in the equation of motion

i(∂t + ϑrvF∂x)Ψr(x, t) = −eU(x, t)Ψr(x, t) . (A.4)

This equation can be solved by the Green function method as follows:
define the differential operator Lr = i(∂t + ϑrvF∂x) and look for a
solution of the form

Ψr(x, t) = ψr(x, t)eβr(x,t) , (A.5)
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such that Lrψr(x, t) = 0. Then Eq. (A.4) is converted in an equation
for the function βr(x, t):

LrΨr(x, t) = ψr(x, t)eβr(x,t)Lrβr(x, t) = −eU(x, t)ψr(x, t)eβr(x,t),

=⇒ Lrβr(x, t) = −eU(x, t) .
(A.6)

By introducing the Green function Gr(x, x ′; t, t ′) of the operator Lr,
satisfying

LrGr(x, x ′; t, t ′) = δ(x− x ′)δ(t− t ′) , (A.7)

we can write the solution to (A.6) in the form

βr(x, t) = −e

∫
R2

dx ′ dt ′Gr(x, x ′; t, t ′)U(x ′, t ′) . (A.8)

Indeed, by acting with Lr on this expression and using the property
(A.7), we readily obtain (A.6). The Green function for Lr is

Gr(x, x ′; t, t ′) = −iΘ(t− t ′)δ[vF(t− t
′) − ϑr(x− x

′)] . (A.9)

As a matter of fact

LrGr(x, x ′; t, t ′) = δ(t− t ′)δ(x− x ′)

+Θ(t− t ′)∂tδ[vF(t− t
′) − ϑr(x− x

′)]

+ vFΘ(t− t
′)∂xδ[vF(t− t

′) − ϑr(x− x
′)]

= δ(t− t ′)δ(x− x ′) . (A.10)

By using (A.9) into (A.8) we obtain

βr(x, t) = ie
∫t
−∞ dt ′U[x− ϑrvF(t− t

′), t ′] . (A.11)

The last ingredient is the solution to the homogeneous equation
Lrψr(x, t) = 0, which is any function of the form ψr(x − ϑrvFt, 0).
Therefore we conclude

Ψr(x, t) = ψr(x− ϑrvFt, 0) eie
∫t
−∞ dt ′U[x−ϑrvF(t−t

′),t ′] , (A.12)

which reduces to Eq. (1.36) for r = R. In particular, by expliciting the
form U(x, t) = Θ(−x− d)V(t), we find

Ψr(x, t) = ψr(x− ϑrvFt, 0)e
iα
(
t−ϑr

x+d
vF

)
(for ϑrx > −ϑrd) , (A.13)

with the function α(t) defined as

α(t) = e

∫t
−∞ dτV(τ) . (A.14)

The above result reduces to Eq. (1.37) for r = R and d = 0.
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a.2 interacting channels

Here, we derive the equations of motion in the case of interacting
fermions. Let us start by considering the system at ν = 2 addressed in
Chapter 3. In this case the Hamiltonian which describes the coupled
edge channels in the presence of an applied voltage is given by (3.7).
The free bosonic part is

H ′ =
1

2

∑
r=R,L

∑
η=±

vη

∫+∞
−∞ dx : [∂xΦr,η(x)]

2 : , (A.15)

while the effect of the drive is encoded in

Hg =
e√
2π

∫+∞
−∞ dxU(x, t) [cosχ∂xΦR,+(x) − sinχ∂xΦR,−(x)] .

(A.16)

Here, bosonic fields satisfy the commutators

[
Φr,η(x),Φr ′,η ′(x ′)

]
=
iϑr

2
δr,r ′δη,η ′sgn(x− x ′) . (A.17)

It is thus easy to obtain

[H ′,Φr,η(x)] = iϑrvη∂xΦr,η(x) , (A.18)

[Hg,Φr,η(x)] = δr,R
ie√
2π
U(x, t)(δη,+ cosχ− δη,− sinχ) , (A.19)

resulting in the equations of motion

(∂t + ϑrvη∂x)Φr,η(x, t) =
ζr,η√
2π
U(x, t) , (A.20)

where ζR,+ = −e cosχ, ζR,− = e sinχ and ζL,± = 0. Now, the above
equation has the very same structure of Eq. (A.6) and therefore its
solution is analogous to what we found in Eq. (A.11). By making the
due modifications we then find

Φr,η(x, t) = φr,η(x−ϑrvηt, 0)+
ζr,η√
2π

∫t
−∞ dt ′U[x−ϑrvη(t− t ′), t ′] ,

(A.21)

which is exactly Eq. (3.8) of the main text.
Finally, we briefly mention that the calculation for obtaining the

equations of motion (4.15) considered in Chapter 4 is almost identical
to what we have just done (apart for some differences in the signs of
the commutators of bosonic fields). In particular, the solution (4.16)
follows from the exact same method as illustrated above.





B
W I G N E R F U N C T I O N

In this Appendix we provide some basic notions about the Wigner
function and prove the formula (1.88) for a multi-Leviton state.

b.1 weyl transform and wigner function

Consider a quantum-mechanical particle in one dimension. Once the
quantum state |φ〉 is known, we have complete information about
the system. In particular, the probability density $(x) of finding the
particle at a given position x is given by

$(x) = |〈x |φ〉|2 = |φ(x)|2 , (B.1)

where φ(x) is the wavefunction in the position basis. In the same way,
the probability density in momentum space is obtained by going to
the momentum basis

$̃(p) = |〈p |φ〉|2 = |φ̃(p)|2 , (B.2)

where φ̃(p) is the Fourier-transformed wavefunction1

φ̃(p) =
1√
h

∫+∞
−∞ dx e−i

px
 h φ(x) . (B.3)

Finally, the time evolution of the system is obtained by solving the
Schrödinger equation for φ(x, t).

There is, however, an alternative and completely equivalent for-
mulation of quantum mechanics which relies on distribution func-
tions defined on the phase space. In this formulation, one deals with
constant-number equations instead of operators. Moreover, it provides
a conceptually simpler way of obtaining the classical limit, as classical
mechanics deals with trajectories in the phase space. In what follows,
we present a very brief introduction to this formulation, focusing on
the Wigner distribution function [111]. This discussion is extensively
based on Ref. [240]. For a broader discussion about general quantum
phase-space distribution functions see, e. g., Ref. [241]. We also refer
the interested reader to the review [242] for an overview of recent ap-
plications of Wigner function approaches to different areas of quantum
physics.

1 In this Section we restore the Planck’s constant h. Moreover, quantum operators
will be denoted by the superscript “ˆ” in order to distinguish them from ordinary
variables.
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Consider an operator Ô depending on the position and momentum
operators: Ô = O(x̂, p̂). Its Weyl transform is defined as

OW(x,p) =
∫+∞
−∞ dy

〈
x+

y

2

∣∣∣ Ô ∣∣∣ x− y
2

〉
e−i

py
 h (B.4)

=

∫+∞
−∞ dq

〈
p+

q

2

∣∣∣ Ô ∣∣∣p− q
2

〉
e+i

qx
 h . (B.5)

As we can see, the Weyl transform is a map which converts an operator
into a scalar function of the variables x and p. The Weyl transform
allows us to express a trace of two operators as an integral over the
phase space:

Tr[ÂB̂] =
1

h

∫∫+∞
−∞ dxdpAW(x,p)BW(x,p) . (B.6)

Indeed∫∫+∞
−∞ dxdpAW(x,p)BW(x,p) =

∫∫+∞
−∞ dxdp

∫∫+∞
−∞ dydy ′ e−i

p
 h (y+y

′)

×
〈
x+

y

2

∣∣∣ Â ∣∣∣ x− y
2

〉〈
x+

y ′

2

∣∣∣∣ B̂ ∣∣∣∣ x− y ′2
〉

= 2π h

∫∫+∞
−∞ dxdy

〈
x+

y

2

∣∣∣ Â ∣∣∣ x− y
2

〉〈
x−

y

2

∣∣∣ B̂ ∣∣∣ x+ y
2

〉
= h

∫∫+∞
−∞ dudv

〈
u
∣∣ Â ∣∣ v〉 〈v ∣∣ B̂ ∣∣u〉

= h

∫+∞
−∞ du

〈
u
∣∣ ÂB̂ ∣∣u〉 = Tr[ÂB̂] .

In particular, when we take B̂ to be the density operator ρ̂, from the
previous formula we can write the expectation value of Â as

〈
Â
〉
= Tr[ρ̂Â] =

∫∫+∞
−∞ dxdpAW(x,p)W(x,p) , (B.7)

where we defined the Wigner function W(x,p) = h−1ρW(x,p). In
particular, for a pure state ρ̂ = |φ〉 〈φ| we have

W(x,p) =
1

h

∫+∞
−∞ dy e−i

py
 h φ

(
x+

y

2

)
φ∗
(
x−

y

2

)
. (B.8)

From this expression it is immediate to see that W(x,p) is real (we just
have to take the complex conjugate and change the integration variable
y→ −y). Eq. (B.7) expresses the expectation value of an operator as
an integral over phase space of its Weyl transform weighted by the
Wigner function. Since the following normalization holds∫∫+∞

−∞ dxdpW(x,p) = 1 (B.9)
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(due to the normalization of the wavefunction), it then seems that
W(x,p) could be interpreted as a phase-space probability density.
Unfortunately, this is not the case as the Wigner function can be
negative. However, position and momentum probability densities are
marginal distributions of W(x,p):

$(x) =

∫+∞
−∞ dpW(x,p) , (B.10a)

$̃(p) =

∫+∞
−∞ dxW(x,p) . (B.10b)

The following argument shows that indeed Wigner functions can be
negative. Consider two pure states ρ̂a = |φa〉 〈φa| and ρ̂b = |φb〉 〈φb|
and the corresponding Wigner functions Wa and Wb. Then,

|〈φa |φb〉|2 = Tr[ρ̂aρ̂b] = h
∫∫+∞

−∞ dxdpWa(x,p)Wb(x,p) . (B.11)

If |φa〉 and |φb〉 are orthogonal, the above integral has to vanish,
showing that Wa or Wb (or both) must be negative somewhere.

A further important aspect is that the Wigner function cannot as-
sume arbitrarily large values, unlike what happens for classical proba-
bility densities over the phase space, which are typically δ-like. This is
a manifestation of the uncertainty principle. In order to show that the
Wigner function is bounded, let us consider the two wavefunctions

φ1(y) =
1√
2

e+i
py
2 hφ

(
x−

y

2

)
, (B.12a)

φ2(y) =
1√
2

e−i
py
2 hφ

(
x+

y

2

)
, (B.12b)

which are obviously normalized due to the normalization of φ(x). By
using these, the Wigner function is expressed as

W(x,p) =
2

h

∫+∞
−∞ dyφ∗1(y)φ2(y) =

2

h
〈φ1 |φ2〉 . (B.13)

It then follows from the Cauchy-Schwarz inequality that

|〈φ1 |φ2〉|2 6 〈φ1 |φ1〉 〈φ2 |φ2〉 =⇒ −
2

h
6W(x,p) 6 +

2

h
. (B.14)

Notice that this bound is removed when the classical limit h → 0 is
considered. A simple and instructive example in this sense is provided
by the simple harmonic oscillator

Ĥ =
p̂2

2m
+
1

2
mω2x̂2 . (B.15)

The ground-state wavefunction is

φ0(x) =

(
1

πa2

)1/4
e−

x2

2a2 , a =

√
 h

mω
, (B.16)
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from which the following Wigner function is obtained:

W0(x,p) =
2

h
exp

[
−
1
 h

(
p2

mω
+mωx2

)]
. (B.17)

In the classical limit one finds

W0(x,p) =
1√

π hmω
e−

p2

mω h

√
mω

π h
e−

mωx2
 h → δ(p)δ(x) , (B.18)

which is the expected result as the minimal-energy configuration of
the classical harmonic oscillator corresponds to x = p = 0. This exam-
ple also shows that, while it is certainly true that any classical state
has a positive Wigner function (and hence any negativity in W(x,p)
is a signature of quantumness), the converse is not true: quantum
states can have an always-positive Wigner function and when this
happens they are also referred to as quasi-classical [243]. An example
is provided by coherent states.

Another very interesting example is shown in Fig. B.1, where the
Wigner function of a cat state built from two Gaussian wavefunctions
centered at different space points is drawn. Explicitly, the cat state is
|φ〉 = (|φξ〉+ |φ−ξ〉)/

√
N, where

〈x |φ±ξ〉 = φ±ξ(x) =
4

√
2

πa2
e−

(x±ξ)2

a2 (B.19)

and

N = 2

(
1+ e−

2ξ2

a2

)
(B.20)

is a normalization factor. It is easy to show that the Wigner function
Wφ of the cat state |φ〉 can be written as [243]

Wφ(x,p) =Wξ(x,p) +W−ξ(x,p) +Wint(x,p) , (B.21)

where

W±ξ(x,p) =
1

2π hN
exp

[
−
2(x± ξ)2

a2
−
a2p2

2 h2

]
(B.22)

are the Wigner functions associated with the states |φ±ξ〉, while

Wint(x,p) =
1

π hN
exp

[
−
2x2

a2
−
a2p2

2 h2

]
cos
(
2pξ
 h

)
(B.23)

is an interference term, which would be absent if the state |φ〉 was a
statistical mixture built from |φξ〉 and |φ−ξ〉. The result is shown in
Fig. B.1, where the interference fringes related to the entanglement
of the cat state |φ〉 can be clearly observed in the region between the
spatial points at which the two states |φ±ξ〉 are localized.

So far we have seen that Weyl transforms and Wigner functions
provide a way to express expectation values of observables as integrals
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over phase space through (B.7). However, W(x,p) has been introduced
by relying on the wavefunction φ(x) and, thus, assuming that the
Schrödinger equation has been solved in order to find the latter. It is
actually possible to derive the time evolution equation for W(x,p) and
the analog of the time-independent Schrödinger eigenvalue equation
for stationary states [244–248]. We do not report these equations here
as they lie beyond the scope of this brief introduction. From these
equations, the Wigner function can be directly determined without
having to solve the Schrödinger equation and, once W(x,p) is known,
the wavefunction can be recovered. Thus, the phase-space formulation
of quantum mechanics in terms of the Wigner function is completely
equivalent to the usual formulation in terms of wavefunctions and
operators.

Figure B.1: Wigner function (B.21) for a Schrödinger cat state obtained from
the two Gaussian wavefunctions (B.19) centered at ξ = ±4a.

b.2 calculation of the wigner function for a multi-
leviton state

We now show the derivation of Eq. (1.88). The starting point is the
expression (1.83) of the excess electron coherence, which we report
here for convenience

∆G<(t1, t2) =
1

vF

n∑
j=1

φj(t1)φ
∗
j (t2) , (B.24)

as well as the definition (1.62) of the Wigner function2

∆W<(t,ω) =
1

2π

∫+∞
−∞ dτ∆G<

(
t+

τ

2
, t−

τ

2

)
eiωτ . (B.25)

2 Notice that, unfortunately, here a different convention is taken for the sign of the
exponential with respect to what was presented in Sec. B.1. This is the choice usually
made in the context of EQO [113].
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By substituting (B.24) into the definition (B.25) and using the Fourier
representation of wavefunctions φj(t) we obtain

∆W<(t,ω) =
1

2πvF

n∑
j=1

∫+∞
−∞ dτ eiωτφj

(
t+

τ

2

)
φ∗j

(
t−

τ

2

)
=

1

4π2vF

n∑
j=1

∫+∞
−∞dω1

∫+∞
−∞dω2 φ̃j(ω1)φ̃∗j (ω2)e

−i(ω1−ω2)t

×
∫+∞
−∞

dτ
2π

eiτ(ω−
ω1+ω2

2 )

=
1

2π2vF

n∑
j=1

∫+∞
−∞ dω1 φ̃j(ω1)φ̃∗j (2ω−ω1)e−2i(ω1−ω)t .

(B.26)

We now substitute the explicit expression (1.86) of the Fourier-transformed
wavefunctions φ̃j(ω):

∆W<(t,ω) =
2w

πvF

n−1∑
j=0

∫+∞
−∞ dω1Θ(ω1)Θ(2ω−ω1)e−2ωw

× Lj(2ω1w)Lj[(4ω− 2ω1)w]e−2i(ω1−ω)t

=
2w

πvF
Θ(ω)e−2ωw

n−1∑
j=0

Ij ,

(B.27)

where we defined the integral

Ij =

∫2ω
0

dω1 Lj(2ω1w)Lj[(4ω− 2ω1)w]e−2i(ω1−ω)t . (B.28)

By a change of variable Ω = ω1 −ω the previous expression becomes

Ij =

∫+ω
−ω

dΩLj[2w(ω+Ω)]Lj[2w(ω−Ω)]e−2iΩt . (B.29)

In order to proceed further, we exploit the following identity involving
the product of two Laguerre polynomials [249]

Lj(x)Lj(y) =
1

(p!)2

j∑
p=0

(xy)pL
(2p)
j−p (x+ y) , (B.30)

where L(2p)j−p denotes a generalized Laguerre polynomial. By using this
identity the expression for Ij becomes

Ij =

j∑
p=0

(2w)2p

(p!)2
L
(2p)
j−p (4ωw)

∫+ω
−ω

dΩ(ω2 −Ω2)
p

e−2iΩt . (B.31)
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Since the integration domain is symmetric, only the even part of the
integrand (with respect to Ω) survives, so that

Ij = 2

j∑
p=0

(2w)2p

(p!)2
L
(2p)
j−p (4ωw)

∫ω
0

dΩ (ω2 −Ω2)
p

cos(2Ωt)

= 2ω

j∑
p=0

(2ωw)2p

(p!)2
L
(2p)
j−p (4ωw)

∫1
0

du (1− u2)
p

cos(2ωtu)

=
ω
√
π

p!

j∑
p=0

(2ωw)2p

(ωt)p+1/2
L
(2p)
j−p (4ωw)Jp+ 1

2
(2ωt) ,

(B.32)

where in the last step we used the integral representation of the Bessel
function Jν(z) [70]∫1

0

du (1− u2)
ν−1/2

cos(zt) =
√
π Γ(ν+ 1/2)

2(z/2)ν
Jν(z) , (B.33)

with ν = p+ 1/2, z = 2ωt and Γ the Euler gamma function. Finally,
by substituting (B.32) into (B.27) we arrive at

∆W<(t,ω) = Θ(ω)
1

vF
√
π

e−2ωw

×
n−1∑
j=0

j∑
p=0

1

p!

[
2ωw√
ωt

]2p+1
L
(2p)
j−p (4ωw)Jp+ 1

2
(2ωt) ,

(B.34)

which is precisely Eq. (1.88) presented in the main text.





C
N O I S E I N I N T E R F E R O M E T R I C S E T U P S

In this Appendix we provide some complementary details about noise
calculations performed in the main text of the thesis.

c.1 hbt noise in the non-interacting case

Let us start by considering the setup presented in Sec. 1.6, which
we report here in Fig. C.1 (top). For the sake of completeness, we

Figure C.1: HBT setup in a non-interacting system. Top: two-terminal geome-
try in a 2DEG where a conduction channel is formed due to a QPC

which also acts as a beamsplitter. Bottom: four-terminal geometry
in the IQHE regime at filling factor ν = 1. Here, the QPC allows
the tunneling between the two edges of the sample.

also sketched the equivalent setup in the IQHE regime at filling factor
ν = 1 (bottom panel). Apart from the different number of terminals,
we can formally describe the two cases in a unified way. Indeed, in
both situations right- and left-moving fermionic species are present: in
the first case, they both lie within the conduction channel created by
the QPC, while in the second one the right/left-moving fermions are
associated with the upper/lower edge state in the system. The setup in
the IQHE system is more closely resemblant to an actual interferometer
whose input arms are represented by the channels originating from
terminals 1 and 4, which are then “mixed” at the QPC, from which, in
turn, the output arms go towards terminals 2 and 3.
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We are interested in calculating the correlators

Sab =

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

〈
δJa(t)δJb(t+ t

′)
〉

, (C.1)

where the indices can assume the values a,b = 2, 3 and, of course,
only a = b = 3 in the top setup of Fig. C.1. The operator Ja(t) denotes
the electric current flowing into terminal a. In order to express these
operators, we first have to characterize the partitioning at the QPC. In
a non-interacting system, this can be conveniently modeled via the
scattering matrix theory [250–252]. Basically, the QPC is modeled as a
scatterer and fields outcoming from the scattering region are conncted
to the incoming ones via a matrix relation:(

ΨR(x, t)

ΨL(x, t)

)
out

=

(√
T i

√
R

i
√
R
√
T

)(
ΨR(x, t)

ΨL(x, t)

)
in

, (C.2)

where ΨR/L,out are the fields after the QPC. In the above formula,
T and R = 1 − T are the transmission and reflection probabilities,
respectively. Now, current operators Ja(t) are simply expressed as
a difference between currents incoming into and outcoming from
terminal a. Thus we write

J2(t) = evF

[
:Ψ†R,in(−d, t)ΨR,in(−d, t) : − :Ψ†L,out(−d, t)ΨL,out(−d, t) :

]
,

(C.3a)

J3(t) = evF

[
:Ψ†L,in(+d, t)ΨL,in(+d, t) : − :Ψ†R,out(+d, t)ΨR,out(+d, t) :

]
.

(C.3b)

By using (C.2) they are expressed in terms of incoming fields as

J2(t) = −evF

[
T
(
Ψ
†
L,in(−d, t)ΨL,in(−d, t) −Ψ†R,in(−d, t)ΨR,in(−d, t)

)
+i
√
RT
(
Ψ
†
L,in(−d, t)ΨR,in(−d, t) −Ψ†R,in(−d, t)ΨL,in(−d, t)

)]
,

(C.4a)

J3(t) = −evF

[
T
(
Ψ
†
R,in(+d, t)ΨR,in(+d, t) −Ψ†L,in(+d, t)ΨL,in(+d, t)

)
+i
√
RT
(
Ψ
†
R,in(+d, t)ΨL,in(+d, t) −Ψ†L,in(+d, t)ΨR,in(+d, t)

)]
.

(C.4b)

Now we have to use these expressions into (C.1) and perform the
calculation. In order to do so, recall that the time evolution of incoming
fields is [cf. App. A.1, in particular Eq. (A.13)]

ΨR,in(x, t) = eiα(t−x/vF−d/vF)ψR(0, t− x/vF) , (C.5a)

ΨL,in(x, t) = ψL(0, t+ x/vF) , (C.5b)

where ψR/L(0, t∓ x/vF) is the equilibrium time evolution when no
drive is applied and

α(t) = e

∫t
−∞ dτV(τ) . (C.6)
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Notice that the incoming field for left-movers has a free evolution,
as in the HBT setup we are considering the drive is applied only to
right-movers. By using the above expressions, after a straightforward
though not so short calculation, we arrive at

S33 = e
2v2FRT

T

R

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

∑
r=R,L

G<0,r(t
′, t)G>0,r(t, t

′)

+

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

(
G<R (t

′, t)G>0,L(t, t
′) + G<0,L(t

′, t)G>R (t, t
′)
)]

,

(C.7)

where it is understood that the coherence functions are evaluated
with the incoming fields (C.5). In the same way it is possible to show
that S22 = S33 = −S23 = −S32. In obtaining the expression (C.7), the
chirality of fields and the time integration were used in order to get
rid of the positions ±d appearing in (C.4). This is almost the result in
Eq. (1.95) in Sec. 1.6. There is indeed in the first line of Eq. (C.7) an
additional term made of purely equilibrium coherence functions. By
expressing them with the help of Eq. (1.98) we find∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′G<0,r(t

′, t)G>0,r(t, t
′)

=

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

∫+∞
−∞ dω

∫+∞
−∞ dω ′

ei(ω−ω ′)(t−t ′)

(2πvF)2
nF(ω)nF(−ω

′)

=
1

2πv2F

∫T/2
−T/2

dt
T

∫+∞
−∞ dωnF(ω)nF(−ω) =

kBθ

2πv2F
. (C.8)

This is a purely thermal contribution and vanishes at zero temperature:
Eq. (1.95) is therefore proved.

We can now proceed futher and prove Eq. (1.102). To this aim, we
exploit the Fourier decomposition (1.100) to express the coherence
functions for right movers, which become

G<R (t, t
′) =

∑
`m∈Z

p∗mp`e
−i(`+q)Ωtei(m+q)Ωt ′G<0,R(t, t

′), (C.9a)

G>R (t, t
′) =

∑
`m∈Z

pmp
∗
`e
i(`+q)Ωt ′e−i(m+q)ΩtG>0,R(t, t

′), (C.9b)
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Ω = 2πT−1 being the angular frequency of the drive. By using these
relations, we can evaluate the two terms in the second line of Eq. (C.7).
The first one is∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′G<R (t

′, t)G>0,L(t, t
′)

=

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

∑
`m

p∗mp`e
−i(`+q)Ωt ′ei(m+q)ΩtG<0,R(t

′, t)G>0,L(t, t
′)

=
∑
`m

p∗mp`

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′ e−i(`+q)Ωt

′
ei(m+q)Ωt

×
∫+∞
−∞ dω

∫+∞
−∞ dω ′

ei(ω−ω ′)(t−t ′)

(2πvF)2
nF(ω)nF(−ω

′)

=
∑
`m

p∗mp`

2πv2F

∫T/2
−T/2

dt
T

ei(m−`)Ωt

∫+∞
−∞ dωnF(ω)nF[−(ω+ (`+ q)Ω)]

=
1

2πv2F

∑
`

|p`|
2(`+ q)Ω

(
1+

1

e
(`+q)Ω
kBθ − 1

)
, (C.10)

where we have used the relation∫T/2
−T/2

dt
T

ei(`−m)Ωt = δ`,m , (C.11)

which can be easily demonstrated. Along the lines of the previous
calculation we also find∫T/2

−T/2

dt
T

∫+∞
−∞ dt ′G<0,L(t

′, t)G>R (t, t
′)

= −
1

2πv2F

∑
`

|p`|
2(`+ q)Ω

(
1+

1

e−
(`+q)Ω
kBθ − 1

)
.

(C.12)

By combining Eqs. (C.10) and (C.12) we thus obtain∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

[
G<R (t

′, t)G>0,L(t, t
′) + G<0,L(t

′, t)G>R (t, t
′)
]

=
1

2πv2F

∑
`

|p`|
2(`+ q)Ω coth

(
(`+ q)Ω

2kBθ

)
.

(C.13)

Finally, by substituting this result in Eq. (C.7), together with (C.8), we
have the following expression

S33 =
e2

2π

[
2T2kBθ+RT

∑
`

|p`|
2(`+ q)Ω coth

(
(`+ q)Ω

2kBθ

)]
. (C.14)

The zero-temperature limit of the above result is Eq. (1.102) presented
in the main text.

We conclude this Section by giving the formula for the excess noise
at finite temperature. The only thing to do is to evaluate the dc noise
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Lor Sin

Figure C.2: Comparison of the excess noise ∆S, Eq. (C.15), in the case of two
drives, for different temperatures. Left: Lorentzian drive with
width-to-period ratio η = 0.1. Right: sine drive. In both panels the
different curves refer to (from bottom to top) zero temperature,
kBθ = 0.1Ω and kBθ = 0.15Ω. The excess noise is plotted in
units of S0 = e2RT/T .

Sdc, which can be easily done by setting p` = δ`,0. Therefore, the
finite-temperature expression we are looking for reads

∆S =
e2RT

T

[∑
`

|p`|
2(`+ q) coth

(
(`+ q)Ω

2kBθ

)
− q coth

(
qΩ

2kBθ

)]
.

(C.15)

This is the formula that was used in order to estimate the finite-
temperature corrections in the experiment [5] which we described
in Sec. 1.6. Of course, its zero-temperature limit yields Eq. (1.104).
In Fig. C.2 we show the excess noise calculated with Eq. (C.15) for
a Lorentzian (left panel) and a sine drive (right panel). We observe
that the zero-temperature excess noise vanishes for the Lorentzian
drive, while it is finite for the sine signal. Finite temperature effects
cause the minima at integer values of q to shift rightwards and an
overall smearing of the curves. These theoretical predictions are in
good agreement with the experimental measurements presented in
Fig. 1.14, page 37.

c.2 noise in the hom setup

The HOM setup is represented in Fig. C.3: here, in addition to terminal
1, a voltage drive V4(t) is also applied to terminal 4. As a result,
excitations are generated on both edges and sent towards the QPC,
where they collide. The goal is again to compute the autocorrelation
noise S22 = S33. The calculation is almost identical to what we have
shown in the previous Section, the only difference being that now the
time evolution of fermionic fields reads

ΨR,in(x, t) = eiα1(t−x/vF−d/vF)ψR(0, t− x/vF) , (C.16a)

ΨL,in(x, t) = eiα4(t+x/vF−d/vF)ψL(0, t+ x/vF) , (C.16b)
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Figure C.3: HOM setup in a quantum Hall bar at ν = 1. Both terminals 1 and
4 are driven, so that excitations are generated on both edges, and
sent towards the QPC where they collide. The resulting current
and noise signals are measured at terminals 2 and 3.

where α1/4(t) is given by (C.6), with the appropriate voltage V1/4(t).
Since terminal 4 is now driven, also the left-moving fermionic field
ΨL,in acquires a non-trivial time evolution. Thus, Eq. (C.7) is modified
into

S33 = e
2v2FRT

T

R

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

∑
r=R,L

G<0,r(t
′, t)G>0,r(t, t

′)

+

∫T/2
−T/2

dt
T

∫+∞
−∞ dt ′

(
G<R (t

′, t)G>L (t, t
′) + G<L (t

′, t)G>R (t, t
′)
)]

,

(C.17)

where the coherence functions for the lower edge are no more eval-
uated at equilibrium. By using the time evolution (C.16) in order to
express the coherence functions, it is then easy to realize that (C.17) is
completely equivalent to the result (C.7) for the HBT noise, but with a
modified voltage

Ṽ(t) = V1(t) − V4(t). (C.18)

In the simplest HOM configuration the voltage drives are chosen as
V1(t) = V(t) and V4(t) = V(t+ td), where td is a constant time delay.
In this case the expression (C.14) becomes

S33 =
e2

2π

[
2T2kBθ+RT

∑
`

|p̃`|
2`Ω coth

(
`Ω

2kBθ

)]
, (C.19)

where the photoassisted coefficients p̃` are expressed in terms of the
p` associated with the drive V(t) as

p̃` =
∑
m∈Z

p`+mp
∗
m eimΩtd . (C.20)

More general results about the HOM noise are beyond the scope of this
thesis and we refer the interested reader to Refs. [52, 86, 156].
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B O S O N I C G R E E N F U N C T I O N S

In this Appendix we calculate the equilibrium bosonic Green function

Gη(x, t) = 〈φη(x, t)φη(0, 0)〉−
〈
φ2η(0, 0)

〉
. (D.1)

We first consider the case where φη(x, t) are fields with opposite
chiralities evolving as φη(x, t) = φη(x − ηut, 0), according to the
Hamiltonian

H =
u

2

∑
η=±

∫+∞
−∞ dx : [∂xφη(x)]

2 :=
∑
η=±

∑
q>0

uqb†q,ηbq,η . (D.2)

Recall that b’s are bosonic operators, in terms of which the fields are
expressed as

φη(x, t) =
i√
L

∑
q>0

e−aq/2
√
q

(
bq,ηeiq(ηx−ut) − b†q,ηe−iq(ηx−ut)

)
.

(D.3)

Moreover, they satisfy the equilibrium averages (here θ is the tempera-
ture) 〈

b†q,ηbq ′,η ′
〉
= δη,η ′δq,q ′

1

e
uq
kBθ − 1

, (D.4a)

〈
bq,ηb

†
q ′,η ′

〉
= δη,η ′δq,q ′

e
uq
kBθ

e
uq
kBθ − 1

. (D.4b)

By putting (D.3) into (D.1) and using the above result, it is easy to
obtain

Gη(x, t) =
∫+∞
0

dq
e−aq

2πq

[
coth

(
uq

kBθ

)
[cos(qxη) − 1] + iη sin(qxη)

]
,

(D.5)

where we have defined the chiral variables xη = x − ηut and per-
formed the continuum limit∑

q>0

→ L

2π

∫+∞
0

dq . (D.6)

It is convenient to split Eq. (D.5) as Gη(x, t) = G
(0)
η (x, t) + G

(θ)
η (x, t),

where

G
(0)
η (x, t) =

∫+∞
0

dq
e−aq

2πq

(
eiqηxη − 1

)
(D.7)
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is independent of temperature and

G
(θ)
η (x, t) =

∫+∞
0

dq
e−aq

2πq

[
coth

(
uq

kBθ

)
− 1

]
[cos(qxη) − 1] (D.8)

is a purely thermal contribution vanishing in the limit θ→ 0.
Let us now focus on the zero-temperature term. By introducing the

variable y = aq and writing the exponential in (D.7) as a power series
we get

G
(0)
η (x, t) =

1

2π

∞∑
n=1

1

n!

(
iηxη

a

)n ∫+∞
0

dy e−yyn−1 . (D.9)

The integral is equal to Γ(n − 1) = (n − 1)! (Γ is Euler’s Gamma
function). Thus we obtain

G
(0)
η (x, t) =

1

2π

∞∑
n=1

1

n

(
iηxη

a

)n
=
1

2π
ln
(

1

1− iηxη/a

)
. (D.10)

The calculation of the thermal contribution (D.8) is more difficult.
We begin by rearranging it as

G
(θ)
η (x, t) =

1

2π

∫+∞
0

dy
1

y(1− e−y)

×
[

e−
(
1+ ωc

kBθ
+i

kBθxη
u

)
y
+ e−

(
1+ ωc

kBθ
−i

kBθxη
u

)
y
− 2e−

(
1+ ωc

kBθ

)
y
]

,

(D.11)

where y = uq/(kBθ) and ωc = u/a is the cutoff energy. Next, by
introducing the Hurwitz zeta function [70]

ζ(γ, z) =
1

Γ(γ)

∫+∞
0

dt
e−zt

t1−γ (1− e−t)
, (D.12)

we write (D.11) as

G
(θ)
η (x, t) =

1

2π
lim
γ→0

Γ(γ)

[
ζ

(
γ, 1+

ωc

kBθ
+ i
kBθxη

u

)
× ζ

(
γ, 1+

ωc

kBθ
− i
kBθxη

u

)
− 2ζ

(
γ, 1+

ωc

kBθ

)]
.

(D.13)

Finally, by using the expansions [70]

Γ(γ) =
1

γ
+O

(
1

γ2

)
, (D.14)

ζ(γ, z) =
1

2
− z+ γ

(
ln Γ(z) +

1

2
ln 2π

)
+O(γ2) , (D.15)

which are valid for γ→ 0, we obtain

G
(θ)
η (x, t) =

1

2π
ln


∣∣∣Γ (1+ ωc

kBθ
− i

kBθxη
u

)∣∣∣2
Γ2
(
1+ ωc

kBθ

)
 . (D.16)
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We can now combine this result with (D.10) and write the final
expression for the Green function (D.1)

Gη(x, t) =
1

2π
ln


∣∣∣Γ (1+ ωc

kBθ
− i

kBθxη
u

)∣∣∣2
Γ2
(
1+ ωc

kBθ

)
(1− iηxη/a)

 . (D.17)

Since ωc is assumed to be the largest energy scale in the problem, we
are always in the condition ωc � kBθ. We can take advantage of this
regime and of the identity

|Γ(1+ iy)|2 =
πy

sinh(πy)
, (D.18)

(with y ∈ R) to simplify (D.17), which becomes

Gη(x, t) =
1

2π
ln
[

a

a− iηxη

πkBθxη/u

sinh(πkBθxη/u)

]
. (D.19)

This is the expression we used in the main text. As we can see, the
above function does not depend on space and time separately, but only
via the chiral combinations xη = x− ηut. Therefore, we can define a
function of a single argument

Gη(z) =
1

2π
ln
[

a

a− iηz

πkBθz/u

sinh(πkBθz/u)

]
, (D.20)

in terms of which we evidently have

Gη(x, t) = Gη(x− ηut) . (D.21)

The above calculation applies to a system where the bosonic fields
φη(x, t) have a different chirality but the same propagation velocity u.
This is the system we investigated in Chapter 4. The result (D.19) can
be easily extended to the case in which φη(x, t) have the same chirality,
but different velocities, v+ and v−, depending on the index η. This is the
system of copropagating channels we considered in Chapter 3. The
very same calculation we presented above can be repeated, the only
difference being that the starting expression of φη(x, t) now reads

φη(x, t) =
i√
L

∑
q>0

e−aq/2
√
q

(
bq,ηeiq(x−vηt) − b†q,ηe−iq(x−vηt)

)
,

(D.22)

instead of (D.3). This brings to the result

Gη(x, t) = Gη(x−vηt) , Gη(z) =
1

2π
ln
[

a

a− iz

πkBθz/vη

sinh(πkBθz/vη)

]
.

(D.23)
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C O M P L E M E N T S T O C H A P T E R 3

e.1 number of excited holes

The purpose of this Section is to derive the expression (3.49) for the
number of injected holes at zero temperature due to the voltage pulse
V(t). Let us start by a simple observation. We defined in (3.23) the
momentum distribution for edge channel 2 as

∆n2(k, t) =
〈
c
†
2(k, t)c2(k, t)

〉
−n

(0)
2 (k) , (E.1)

with

n
(0)
2 (k) =

〈
c
(0)†

2 (k)c
(0)
2 (k)

〉
(E.2)

the equilibrium distribution in the absence of the drive. Now, because
of fermionic anticommutation relations we clearly have ∆n2(k, t) =
−∆ñ2(k, t), where

∆ñ2(k, t) =
〈
c2(k, t)c†2(k, t) − c(0)2 (k)c

(0)†

2 (k)
〉

. (E.3)

Therefore the number of holes at zero temperature can also be ex-
pressed as

∆Nh(t) = −

∫0
−∞ dk∆n2(k, t) =

∫0
−∞ dk∆ñ2(k, t) , (E.4)

with

∆ñ2(k, t) =
1

2π

∫+∞
−∞ dx

∫+∞
−∞ dξ

e−ikξ

2π

1

a− iξ{
exp

[
−ie

q2,+

q

(∫t− x
v+

+
ξ/2
v+

t− x
v+

−
ξ/2
v+

dt ′V(t ′) −
∫t− x

v−
+
ξ/2
v−

t− x
v−

−
ξ/2
v−

dt ′V(t ′)

)]
− 1

}
.

The above expression is obtained by using Eqs. (3.6), (3.10), (3.25b)
and (3.26) into the expression (3.24). By using the integral representa-
tion Θ(−k) = 1

2π lima→0
∫+∞
−∞ dy e−ikya+iy . and

∫+∞
−∞ dy

(a+iy)2
= 0, we can

rewrite the previous formula in the form

∆Nh(t) =
1

(2π)2

∫+∞
−∞ dx

∫+∞
−∞ dy

1

(a+ iy)2

× exp

[
−ie

q2
q

(∫t− x
v+

− y
2v+

t− x
v+

+ y
2v+

dt ′V(t ′) −

∫t− x
v−

− y
2v−

t− x
v−

+ y
2v−

dt ′V(t ′)

)]
.

(E.5)
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Furthermore, one can show that the contribution proportional to the
sine function in the last expression (we will denote it by ∆Ns

h) actually
vanishes. To that end, we note that

lim
a→0

1

(a+ iy)2
= lim
a→0

a2 − y2

(a2 + y2)2
− iπ∂yδ(y) ≡ A(y) − iπ∂yδ(y) ,

(E.6)

where evidently A(y) is an even function. Therefore Ns
h becomes

Ns
h =

−i

(2π)2

∫+∞
−∞ dx

∫+∞
−∞ dy[A(y) − iπ∂yδ(y)]

× sin

[
e
q2,+

q

(∫t− x
v+

− y
2v+

t− x
v+

+ y
2v+

dt ′V(t ′) −

∫t− x
v−

− y
2v−

t− x
v−

+ y
2v−

dt ′V(t ′)

)]

=
−i

(2π)2

∫+∞
−∞ dx

∫+∞
0

dy[A(y) −A(−y)]

× sin

[
e
q2,+

q

(∫t− x
v+

− y
2v+

t− x
v+

+ y
2v+

dt ′V(t ′) −

∫t− x
v−

− y
2v−

t− x
v−

+ y
2v−

dt ′V(t ′)

)]

+
eq2,+

4πq

∫+∞
−∞ dx

∑
η=±

η

vη
V

(
t−

x

vη

) ∫+∞
−∞ dy δ(y)

× cos

[
e
q2,+

q

(∫t− x
v+

t− x
v+

+ y
v+

dt ′V(t ′) −

∫t− x
v−

t− x
v−

+ y
v−

dt ′V(t ′)

)]

=
eq2,+

4πq

∫+∞
−∞ dx

[
1

v+
V

(
t−

x

v+

)
−
1

v−
V

(
t−

x

v−

)]
= 0 ,

(E.7)

having used the odd parity of the sine and the even parity of A(y).
Equation (3.49) in the main text is thus proved.

e.2 noise

In this Section we prove the formula (3.56) for the HBT noise due to
the partitioning of inner-channel excitations. Recall that it is defined
as

S = 2

∫+∞
−∞ dt

∫+∞
−∞ dτ [〈J2(t+ τ)J2(t)〉− 〈J2(t+ τ)〉 〈J2(t)〉]

≡ 2
∫+∞
−∞ dt

∫+∞
−∞ dτ S(t, τ) ,

(E.8)
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with J2(t) = JL,2(−d, t). The starting point of the calculation is the
expression (3.55) for the perturbative expansion of the current operator
JL,2(x, t) = J(0)L,2(x, t) + J(1)L,2(x, t) + J(2)L,2(x, t):

JL,2(x, t) = J(0)L,2(x, t) − i
∫t
−∞ dτ

[
J
(0)
L,2(x, t),H(0)

t (τ)
]

−

∫t
−∞ dt ′

∫t ′
−∞ dt ′′

[
H

(0)
t (t ′′),

[
H

(0)
t (t ′), J(0)L,2(x, t)

]]
,

(E.9)

The 0th order is simply the time evolution in the absence of tunneling,
which is obtained from the solution of the equations of motion:

J
(0)
L,2(x, t) =

e√
2π

[v+s ∂xφL,+(x+ v+t, 0) + v−c ∂xφL,−(x+ v−t, 0)] .

(E.10)

In this expression, we have introduced the shorthand notation

c ≡ cosχ , s ≡ sinχ . (E.11)

From the above equation we can calculate the commutator needed for
the first order contribution[

J
(0)
L,2(t),H

(0)
t (τ)

]
=

e√
2π

(v+sC+ + v−cC−) , (E.12)

with

C+ =
[
∂xφL,+(x+ v+t, 0),ΛΨ

†
R,2(0, τ)ΨL,2(0, τ) + H.c.

]
,

C− =
[
∂xφL,−(x+ v−t, 0),ΛΨ

†
R,2(0, τ)ΨL,2(0, τ) + H.c.

]
.

(E.13)

By using the bosonization identity and the useful relation[
A, eB

]
= [A,B]eB , (E.14)

we arrive at

C+ = −

√
2πs

v+
δ

(
τ−

(
t+

x

v+

))
ΛΨ
†
R,2(0, τ)ΨL,2(0, τ) − H.c.

C+ = −

√
2πc

v−
δ

(
τ−

(
t+

x

v−

))
ΛΨ
†
R,2(0, τ)ΨL,2(0, τ) − H.c.

(E.15)

Therefore we have the first order contribution

J
(1)
L,2(x, t) = ie

{
s2
[
ΛΨ
†
R,2

(
0, t+

x

v+

)
ΨL,2

(
0, t+

x

v+

)
− H.c.

]
+

+c2
[
ΛΨ
†
R,2

(
0, t+

x

v−

)
ΨL,2

(
0, t+

x

v−

)
− H.c.

]}
.

(E.16)
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We are now ready to compute the noise S(t, τ). We first observe that
the separate averages

〈
J
(1)
L,2

〉
vanish because of Klein factors. Therefore

we just have to calculate
〈
J
(1)
L,2(−d, t+ τ)J(1)L,2(−d, t)

〉
. By substituting

(E.16) we find eight non vanishing terms:

S(t, τ) = e2|Λ|2×〈
s4 Ψ

†
R,2 (0, t+ + τ)ψL,2 (0, t+ + τ)Ψ†L,2 (0, t+)ΨR,2 (0, t+)

+ s2c2 Ψ†R,2 (0, t+ + τ)ψL,2 (0, t+ + τ)Ψ†L,2 (0, t−)ΨR,2 (0, t−)

+ s4 Ψ†L,2 (0, t+ + τ)ψR,2 (0, t+ + τ)Ψ†R,2 (0, t+)ΨL,2 (0, t+)

+ s2c2 Ψ†L,2 (0, t+ + τ)ψR,2 (0, t+ + τ)Ψ†R,2 (0, t−)ΨL,2 (0, t−)

+ s2c2 Ψ†R,2 (0, t− + τ)ψL,2 (0, t− + τ)Ψ†L,2 (0, t+)ΨR,2 (0, t+)

+ c4 Ψ†R,2 (0, t− + τ)ψL,2 (0, t− + τ)Ψ†L,2 (0, t−)ΨR,2 (0, t−)

+ s2c2 Ψ†L,2 (0, t− + τ)ψR,2 (0, t− + τ)Ψ†R,2 (0, t+)ΨL,2 (0, t+)

+ c4 Ψ†L,2 (0, t− + τ)ψR,2 (0, t− + τ)Ψ†R,2 (0, t−)ΨL,2 (0, t−)
〉

,

(E.17)

where t± = t− d/v±. Now we use the bosonization identity together
with the solution of the equations of motion (A.21) to express the time
evolution of the fermion operators. When computing the averages, the
results can be expressed by using the bosonic Green functions

GR,±(x, t) = 〈φR,±(x, t)φR,±(0, 0)〉−
〈
φ2R,±(0, 0)

〉
, (E.18)

GL,±(x, t) = 〈φL,±(x, t)φL,±(0, 0)〉−
〈
φ2L,±(0, 0)

〉
. (E.19)

The space coordinate being zero, the R and L Green function become
equal and can be expressed as [cf. Eq. (D.23)]

GR,±(0, t) = GL,±(0, t) =
1

2π
G̃±(t) =

1

2π
ln

a

a+ iv±t

πkBθt

sinh(πkBθt)
.

(E.20)

By enumerating from 1© to 8© the terms appearing in the average
(E.17) we find

1© = s4
e2s

2G̃+(τ)e2c
2G̃−(τ)

(2πa)2
e
iecs

[∫t− 2dv+
t+τ− 2dv+

dt ′V(t ′)−
∫t−d( 1

v+
+ 1
v− )

t+τ−d( 1
v+

+ 1
v− )

dt ′V(t ′)

]

(E.21a)

2© = s2c2
e
2s2G̃+

[
τ−d

(
1
v+

− 1
v−

)]
e
2c2G̃−

[
τ−d

(
1
v+

− 1
v−

)]
(2πa)2

×

× e
iecs

[∫t−d( 1
v+

+ 1
v− )

t+τ− 2dv+

dt ′V(t ′)−
∫t− 2dv−
t+τ−d( 1

v+
+ 1
v− )

dt ′V(t ′)

]
(E.21b)
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5© = s2c2
e
2s2G̃+

[
τ+d

(
1
v+

− 1
v−

)]
e
2c2G̃−

[
τ+d

(
1
v+

− 1
v−

)]
(2πa)2

× e
iecs

[∫t− 2dv+
t+τ−d( 1

v+
+ 1
v− )

dt ′V(t ′)−
∫t−d( 1

v+
+ 1
v− )

t+τ− 2dv−

dt ′V(t ′)

]
(E.21c)

6© = c4
e2s

2G̃+(τ)e2c
2G̃−(τ)

(2πa)2
e
−iecs

[∫t− 2dv−
t+τ− 2dv−

dt ′V(t ′)−
∫t−d( 1

v+
+ 1
v− )

t+τ−d( 1
v+

+ 1
v− )

dt ′V(t ′)

]

(E.21d)

We did not write all terms, because they come in pairs as ( 1©, 3©),
( 2©, 4©), ( 5©, 7©), ( 6©, 8©). The missing terms in the above equations are
obtained by taking the complex conjugate of the voltage-dependent
phase factor of their partner. Therefore S(t, τ) can be rewritten as

S(t, τ) =
2e2|Λ|2

(2πa)2
×{

s4 e2s
2G̃+(τ)e2c

2G̃−(τ)

× cos

ecs
∫t− 2d

v+

t+τ− 2d
v+

dt ′V(t ′) −
∫t−d( 1

v+
+ 1
v−

)
t+τ−d

(
1
v+

+ 1
v−

) dt ′V(t ′)


+ s2c2 e

2s2G̃+

[
τ−d

(
1
v+

− 1
v−

)]
e
2c2G̃−

[
τ−d

(
1
v+

− 1
v−

)]

× cos

ecs
∫t−d( 1

v+
+ 1
v−

)
t+τ− 2d

v+

dt ′V(t ′) −
∫t− 2d

v−

t+τ−d
(
1
v+

+ 1
v−

) dt ′V(t ′)


+ s2c2 e

2s2G̃+

[
τ+d

(
1
v+

− 1
v−

)]
e
2c2G̃−

[
τ+d

(
1
v+

− 1
v−

)]

× cos

ecs
∫t− 2d

v+

t+τ−d
(
1
v+

+ 1
v−

) dt ′V(t ′) −
∫t−d( 1

v+
+ 1
v−

)
t+τ− 2d

v−

dt ′V(t ′)


+ cos

ecs
∫t− 2d

v−

t+τ− 2d
v−

dt ′V(t ′) −
∫t−d( 1

v+
+ 1
v−

)
t+τ−d

(
1
v+

+ 1
v−

) dt ′V(t ′)


× c4 e2s2G̃+(τ)e2c

2G̃−(τ)
}

. (E.22)

This is the farthest point we can arrive at for S(t, τ). However, once we
integrate it over t and τ, the result looks much simpler. Indeed, we can
make different changes of variables for each of the four terms in the
last equation and show that their t and τ dependence is actually the
same. Then we have a common factor, multiplying the combination
s4 + 2s2c2 + c4 = (s2 + c2)

2
= 1. In the end we find:

S =
4e2|Λ|2

(2πa)2

∫+∞
−∞ dt

∫+∞
−∞ dτe2s

2G̃+(τ)e2c
2G̃−(τ)

cos
{
ecs

[∫t
t+τ

dt ′V(t ′) −
∫t+τd
t+τ+τd

dt ′V(t ′)
]}

,
(E.23)
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where we have defined

τd ≡ d
(
1

v+
−
1

v−

)
. (E.24)

After substituting the expression (E.20) for the Green functions and
recalling that q2,+ = qcs we arrive at Eq. (3.56) of the main text.

e.2.1 Backscattered current

Here the final task is to compute the average backscattered current
integrated over time (which is the equivalent of the T -averaged current
in the case of a periodic signal), that is

〈JL,2(−d, t)〉 =
∫+∞
−∞ dt 〈JL,2(−d, t)〉 . (E.25)

In order to compute the average backscattered current, I have to calcu-
late the current operator JL,2 at second order. Recalling (E.12), (E.15)
and substituting them into the second order term of the perturbative
expansion (E.9), we find

J
(2)
L,2(x, t) =

− e

{∫t+ x
v+

−∞ dt ′ s2
[
H

(0)
t (t ′),ΛΨ†R,2

(
0, t+

x

v+

)
ΨL,2

(
0, t+

x

v+

)
− H.c.

]

+

∫t+ x
v−

−∞ dt ′ c2
[
H

(0)
t (t ′),ΛΨ†R,2

(
0, t+

x

v−

)
ΨL,2

(
0, t+

x

v−

)
− H.c.

]}
.

(E.26)

There are then two very similar contributions, differing only because
of v+ ↔ v− and the prefactors s2 and c2. When calculating the com-
mutators several terms arise, but many of them vanish because of
Klein factors when taking averages. By keeping only those with a
non-zero average we arrive at

J
(2)
L,2(−d, t) ≡ J(+)

L,2 (t) + J
(−)
L,2 (t)

= −e|Λ|2

[
s2
∫t− d

v+

−∞ dt ′D+(t, t ′;d) + c2
∫t− d

v−

−∞ dt ′D−(t, t ′;d)

]
,

(E.27)

with

D±(t, t ′;d) = Ψ
†
L,2(0, t

′)ΨR,2(0, t ′)Ψ
†
R,2 (0, t±)ΨL,2 (0, t±) + H.c.

+ΨR,2(0, t ′)ΨL,2(0, t ′)Ψ
†
L,2 (0, t±)ΨR,2 (0, t±) + H.c. ,
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where we recall that t± = t− d/v±. By computing the averages and
the subsequent time integration over t ′ we find

〈
J
(+)
L,2 (t)

〉
=

∫+∞
0

dτ
[
e2s

2G̃+(τ)e2c
2G̃−(τ) − e2s

2G̃+(−τ)e2c
2G̃−(−τ)

]
2ie|Λ|2

(2πa)2s2
sin

ecs
∫t− 2d

v+

t−τ− 2d
v+

dt ′V(t ′) −
∫t−d( 1

v+
+ 1
v−

)
t−τ−d

(
1
v+

+ 1
v−

) dt ′V(t ′)

 .

(E.28)

Finally, the integration over t allows us to write〈
J
(+)
L,2 (t)

〉
=
2ie|Λ|2

(2πa)2
s2
∫+∞
−∞ dt

∫+∞
−∞ dτe2s

2G̃+(τ)e2c
2G̃−(τ)

× sin
[
ecs

(∫t
t−τ

dt ′V(t ′) −
∫t+τ0
t−τ+τ0

dt ′V(t ′)
)]

.
(E.29)

By repeating the same procedure for the term D−(t, t ′;d) we find

for
〈
J
(−)
L,2 (t)

〉
the same result, apart from a prefactor c2 instead of s2.

Summing up the two contributions we then have:

〈JL,2(−d, t)〉 = 2ie|Λ|2

(2πa)2

∫+∞
−∞ dt

∫+∞
−∞ dτe2s

2G̃+(τ)e2c
2G̃−(τ)

× sin
[
ecs

(∫t
t−τ

dt ′V(t ′) −
∫t+τd
t−τ+τd

dt ′V(t ′)
)]

.
(E.30)

We can also show the quantity just calculated is actually zero. This
is reasonable, since it is nothing but the total charge on channel 2,
flowing into the left terminal on the lower edge; this should be zero,
because the current is made of two pulses with opposite charges. In
order to show that 〈JL,2(t)〉 = 0 it is sufficient to follow the procedure
which leads from Eq. (E.5) to (E.7).

e.2.2 Excess noise

The excess noise is defined as

∆S = S− 2e〈JL,2(−d, t)〉 . (E.31)

Since we have shown that the integrated current (E.30) is zero in our
case, then the excess noise is just equal to the noise (in other words
the situation is the same as if we were applying a purely ac signal).
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f.1 details on the derivation of coherence functions

In this Section we provide the details on the derivation leading to Eqs.
(4.26) and (4.27) in the main text. We show in detail the derivation
for the excess lesser coherence function ∆G<r ; the calculation for the
greater contribution is analogous. The starting point is the definition
(4.24a), which we report here for convenience:

∆G<r (x, x; t1, t2) =
〈
Ψ†r(x, t2)Ψr(x, t1)

〉
eie
∫t2
t1
U(x,t ′)dt ′

−
〈
ψ†r(x, t2)ψr(x, t1)

〉
,

(F.1)

where we recall that Ψr(x, t) denotes the time evolution in the presence
of the external drive U(x, t) = F(x)V(t), while ψr(x, t) is evaluated in
the absence of the latter.

Two steps are needed to evaluate this coherence function. Firstly,
we express fermionic fields by relying on the bosonization identity

Ψr(x, t) =
Fr√
2πa

eiϑrkFx e−i
√
2πΦr(x,t)

=
Fr√
2πa

eiϑrkFx e−i
√
2π
∑
η=±AηϑrΦη(x−ηut,0),

(F.2)

where Eq. (4.10) relating chiral bosonic fields Φη(x, t) to the original
ones ΦR/L(x, t) was used. Secondly, the time evolution of bosonic
fields in the presence of the drive is obtained by solving the equations
of motion (4.15) and reads

Φη(x, t) = φη(x− ηut, 0) +ϕη(x, t) , (F.3)

with

ϕη(x, t) = −e

√
K

2π

∫t
−∞ dt ′ V(t ′)F[x− ηu(t− t ′)]. (F.4)

The result (4.16) is obtained for the special case F(x) = Θ(−x), but
here we will keep general for a while. By using Eqs. (F.2), (F.3) and
(F.4) in the definition (F.1) we find

∆G<r

(
x, x; t+

τ

2
, t−

τ

2

)
= G<0 (τ)

(
ei∆ϕr(x;t,τ)eie

∫t−τ/2
t+τ/2

dt ′U(x,t ′)
− 1

)
.

(F.5)

Here, we have introduced the equilibrium coherence function

G<0 (τ) =
〈
ψ†r(x, 0)ψr(x, τ)

〉
(F.6)
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and the term ∆ϕr(x; t, τ) =
∑
η=±∆ϕr,η(x; t, τ), with

∆ϕr,η(x; t, τ) =
√
2πAηϑr

[
ϕη

(
x, t−

τ

2

)
−ϕη

(
x, t+

τ

2

)]
(F.7)

and ϕη(x, t) given in Eq. (F.4).
As we can see, the coherence function now contains only an equi-

librium quantum average, which is evaluated as follows. From the
bosonized form of fermionic fields it is easy to show that

G<0 (τ) =
1

2πa

∏
η=±

〈
ei
√
2πAηϑrφη(x,0)e−i

√
2πAηϑrφη(x−ηuτ,0)

〉
. (F.8)

Next, we use the identity1

〈
N∏
j=1

eOj
〉

= exp

1
2

N∑
j=1

〈
O2j
〉
+
∑
i<j

〈
OiOj

〉 (F.9)

(with N = 2) which allows us to write

G<0 (τ) =
1

2πa

∏
η=±

e2πA
2
ηϑr [〈φη(x,0)φη(x−ηuτ,0)〉−〈φ2η(0,0)〉]. (F.10)

Finally, the averages appearing in the exponential are evaluated as
explained in App. D, leading to the result

G<0 (τ) =
〈
ψ†r(x, 0)ψr(x, τ)

〉
=

1

2π(a− iuτ)

[
a

a− iuτ

]2A2−
. (F.11)

Eq. (F.5), together with (F.4), (F.7) and (F.11), gives the most general
expression for the excess lesser coherence function in the presence of
an arbitrary drive U(x, t) = F(x)V(t). Further progress can be made
by specifying the form of F(x), as it has been done in the main text.
In particular, we consider now the simple case F(x) = Θ(−x). In this
case, the solution (F.3) reduces to (4.16) and we obtain

∆ϕr,+(x; t, τ) = eAϑr
√
K

[
Θ(x)

∫t++ τ
2

t+− τ
2

dt ′ V(t ′) +Θ(−x)
∫t+ τ

2

t− τ
2

dt ′ V(t ′)

]
(F.12)

where we have defined t± = t∓ x/u. Similarly, we find

∆ϕr,−(x; t, τ) = eA−ϑr

√
KΘ(−x)

[∫t−− τ
2

t−+ τ
2

dt ′ V(t ′) +
∫t+ τ

2

t− τ
2

dt ′ V(t ′)

]
.

(F.13)

1 This identity holds provided that operators Oi are linear in the bosonic creation and
annihilation operators b and b†, [Oi,Oj] ∈ C , ∀ i, j and the Hamiltonian with respect
to which the average is evaluated is quadratic in b and b†. For a proof of this relation
see Ref. [123]
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Finally, the Wilson line term yields the contribution

e

∫t−τ/2
t+τ/2

dt ′U(x, t ′) = −eΘ(−x)

∫t+τ/2
t−τ/2

dt ′ V(t ′). (F.14)

Gathering the results, we can write the phase factor in Eq. (F.5) as

ei∆ϕr(x;t,τ)e
ie
∫t− τ

2
t+ τ
2

dt ′U(x,t ′)
=
∏
η=±

e
−ieη

√
KAηϑrΘ(ηx)

∫tη− τ2
tη+

τ
2

dt ′V(t ′)

=
∑
η=±

Θ(ηx) e
−ieη

√
KAηϑr

∫tη− τ2
tη+

τ
2

dt ′V(t ′)
.

(F.15)

Therefore, the excess coherence function (F.5) can be expressed as

∆G<r

(
x, x; t+

τ

2
, t−

τ

2

)
=
∑
η=±

Θ(ηx)∆G<r,η

(
tη +

τ

2
, tη −

τ

2

)
, (F.16)

with

∆G<r,η

(
tη +

τ

2
, tη −

τ

2

)
= G<0 (τ)Ξr,η(tη, τ), (F.17)

where G<0 (τ) is given in (F.11) and

Ξr,η(tη, τ) = exp

[
−ieη

√
KAηϑr

∫t−τ/2
t+τ/2

dt ′ V(t ′)

]
− 1. (F.18)

The structure of Eqs. (4.26) and (4.27) in the main text is thus proved.
The only missing ingredient is the point splitting term appearing in
(4.27), which is discussed in the following.

f.2 point splitting procedure

In this Section we give a justification for the point splitting factor (4.31)
introduced in the expression (4.27) for the coherence functions. For the
sake of generality, here we consider the following form of the external
potential U(x, t) = V(t)F(x), in the presence of which the solution of
the equations of motion (4.15) is given by the expressions (F.3) and
(F.4). The corresponding excess coherence function is written in Eq.
(F.5)

As a consistency check of the correctness of this expression, we
must verify that its diagonal limit reproduces the correct result for the
electron density, namely [cf. also Eq. (2.41b)]:

lim
τ→0

∆G<r

(
x, x; t+

τ

2
, t−

τ

2

)
= ∆ρ

(e)
r (x, t) =

−ϑr√
2π

∑
η=±

Aηϑr∂xϕη(x, t)

=
eϑr
√
K

2π

∑
η=±

Aηϑr

∫t
−∞ dt ′ V(t ′)F ′[x− ηu(t− t ′)] .
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(F.19)

We now show that a regularization term – which we called point split-
ting factor – has to be introduced in the expression for the coherence
function for the above result to be true. First of all, an expansion of
(F.5) at small τ must be performed in order to compute the limit τ→ 0.

Define the quantity

Υ(x; t, τ) ≡ ei∆ϕr(x;t,τ)eie
∫t−τ/2
t+τ/2

dt ′U(x,t ′)
− 1 . (F.20)

Performing the expansion we have

Υ(x; t, τ) = Υ(x; t, 0)︸ ︷︷ ︸
=0

+
∂Υ

∂τ
(x; t, τ)

∣∣∣∣∣
τ=0

τ+O(τ2). (F.21)

The partial derivative can be rewritten in the following way:

∂Υ

∂τ
(x; t, τ)

∣∣∣∣∣
τ=0

= i
∑
η=±

∂τ∆ϕr,η(x; t, τ)
∣∣
τ=0

+ ieF(x)∂τ

∫t−τ/2
t+τ/2

dt ′ V(t ′)

∣∣∣∣∣
τ=0

.

(F.22)

The first term is computed by expressing ∆ϕr,η through Eqs. (F.4)
and (F.7). The calculation is straightforward, though a bit tedious, and
yields

i∂τ∆ϕr,η(x; t, τ)
∣∣
τ=0

= −ieAηϑr
√
Kηu

∫t
−∞ dt ′ V(t ′)F ′[x− ηu(t− t ′)]

+ ieAηϑr
√
KV(t)F(x) .

(F.23)

The second term in (F.22) is easily evaluated:

ieF(x)∂τ

∫t−τ/2
t+τ/2

dt ′ V(t ′)

∣∣∣∣∣
τ=0

= −ieF(x)V(t) . (F.24)

By substituting the last two equations into (F.22), one realizes that
the terms involving the product F(x)V(t) cancel out. Notice that this
cancellation would not occur without the inclusion of the Wilson line
term in the definition (4.24). The final result for the expansion (F.21)
reads:

Υ(x; t, τ) ≈ −ieuτ
√
K
∑
η=±

ηAηϑr

∫t
−∞ dt ′V(t ′)F ′(x− ηut+ ηut ′) .

(F.25)
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Gathering the results, we find

lim
τ→0

∆G<r

(
x, x; t+

τ

2
, t−

τ

2

)
= lim
τ→0

ηuτ

uτ+ ia

[
a

a− iuτ

]2A2−
× e
√
K

2π

∑
η=±

Aηϑr

∫t
−∞ dt ′ V(t ′)F ′[x− ηu(t− t ′)].

(F.26)

Now, we know that the limit (F.26) must reproduce the result (F.19)
for the electron density, which has been calculated independently by
relying on the relation ρ(e) ∼ ∂xΦ, that already takes care of regu-
larization procedures in the bosonization framework. This condition
gives a prescription to evaluate the limit in (F.26), which, if evaluated
naively, would vanish. Thus we introduce the factor

P<r,η(τ) =
ηuτ+ iaϑr

ηuτ
(F.27)

in the coherence function (F.5). By doing this, the relation (F.19) is
established. Note that P<r,η(τ) only modifies the short-time behavior of
∆G<r , as it is a regularization prescription.

f.3 sign of the spectral functions

Here, we prove what we have stated in Sec. 4.3 about the sign of
the spectral functions. Let us start by showing that ∆A<R,+(ω) has a
definite sign when evaluated for integer Levitons. For simplicity, it is
convenient to consider the case of very long period T ≫ w and thus
focus on a single Lorentzian pulse, given in (4.43). In this case, the
phase factor (4.33) becomes

Ξr,η(t, τ) =
[
w+ i(t− τ/2)

w− i(t− τ/2)

]ηϑrqr,η
[
w+ i(t+ τ/2)

w− i(t+ τ/2)

]−ηϑrqr,η

− 1 .

(F.28)

If qr,η is integer, further analytical evaluation is possible. Let us focus
on the case where qr,η = n > 0. We can therefore write [cf. Eq. (1.82)
and (1.84)]

Ξr,η(t, τ) = −2πiτ

n∑
j=1

Πj

(
t+

τ

2

)
Π∗j

(
t−

τ

2

)
, (F.29)

where the wavefunctions Πj are defined as

Πj(t) =

√
w

π

(t+ iw)j−1

(t− iw)j
. (F.30)
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By relying on these results, the variation of the spectral function
becomes

∆Ã<R,+(ω) =
1

2πu

∫+∞
−∞ dτ eiωτ

[
a

a− iuτ

]2A2−
×
∫+∞
−∞ dt

n∑
j=1

Πj

(
t+

τ

2

)
Π∗j

(
t−

τ

2

)
.

(F.31)

Here, the tilde indicates that we adapted the definition of the spectral
function to a single-pulse drive, by replacing the integral T−1

∫T/2
−T/2 dt

with
∫+∞
−∞ dt. By evaluating the previous integral we arrive at

∆Ã<R,+(ω) =
2w

u

(a
u

)2A2− eaω/u

Γ(2A2−)

n∑
j=1

[
Θ(ω)Ij(ω,ω) +Θ(−ω)Ij(ω, 0)

]
,

(F.32)

where Γ is the Gamma function, Lj the Laguerre polynomial of order
j and

Ij(ω1,ω2) =
∫+∞
ω2

dε e−2εwe−εa/u|ω1−ε|2A
2
−−1L2j−1(2εw) . (F.33)

This results shows that the spectral function ∆A<R,+ is always positive
and nonvanishing for both ω ≷ 0, precisely as observed in the main
text. When qR,+ = m < 0, by following the same steps as before, we
find:

∆A<R,+(ω) = −
2w

u

(a
u

)2A2− eaω/u

Γ(2A2−)

|m|∑
j=1

Θ(−ω)Jj(ω) , (F.34)

with

Jj(ω) =

∫−ω
0

dε e−2εweεa/uL2j−1(2εw)|ω+ ε|2A
2
−−1 . (F.35)

This shows that, in this case, the spectral function is always negative
and vanishes for ω > 0.

Concerning the spectral function ∆A<R,−(ω), we can repeat a very
similar procedure and we find (for qR,− = n > 0)

∆A<R,−(ω) = −
2w

u

(a
u

)2A2− eaω/u

Γ(2A2−)

n∑
j=1

Θ(−ω)Jj(ω)

+
4w

u

(a
u

)1+2A2− eaω/u

Γ(1+ 2A2−)

×
n∑
j=1

Θ(−ω)

∫−ω
0

dε e−2εweεa/uL2j−1(2εw)|ω+ ε|2A
2
− .

(F.36)
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The result is nonvanishing only for ω < 0 and it consists of two terms,
each with a definite sign. In particular, the former is negative, while
the latter is positive. By looking at the dependence on ω, we realize
that the negative term is more relevant at low freqencies, since it
contains the power |ω+ ε|2A

2
−−1, while the positive term, containing

|ω + ε|2A
2
− dominates at large negative frequencies. Therefore, the

total distribution does not have a definite sign. This is shown in Fig.

Figure F.1: Behavior of the tails of the spectral function ∆A<R,−(ω), for qR,− =

±1. Different values of K are indicated in the left panel. We clearly
see a change of sign with respect to what happens at values of ω
closer to zero, see Fig. 4.7. The units on the axes are the same as
in Fig. 4.7.

F.1 (left panel). Similar considerations lead to the conclusion that for
qR,− = m < 0 the spectral function is negative at large negative values
of ω, as illustrated in the right panel of Fig. F.1.
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C O M P L E M E N T S T O C H A P T E R 5

g.1 nonequilibrium energy distributions

In this Appendix we connect the excess noise defined in Eq. (5.31) of
the main text to the out-of-equilibrium energy distribution of electrons,
commonly used in the context of electron quantum optics [3]. Let us
start by writing the model Hamiltonian with the explicit coupling to
the external drive:

H = HL +HR + λ
∑
σ=↑↓

(c†LσcRσ + H.c.) + eV(t)NL . (G.1)

Here cL/Rσ is the annihilation operator for the left/right lead at the
point x = 0 where the tunneling occurs and NL is the number operator
for electrons in the left lead, the one where the voltage is applied. For
our calculations it was convenient to include the effect of V(t) into the
tunneling amplitudes, as in Eq. (5.10). In order to do this it is sufficient
to apply a unitary transformation generated by the operator

U = eieNL
∫t
0 dt

′V(t ′) . (G.2)

Then the Hamiltonian transforms according to the relation H →
UHU† + iU̇U† and becomes

H = HL +HR + λ
∑
σ=↑↓

[
eiα(t)c†LσcRσ + H.c.

]
, (G.3)

with α(t) = e
∫t
0 dt

′ V(t ′) . By including also the bare superconducting
phase difference φ0 we finally obtain Eq. (5.10). Under the above
transformation, electron operators of the left lead become

c̃Lσ = UcLσU
† = e−iα(t)cLσ , (G.4)

while cRσ is unaffected. This shows that the effect of the external bias
on the left lead electron operators can be encoded in the phase α(t).

We are now in position to compute nonequilibrium energy distribu-
tions of L-electrons and show how they connect with the excess noise.
In the following we consider the effects of the drive V(t) on the isolated
left electrode (meaning that we do not consider the coupling to the
right one consistently with the lowest order perturbation expansion
discussed in the main text). The building blocks of the calculation are
the electron and hole coherence functions, which are the fundamental
ingredients in electron quantum optics [3]. They are defined as [1, 113]
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(since there is no dependence on the spin, the index σ will be dropped
in the following)

G̃<(t, t ′) =
〈
c̃
†
L(t
′)c̃L(t)

〉
, (G.5a)

G̃>(t, t ′) =
〈
c̃L(t)c̃

†
L(t
′)
〉

. (G.5b)

Notice that the definition involves c̃L operators, since we want to
describe nonequilibrium effects due to V(t). By using Eq. (G.4), coher-
ence functions are expressed as

G̃≶(t, t ′) = e−i[α(t)−α(t
′)]G≶(t, t ′) , (G.6)

where

G<(t, t ′) = −i g+−
0 (t− t ′) = G>(t ′, t)

=

∫+∞
−∞

ydy

w
√
y2 −∆2

Θ(y−∆) eiy(t−t
′) (G.7)

are zero temperature superconducting coherence functions at equilib-
rium, with no applied drive. Notice that the conventional free-fermion
relation G<(τ) + G>(τ) ∝ δ(τ) is recovered in the limit ∆ → 0 as ex-
pected. Starting from Eq. (G.5), one can define energy distribution
functions [113]

f≷(ω) =

∫T/2
−T/2

dt̄

T

∫+∞
−∞ dτ eiωτG̃≷

(
t̄+

τ

2
, t̄−

τ

2

)
, (G.8)

where T is the period of the drive. These quantities can be straightfor-
wardly evaluated in terms of photoassisted coefficients. In particular,
the equilibrium electron energy distribution is directly given by

f<eq(ω) = −ig+−
0 (ω) = 2πρ0(ω)nF(ω) =

−2ωΘ(−ω−∆)

E
√
ω2 −∆2

, (G.9)

with ρ0(ω) properly defined in Eq. (G.15) and the last expression
being true at zero temperature. Finally, the complete hole energy
distribution is found to be

f>(ω) = i
∑
`∈Z

|p`|
2g−+
0 (ω−Ω`)

= 2π
∑
`∈Z

|p`|
2ρ0(ω−Ω`)nF(Ω` −ω)

=
2

E

∑
`∈Z

|p`|
2 (ω−Ω`)Θ(ω−Ω` −∆)√

(ω−Ω`)2 −∆2
.

(G.10)

Thus the connection in Eq. (5.35) of the main text is established.



G.2 current and noise at low temperature 165

g.2 current and noise at low temperature

We now provide general expressions for dc current and noise at low
but finite temperature, in terms of a single integral over energy. In
order to do so, we first have to introduce Dyson’s equations relating
full Green functions Ĝ to unperturbed ones ĝ. The simplest equation
reads:

Ĝa/r(t, t ′) = ĝa/r(t− t ′) +
∫+∞
−∞ dτĝa/r(t− τ)Σ̂a/r(τ)Ĝa/r(τ, t ′)

(G.11)

where Σ̂a/r are the self-energy matrices. In our case, they are simply
Σ̂
a/r
LL = Σ̂

a/r
RR = 0 and = Σ̂

a/r
LR = [Σ̂

a/r
RL ]† = Ŵ, with the matrix Ŵ given

in (5.16). The equation for Ĝ+− is more complicated:

Ĝ+− = ĝ+− + ĜrΣ̂rĝ+− + Ĝ+−Σ̂aĝa , (G.12)

where a convolution over intermediate time arguments is assumed,
like in Eq. (G.11). From this expression we obtain

Ĝ+−
LR = ĝ+−ŴĜaRR + ĝ

rŴĜ+−
RR , (G.13a)

Ĝ+−
RL = ĜrRRŴ

†ĝ+− + Ĝ+−
RR Ŵ

†ĝa . (G.13b)

We can now use these relations into Eqs. (5.15)–(5.17) in the main text
and truncate the expansion at lowest order in λ to obtain the following
general expressions:

I0 = 4πeλ
2
∑
`∈Z

|p`|
2

∫+∞
−∞ dωρ0(ω)ρ0(ω−Ω`)[nF(ω−Ω`) −nF(ω)] ,

I1 = 4πeλ
2
∑
`∈Z

Re
[
eiφ0p`p−`−2q

] ∫+∞
−∞ dωρ1(ω)ρ1(ω−Ω`)

× [nF(ω−Ω`) −nF(ω)] ,

IJ = −4πeλ2
∑
`∈Z

Im
[
eiφ0p`p−`−2q

] ∫+∞
−∞ dωρ1(ω)nF(ω)

× [ρ2(ω+Ω`) + ρ2(ω−Ω`)] ,

S0 = 8πe2λ2
∑
`∈Z

|p`|
2

∫+∞
−∞ dωρ0(ω)ρ0(ω−Ω`)

× [nF(ω)nF(Ω` −ω) +nF(−ω)nF(ω−Ω`)] ,

S1 = 8πe2λ2
∑
`∈Z

Re
[
eiφ0p`p−`−2q

] ∫+∞
−∞ dωρ1(ω)ρ1(ω−Ω`)

× [nF(ω)nF(Ω` −ω) +nF(−ω)nF(ω−Ω`)] .
(G.14)
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The functions appearing in the above integrals are defined in terms of
the unperturbed Green functions ĝa/r(ω) = g

a/r
0 (ω)σ̂0 + g

a/r
1 (ω)σ̂1

given in Eq. (5.18) and are

ρ0(ω) =
1

π
Im[ga0 (ω)] =

|ω|

πE
√
ω2 −∆2

Θ(|ω|−∆) ,

ρ1(ω) =
1

π
Im[ga1 (ω)] =

−∆ sgn(ω)

πE
√
ω2 −∆2

Θ(|ω|−∆) ,

ρ2(ω) =
1

π
Re[ga1 (ω)] =

∆

πE
√
∆2 −ω2

Θ(∆− |ω|) .

(G.15)

Notice that in the above results, the dependence on temperature is
confined to Fermi functions. Indeed, the temperature is assumed to be
low enough for the gap ∆ to be considered constant. The evaluation of
integrals in Eq. (G.14) at zero temperature yields the results presented
in the main text, see Eqs. (5.24)–(5.29).
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