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Introduction

Quantum theory is one of the major discoveries of science in the twentieth
century. Initially, it has been the key to understand many unsolved and exciting
problems, for instance concerning condensed matter and its microscopic structure.
With the progress of scientific research, scientists became gradually aware of the
importance of the quantum theory, not only to understand the microscopic domain
itself, but also to explain phenomena which eventually appear in the macroscopic
world. Therefore, more and more attention has been devoted to the quantum theory
and its applications touched many and very different fields, from the chemical to
the physical domain, resulting in crucial contributions to develop new technologies.
This made it possible, for example, to create semiconductor-based electronic devices
which have basically become ubiquitous in our daily life.

With the advent and the growing interest in the information technology, the peculiar
characteristics of quantum mechanics are predicted to break through the limits
of classical paradigms, and, hence, to give rise to exciting innovations, such as
quantum computation [1–6]. Today, theory and experiments are quite far from the
full understanding and realization of these predictions, even if important progress
has been made towards the achievement of the so-called quantum supremacy [7],
the potential ability of a quantum computing device to solve problems that classical
computers practically cannot. In this respect, researchers have faced the difficulty,
both from the theoretical and the experimental points of view, to control the state
of a quantum system.

Quantum control, i.e. the control of quantum phenomena, is becoming one of
the major concerns in condensed matter physics, even if results obtained in the
recent past are mainly confined to static systems in equilibrium, due to the difficulty
to experimentally manipulate out-of-equilibrium quantum systems and the absence of
an efficient general theoretical framework to describe non-equilibrium dynamics [8, 9].
With the discovery of new experimental techniques, applied for example to ultra-cold
atoms [10] or trapped ions [11], amazing progresses in the manipulation of non-
equilibrium quantum systems have been done, and the theoretical interest has been
renewed. In particular, the first question to be answered is how to efficiently bring a
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Introduction

quantum system out of equilibrium in a controlled way reaching a given steady state.
At a later stage, it is important to study the corresponding non-equilibrium dynamics.

In this Thesis, I will address these currently open questions by inspecting several
different condensed matter models, using various methods to drive the system out
of equilibrium and focusing on its dynamical features as well as the properties
of its equilibration towards a thermal or, more interestingly, non thermal steady
state. I will discuss the possibility to manipulate various systems to give rise to
peculiar dynamical behaviors and steady states with properties not attainable in
thermal equilibrium, ranging from quantum phase transitions and their dynamical
counterparts, to superconductivity.

This Thesis is divided in 6 Chapters.
In Chapter 1, we introduce and explain the main differences between the theoretical
methods used to drive a quantum system out of equilibrium. Notably, while
adiabatic manipulation mainly concerns the ground state, time dependent protocols
of finite duration or periodic perturbations give us the possibility to investigate
peculiar properties of highly excited states and, consequently, out-of-equilibrium
and dynamical phenomena such as non-equilibrium and dynamical quantum phase
transitions.
Chapter 2 is devoted to the illustration of the models we inspect in rest of whole thesis.
Since during the succeeding chapters we focus only on the out-of-equilibrium features
of the different models, we motivate the choice of the particular system introduced by
showing its equilibrium properties and the relative possible experimental realizations.
In Chapter 3 we analyze the properties of prototypical examples of one-dimensional
systems undergoing a sudden variation of the Hamiltonian parameter which controls
the amplitude of the gap in the energy spectrum. In particular we inspect quantum
quenches from a gapless to a gapped (or partially gapped) state. We observe
an anomalous, non-monotonic, response of the steady state correlation functions
as a function of the strength of the mechanism opening the gap and we give an
interpretation of these results by inspecting the full dynamics of the systems, both
for the integrable and non-integrable scenario. We conclude by arguing in favour of
the robustness of the phenomenon in the cases of non-sudden quenches and higher
dimensionality.
In Chapter 4 we further generalize the previous results by widening the parameter
space inspected to drive the system between two different gapped states. When the
gap is closed during the time evolution, we find, in the thermodynamic limit and
for long times, non-analyticities even in simple local observables as a function of
the quench parameter. In other words, we find a non-equilibrium quantum phase
transition. Its appearance can be related to an effective metal-insulator transition
which occurs at the level of the generalized Gibbs Ensemble [12] (describing the
non-thermal steady-state of the equilibrated system). Finally, we show how these
features are washed out in presence of fermion-fermion interactions or for finite
system size.
In Chapter 5, we mainly focus on the dynamical properties following a quantum
quench. Recently, it has been shown that when a global parameter is suddenly
quenched, a non-analytic behavior of the time evolution of the dynamical free
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energy can occur, giving rise to the so-called Dynamical Quantum Phase Transition
(DQPT) [13]. Interestingly, we show that DQPTs can be manipulated and engineered
by controlling the quench duration and protocol. Finally, introducing a dynamical
topological invariant in half of the Brillouin zone, we find that DQPTs are robust only
when the invariant is non-vanishing, denoting a topologically non-trivial mapping
which connects the initial and final systems.
In Chapter 6 we employ a different technique to drive the system out of equilibrium.
We analyze a two-band semiconductor irradiated by coherent light and subject to
dissipation. By considering a pair of bands with locally the same concavity, we
show that interband superconducting pairing between electrons in different bands
arises under the natural assumption of the presence of phononic baths and radiative
recombination processes. In light of these findings, we demonstrate how an effective
model based on standard multi-band BCS theory can explain the emergence of
superconductivity.

This thesis is based on the following papers co-authored by myself:

• S. Porta, F. M. Gambetta, N. Traverso Ziani, D. M. Kennes, M. Sassetti, and
F. Cavaliere, "Nonmonotonic response and light-cone freezing in fermionic
systems under quantum quenches from gapless to gapped or partially gapped
states", Phys. Rev. B 97, 035433 (2018) [14].

• S. Porta, N. Traverso Ziani, D. M. Kennes, F. M. Gambetta, M. Sassetti, and F.
Cavaliere, "Effective metal-insulator nonequilibrium quantum phase transition
in the Su-Schrieffer-Heeger model", Phys. Rev. B 98, 214306 (2018) [15].

• S. Porta, F. Cavaliere, M. Sassetti, and N. Traverso Ziani, "Topological
classification of dynamical quantum phase transitions in the xy chain", In
preparation (2019) [16].

• S. Porta, L. Privitera, N. Traverso Ziani, M. Sassetti, F. Cavaliere, and B.
Trauzettel, "Feasible model for photo-induced interband pairing", Phys. Rev.
B 100, 024513 (2019) [17].

Other publications not included in this thesis are:

• S. Porta, F. M. Gambetta, F. Cavaliere, N. Traverso Ziani, and M. Sassetti,
"Out-of-equilibrium density dynamics of a quenched fermionic system", Phys.
Rev. B 94, 085122 (2016) [18].

• F. M. Gambetta and S. Porta, "Out-of-equilibrium density dynamics of a
spinful Luttinger liquid", Il Nuovo Cimento C 40, 92 (2017) [19].

Note that at the beginning of every Chapter, there will be a brief introduction
to assess the specific problem in a broader context and to make the Chapter self-
consistent.
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CHAPTER 1

Control and engineering of quantum phases of matter

In the last years, one of the major aims of condensed matter physics has been
to produce new and substantial breakthrough innovations to be applied in the
information technology world. Indeed, semiconductor-based devices have constantly
improved their performances thanks to the ability of shrinking the components
inside chips. In this process, physical components cannot however be reduced in
size infinitely. Matter consists of atoms and, at the atomic level, particles behave
according to the laws of quantum mechanics. With this respect, the control of
quantum systems is becoming fundamental to go beyond the present technology
and the engineering of powerful phases of matter, very hard to obtain in standard
conditions, is one of the main goals people are trying to achieve. The realization
of quantum computation devices, in this sense, strongly depends on the success
of these new ideas. For example, the possible fabrication of room temperature
superconductivity, favorable to the realization of scalable superconducting quantum
circuits, has been deeply investigated in the last decades, at least at ambient pressure.
Recent advances in laser technology have made it possible to generate pulses at
terahertz frequencies, allowing coherent control to favor superconductivity at ‘ultra-
high’ temperatures, sometimes far above the thermodynamic critical temperature [20].
Another example is the engineering and manipulation of materials with topological
properties, which are predicted to be able to overcome the quantum computation
greatest obstacle, that is quantum decoherence [1–6].
In this Chapter we elucidate some of the most used ways to manipulate, in a controlled
fashion, a generic quantum system. Furthermore, we briefly introduce the concept
of quantum phase transition (QPT) and the reason why it has been the subject of
intense research activity. Finally, we generalize the idea to the non-equilibrium and
dynamical cases.
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1.1. THREE METHODS TO CONTROL A QUANTUM SYSTEM

1.1 Three methods to control a quantum system

We begin this chapter by considering some of the most relevant methods to
control a quantum system: Adiabatic manipulation, quantum quenches, and periodic
drivings.

1.1.1 Adiabatic manipulation

One of the most direct and powerful implementations of quantum state engineering
is adiabiatic control [21–23]. In the adiabatic scenario, the quantum system evolves
under a sufficiently slowly-varying Hamiltonian H(t), thus remaining in the ground
state manifold. In particular, if the system is prepared in a non-degenerate eigenstate
|n(0)〉 of the Hamiltonian H at time t = 0, it will evolve to the corresponding
instantaneous eigenstate |n(t)〉 at later times t > 0.
This transitionless evolution is ensured by the adiabatic theorem, which is one of
the oldest and most explored tools in quantum mechanics. Performances obtained
via consequences of this theorem are limited by its hypothesis. These protocols are
often impractically slow to implement [24].

At least theoretically, in the absence of decoherence and losses, these protocols
work well. However, real systems suffer from these effects which become crucial as
time progresses, making such approaches even less optimal. The solution to this
problem is to engineer a faster evolution that reaches a target state sufficiently
close to the desired one in some finite control time τ <∞. These approaches have
been investigated theoretically under the terms "shortcuts to adiabaticity" [25–27],
"counterdiabatic driving" [28] and "optimal control" [29, 30].

A very important and interesting problem which arises in this context, especially at
the optimization level, is related and have been found, for example, in the Landau-
Zener transition [31, 32] and it is due to the premises of the adiabatic theorem
because the time scale of the adiabatic process is set by the level spacings. With
this respect, it does not hold true, in general, that an adiabatic transformation can
take place for every quantum system, even for an infinitely slow process. Consider,
for simplicity, a two-level quantum system: If the system starts, in the infinite past,
in the lower energy eigenstate |1〉, we wish to calculate the probability of finding the
system in the upper energy eigenstate |2〉 in the infinite future. To do so, we consider
a time-dependent dimensionless Hamiltonian in which the energy gap between the
two states varies linearly in time:

H(t) = 1
2

[
t/τQ 1

1 −t/τQ

]
, (1.1)

where τQ is a constant and the Hamiltonian is written in the basis of time independent
states |1〉 and |2〉. The instantaneous eigenbasis, hence, reads

|↑ (t)〉 = cos[θ(t)/2] |1〉+ sin[θ(t)/2] |2〉
|↓ (t)〉 = − sin[θ(t)/2] |1〉+ cos[θ(t)/2] |2〉 ,

(1.2)
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E

impulse

adiabatic adiabatic

Figure 1.1: Plot of the energy levels of the Hamiltonian in Eq. (1.1). In the general case,
the spectrum is gapped with an avoided crossings between levels (plain lines).
Every time, during the dynamics, the gap become small enough, the system
freezes out and the adiabatic evolution is lost and cannot be restored.

where tan θ(t) = τQ/t. From Eqs. (1.2), we can extract the instantaneous value of
the energy gap between states, given by (see Fig. 1.1)

E↑(t)− E↓(t) =
√

1 + (t/τQ)2. (1.3)

The Landau-Zener formula states that the excitation probability decays exponentially
with the time τQ. From the adiabatic theorem one knows that, as long as the inverse
of the gap is small enough, the system starting its evolution from a ground state
remains in the ground state. In the opposite case it undergoes the so called "impulse
evolution" [33], and remains immobilized (i.e. the wave function changes only its
phase factor).
Summarizing, one can adopt the Kibble-Zurek simplification of the system’s dynamics:
The time evolution can be either diabatic or adiabatic [33, 34]. The adiabatic part
takes place when the system is away from the anti-crossing, while the impulsive part
takes place in the neighborhood of an anti-crossing, where the inverse of the gap is
so large that the system no longer adjusts to the changes of the Hamiltonian (see
Fig. 1.1).

In this thesis, however, even if we will deal with this diabatic time evolution due to
the energy level crossings, we will not particularly focus on this type of technique.
Although adiabatic engineering is very powerful and widely used in the context
of state preparation, we are mainly interested in a different scenario, which is the
study of non-equilibrium and dynamical properties induced in systems far from their
equilibrium. In this context, nevertheless, we have observed effects of the adiabatic
theorem on the state reached by a one-dimensional fermionic system, brought out of
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1.1. THREE METHODS TO CONTROL A QUANTUM SYSTEM

equilibrium after the manipulation of the electron-electron interaction strenght [18,
19].

1.1.2 Quantum quench

Here, quantum quenches are investigated. Such a process consists in a continuous
or abrupt change in time of one or more Hamiltonian parameters, after the preparation
of the system in a given state, typically its ground state. Differently from the
adiabatic manipulation, which is recovered if the quench duration τ is very large,
in the limit τ →∞, and no gap closings occurs during the dynamics, this kind of
quantum control allows to obtain interesting non-equilibrium features during the
time evolution which may possibly leave traces in an eventual steady state. Usually,
quantum quenches are studied in the context of non-dissipative systems.

More specifically, we consider a closed quantum system brought away from equilibrium
by means of a change of its Hamiltonian parameters: Important questions arise in
this scenario. Firstly, whether such a system will eventually achieve equilibration
and, if so, what are the characteristics of the asymptotic, steady state reached after
the manipulation. Regarding the last point, it is also very interesting to understand
in which situation the steady state can have the form of a thermal density matrix,
so that the equilibration process can be assimilated to an effective thermalization.
The answer is in any sense not obvious, given the fact that the system may have
a very large number of degrees of freedom. A very clean setting for the problem
is the one emerging from a sudden quench of a global parameter: Initially, the
system is depicted by the density matrix ρ0 , which could be describing the ground
state of an Hamiltonian. Then one or more system parameters are suddenly and
globally changed and the unitary time evolution under some new Hamiltonian H
is considered. Of specific interest are expectation values of observables O at later
times, given by

〈O(t)〉 = Tr
{
e−iHtρ0e

iHtO
}
. (1.4)

Indeed, the main point is to unveil the possibility to describe 〈O(t)〉 in Eq. (1.4)
by means of an equilibrium statistical ensemble for some instant of time and, if
so, for which time this description holds true. With this respect, the system time
evolution is unitary. In addition, it is recurrent if the system has finite size due to
the extension of the Poincaré recurrence theorem to the quantum realm [35]. It is
then not so clear, by intuition, in which sense the equilibration process can take
place: if we focus on observables, this means that expectation values 〈O(t)〉 of a
large class of them saturates, following the transient non-equilibrium dynamics. This
is specifically true for local observables, i.e. operators which are supported only on
a small portion of the whole system [9].

The last statement can be proven for a special class of many-body systems, that are
integrable non-interacting models, and are hence characterized by a very large set of
local conserved quantities, in the sense of equilibration during intervals. One can
show that the norm of the difference between 〈O(t)〉 and the time average Tr {ωO},
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where
ω = lim

T→∞

1
T

∫ T

0
dt e−iHtρ0e

iHt, (1.5)

is arbitrarily small after a relaxation time and remains small until a recurrence time
which grows linearly with the system size [36–40]. The main arguments used to
show that Eq. (1.5) holds true are the central limit theorem and the existence of the
so-called Lieb-Robinson bounds, which limit the speed of information propagation
in such systems. In particular, this means that information propagation outside a
light-cone is exponentially suppressed and correlations can grow significantly only
inside it (see Fig. 1.2). Such light-cone dynamics has been experimentally observed
in optical lattice systems [41] and in cold atoms [42].

QUENCH
Position

Ti
m
e

Figure 1.2: After a quench, entangled pairs of quasi-particles emerge at all sites and
propagate ballistically in opposite directions, spreading information in the
system. It follows that correlations build up at time t between any pair of sites
separated by a distance d = vt, where v is the maximum relative velocity of
the excitations.

Furthermore, if a quantum system is integrable, it is not expected to thermalize, since
the constants of motion prevent the equilibration to a standard thermal ensemble.
This behavior has been first observed by Kinoshita [43], in his quantum version of
the Newton’s cradle. This experiment, conducted on cold atomic gases, constitutes
the first clear demonstration of the fact that a nearly integrable quantum interacting
many-particle system does not thermalize for a long time (up to tens of milliseconds),
until non-integrable interactions effects due to the inevitable coupling with the
environment become relevant (see Figure 1.3).
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1.1. THREE METHODS TO CONTROL A QUANTUM SYSTEM

Figure 1.3: Absorption image of the quantum Newton’s cradle [43]. A one-dimensional
array of trapped Rb atoms is brought out of equilibrium and do not noticeably
equilibrate even after thousands of collisions.

However, the system can still equilibrate to a non-thermal state obtained by
the maximization of entropy, taking into account the constraints imposed by the
conservation laws. Following this idea, Rigol et al. proposed the so-called generalized
Gibbs Ensemble (GGE) [12], determined by the density matrix

ρGGE = exp (−
∑
α λαIα)

ZGGE
. (1.6)

Here, ZGGE = Tr {exp (−
∑
α λαIα)} is the partition function, Iα is a suitably chosen

subset of local conserved quantities and λα are Lagrange multipliers, fixed by the
condition

Tr {ρ0Iα} = Tr {ρGGEIα}
.= 〈Iα〉GGE . (1.7)

Rigol conjectured that the GGE is able to describe the asymptotic state of a generic
quantum integrable model. Constructing sets of local conserved quantities is most
often difficult. However, the average occupation numbers of different momentum
modes become approximately additive for small subsystems, and have been proved
to be a good choice to construct a working GGE in many different models [44–48].

A notable experimental detection of the veridicity of this prediction has been
published in 2015 by the Schmiedmayer group [49]. In this work, they show
experimentally, using a technique known as matter-wave interferometry, that a
degenerate one-dimensional Bose gas of Rb atoms, after a splitting of the system into
two identical halves, relaxes to a state that can be described by such a generalized
statistical ensemble.

Nevertheless, the explicit construction of the GGE for general interacting integrable
models remains an open problem. Moreover, there are non-integrable systems where
the GGE, taking into account all known conserved quantities, fails to correctly
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describe the equilibrium state [50, 51]. Indeed, when integrability is explicitly broken
with a strong enough perturbation one naturally expects ergodic behavior to emerge
for all observables [37, 52, 53]. The emergence of thermalization in closed systems
has been conjectured by means of the so-called eigenstate thermalization hypothesis
(ETH) [54, 55]: few-body operators, which are supported on a small portion of the
whole system, are postulated to thermalize thanks to the interaction with all the
other degrees of freedom present in the system, which act as a bath [36, 56]. In this
way, all the memory of the initial state is locally lost. The range of applicability of
the ETH, however, is a topic of ongoing research.
In Figure 1.4, a sketch of the different relaxation scenarios for integrable and non-
integrable systems is shown.

tim
e

Non-eq.state

Pre-thermal
steady state

Thermal eq.

τ r
el

ax
τ t

h

Integrable
systems

Breaking
Integrability

tim
e

Non-eq. state

Thermal eq.

τ r
el

ax
τ t

hNon-Integrable
systems

Figure 1.4: Comparison between the relaxation dynamics of the two possible classes of
closed quantum systems. Integrable systems does not thermalize, but gets stuck
in a non-thermal steady state that, for example, can be described by the GGE
(see Eq. (1.6)). If integrability is broken due to the imperfect isolation of the
system from the external background, or if the system is only nearly-integrable,
thermalization takes place for long times. Non-integrable systems have only
one timescale during the dynamics, and thermalization is conjectured by the
ETH [55].
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1.1. THREE METHODS TO CONTROL A QUANTUM SYSTEM

1.1.3 Periodic driving

Floquet engineering, the control of quantum systems using periodic driving,
is an old concept in condensed matter physics and it has been introduced as a
theorem yet in classical physics. It is now receiving increasing attention thanks to
the huge development in laser technology and in ultrafast spectroscopy techniques
from an experimental point of view, as well as growing interest in the application of
quantum control in artificial matter [57]. In this section we briefly introduce the
Floquet theory, which can be seen as the temporal analog of the Bloch theorem.
This formalism allows for a sistematic understanding of the control of quantum
systems using time-periodic external fields [58, 59]. We consider a time dependent
Hamiltonian, periodic in time, such that

H(t+ T ) = H(t), (1.8)

where T = 2π/Ω is the period and Ω is the driving frequency. To proceed, we expand
quantities of interest into Fourier modes e−imΩt, where m = 0, 1, 2, .... One can show
that the solution of the time-dependent Schrödinger equation can be factorized into
a periodic function multiplied by a non-periodic phase factor, such that

|Ψ(t)〉 = e−iεt |Φ(t)〉 , with |Φ(t+ T )〉 = |Φ(t)〉 . (1.9)

The function |Φ(t)〉 is dubbed Floquet state, while ε is the Floquet quasi-energy.
One can hence fruitfully apply Fourier analysis to both the Hamiltonian and the
Floquet state, to obtain

H(t) =
∑
m

e−imΩtHm (1.10)

and
|Φ(t)〉 =

∑
m

e−imΩt |Φm〉 . (1.11)

The time-dependent Schrödinger equation is then mapped to an eigenvalue problem,
given by ∑

m

e−imΩt (Hn−m −mΩδnm) |Φα
m〉 = εα |Φα

m〉 , (1.12)

where the new index α labels eigenstates. The system, hence, can be seen as a
time-independent one-body system composed of many layers indexed by m, which
can be considered as a lattice site index in a fictitious Floquet direction (see Figure
1.5): H0 represents the intra-layer hopping and Hm, with m 6= 0, the inter-layer
hopping between different layers. In addition, the frequency Ω is mapped to an
effective static electric field in the Floquet direction, represented in Eq. (1.12) by the
δn,m term. This equivalence can be employed to understand two important limiting
cases: for small Ω we have a lattice problem in higher dimensions in a weak electric
field, which can lead to the so-called Thouless pumping [60] while, in the opposite
regime, the layers become isolated [61, 62].

A physical problem which arises when periodic driving is applied to condensed matter
systems, is the heating resulting from the continuous injection of energy into the
system itself. If we focus on stroboscopic times t = mT , the solution |Ψ(t)〉, given
in eq.(1.9), has an identical form to that of the time evolution in time-independent

8
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Figure 1.5: Representation of the effective time-independent model equivalent to Eq.(1.12).
Figure adapted from [57].

systems where the quasi-energy εα plays the role of the energy eigenvalue and
|Φ(t = 0)〉 is the usual eigenstate, considering t0 as the initial time, i.e. when the
perturbation is switched on. At this point, the same question of the previous section
emerges: is there the possibility to reach an equilibrated state for long time, given
that, in this case, an external periodic force keep on heating until the temperature
goes to infinity? Since heating is expected to play a prominent role only for very long
times if a good choice of the external field is done, a pre-thermalized intermediate
steady state can be reached on a shorter timescale [63]. In particular, using the
stroboscopic picture, this metastable state can be described, applying a perturbative
expansion, as an eigenstate of the resulting effective Hamiltonian [64, 65].

Furthermore, the description of the non-thermal equilibrated state by means of a
periodic ensemble has been proved, since after an initial transient period, the system is
known to synchronize with the driving. For a class of integrable systems, the relevant
ensemble is constructed by maximizing an appropriately defined entropy subject
to constraints, which is the periodic generalization of the previously mentioned
generalized Gibbs Ensemble [66], whose density matrix is given in Eq. (1.6) and is
generalized as

ρPGE(t) = exp (−
∑
α λαIα(t))

ZPGE
, (1.13)

where the Lagrange multipliers are fixed by the condition

Tr {ρ0Iα(0)} = Tr {ρPGE(0)Iα(0)} . (1.14)

The operator in Eq. (1.13), furthermore, has the following properties: It correctly
gives the conserved quantity averages during the whole time evolution and it is itself
manifestly periodic with time, i.e. ρPGE(t+ T ) = ρPGE(t).
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1.2 Quantum phases of matter
Quantum phases are quantum states of matter at zero temperature. The

difference between these states and classical states of matter is that, classically,
materials exhibit different phases which strictly depend on the change in some
macroscopic property of the material. The emblematic example is water: The
variation of temperature can produce ice in the solid state, water in the liquid state
or water vapor in the gaseous state, tipically breaking and restoring symmetries like
crystalline order every time the passage between different phases takes place.
Differently from that, quantum phases can vary in response to a change in a non-
thermal control parameter at zero temperature, with the manipulation of external
parameters such as pressure, or magnetic field, or the chemical composition. The
combination of quantum mechanical effects and statistical physics has, in this respect,
led to the discovery of phase transitions mediated by quantum fluctuations, an effect
that arises directly from the Heisenberg uncertainty principle. Such transitions are
dubbed quantum phase transitions (QPTs) [67, 68]. The point in the parameter
space where the transition happens is called quantum critical point (QCP).

1.2.1 Classical vs Quantum phase transitions

In general, phase transitions are divided into two different class: First-order and
continuous ones [68]. This was anticipated by Ehrenfest in his seminal work [69,
70] where he argued that whenever a non-analyticity appears in the Gibbs free
energy, there is a phase transition. In the first case, the two phases connected by the
transformation coexist at the critical temperature, where the transition happens,
while in the second scenario the transition, as the name suggests, is continuous in
the sense that the features of the system vary in a continuous manner as the critical
point is crossed [67]. In this chapter, and in the whole Thesis, we concentrate on
continuous transitions. Interestingly, this class can often be characterized by the
so called order parameter (even if in some cases it is not easy to define): A local
quantity that is zero in the disordered phase and non-vanishing in the ordered one.
Furthermore, one has to observe that while the thermodynamic average of the order
parameter is zero in a disordered phase, its fluctuations are non-zero. A fruitful
method to investigate such a phenomenon, is to study the spatial correlations of the
order parameter as a critical point is approached. In the proximity of this special
point, the correlation length ξ diverges as

ξ ∝ |τ |−ν (1.15)

where ν is the correlation length critical exponent and τ is the adimensionless
temperature, defined as τ = |T −Tc|/Tc, with Tc the critical temperature. The same
can be transposed to correlations in time, to obtain

tc ∝ ξz ∝ |t|−νz, (1.16)

where z is the dynamic critical exponent. This two quantities, namely ξ and tc, set
the characteristic length and timescale of the problem. Because of their divergence,
the system is said to be scale-invariant, i.e. its features do not change if scales
of length, energy, or other variables, are multiplied by a common factor. As a
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Figure 1.6: Phase diagram in the vicinity of the QCP as a function of the control parameter
r and the temperature T . a) Order present only at T = 0. b) Order exists also
at finite temperature. Figure adapted from [67].

consequence, all observables depend via power laws on the external parameters. This
result is universal, i.e. it is independent of most of the microscopic details, as long
as the symmetries of the order parameter are not changed, and, remarkably, this
means that the critical exponents of a phase transition occurring in nature can be
determined by investigating any simple model belonging to the same universality
class.

Let us now turn to quantum phase transitions and to quantum mechanics. What
is now discussed becomes relevant in the regime where the thermal energy is
overwhelmed by the typical energy scale, whose order of magnitude is given by
the inverse of τc in Eq.(1.16). A crossing between the classical and the quantum
regimes in the fluctuations of the order parameter, consequently, can occur and can
be observed in the phase diagram when the QCP is approached. In particular, if
the transition takes place at zero-temperature, it is necessarily driven by a change
in a non-thermal parameter r and, therefore, such behavior is strictly dominated
by quantum fluctuations. As shown in Fig. 1.6, two cases can be distinguished
when temperature is increased. In the first scenario, order is present only at exactly
T = 0, and the phase transition is not experimentally detectable in a direct fashion
considering the impossibility to access this extreme condition. At finite temperature,
with this respect, order can be washed out by thermal fluctuations or the system
can remain disordered and dominated by quantum fluctuations as happening for
r > rc at T = 0. The region in between this two regimes is called quantum critical,
and represents the crossover region where both contributions are important: Here,
the main feature is the absence of quasi-particle-like excitations [67]. A different
scenario is obtained if order survives also at finite temperature. The phase diagram
acquires an extra ordered phase, bounded by the so-called classical critical line which
ends at the QCP. Around this line, a classical description can be applied and a real
and detectable phase transition is then observed. In both cases one has to note that
universality is lost when temperature acquires large values.

To have a closer connection to what we will investigate in this thesis, it is possible

11
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to formulate the problem of quantum phase transitions from the point of view of
many-body eigenstates. To do so, we consider a generic Hamiltonian H(r), which
depends on a control parameter r. For a finite size system, the ground state energy
is in general a smooth function of r, but it is worth to notice that a special case can
happen. Indeed, decomposing the Hamiltonian as

H(r) = H0 + rH1, (1.17)

a possibility is that H0 and H1 commute. In this particular case, eigenfunctions
do not depend on r since Hamiltonians can be simultaneously diagonalized, while
eigenvalues do. Therefore, a level-crossing can occur if an excited level becomes
the ground state at r = rc, and a non-analytic behavior of the energy is then
created. This is the quantum equivalent of first-order phase transitions introduced
at the beginning of this section. Taking the thermodynamic limit, we produce
another, more interesting, possibility. An avoided level-crossing, in fact, can become
sharper and sharper as the system size increases, leading to a different type of
non-analyticity, where higher-order singularity occurs in the ground state energy.
This is the continuous phase transition. The latter is more common in nature and
of particular interest in the context of non-equilibrium physics, as we will show in
the next section and chapters where its properties will be investigated using the
quantum control methods introduced in Section 1.1.

1.2.2 Non-equilibrium quantum phase transitions

Quantum phase transitions, as mentioned, concern ground state properties
of many-body systems, and hence their signatures are expected to be visible in
low-energy states. However, recent theoretical efforts lead to the discovery of the
existence of the fingerprints of a QPT also on higher excited states [71]. From the
point of view of equilibrium physics, a positive indication follows from the existence
of the so-called quantum critical region in the finite temperature phase diagram of
a quantum system, where the behavior of the system is strongly affected by the
existence of an underlying quantum critical point even at T 6= 0 (see Fig. 1.6).
Similar indication is obtained from the non-equilibrium response mechanism of a
system driven at a finite rate across a quantum critical point, largely known as the
Kibble-Zurek mechanism [33, 72].

Another path proposed to study non-equilibrium critical phenomena is to extend
equilibrium concepts and methods. The key idea is to identify a non-equilibrium
quantum phase transition on the basis of non-analyticities in observables as a function
of the tuning parameter in the pre-thermal regime [48, 73–75]. A pre-thermal state
retains partial memory of the initial state of the system, therefore the pre-thermal
value of a suitable order parameter will in general differ from its thermal equilibrium
value, and it may or may not show symmetry breaking and other signatures associated
with the occurrence of a phase transition [76, 77]. Non-equilibrium quantum phase
transitions are expected to be related in some way to their equilibrium counterparts,
as they show a similar kind of symmetry breaking and can be signalled by the
same order parameter, but in general can occur in non-equilibrium critical points
shifted with respect to the equilibrium ones [77]. The investigation of this kind of
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phenomena, however, is still far from complete, mainly to the difficulty in setting a
general theoretical framework.

1.2.3 Dynamical quantum phase transitions

Here we present a very special class of non-analytic behavior that occurs on
transient time scales. The phenomenon has been termed Dynamical Quantum Phase
Transition (DQPT) [78]. DQPTs are driven by progressing time as opposed to
conventional phase transitions that are driven by control parameters.

To introduce this concept, we make use of a quantum quench to bring the system
out of equilibrium. Following Section 1.1.2, we prepare a closed quantum system in
the ground state |ψ0〉 of an initial Hamiltonian H0 = H(r0), where r is the tuning
parameter. At a certain instant of time, say t = 0, a sudden quench of the parameter
is performed to obtain the final Hamiltonian Hf = H(rf ). If the ground state |ψ0〉
is not an eigenstate of Hf , a non-trivial dynamics is induced into the system, and
its time evolution is in general given by

|ψ0(t)〉 = e−iHf t |ψ0〉 . (1.18)

We focus on the study of the Loschmidt amplitude, which gives the overlap of the
time evolved state with respect to the initial state, and defined as

G(t) = 〈ψ0|ψ0(t)〉 = 〈ψ0|e−iHf t|ψ0〉 . (1.19)

The analysis, surprisingly, can be carried out by means of the standard techniques
used in the context of thermodynamics, such as the Fisher [79] or Lee-Yang [80, 81]
zeros. Indeed, by considering the transformation it→ z, the Loschmidt amplitude
can be effectively seen as a (boundary) partition function. With this respect, it
is known that for finite-size systems, partition functions are analytic functions.
However, they experience a particular functional dependence on the number of
degrees of freedom N in the limit of large N we have [13, 82]:

G(t) = e−NgN (t) (1.20)

where gN (t) is the associated rate function. We then define

g(t) = − lim
N→∞

1
N

lnG(t) = − lim
N→∞

gN (t). (1.21)

Analogously, we define the Loschmidt echo

L(t) = |G(t)|2 (1.22)

and its associated rate function, given by

λ(t) = 2Re {g(t)} . (1.23)

This function, as sketched in Fig. 1.7, can show kinks as a function of time. The
times of the kinks are called critical times tc, in close analogy to the free energy
in the equilibrium case. The appearance of the non-analyticity has been firstly

13



1.2. QUANTUM PHASES OF MATTER

Figure 1.7: Schematic illustration of a DQPT, seen as a kink in the Loschmidt echo
associated rate function λ. Figure adapted from [13].

directly connected to the quench of the control parameter across an equilibrium
quantum critical point [83]. At later times, however, this behavior has been observed
to hold more in general [84, 85], suggesting that DQPTs are not in one-to-one
correspondence with conventional phase transitions. In the next chapters, we will
deepen this concept to unveil more details of the aforementioned relations.

A more involved analogy to equilibrium quantum phase transitions, nonetheless, can
be done [86]. QPTs in equilibrium represent actually an important example where the
singular behavior of the ground state can influence an extended set of states within
the quantum critical region at nonzero temperature. An analogous picture can also
emerge for DQPTs, and can be made concrete and even measurable [87]. With this
respect, the Loschmidt amplitude probe the low energy properties of the time-evolved
state, since it is the projection of |ψ0(t)〉 on the ground state. In this sense, the
non-analyticities associated with DQPTs are a ground state property in close analogy
to conventional QPTs occurring at zero temperature. This interpretation, then,
leads to the following similarity: a phase diagram where the temperature-control
parameter space (T − r) is replaced by the energy density-time plane (ε − t), as
plotted in Figure 1.8. In this picture, the DQPT occurs along the line of vanishing
energy density ε = 0 at a critical time tc. While the non-analytic behavior can
disappear for excited energy densities ε > 0, where local observables acquire their
dominant contribution, there can still be an extended region controlled by the
underlying dynamical critical point, although the dynamical analog of a quantum
critical region for any DQPT is not proved to exist.
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Figure 1.8: Analogy between equilibrium quantum phase transitions and dynamical
quantum phase transitions, where the phase diagram is drawn as a function of
the energy density in place of temperature and time in place of the control
parameter. The dynamical counterpart of the quantum critical region has not
proven to exist in general. Figure based on [13].
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CHAPTER 2

Equilibrium properties of paradigmatic models

In this chapter, we introduce the zero temperature properties of the models we
will drive far from equilibrium in the course of this Thesis by means of the techniques
elucidated in Chapter 1. In particular, we will describe a one dimensional lattice of
spinless fermions with a unit cell composed by two sites, where two different effects
can be studied: In the Staggered potential (SP) model a staggered chemical potential
is taken into account, the Su-Schrieffer-Heeger (SSH) model is represented by a
staggered hopping amplitude between fermions in the same cell and in consecutive
different cells. In both the cases an energy gap in the spectrum can be opened. Then,
we will show the main features of a 1D quantum wire in presence of the Rashba
spin-orbit coupling and an external magnetic field, while, in the last part of the
chapter, we illustrate the phase diagram of the XY model.
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2.1. STAGGERED POTENTIAL MODEL

2.1 Staggered potential model
We begin this chapter by considering a one dimensional lattice of spinless fermions

at half filling, such that the number of sites is twice as large as the number of particles
in the system. The model represents a metal since its energy spectrum is gapless.
However, with the introduction of a staggered site potential, we can examine effects
of an alternating on-site modulation of the chemical potential (see Figure 2.1). The
real space Hamiltonian which describes this scenario reads

HSP = −J
L∑
j=1

[(
c†jcj+1 + h.c.

)
+ (−1)jδc†jcj

]
, (2.1)

where cj are annihilation operators for spinless fermions on the site j of the lattice,
we have set unit lattice spacing so that the chain length is L, and δ is the staggered
potential. Moreover, J is a measure of the kinetic energy and we adopt periodic
boundary conditions.

δ

δ

Figure 2.1: Effect of the staggered chemical potential on the fermions in the lattice, whose
unit cell is chosen to be formed by two sites labelled by the indexes A and B.

Upon introducing momentum representation via the Fourier transform

cj = 1√
L

∑
k

eikjck, (2.2)

and the spinor Ψ†k =
(
c†k, c

†
k−π

)
, we are able to obtain the Hamiltonian

HSP =
∑
k

Ψ†kHkΨk, (2.3)

with
Hk = −2J cos(k)σz + δσx (2.4)

and k ∈ (−π/2, π/2], due to the fact that the unit cell contains two lattice sites.
Here, σi, with i = x, y, z are the Pauli matrices. The diagonalization of Hk gives us
access to the energy spectrum

ε±,k = ±
√
δ2 + 4J2 cos2(k). (2.5)

As shown in Figure 2.2, the system is an insulator as long as δ 6= 0. The ground state
is given by the state where only the valence band is filled. Note that at δ � J , the
low-energy spectrum of the band insulator is the one of free massive Dirac fermions.
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2∆
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Figure 2.2: Energy spectrum of the chain of spinless fermions in the absence (left panel)
and in the presence (right panel) of the staggered chemical potential δ. Fermi
energy is set to zero, dashed lines represent the conduction band and solid
lines the valence band. Energy is measured in units of J .

2.2 Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a one-
dimensional lattice, with staggered hopping amplitudes, as shown in Figure 2.3. The
chain consists of N unit cells, each unit cell hosting two sites, one on sublattice A
and one on sublattice B. Interactions between the electrons are neglected, so that
the dynamics of each electron is described by a single-particle Hamiltonian, of the
form [88]

HSSH =
N∑
j=1

[
v
(
c†j,Acj,B + h.c.

)
+ w

(
c†j,Bcj+1,A + h.c.

)]
, (2.6)

where c†j,A and c†j,B are the fermionic creation operators on the unit cellm, respectively
to the sublattice A or B, v represents the intra-cell and w the inter-cell hopping
parameters. The SSH model describes spin-polarized electrons, and when applying
it to describe a real physical system, such as polyacetylene [89], we have to always
take two copies of it. We again use periodic boundary conditions.

Figure 2.3: Geometry of the SSH model. Figure adapted from [88].

By means of a Pauli matrices representation, it is possible to emphasize the separation
of the external degrees of freedom (unit cells) from the internal ones (sublattice
indexes). The Hamiltonian, on this basis, can be recast to

HSSH = v
N∑
j=1

c†jσ
xcj + w

N−1∑
j=1

c†j+1
σx + iσy

2 cj + h.c. (2.7)

where the unit cell spinor on site j is defined as c†j =
(
c†j,A, c

†
j,B

)
. Applying the

Fourier transform only on the external degrees of freedom, since the model is periodic
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in the Brillouin zone as
HSSH(k + 2π) = HSSH(k) (2.8)

and introducing the plane wave basis

c†k = 1√
N

N∑
j=1

eijkc†j , (2.9)

where k = 2πn/N and n = 1, ..., N , we obtain the momentum space Hamiltonian

HSSH(k) =
∑

k∈B.Z.
c†kHSSH(k)ck =

∑
k∈B.Z.

c†k

(
0 v + we−ik

v + weik 0

)
ck. (2.10)

The energy spectrum of the system is read off by means of the diagonalization of
the Hamiltonian HSSH(k). This gives

ESSH(k) =
∣∣∣v + we−ik

∣∣∣ =
√
v2 + w2 + 2vw cos k. (2.11)

In particular, as long as the hopping amplitudes are staggered, v 6= w, there is an
energy gap of amplitude 2δ (with δ = |v − w|) which, in the ground state, separates
the lower filled valence band from the upper empty conduction band. Without the
staggering, the SSH model describes a simple conductive chain, as mentioned in the
previous section. Although the dispersion relation is useful to read off a number
of physical properties of the bulk of the system, the SSH Hamiltonian becomes
particularly interesting when open boundary conditions are imposed. In the fully
dimerized limit, where one of the two hopping parameters is vanishing, the SSH
chain falls apart to a sequence of disconnected dimers and the energy spectrum is
flat.

Figure 2.4: Fully dimerized limits of the SSH model, where the chain has fallen apart to
disconnected dimers. In the top figure it is shown the trivial insulator, where
the dimer is in the same unit cell, while in bottom figure, which shows the
topological insulator, the dimer is between two contiguous unit cells. Figure
adapted from [88].

The two possibilities (shown in Figure 2.4), however, emerge and are intrinsically
different. In the v = 1, w = 0 case, which is called trivial, the dimers resides exactly
in the unit cell, while in the v = 0, w = 1 case, which is called topological, dimers
are between neighboring unit cells. In this configuration, there is one isolated site
per edge that contains one zero-energy eigenstate, as there are no onsite potentials.
Moving away from the very special limit of full dimerization, one observes that
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the energies of the edge states remain very close to zero and the wavefunctions of
the relative eigenstates are exponentially localized since the zero-energy modes are
situated at the center of the bulk band gap.

The distinction between the trivial insulator and the topological insulator, however,
is even more pronounced and can be analyzed in details by taking into account the
so-called chiral symmetry of the SSH Hamiltonian. To do so, let us go back to the
single-particle momentum space Hamiltonian introduced in Eq. (2.10). It can be
rewritten as

HSSH(k) = ddd(k) · σσσ, (2.12)

where the path of the endpoint of the vector ddd(k), as the wavenumber goes through
the Brillouin zone, is a closed path restricted to the dx, dy plane thanks to the
aforementioned symmetry. Therefore, it is possible to define an integer winding
number ν around the origin, which counts the number of times ddd(k) intersects a curve
that goes from the origin of the dx, dy plane to infinity and can be quantitatively
defined as the following integral:

ν = 1
2π

∫ π

−π

[
d̄̄d̄d(k)× d

dk
d̄̄d̄d(k)

]
z
dk (2.13)

with d̄̄d̄d(k) = ddd(k)/|ddd(k)| . For the SSH model, the winding number is either 0 or
1, depending on the parameters. In the trivial case, when the intracell hopping
dominates the intercell one (v > w), the winding number is ν = 0. In the topological
case (w > v), one obtains ν = 1.

(a) (b)

Figure 2.5: The endpoints of the vector ddd(k) as k goes across the Brillouin zone, for various
parameter settings in the SSH model. In (a), keeping w = 1, we gradually
decrease intracell hopping v = 0.5 to 0 so that the winding number changes
from 0 to 1, meanwhile the bulk gap closes and reopens. In (b), keeping v = 1,
we increase the intracell hopping w from 0.5 to 2.5, but avoid closing the bulk
gap by introducing a sublattice potential. At the end of the process there is no
sublattice potential, so chiral symmetry is restored and ν = 0. Figure adapted
from [88].

In order to have a change in the winding number ν of the SSH model, there
are two possibilities: closing the bulk gap by pulling the path of ddd(k) through
the origin in the dx, dy plane, or breaking the chiral symmetry by lifting ddd(k)
out of the plane and putting it back on the plane at a different position. This
is illustrated in Figure 2.5. Furthermore, the integer number characterizing an
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insulating Hamiltonian is dubbed a topological invariant, or adiabatic invariant, if
it cannot change under adiabatic deformations. With this respect, two insulating
Hamiltonians are said to be adiabatically equivalent or adiabatically connected if
there is an adiabatic deformation connecting them, that respects the important
symmetries. For example, in the phase diagram of the SSH model in Figure 2.6, the
two Hamiltonians corresponding to the two black points in the topological phase
(w > v) are adiabatically connected, as one can draw a path between them which
does not cross the gapless topological-trivial phase boundary (w = v). Interestingly,
thanks to the bulk-boundary correspondence, the winding number ν, which is derived
from the bulk Hamiltonian, is in one to one relation with the net number of edge
states [88].

Figure 2.6: Phase diagram of the SSH model. The winding number of the bulk momentum-
space Hamiltonian H(k) can be ν = 0 if v > w, or ν = 1 if v < w. This defines
the trivial (gray) and the topological phase (white). Two Hamiltonians in the
same phase are said to be adiabatically connected. Figure based on [88].
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2.3 Rashba spin-orbit coupled wire

The focus of this Section is on one dimensional spin-orbit coupled (SOC) systems
in the presence of an external magnetic field. These systems triggered theoretical
research since they allow to experimentally engineer quasi-helical liquids [90–92],
which in turns approximately exhibit the so-called spin-momentum locking: fermions
with opposite spin travel in opposite directions. In crystalline structures an effective
magnetic field can be experienced by electrons when they move in inhomogeneous
electric fields. In this scenario, the crystalline potential and all the contributions
due to confinement, impurities or external electric fields could provide such a
phenomenon. The effective magnetic field BBBeff , therefore, couples to the particle
magnetic momentum mmm giving rise to the spin-orbit coupling, described by the
Hamiltonian

HR ∼mmm ·BBBeff , (2.14)
which takes its name by Rashba and his coworkers [93]. For the purposes of the
present Thesis, we now focus on the 1D case. Here, the Rashba contribution to the
Hamiltonian is [91, 94]

HR = kxσσσ · ηηηSO, (2.15)
with kx the component of the momentum along the wire direction, x, and ηηηSO a
vector lying in the y − z plane which fully characterizes the SOC interaction. For
the sake of simplicity, we assume ηηηSO to be along the z axis, which we also choose
as the spin quantization axis. The most intriguing features of the model emerge
when an external magnetic field B is applied in a direction orthogonal to Beff , for
example along the wire direction, as shown in Figure 2.7.

Figure 2.7: Spin-orbit coupled quantum wire with spin-orbit interaction characterized
by the vector ηηηSO along the quantization axis z and subject to an external
magnetic field parallel to the wire and orthogonal to ηηηSO.

The single-particle Hamiltonian describing the model is thus

HSOC = k2
x

2m∗ + 1
2gµBBσx − ηSOkxσz, (2.16)

where m∗ is the particle effective mass, g is the electron g-factor and µB is the Bohr
magneton.
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In order to make our discussion more general, it is useful to introduce a typical
length scale of the system, ` , which can be for instance the length of the system,
and work with a dimensionless version of the above Hamiltonian,

HSOC = k2 +Bσx − αkxσz. (2.17)

Here, k is dimensionless, energy is measured in units of ε0 = 1/(2m`2) and we have
introduced the parameters

B = gµBB
2ε0

, α = ηSO
ε0`

. (2.18)

The energy bands of the system are

ε±,k = k2 ±
√
α2k2 +B2, (2.19)

and their behavior is shown in Figure 2.8 as a function of different values of the
external magnetic field B.

Figure 2.8: (a): Valence (blue curves) and conduction (red curves) energy bands ε±,k of
the single-particle Hamiltonian of Eq. 2.19, for different values of the external
magnetic field B. (b): Spin-resolved energy bands ε±,k, red is associated with
spin up electrons while blue to spin down ones. The chemical potential µ is
set inside the Zeeman energy gap.

In particular, for B < α2/2 the lower band ε−,k has a “mexican hat” shape
(with two minima at k = ±

√
k2

SO −B2/α2 and one local maximum at k = 0 ), while
for B > α2/2 it exhibits a single minimum at k = 0. This is due to the interplay
between the SOC interaction, which shifts the two spin degenerate subbands by
kSO = α/2 in opposite directions (to the left for spin down fermions and to the right
for spin up ones) and the magnetic field, which opens a Zeeman gap ∆ = 2B in the
single-particle spectrum at k = 0 .

In the presence of finite magnetic field the two bands have no definite spin polarization,
i.e. spin is no more a good quantum number. This can be clearly seen by investigating
the expectation value of the spin projections along the x, y, and z directions. It can
be shown that for example in the valence band these functions assume the following
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form

〈Sx〉−,k = 1
2

B√
α2k2 +B2

, (2.20a)

〈Sy〉−,k = 0, (2.20b)

〈Sz〉−,k = 1
2

αk√
α2k2 +B2

. (2.20c)

Their behavior is shown in Figure 2.9. In particular, the spin polarization of the
lower band rotates counter-clockwise from the k > 0 region to the k < 0 one. With
similar steps it is possible to show that the opposite holds for the upper band, i.e.
here the spin polarization rotates clockwise from k > 0 to k < 0. This can be
seen also in panel (b) of Figure 2.8. It is now clear why SOC wires allow for the
realization of quasi-helical liquids: For not too strong magnetic fields, if one sets the
chemical potential inside the gap at k = 0, the system possesses only two conducting
channels, one associated with right-moving electrons with (almost) spin up and the
other to left-moving electrons with (almost) spin down.

Figure 2.9: In Panel (a) is plotted 〈Sx〉−,k for different values of the magnetic field B: For
darker to lighter blue B = 0.1, B = 0.2, B = 0.5, and B = 2. In Panel (b) is
reported the same as in Panel (a) but for 〈Sz〉−,k.
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2.4. XY MODEL

2.4 XY model

The one-dimensional XY model in a transverse magnetic field is one of the
simplest non-trivial integrable model. Because of this, it has been extensively
studied and used to capture the universal behavior of low dimensional systems. This
interest is justified in part by analytical tractability and in part by the possibility
to implement it using optical lattices and cold Fermi gases [95–97]. It has a rich
two dimensional phase diagram characterized, at zero temperature, by two QPTs:
one belonging to the universality class of the XX model and the other is the phase
transition of the One-Dimensional Quantum Ising model.

The Hamiltonian of the XY model can be written as [98–100]

HXY = J
N∑
j=1

[(1 + γ

2

)
σxj σ

x
j+1 +

(1− γ
2

)
σyj σ

y
j+1 − hσ

z
j

]
, (2.21)

where σij with i = x, y, z are the Pauli matrices which describe spin operators on
the j-th lattice site of the spin chain, γ is the anisotropy parameter and h is an
external magnetic field. We take these parameters to be dimensionless and from now
on we set the energy-scale defining parameter J = −1 (focusing hence on the anti-
ferromagnetic case). Since the model is symmetric under both the transformations
h→ −h and γ → −γ, we will concentrate only on the portion of the phase diagram
where γ ≥ 0 and h ≥ 0. We will find two Quantum Phase Transitions (QPT). These
QPTs identify two different universality classes which are located on the line γ = 0,
the isotropy line, and at the critical magnetic field h = 1. The last transition is
identified as the Ising transition, from a doubly degenerate ground state (for h < 1)
to a single ground state system (for h > 1). The corresponding order parameter is
the magnetization along the x-axis.

In order to get a deeper insight into the Hamiltonian in Eq. (2.21), it is possible to map
the HXY spins onto spinless fermions by means of a Jordan-Wigner transformation.
In details

σ+
j =

j−1∏
l=1

(
1− 2ψ†lψl

)
ψj , (2.22a)

σ−j =
j−1∏
l=1

(
1− 2ψ†lψl

)
ψ†j , (2.22b)

σzj = 1− 2ψ†jψj , (2.22c)

where ψ†j creates a spinless fermion on the site j and σ±j = (σxj ± iσ
y
j )/2.

We observe that for non-vanishing anisotropy parameter γ, HXY conserves the
particle number parity even though their number is not conserved. As a consequence,
it is convenient to separate the Hamiltonian into two disconnected sectors

HXY = 1 + µN
2 H+ + 1− µN

2 H−, (2.23)
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where

µN =
N∏
j=1

(
1− 2ψ†jψj

)
=

N∏
j=1

σzj = ±1. (2.24)

The plus sign characterizes configurations with an even number of particles and
the minus sign the one with an odd number of them. Imposing periodic boundary
conditions σαj+N = σαj (α = x, y, z) on the spin operators implies that we have to
impose anti-periodic boundary conditions for the even sector, such that

ψj+N = −ψj for µN = +1, (2.25)

and periodic boundary conditions for the odd sector, such that

ψj+N = ψj for µN = −1. (2.26)

Consequently, the two parity-defined Hamiltonians in Eq. (2.23) can be both written
in the compact form

H± = −1
2

N∑
j=1

[
ψ†jψj+1 + ψ†j+1ψj + γψ†jψ

†
j+1 + γψj+1ψj − 2hψ†jψj

]
− hN

2 . (2.27)

The model is therefore mapped into two spinless theories, described by the same
Hamiltonian but with different boundary conditions and Fock spaces. In order to
diagonalize the fermionic Hamiltonian, it is convenient to pass into the Fourier space.
Necessarily, we have to consider the two sectors separately. However, for the aim of
this thesis, we will only focus on the case of a even number of particles 1.
Performing an anti-periodic asymmetric Fourier transform, we obtain

H+ = 1
2N

N−1∑
q=0

(
ψ†q, ψ−q

)( h− cos q −γ sin q
−γ sin q cos q − h

)(
ψq
ψ†−q

)
− hN

2 (2.28)

where q = 2π
N (n+ 1/2) and n = 0, ..., N − 1. The next step is to apply a Bogoliubov

rotation to each of the momenta involved, i.e.(
ψq
ψ†−q

)
=
(

cos θq sin θq
− sin θq cos θq

)(
χq
χ†−q

)
, (2.29)

where the Bogoliubov angle is found to be tan θq = γ sin q
h− cos q . With this definition,

the Hamiltonian can be written in terms of fermionic Bogoliubov quasi-particles,

H+ = 1
N

N−1∑
q=0

ε(q)
(
χ†qχq −

N

2

)
(2.30)

and describes free fermions with an energy spectrum given by

ε(q) =
√

(h− cos q)2 + γ2 sin2 q. (2.31)

1For a complete derivation, see [101].
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We are at this point able to locate the two different QPTs previously mentioned,
since they are identified as the points in the (γ, h) plane where the minimum of the
dispersion relation in Eq. (2.31) is zero. Indeed, these gapless points are characterized
by a scale-invariant behavior [101].

As a last remark, we emphasize that since the energy spectrum is always positive,
the ground state of the Hamiltonian within the even number of particles sector is
defined by

χq |GS〉+ = 0, ∀q, (2.32)

i.e. is the state devoid of Bogoliubov quasi-particles. From the point of view of
physical fermions, it can be shown that the ground state takes the form

|GS〉+ =
∏
q

[
cos θq + 1

N
sin θqψ†qψ

†
−q

]
|0〉 (2.33)

where |0〉 represents the vacuum state.
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CHAPTER 3

Non-monotonic response and light-cone freezing
in fermionic systems

In this Chapter, we present our original findings published in [14].
The details of the calculations, not shown here, are reported in Appendix A.

Nonequilibrium quantum physics is at the heart of most relevant applications
of solid-state physics, such as transistors and lasers [102–104]. More fundamentally,
one of the main difficulties in studying many-body nonequilibrium quantum physics
is represented by the unavoidable interactions that any quantum system has with its
surroundings. This coupling is difficult to control and causes an effectively nonunitary
evolution, even on short time scales [105]. The recent advent of cold atom physics [106,
107] has allowed not only the access of quantum systems characterized by weak
coupling to the environment, but also the engineering of Hamiltonians which show
nonergodic behavior [43, 108], the so-called integrable systems [109]. Moreover, in
the context of cold atom physics, it is possible to manipulate the parameters of
the Hamiltonian in a time-dependent and controllable fashion. The combination
of these three ingredients resulted in a renewed interest in the physics of quantum
quenches. To characterize the peculiar out of equilibrium steady states that such
quenched systems sometimes exhibit, the novel and powerful tool of the Generalized
Gibbs Ensembre (GGE) has been theoretically put forward and successfully applied
in several different contexts such as interaction quenches in Luttinger liquids [18,
19, 110] and magnetic field quenches in the one-dimensional (1D) Ising model [111,
112]. These are prominent examples in this direction. Furthermore, at the level of
free fermions, quantum quenches between gapped phases characterized by different
Chern numbers have also been studied [113]. However, not much attention has
been devoted to the study of quantum quenches between gapless and gapped states.
Indeed, the characterization of the main features of gapless-to-gapped quantum
quenches is still lacking. In this chapter we consider paradigmatic examples of
gapless 1D systems which get partially or completely gapped by a change in the
parameters of the Hamiltonian. Namely, a spin-orbit coupled (SOC) quantum wire
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in the presence of an applied magnetic field and a chain of spinless 1D fermions. For
the latter, the gapping quench mechanism is either induced by a staggered potential
(SP) or by the sudden switch-on of fermion-fermion interactions.

3.1 Quench from gapless to gapped states
In this section we show in detail the quench protocol for the different models under

study. In particular, following the notations introduced in Chapter 2, we consider
first a sudden variation of the Hamiltonian parameter ∆ tuning the amplitude of
the gap in the energy spectrum. This is done for both lattice and continuum models,
to show the generality of our results. The starting point, is the gapless ground state
where a crossing of the energy levels of the Hamiltonian H(t < 0) takes place: The
time-dependent Hamiltonian H can then be written as

H(t) =
∑
k

Ψ†k[Hk + θ(t)∆σx]Ψk, (3.1)

where Hk is a family of 2× 2 matrices indexed by the (quasi-) momentum k. Here,
σx is the first Pauli matrix in the usual representation, ∆ is the strength of the gap
opening mechanism and θ(t) is the Heaviside function. Finally, Ψ†k = (d†a,k, d

†
b,k) is a

two-component momentum resolved Fermi spinor.
In the case of the SOC wire, the indexes a, b represent the spin projection along the
quantization axis and ∆ is proportional to the applied magnetic field. In the case of
the SP model, the former labels left- and right-movers while ∆ is proportional to
the strength of the staggered potential.

Figure 3.1: (a) Dispersion relation of the continuum theory for the SOC quantum wire in
the absence of applied magnetic fields, for α = 1. (b) Dispersion relation for
the SOC quantum wire with α = 1 and B = 0.2.

To clarify the notation, we introduce the index i = 1, 2, 3, 4, which represents
respectively the 4 non-interacting models.
For the SOC quantum wire on the lattice we have

H(1)
k = 2[1− cos(k)]σ0 + α sin(k)σz (3.2)
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with σ0 = I2×2 and the gap opening time-dependent mechanism is given by the
magnetic field ∆(1) = B, which represents its component along the x-direction
perpendicular to the wire. Here, the lattice constant has been set to 1 and α
represents the spin-orbit coupling. The corresponding low-energy continuous theory
is obtained by replacing H(1)

k with

H(2)
k = k2σ0 + αkσz, (3.3)

with gap opening parameter ∆(2) = B. This approximation has been obtained by
expanding around the momentum point where the bands cross, namely k = 0.

We also discuss the SP model, with

H(3)
k = −2J cos(k)σz (3.4)

and ∆(3) the strength of the staggered potential. In this case, k is restricted to
positive values only, because of the spinor representation of the Hamiltonian due
to the introduction of a two-site unit cell into the lattice. To obtain a low-energy
theory for the SP model we expand around k = π/2, obtaining a Dirac cone with
velocity 2J with a gap opening term ∆(4) = ∆(3). The Hamiltonian density is, in
this case,

H(4)
k = −2Jkσz. (3.5)

From the dispersion relation point of view, the main differences between the two
models are related to the gap shape, since while for the SP model the instantaneous
energy spectrum is fully gapped for t > 0, for the SOC wire it is partially-gapped.
The avoided-crossing, indeed, appears only around k = 0, leaving substantially
unaffected the Brillouin zone edges. These features are shown in Figure 3.1 for the
continuum models.

As mentioned, we assume that, before the quench, the chemical potential is set
to zero and the system is in its zero-temperature equilibrium ground state. We
define |Φ(i)

0 (0)〉 as the system ground state at t = 0 of the corresponding pre-
quench Hamiltonian. We introduce the unitary transformation U (i)

0,k resulting in a
conduction/valence band representation of the diagonalized pre-quench Hamiltonian
satisfying

U
(i)
0,kH

(i)
k U

(i)†
0,k =

 ε
(i)
+,0,k 0
0 ε

(i)
−,0,k

 , (3.6)

with ε
(i)
−,0,k ≤ ε

(i)
+,0,k , ∀k. This transformation is particularly useful to write in a

simple form the ground state, which reads

|Φ(i)
0 (0)〉 =

k
(i)
2∏
k

(i)
1

(
U

(i)†
0,k Ψ(i)†

k

)
2
|0(i)〉, (3.7)

Here, |0(i)〉 is the vacuum of the i−th Hamiltonian, k(i)
1/2 are fixed by the condition

that only states with negative and zero energy are occupied, and the subscript 2
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means that the second component of the spinor has to be considered: Only states
in the valence band will be filled. Note that the choice of the occupation of the
zero energy modes is of no importance for the following. All results, indeed, will be
evaluated in the thermodynamic limit.
The values of the k(i)

1/2 can be calculated exactly, to find:

i = 1i = 1i = 1 i = 2i = 2i = 2 i = 3i = 3i = 3 i = 4i = 4i = 4

k
(i)
1k
(i)
1k
(i)
1 −2 arctan(α/2) −α 0 0

k
(i)
2k
(i)
2k
(i)
2 2 arctan(α/2) α π π

Note that in order to mimic the finite energy range, we have set the summation
range between 0 and π also in the low-energy expansion of the SP model, using
therefore a box-like cutoff in the momentum space.

In order to get the time evolution of the system for t > 0, we introduce a second
unitary operator U (i)

1,k related to the post-quench Hamiltonian, analogously to the
pre-quench case, given by

U
(i)
1,k[H

(i)
k + ∆(i)σx]U (i)†

1,k =

 ε
(i)
+,1,k 0
0 ε

(i)
−,1,k

 , (3.8)

with ε(i)−,1,k ≤ ε
(i)
+,1,k , ∀k. In the Heisenberg representation, the time evolution of the

systems is thus encoded in the Fermi spinor

Ψ(i)
k (t) = U

(i)†
1,k

 e−iε
(i)
+,1,kt 0
0 e−iε

(i)
−,1,kt

U (i)
1,kΨ

(i)
k (0) . (3.9)

We are now able to prove that, long after the quench, each of the four systems
under investigation reaches a steady state which is locally described by a GGE (see
Chapter 1.1). The latter is constructed by considering the set of the occupation
numbers n(i)

k,j=1,2 of the energy levels of the post-quench Hamiltonians, given by

n
(i)
k,j=1,2 =

(
Ψ(i)†
k U

(i)†
1,k

)
j

(
U

(i)
1,kΨ

(i)
k

)
j
. (3.10)

Here, the subscript j on the right-hand side means that the j-th component of the
spinor must be considered. The GGE density matrices are given by

ρ(i) = e
−
∑

k,j
λk,jn

(i)
k,j

Tr
{
e
−
∑

k,j
λk,jn

(i)
k,j

} . (3.11)

The Lagrange multipliers λk,j are fixed by the condition

〈Φ(i)
0 (0)|n(i)

k,j |Φ
(i)
0 (0)〉 = Tr

{
n

(i)
k,jρ

(i)
} .= 〈n(i)

k,j〉GGE , (3.12)

which also defines the average by means of the generalized Gibbs Ensemble.
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3.2 Observable non-monotonic behavior
We are now able to calculate the observables of interest in the different models

introduced. In particular, in this section, we focus on their expectation value in
the long time and thermodynamic limit, where they equilibrate to a non-thermal
steady state described by the GGE. With this respect, we choose the most direct
manifestation in the system of the parameter we are manipulating. We consider,
therefore, the following quantity

M (i) =
∑
k

〈Ψ(i)†
k σxΨ(i)

k 〉GGE/n
(i), (3.13)

with n(i) the total number of particles in the i−th system, which represents
the magnetization along the direction of the applied magnetic field in the case
of the SOC wire, while, for the SP model, it gives the amount of staggered
magnetization, a concept borrowed from the anti-ferromagnetic scenario. All
quantities can be evaluated analytically, and the resulting expressions can be found
in the Appendix A.3.

(1)∆ (3)∆

(a) (b)

Figure 3.2: (a) M (1) for the lattice SOC wire as a function of ∆(1) with α = 1; (b) M (3)

for the lattice SP model as a function of ∆(3) and J = 1. In both panels,
the blue solid lines represent the quenched long-time limit, the red dashed
lines show the equilibrium magnetization of the post-quench Hamiltonian and
the green dash-dotted lines represent the results evaluated with an effective
thermal model (see text).

Interestingly, all these quantities exhibit a maximum for a finite value of ∆ and
tend to the gapless value for ∆ → ∞, meaning that the stronger is the quench
intensity, the less observables are affected by the quench itself, and in the limit of
infinite intensity, magnetization does not feel the switching-on of the external field
at all. The results are shown by blue solid lines in Figures 3.2 and 3.3, as ∆(i) is
increased. In all cases, M (i) is non-monotonous, increasing up to a maximum before
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dropping to the pre-quench value. A qualitative interpretation of the phenomenon
is the following: For infinitesimal ∆(i) we do not expect any difference between
a sudden quench and an adiabatic switching on of the gap opening mechanism.
Thus, since in the latter case the magnetization equals the one associated with the
equilibrium regime of the post-quench Hamiltonian, the systems begin to magnetize.
On the other hand, for ∆(i) strongly dominating the kinetic energy, M (i) is conserved
and hence it remains at the value characterizing the pre-quench ground state. A
maximum for finite ∆(i) is thus expected.

(2)∆ (4)∆

(a) (b)

Figure 3.3: (a) M (2) for the continuum SOC wire as a function of ∆(2) with α = 1; (b) M (4)

for the continuum SP model as a function of ∆(4) and J = 1. In both panels,
the blue solid lines represent the quenched long-time limit, the red dashed
lines show the equilibrium magnetization of the post-quench Hamiltonian and
the green dash-dotted lines represent the results evaluated with an effective
thermal model (see text).

These results are in sharp contrast to the equilibrium zero-temperature scenario:
Here, see red dashed lines in Figures 3.2 and 3.3, M (i) is monotonous and increases
to its saturation value for ∆(i) →∞ when the average is taken with respect to the
ground state of the post-quench Hamiltonian, as one could expect.

A better and more involved physical comparison is shown by the green dash-dotted
lines in Figures 3.2 and 3.3. Since the quench necessarily inject energy into the
system, it has been conjectured that the key features of observables in the pre-
thermal steady state can be captured by an effective temperature description [111].
This temperature, which we denote as Teff , is obtained by evaluating the energy of
the initial state after the quench, and comparing it to a thermal ensemble average in
equilibrium at Teff . In particular, to do so, we have to numerically solve the equation

〈Φ(i)
0 (0)|H(i)

pq |Φ
(i)
0 (0)〉 =

Tr
{
e−βeff(∆(i))[H(i)

pq −µ(∆(i))n(i)]H
(i)
pq

}
Tr
{
e−βeff(∆(i))[H(i)

pq −µ(∆(i))n(i)]
} , (3.14)
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for the inverse effective temperature βeff(∆(i)). Here, H(i)
pq = H(i)(t > 0) is the post-

quench Hamiltonian and µ(∆(i)) is the Lagrange multiplier associated to particle
number conservation. The evaluation of the r.h.s. of Eq. (3.14) returns

n(i)

2π

∫ k̄(i)

−k̄(i)

[
ε
(i)
+,1,kf

(i)
+,k(βeff) + ε

(i)
−,1,kf

(i)
−,k(βeff)

]
dk, (3.15)

where
f

(i)
±,k(βeff) = 1

1 + eβeff(∆(i))[ε(i)±,0,k−µ(∆(i))]
(3.16)

is the Fermi distribution and and k̄(i) =
{

π if i = 1, 3
∞ if i = 2, 4 .

While for the SP model there is a good qualitative agreement, for the continuum
version of the SOC wire the disagreement is dramatic as the effective-temperature
magnetization saturates to a nonzero value and is monotonic. The mechanism behind
the nonmonotonous behavior of M (i), hence, cannot be an effective heating induced
by the manipulation of the external field.

B0 10

=
2

,k
±(2

)
f

4
1

Figure 3.4: Thermal occupation numbers of conduction (dashed lines) and valence (solid
lines) bands as a function of the magnetic field B, with α = 1 and k = 2.
The red curves represent the lattice SOC wire, while the blue curves the
continuum SOC wire.

This unexpected behavior can be related to the thermal occupation numbers of
valence and conduction bands, by a careful observation of their features as a function
of the external magnetic field for the particularly interesting case of the SOC wire,
shown in Figure 3.4. Assuming high values of the magnetic field the conduction
and valence bands become quasi-spin polarized in the x-direction. We observe,
in the continuum model, that the valence band is always much more populated
compared to the conduction one. Also states with large momentum k, which are
never involved during the quench, contribute to the magnetization. This leads to
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a non-zero magnetization for large B. On the contrary, in the lattice model, k is
constrained in the interval [−π, π). Therefore, once the valence band is full, the
only available states are the ones in conduction band: Increasing B results in an
increasing of the number of occupied states in the conduction band, and then in a
vanishing magnetization when f+,k ' f−,k.

3.2.1 Robustness in higher dimensions and for finite time quenches

To further support the idea that this mechanism is robust and represents a
generic feature, we have checked that the results showed are valid even with respect
to the rapidity of the quench. We have studied the continuum SOC wire model
when the magnetic field linearly ramps from 0 to a finite value. The results are
plotted in Figure 3.5 (a): For longer ramps, the asymptotic value of M (2) for large
∆(2) increases, but the non-monotonous behaviour of the magnetization persists.

The results are robust even in higher dimensions. We have considered the paradigmatic
case of a quench of a magnetic field applied to a Rashba-coupled two-dimensional
electron gas [114], whose Hamiltonian reads

H2D(t) =
∑
kx,ky

Ψ†kx,ky [(k
2
x + k2

y)I2×2 + α(σxky − σykx) + θ(t)Bσz]Ψkx,ky . (3.17)

Here, kx and ky are the two components of the momentum vector kkk, while Ψ†kx,ky is
the two-component fermionic spinor for spin up and down electrons. Also in this
case, the long-time magnetization shows a non-monotonous behaviour as a function
of the magnetic field, increasing to a maximum before eventually turning to the
pre-quench value for large quenches, as shown in Figure 3.5 (b).

0 10B

1

(2
)

M
−
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Figure 3.5: (a)Plot of M (2) for the lattice SOC wire as a function of ∆(1) = B and α = 1
for different quench protocols with increasingly long switch-on times τ : τ = 0,
sudden quench (blue, solid), τ = 1 (purple, dot), τ = 10 (green, dash-dot-
dot), τ = 100 (yellow, dash-dot), τ = ∞ -corresponding to the equilibrium
magnetization of the post-quench Hamiltonian red - (red, dash). (b) Plot of
M2D for the 2D Rashba-coupled electron gas as a function of B and α = 1.
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3.3 Klein-Gordon dynamics and light-cone freezing
To get a deeper understanding of the non-monotonic behavior of the observables,

we now focus on the time-evolution which bring the system to the previously described
non-thermal steady state. We consider the continuum models and introduce the
Green’s function

G(i)(x, t) = 〈Φ(i)
0 (0)|Ψ(i)†(x, t)σxΨ(i)(0, t)|Φ(i)

0 (0)〉, (3.18)

which is the direct generalization of the magnetization, since G(i)(0, t) = M (i)(t).
Starting from the Heisenberg equation of motion for the Fermi spinor Ψ(i)

k (t), it is
possible to show that, in the case of a sudden quench, G(i)(x, t) satisfies, for t > 0,
an inhomogeneous KG equation(

∂2
x −

1
4u2

i

∂2
t

)
G(i)(x, t) = λ2

iG(i)(x, t) + λiφi(x) , (3.19)

where λi = ∆(i)/ui (with u2 = α, u4 = J) and the source term is

φi(x) = i∂x〈Φ(i)
0 (0)|Ψ(i)†(x, 0)M(i)Ψ(i)(0, 0)|Φ(i)

0 (0)〉 , (3.20)

with M(2) = σz and M(4) = σy (see Appendix A.3 for the detailed derivation).
Equation (3.19) is solved with the pre-quench boundary-value condition G(i)(x, 0) = 0
and supports a steady-state solution for t→∞: It can indeed be explicitly checked
that

lim
t→∞
G(i)(0, t) = M (i). (3.21)

Therefore, analyzing the time evolution of G(i)(x, t) can shed light on the dynamics
leading to the non-monotonous magnetization. This is shown in Fig. 3.6 for the
SOC wire model, in the case of (a) small quench ∆(2) = 0.3 and (b) large quench
∆(2) = 2.

For a small quench, G(2)(x, t) exhibits the typical light-cone behavior discussed
in Chapter 1 and the information of the quench is therefore able to propagate
throughout the system. This leaves a finite "trail" in x = 0, which eventually
results in a finite value of M (2) at large times. On the other hand, the response of
G(2)(x, t) to the "shock" induced by a large quench is dramatically different. Indeed,
in this regime, G(2)(x, t) is characterized by weakly damped and almost stationary
oscillations both in space and in time, which strongly hinder the propagation of
the information through the system and lead to both a slowdown and an overall
suppression of the light cone. The Green’s function G(2)(x, t) oscillates around its
pre-quench initial one and reaches in the long-time limit a value very close to the
latter. This phenomenon can thus be interpreted as an effective freezing of the light
cone. The same qualitative behavior is observed also for the continuum SP model
(not shown). We thus attribute the emergence of the non-monotonous behavior of
M (i) as a function of ∆(i) to the competition between the propagating and freezing
regimes.
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Figure 3.6: (a) Light-cone propagation regime: Density plot of −G(2)(x, t) as a function of
x and t for ∆(2) = 0.3 and α = 1; (b) Light-cone freezing regime: Same as in
(a) but for ∆(2) = 2 and α = 1.
The Green’s functions are both evaluated in the thermodynamic limit.

The identification of a freezing regime for large quenches constitutes a crucial result
and - as we shall show in the last part of this chapter - is a quite universal and
robust feature of gap-opening sudden quench models. It represents a new concept in
the physics of quantum quenches: Even though the gap is not able to dynamically
introduce a length scale in the correlation functions, it dramatically influences the
light-cone propagation, eventually affecting the long time behavior of observables.

With the aim of proving the generality of the features of this phenomenon, and, in
particular, to show that it is not in any case an effect due to the thermodynamic
limit, we have performed simulations in a finite-size system with a small number
of electrons. Figure 3.7 (a) shows the case of the quench of a small magnetic field,
which represents the propagation regime. The light cone moves through the system
bouncing, as expected, at its boundaries. The case of large magnetic fields, as in the
infinite system, is dramatically different. Here, as it can be seen in panel (b), the
light cone is frozen and does not propagate. This behavior has to be expected every
time the quench-induced length scale becomes shorter than the size of the system.
Thus, for a given system size, one can always expect, in general terms, a freezing
regime for large enough quenching fields.

In order to get a picture of the effect, it is worth to notice that, in a simple mechanical
interpretation [115], the KG equation given in Eq. (3.19) represents the transverse
vibrations of a string driven by a force ∝ λi, embedded into an elastic medium
of elastic constant ∝ λ2

i . When the medium is slack, vibrations can propagate
almost without disturbance, while in a stiff medium the wave propagation is strongly
suppressed. The turning point turns out to be for λi ∼ 1, which corresponds to the
location of the maximum of M (i) shown in Figures 3.2 and 3.3. Therefore, when the
gap becomes comparable to the average kinetic energy scale, the freezing of the light
cone begins to occur. Thanks to Wick’s theorem, a similar behaviour characterizes
all higher order correlators. This issue is relevant, since some of those correlators
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Figure 3.7: (a) Light-cone propagation regime: Density plot of −G(2)(x, t) as a function of
x and t for ∆(2) = 0.3 and α = 1; (b) Light-cone freezing regime: Same as in
(a) but for ∆(2) = 2 and α = 1.
The Green’s function are both evaluated in a finite size system with 15 particles.

are either easier to numerically evaluate in the interacting systems we will analyze,
or experimentally more accessible.

3.4 Introducing interactions

We now turn back to the lattice model described by H(3)
k in Eq. (3.4) where,

instead of switching on a staggered potential, a sudden quench of the nearest-
neighbour interaction U and/or of the next-to-nearest neighbour interaction V is
performed. In this way, we are able to test the generality of our findings in presence
of fermionic interactions. In particular, the real space lattice Hamiltonian is defined
by

H = −J
∑
j

[(
c†jcj+1 + h.c.

)
+ U(t)njnj+1 + V (t)njnj+2

]
, (3.22)

where cj are annihilation operators of spinless fermions on the site j of the lattice
and nj = c†jcj is the density. For V = 0 the system is Bethe-Ansatz solvable [116],
and thus integrable, while for V 6= 0 no solution via the Bethe-Ansatz is known and,
moreover, is believed to be nonexistent. We consider quenches out of the initial
ground state for U = V = 0 and perform the time evolution with respect to a finite
U and possibly V . In the integrable scenario, with V = 0, it is known that for
U/J < 2 the system remains gapless after the quench, while for U/J > 2 a gap in
the energy spectrum opens at the Fermi energy (see [116] for more details and a
precise classification of phases by means of a phase diagram).

In contrast to the examples studied above, this interacting Hamiltonian cannot
be diagonalized analytically and we resort to numerical means. To this extent, we
employ the density matrix renormalization group (DMRG) [117, 118], a numerical
variational technique devised to obtain the low-energy physics of quantum many-
body one-dimensional systems with high accuracy. As a variational method, DMRG
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Figure 3.8: (a) Integrable interacting scenario: Plot of N for an interaction-quenched
fermion chain, as a function of U with V = 0 and J = 1; (b) Non-integrable
interacting scenario: Plot of N for an interaction-quenched fermion chain, as
a function of U with V = U and J = 1. In both panels, the blue solid lines
represent the quenched long-time limit, while the green dash-dotted lines show
the results evaluated with an effective thermal model (see text).

is an efficient algorithm that attempts to find the lowest-energy matrix product state
wave-function of a Hamiltonian. In practice, the accuracy of DMRG simulations
is controlled by the so-called bond dimension χ. By increasing χ, and with it the
numerical effort, we achieve converged results, which are "numerically exact". In
every simulation we choose χ such that no changes of the results can be observed on
the scales of the respective plots if it is further increased.

To obtain numerical results we need to

1. prepare the ground state of the noninteracting (U = 0 = V ) system,

2. perform the time evolution with respect to finite U and possibly V ,

3. calculate the finite temperature canonical ensemble (as a reference), with
respect to finite U and possibly V ,

Note that the third point is independent of the former two. All of these are routinely
coded in the limit of infinite lattice size n → ∞ [119, 120], using the language of
matrix product states (MPS) [118]. Within the DMRG, we have access to finite
times only, as the results are obtained by explicit forward time evolution. To
push the simulations to larger time scales we employ the ideas of Ref. [121], using
extrapolation to obtain the long time limit behavior. Of course, like in any finite time
simulation, we cannot exclude that the results achieved are not truly steady and that
on some very large time scale another relaxation mechanism sets in. However, we
can access time scales on which typical observables appear approximately relaxed on
the scale of their respective plots. Either way the results reported here are then, at
least, valid on an extensively long time scale, which would be relevant to experiments.
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Figure 3.9: (a) Light-cone propagation regime: Density plot of −N (i, t) as a function of i
and t for U = 2, V = 0 and J = 1; (b) Light-cone freezing regime: Same as in
(a) but for U = 16, V = 0 and J = 1.

After the technical analysis of the numerical methods, we can focus on the observable
features. Since the model is invariant under rotations in the spinor space, we analyze
the long-time stationary limit N of the correlation function N (1, t), defined by

N (i, t) = 〈(n0(t)− 1/2)(ni(t)− 1/2)〉0 − 〈(n0(0)− 1/2)(ni(0)− 1/2)〉0, (3.23)

where ni(t) is the time-resolved occupation number of the i-th site and 〈·〉0 represents
the average with respect to the pre-quench ground state. Results are shown in
Figure 3.8 (a) for the integrable case V = 0 (blue solid line). The quantity N ,
explicitly defined as

N = lim
t→∞
N (1, t), (3.24)

follows the same qualitative behaviour of the magnetization in the non-interacting
models, rising for small quenches up to a maximum value. As the gap size increases
over the crossover point, N begins to decrease and tends to the pre-quench value for
very large U . Even when integrability is lost, as is the case of Figure 3.8 (b) (V = U ,
solid line), the qualitative picture remains, on the accessible time-scales, the same.
In both cases, a description in terms of an effective temperature (green dash-dotted
lines) fails to reproduce the results.

Also in this model a competition between a propagation and a freezing regime
for the light cone occurs. To show this fact, we consider the correlation function
N (i, t), whose density plot as a function of the site index and time is shown in
Figure. 3.9. For small quenches with U ≤ 2J one clearly observes a propagation of
the quench information spreading through the system. On the other hand, large
quenches with U > 2J display a sharp freezing of the light cone. We have proved
that, remarkably, the freezing of the light cone is a generic feature of systems subject
to quenches opening large gaps in the spectrum.
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3.5 Summary
In summary, a non-monotonic behavior of observables characterizes a wide range

of gapless-to-(partially) gapped quantum quenches, both for sudden and non-sudden
protocols, integrable and non-integrable models and not only in one spatial dimension.
It is the hallmark of a peculiar phenomenon, namely the freezing of the light cone
which conveys the quench information through the system. This freezing results
in a state described by a GGE which differs from effective thermal states, in some
cases even dramatically, thus providing an experimentally accessible way to test the
GGE physics. In non-interacting models, the freezing of the light cone is captured
by a KG equation, which provides an intuitive interpretation of the behaviour
of the system in terms of a simple continuum mechanical model. As a limit for
the universality of the physics described, we point out that we do not expect to
observe the effects when the gap is opened by merging of crossings, as relevant, for
example, for Weyl semimetals [122], or for the models discussed in Refs. [123, 124].
A static fermion-fermion interaction, which could be taken into account by means of
bosonization [125] or DMRG [117, 118] for instance, is expected to renormalize the
gap to larger values [94], so we expect the phenomenon to persist with a shifted and
renormalized maximum [126].
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CHAPTER 4

Effective metal-insulator non-equilibrium phase transition

In this chapter, we present our original findings published in [15].
The details of the calculations, not shown here, are reported in Appendix B.

Recently, technological advances in the experimental control of ultracold gases [43,
107] and trapped ions [127] allowed to probe the time evolution of isolated quantum
systems. Since, in such systems, the time evolution is unitary, no information about
the initial state is lost. However, most often, this information spreads over the whole
system, so that, at long times, it is challenging to recollect it. The origin of this
behavior lies in the Eigenstate Thermalization Hypothesis (ETH) [54, 55], that,
qualitatively speaking, states that, in the thermodynamic limit, the expectation
value of local observables over any eigenstate with finite energy density can be well
approximated by the average over a properly defined thermal density matrix. In
this sense, most isolated systems thermalize. A violation of ETH is provided by
many-body systems that have an extensive amount of local or quasi-local conserved
quantities. In this case, in fact, the local information stored in the initial wavefunction
is preserved locally by the time evolution. Consequently, systems exhibiting such a
behavior can have interesting applications in the field of quantum information [128].
A first class of systems with quasi-local conserved quantities are many-body localized
systems [129, 130]. In this case, the quasi-local integrals of motion arise due to
real space localization and are robust with respect to weak perturbations. In these
systems, there is no simple guideline for building a sensitive effective density matrix
for the local observables. A second class of such systems is given by the so-called
integrable models [109]. In this case, while the violation of ETH is not stable with
respect to generic perturbations [131], it is indeed possible to build a statistical
ensemble capturing the long time expectation value of the local observables. Such an
ensemble is called generalized Gibbs Ensemble (GGE). Conceptually speaking it is
obtained by maximizing the entropy while taking into account the constraints posed
by the local conserved quantities. From the formal point of view, the GGE density
matrix could be an exceptionally useful tool, since concepts such as non-equilibrium
phase transitions, introduced in Chapter 1, in integrable systems could be made
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universal, in this framework, in the very same way transitions in equilibrium are
described within the canonical ensemble. However, GGE density matrices are in
general difficult to obtain and no systematic link between them and non-equilibrium
phase transitions has been performed.

In this chapter, we begin to address this issue in two paradigmatic cases: The
Su-Schrieffer-Heeger (SSH) model 2.2, that represents a starting point for the study
of topological phases of matter and the appearance of fractional charges in one
dimension, and the transverse field one-dimensional quantum Ising (QI) model,
whose simplicity has opened the way to countless insights in the theory of quantum
quenches [39, 78]. Moreover, the QI model can be mapped onto the Kitaev chain
and hence encodes the physics of the so called Majorana bound states [132].

4.1 Quantum quench in the SSH model

First, we consider the steady state of a quenched Su-Schrieffer-Heeger (SSH)
model. Quenches from an initial Hamiltonian with a hopping imbalance δ0 to a final
one with δ1 are considered (see Chapter 2). As we will show in the following, of
particular interest are the quenches which pass trough the gapless regime.

The momentum space Hamiltonian for the quenched SSH model, on a finite ring
with N unit cells and lattice constant set to one, is given by (see Chapter 2)

H(t) =
∑
k

Ψ†k {σx [w + w cos(k) + δ(t)] + wσy sin(k)}Ψk . (4.1)

Here, Ψ†k = (c†k,A, c
†
k,B) is a Fermi spinor, A and B the two sublattice labels and

k = 2πj/N with |j| ≤ N . Furthermore, σi are Pauli matrices and w is the
hopping energy. The hopping imbalance term δ(t), which in equilibrium determines
the gap, encodes the quench details: For now, we consider a sudden change
δ(t) = δ0θ(−t) + δ1θ(t), with θ(t) the Heaviside step function.

The SSH Hamiltonians for t < 0(µ = 0) and t ≥ 0(µ = 1) are diagonalized
as

Hµ =
∑
k

εµ,k
[
d†µ,c,kdµ,c,k − d

†
µ,v,kdµ,v,k

]
. (4.2)

Here dµ,ν,k are fermionic operators with ν = c, v, which correspond respectively to
the conduction and valence bands, and

εµ,k =
√
δ2
µ + 2(w2 + wδµ)[1 + cos(k)] (4.3)

represents the energy spectrum. In the initial state (t < 0), the system is prepared in
the ground state |G0〉 of H0. Since we are considering half-filling, the states occupied
before the quench corresponds to the completely filled valence band, i.e. only states
with negative energy are occupied.

In the thermodynamic limit, the quantum average of local observables

O(t) = 〈G0|O(t)|G0〉 (4.4)
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approaches a steady value Ō = O(t → ∞) with a typical ∝ t−1 power-law decay.
Since the system is integrable, this steady value can also be obtained as the trace

Ō = Tr{O(0)ρG} (4.5)

over the GGE density matrix constructed via the conserved charges Nν,k = d†1,ν,kd1,ν,k
as

ρG = e
−
∑

ν,k
λν,kNν,k

ZG
, (4.6)

with
ZG = Tr

{
e
−
∑

ν,k
λν,kNν,k

}
, (4.7)

where λν,k = log(nν̄,k/nν,k), with nν,k = 〈G0|Nν,k|G0〉 and ν̄ = v/c if ν = c/v.

A physically interesting way of building the Lagrange multipliers λν,k giving the
GGE density matrix, in the case of sudden quench from the ground state, is by the
transformation

U1
0,k = ei

~Dk·~σ, (4.8)

connecting post-quench Fermi operators d1,ν,k to the pre-quench ones d0,ν,k, with ~σ
the vector of Pauli matrices. Explicitly, the norm

| ~Dk| = arctan
{√

4− (1−∆k)2

1−∆k

}
(4.9)

plays a central role in defining the behavior of the quench. In fact, the function ∆k

is such that (cf B.22, B.23)

nc/v,k = 1±∆k

2 , λc/v,k = ± log
(1−∆k

1 + ∆k

)
, (4.10)

and thus directly controls the GGE.

At this point, we can focus on the functional form of the occupation numbers,
or, equivalently, of ∆k, in the Brillouin zone (BZ) (see Figure 4.1). One finds
|∆k| ≤ 1 with 0 ≤ | ~Dk| ≤ π/2. Furthermore, |∆k| = 1 only holds true for k = 0,±π.
In particular one has

∆0 = −sign(δ0 + 2w) sign(δ1 + 2w), (4.11)

and
∆±π = −sign(δ0) sign(δ1), (4.12)

with sign(x) = |x|/x the sign function. This means that when ∆k = −1, one
finds U1

0,k = σ0 and the quench does not affect the populations, while for ∆k = 1
the transformation U1

0,k = iσy induces a swap of the c, v states. The value of
∆k at k = 0,±π, hence, is constant and insensitive to variations of the quench
parameters provided they remain within one of the nine regions bounded by the 4
lines δµ = 0,−2w with µ = 0, 1, shown in the phase diagram in Figure 4.3 and which
correspond to the equilibrium quantum critical points. Their footprint, as we are
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going to comprehensively characterize in the last part of this chapter, remain then
visible also in non-equilibrium features that show up both in the quench induced
transformation and in the observables behavior in the long time limit, once the
equilibration process has taken place.

k

k∆

-1

1

ππ-

Figure 4.1: Plot of the function ∆k in the Brillouin zone. Here we have considered a
quench from an initial gap δ0 = w to δ1 = 0.5w (blue line), δ1 = 0.1w (green
line), δ1 = 0 (black line), δ1 = −0.5w (red line) and δ1 = −w (orange line).

On the other hand, indeed, crossing one of the boundaries results in a sharp, non-
analytical feature in ∆k. Thus, the center and edges of the Brillouin zone act for
the quench as fixed points, whose character is determined by the quench parameters.
A detailed study of ∆k (see Appendix B) allows us to identify four non-contiguous
regions out of the nine defined in Figure 4.3: Here, when ∆0∆π < 0, a non-trivial
inversion of population, characterized by nν,0nν̄,±π = 0, occurs. This inversion of
population also gives rise to a DQPT, which we observe in the time evolution of
the Loschmidt echo of the system. This feature, however, does not seem to have
consequences into the dynamics of observable quantities.

4.1.1 Population inversion and DQPTs

In this Section, we focus on the population inversion that can happen for a
class of quantum quench protocols, in particular when the manipulation brings the
system from one phase to another, crossing at least one equilibrium critical point.
Furthermore, we unveil the relation between the populations and the dynamics of
the system.

In order to gain a deeper understanding of the aforementioned relation, it is useful
to parameterize the Hamiltonian in Eq. (4.1) by means of a vector ~dk, such that

H(t) =
∑
k

Ψ†khk(t)Ψk, hk(t) = ~dk · ~σ (4.13)

with
~dk(t) =

{
~d0
k for t < 0
~d1
k for t ≥ 0

. (4.14)
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The Loschmidt amplitude, introduced in Eq. (1.19) and which we recall to be

G(t) = 〈ψ0|ψ0(t)〉 = 〈ψ0|e−iH(t>0)t|ψ0〉 , (4.15)

gives the overlap of the time evolved state with the initial pre-quench state, which
reads

|ψ0〉 =
π∏

k=−π
d†0,v,k|0〉. (4.16)

Following a sudden quench, it can be expressed in the compact form [133]

G(t) =
∏
k∈BZ

[
cos(tε+,1,k) + id̂0

k · d̂1
k sin(tε+,1,k)

]
, (4.17)

where d̂ik = ~dik/|~dik| denotes the unit vector in the direction of ~dik and |~dik| = ε+,1,k.
Furthermore, it can be shown that

d̂0
k · d̂1

k = nc,k − nv,k = ∆k, (4.18)

so that the relation between the Loschmidt amplitude and the conserved quantities
used to construct the GGE, or, equivalently, the function ∆k, becomes clear.

With this respect, we study the associated rate function in the thermodynamic
limit, which reads

g(t) = − lim
N→∞

1
N

lnG(t) = − 1
2π

∫ π

−π
ln
[
cos(tε+,1,k) + id̂0

k · d̂1
k sin(tε+,1,k)

]
dk.

(4.19)
Within the model here under consideration, this function shows a non-analytic
behavior if and only if there exists at least one point in the BZ where conduction
and valence bands are equally filled, so that ∆k = 0 and, at the same time, d̂0

k is
perpendicular to d̂1

k.

As anticipated in the previous section, this condition is satisfied only when a
swap of the c, v states is induced by the quench. Consequently, a quantum critical
point has to be crossed during the quench protocol. This behavior can be observed in
Figure 4.2, where the functional form of the occupation numbers as well as the kinks
in the Loschmidt amplitude rate function are shown. The latters, when present,
show up at specific times: every time the cosine in Eq. (4.19) vanishes, the function
g(t) is non-analytic. In particular, as shown in 4.2 (b), one finds that the sequence of
critical times, which are the dynamical counterparts of the quantum critical points,
is given by

tn = (2n+ 1)π
2ε+,1,k̄

(4.20)

where k̄ is given by the solution of the equation ∆k = 0. Note that, in the model
under study, at least one equilibrium quantum critical point has to be crossed, and
the starting or ending precisely on the gapless state is not sufficient to obtain a
non-trivial population inversion as well as a DQPT.
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Figure 4.2: (a) Plot of the conduction (dashed lines) and valence (solid lines) bands
occupation numbers given in Eq. (4.10) after the quench in the Brillouin
zone. (b) Plot of the Loschmidt amplitude associated rate function g(t) in the
thermodynamic limit: kinks appear if an equilibrium quantum critical point is
crossed in the quench protocol. Red dashed lines represent the critical time
sequence tn, for the first three terms.
In both panels, we consider a sudden quench from δ0 = w to δ1 = 0.5w (blue
line), δ1 = 0 (black line) and δ1 = −0.5w (red line).

4.1.2 Metal-insulator transition

Having investigated the dynamical properties in the previous section, we get
back to the quench induced transformation given in Eq. (4.8). As mentioned, this
transformation is directly linked to the GGE, since, in the sudden case f, one has

n−1
ν,k = 1 + eξν,kβ

∗
, (4.21)

where ξν,k = wλν,k and β∗ = w−1 is an arbitrary, non-zero, inverse temperature.
In other words, one can reinterpret the GGE density matrix as the Grancanonical
ensemble of free fermions with Hamiltonian

H̄ =
∑
ν,k

ξν,kd
†
1,ν,kd1,ν,k, (4.22)

inverse temperature β∗, and zero chemical potential. Combining the above analysis
and Eq. (4.10) one can conclude that when a non-trivial inversion of population of the
bands εν,k of the post-quench Hamiltonian is present, the effective bands ξν,k cross
zero energy and thus have a metallic character, while no crossing occurs in all other
cases and the bands ξν,k have an insulating character. When the quench parameters
cross one of the boundary lines described above, thus an effective metal-insulator
transition (MIT) in H̄ occurs. The structure of the effective energy bands is shown
in the nine different tiles of Fig. 4.3. We stress here that the MIT is an effective
one showing up in the GGE, i.e. in the non-equilibrium steady state following a
quantum quench: How this reflects in physically relevant (local) observables is a
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priori unclear, but in our case we will show explicitly in the following that its imprint
is quite pronounced.

Figure 4.3: Bottom: Density plot of M̄ as a function of δ0, δ1 for a sudden quench and
the corresponding typical effective band structure ξν,k (see text). Top: plot of
M̄ as a function of δ1 for δ0 = 2w. Here, δµ is in units w.

We now analyze how the effective MIT influences observables of interest. We start
by the average level of dimerization M̄, given by the expectation value of

M = Ψ†xσxΨx, (4.23)

with Ψx =
∑
k e

ikxΨk/
√
L. Note that translational invariance implies that its

expectation value is independent of the position. The main panel of Fig. 4.3
shows a density plot of M̄ as a function of δµ. Crossing any of the transition
lines δµ = 0,−2w, a kink in M̄ is encountered. The top panel shows results for
δ0 = 2w > 0: the discontinuity in ∂δ1M̄ at δ1 = 0,−2w is evident. These kinks
represent a signature of the occurrence of the effective MIT. Their origin is the
non-analytic dependencies of the populations at k = 0,±π combined with the fact
that, in the thermodynamic limit, the density of states of such points diverges
as the curvature of ε1,k vanishes at these points. Several other quantities show a
similar behavior. Given the presence of the effective MIT in the GGE, we inspect
the fluctuations of the space-averaged effective “current" J0 =

∑
ν,k (∂kξν,k)Nν,k.

Such fluctuations are defined using the phase velocity associated to the effective
bands [134]. In the steady limit one has σ̄0 = 〈J2

0 〉 (see Appendix B.5.2). This
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Figure 4.4: (a) Plot of σ̄0 (units w2); (b) Plot of σ̄ (units w2) ; (c) Plot of S as a function
of δ1 (units w) for δ0 = 2w.

quantity is shown in Fig. 4.4(a) for δ0 > 0. For δ1 = 0 (and δ1 = −2w) it diverges
∝ |δ1|−1 (and ∝ |δ1 + 2|−1). Furthermore, fluctuations are larger in the effective
metallic phase, while they tend to vanish in the insulating one, as one would expect
[134]. Although σ̄0 is not a directly accessible quantity, signatures of the effective
MIT are present also in the steady state fluctuations σ̄ = 〈J2〉 of the space-averaged
physical current J =

∑
k (∂kεν,k)Nν,k, shown in Fig. 4.4(b). In contrast to the

current fluctuations in the effective picture though, here no marked differences in the
magnitudes are found in the different phases. However, kinks occur at the boundaries
between the phases. As a third example, Fig. 4.4(c) shows the thermodynamic
entropy (see Appendix B.5.2) S̄ of the system for δ0 > 0: It is largest in the metallic
phase and displays kinks for δ1 = 0,−2w. This quantity is particularly interesting,
since it is intrinsic to thermodynamics.

4.1.3 Physical interpretation of the non-analyticities

We want to give a physical interpretation of the non-analyticities we observe in
the observables evaluated within the GGE picture. Since the equilibrium state of
the SSH model has two quantum critical points (QCPs) for δ = 0 and δ = −2w,
we want to show that the non-analiticities are not only due to the presence of the
quantum phase transition in the equilibrium model, but also to the time evolution
induced by the quench in the system.
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To do so, we study both the behavior of the eigenvectors and the eigenvalues of the
Hamiltonian which describes the system: together they should give us a complete
characterization of the problem.

We start by considering the overlap of the time evolution of the initial state with
the ground state of the post-quench Hamiltonian H1 (a sort of modified Loschmidt
Echo):

Lgs(t) = |〈ψ1|ψ0(t)〉|2 = |〈ψ1|e−iH1t|ψ0〉|2 (4.24)

and the overlap with the state with the maximum energy of the post-quench
Hamiltonian H1, where only the conduction band is filled

Lme(t) = |〈ψ̄1|ψ0(t)〉|2 = |〈ψ̄1|e−iH1t|ψ0〉|2 (4.25)

with

|ψ1〉 =
π∏

k=−π
d†1,v,k|0〉, (4.26)

|ψ̄1〉 =
π∏

k=−π
d†1,c,k|0〉 (4.27)

and |0〉 represents the vacuum state. Both Lgs and Lme are time-independent
functions.

gsL
meL

1δ
0

1

5-5

Figure 4.5: Plot of Lme (blue line) and of Lgs (red line) as a function of δ1(units w) for
δ0 →∞ in the thermodynamic limit.

In fig. 4.5 are shown these two quantities as a function of δ1 for δ0 → ∞. The
quantity L = Lme + Lgs goes to one in the two insulating phases, while vanishes in
the metallic one. Moreover it is non-analytic in the QCPs, where the post-quench
Hamiltonian is gapless. In this sense, only when the effective Hamiltonian H̄ in
Eq. (4.22) has at least one crossing point, it is possible to have a spectral transfer
between the bands.
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Note that, interestingly, even if we are performing a sudden quench, the non-
equilibrium stationary state is very similar to the post-quench Hamiltonian ground
state (if δ1 > 0) or to the post-quench Hamiltonian maximum energy state (if
δ1 < −2w).

We can now study the behavior of the average of H1 on the GGE density matrix
〈H1〉0, i.e. the average of the post-quench Hamiltonian performed over the pre-quench
ground state, with respect to the energy of the post-quench Hamiltonian ground
state 〈H1〉1 or to the post-quench Hamiltonian maximum energy state −〈H1〉1.

1δ 5-5
-40

40

0〉1H〈

1〉1H〈-

1〉1H〈

Figure 4.6: Plot of 〈H1〉0 (blue line), 〈H1〉1 (black solid line), and −〈H1〉1 (black dashed
line) as a function of δ1(units w) for δ0 →∞ in the thermodynamic limit.

In this sense (see Fig. 4.6), we compare 〈H1〉0 with the quantity W = 〈H1〉1(Lgs −
Lme), which weighs the two energies with the respective probability L of being
in that state. In addition to the previous findings, this tells us that only excited
states very close in energy to the ground state (if δ1 > 0) or to the post-quench
Hamiltonian maximum energy state (if δ1 < −2w) are involved when we quench in
the insulating phase. On the contrary, when δ1 is in the metallic phase, both Lgs
and Lme are vanishing, so the main contribution has to be given by the other excited
states we are not considering. In particular, since 〈H1〉0 ∝ δ1, in this parameter
region the state of the system after the quench seems to be a superposition of states
near E ' 0, where the density of state D(E) is very peaked.

4.2 NEQPT robustness

As shown above, signatures of the effective MIT occur in a vast array of quantities.
It is important, however, to establish how robust the results are. We will consider
M̄ as an example but the conclusions apply to all quantities discussed above. We
begin by discussing deviations from the thermodynamic limit. With a finite number
of lattice sites, averages do not converge to a steady value for long time but oscillate
with a finite recursion time: the GGE hypothesis fails altogether. Figure 4.8(a)
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1δ 5-5
-40

20
0〉1H〈

W
0

Figure 4.7: Plot of 〈H1〉0 (blue line) and of W (red line) as a function of δ1(units w) for
δ0 →∞ in the thermodynamic limit.

shows the quantum and time average over a period ofM(t) near δ1 = 0. Dashed and
dotted curves, calculated with a finite number of lattice sites, show that kinks are
smoothed out as the number of sites decreases. This confirms the thermodynamic
limit as a crucial ingredient for the non-analyticities to arise in the GGE predictions.
Interestingly, though, even for N as small as 20 one can still observe a distinct
imprint of the non-analyticities found for N →∞ in the time-averaged M̄.

Furthermore, the features are robust in the case of a thermal preparation of the
initial state1. Figure 4.8(b) shows M̄ obtained for an initial state at different
temperatures T : although the curves are quantitatively different, with a global
suppression of the dimerization, non-analyticities are always present. The origin of
the robustness is that, for an initial temperature T , one has nc,k−nv,k = fT,k∆k with
fT,k = sinh(ε0,k/kBT )/[1 + cosh(ε0,k/kBT )] > 0 (cf B.29). This result means that
the effective MIT occurs in the same parameter regions as in the T = 0 case. Note
that the robustness of the non-analyticity with respect to temperature is particularly
intriguing since it is not present in the equilibrium QPT characterizing the model.

We then consider the case of a quantum quench of finite time duration τ , where the
quench protocol is described by a linear ramp. Typical results are shown in Fig. 4.8(c).
The non-analytic behavior persists, although results again differ quantitatively. This
is due to the robustness of the effective MIT, that can be demonstrated by showing
that the fixed points of the quench transformation only differ by an additional phase
shift with respect to the case of sudden quench (see Appendix B).

Finally, we address the effects of static inter-particle interactions. We consider
here a very similar model which - in the absence of interactions - displays the same
qualitative behavior as the one discussed so far, but it is easier to simulate using
density matrix renormalization group (DMRG) techniques. The Hamiltonian is

1No contact with an external thermostat is assumed during or after the quench.
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-

Figure 4.8: Plot of M̄ as a function of δ1 (in units of w) for different (a) number of lattice
sites: solid the thermodynamic limit, dashed N = 80, dotted N = 20. The
last two curves are averaged over a period - see text; (b) temperature of the
initial state: solid T = 0, dashed T = 5, dotted T = 20; (c) duration of the
quench ramp: solid τ = 0, dashed τ = 2, dotted τ = 10; (d) Strength of the
fermion-fermion interaction - see text: solid U = 0, dashed U = 1, dotted
U = 2, T = 0. Here, δ0 = 5w in panels (a-c) and δ0 = w in panel (d), T is in
units of wk−1

B with kB the Boltzmann constant, τ is in units of ~w−1 and U
is in units of w.
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given by

H(t) =
N∑
i

wc†ici+1 + h.c.+ δ(t)(−1)ini + Unini+1 (4.28)

and we consider the expectation value M̄ = 〈n0 − 1/2〉 as an observable. Here,
ci annihilates a spinless fermion on lattice site i. The model thus describes
spinless fermions on a one-dimensional chain with staggered field δ(t) and nearest-
neighbor interaction U . At time t = 0 the staggered field is subject to the quench
δ(t) = δ0θ(−t) + δ1θ(t), abruptly changing its value from δ0 to δ1. This model
can be simulated with relative ease using standard DMRG techniques based on
matrix product states [117, 118, 121]. The time scales which can be reached are
bound within this approach by the entanglement growth of the system and, thus,
the steady state behavior has to be read off at large but finite times. For U = 0
strong oscillations in the dynamics after the quench render such an extrapolation
difficult, but for this particular parameter value exact methods can be employed to
extract the asymptotic behavior. At finite U these oscillations are strongly damped
out allowing for a straightforward extrapolation to long times (see Appendix B.6).
The inclusion of the interaction term makes the model non-integrable, which in turn
is believed to destroy the GGE picture. Fig. 4.8(d) shows results for different values
of the interaction strength: non-analyticities are washed out, as would be expected.

4.3 Non-analyticities in the Ising model

In this section, we consider the transverse field QI model, that is, the XY model
with vanishing anisotropy parameter. We consider sudden quantum quenches, so
that h(t) = h0θ(−t) + h1θ(t), and we impose the system to be in the ground state
|0I〉 for t < 0, and to evolve unitarily for t > 0. Note that the state |0I〉 is uniquely
defined, even in the thermodynamic limit, since we consider h0 > 1.
In the even parity sector, relevant for the case inspected since we perform a quantum
quench from the ground state at h0 > 1, the diagonal forms of the pre/post quench
Hamiltonians H(i)

I (i = 0/1 respectively) read

H
(i)
I =

N−1∑
k=−N

ξ
(i)
k

(
b
(i)†
k b

(i)
k −

1
2

)
, (4.29)

with
ξ

(i)
k =

√
[hi − cos(pk)]2 + sin2(pk). (4.30)

Here, pk = 2πk/N and b
(i)
k are fermionic operators. The fermionic occupation

numbers N (I)
k = b

(1)†
k b

(1)
k and their averages n(I)

k = 〈0I |N (I)
k |0I〉 allow to define, in

the thermodynamic limit and for times t → ∞, the post quench thermodynamic
entropy

S̄I = −
∑
k

n
(I)
k ln(n(I)

k ) + (1− n(I)
k ) ln(1− n(I)

k ) (4.31)
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and the GGE density matrix of the system. The latter quantity reads as

ρ
(I)
G = e−

∑
k
ε
(I)
k
N

(I)
k

Z
(I)
G

, Z
(I)
G = Tr

{
e−
∑

k
ε
(I)
k
N

(I)
k

}
, (4.32)

with ε(I)
k implicitly given by

n
(I)
k = 1

eε
(I)
k + 1

. (4.33)

Again, we can interpret the GGE density matrix as a Grancanonical density matrix,
at temperature set to unity and at zero chemical potential, for fermions with effective
Hamiltonian

H̄(I) =
∑
k

ε
(I)
k b

(1)†
k b

(1)
k . (4.34)

As in the case of the SSH model, the entropy shows kinks as a function of the
quench parameter, in correspondence to the gapless points of the dispersion relation,
signalling the equilibrium QPT between the paramagnetic and the ferromagnetic
phase. Correspondingly the effective Hamiltonian H̄(I) undergoes a metal insulator
transition. The analogy to the behavior characterizing the SSH model is hence
complete. Examples are given in Fig. 4.9. In panel (a), the entropy S̄I is plotted as a
function of h1, for h0 = 10. S̄I is shown to have non-analyticities in correspondence
to the equilibrium QPTs occurring at h1 = ±1. In panel (b), the effective energies
ε

(I)
k are plotted, as a function of k, for h0 = 2 and h1 = 5 (red solid line), h1 = 1

(green dashed line), and h1 = 0 (blue dashed line). As in the case of the SSH model,
these effective bands undergo an effective MIT in correspondence to the equilibrium
QPT. In fact, for h1 > 1 the dispersion does not cross the chemical potential (zero
in this case), while for h1 < 1 it does.

Figure 4.9: (a) Plot of S̄I as a function of h1, for h0 = 0; (b) Plot of ε(I)
k , as a function

of k, for h0 = 2 and h1 = 5 (red solid line), h1 = 1 (green dashed line), and
h1 = 0 (blue dashed line). The thin black line corresponds to the chemical
potential.
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4.4 Summary
We have observed that, in the paradigmatic cases of the SSH model and of the

transverse field QI model, the non-equilibrium QPTs appear in connection to both
an equilibrium QPT and an effective MIT in the GGE density matrix of the system.
By direct inspection in the case of the SSH model, we have also shown that the
non-equilibrium QPT is indeed robust with respect to those perturbations that do
not spoil the validity of the GGE, and hence the presence of the effective MIT. The
phenomenology we describe appears general and should hold true also for higher
dimensional systems. An interesting extension to our work includes the discussion
of terms that break integrability only weakly. The results we report should carry
over to the prethermal state reached in these situations.
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CHAPTER 5

Topological classification of dynamical quantum phase transitions

In this Chapter, we present our original findings published in [16].

It has been shown that periodic drivings can lead, for example, to topological
phases (that are promising for spintronics and quantum computation purposes) [135,
136], can enhance superconductivity [20], and can result in new phases such as
discrete time crystals [137–139]. From the fundamental side, on top of the possibility
of engineering new phases and access solid state counterparts of quantum optics,
the advances in the control of trapped ions [43], ultracold gases [127], nitrogen
vacancy centres in diamonds [140], and, in condensed matter environments, of
pump probe experiments [141], enable the inspection of the dynamics of isolated
quantum systems and hence a better understanding of thermalization. In this
context, depending on the nature of the system under inspection, many scenarios
can take place. In the thermodynamic limit, most systems follow the eigenstate
thermalization hypothesis [55, 135], that is, the expectation values of local observables
are thermal. However, notable exceptions of both fundamental and technological
interest exist. Anderson [142] and Many body Localized [143] phases as well as
integrable systems [12] are characterized by extensive sets of local or quasi-local
conserved quantities. In these cases, if quantum information is stored in the initial
state, such information is still available locally at later times and hence the system
does not thermalize. In localized systems, the lack of thermalization is robust with
respect to the parameters of the model, but the statistical ensemble describing the
long time behavior of the system cannot be constructed a priori. In integrable
systems, the lack of thermalization is a fine tuned property but the long time mean
value of local observables can be described by the GGE. If integrability is only
weakly broken, the GGE describes a long lived pre-thermal plateau [144]. The usual
(gedanken) experiment that is performed in order to access the main thermalization
properties of a system is the following: The system is prepared in the ground state
of a Hamiltonian H(g), where the dependence on a parameter g is made explicit. At
some time t0, the parameter g varies, suddenly or according to some specific finite
duration protocol, to a new constant value g′. If the variation in the parameter is
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abrupt, the experiment is called sudden quantum quench, otherwise it is called finite
duration quantum quench. Aside from the issues related to thermalization, that
are mostly inspected by means of the long time behaviour of the systems, quantum
quenches are also interesting at finite times. In translational invariant systems, two
point correlators are characterized by a light-cone structure, as we have shown in
Chapter 3. This intriguing phenomenon is related to the fact that information can
only propagate at finite velocity. More recently, it was discovered that some systems
undergoing a quantum quench can show non-analytical behaviours as a function of
time, in quantities related to the Loschmit echo [83]. Such non-analiticities, dubbed
Dynamical Quantum Phase Transitions (DQPTs) [78] bear a similarity with thermal
phase transitions and represent an attempt to characterize far-from-equilibrium
phases. At first, the presence of DQPTs following a quantum quench appeared to
be linked to the fact that the pre-quench and the post quench parameters of the
Hamiltonian represented points in parameter space that could only be connected
by lines crossing a quantum critical line. It was however shown that this is not
necessarily the case: sudden quantum quenches in the quantum XY chain can be
characterized by DQPTs even when they take place between points in the parameter
space belonging to the same quantum phase. Conversely, quantum quenches between
phases separated by quantum critical lines can be characterized by the absence of
DQPTs.

5.1 Quantum quench in the XY chain
In this chapter, we extend the study of the XY chain, introduced in Chapter 2,

to finite duration quantum quenches, which have been proven in several instances
to be drastically different from their sudden counterpart [145]. We find that the
number N of (inequivalent) quantum DQPTs can indeed be manipulated by the
duration of the quantum quench. Moreover, we show that, surprisingly, the parity of
N does not depend on the quench duration and is related to a topological invariant.
To be more specific, we consider the XY chain in a transverse magnetic field with
periodic boundary conditions [101]. Its Hamiltonian can be written as

H(t) =
N∑
j=1

[(1 + γ(t)
2

)
σxj σ

x
j+1 +

(1− γ(t)
2

)
σyj σ

y
j+1 − h(t)σzj

]
, (5.1)

where σij with i = x, y, z are the Pauli matrices which describe spin operators on
the j-th lattice site of the spin chain, N is the number of sites, γ is the anisotropy
parameter and h is the external magnetic field. By means of a Jordan-Wigner
transformation, this model can be mapped onto a chain of free fermions with
superconductive correlations (see Chapter 2). We will for simplicity concentrate
on the case of an even number of fermions, since the results are not qualitatively
affected by this choice.
In the static case, the model is characterized by a rich phase diagram, as shown
in Fig. 5.1, where two different Equilibrium Quantum Phase transitions (EQPTs)
are present: one of them belongs to the universality class of the XX model (the
quantum critical segment is γ = 0, |h| < 1) and the other is the phase transition of
the 1D Quantum Ising model (the critical lines are given by |h| = 1). The EQPTs
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Figure 5.1: Phase diagram of the XY model as a function of the anisotropy γ and the
external magnetic field h. The black lines represent the critical lines.

are visible in the spectrum εq(γ, h) as gap closings in the thermodynamic limit. In
fact, one finds εq(γ, h) =

√
(h− cos q)2 + γ2 sin2 q, with q = π

N (2n+ 1) labelling the
quasi-momentum of the fermions.
Explicitly, the diagonalized Hamiltonian in terms of fermionic quasi-particles reads,
in the momentum representation,

H = 1
2

π∑
q=0

Φ†q

(
εq(γ, h) 0

0 −εq(γ, h)

)
Φq, (5.2)

where Φ†q =
(
χ†q, χ−q

)
and χq is the quasi-particle fermionic operator.

Sudden quantum quenches of the form (γ(t), h(t) = (γ0Θ(−t) + γ1Θ(t), h0Θ(−t) +
h1Θ(t)), where Θ(t) is the Heaviside step function, have been considered in connection
to DQPTs. A DQPT is a non-analytic behavior, as a function of time, of the quantity

F(t) = − lim
N→∞

1
N

lnG(t). (5.3)

Here, G(t) = 〈0|0(t)〉 is the Loshmidt overlap between the ground state |0〉 of the
Hamiltonian for t < 0 and the time evolved state |0(t)〉 at time t. The quantity
F (t) bears similarities with the free energy, and hence its non-analiticities are to
some extent analogous to phase transitions. As mentioned, the XY chain has the
peculiarity that DQPTs can appear even for sudden quantum quenches in which
the initial and the final values for h and γ can be connected in parameter space
without passing a quantum critical point. At the same time, when the quantum
quench takes place between points in parameter space that cannot be connected
without going through an equilibrium critical point, it can happen that DQPTs are
absent [84]. To better understand this intriguing phenomenon and in order to deepen
the characterization of DQPTs, we inspect, in this Chapter, the fate of DQPTs when
the quantum quench is not sudden.
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5.1.1 Solution of the non-sudden quantum quench

We consider a time-dependent Hamiltonian of the form

H(t) = H(γ(t), h(t)), (5.4)

where the quench protocol is encoded in the explicit time evolution of the model
parameters, given by

γ(t) = γ0 + (γ1 − γ0)Qγ(t), (5.5)

h(t) = h0 + (h1 − h0)Qh(t). (5.6)

The function Ql(t), with l = γ, h, is determined by the quench duration τ and its
functional dependence on time, which is left generic at this stage. In general, it is
defined as

Ql(t) =


0 t ≤ 0
Q̃l(t) 0 < t < τ
1 t ≥ τ

. (5.7)

The time evolution of the fermionic operators diagonalizing the initial Hamiltonian
H(γ0, h0) can be formally obtained by means of the ansatz

Φ0
q(t) =

[
χ0
q(t)

χ0†
−q(t)

]
=
[
fq,1(t) gq,1(t)
fq,2(t) gq,2(t)

] [
χ0
q

χ0†
−q

]
= Mq(t)Φ0

q , (5.8)

where the time dependence is transferred to the coefficients fq,m(t) and gq,m(t), with
m = 1, 2. The initial conditions are given by fq,1(0) = gq,2(0) = 1 and fq,2(0) = gq,1(0) = 0.
To ensure the validity of the anticommutation relations during the dynamics,
the coefficients have to satisfy the condition |fq,m(t)|2 + |gq,m(t)|2 = 1, ∀t. The
Heisenberg equation for the fermionic operators gives two coupled systems of
differential equations for the time-dependent quantities, namely

dFq(t)
dt

= d

dt

[
fq,1(t)
fq,2(t)

]
= 1

2i

[
aq(t) bq(t)
bq(t) −aq(t)

] [
fq,1(t)
fq,2(t)

]
=Mq(t)Fq, (5.9)

dGq(t)
dt

= d

dt

[
gq,1(t)
gq,2(t)

]
= 1

2i

[
aq(t) bq(t)
bq(t) −aq(t)

] [
gq,1(t)
gq,2(t)

]
=Mq(t)Gq. (5.10)

where

aq(t) = [h(t)− cos q] cos 2θq(γ0, h0) + γ(t) sin q sin 2θq(γ0, h0), (5.11)

bq(t) = [h(t)− cos q] sin 2θq((γ0, h0))− γ(t) sin q cos 2θq(γ0, h0). (5.12)

Here, θq(γ, h) is defined via tan 2θq(γ, θ) = γ sin q/(h− cos q).
We note that, in general, the system cannot be solved analytically during the quench,
while it is easy to obtain the post-quench solution provided the correct matching
conditions for Fq(t) and Gq(t) in t = τ , obtained using numerical methods, are used.
In the post-quench regime, the coefficients aq(t ≥ τ) = aq(τ) and bq(t ≥ τ) = bq(τ)
are constant. In this case, we obtain

fq,1(t ≥ τ) =fq,1(τ) cos[εq(γ1, h1)(t− τ)/2]+
− i [fq,1(τ) cos 2Θq − fq,2(τ) sin 2Θq] sin[εq(γ1, h1)(t− τ)/2],

(5.13)
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fq,2(t ≥ τ) =fq,2(τ) cos[εq(γ1, h1)(t− τ)/2]+
+ i [fq,2(τ) cos 2Θq + fq,1(τ) sin 2Θq] sin[εq(γ1, θ1)(t− τ)/2],

(5.14)

where Θq = θq(γ1, h1)− θq(γ0, h0). The solution for Gq(t) can be obtained from Fq
since fq,1(t) = g∗q,2(t) and fq,2(t) = −g∗q,1(t).
We are now able to evaluate the expectation values of the occupation numbers related
to the fermionic operators χ1

q , χ
1†
−q which diagonalize the final Hamiltonian H(γ1, h1),

over the initial state |0〉. Such occupation numbers are conserved quantities in the
post-quench regime. We obtain

NGGE
q = 〈0|χ1†

q χ
1
q |0〉 = 〈0|χ1†

−qχ
1
−q|0〉 =

=|fq,1(τ)|2 sin2 Θq + |fq,2(τ)|2 cos2 Θq + 2Re
[
fq,1(τ)f∗q,2(τ)

]
cos Θq sin Θq,

(5.15)

where |0〉, as mentioned in Chapter 2, represents the ground state of the initial
HamiltonianH(γ0, h0) and is defined as the vacuum of quasi-particles, i.e. χ0

q(t < 0) |0〉 = 0,
for every q.

5.2 Loschmidt overlap

In this section we evaluate the Loschmidt overlap G(t) following a non sudden
quantum quench. Thanks to the solution to the full dynamics of the fermionic
operators previously outlined, it can be shown [145] that

F(t) = − 1
π

∫ π

0
dq ln |fq,1(t)|, (5.16)

where in the post-quench regime Eq. 5.16 can be simplified by means of Eqs. 5.13 to
obtain

F(t ≥ τ) = − 1
π

∫ π

0
dq ln

∣∣∣fq,1(τ) cos[ε1q(t− τ)/2]

−i [fq,1(τ) cos 2Θq − fq,2(τ) sin 2Θq] sin[ε1q(t− τ)/2]
∣∣∣ .

(5.17)

We are therefore able to evaluate analytically the zeros of the log-function argument
by rewriting it in the following form:

fq,1(t ≥ τ) = cos
[
ε1q(t− τ)/2− ϕq

]
, (5.18)

where
ϕq = arctan [−i(fq,1(τ) cos 2Θq − fq,2(τ) sin 2Θq)] . (5.19)

Since ϕq is a complex function, we find the momenta q∗i such that its imaginary
part is vanishing. Hence, the times t∗i,n where the dynamical free energy shows a
non-analytic behavior are given by:

t∗i,n = τ +
[
(2n+ 1)π + 2ϕq∗i

]
/ε1q∗i

. (5.20)
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Interestingly, the number of q∗i , can vary as a function of the initial and final phases
as well as the quench duration and protocol. Furthermore, every zero gives rise to
a new non-equilibrium time scale in the dynamics. The typical result is shown in
Fig. 5.2.

Figure 5.2: Appearance of DQPTs by manipulating the quench duration. The black solid
line represents F(t) for a sudden quench, where no kinks can be observed.
Performing a ramp of duration τ = 1, the function F(t) (red solid line) acquire
a non-analytical behavior and two inequivalent DQPTs build up, shown here as
blue and green dashed lines. Quench parameters: (h0, γ0) = (2, 2)→ (h1, γ1) =
(−2, 2).

The quantity Im(ϕq), that sets the existence and the number of inequivalent
DQPTs N , strongly depends on the quench protocol. However, it can be inferred
from the general discussion that will be presented in the following, that the sign of
the quantities Im(ϕ0+) and Im(ϕπ−) only depends on the initial and the final values
of the parameters. Moreover, at these two special points of the Brillouin zone, ϕq
can be expressed as a simple function of the occupation numbers of the post-quench
fermionic excitations as

ϕ0/π = −i arctanh[1− 2NGGE,s
0/π ], (5.21)

where NGGE,s
0/π correspond to a sudden quench and, therefore, does not depend on

the quench protocol.
With this respect, we are now able to evaluate the sign of the function ϕq at the
edges of the region we are inspecting. In particular, from Eq. (5.21), we deduce that
every time the occupation numbers NGGE,s

0/π jump from 0 to 1 or viceversa, the sign
of Im(ϕπ−/0+) changes accordingly. This relation is apparent in Fig. 5.3, where some
prototypical examples of both these functions are plotted.
However, the peculiar behavior of the occupation numbers and, consequently, of the
sign of the imaginary part of ϕq, is strictly related to the XY model phase diagram,
illustrated in Chapter 2 and in particular in Fig. 5.1. Indeed, there is a well-defined
correspondence between the phases connected by the quench, or rather the critical
lines involved, and the value of the occupation numbers NGGE,s

q in q = 0, π.
The value of NGGE,s

0 , actually, is vanishing if the quench starts and finish in the
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Figure 5.3: Plot of Im {ϕq} (left panels, (a) and (c)) and NGGE
q (right panels, (b) and (d))

as a function of the momentum q for different values of the quench duration:
τ = 0 (black dashed), τ = 1 (green), τ = 10 (blue) and τ = 100 (red). Quench
parameters: Top figures (a) and (b) (h0, γ0) = (2, 2) → (h1, γ1) = (−2, 2);
Bottom figures (c) and (d) (h0, γ0) = (2,−2)→ (h1, γ1) = (−0.5, 0.2).

same phase, while it jumps to 1 when the h = 1 critical line separates the initial and
final phases connected by the quench. On the other hand, but analogously, NGGE,s

π

have the same jump when the h = −1 critical line is involved. The mentioned
feature can be analytically observed by inspecting Eq. (5.15) in the particular cases
outlined. The number N of zeros of Im(ϕq) can hence be argued. Nevertheless, the
argument is not straightforward since a third independent non-analytical behavior
of the occupation numbers as a function of the quench parameters can occur. Going
back to the model phase diagram, we note that the horizontal critical segment γ = 0
has not yet been considered. Such equilibrium critical line may give rise, in particular
circumstances, to an additional infinity in Im(ϕq̄), with

q̄ = arccos
(
h0γ1 − h1γ0
γ1 − γ0

)
, (5.22)

i.e. if q̄ ∈ R. However, given the continuity of the occupation numbers NGGE
q and

the relation
Im(ϕq) ∼ −arctanh[1− 2NGGE

q ] (5.23)

in the proximity of q = 0, π, q̄, we observe that Im(ϕq) does not change sign in
the proximity of these non-analytical points. We can conclude, therefore, that
the number of its zeros N , irrespective of what happens in q = q̄, is even(odd)
if Sgn[Im(ϕ0)] · Sgn[Im(ϕ0)] is even (odd). If we transpose the argument on the
occupation numbers, we obtain that, analogously, the number of zeros of Im(ϕq) is
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even if NGGE,s
0 = NGGE,s

π and odd if NGGE,s
0 6= NGGE,s

π .

Note that, importantly, the usual paradigm stating that the DQPTs occur whenever
the occupation number of the quasi-particle states crosses 1/2 is here violated, as
also observed for non-sudden quantum quenches in the Ising model [145]. Even more
significant is the fact that despite the number of zeros in Im(ϕq) can vary as the
quantum quench duration is changed, as already discussed for a generalized XY-like
spin model [146], the parity of such number only depends on the initial and final
parameters. With respect to DQPTs, the quantum quenches in the XY chain in a
transverse field can hence be classified on the basis of the parity of DQPTs they
induce. This is the main result we have achieved. In the next section we exhibit a
topological invariant that allows us to put this Z2 classification on a more formal
basis. Note that this classification allows us to make a distinction between quantum
quenches that can show or not DQPTs depending on the quantum quench duration
and those that are bounded to show DQPTs. According to the initial and final
parameters one can hence have ’robust’ (odd parity) or non-robust (even parity)
DQPTs.

5.3 Dynamical topological invariant

Following Chen’s work [147], we first introduce a Dynamical Topological Invariant
for the case of a sudden quantum quench. We then generalize it to the finite-duration
quench case and draw a connection to the parity of the DQPTs in the XY chain in
a transverse magnetic field.
We start by considering the most general gapped 1D two band Hamiltonian with
discrete translational symmetry. In the momentum representation, the Hamiltonian
can be represented as the sum of two level systems, and, k by k, it reads

h(k, g) = di(k, g)I + ~d(k, g) · ~σ. (5.24)

Here, k is an index for the quasi-momentum, g represents a set of parameters
appearing in the Hamiltonian, I is the 2× 2 identity matrix, ~d(k, g) is a three-vector
and ~σ is the vector containing the Pauli matrices. The related density matrix
diagonal elements are given by

ρ±(k, g) = |ψ±(k, g)〉 〈ψ±(k, g)| = 1
2
[
1± d̂(k, g) · ~σ

]
, (5.25)

where |ψ±(k, g)〉 are the Hamiltonian eigenvectors, with |ψ−(k, g)〉 lower (or equal)
in energy, and d̂(k, g) = ~d(k, g)/|~d(k, g)|.
We now consider a sudden quench transforming the initial Hamiltonian h(k, g0) into
h(k, g1), and we study the non-equilibrium properties of the system if it is prepared
in the ground state of h0(k, g0). By means of the Liouville-Von Neumann equation,
we obtain the time evolution of the density matrix. Explicitly we have

ρ(k, g1, t) = 1
2
[
1− d̃(k, g0, g1, t) · ~σ

]
, (5.26)
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where

d̃(k, g0, g1, t) =d̂(k, g0) cos
[
2|~d(k, g1)|t

]
+ d̂(k, g1)

[
d̂(k, g0) · d̂(k, g1)

]
sin2

[
|~d(k, g1)|t

]
+ d̂(k, g0)× d̂(k, g1) sin

[
2|~d(k, g1)|t

]
.

(5.27)

Note that d̃(k, g0, g1, t) is a periodic function both of time, with periodicity π/|~d(g1, k)|,
and momentum, with periodicity 2π. This means that the topology of the Brillouin
zone, as well as of time, is S1 so that the momentum-time manifold has, in general,
a topology T 2. However, it can happen for some points km in the BZ (called here
fixed points), that the vector d̃(k, g0, g1, t) does not evolve in time. This translates to
a momentum-time manifold that becomes a set of spheres S2, the number of which
equals the number of fixed points. These two scenarios are sketched in Fig. 5.4. It is
hence possible to define the Chern numbers

Cmdyn = 1
4π

∫ km+1

km
dk

∫ π

0
dt′
(
d̃(k, g0, g1, t)× ∂t′ d̃(k, g0, g1, t)

)
· ∂kd̃(k, g0, g1, t),

(5.28)
where the time has been rescaled to t′ = t/|~d(k, g1)|.

Figure 5.4: Scheme of the momentum-time manifold. In the left figure, for any fixed
momentum k, the cross section can be viewed as a circle S1 where the azimuthal
angle represents the time t. After gluing k = 0 and k = 2π, the topology
of the momentum-time manifold becomes T 2. If there are two fixed points
k = k1 and k = k2, the corresponding circle contracts to a point, then the
momentum-time manifold can be reduced to a series of spheres S2. Figure
based on [147].

The number Cmdyn indicates if the mapping from the corresponding momentum-
time sub-manifold to the Bloch vector is trivial (Cmdyn = 0) or not (Cmdyn = ±1).
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Going back to the sudden quantum quenches in the XY model, after recasting the
Hamiltonian into the form of Eq.(5.24), one finds

Cmdyn =
cos(2Θkm)− cos(2Θkm+1)

2 . (5.29)

Moreover, k = 0 and k = π are always fixed points and, at every fixed point,
cos(2Θkj ) = ±1.
Of particular interest is the quantity

Cdyn =
∑

km∈[0,π]
Cmdyn = 1

2 (cos 2Θ0 − cos 2Θπ) = NGGE,s
π −NGGE,s

0 . (5.30)

In fact one finds Cdyn = 0 if the population of the quasiparticles in k = 0 is equal to
the population at k = π, while we have Cdyn = ±1 if the populations are different.
This fact draws an interesting link between the robustness of the DQPTs with respect
to the duration of the quench and the topological number associated to the sudden
quenches.
However, with respect to the topological indexes, the scenario in the case of non
sudden quantum quenches is in principle rather different. In Eq.(5.27), instead of the
unit vector d̂(k, g0), the evolution for t > τ is regulated by the unit vector d̂′(k, g0, τ)
describing the quantum state at time τ . Since however the unit vector d̂′(k, g0, τ)
cannot, in general, be found analytically, universal statements becomes a priori
unlikely. The fixed points can be obtained by studying the transformation which
connects the two diagonalizing basis of the initial (H0) and final (H1) Hamiltonians,
namely

Φ1
q =

[
χ1
q

χ1†
−q

]
=
[

cos Θq − sin Θq

sin Θq cos Θq

] [
χ0
q

χ0†
−q

]
= BqΦ0

q . (5.31)

The transformation matrix Bq, evaluated in the fixed point q = km, is the identity
matrix if the corresponding critical line is crossed an even number of times, while it
is iσy otherwise. Crucially, as previously discussed, k = 0 and k = π are fixed points
even in the case of finite duration quantum quenches. This behaviour is due to the
fact that one has

∂td̂(0/π, t) = 2
[
0, 0, a0/π(t)

]
× d̂(0/π, t), (5.32)

with initial condition given by d̂(k, 0) = [0, 0, a0/π(0)]. Hence, explicitly, d̂(k, t) =
d̂(k, 0) for 0 < t < τ , so that this points are not affected by the quench protocol or
its duration. The time evolution, once the final Hamiltonian has been reached, is
hence given by Eq. 5.27, as in the sudden quench case. The sum of the dynamical
topological invariants Cdyn in half of the BZ is then independent of the quench
duration, even if the single Cmdyn are not. In particular, whenever Cdyn = 0, DQPTs
are not robust and can be cancelled out (created) increasing the quench duration if in
the sudden quench regime they are present (absent). When Cdyn = ±1, on the other
hand, by varying the quench duration it is not possible to find a quench protocol
where DQPTs disappear. So, the number of points in the momentum space which
give rise to non-analyticities (see Eq. 5.20) can vary as a function of the quench
duration and protocol, but its parity is determined solely by the initial and final
Hamiltonian and coincides with Cdyn.
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5.4 Summary
The results presented demonstrate that, within a model as simple as the XY

chain in a transverse field, the effect of the time duration of quantum quenches can
be dramatic. In fact, the number and the very existence of DQPTs strongly depend
on the quench duration. However, surprisingly, the parity of the DQPTs is fixed
once the initial and final parameters are fixed. We have associated this behaviour
to a new topological invariant that essentially counts the parity of the number of
k-states that evolve trivially in time after the quantum quench.
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CHAPTER 6

Feasible model for interband pairing

In this Chapter, we present our original findings published in [17].
The details of the calculations, not shown here, are reported in Appendix C.

The realization of normal [148–151] and superconducting [152, 153] topological states
of matter and materials with strong spin-orbit coupling [92, 154] has been recently
achieved, and may lead to substantial advances in spintronics [155], superconducting
spintronics [156], and topological quantum computation [157]. Most of these
accomplishments strongly rely on the ability to precisely control the atomic structure
of matter or on the ability to perform nanostructuring [152, 153]. Static external
perturbations, such as pressure [158] and magnetic fields [159], are also routinely
used to qualitatively alter the properties of quantum materials.
A complementary way of engineering quantum states on demand is to perturb
solid state quantum systems in a time-dependent fashion, such as manipulating
system parameters in the context of quantum quenches. In particular, intense short
electromagnetic pulses and periodic (Floquet) drivings have been proven to be
extremely powerful tools . Short electromagnetic pulses, which in the pump-probe
setups allow for the study of ultra-fast dynamics [160], can, for example, induce
phase transitions [161] and drive higher harmonic generation [162]. Periodic drivings
allow to induce topological band structures and boundary states [135], and to create
new phases of matter, such as time-crystals [163].
An important sub-field of time-dependent quantum engineering in solids deals with
the control of the superconducting order parameter. The importance of non-constant
perturbations on the superconducting order parameter has been known for a long
time [164–166]. Recently, however, the technological progress in the generation of
intense sub-picosecond laser pulses, determined a renewed interest in the field [20].
Striking signatures of transient out of equilibrium superconductivity have been
observed in cuprates and doped fullerenes: the ultimate aim is to engineer room
temperature superconductivity, although serious limitations like heating still need to
be overcome. All these observations have been associated to the action of the laser
on lattice degrees of freedom, in particular optical phonons, e.g to light-enhanced
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electron-phonon coupling. In the context of doped fullerenes, a possible electronic
mechanism for intralevel pairing has been conjectured [167].

A novel scheme for generating interband superconducting pairing in periodically
driven semiconductors has been proposed in Refs. [168, 169]. In this case, however,
the laser couples to the electronic degrees of freedom, and the crucial interplay of
driving and dissipation leads to a steady state characterized by superconducting
correlations.
The original proposals for such a state relied on particular fermionic dissipative
baths able to exchange particles with the two bands of the semiconductor involved
in the interband pairing or on effective simplified master equations. Moreover, a
finite value of the order parameter in the steady state required the concurrent tuning
of band dispersion and electronic interactions.
In this chapter, we develop a more realistic model for steady state interband
superconductivity. We consider a two-band semiconductor resonantly driven by a
laser, and we include two physically relevant intraband relaxation processes, namely
acoustic phonons and radiative recombination. The steady state reached by the
system, for which we provide a phase diagram, can develop interband superconducting
correlations. Here, we present our original findings published in [17].

6.1 Equilibrium interband superconductivity
In this first section, we briefly address the problem of the pairing between electrons

and its implications in the case of multiple bands. Starting from the standard
Bardeen-Cooper-Schrieffer (BCS) theory in a one-band scenario, we generalize the
results and we introduce a simple model [170] which shows unconventional pairing
between electrons in a wide range of the parameters. Furthermore, this equilibrium
model will allow us to better interpret our non-equilibrium results (see Section 6.4).

6.1.1 One-band systems

The great achievement of the BCS theory was to recognize that the ground state
of a super- conductor is a coherent superposition of pairs of electrons, and that the
lowest energy configuration would generally pair electrons of opposite momenta [171,
172]. With this assumption, we can learn a great deal about the possible symmetries
of the electron pairs, without worrying about what physically binds them together.
In a lattice system with time reversal symmetry, such as a nonmagnetic metal in zero
field, Kramer’s theorem [173] guarantees that there is always a degenerate doublet
of single-particle states connected by time reversal T , such that

|k, σ〉 and T |k, σ〉 = |−k,−σ〉 . (6.1)

In this context, it is straightforward to argue within BCS theory that pairing time-
reversed states will necessarily give the lowest energy: Suppose instead that we
paired the two electrons |k + q/2, σ〉 and |−k + q/2,−σ〉 for some q. This would
correspond to a pair with total momentum q, i.e. an excess of kinetic energy
compared to our first choice.
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Proceed, we can suppose that the pair wave-function of the system is represented by
the so-called “anomalous amplitude”, defined as

bk = 〈c−k,↑ck,↓〉BCS . (6.2)

Here, the average is taken over the BCS ensemble [171], that is, self-consistently
over an effective particle non-conserving Hamiltonian. Suppose now that in addition
our system is centrosymmetric, i.e. parity P is a good quantum number. Then

|k, σ〉 and P |k, σ〉 = |−k, σ〉 . (6.3)

are also degenerate. We may then define a more general order parameter pairing
any of the four states

|k, ↑〉 , |−k, ↑〉 , |k, ↓〉 , |−k, ↓〉 (6.4)

as
bk,σ,σ′ = 〈c−k,σck,σ′〉BCS (6.5)

which is a 2× 2 matrix in spin space. The Pauli principle imposes that the 2-particle
wave-function must be anti-symmetric under exchange of all particle indices, i.e.

b−k,σ′,σ = −bk,σ,σ′ . (6.6)

Eventually, this argument leads to the following classification, which covers all the
possible cases (we here neglect the peculiar cases in which odd-frequency pairing is
developed):

1) bk is even under the transformation k→ −k , therefore it has to be odd under
spin exchange (singlet, S = 0):

bk,σ,σ′ = b−k,σ,σ′ = −bk,σ′,σ. (6.7)

2) bk is odd under the transformation k→ −k , therefore it has to be even under
spin exchange (triplet, S = 1):

bk,σ,σ′ = −b−k,σ,σ′ = bk,σ′,σ. (6.8)

Note that the first step in each chain of equalities is the statement of definite parity,
the second one is the application of the Pauli’s principle.

6.1.2 Orbital symmetry

At this point, it is fruitful to use one further important result from BCS theory:
Electrons pair over a narrow shell of energies near the Fermi surface, creating an
instability of the Fermi sea. In this case the matrix bk in Eq. (6.5) is non-zero only
on the vicinity of the Fermi surface. We can expand any function on a surface in
terms of some set of surface harmonics chosen to be orthonormal to one another on
the given surface [174]. In the simplest, spherical symmetric case, we know how to
expand bk in terms of the spherical harmonics Ylm(θ, φ), where θ is the polar and
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φ the azimuthal angles of the unit vector k̂ normalized on the sphere of radius kF ,
which corresponds to the Fermi wave-vector, to obtain

bk̂ = b0 +
1∑

m=−1
b1mY1m +

2∑
m=−2

b2mY2m + ... (6.9)

We also know that for the considered centrosymmetric system the order parameter
bk̂ should have definite parity, i.e. only even or odd l-terms can be nonzero. It is
furthermore quite likely that given a set of blm in the ground state, only one will
be important. Indeed, treated independently, each one may be shown within BCS
theory to correspond to a critical temperature which varies like [171]

T lc ' ωDe1/N0Vl , (6.10)

where N0 is the density of states at the Fermi level and Vl is component of the
pairing interaction, expanded similarly, in the l-th angular momentum channel:

Vk,k′ = V0 + V1Y1m(k̂)Y1m(k̂)∗ + ... (6.11)

The exponential dependence of T lc on the interaction Vl means that unless two
channels are nearly degenerate, one will necessarily win and dominate over nearly
the entire temperature range. We can therefore speak of a s-, p-, d-, ... wave orbital
symmetry of the order parameter, meaning the function bk̂ is proportional to Yl(k̂)
with l = 0, 1, 2, ... . The parity constraints on the blm, hence, mean that

1) a spin singlet order parameter has orbital symmetry s, d, ...

2) a spin triplet order parameter has orbital symmetry p, f , ...

6.1.3 Multi-band systems

The preceding section shows that for the situation we considered, where we
labelled states only by |k, σ〉 since the only degrees of freedom involved are orbital
symmetry and spin, spin singlet pair states must be even parity and spin triplet
pair states, conversely, odd parity, to satisfy the Pauli’s principle. This conclusion
did not make use of any particular property of the electronic bands, since we have
focused on the one-band scenario.

It is interesting to focus on the case where an additional degree of freedom is
taken into account: In particular we add the quantum number ν relative to the
band index. For the sake of simplicity, in this section we will deal with a two-band
system, since it will be the only relevant one in the following discussion.
The electrons pair is then described by a wave-function which has to fulfill

bk,σ,ν,σ′,ν′ = −b−k,σ′,ν′,σ,ν . (6.12)

All the admitted possibilities are, this time, four:

1) bk is even under the transformation k→ −k , therefore it can be:
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a) odd under spin exchange (singlet, S = 0) and even under band exchange

bk,σ,ν,σ′,ν′ = b−k,σ,ν,σ′,ν′ = −bk,σ′,ν,σ,ν′ = bk,σ,ν′,σ′,ν (6.13)

b) even under spin exchange (triplet, S = 1) and odd under band exchange

bk,σ,ν,σ′,ν′ = b−k,σ,ν,σ′,ν′ = bk,σ′,ν,σ,ν′ = −bk,σ,ν′,σ′,ν (6.14)

2) bk is odd under the transformation k→ −k , therefore it can be:

a) odd under spin exchange (singlet, S = 0) and odd under band exchange

bk,σ,ν,σ′,ν′ = −b−k,σ,ν,σ′,ν′ = −bk,σ′,ν,σ,ν′ = −bk,σ,ν′,σ′,ν (6.15)

b) even under spin exchange (triplet, S = 1) and even under band exchange

bk,σ,ν,σ′,ν′ = −b−k,σ,ν,σ′,ν′ = bk,σ′,ν,σ,ν′ = bk,σ,ν′,σ′,ν (6.16)

Note that the first step in each chain of equalities is the statement of definite parity,
the second one is the application of the spin exchange and the third one of the band
index exchange. Furthermore, the new, “exotic” possibilities 1b) and 2a) involve
pairing electrons in different bands.
It is important to observe that all we have done so far is to enumerate the possible
symmetry classes of the presumed BCS pair amplitude. Of the various possibili-
ties thus identified, one will be chosen by the system as the temperature is lowered.
Which one dominate is determined by the interaction Vk,k′ , which depends on many
aspects of the system.

6.1.4 Interband pairing in a simple model

Now that the problem of how electrons in different bands can pair is set, we
address qualitatively the issue of its stability, by studying the two-band simplified
model with interband pairing proposed in Ref. [170] and given by the Hamiltonian

H =
∑

k,α,σ

εα(k)cα†k,σc
α
k,σ + V

∑
k,α 6=β

(
cα†k,↑c

β†
−k,↓ + h.c.

)
, (6.17)

where α, β = 1, 2 label two bands that are not hybridized, σ is the spin projection
and

εα(k) = − k2

2mα
+ C (6.18)

which gives parabolic bands that are degenerate at k = 0 with energy C and with
a chemical potential set to zero. The interaction V is the product of an attractive
potential V0 between electrons in the two different bands and a mean-field parameter
∆ determined by minimizing the total energy. For simplicity, we have considered
the pair wavefunction with s-wave symmetry. Using the Bogoliubov-de Gennes
representation, is it possible to diagonalize the Hamiltonian to obtain the following
four energy eigenvalues

E(k) = ±

ε1 − ε2
2 ±

√(
ε1 + ε2

2

)2
+ V 2

 . (6.19)
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In the nontrivial case of V different from zero, the bands ±EA and ±EB result from
the hybridization of the ε1 and ε2 bands due to V . It is interesting to observe that
an internal gap opens at the crossing of bands EA with −EB above the chemical
potential and between EB and −EA below the chemical potential, as indicated with
circles in Fig. 6.1, where results for V = 0.5 are displayed. Interestingly, the two
Fermi surfaces existent in the non-interacting regime get closer, i.e. k′F1 > kF1 and
k′F2 < kF2 and, for sufficiently strong V , merge and then disappear.

Figure 6.1: Mean-field band dispersion for the model defined by Eq. (6.17), for the indicated
values of V defined in the text as a function of the momentum k in the Brillouin
zone. The case shown is for m1 = 1, m2 = 2, and C = 2. Inset: noninteracting
band dispersion for the same parameters. Figure based on [170].

To have a deeper understanding of the physical meaning of these features, we focus
now on the band-resolved fermions occupation numbers, defined as

nα(k) =
∑
σ

cα†k,σc
α
k,σ, (6.20)

and on the total electronic occupation of the system, given by

n(k) =
∑
α

nα(k). (6.21)

These quantities behavior is shown in Figure 6.2 as a function of the momentum in
the Brillouin zone, in the weak (top panel) and strong (bottom panel) attraction
regimes. In the first case, jumps indicate the existence of the two Fermi surfaces,
which are here present even in the paired state. Thus, electrons in the region in
between the two Fermi surfaces behave like normal unpaired electrons. As the
interaction V increases further, the number of unpaired electrons is reduced, until a
full gap opens in the system. Its physics, now, resembles BCS theory, except for the
fact that Cooper pairs are constituted by electrons from different orbitals. All the
particles around the two non-interacting Fermi surfaces, at this point, participate in
the pairing.
Summarizing, three scenarios arise and strongly depend, as one could expect, on the
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0 π

Weak attraction regime

Strong attraction regime

0 π

Figure 6.2: Mean-field state population as a function of momentum along the diagonal
kx = ky for (a) the whole system, (b) band 1, and (c) band 2 for the indicated
values of the pairing potential V , and m1 = 1, m2 = 2, and C = 2.
Top panel: The case V = 0.5 illustrates the “weak” pairing attraction regime.
Bottom panel: The case V = 1 illustrates the “strong” pairing attraction
regime. Figure adapted from [170].

attractive interaction strength: When V ' 0, no electrons pair and a normal regime
where the ground state is not superconducting persists; increasing V , an exotic
intermediate “breached” regime appears, where gaps open at the original Fermi
surfaces while new Fermi surfaces defining regions containing unpaired electrons are
created; finally, a superconducting regime resembling BCS states, at large attractive
coupling, is found.

A study of the stability issue, however, proves that the purely interband-paired
state only becomes stable when the attraction is sufficiently strong that no unpaired
particles are left, so that the breached regime is not physically relevant. This means
that, although the pairs would be formed by electrons in different orbitals, the
physics is analogous to the one described by the BCS one-band theory.
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6.2 Laser-driven two bands semiconductor
Here we start to analyze a d-dimensional semiconductor with only two non-

degenerate bands close to the Fermi energy, namely, the valence (α = 1) and
conduction (α = 2) bands. These are coupled by means of a laser, whose frequency is
tuned at resonance around a single point in the Brillouin zone (BZ), where the band
distance is Eg. Our main goal is to understand if a superconducting pairing, whose
amplitude is computed self-consistently by taking electron-electron interactions into
account, is allowed and can develop in the system in a stable non-equilibrium steady
state. The system is described by the Hamiltonian Hsys = H0 +Hint, where (~ = 1,
lattice constant a = 1)

H0 =
∑
k,α

Eα(k)cα†k cαk + Ω(t)
∑

k,α,β

cα†k σxαβc
β
k , (6.22)

Hint = i

2∆
∑

k,α,β

cα†k σyαβc
β†
−k −

i

2∆∗
∑

k,α,β

cαkσ
y
αc
β
−k . (6.23)
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Figure 6.3: Sketch of a restricted momentum region of the two bands in presence of a laser
(blue double arrow) tuned to a frequency ν equal to the amplitude of the band
distance Eg at k = 0. Emission of intraband acoustic phonons (red curved
arrows) and radiative recombination (green dashed arrows) accompanied by
photon emissions (green waved arrows) are indicated.

Here cαk is the fermionic annihilation operator in the α-band with momentum k,
Eα(k) is the α-band dispersion relation, Ω(t) = Ω cos(νt) is set by the laser frequency
ν and the Rabi frequency Ω. Moreover, the complex order parameter ∆ quantifies
the Cooper pairing between electrons in different bands and is defined as

∆∗ = V

N

∑
k

〈c2†
k c

1†
−k〉 , (6.24)
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where V parametrizes the strength of electron-electron interactions and N is the
number of electrons in the system. Since the relevant part of the dynamics takes place
in a small region of the k-space around the resonance point that we conventionally fix
to be k = 0, we could assume V (k) to be k-independent. It is worth to notice that,
differently from ∆, the parameter V does not have to be computed self-consistently,
since it parameterizes the bare, repulsive, electron-electron interaction. Moreover,
again due to the fact that the physics takes place in a small region in k-space, we
expand the dispersion relation up to second order (We imagine the two bands to be
separated outside the region in momentum space that we consider. They can, for
instance, bend down.). For simplicity we postulate spherical symmetry,

Eα(k) = Aαk2 + (−1)αEg/2. (6.25)

For technical reasons that will be explained below, we consider the scenario where
the conduction and valence bands have same effective mass sign, i.e. A1, A2 > 0, in
the BZ window where the laser is resonant. Furthermore, in order to get a realistic
picture of the system (see Fig. 6.3), we study the effect of two relevant bosonic baths,
namely the phonons and the radiative field.

As far as phonons are concerned, we consider the acoustic branch, described by the
Hamiltonian

Hph
bath =

∑
q

v|q|a†qaq (6.26)

where a†q creates a phonon with momentum q and v is the (constant and isotropic)
velocity. The electron-phonon coupling is modelled by the Fröhlich Hamiltonian [175]

Hph
sys−bath =

∑
k,q,α

tk,q(cα†k+qc
α
ka
†
−q + h.c.) , (6.27)

where tk,q represents the momentum dependent coupling strength. We assume
that phonons can induce transitions only within the same band, since interband
transitions due to phonons are typically suppressed [176, 177] due to symmetry
reasons [178]. Note that, in principle, we can consider additional optical branches
without significantly affecting our results, as long as the coupling between the laser
and the optical phonons is negligible.
We also take into account the possibility of interband radiative recombination
processes [176], where a conduction band electron relaxes to the valence band and
emits a photon. In this case, as opposed to the phononic bath, the emission is
associated to a pseudospin-flip to obey the angular momentum selection rules and
can then only take place between different bands. The corresponding contribution
to the Hamiltonian can be written similarly to Eqs. (6.26) and (6.27):

Hrr
bath =

∑
q

c|q|b†qbq, (6.28)

Hrr
sys−bath =

∑
k

w(c1†
k c

2
kb
†
0 + h.c.), (6.29)

where b†0 creates a photon with energy ω0(k) = E2(k) − E1(k), w is the coupling
intensity and we focus on vertical transitions since the photon momentum is in
general negligible with respect to the typical momentum discretization.
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6.2.1 Derivation of the Lindblad master equation

To study the dynamics of the system, we focus on the time evolution of the
reduced density matrix ρsys = Trbath{ρtot}, where ρtot is the combined density
matrix of system and reservoirs. By means of a rotating wave approximation (RWA),
that is justified by the fact that the laser is tuned resonantly with the energy gap,
we eliminate the explicit time dependence of Hsys and we obtain a Lindblad type
master equation of the form [179]

d

dt
ρsys = −i[Hsys, ρsys] + Lsysρsys, (6.30)

where

Lsysρsys =
∑

k,q,k′,q′

∑
α,β

[(
Sα†k,qρsysSβk′,q′ − ρsysSβk′,q′S

α†
k,q

)
W

β(1)
q,k′,q′

+

+
(
Sαk,qρsysSβ†k′,q′

− ρsysSβ†k′,q′
Sαk,q

)
W

β(2)
q,k′,q′

+ h.c.
]
,

(6.31)

W
αβ(1)
q,k′,q′

=
∫ ∞

0
e−i[Eα(k′)−Eβ(k′+q′)]τ Trbath

{
Fk′,q(t− τ)F†

k′,q′
(t)ρbath(0)

}
dτ

' Γαβ
k′,q

[1 + nB] δ(q − q′),
(6.32)

W
αβ(2)
q,k′,q′

=
∫ ∞

0
ei[Eα(k′)−Eβ(k′+q′)]τ Trbath

{
F†

k′,q
(t− τ)Fk′,q′(t)ρbath(0)

}
dτ

' Γαβ
k′,q

nB δ(q − q′),
(6.33)

with

Γαβ
k′,q

= π|tk′,q|2 δ
[
Eβ(k′)− Eβ(k′ + q)− v|q|

]
δα,β = Γphδα,β (6.34)

for the phononic bath and

Γαβ
k′,q

= π|w|2δα,β̄ = Γrrδα,β̄ (6.35)

for the photons, where β̄ = 1 (2) if α = 2 (1). The Bose distribution nB is a function
of the dispersion relation of phonons (6.26) or photons (6.28) respectively, with the
chemical potential set to zero. Here we have neglected the principal value of the
integral in Eq. (6.32) and Eq. (6.33), since it only slightly renormalizes the band
structure [103, 169].

The time evolution of the expectation value of a generic observable Op that only
depends on the system degrees of freedom, can be derived from the density matrix
equation (6.30) by multiplying it by Op and performing the trace operation. Using
the cyclic property of the trace one obtains:
d

dt
〈Op〉 = −i〈[Op, Hsys]〉+

∑
k,k′,q

∑
α,β

Γαβ
k′,q

{
[1 + nB]〈Sβ

k′,q

[
Op,Sα†k,q

]
+
[
Sαk,q, Op

]
Sβ†

k′,q
〉+

+nB〈Sβ†k′,q

[
Op,Sαk,q

]
+
[
Sα†k,q, Op

]
Sβ

k′,q
〉
}
.

(6.36)
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Hereafter, we set Eg = 1 as a common energy scale. The validity range δk of the
RWA is inferred by solving the full dynamics in the absence of superconducting
pairing: We compare the exact dynamics with the RWA, extrapolating δk. Within
the full model δk is the natural cut-off. However, varying δk does not qualitatively
change our results.

6.3 Dynamics of the order parameter and phase diagram

We numerically solve the dynamics for some relevant observables, i.e. the
populations of valence n11

k = 〈c1†
k c

1
k〉 and conduction n22

k = 〈c2†
k c

2
k〉 bands, and the

ordinary n21
k = 〈c2†

k c
1
k〉 as well as the anomalous s21

k = 〈c2†
k c

1†
k 〉 interband correlations.

Their complete time evolution, encoded in a set of non-linear coupled differential
equations, is shown in Appendix C.1.5 and has been evaluated numerically performing
a 4th order adaptive Runge-Kutta method. For clarity, we focus only on the zero
temperature regime for the rates, since finite temperature corrections (for kBT � Eg)
do not affect qualitatively our results and interpretation. Moreover, we initialize the
dynamics with the respective equilibrium state of the system and the baths, where
only the valence band is populated. We also assume the initial interband anomalous
correlations to be non-zero even though very small, in order to avoid the unstable
fixed point solution of the dissipative mean field equations s21

k = 0 [168].

Our main result is that, in a rather generic parameter range, the anomalous interband
correlator s21

k reaches a non-zero steady state for any non-zero, but arbitrarily small,
initial value. Consequently, a finite interband pairing ∆ can develop in the system.
A phase diagram is shown in Fig. 6.4, where the steady state value of the order
parameter is plotted as a function of laser intensity and interaction strength for fixed
values of the dissipation rates. Throughout this section, we assume the momentum
dependence of tk,q, introduced in Eq. (6.27), such that the corresponding scattering
rates Γph, derived in Eq. (6.34)), are approximately constant over the momentum
region around the resonance [180].

Thresholds in both electron-electron interactions and laser intensity are present.
Moreover, in the parameter range we could access, both stronger interactions and
laser intensity generally imply a larger induced superconducting pairing.
It is worth to notice the different roles played by the phononic and the photonic
baths. While the phononic bath is crucial in establishing the superconducting
steady-state, the radiative recombination does not qualitatively influence the phase
diagram, as long as Γrr = π|w|2 < Ω. Increasing the phononic rate Γph, however,
qualitatively modifies the value of the superconducting order parameter ∆ achieved
in the stationary state. It moves in fact, the threshold on the interaction strength
to larger values. If Γph is raised up even further, superconducting correlations will
eventually be washed out. The dependence of the phase diagram on the other
parameters involved is weaker.
In order to better understand the physics it is worth to notice that the time evolution
of the anomalous interband correlator s21

k , and hence the superconducting pairing,
is strongly dependent on the quantity ñk = n22

k + n11
−k − 1 [168, 169]. Whenever ñk
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Figure 6.4: Phase diagram of the system, representing the absolute value of the complex
order parameter |∆| as a function of the laser intensity Ω and the repulsive
interaction strength V . Here, Γph = 0.02Eg is the phonon rate, Γrr = Γph/10
is the radiative recombination rate and A1 = 7Eg, A2 = 24Eg and we consider
a momentum cutoff such that |k| ≤ δk = 0.2.

is close to zero, s21
k behaves accordingly C.2.2. Heuristically, the condition ñk = 0

implies zero probability of forming a Cooper pair of electrons (or holes) between
momenta k and −k. However ñk 6= 0 is only a necessary condition for obtaining
∆ 6= 0. The condition ñk 6= 0 cannot be realized by means of photonic dissipation
alone, since there is no significant momentum transfer in the electron sector as a
result of such processes. On the other hand, phonon scattering tends to place the
electrons at the bottom of the bands, due to the fact that the bands have the same
concavity at the resonance point. Hence, it is phonon scattering that generates the
condition ñk 6= 0 necessary for the development of the superconducting correlations.

The behavior of the populations is shown in Fig. 6.6. We find in fact ñk ' 1
for the momenta around the minima of the quadratic bands while ñk ' −1 on
the edge of the region where the rotating wave applies. Note that the transition
between these two regions is not sharp, but smoothed out: In the next section
we comment how this feature becomes crucial in the explanation of the Cooper
pairs creation. Qualitatively speaking, the smoothing signals the (superconducting)
pairing between the two bands, in analogy with the destruction of the Fermi surface
in BCS superconductors.

In order to understand the role played by the radiative recombination, we show
in Fig. 6.5 the real time evolution of the modulus of the complex order parameter
|∆|. The role played by this relaxation mechanism is evident here: the larger the
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Figure 6.5: Time evolution of the absolute value of the complex order parameter |∆|, for
different values of the radiative recombination rate: Γrr = Γph/20 (green line),
Γrr = Γph/10 (red line), and Γrr = Γph/2 (blue line). We choose Ω/Γph = 25,
where Γph is the phonon rate, and Ω = 0.25Eg, A1 = 7Eg, A2 = 24Eg,
V = 4Eg. The momentum cutoff is |k| ≤ δk = 0.2 and the number of k points
Nk = 200.

photonic relaxation rate, the shorter the time needed to reach the steady state. This
behavior can be understood by noticing that photonic relaxation adds a qualitatively
new (interband) dissipation channel. So, while the steady state populations are not
substantially affected by the photonic relaxation, the time needed to establish them
changes (see Fig. 6.5).

6.4 Effective pairing mechanism
As shown in Fig. 6.6, in the superconducting steady state the bands are

qualitatively empty at the edges of the momentum region considered and filled
in the center, around the minima. We can mimic this situation by employing an
equilibrium system, with two bands with positive concavity and coincident minima.
Indeed, the action of the laser is to effectively shift the lower band up to the upper
one, balancing the gap energy difference between different bands electrons. An
attractive interaction of the form

− U(n11
k − 1/2)(n22

−k − 1/2), (6.37)

with U > 0 favours the situation where, if the state k in band 1 is occupied (empty),
the corresponding state −k in band 2 is occupied (empty). The chemical potential
then determines whether the ground state is given by the couple of empty or filled
states. If we apply the mean field approximation to the above-mentioned attractive
interaction term, we obtain exactly the model studied in Section 6.1.4, which reads:

H =
∑
k,α

εα(k)cα†k c
α
k − ∆̃

∑
k,α6=β

(
cα†k c

β†
−k + h.c.

)
, (6.38)

where α, β = 1, 2 labels the two bands, εα(k) = Aαk
2 − C and ∆̃ = U∆. We fix

C ' 0.2Eg to obtain a Fermi energy compatible with the steady state reached by
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Figure 6.6: Steady state population of valence (blue dots) and conduction (red dots) bands
as a function of the momentum k. We choose Ω/Γph = 25, where Γph is the
phonon rate, Γrr = Γph/10 is the radiative recombination rate, Ω = 0.25Eg,
A1 = 7Eg, A2 = 24Eg. We also consider a momentum cutoff such that
|k| ≤ δk = 0.2 . The black solid line represents the population of the two
bands in the effective system [170] where attractive interaction of strenght
U = −0.05 are present.

our model as long as U = 0 (parameters in Fig. 6.6).

Using a Bogoliubov-de Gennes representation, we are able to diagonalize the
Hamiltonian and evaluate the expectation value of the population. In this picture,
we observe a very similar qualitative behavior of the populations in the two bands
with respect to the nonequilibrium steady state populations (see black solid line in
Fig. 6.6). Therefore, the steady state can be effectively seen as an equilibrium two
band system where the laser shifts the valence band up to the conduction band and
an attractive interaction creates Cooper pairs. This simple effective model is intended
to clarify the reason why the condition ñk 6= 0 is essential but not sufficient for the
superconducting pairing. In fact, a simpler model with two bands and two different
chemical potentials would lead to ñk 6= 0, but would not imply coupling between the
bands and consequently the smearing of the populations as well as superconductivity.

A full qualitative interpretation of the rather involved results can hence be given:
The laser excites electrons from the valence to the conduction band, at any k in
the resonance region. The phonons let the electrons in each band get as close as
possible to the bottom of the bands. Interactions between the two bands drive the
system into a correlated state. A possible mean field effective model describing the
steady state reached is provided by the simple Bogoliubov-de Gennes Hamiltonian
for interband superconductors, given in Eq. (6.38).
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6.5 Summary
We have shown that a non-equilibrium steady state characterized by a finite

superconducting order parameter related to an anomalous interband pairing can be
achieved in a semiconductor by coupling the bands with laser light. Specifically, we
have considered quadratic bands with the same sign of the effective mass. We have
shown that an acoustic phononic bath, which is responsible of intraband transitions
only, can induce an electronic distribution in the valence and conduction bands
which favours the development of such an unusual pairing. Remarkably, this picture
is not destroyed even if an interband relaxation with the same order of magnitude
as the intraband one is switched on. Indeed, interband relaxation can speed up the
formation of the superconducting order parameter. Furthermore, the stationary state
with |∆| = 0 can be achieved only for sufficiently large repulsive density- density
electronic interaction (V ≥ 2Eg) and for an initial configuration where |∆| can be
vanishing compatibly with the numerical precision. The Rabi frequency Ω, on the
other hand, has to be strong enough (Ω > Γph), since the laser has to be able to
drive a sufficient number of electrons in the conduction band. Only in this case, the
two populations can be forced to satisfy the favourable condition ñk 6= 0. The result
is stable against changing the velocity of the acoustic phonons, the amplitude of the
bands and the k-space discretization step. Moreover, the phonon coupling Γph, as
well as the radiative recombination strength Γrr, have been chosen to represent a
realistic scenario: Phonon transitions in prototypical semiconductors such as Silicon
or Germanium have tipically a lifetime τph = 0.1ps, which correspond to a rate
Γph ∼ 0.01Eg [180], while radiative recombination rates are strongly dependent on the
electron concentration [181]. However, their action does not qualitatively affect the
steady state reached by the system. Finally, we argue that our results corroborate the
original proposal of Goldstein et al. [168], by putting it in a more realistic framework.
This fact, together with the interpretation of the non-equilibrium pairing based on
equilibrium multiband BCS theory, should facilitate the experimental detection of
this novel route to light- induced insulator/superconductor transition.
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Conclusions

The main focus of this Thesis has been the study of integrable and non-integrable
quantum systems out-of-equilibrium. In particular, we have investigated both the
dynamics and the non-equilibrium steady state reached by a variety of systems,
introduced in Chapter 2, following different protocols to drive each system far from
its standard equilibrium configuration. We have put our attention in particular onto
the so-called quantum quench, consisting in a change in time of one of the system
parameters and, on the other hand, onto the so-called Floquet engineering, where an
external periodic driving is imposed to the system. Both methods are experimentally
accessible in the context of quantum gases, optical lattices and, mainly for the latter
type of quantum control, in condensed matter systems.
The mentioned techniques made us possible to explore and engineer very peculiar
phases of matter, going through non-equilibrium and dynamical phase transitions,
which are the far-from-equilibrium counterparts of the zero-temperature equilibrium
quantum phase transitions (QPTs) and have been extensively discussed in Chapter 1.

In Chapter 3, we have focused on the effects resulting from the quench of a gap-
opening mechanism, from a gapless to a gapped (or partially-gapped) state. A
non-monotonic behavior of observables characterizes a wide range of quantum
quenches, both for sudden and non-sudden protocols, integrable (Staggered potential
and spin-orbit coupled wire) and non-integrable (a chain of fermions in presence of
nearest and next-to-nearest neighbors interactions) models and not only in one spatial
dimension. Indeed, this is the result of a peculiar phenomenon, namely the freezing
of the light cone which spreads information through the system. Interestingly, in
non-interacting models, the freezing of the light cone is captured by a Klein-Gordon
equation, which provides an intuitive interpretation of the behavior of the system in
terms of a simple continuum mechanical model.

By enlarging the parameters space investigated, we have been able to deepen
the study of this type of quantum quenches. In the subsequent Chapter 4, indeed,
we have observed that, in the paradigmatic cases of the Su-Schrieffer-Heeger model
and of the transverse field quantum Ising model, non-equilibrium QPTs appear in
connection to both an equilibrium QPT and an effective metal-insulator transition in
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the GGE density matrix of the system. We have also shown that the non-equilibrium
QPT is robust with respect to perturbations that do not spoil the validity of the GGE.

Understanding the properties of far-from-equilibrium quantum systems is becoming
a major challenge in both fundamental and applied physics. The effort in providing
a classification, in terms of local or topological order parameters, of far-from-
equilibrium phases is hence intense. In Chapter 5, the concept Dynamical Quantum
Phase Transition (DQPT) has been investigated. A DQPT is naively defined as
a zero of the Loschmit-Echo as a function of time and represents a natural non-
equilibrium counterpart of a thermal phase transition. Here, we have studied the
DQPTs characterizing the quantum XY chain subject to a quantum quench of finite
duration. We have shown that the number of DQPTs with different periods can vary
as the duration of the quantum quench is varied. However, the parity of such number
only depends on the pre-quench and post-quench Hamiltonians and is related to a
topological invariant.

In the last part, namely Chapter 6, we have shown that a non-equilibrium steady state
characterized by finite superconducting correlations between electrons in different
bands can be achieved in a semiconductor by coupling the bands with a laser light. In
particular, this is possible only if the effect of an acoustic phonon bath is taken into
account, since it is responsible of the creation of a peculiar electronic non-equilibrium
distribution which favors the creation of a state characterized by a non-vanishing
interband order parameter. Finally, we have given a physical interpretation of the
effective pairing mechanism by means of the standard BCS multi-band theory using
realistic parameters for a possible experimental realization in condensed matter
systems.
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APPENDIX A

Steady state and dynamics following a quantum quench

A.1 Steady state magnetization

A.1.1 Diagonalization of a generic 2× 2 Hermitian matrix

In order to set the conventions, we begin this Section by briefly summarizing the
diagonalization procedure for a generic 2× 2 Hermitian matrix,

H =
[
h11 h12
h∗12 h22

]
, (A.1)

with h11, h12 ∈ R and h12 ∈ C. We first focus on the case h12 6= 0. Then, the
eigenvalues of H are

ε± = 1
2 (h11 + h22)±D, (A.2)

where D =
√

(h11 − h22)2 + 4|h12|2/2. The Hamiltonian of Eq. (A.1) can be
diagonalized by means of the unitary matrix U ,

UHU † =
[
ε+ 0
0 ε−

]
, with U =

[
A− −A− ε−−h22

h∗12

−A+
ε+−h11
h12

A+

]
and ε+ > ε−,

(A.3)
where we have introduced the coefficients

A+ = |h12|√
(ε+ − h11)2 + |h12|2

and A− = |h12|√
(ε− − h22)2 + |h12|2

. (A.4)

On the other hand, in the case h12 = 0, the unitary matrix U that transforms H in
the diagonal form of Eq. (A.3), i.e. with ε+ > ε−, is

U =

I2×2θ(h11 − h22) + iσyθ(h22 − h11), if h11 6= h22,
1√
2 (I + iσy) , if h11 = h22,

(A.5)

with I2×2 the 2 × 2 identity matrix and σy the y Pauli matrix in the usual
representation.
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A.1. STEADY STATE MAGNETIZATION

A.1.2 Some general formulas on the calculation of M in 1D systems

As stated in the main text, the Hamiltonian of both the SOC wire and the SP
model can be written as

H(i)(t) =
∑
k

Ψ(i)†
k [H(i)

k + θ(t)∆(i)σx]Ψ(i)
k . (A.6)

Here, Ψ(i)†
k =

(
d

(i)†
a,k , d

(i)†
b,k

)
is a two-component momentum resolved Fermi spinor. In

the case of the SOC wire (i = {1, 2}), the indexes a and b represent the positive and
negative spin projections along the quantization axis, respectively, while in the case
of the SP model (i = {3, 4}) they are associated with the left-/right-movers. The
pre-quench single-mode Hamiltonian H(i)

k can always be written in a diagonal form
with eigenvalues ε(i)±,0,k such that ε(i)−,0,k ≤ ε

(i)
+,0,k, ∀k, by means of a unitary matrix

[see Eqs. (A.3) and (A.5)]. In particular, for all the cases considered in this paper
the latter takes the form

U
(i)
0,k =

 a
(i)
0,k b

(i)
0,k

−b(i)∗0,k a
(i)
0,k

 , (A.7)

where the coefficients a(i)
0,k ∈ R and b(i)0,k ∈ C are determined by Eqs. (A.3) and (A.5).

Moreover, U (i)
0,kH

(i)
k U

(i)†
0,k = diag

{
ε
(i)
+,0,k, ε

(i)
−,0,k

}
. For t < 0 the diagonalized Hamiltonian

reads
H(i)(t < 0) =

∑
k

[
ε
(i)
−,0,kd

(i)†
v,0,kd

(i)
v,0,k + ε

(i)
+,0,kd

(i)†
c,0,kd

(i)
c,0,k

]
, (A.8)

where the conduction and valence band operators, d(i)
c,0,k and d(i)

v,0,k, are defined by

Φ(i)
0,k = U

(i)
0,kΨ

(i)
k =

d(i)
c,0,k
d

(i)
v,0,k

 . (A.9)

In all cases considered we set the chemical potential to zero and assume the i−th
system to be in its pre-quench zero-temperature equilibrium ground state, |Φ(i)

0 (0)〉.
Therefore, for t < 0, the bands are filled up to the linear crossing and |Φ(i)

0 (0)〉 is
defined as

|Φ(i)
0 〉 =

k
(i)
2∏
k

(i)
1

(
Φ(i)†

0,k

)
2
|0(i)〉 =

k
(i)
2∏
k

(i)
1

(
U

(i)†
0,k Ψ(i)†

k

)
2
|0(i)〉, (A.10)

with |0(i)〉 the vacuum of the i−th system and k(i)
1,2 determined by imposing that

only negative energy states are filled. Here, the subscript 2 means that the second
component of the spinor has to be considered.

We now turn to the regime with t > 0. The post-quench single-mode Hamiltonian
H(i)
k + ∆(i)σx is diagonalized by the unitary matrix

U
(i)
1,k =

 a
(i)
1,k b

(i)
1,k

−b(i)∗1,k a
(i)
1,k

 , (A.11)
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with a(i)
1,k ∈ R and b(i)1,k ∈ C determined again by Eqs. (A.3) and (A.5), and U (i)

1,k[H(i)
k +

∆(i)σx]U (i)†
1,k = diag{ε(i)+,1,k, ε

(i)
−,1,k}. The total Hamiltonian thus becomes

H(i)(t > 0) =
∑
k

[
ε
(i)
−,1,kd

(i)†
v,1,kd

(i)
v,1,k + ε

(i)
+,1,kd

(i)†
c,1,kd

(i)
c,1,k

]
, (A.12)

where ε(i)−,1,k ≤ ε
(i)
+,1,k, ∀k, with the new conduction and valence band fermionic

operators, d(i)
c,1,k and d(i)

v,1,k, given by

Φ(i)
1,k = U

(i)
1,kΨ

(i)
k =

d(i)
c,1,k
d

(i)
v,1,k

 . (A.13)

We now evaluate the magnetization of system along the direction of the applied
magnetic field in the SOC wire or the staggered magnetization in the SP model
within the framework of the GGE. To do this, it is sufficient to know the average
over the pre-quench ground state |Φ(i)

0 〉, denoted by 〈·〉0, of the occupation numbers
n

(i)
k,j of the energy levels of the corresponding post-quench Hamiltonian, given by

n
(i)
k,j=1,2 =

(
Ψ(i)†
k U

(i)†
1,k

)
j

(
U

(i)
1,kΨ

(i)
k

)
j
. (A.14)

Since all the n(i)
k,j commute with the post-quench Hamiltonian, they are conserved

for t > 0 and, therefore, 〈n(i)
k,j〉0 = 〈n(i)

k,j〉GGE . We obtain

〈n(i)
k,1〉0 = 〈n(i)

k,1〉GGE =
∣∣∣−a(i)

1,kb
(i)
0,k + a

(i)
0,kb

(i)
1,k

∣∣∣2 〈d(i)†
v,0,kd

(i)
v,0,k〉0, (A.15a)

〈n(i)
k,2〉0 = 〈n(i)

k,2〉GGE =
∣∣∣a(i)

1,ka
(i)
0,k + b

(i)
0,kb

(i)∗
1,k

∣∣∣2 〈d(i)†
v,0,kd

(i)
v,0,k〉0, (A.15b)

where the averages 〈d(i)†
v,0,kd

(i)
v,0,k〉0 can be easily evaluated from Eq. (A.10). Using

Eq. (A.13) and the fact that 〈d(i)†
c,1,kd

(i)
v,1,k〉GGE = 〈d(i)†

v,1,kd
(i)
c,1,k〉GGE = 0, one gets the

steady state magnetization (SOC wire) or the staggered magnetization (SP)

M (i) = 1
n(i)

∑
k

〈Ψ(i)†
k σxΨ(i)

k 〉GGE (A.16)

= 1∣∣∣k(i)
1

∣∣∣+ ∣∣∣k(i)
2

∣∣∣
∫ k

(i)
2

k
(i)
1

dk
(
a

(i)
1,kb

(i)
1,k + a

(i)
1,kb

(i)∗
1,k

) (
〈n(i)
k,1〉GGE − 〈n

(i)
k,2〉GGE

)
,

(A.17)

where n(i) = L(|k(i)
1 |+ |k

(i)
2 |)/(2π) is the total number of particles in the i−th system

and L is its length. Furthermore, in the last step, the thermodynamic limit has been
performed.

A.1.3 Spin-orbit coupled quantum wire

We now explicitly apply the general discussion of Sec. A.1.2 to the quench of
the external magnetic field in a SOC wire. We start by introducing the real space
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lattice Hamiltonian, imposing periodic boundary conditions:

H =
L∑
j=1

{
Ψ†j [2I2×2 +Bθ(t)σx] Ψj + Ψ†j

[
iα

2 σ
z − I2×2

]
Ψj+1 + h.c.

}
, (A.18)

where L is the total length of the system and we set the lattice spacing to 1. In this
case the pre-quench single-mode Hamiltonians H(i)

k , with i = {1, 2}, are

H(1)
k = 2[1− cos(k)]I2×2 + α sin(k)σz, with k ∈ [−π, π), (A.19a)

H(2)
k = k2I2×2 + αkσz, (A.19b)

for the lattice and the low-energy continuous models, respectively. Note that, because
of the translational invariance, Ψj =

∑
k e

ikj Ψk/
√
L. Although the pre-quench

single-mode Hamiltonian H(i)
k is already diagonal, it can be more conveniently

rewritten in terms of conduction and valence band Fermi operators using Eq. (A.7).
In this case the coefficients of the unitary matrix U (i)

0,k are

a
(i)
0,k = [1− δk,0]θ(k) + δk,0√

2
b
(i)
0,k = [1− δk,0]θ(−k) + δk,0√

2
, (A.20)

while the conduction and valence energy bands are

ε
(1)
±,0,k = 2[1− cos(k)]± α| sin(k)|, (A.21a)

ε
(2)
±,0,k = k2 ± α|k|. (A.21b)

From ε
(i)
−,0,k = 0 it follows that k(1)

1/2 = ∓2 arctan[α/2] and k(2)
1/2 = ∓α.

In the post-quench regime t > 0, the unitary matrix U (i)
1,k which diagonalizes the

single-mode Hamitonian H(1)
k +Bσx has coefficients

a
(1)
1,k = B√[

D
(1)
k − α sin(k)

]2
+B2

, b
(1)
1,k = D

(1)
k − α sin(k)√[

D
(1)
k − α sin(k)

]2
+B2

,

(A.22a)

a
(2)
1,k = B√[

D
(2)
k − αk

]2
+B2

, b
(2)
1,k = D

(2)
k − αk√[

D
(2)
k − αk

]2
+B2

, (A.22b)

where D(1)
k =

√
α2 sin2(k) +B2 and D

(2)
k =

√
α2k2 +B2, while the post-quench

conduction and valence bands are

ε
(1)
±,1,k = 2[1− cos(k)]±D(1)

k , (A.23a)

ε
(2)
±,1,k = k2 ±D(2)

k . (A.23b)

From Eq. (A.17) one immediately obtains the steady state magnetization along
the direction of the applied magnetic field in the thermodynamic limit,

M (i) = 1∣∣∣k(1)
1

∣∣∣+ ∣∣∣k(1)
2

∣∣∣
∫ 0

k
(i)
1

−
∫ k

(i)
2

0

 dk 2a(i)
1,kb

(i)
1,k

[(
a

(i)
1,k

)2
−
(
b
(i)
1,k

)2
]
. (A.24)
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For the lattice model, using Eq. (A.22a), we have

M (1) = 1∣∣∣k(1)
1

∣∣∣+ ∣∣∣k(1)
2

∣∣∣ B

2
√
α2 +B2

log
(
Z+
Z−

)
, (A.25)

with

Z± = (
√
α2 +B2 ∓ α)2

[√
α2 +B2 ± α4− α2

4 + α2

]2

. (A.26)

On the other hand, for the low-energy continuous model one gets from Eq. (A.22b)

M (2) = − B

4α2 log
[
1 + 2 α

4

B2 + α8

B4

]
. (A.27)

A.1.4 Staggered Potential model

In this Section we apply the discussion of Sec. A.1.2 to the quench of the staggered
potential in the SP model. The real space lattice Hamiltonian reads

H = −J
L∑
j=1

[(
c†jcj+1 + h.c.

)
+ (−1)jδ(t)c†jcj

]
, (A.28)

where cj are annihilation operators for spinless fermions on the site j of the lattice,
L is the length of the system and we set the lattice spacing to 1. Introducing the
spinor Ψ†k =

(
c†k, c

†
k−π

)
, with cj =

∑
k e

ikjck/
√
L, we obtain the pre-quench single

mode Hamiltonians H(i)
k , with i = {3, 4},

H(3)
k = −2J cos(k)σz, (A.29a)

H(4)
k = −2J(k − π/2)σz, (A.29b)

with k ∈ [0, π), for the lattice and the low-energy continuous models, respectively.
Also in this model the pre-quench single-mode Hamiltonians are diagonal, and again
we can conveniently introduce conduction and valence band Fermi operators using
Eq. (A.7). The coefficients of the unitary matrix U (i)

0,k are:

a
(i)
0,k = [1− δk,π/2]θ

(
π

2 − k
)

+
δk,π/2√

2
b
(i)
0,k = [1− δk,π/2]θ

(
k − π

2

)
+
δk,π/2√

2
,

(A.30)
while the pre-quench conductance and valence bands are

ε
(3)
±,0,k = ±2J | cos(k)|, (A.31a)

ε
(4)
±,0,k = ±2J |k − π/2|. (A.31b)

One obtains k(3)
1 = k

(4)
1 = 0 and k(3)

2 = k
(4)
2 = π . Note that we are considering a

continuum model with the same number of particles of the lattice one and energy
bands filled up to the crossing point.
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In the post-quench regime the single-mode Hamiltonian H(i)
k +δσx is diagonalized

by the unitary matrix U (i)
1,k, whose coefficients are

a
(3)
1,k = δ√

(ε(3)
+,1,k + 2J cos(k))2 + δ2

, b
(3)
1,k =

ε
(3)
+,1,k + 2J cos(k)√

(ε(3)
+,1,k + 2J cos(k))2 + δ2

,

(A.32a)

a
(4)
1,k = δ√[

ε
(4)
+,1,k + 2J(k − π/2)

]2
+ δ2

, b
(4)
1,k =

ε
(4)
+,1,k + 2J(k − π/2)√[

ε
(4)
+,1,k + 2J(k − π/2)

]2
+ δ2

,

(A.32b)

where the new energy bands are

ε
(3)
±,1,k = ±

√
δ2 + 4J2 cos2(k), (A.33a)

ε
(4)
±,1,k = ±

√
δ2 + 4J2(k − π/2)2. (A.33b)

Using Eqs. (A.17), (A.30) and (A.32) one finds that the steady state staggered
magnetization after the quench evaluates to

M (i) = 1
π

(∫ π

π/2
−
∫ π/2

0

)
dk 2a(i)

1,kb
(i)
1,k

[(
a

(i)
1,k

)2
−
(
b
(i)
1,k

)2
]
. (A.34)

For the lattice model, using Eq. (A.32a), we obtain

M (3) = − 2δ
π
√
δ2 + 4J2

arctanh
( 2J√

δ2 + 4J2

)
. (A.35)

On the other hand, from Eq. (A.32b), one gets for the low-energy continuous model

M (4) = − δ

2Jπ ln
[
1 +

(
πJ

δ

)2
]
. (A.36)

A.1.5 2D Rashba-coupled electron gas

In this Section we consider the quench of magnetic field in a 2D Rashba-coupled
electron gas. The Hamiltonian of the system is H2D(t) =

∑
kx,ky Ψ†kx,ky [Hkx,ky +

θ(t)Bσz]Ψkx,ky , with

Hkx,ky = (k2
x + k2

y)I2×2 + α(σxky − σykx). (A.37)

Here, kx and ky are the two components of the momentum vector ~k, while Ψ†kx,ky =(
d†a,kx,ky , d

†
b,kx,ky

)
, with da,kx,ky (db,kx,ky) fermionic annihilation operators for spin

up (down) electrons. Following the same steps outlined in the previous Sections,
we begin with the pre-quench case. For t < 0 the single-mode Hamiltonian is
diagonalized by the unitary matrix

U0,kx,ky =
[
a0,kx,ky b0,kx,ky
−b∗0,kx,ky a0,kx,ky

]
, (A.38)
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with
a0,kx,ky = 1√

2
b0,kx,ky = 1√

2
kx + iky

k
, (A.39)

where k = |~k| =
√
k2
x + k2

y. The pre-quench conduction and valence fermionic
operators are thus given by

Φ0,kx,ky = U0,kx,kyΨkx,ky =
[
dc,0,kx,ky
dv,0,kx,ky

]
, (A.40)

with associated energy levels

ε±,0,kx,ky = k2 ± αk. (A.41)

When the energy bands are filled up to the linear crossing (i.e. the chemical potential
is set to zero) the pre-quench equilibrium ground state |Φ(2D)

0 (0)〉 is

|Φ(2D)
0 〉 =

∏
k≤α

(
Φ†0,kx,ky

)
2
|02D〉 =

∏
k≤α

(
U †0,kx,kyΨ

†
kx,ky

)
2
|02D〉, (A.42)

with |02D〉 the vacuum of the system. As usual, the subscript 2 means that the
second component of the spinor has to be considered.

We now turn to the post-quench regime. For t > 0 the unitary matrix diagonalizing
the single-mode Hamiltonian Hkx,ky +Bσz is

U1,kx,ky =
[
a1,kx,ky b1,kx,ky
−b∗1,kx,ky a1,kx,ky

]
, (A.43)

with

a1,kx,ky = αk√
(Dkx,ky −B)2 + α2k2

, b1,kx,ky =
Dkx,ky −B√

(Dkx,ky −B)2 + α2k2

kx + iky
k

,

(A.44)
where we have introduced the coefficient Dkx,ky =

√
B2 + α2k2. The post-quench

conductance and valence band Fermi operators are

Φ1,kx,ky = U1,kx,kyΨkx,ky =
[
dc,1,kx,ky
dv,1,kx,ky

]
, (A.45)

with associated energy levels

ε±,1,kx,ky = (k2
x + k2

y)±Dkx,ky . (A.46)

In order to get the steady state magnetization along the applied magnetic field within
the GGE picture, we evaluate the averages of the conserved occupation numbers of
the post-quench energy levels,

nkx,ky ,j=1,2 =
(
Ψ†kx,kyU

†
1,kx,ky

)
j

(
U1,kx,kyΨkx,ky

)
j
, (A.47)
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over the pre-quench ground state |Φ(2D)
0 (0)〉, obtaining

〈nkx,ky ,1〉0 = 〈nkx,ky ,1〉GGE =
∣∣∣−a1,kx,kyb0,kx,ky + a0,kx,kyb1,kx,ky

∣∣∣2 〈d†v,0,kx,kydv,0,kx,ky〉0,
(A.48a)

〈nkx,ky ,2〉0 = 〈nkx,ky ,2〉GGE =
∣∣∣a1,kx,kya0,kx,ky + b0,kx,kyb

∗
1,kx,ky

∣∣∣2 〈d†v,0,kx,kydv,0,kx,ky〉0.
(A.48b)

Since 〈d†c,1,kx,kydv,1,kx,ky〉GGE = 〈d†v,1,kx,kydc,1,kx,ky〉GGE = 0, the steady state magnetization
after the quench evaluates to

M2D = 1
N2D

∑
kx,ky

〈Ψ†kx,kyσ
zΨkx,ky〉GGE

= 1
N2D

∑
kx,ky

(
a2

1,kx,ky − |b1,kx,ky |
2
) (
〈nkx,ky ,1〉GGE − 〈nkx,ky ,2〉GGE

)
= − B

α2

[
1− B

α2 arccot
(
B

α2

)]
,

(A.49)

where in the last step the thermodynamic limit has been performed and we used
that N2D = LxLy/(2π)2, with Lx and Ly the length of the system in the x and y
directions respectively.

A.2 Finite duration quench for the spin-orbit coupled
wire

In this Section we outline the evaluation of the steady state magnetization of
the SOC wire in the presence of a quench with finite duration. In particular, we
consider a quench protocol in which the magnetic field is switched on with a linear
ramp of duration τ . The Hamiltonian of the systems is

H =
∑
k

Ψ(2)†
k

[
H(2)
k +Q(t)Bσx

]
Ψ(2)
k , (A.50)

with

Q(t) =


0
t/τ
1

for t < 0
for 0 ≤ t ≤ τ
for t > τ

. (A.51)

During and after the quench, the Heisenberg equations of motion for the Fermi
spinor components are

∂td
(2)
σ,k(t) = −i

[
(k2 + σαk)d(2)

σ,k(t) +Q(t)Bd(2)
−σ,k(t)

]
, (A.52)

where σ = {a, b} = {+,−}. To solve this coupled system of differential equations,
we take the following ansatz [182] d

(2)
a,k(t)
d

(2)
b,k(t)

 =
[
fa,k(t) ga,k(t)
fb,k(t) gb,k(t)

] d
(2)
a,k

d
(2)
b,k

 = Vk(t)

 d
(2)
a,k

d
(2)
b,k

 , (A.53)
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where d(2)
σ,k is the Fermi operator in the Schrödinger picture at t = 0. Therefore,

all the time dependence is encoded in the functions fσ,k(t) and gσ,k(t), with initial
conditions given by fa,k(0) = gb,k(0) = 1 and fb,k(0) = ga,k(0) = 0. Since anti-
commutation relations between the operators d(2)

σ,k(t) have to be satisfied during the
whole time evolution,we have that |fσ,k(t)|2 + |gσ,k(t)|2 = 1, ∀t. By substituting the
ansatz of Eq. (A.53) in Eq. (A.52), we obtain two decoupled systems for fσ,k(t) and
gσ,k(t), respectively,

i∂t

[
fa,k(t)
fb,k(t)

]
=
[
k2 + αk Q(t)B
Q(t)B k2 − αk

] [
fa,k(t)
fb,k(t)

]
, (A.54)

i∂t

[
ga,k(t)
gb,k(t)

]
=
[
k2 + αk Q(t)B
Q(t)B k2 − αk

] [
ga,k(t)
gb,k(t)

]
. (A.55)

The latter systems can be solved with same method, given that the appropriate
initial conditions are used. In particular, introducing the notation ν = {f, g}, we
define the functions [18]

Sν,k(t) = νa,k(t) + νb,k(t), Dν,k(t) = νa,k(t)− νb,k(t). (A.56)

Using Eq. (A.54), one obtains that the following differential equations hold{
i∂tSν,k(t) =

[
k2 +Q(t)B

]
Sν,k(t) + αkDν,k(t)

i∂tDν,k(t) =
[
k2 −Q(t)B

]
Dν,k(t) + αkSν,k(t)

, (A.57)

From the above system we derive the second-order differential equation

∂2
tDν,k(t) + 2ik2∂tDν,k(t) +

[
B2Q2(t)− k4 + α2k2 − iB∂tQ(t)

]
Dν,k(t) = 0, (A.58)

which can be analytically solved in every region defined by the quench protocol in
Eq. (A.51) using the appropriate matching conditions on the boundaries of each them.
Moreover, once we get Dν,k(t), the function Sν,k(t) is automatically determined by
the second equation in Eq. (A.57).

The magnetization along the applied magnetic field can be evaluated within the
GGE, with a straightforward generalization of procedure described in Sec. A.1.2.
In particular, the quantities conserved after the quench (i.e. for t > τ) are
〈n(2)
k,j(τ)〉0 = 〈n(2)

k,j(τ)〉GGE , with

n
(2)
k,j(τ) =

(
Φ(2)†

0,k U
(2)
0,kV

†
k (τ)U (2)†

1,k

)
j

(
U

(2)
1,kVk(τ)U (2)†

0,k Φ(2)
0,k

)
j

(A.59)

the occupation numbers of the post-quench energy levels and the unitary matrix
Vk(t) introduced in Eq. (A.53). From the knowledge of 〈n(2)

k,j(τ)〉GGE and thanks to
the fact that 〈d(i)†

c,1,k(τ)d(i)
v,1,k(τ)〉GGE = 〈d(i)†

v,1,k(τ)d(i)
c,1,k(τ)〉GGE = 0, one can evaluate

the steady state magnetization

M (2) = 1
n(2)

∑
k

〈Ψ(2)†
k σxΨ(2)

k 〉GGE = 1
n(2)

∑
k

〈Φ(2)†
1,k (τ)U (2)

1,kVk(τ)σxV †k (τ)U (2)†
1,k Φ(2)

1,k(τ)〉GGE .

(A.60)
As one can clearly see, the non-monotonic behavior persists also in this case, for
quench protocols with different time duration τ .
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A.3 Klein-Gordon physics in the evolution of the Green’s
function

In this Section we focus on the low-energy continuous theories for the SOC wire
and the SP model and derive KG equation [see Eq. (3.19) of the main text] satisfied
by the general Green’s function

G(i)(x, t) = 〈Ψ(i)†(x, t)σxΨ(i)(0, t)〉0 (A.61)

after a sudden quench of the gap opening mechanism. Here,

Ψ(i)†(x, t) =
(
ψ(i)†
a (x, t), ψ(i)†

b (x, t)
)

(A.62)

is the space-resolved Fermi spinor in the Heisenberg picture, while the average is
evaluated on the pre-quench equilibrium ground state |Φ(i)

0 〉.

A.3.1 Spin-orbit coupled wire

We start by deriving the equation of motion of the Fermi field operator Ψ(2)(x, t)
for the SOC wire. By rewriting the Hamiltonian of Eq. (A.6) in real space as a
function of Ψ(2)(x) one gets the Heisenberg equations of motion for the Fermi spinor
components,

∂tψ
(2)
σ (x, t) =

(
i∂2
x − σα∂x

)
ψ(2)
σ (x, t)− iBψ(2)

−σ(x, t), (A.63)

with σ, σ′ = {a, b} = {+,−}. From the above equation, we can derive the equations
of motion for the spin resolved Green’s functions,

G
(i)
σσ′(x, t) = 〈ψ(i)†

σ (x, t)ψ(i)
σ′ (0, t)〉0. (A.64)

As a result, we obtain the following closed set of differential equations

∂tG
(2)
++(x, t) = −iB

[
G

(2)
+−(x, t)−G(2)

−+(x, t)
]
, (A.65a)

∂tG
(2)
+−(x, t) = −iB

[
G

(2)
++(x, t)−G(2)

−−(x, t)
]

+ 2α∂xG(2)
+−(x, t), (A.65b)

∂tG
(2)
−+(x, t) = +iB

[
G

(2)
++(x, t)−G(2)

−−(x, t)
]
− 2α∂xG(2)

−+(x, t), (A.65c)

∂tG
(2)
−−(x, t) = +iB

[
G

(2)
+−(x, t)−G(2)

−+(x, t)
]
. (A.65d)

Note that the Green’s function of Eq. (A.61) can be written as
G(2)(x, t) = G

(2)
+−(x, t) +G

(2)
−+(x, t). From Eqs. (A.65), we thus obtain

∂2
t G(2)(x, t) =2α∂x∂t

[
G

(2)
+−(x, t)−G(2)

−+(x, t)
]

=4α2∂2
xG(2)(x, t)− 4iαB∂x

[
G

(2)
++(x, t)−G(2)

−−(x, t)
]
.

(A.66)

It is now convenient to introduce the function S(x, t) = G
(2)
++(x, t)−G(2)

−−(x, t), whose
time derivative reads

∂tS(x, t) = −2iB
[
G

(2)
+−(x, t)−G(2)

−+(x, t)
]
. (A.67)
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By integrating the above equation, one obtains

S(x, t) = S(x, 0)− 2iB
∫ t

0

[
G

(2)
+−(x, t′)−G(2)

−+(x, t′)
]
dt′. (A.68)

Then, by taking the space derivative of S(x, t) and noting that

∂x
[
G

(2)
+−(x, t′)−G(2)

−+(x, t′)
]

= (2α)−1∂tG(2)(x, t) (A.69)

[see Eqs. (A.65b) and (A.65c)], it follows that

∂xS(x, t) = ∂xS(x, 0)− iB
α
G(2)(x, t). (A.70)

Finally, turning back to Eq. (A.66), we obtain the desired result(
∂2
x −

1
4α2∂

2
t

)
G(2)(x, t) = B2

α2 G
(2)(x, t) + B

α
φ2(x), (A.71)

where the source term φ2(x) is defined as

φ2(x) = i∂xS(x, 0) = i∂x〈Ψ(2)†(x, 0)σzΨ(2)(0, 0)〉0. (A.72)

In particular, φ2(x) can be analytically evaluated to obtain

φ2(x) = 2
[1− cos(αx)

x2 − α sin(αx)
x

]
. (A.73)

A.3.2 Staggered potential model

We now focus on the SP model. In principle, the KG equation satisfied by the
Green’s function G(4)(x, t) can be obtained following the same steps of the SOC wire
case. However, in order to show an alternative method to derive it, we demonstrate
that G(4)(x, t) satisfies the analogous of Eq. (A.71) by a direct calculation. We begin
by explicitly evaluating G(4)(x, t) = 〈Ψ(4)†(x, t)σxΨ(4)(0, t)〉. The time evolution of
the Fermi spinor Ψ(4)(x, t) =

∑
k Ψ(4)

k (t)eikx/
√
L(4) in the Heisenberg picture can be

obtained from Eq. (2) of the main text,

Ψ(4)
k (t) = U

(4)†
1,k diag{e−iε

(4)
+,1,kt, e−iε

(4)
−,1,kt}U (4)

1,kU
(4)†
0,k Φ(4)

0,k(0), (A.74)

with the coefficients of the matrices U (4)
0,k and U (4)

1,k given in Eqs. (A.30) and (A.32b),
respectively. Here, Ψ(i)†

k (t) =
(
d

(i)†
a,k (t), d(i)†

b,k (t)
)
is the momentum resolved Fermi

spinor and L(4) is the length of the system. The Green’s function G(4)(x, t) can thus
be rewritten as

G(4)(x, t) = 1
L(4)

∑
k

e−ikx〈d(4)†
b,k (t)d(4)

a,k(t) + h.c.〉0, (A.75)

where the average is evaluated on the ground state of the pre-quench Hamiltonian
H(4)
k , defined in Eq. (A.10). Using Eqs. (A.30), (A.32b) and (A.74), we obtain

〈d(4)†
b,k (t)d(4)

a,k(t)〉0 =1
8〈d

(4)†
v,1,kd

(4)
v,1,k〉0·

·
[
−4βkIm{βk} − ie−2itε(4)

+,1,k
(
1 + β2

k

)
− ie−2itε(4)

−,1,kβ2
k

(
1 + β∗2k

)]
,

(A.76)
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where βk =
√

2b(4)
1,k. Substituting in Eq. (A.75) and performing the thermodynamic

limit, one has

G(4)(x, t) = − 1
π

∫ π

0
e−ikx

Jkδ

J2k2 + δ2

[
1− cos

(
2tε(4)

+,1,k

)]
dk. (A.77)

Finally, after evaluating the second-order time and space derivatives of G(4)(x, t),

∂2
t G(4)(x, t) = − 4

π

∫ π

0
e−ikxJkδ cos

(
2tε(4)

+,1,k

)
dk, (A.78a)

∂2
xG(4)(x, t) = 1

π

∫ π

0
e−ikx

Jk3δ

J2k2 + δ2

[
1− cos

(
2tε(4)

+,1,k

)]
dk, (A.78b)

and performing some algebraic manipulations, one can directly verify that the
following KG equation is satisfied(

∂2
x −

1
4J2∂

2
t

)
G(4)(x, t) = δ2

J2G
(4)(x, t) + δ

J
φ4(x), (A.79)

where the source term φ4(x) is

φ4(x) = 2cos(πx) + πx sin(πx)− 1
πx2 = i∂x〈Ψ(4)†(x, 0)σyΨ(4)(0, 0)〉0. (A.80)
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APPENDIX B

Quantum quench and geometrical interpretation

B.1 Quench-induced transformation in the SSH model

We start this section by giving, as stated in the main text, the Hamiltonian of
the Su-Schrieffer-Heeger (SSH) model (see Section 2.2)

H(t) =
∑
k

Ψ†k {σx [w + w cos k + δ(t)] + wσy sin k}Ψk, (B.1)

where Ψ†k =
(
c†k,A, c

†
k,B

)
is a two-component momentum resolved Fermi spinor, A

and B represent the two sublattices of the unit cell and the hopping between the
same and different cells is staggered. This difference is encoded in the quantity δ(t),
which measures the amplitude of the gap in the spectrum of the system. In the
context of sudden quantum quenches, δ(t) abruptly changes its value, namely

δ(t) = δ0θ(−t) + δ1θ(t). (B.2)

Here, we conveniently use the indexes 0 or 1 for the pre- or post-quench quantities,
respectively, and the symbol θ denotes the Heaviside step function. The Hamiltonian,
accordingly, can be written as

H(t) = H0θ(−t) +H1θ(t). (B.3)

It is useful, at this point, to diagonalize both the pre- and post-quench Hamiltonians,
by means of a unitary transformation, to obtain (µ = 0, 1)

Hµ =
∑
k

εµ,k
(
d†µ,c,kdµ,c,k − d

†
µ,v,kdµ,v,k

)
, (B.4)

where the subscripts c and v are associated with the conduction and valence bands
respectively, and

εµ,k =
√
δ2
µ + 2(w2 + wδµ)(1 + cos k) (B.5)
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is the energy spectrum. The transformation, which relates the lattice and the
diagonal bases, is defined as:

Φµ,k =
(
dµ,c,k
dµ,v,k

)
= Uµ,kΨk, (B.6)

where
Uµ,k =

(
Aµ,k Bµ,k
−B∗µ,k Aµ,k

)
(B.7)

and

Aµ,k = 1√
2
, Bµ,k = 1√

2

w
(
1 + e−ik

)
+ δµ

εµ,k
. (B.8)

One can easily compose these transformations to get the unitary matrix which
connects the two diagonal pre- and post-quench bases. It has the following form:

Φ1,k = U1,kU
†
0,kΦ0,k = U1

0,kΦ0,k. (B.9)

B.2 General properties
To get more insight about the quench-induced transformation, it is instructive

to rewrite U0
1,k in the following form,

U0
1,k = exp

(
i ~Dk · ~σ

)
(B.10)

where ~σ is the vector of Pauli matrices and ~Dk = | ~Dk| ~nk. By exploiting the
properties of Pauli matrices one obtains (from here on we set w = 1 for simplicity)

| ~Dk| = arctan
[√

4− (1−∆k)2

1−∆k

]
, (B.11)

~nk = 1√
4− (1−∆k)2


− sin k

(
1
ε1,k

+ 1
ε0,k

)
1 + δ1 + cos k

ε1,k
− 1 + δ0 + cos k

ε0,k
δ0 − δ1
ε0,kε1,k

sin k


, (B.12)

∆k = −1 + (1 + δ0)(1 + δ1) + (2 + δ0 + δ1) cos k
ε0,kε1,k

. (B.13)

The function ∆k introduced above emerges naturally from the transformation, i.e.
from the sudden quench: note that, indeed, | ~Dk| only depends on the momentum
via ∆k. The following general properties hold:

1. ∆k is a periodic and analytic function of the momentum k, with ∆k = ∆−k
due to time-reversal symmetry;

2. −1 ≤ ∆k ≤ 1, which in turns implies 0 ≤ | ~Dk| ≤ π/2.
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Moreover, the unit vector ~nk shows a clear symmetry with respect to the parameter
k, such that for k → −k the vector ~Dk gets mirrored about the y-axis. In view of the
properties outlined above let us study ∆k over half of the BZ, namely on I = [0, π],
where one finds that the equation |∆k| = 1 has solutions only if k = 0, π. More
specifically, denoting s(x) = x/|x| the sign function, one finds

∆0 = −s(δ0 + 2)s(δ1 + 2) ; ∆π = −s(δ0)s(δ1). (B.14)

Clearly, as a function of the quench parameters, ∆k is not analytic but exhibits
jumps when the critical lines δµ = 0 and δµ = −2 are crossed, while for all other
values of k, ∆k is instead a continous and analytic function of the quench parameters.
Note that at δµ = 0,−2 the equilibrium SSH model presents two quantum critical
points (QCPs) associated to a quantum phase transition (QPT). This defines nine
regions in the (δ0, δ1)-plane: within each region the values of ∆0 and ∆π are constant
and independent of the quench. One finds

∆k = −1 =⇒ U0
1,k =

(
1 0
0 1

)
, (B.15)

∆k = 1 =⇒ U0
1,k =

(
0 1
−1 0

)
. (B.16)

When ∆k = −1 the c, v states are unchanged, while for ∆k = 1 the c, v states are
essentially swapped. In addition, ∆k = 1 =⇒ ~nk = (0,−1, 0). Therefore, the
transformation U0

1,k has two fixed points, namely ~Dk = (0, 0, 0) (henceforth called I)
where it reduces to the identity and ~Dk = (0,−π/2, 0) (henceforth called R), where
bands are swapped.

B.2.1 Occupation numbers and GGE weights

In this section we introduce the Generalized Gibbs Ensemble (GGE) which,
in the thermodynamic limit, reproduces the long time limit of the expectation
value of the system observables. We start by presenting the GGE density matrix,
obtained by maximizing the entropy while keeping into account the conservation of
the occupation number operators Nα,k = d†1,α,kd1,α,k,

ρG = e
−
∑

α,k
λα,kNα,k

Tr
{
e
−
∑

α,k
λα,kNα,k

} , (B.17)

where α = c, v and λα,k are the corresponding Lagrange multipliers, obtained by
imposing

Tr {Nα,kρG} = 〈G0|Nα,k|G0〉 = nα,k, (B.18)

with |G0〉 the pre-quench ground state. One has

〈G0|Nc,k|G0〉 = |A0,kB1,k −A1,kB0,k|2 , (B.19)

〈G0|Nv,k|G0〉 =
∣∣∣A0,kA1,k +B∗1,kB0,k

∣∣∣2 , (B.20)
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and
λc,k = ln

(
nv,k
nc,k

)
= −λv,k. (B.21)

Interestingly, by recalling Eq. (B.19), we observe that

∆k = nc,k − nv,k, (B.22)

and
λc,k = ln

(1−∆k

1 + ∆k

)
. (B.23)

Equation (B.22) is particularly interesting since it links the imbalance between c and
v states to the function ∆k, which, in turn, is directly connected with the presence
of the quench. With |G0〉 as the pre-quench state, ∆k = 1 implies a complete
inversion of population. Three different scenarios can occur, according to the quench
parameters:

• If ∆0 = −1 and ∆π = −1, the function ∆k must have at least one maximum
in each half of the BZ. It is easy to prove that in this situation ∆k < 0 always.
As a result, no inversion of population occurs;

• If ∆0 = ∓1 and ∆π = ±1, the function ∆k must have at least one zero in each
half of the BZ. Indeed, there is exactly one zero per half, located at

k∗ = − arccos
(2 + δ0 + δ1 + δ0δ1

2 + δ0 + δ1

)
. (B.24)

In this situation a non-trivial inversion of population occurs for −π ≤ k < −k∗
and k∗ < k ≤ π;

• If ∆0 = 1 and ∆π = 1, the function ∆k must have at least one minimum
in each half of the BZ and one can prove that ∆k > 0 always. As a result,
a complete inversion of population in the whole BZ occurs. Formally, this
last case can be analyzed by simply swapping the role of the c and v states
throughout the entire BZ, thus we label this a “trivial" inversion of population.

B.3 Effective GGE energy bands
Upon defining εα,k = wλα,k and introducing a fictitious effective inverse temperature

β∗ = w−1 we can re-write
nα,k = 1

1 + eβ
∗εα,k

. (B.25)

Thus, the occupation numbers nα,k correspond to a thermal distribution of free
fermions with effective energy bands εα,k and zero chemical potential. By exploiting
this analogy, from the above discussion and Eq. (B.23), we can conclude that:

• If ∆0∆π = 1, the two effective bands never touch nor cross the chemical
potential and thus describe an effective insulating configuration;

• If ∆0∆π = −1, the two effective bands cross precisely at chemical potential,
exactly once per half of the BZ, and thus describe an effective metallic
configuration.
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Therefore, each of the nine regions in the quench parameters space is associated,
in the GGE, to an effective metallic or insulating “phase", and transitions occur
whenever one of the δi crosses the critical lines.

B.3.1 A geometrical interpretation

We can provide a geometrical interpretation of what discussed above. As k
sweeps the BZ, the vector ~Dk describes a closed curve γ in the three-dimensional
space, pinned to either or both the fixed points I, R. To be specific and without loss
of generality, here we consider the case δ0 > 0 only.

• For δ1 > 0, one has ∆0 = ∆π = −1. Thus, γ passes twice through the point I;

• For −2 < δ1 < 0, one has ∆0 = −∆π = −1. As a consequence, γ passes
through both I and R;

• For δ1 < −2 and γ passes through both I and R;

In the first and last cases the GGE has an insulating character and the curve γ
describes a butterfly shape pinned either at the origin (δ1 > 0) or at (0,−π/2, 0)
(δ1 < −2). On the other hand, for −2 < δ1 < 0 the GGE is metallic and γ describes
a closed loop pinned at I and R. A variation of the quench parameters which does
not result in a crossing of the critical lines does not alter the qualitative features of
the curve γ. The scenario is summarized in Fig. B.1.

Figure B.1: Three different curves γ described by the vector ~Dk with k spanning the BZ.
Here we set δ0 = 5w and three possible representations of the different regimes
are shown for δ1 = 0.1w and δ1 = −2.5w, which describe the insulating
effective phase (red curves), and for δ1 = −0.8w, which describe the metallic
effective phase (blu curve).
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B.4 Robustness

In this section we give some details about the robustness of the effective metal-
insulator transition with respect to a thermal initial state and a finite-duration
quench.

B.4.1 Thermal initial state

We start by observing that, given a generic occupation of the pre-quench states
n

(0)
α,k, using the quench transformation one can promptly obtain

nc,k − nv,k = [n(0)
v,k − n

(0)
c,k]∆k . (B.26)

This relationship is very powerful: Let us apply it to the case of a system prepared
at a generic temperature T = (kB β)−1, with occupation numbers

n
(0)
c,k = 1

1 + eβε0,k
and n

(0)
v,k = 1

1 + e−βε0,k
. (B.27)

One then easily obtains
nc,k − nv,k = fT,k∆k , (B.28)

with
fT,k = sinh(βε0,k)

1 + cosh(βε0,k)
> 0. (B.29)

Equipped with Eq. (B.28) one obtains the GGE multipliers

λc,k = ln
(

1− fT,k∆k

1 + fT,k∆k

)
and λv,k = −λc,k . (B.30)

The key observation is that for any temperature T the qualitative features of
nc,k − nv,k (governing the inversion of population) and of the new GGE multipliers
(dictating the effective metal-insulator transitions) remain unchanged since fT,k has
no zeroes and thus can neither destroy the insulating phase, nor distort the metallic
one. Thus, all the conclusions obtained in the T = 0 case still hold, including the
presence of non-analyticities in the steady state of quantities, still hold.

B.4.2 Finite-duration quenches

Turning to the study of the effects of a quench with finite duration, we introduce
a new quench protocol encoded in the time dependence of the quench parameter
δ(t), defined in Eq. (B.1). Here we consider a linear ramp, namely

δ(t) =


δ0
δ0 + (δ1 − δ0)t/τ
δ1

t ≤ 0
0 < t ≤ τ
t > τ

, (B.31)
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where τ is the quench duration. By means of the Heisenberg equation of motion
and taking the following ansatz,(

ck,A(t)
ck,B(t)

)
=
(
fk,A(t) gk,A(t)
fk,B(t) gk,B(t)

)(
ck,A
ck,B

)

= Vk(t)
(
ck,A
ck,B

)
,

(B.32)

where ck,A and ck,B are the Fermi operator in the Schrödinger picture at t = 0, we can
evaluate the time evolution of the whole Fermi spinor Ψ†k =

(
c†k,A, c

†
k,B

)
, given the

initial conditions fk,A(t = 0) = gk,B(t = 0) = 1 and fk,B(t = 0) = gk,A(t = 0) = 0.
We obtain that the coefficients of the matrix Vk(t) satisfy the following systems of
differential equations:(

fk,A(t)
fk,B(t)

)
=
(

0 mk(t)
m∗k(t) 0

)(
fk,A
fk,B

)
,(

gk,A(t)
gk,B(t)

)
=
(

0 mk(t)
m∗k(t) 0

)(
gk,A
gk,B

)
,

(B.33)

where
mk(t) = 1 + e−ik + δ(t). (B.34)

Therefore, we are able to write the transformation which connects the pre- and
post-quench diagonal bases,

Φ1,k = U1,kVk(τ)U †0,kΦ0,k = V0
1,k(τ)Φ0,k. (B.35)

which represents the generalization to the finite duration quench of Eq. (B.9).
Equation (B.35) allows us to evaluate the GGE conserved quantities

nc,k = |A0,k [B1,kgk,B(τ) +A1,kgk,A(τ)]
−B0,k [B1,kfk,B(τ) +A1,kfk,A(τ)]|2 = 1− nv,k.

(B.36)

As done above, we focus now on the points k = 0, π, where the analysis becomes
transparent. At these points mk(t) is real and the coefficients of the matrix Vk(t)
fulfill the following differential equation

∂2
t Vk −

δ1 − δ0
τµk(t)

∂tVk + µk(t)2Vk = 0, (B.37)

where µ0(t) = 2 + δ(t) and µπ(t) = δ(t). Solving this equation and assuming for
simplicity δ0 > 0, we obtain for k = π

V0
1,π(τ) = 1 + s(δ1)

2

(
e−iητ 0

0 eiητ

)
− 1− s(δ1)

2

(
0 eiητ

−e−iητ 0

)
, (B.38)

where η = δ0 + δ1
2 . Analogous results are achieved for k = 0, where the sign function

is shifted to the second critical point, i.e. it becomes s(δ1 + 2). In qualitative
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agreement with the sudden case, to which the above equation reduces for η → 0,
for δ1 > 0 the c, v bands remain essentially the same with the exception of an η-
dependent phase shift while for δ1 < 0, in addition to the c, v the η-dependent phase
shift, the c, v bands swap their role. Crucially, however, the phase shift is irrelevant in
the evaluation of ∆k at k = 0, π. As a consequence, the same qualitative conclusions
concerning a non-trivial inversion of population and an effective metal-insulator
transition can be drawn.

B.5 Other observables

In this section we provide some details about the steady state value of the
quantities discussed in the main text.

B.5.1 Dimerization

The dimerization operator is defined as

M(x) =
∑
k,k′

ei(k
′−k)xΨ†kσxΨk′ . (B.39)

Exploiting Eqns. (B.6-B.8) and the definition of the GGE one finally obtains

M̄ = 〈G0|M(x)|G0〉

= 1
π

∫ π

−π
A1,kRe{B1,k} (nc,k − nv,k) dk.

(B.40)

B.5.2 Entropy

We consider the entropy associated to the GGE, defined as

S = Tr {ρG ln(ρG)} . (B.41)

The quantity S has to be interpreted as the extensive part of the entanglement
entropy of long enough subsystems. Its evaluation can be performed by standard
means by noticing the formal analogy to a system of free fermions unveiled in
Sec. B.2.1. We obtain:

S = −
∑
α,k

nα,k ln (nα,k) . (B.42)

Current fluctuations

Here we consider the fluctuations of the spatially-averaged current, related to
the DC conductance, both in the real and in the effective GGE bands. We start by
defining the current operator as the derivative of the energy spectrum with respect
to the momentum k. In the thermodynamic limit,

J(0) =
∑
α

J (0)
α = 1

2π
∑
α

∫ π

−π
j

(0)
α,kNα,kdk (B.43)
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with jα,k = ±∂kε1,k (± for c, v) and j0
α,k = ∂εα,k for the real (J) and GGE effective

bands (J0) respectively. The DC fluctuations σ̄(0) = 〈G0|J2
(0)|G0〉 are thus given by

σ̄(0) = 1
(2π)2

∑
α

∫ π

−π

(
j

(0)
α,k

)2
nα,k (1− nα,k) dk (B.44)

and, given the relation between the GGE conserved quantities and the effective
bands in Eq. (B.22), we obtain

σ̄(0) = 1
(2π)2

∫ π

0

(
j

(0)
c,k

)2 dk

1 + cosh(λc,k)
. (B.45)

B.6 Interacting model
To include interactions we concentrate on a model that is easier to simulate than

the SSH model considered in the rest of the text. The Hamiltonian we want to
consider is given by spinless fermions on a chain where we allow for a staggered field,
nearest neighbor hopping as well as interactions

H(t) =
N∑
i=1

wc†ici+1 + H.c.+ δ(t)(−1)ini + Unini+1. (B.46)

Here c(†)
i annihilates (creates) a spinless fermion on lattice site i. The quench is

performed at time t = 0, at which the staggered field is is abruptly changed from
δ0 to δ1. This model exhibits the same qualitative behavior of the SSH model in
the absence of interactions. To simulate the dynamics we use an implementation
of the density matrix renormalization group directly set up in the thermodynamic
limit N → ∞. Here we use an iterative algorithm to prepare the ground state of
H(t < 0) and then propagate the wave function in real time with respect to H(t > 0)
employing a fourth order Suzuki-Trotter decomposition. The decomposition time
steps are chosen small enough to yield converged results. We dynamically increase
the so-called bond-dimension, the parameter describing the numerical accuracy, as
the simulation time progress, which allows us to achieve numerically exact results.
By this procedure the truncation error in the wavefunction is kept below a 10−7

threshold. As simulation time progresses the entanglement in the system rises and
with it the bond dimension as well as the numerical effort needed. Entanglement
growth in simulation time is typically linear leading to an exponential increase in
bond dimension. Therefore, at a certain time t the numerical resources are exhausted
and no further progress in simulation time can be made. Luckily, at finite U the
dynamics for the observable M̄ = 〈n0 − 1/2〉 of interest become strongly damped
facilitating an extrapolation to long times, compare Fig. B.2. For U = 0, where the
strong oscillations make an extrapolation more difficult, we check convergence by
comparison with exact results obtained from the GGE directly.
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Figure B.2: Time evolution of M for different values of the interaction strength U , for
δ0 = w and δ1 = −0.01w. Increasing the interaction strength strongly
suppresses the transient oscillations.
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APPENDIX C

Observables driven-dissipative dynamics

C.1 Dissipative time evolution equations for the observables

In this section, we obtain the time evolution equations for the relevant observables
of the system. Since the first term of the right hand side of Eq. (6.36) is the same
as the one studied in [168], we give only the explicit evaluation of the dissipative
term of the Lindblad equation.

C.1.1 Population of the valence band

Here we focus on the derivation of the dynamics of the occupation number of the
valence band, n11

p = c1†
p c1

p . We start by exploiting the commutators in eq. (6.36)
corresponding to this specific case,[
Sαk,q, n11

p

]
=
[
cα†k cαk+q, c

1†
p c

1
p

]
= δα,1

[
δ(k + q − p)c1†

p−qc
1
p − δ(k − p)c1†

p c
1
p+q

]
= −

[
n11

p ,Sαk,q
]
,

(C.1)[
n11

p ,S
α†
k,q

]
=
[
c1†

p c
1
p, c

α†
k+qc

α
k

]
= δα,1

[
δ(k + q − p)c1†

p c
1
p−q − δ(k − p)c1†

p+qc
1
p

]
= −

[
Sα†k,q, n

11
p

]
.

(C.2)
Using Wick’s theorem, we can simplify the terms obtained after the evaluation of
the commutators. Here we show the ones multiplied in Eq. (6.36) by (1 + nB), i. e.
the first line:

〈cβ†
k′
cβ

k′+q
c1†

p c
1
p−q〉 = δβ,2δ(k′+p) 〈s21

−p〉 〈s
21†
−p+q〉+δ(k′−p+q)

[
δβ,1 〈n11

p−q〉 〈1− n11
p 〉 − δβ,2 〈n21

p−q〉 〈n12
p 〉
]

(C.3)
〈cβ†

k′
cβ

k′+q
c1†

p+qc
1
p〉 = δβ,2δ(k′+p+q) 〈s21

−p−q〉 〈s
21†
−p 〉+δ(k′−p)

[
δβ,1 〈n11

p 〉 〈1− n11
p+q〉 − δβ,2 〈n21

p 〉 〈n12
p+q〉

]
(C.4)

〈c1†
p−qc

1
pc
β†
k′+q

cβ
k′
〉 = 〈cβ†

k′
cβ

k′+q
c1†

p c
1
p−q〉∗ (C.5)

〈c1†
p c

1
p+qc

β†
k′+q

cβ
k′
〉 = 〈cβ†

k′
cβ

k′+q
c1†

p+qc
1
p〉∗ (C.6)

113
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while now we show the ones multiplied in Eq. (6.36) by nB, i. e. the second line:

〈cβ†
k′+q

cβ
k′
c1†

p−qc
1
p〉 = δβ,2δ(k′+p) 〈s21

−p+q〉 〈s
21†
−p 〉+δ(k′−p+q)

[
δβ,1 〈n11

p 〉 〈1− n11
p−q〉 − δβ,2 〈n21

p 〉 〈n12
p−q〉

]
(C.7)

〈cβ†
k′+q

cβ
k′
c1†

p c
1
p+q〉 = δβ,2δ(k′+p+q) 〈s21

−p〉 〈s
21†
−p−q〉+δ(k′−p)

[
δβ,1 〈n11

p+q〉 〈1− n11
p 〉 − δβ,2 〈n21

p+q〉 〈n12
p 〉
]

(C.8)
〈c1†

p c
1
p−qc

β†
k′
cβ

k′+q
〉 = 〈cβ†

k′+q
cβ

k′
c1†

p−qc
1
p〉∗ (C.9)

〈c1†
p+qc

1
pc
β†
k′
cβ

k′+q
〉 = 〈cβ†

k′+q
cβ

k′
c1†

p c
1
p+q〉∗ (C.10)

Hence, the dissipative part of the time evolution of 〈n11
p 〉 due to the acoustic phonons

is given by

d

dt
〈n11

p 〉ph =2
∑

q

{
nB
[
Γ1

p−q,q 〈n11
p 〉 〈1− n11

p−q〉 − Γ2
p−q,qRe

{
〈n21

p 〉 〈n12
p−q〉

}
− Γ2

−p,qRe
{
〈s21
−p+q〉 〈s

21†
−p 〉

}]
+

− [1 + nB]
[
Γ1

p,q 〈n11
p 〉 〈1− n11

p+q〉 − Γ2
p,qRe

{
〈n21

p 〉 〈n12
p+q〉

}
− Γ2

−p−q,qRe
{
〈s21
−p−q〉 〈s

21†
−p 〉

}]
+

[1 + nB]
[
Γ1

p−q,q 〈n11
p−q〉 〈1− n11

p 〉 − Γ2
p−q,qRe

{
〈n21

p−q〉 〈n12
p 〉
}
− Γ2

−p,qRe
{
〈s21
−p〉 〈s

21†
−p+q〉

}]
+

− nB
[
Γ1

p,q 〈n11
p+q〉 〈1− n11

p 〉 − Γ2
p,qRe

{
〈n21

p+q〉 〈n12
p 〉
}
− Γ2

−p−q,qRe
{
〈s21
−p〉 〈s

21†
−p−q〉

}]}
.

(C.11)
Analogously, the dissipative part due to the radiative recombination reads (Γrr = π|w|2)

d

dt
〈n11

p 〉rr = Γrr〈n22
p 〉〈1− n11

p 〉. (C.12)

C.1.2 Population of the conduction band

The derivation is completely analogous to the previous case. For the phonons,
we have to simply exchange the band index 1→ 2. Therefore, we get:

d

dt
〈n22

p 〉ph =2
∑

q

{
nB
[
Γ2

p−q,q 〈n22
p 〉 〈1− n22

p−q〉 − Γ1
p−q,qRe

{
〈n12

p 〉 〈n21
p−q〉

}
− Γ1

−p,qRe
{
〈s12
−p+q〉 〈s

12†
−p 〉

}]
+

− [1 + nB]
[
Γ2

p,q 〈n22
p 〉 〈1− n22

p+q〉 − Γ1
p,qRe

{
〈n12

p 〉 〈n21
p+q〉

}
− Γ1

−p−q,qRe
{
〈s12
−p−q〉 〈s

12†
−p 〉

}]
+

[1 + nB]
[
Γ2

p−q,q 〈n22
p−q〉 〈1− n22

p 〉 − Γ1
p−q,qRe

{
〈n12

p−q〉 〈n21
p 〉
}
− Γ1

−p,qRe
{
〈s12
−p〉 〈s

12†
−p+q〉

}]
+

− nB
[
Γ2

p,q 〈n22
p+q〉 〈1− n22

p 〉 − Γ1
p,qRe

{
〈n12

p+q〉 〈n21
p 〉
}
− Γ1

−p−q,qRe
{
〈s12
−p〉 〈s

12†
−p−q〉

}]}
(C.13)

while, for the radiative recombination, we obtain (Γrr = π|w|2)

d

dt
〈n22

p 〉rr = −Γrr〈n22
p 〉〈1− n11

p 〉. (C.14)

C.1.3 Standard interband correlations

Next, we focus on the time evolution of the standard interband correlations,
namely n21

p = c2†
p c1

p . The commutators, in this case, read[
Sαk,q, n21

p

]
=
[
cα†k cαk+q, c

2†
p c

1
p

]
= δα,2 δ(k+q−p)c2†

p−qc
1
p−δα,1 δ(k−p)c2†

p c
1
p+q = −

[
n21

p ,Sαk,q
]

(C.15)
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[
n21

p ,S
α†
k,q

]
=
[
c2†

p c
1
p, c

α†
k+qc

α
k

]
= δα,1 δ(k+q−p)c2†

p c
1
p−q−δα,2δ(k−p)c2†

p+qc
1
p = −

[
Sα†k,q, n

21
p

]
(C.16)

Using Wick’s theorem, we can simplify the terms obtained after the evaluation of
the commutators. We first display the ones multiplied in Eq. (6.36) by (1 + nB), i.
e. the first line:

〈cβ†
k′
cβ

k′+q
c2†

p c
1
p−q〉 = δ(k′−p+q)

[
−δβ,1 〈n11

p−q〉 〈n21
p 〉+ δβ,2 〈n21

p−q〉 〈1− n22
p 〉
]
(C.17)

〈cβ†
k′
cβ

k′+q
c2†

p+qc
1
p〉 = δ(k′ − p)

[
−δβ,1 〈n11

p 〉 〈n21
p+q〉+ δβ,2 〈n21

p 〉 〈1− n22
p+q〉

]
(C.18)

〈c2†
p−qc

1
pc
β†
k′+q

cβ
k′
〉 = δ(k′ − p + q)

[
δβ,1 〈n21

p−q〉 〈1− n11
p 〉 − δβ,2 〈n22

p−q〉 〈n21
p 〉
]

(C.19)

〈c2†
p c

1
p+qc

β†
k′+q

cβ
k′
〉 = δ(k′ − p)

[
δβ,1 〈n21

p 〉 〈1− n11
p+q〉 − δβ,2 〈n22

p 〉 〈n21
p+q〉

]
(C.20)

and now the ones multiplied in Eq. (6.36) by nB, i. e. the second line:

〈cβ†
k′+q

cβ
k′
c2†

p−qc
1
p〉 = δ(k′−p+q)

[
−δβ,1 〈n11

p 〉 〈n21
p−q〉+ δβ,2 〈n21

p 〉 〈1− n22
p−q〉

]
(C.21)

〈cβ†
k′+q

cβ
k′
c2†

p c
1
p+q〉 = δ(k′ − p)

[
−δβ,1 〈n11

p+q〉 〈n21
p 〉+ δβ,2 〈n21

p+q〉 〈1− n22
p 〉
]

(C.22)

〈c2†
p c

1
p−qc

β†
k′
cβ

k′+q
〉 = δ(k′ − p + q)

[
δβ,1 〈n21

p 〉 〈1− n11
p−q〉 − δβ,2 〈n22

p 〉 〈n21
p−q〉

]
(C.23)

〈c2†
p+qc

1
pc
β†
k′
cβ

k′+q
〉 = δ(k′ − p)

[
δβ,1 〈n21

p+q〉 〈1− n11
p 〉 − δβ,2 〈n22

p+q〉 〈n21
p 〉
]

(C.24)

Hence, the dissipative part of the time evolution of 〈n21
p 〉 due to the acoustic phonons

is given by

d

dt
〈n21

p 〉ph =
∑

q

{
nB
[
Γ1

p,q

(
〈n21

p+q〉 〈1− n11
p 〉 − 〈n11

p+q〉 〈n21
p 〉
)

+ Γ2
p,q

(
〈n21

p+q〉 〈1− n22
p 〉 − 〈n22

p+q〉 〈n21
p 〉
)]

+

+ [1 + nB]
[
Γ1

p,q

(
〈n11

p 〉 〈n21
p+q〉 − 〈n21

p 〉 〈1− n11
p+q〉

)
+ Γ2

p,q

(
〈n22

p 〉 〈n21
p+q〉 − 〈n21

p 〉 〈1− n22
p+q〉

)]
+

+ nB
[
Γ1

p−q,q

(
〈n11

p 〉 〈n21
p−q〉 − 〈n21

p 〉 〈1− n11
p−q〉

)
+ Γ2

p−q,q

(
〈n22

p 〉 〈n21
p−q〉 − 〈n21

p 〉 〈1− n22
p−q〉

)]
+

+[1 + nB]
[
Γ1

p−q,q

(
〈n21

p−q〉 〈1− n11
p 〉 − 〈n11

p−q〉 〈n21
p 〉
)

+ Γ2
p−q,q

(
〈n21

p−q〉 〈1− n22
p 〉 − 〈n22

p−q〉 〈n21
p 〉
)]}

.

(C.25)
Analogously, the dissipative part due to the radiative recombination reads (Γrr = π|w|2)

d

dt
〈n21

p 〉rr = −Γrr〈n21
p 〉〈1− n11

p + n22
p 〉. (C.26)

C.1.4 Anomalous interband correlations

Finally, we address the time evolution of the anomalous interband correlations
s21

p = c2†
p c

1†
−p. We start again evaluating the commutators of eq. (6.36)[

Sαk,q, s21
p

]
=
[
cα†k cαk+q, c

2†
p c

1†
−p

]
= δα,2 δ(k+q−p)c2†

p−qc
1†
−p−δα,1δ(k+p+q)c1†

−p−qc
2†
p = −

[
s21

p ,Sαk,q
]
,

(C.27)[
s21

p ,S
α†
k,q

]
=
[
c2†

p c
1†
−p, c

α†
k+qc

α
k

]
= −δα,1 δ(k+p)c2†

p c
1†
−p+q−δα,2 δ(k−p)c2†

p+qc
1†
−p = −

[
Sα†k,q, s

21
p

]
.

(C.28)
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Using Wick’s theorem, we can simplify the terms obtained after the evaluation of
the commutators. Here we show the ones multiplied in Eq. (6.36) by (1 + nB), i. e.
the first line:

〈cβ†
k′
cβ

k′+q
c2†

p c
1†
−p+q〉 = δβ,1 δ(k′+p) 〈s21

p 〉 〈1− n11
−p+q〉+δβ,2 δ(k′−p+q) 〈s21

p−q〉 〈1− n22
p 〉

(C.29)

〈cβ†
k′
cβ

k′+q
c2†

p+qc
1†
−p〉 = δβ,2 δ(k′−p) 〈s21

p 〉 〈1− n22
p+q〉+δβ,1 δ(k′+p+q) 〈s21

p+q〉 〈1− n11
−p〉

(C.30)

〈c2†
p−qc

1†
−pc

β†
k′+q

cβ
k′
〉 = −δβ,1 δ(k′ + p) 〈s21

p−q〉 〈n11
−p〉 − δβ,2 δ(k′ − p + q) 〈s21

p 〉 〈n22
p−q〉
(C.31)

〈c1†
−p−qc

2†
p c

β†
k′+q

cβ
k′
〉 = δβ,2 δ(k′ − p) 〈s21

p+q〉 〈n22
p 〉+ δβ,1 δ(k′ + p + q) 〈s21

p 〉 〈n11
−p−q〉
(C.32)

and here we show the ones multiplied in Eq. (6.36) by nB, i. e. the second line:

〈cβ†
k′
cβ

k′+q
c2†

p−qc
1†
−p〉 = δβ,1 δ(k′+p) 〈s21

p−q〉 〈1− n11
−p〉+δβ,2 δ(k′−p+q) 〈s21

p 〉 〈1− n22
p−q〉

(C.33)

〈cβ†
k′
cβ

k′+q
c1†
−p−qc

2†
p 〉 = −δβ,2 δ(k′−p) 〈s21

p+q〉 〈1− n22
p 〉−δβ,1 δ(k′+p+q) 〈s21

p 〉 〈1− n11
−p−q〉

(C.34)

〈c2†
p c

1†
−p+qc

β†
k′
cβ

k′+q
〉 = −δβ,1 δ(k′ + p) 〈s21

p 〉 〈n11
−p+q〉 − δβ,2 δ(k′ − p + q) 〈s21

p−q〉 〈n22
p 〉

(C.35)

〈c2†
p+qc

1†
−pc

β†
k′
cβ

k′+q
〉 = −δβ,2 δ(k′ − p) 〈s21

p 〉 〈n22
p+q〉 − δβ,1 δ(k′ + p + q) 〈s21

p+q〉 〈n11
−p〉

(C.36)
Hence, the dissipative part of the time evolution of 〈s21

p 〉 due to the acoustic phonons
is given by

d

dt
〈s21

p 〉ph =−
∑

q

{
nB
[
Γ2

p,q

(
〈s21

p+q〉 〈1− n22
p 〉+ 〈n22

p+q〉 〈s21
p 〉
)

+ Γ1
−p−q,q

(
〈s21

p+q〉 〈n11
−p〉+ 〈1− n11

−p−q〉 〈s21
p 〉
)]

+

+ [1 + nB]
[
Γ2

p,q

(
〈n22

p 〉 〈s21
p+q〉+ 〈s21

p 〉 〈1− n22
p+q〉

)
+ Γ1

−p−q,q

(
〈n11
−p−q〉 〈s21

p 〉+ 〈s21
p+q〉 〈1− n11

−p〉
)]

+

+ nB
[
Γ1
−p,q

(
〈1− n11

−p〉 〈s21
p−q〉+ 〈s21

p 〉 〈n11
−p+q〉

)
+ Γ2

p−q,q

(
〈n22

p 〉 〈s21
p−q〉+ 〈s21

p 〉 〈1− n22
p−q〉

)]
+

+[1 + nB]
[
Γ1
−p,q

(
〈s21

p 〉 〈1− n11
−p+q〉+ 〈n11

−p〉 〈s21
p−q〉

)
+ Γ2

p−q,q

(
〈s21

p−q〉 〈1− n22
p 〉+ 〈n22

p−q〉 〈s21
p 〉
)]}

.

(C.37)
Analogously, the dissipative part due to the radiative recombination reads

d

dt
〈s21

p 〉rr = 0. (C.38)

This feature ensures that radiative recombination is not detrimental for superconducting
correlations.

116



APPENDIX C. OBSERVABLES DRIVEN-DISSIPATIVE DYNAMICS

C.1.5 Summary (T = 0)
We summarize the complete time evolution of the observables in the particular

case of zero temperature, where nB = 0.

d

dt
〈n11

p 〉 =− ΩIm
{
〈n21

p 〉
}
− 2Im

{
∆ 〈s21

p 〉
}

+ Γrr〈n22
p 〉〈1− n11

p 〉+

+ 2
∑

q

{[
Γ1

p−q,q 〈n11
p−q〉 〈1− n11

p 〉 − Γ2
p−q,qRe

{
〈n21

p−q〉 〈n12
p 〉
}
− Γ2

−p,qRe
{
〈s21
−p〉 〈s

21†
−p+q〉

}]
+

−
[
Γ1

p,q 〈n11
p 〉 〈1− n11

p+q〉 − Γ2
p,qRe

{
〈n21

p 〉 〈n12
p+q〉

}
− Γ2
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d

dt
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(C.40)

d

dt
〈n21
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d

dt
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p + n11

−p − 1〉+ iE(p) 〈s21
p 〉+

−
∑

q

{[
Γ1
−p,q

(
〈s21

p 〉 〈1− n11
−p+q〉+ 〈n11

−p〉 〈s21
p−q〉

)
+ Γ2

p−q,q

(
〈s21

p−q〉 〈1− n22
p 〉+ 〈n22

p−q〉 〈s21
p 〉
)]

+

+
[
Γ2

p,q

(
〈n22

p 〉 〈s21
p+q〉+ 〈s21

p 〉 〈1− n22
p+q〉

)
+ Γ1

−p−q,q

(
〈n11
−p−q〉 〈s21

p 〉+ 〈s21
p+q〉 〈1− n11

−p〉
)]}

(C.42)

where ε(p) = E2(p)− E1(p)− ν and E(p) = E2(p) + E1(p).

From these equations, as we discuss in the main text, we observe that interband
pairing 〈s21

p 〉 is enhanced and can be brought out of the trivial vanishing solution
by the condition 〈n22

p + n11
−p〉 6= 1. If the dynamics of the system is efficient, i.e. is

such that populations of the conduction and valence bands satisfy this condition
at shorter timescales with respect to the time necessary to achieve the steady
state, such state can be characterized by a finite superconducting order parameter.
The aforementioned condition is, hence, necessary but not sufficient to achieve
superconductivity.
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C.2 Solution for quadratic bands at T = 0

We now focus on a specific form of the semiconductor bands (assuming spherical
symmetry, so that the d-dimensional model can be reduced to an equivalent one-
dimensional model):

E1(p) = A1p
2 − Eg/2 E2(p) = A2p

2 + Eg/2 (C.43)

where Eg represents the gap amplitude in p = 0. We are able to identify the allowed
q selected by the different Γp,q in the time evolution equations. Note that, as we
discuss in the main text, since we are considering the zero temperature case phonons
can only be emitted: the only possible transitions are the ones where the electron
acquires a momentum ±q and loses an amount of energy equal to v|q|. According to
this picture, if the band concavity is positive then the phonon transitions tend to
move the electronic population to the center of the band, while, in the opposite case,
the electrons tend to move to the edge of the momentum region considered.

The time evolution equations in Section C.1.5 can be solved numerically. In contrast
to standard mean-field calculations, there is no need to solve it self-consistently
together with an equation for the order parameter. Indeed the "self-consistency"
is taken into account by the non-linearity of our master equation: ∆ is a time-
dependent quantity and there is no need for a self-consistency loop. In order to
numerically solve Eqs. (C.39, C.40, C.41, C.42), we have to consider the momentum
p as a discrete variable and we convert the energy conservation Dirac deltas into the
momentum representation:

δ [Eβ(p− q)− Eβ(p)− v|q|] = 1
|2Aβp+ v|

δ

[
q − 2p− v

Aβ

]
Θ
(
p+ v

2Aβ

)
+

1
|2Aβp− v|

δ

[
q − 2p+ v

Aβ

]
Θ
(
−p+ v

2Aβ

)
,

(C.44)

δ [Eβ(p)− Eβ(p+ q)− v|q|] = 1
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2Aβ

)
+

1
|2Aβp− v|

δ

[
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(
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2Aβ

)
,

(C.45)

δ [Eβ(−p− q)− Eβ(−p)− v|q|] = 1
|2Aβp− v|

δ

[
q + 2p− v

Aβ

]
Θ
(
−p+ v

2Aβ

)
+

1
|2Aβp+ v|

δ

[
q + 2p+ v
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]
Θ
(
p+ v

2Aβ

)
,

(C.46)
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δ [Eβ(−p)− Eβ(−p+ q)− v|q|] = 1
|2Aβp− v|

δ

[
q − 2p+ v

Aβ

]
Θ
(
p− v

2Aβ

)
+

1
|2Aβp+ v|

δ

[
q − 2p− v
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]
Θ
(
−p− v

2Aβ

)
.

(C.47)

Note that every electronic state p is influenced by dissipation and phonons induce a
constant momentum exchange given by their linear dispersion relation.
When we convert the energy conservation Dirac delta from energy to momentum
space, we obtain the full k dependence of the scattering rate Γph. Such dependence
is due to both the density of states and the electron-phonon coupling strength tk,q.
In order to mimic realistic scenarios, which apply at low temperature for example to
prototypical semiconductors like Silicon and Germanium [180], we set the coupling
constants tk,q such that the corresponding scattering rate Γph is approximately
constant over the momentum window close to the resonance.
A problem which arises in this picture is the implementation of the particle number
conservation in the system, which has to hold in the ∆ = 0 regime. To fulfill this
condition, we ensure that our equations satisfy the principle of detailed balance.
Furthermore, since we are considering a finite region in the momentum space near
the laser resonance, where the rotating wave approximation works, states near the
two edges of this box can only lose(receive) particles if the concavity of the band is
positive(negative).
Note that all the energies are measured with respect to the gap amplitude Eg at
k = 0, which is set to one for simplicity and is our unit of energy. We have performed
all calculations with a standard 4-th order Runge-Kutta method.

Figure C.1: a) Occupation number of valence 〈n11
k 〉 and conduction 〈n22

k 〉 bands in the
stationary state. b) Real and imaginary part of the interband correlation
〈n21
k 〉 in the stationary state. Parameters: A1 = 8Eg, A2 = 23Eg, kc = 0.2,

Nk = 100, Γph = 0.01Eg, Γrr = Γph, and Ω = 0.25Eg.

C.2.1 Numerical solution without superconductivity

In this section we show the numerical solution of the system in presence of
dissipation and electric field. The latter is tuned at the resonant k = 0 point, where
both bands have their minimum. In particular this condition amounts to fixing the
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laser frequency to ν = Eg = 1. We use the same parameters as in the previous
section, the amplitude of the laser is set to Ω = 0.25Eg, and the initial conditions
coincide with the ground state of the system: 〈n11

k (t = 0)〉 = 1, 〈n22
k (t = 0)〉 = 0,

and 〈n21
k (t = 0)〉 = 0.

The resulting stationary state achieved starting from these initial conditions is shown
in Figs. C.1 (a) and (b).
The stationary state is characterized by a very similarly populated conduction and
valence bands and a vanishing interband correlation. Analogous results are obtained
by Γrr = Γph/10.

C.2.2 Complete numerical solution

In this section we focus on the full system of coupled equation described in
Section C.1.5. The superconducting order parameter ∆, which derives from the
mean field approximation performed in the density-density interaction Hamiltonian
in Eq. (6.22), is given by:

∆∗ = V

N

∑
k

〈s21
k 〉

N→∞−−−−→ V

2π

∫ kc

−kc
〈s21
k 〉 dk (C.48)

Note that we do not need any correction to this formula to achieve a non-zero
∆ in the stationary state reached by the system. Conversely, in Goldstein et al.
derivation [168], this is a necessary condition.
We start with the initial conditions used in the previous sections and in addition we
set 〈s21

k (t = 0)〉 = 10−20(1 + i). Note that the time evolution is strongly independent
from this value: ∆, as a function of t, approaches always a value numerically
compatible with zero before having a jump and stabilizing to its stationary value
(see for example Figure C.3 (b), where the intensity of the repulsive interaction
is set to V = 5Eg). We observe in Figure C.2 that in the stationary state the

Figure C.2: (a) Occupation number of valence 〈n11
k 〉 and conduction 〈n22

k 〉 bands in the
stationary state. (b) Real and imaginary part of the interband correlation
〈n21
k 〉 in the stationary state. Parameters: A1 = 8Eg, A2 = 23Eg, kc = 0.2,

Nk = 100, Γph = 0.01Eg, Ω = 0.25Eg and V = 5Eg. Here the interband
dissipation is switched on and has the same intensity of the intraband one
(Γrr = Γph).
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Figure C.3: (a) Real and imaginary part of the anomalous interband correlation 〈s21
k 〉

in the stationary state. (b) Modulus of the superconducting gap ∆ as a
function of time. Parameters: A1 = 8Eg, A2 = 23Eg, kc = 0.2, Nk = 100,
Γph = 0.01Eg, Ω = 0.25Eg and V = 5Eg. Here the interband dissipation is
switched on and has the same intensity of the intraband one (Γrr = Γph).

populations are smoothed and do not resemble a box function. Furthermore the
interband correlations are not zero in the region where the populations of the valence
and conduction bands become slightly different. In this region, where both the bands
are partially filled, we find that 〈n21

k 〉 6= 0. Then, since the laser cancels out the
energy difference between the valence and conduction bands, the electrons occupy
with almost the same probability the two bands. This is also the region where the
modulus of the anomalous interband correlator has its maxima (see Fig.C.3 (a)).
Note that 〈s21

k 〉 6= 0 in the whole momentum region considered, but tends to zero
near the boundaries of the momentum space region considered.
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