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Abstract: Since the beginning of the millennium, organocatalysis has been gaining a predominant
role in asymmetric synthesis and it is, nowadays, a foundation of catalysis. Synergistic catalysis,
combining two or more different catalytic cycles acting in concert, exploits the vast knowledge
acquired in organocatalysis and other fields to perform reactions that would be otherwise impossible.
Merging organocatalysis with photo-, metallo- and organocatalysis itself, researchers have ingeniously
devised a range of activations. This feature review, focusing on selected synergistic catalytic approaches,
aims to provide a flavor of the creativity and innovation in the area, showing ground-breaking
examples of organocatalysts, such as proline derivatives, hydrogen bond-mediated, Cinchona alkaloids
or phosphoric acids catalysts, which work cooperatively with different catalytic partners.

Keywords: organocatalysis; metallocatalysis; photocatalysis; synergistic; cooperative; asymmetric; catalysis

1. Introduction

The origins of asymmetric organocatalysis date back to the intuitive experiment of two remarkable
scientists, Bredig and Fiske, during the first decade of the 1900s. They reported the first enantioselective
addition reaction of HCN to benzaldehyde 1 mediated by Cinchona alkaloids as organocatalyst [1]
(Scheme 1).
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1. Introduction 

The origins of asymmetric organocatalysis date back to the intuitive experiment of two 
remarkable scientists, Bredig and Fiske, during the first decade of the 1900s. They reported the first 
enantioselective addition reaction of HCN to benzaldehyde 1 mediated by Cinchona alkaloids as 
organocatalyst [1] (Scheme 1). 
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Scheme 1. Addition of HCN to benzaldehyde 1, performed by Bredig and Fiske. Scheme 1. Addition of HCN to benzaldehyde 1, performed by Bredig and Fiske.

In hindsight, the results obtained were a breakthrough as it was the first use of a small organic
molecule as a catalyst. For several reasons, however, asymmetric organocatalysis was not born;
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it was probably only at the beginning of the new millennium that the field was mature enough to
bloom. This is testified by the fact that two ground breaking pioneers in the field of organic chemistry,
Benjamin List [2] (Scheme 2a) and David MacMillan [3] (Scheme 2b), simultaneously reported two
di↵erent, albeit complementary, activations with aminocatalysts, giving birth to a “Gold Rush” in
organocatalysis [4]. In particular, their studies highlighted the possibility of carrying out asymmetric
reactions with organocatalysts based on enamine or iminium ion or activation.
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aminocatalysis, performed by MacMillan.

The main advantage of using organocatalysts derives from their user-friendliness: No anhydrous
conditions are required; they are highly stable in a broad range of temperatures and in most common
chromatographic and reaction conditions; and moreover, their waste disposal operation has a lower
environmental impact respect to other catalysts.

Inspired by this new technology platform, several scientists discovered a large variety of catalysts,
which directly came from the chiral pool or undergo synthetic modifications to generate analogous
compounds positively impacting the economy of the entire process, thanks to the availability and
a↵ordability of the starting materials [5].

An incredible range of organocatalysts capable of promoting enantioselective reactions were found,
enabling transformations thanks to di↵erent activations, via iminium ion or enamine activation [6],
via protonation or deprotonation (chiral basic [1] or acidic catalysts [7]), coordination via hydrogen
bond [8,9], and via steric hindrance [6,10,11] (Figure 1). The combination of the di↵erent activations in
one catalyst to interact with di↵erent reaction partners is noteworthy; a bifunctional, or multifunctional,
catalyst is a molecule which exhibits more than one functional group capable of interacting and
orientating with two di↵erent substrates during a catalytic process [12].
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With the purpose of imitating the perfect performance of enzymes, chemists began to synthesize 
a few bifunctional catalysts able to bring together the different reaction partners. 

These compounds have different multiple catalytic sites spaced out by a linker or spacer, which 
confer to its structure a proper dimension, rigidity and geometry in order to perform the reaction in 
a stereoselective way. The benefit of this modus operandi is directly linked to entropic energy: 
keeping the activated reacting partners in proximity and orientating them in a specific way to obtain 
the desired product with stereocontrol. 

A remarkable deficiency of this process is correlated to the many synthetic steps needed to obtain 
these catalysts. As an alternative and complementary approach, some research groups focused on 
synergistic catalysis, a relatively new technology platform which allows the simultaneous activation 
of both reaction partners by two distinct catalytic cycles. The reduction of the ΔE(HOMO-LUMO) 
causes a substantial decrease in the activation energy of the desired reaction, which increases the 
constant rate driving the desired pathway compared to possible side reactions (Figure 2). 
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The activated species can rapidly react, making reactions possible that would otherwise be 
inefficient or even impossible with traditional mono-catalysis methods. The reaction between two 
intermediates present in low sub-stoichiometric concentrations should be, in principle, difficult; 
however, considering kinetic aspects, the reaction between two activated intermediates should be 
promising due to the narrowing of the HOMO-LUMO, which causes a large decrease in the activation 
energy and, as a consequence, increases the rate constant to drive the desired synthetic pathway. 

While nature takes advantage from physical separation between catalytic moieties in the 
enzymes active sites, a synergistic catalytic system could undergo self-quenching, rendering both 
catalysts inactive. For this reason, research groups interested in catalysis involving two or more 
catalytic cycles which act in cooperation, need to select the catalysts combination judiciously. 
Synergistic catalysis opens the possibility to screen several combinations of a wide range of catalysts 
for a particular reaction. In this scenario, synergistic catalysis attracted increasing interest in the 
academic community.  

In this review we will focus on selected strategies and reports that exploit synergistic catalysis 
with disrupting innovation; the cooperation of organocatalysts with other catalytic species of 
different nature, such as organo-, metal- or photo-catalysts, will be discussed. 
  

Figure 1. Di↵erent methods of substrate activation.

With the purpose of imitating the perfect performance of enzymes, chemists began to synthesize a
few bifunctional catalysts able to bring together the di↵erent reaction partners.

These compounds have di↵erent multiple catalytic sites spaced out by a linker or spacer, which
confer to its structure a proper dimension, rigidity and geometry in order to perform the reaction in a
stereoselective way. The benefit of this modus operandi is directly linked to entropic energy: keeping
the activated reacting partners in proximity and orientating them in a specific way to obtain the desired
product with stereocontrol.

A remarkable deficiency of this process is correlated to the many synthetic steps needed to obtain
these catalysts. As an alternative and complementary approach, some research groups focused on
synergistic catalysis, a relatively new technology platform which allows the simultaneous activation of
both reaction partners by two distinct catalytic cycles. The reduction of the DE(HOMO-LUMO) causes
a substantial decrease in the activation energy of the desired reaction, which increases the constant rate
driving the desired pathway compared to possible side reactions (Figure 2).
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Figure 2. Synergistic catalysis.

The activated species can rapidly react, making reactions possible that would otherwise be
ine�cient or even impossible with traditional mono-catalysis methods. The reaction between two
intermediates present in low sub-stoichiometric concentrations should be, in principle, di�cult;
however, considering kinetic aspects, the reaction between two activated intermediates should be
promising due to the narrowing of the HOMO-LUMO, which causes a large decrease in the activation
energy and, as a consequence, increases the rate constant to drive the desired synthetic pathway.

While nature takes advantage from physical separation between catalytic moieties in the enzymes
active sites, a synergistic catalytic system could undergo self-quenching, rendering both catalysts
inactive. For this reason, research groups interested in catalysis involving two or more catalytic cycles
which act in cooperation, need to select the catalysts combination judiciously. Synergistic catalysis
opens the possibility to screen several combinations of a wide range of catalysts for a particular reaction.
In this scenario, synergistic catalysis attracted increasing interest in the academic community.

In this review we will focus on selected strategies and reports that exploit synergistic catalysis
with disrupting innovation; the cooperation of organocatalysts with other catalytic species of di↵erent
nature, such as organo-, metal- or photo-catalysts, will be discussed.
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2. Proline-Derivatives Catalysis

Proline is the only natural↵-amin oacid with a secondary amine; its nitrogen, part of the pyrrolidine
heterocycle, has an increased pKa with respect to other amin oacids. Thanks to the carboxylic acid
moiety, proline can also behave as a bifunctional catalyst: The nitrogen can act as a Lewis base while
the carboxylate portion as a general Brønsted acid. Following condensation of the nitrogen with
carbonyl compounds, proline activates reagents via the corresponding enamine or iminium ion [2].
Proline can be used to functionalise ↵,�-unsaturated aldehyde 9 with nucleophiles, via iminium ion,
or saturated aldehydes 10 with electrophiles via enamine (Scheme 3). When proline itself is used as a
catalyst, the carboxylic moiety will aid in imparting stereoselectivity by orienting the approaching
reaction partner via an intermolecular hydrogen bond.
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Scheme 3. Proline activation modes: (a) via iminium ion, (b) via enamine.

To improve enantioselectivity and to expand the applicability of proline beyond H-bond acceptors,
proline derivatives bearing steric hindered groups, or longer alkyl chains were prepared [6,9].
Catalytic equivalents of proline, such as imidazolidinone-based MacMillan catalysts or prolinamides
derivatives, also proved extremely successful [3,4].

Proline and its derivatives effectively catalyze a multitude of reactions; an interesting example is the
asymmetric intramolecular aldol reaction, a breakthrough report by Hajos-Parrish-Eder-Sauer-Wiechert [13,14].
This reaction was used by two distinct industrial research groups who discovered a synthetic strategy to
obtain a very versatile intermediate in organic synthesis, the Wieland–Miescher ketone [15].

Proline was also used in asymmetric synthesis to obtain compounds of natural or pharmacological
interest, such as steroids [16], or eritromicine antibiotics [17]. It was also exploited in di↵erent and more
versatile reaction pathways, such as the cyclisation of racemic diketones [18], or to e↵ect Knoevenagel
condensation [19,20], Mannich reactions, and many more [21].

2.1. Synergistic Catalysis with Proline-Based Catalysts

2.1.1. Combination with Transition Metal-Based Catalysts

The combination of transition metal catalysis and organocatalysis gained increasing recognition,
improving several reactions [22]. One of the first groundbreaking examples of metal- and
organo-catalysis working in concert was reported by the Cordova research group in 2006 [23].
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They proposed a direct catalytic allylic alkylation of aldehydes and cyclic ketones. The intermolecular
↵-allylic alkylation reaction, which has the advantage of being highly chemo- and regio-selective, was
performed through an unprecedented combination of palladium and enamine mediated catalysis.
They described the reaction of 3-phenylpropionaldehyde (11, 3 equiv.) with allyl acetate (12, 1 equiv.)
in the presence of a catalytic amount of palladium catalyst [Pd(PPh3)4] (5 mol%) and pyrrolidine
VIII (10 mol%) in dimethyl sulfoxide at room temperature. The corresponding ↵-benzylic alcohol 14
was isolated in 72% yield after 16 h by reduction with NaBH4 of the ↵-allylic alkylated aldehyde 13
(Scheme 4).
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Scheme 4. Synergistic catalysis mediated by palladium and pyrrolidine.

Merging two powerful catalytic cycles enables both electrophilic and nucleophilic activation.
As depicted in Scheme 5, the C–C bond formation is allowed by the catalytic enamine intermediate 11a
generated in situ, which attacks the catalytically generated electrophilic palladium ⇡-allyl complexes
12a. Reductive elimination and subsequent hydrolysis of the iminium intermediate regenerates the
Pd(0) and the amine catalyst VIII, and yields the ↵-allylic alkylated aldehyde 13.
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The reaction proved to work smoothly with a range of aldehydes 15 (Scheme 6a) and ketones 18
(Scheme 6b) with high chemoselectivity. Unfortunately, the catalytic asymmetric variant provided
the ↵-allylic alkylated alcohol 17 or ketone 19 with high enantioselectivity, but in moderate yields
(yields 25% and 20%, ee 74% and 88%, respectively).
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Scheme 6. General ↵-allylation of aldehydes (a) or ketones (b) via synergistic catalysis mediated by
palladium and pyrrolidine.

Since then, several synergistic catalytic approaches based on transition metal catalysis and
aminocatalysis were developed. Prompted by the great results obtained through synergistic catalysis
and their growing interest in natural product-like compound synthesis [24–26]. Wu et al. described a
novel and promising one-pot combination of silver triflate and proline catalysis provided an e�cient
route for the synthesis of 1,2-dihydroisoquinoline derivatives 22 via multicomponent reactions of
2-alkynylbenzaldehydes 20, amines 21, and ketones 18 [27] (Scheme 7).
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Scheme 7. Synergistic catalysis mediated by silver-based and proline catalysis.

Merging two powerful catalytic cycles enables both electrophilic and nucleophilic activation.
The mild metal Lewis acids tested, such as silver, coordinate the triple bond of the starting
2-alkynylbenzaldehyde 20, making it more electrophilic, while proline simultaneously generates
the nucleophilic enamine intermediate.

Together with silver, gold was used as the metal partner. The first example of Au(I)-enamine
synergistic catalysis was reported in 2008 by Kirsh et al. [28]. The authors performed a cyclisation
of the alkyne aldehydes 23 to 24 or 25 providing racemic products with excellent yields (Scheme 8a).
The proposed mechanism features a simultaneous enamine formation at the terminal aldehyde
and a ⇡-acid activation at the triple bond. This protocol, however, comes with an inherent
challenge: If R is H, the Au(I)-catalysed cyclisation results in an exocyclic terminal alkene after
protodeauration, which spontaneously isomerizes to the thermodynamically more stable compound
25. This isomerization removes the new stereogenic center created during the carbon-carbon bond
formation step. If R is a methyl group, a quaternary stereocenter bearing product 24 is created in
up to 72% yield. An enantioselective version of this reaction was later reported by Jørgensen et al.
(Scheme 8b) [29]. They exploited the sterically bulky Jørgensen-Hayashi catalyst X to induce the attack
of 26 to an ↵,�-unsaturated aldehyde 9 via iminium-ion activation. The first Michael addition creates
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an intermediate, which undergoes synergistic enamine/Au(I) catalysis to obtain the carbocyclisation
reaction with high enantio-enrichment of 28 in good to excellent yields.
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Scheme 8. General ↵-allylation of aldehydes (a) or ketones (b) via synergistic catalysis mediated by
palladium and pyrrolidine.

Inspired by metal-associated enzymes, Kudo’s research group designed a biomimetic catalysis,
exploiting the cooperation of a resin-supported peptide catalyst and Fe-based metal catalyst.

The combination of the peptide containing polyleucine and FeCl2 in two catalytic cycles was
highly e�cient to allow the asymmetric oxyamination of aldehydes in aqueous media [30] (Scheme 9).
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Scheme 9. Synergistic iron- and peptide-mediated catalysis.

The oxyamination of 3-phenylpropanal 11 is performed with TEMPO 29 using iron(III) chloride
in the presence of the peptide catalyst. The reaction is carried out in THF/H2O 1/2 (v/v) at room
temperature; increasing the amount of water in the system THF/H2O from 1/1 to 1/2 increases the
hydrophobic e↵ect and causes an acceleration of the desired product formation. The best results were
obtained by introducing a polyleucine chain between the terminal prolyl residue of peptide catalyst and
its support. This structural change enhances the reaction rate and increases the enantioselectivity [31].

Following studies showed that the amount of iron(III) chloride could be decreased to catalytic
amount using dioxygen as the oxidant [32]. The best improvement is achieved by performing the
reaction with iron(II) chloride under an air atmosphere; the oxyaminated product is obtained within 1 h,
without using an oxidazing agent. This reaction system proved to be e�cient enough that the loading
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of the peptide catalyst could be reduced to 3 mol% without any loss in yield and enantioselectivity,
by increasing the reaction time.

Based on this concept, in 2018 Rios et al. reported the first synergistic organocascade reaction for
the synthesis of cyclopropanes 32 with an unusual cis configuration between the benzoxazole and the
substituted phenyl ring with good yields and steroselectivities [33] (Scheme 10).
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Scheme 10. Synergistic catalysis mediated by palladium and Jørgensen-Hayashi catalyst.

The reaction proceeds via a simultaneous organocatalytic activation of enals with a secondary
amine catalyst and the metal Lewis acid-based activation of benzoxazoles; the stereocontrol in this
protocol is imparted by the chiral organocatalyst, thus avoiding the need of expensive chiral ligands
for the metal. The palladium catalyst coordinates to the nitrogen atom of the heterocycle, increasing
the acidity of the adjacent alkyl chain, while the Jørgensen-Hayashi catalyst X activates the enals,
generating an electrophilic iminium-ion intermediate; these two species can then react rapidly to
generate a new C–C bond in the cyclopropane precursor (Scheme 11).

Catalysts 2019, 9, x FOR PEER REVIEW 8 of 36 

 

Following studies showed that the amount of iron(III) chloride could be decreased to catalytic 
amount using dioxygen as the oxidant [32]. The best improvement is achieved by performing the 
reaction with iron(II) chloride under an air atmosphere; the oxyaminated product is obtained within 
1 h, without using an oxidazing agent. This reaction system proved to be efficient enough that the 
loading of the peptide catalyst could be reduced to 3 mol% without any loss in yield and 
enantioselectivity, by increasing the reaction time. 

Based on this concept, in 2018 Rios et al. reported the first synergistic organocascade reaction for 
the synthesis of cyclopropanes 32 with an unusual cis configuration between the benzoxazole and 
the substituted phenyl ring with good yields and steroselectivities [33] (Scheme 10).  

 

Scheme 10. Synergistic catalysis mediated by palladium and Jørgensen-Hayashi catalyst. 

The reaction proceeds via a simultaneous organocatalytic activation of enals with a secondary 
amine catalyst and the metal Lewis acid-based activation of benzoxazoles; the stereocontrol in this 
protocol is imparted by the chiral organocatalyst, thus avoiding the need of expensive chiral ligands 
for the metal. The palladium catalyst coordinates to the nitrogen atom of the heterocycle, increasing 
the acidity of the adjacent alkyl chain, while the Jørgensen-Hayashi catalyst X activates the enals, 
generating an electrophilic iminium-ion intermediate; these two species can then react rapidly to 
generate a new C–C bond in the cyclopropane precursor (Scheme 11).  

 

Scheme 11. Mechanistic insight in the synthesis of the cyclopropane precursor to compounds 32a and 
32b. 

The same research group reported another interesting example by merging organocatalysis via 
iminium-ion with ytterbium-based metal catalysis to prepare dihydroacridines [34]. The reaction 
proceeds via the activation of quinolines derivatives 33 with Yb(OTf)3 and the concurrent enals 
activation via iminium-ion by the TMS-protected diaryl prolinol X (Scheme 12).  

The metal Lewis acid coordinates the aromatic nitrogen and increases the nucleophilicity of the 
α-methylene that can react with the iminium-ion generated from the enal. The formed enolate 

Scheme 11. Mechanistic insight in the synthesis of the cyclopropane precursor to compounds 32a and 32b.

The same research group reported another interesting example by merging organocatalysis via
iminium-ion with ytterbium-based metal catalysis to prepare dihydroacridines [34]. The reaction
proceeds via the activation of quinolines derivatives 33 with Yb(OTf)3 and the concurrent enals
activation via iminium-ion by the TMS-protected diaryl prolinol X (Scheme 12).

The metal Lewis acid coordinates the aromatic nitrogen and increases the nucleophilicity of
the ↵-methylene that can react with the iminium-ion generated from the enal. The formed enolate
intermediate undergoes an intramolecular aldol reaction with the carbaldehyde. The subsequent
6-exo-trig cyclisation, followed by a dehydration, yields the desired dihydroacridine 34.
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2.1.2. Combination with Other Organocatalysts

In 2007, Hong et al. reported an interesting method to access a precursor employed in the total
synthesis of (+)-palitantine (Scheme 13) [35].
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Scheme 13. Formation of new C–C bonds mediated by proline and triethylamine.

The reaction is a formal self-dimerization [4 + 2] addition of (E)-4-acetoxycrotonaldehyde activated
by L-proline in presence of a trialkyl amine as a co-catalyst. Given the type of reaction, the pathway can
only evolve if the reagent is activated in two di↵erent ways by the same catalyst. This is, fortunately,
the case, given the complementary types of activation that proline can e↵ect. While one aldehyde is
activated via an electrophilic iminium-ion intermediate, the other one proceeds through a nucleophilic
dienamine intermediate. At this point, the electronic rearrangement will produce the intermediate
compound 37 with the formation of two new C–C bonds. Triethylamine was added as a co-catalyst
to improve the reaction time and the yield; this way, the reaction could be carried out at a lower
temperature, providing a higher enantiomeric excess.

While Hong presented a synergistic activation using the same catalyst to activate the two reaction
partners, Xu et al. reported an enantioselective domino oxa-Michael-Mannich reaction between
salicylaldehyde 38 and cyclohexenones 39, activating the reaction partners with a combination of a
primary and a secondary chiral amine (Scheme 14) [36].
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The amino acid, a primary amine, condenses with salicylaldehyde 38 to form imine 38a. A proline
derivative XI generates an iminium-ion intermediate reacting with cyclohexenones 39 (Scheme 15).
The intermediates formed with the two di↵erent catalysts can then react via an oxa-Michael-Mannich
reaction. The depicted transition state was confirmed by Fourier-transform ion cyclotron resonance
mass spectroscopy.
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2.1.3. Combination with Photocatalysts

Photochemical reactions, together with enzymatically catalysed reactions, are generally considered
as the beginning of the green chemistry concept for synthetic chemistry [37]. Solar light is undoubtedly
the cleanest source of energy and the photon is considered a traceless regent [38]. Photocatalysis with
visible light [39] is undoubtedly one of the emerging strategies to meet the increasing demand for more
sustainable chemical processes.

A number of powerful methods has been recently developed applying organometallic complexes
such as [Ru(bpy)3]2+ and [Ir(ppy)2(dtb-bpy)]+ where bpy = 2,20-bipyridine, ppy = 2-phenylpyridine
and dtb-bpy = 4,40-di-tertbutyl-2,20-bipyridine [40,41]. The redox potential of the metal complexes can
be readily fine-tuned by ligand modification.

However, due to the high cost and potential toxicity of the ruthenium and iridium salts, as well as
their limited availability, organic dyes could also be successfully used in photoredox catalysis instead
of a metal catalyst [42].

Of particular note is the cooperative combination of photocatalysis with an organocatalytic cycle,
o↵ering catalytic methods for the enantioselective ↵-alkylation [41], ↵-perfluoroalkylation [43] or
↵-benzylation [44] of aldehydes (Scheme 16).

In the first case, in particular, the authors proposed two interwoven catalytic cycles that
simultaneously generate an electron-rich enamine from the condensation of an aldehyde with the
chiral amine catalyst and an electron-deficient alkyl radical via reduction of an alkyl bromide with a
Ru(II) photoredox catalyst. It is well known that [Ru(bpy)3]2+ will readily accept a photon from a light
source to populate the *[Ru(bpy)3]2+ metal to ligand charge transfer (MLCT) excited states. These high
energy intermediates remove a single electron from a sacrificial quantity of enamine to form Ru(I)
that react via single-electron transfer with the ↵-bromocarbonyl substrate to furnish the reactive alkyl
radical (and Ru(II)) able to react with the enamine formed in the complementary organocatalytic cycle.
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Scheme 16. Synergistic catalysis of proline derivative working in combination with photocatalysis
performed by the MacMillan research group.

The same reaction of ↵-alkylation of aldehydes was proposed by Zeitler et al. in 2011, using a
metal-free cooperative asymmetric organophotoredox catalysis approach mediated by luminescent
organic dyes [42].

[Ru(bpy)3]2+ has been replaced with eosin EY that acts as a photoredox catalyst. After its
excitation with visible light and the population of its more stable triplet state (3EY*), the eosin excited
state follows a reductive quenching. The oxidation of a catalytic amount of enamine occurs to form
EY·–, which subsequently reacts via single-electron transfer (SET) with alkyl halide to provide the
electron-deficient alkyl radical (RAD).

The addition of this radical to the electron-rich olefin of the enamine that is simultaneously
generated within the organocatalytic cycle merges both activation pathways. In the catalytic cycle,
the subsequent oxidation of the amino radical to the iminium species provides the electron for the
reductive quenching of the dye excited state 3EY* (Scheme 17).Catalysts 2019, 9, x FOR PEER REVIEW 12 of 36 
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3. Hydrogen Bonding Catalysis

Hydrogen bonding is an electrostatic interaction, so the typical value of bond energy between the
catalyst and a substrate is around 10–30 kJ/mol. Asymmetric catalysts that can form hydrogen bonds
are able to orient reagents, since the hydrogen bond is extremely directional. Moreover, by exalting
acidity of the reaction partner, these kinds of catalyst a↵ect the reactivity of the chemical species which
they coordinate. In 1990, Kelly reported a reactivity study based on the Diels-Alder reaction between an
↵,�-unsaturated aldehyde as a dienophile, and di↵erent dienes. Bis-phenol derivatives act as catalysts
and establish a double hydrogen bond with the oxygen on the dienophile; this implies that the gap in
energy between the HOMO-LUMO orbitals decreases and, therefore, the speed of the desired reaction
increases [45].

Usually a catalyst that exploits only hydrogen bonds to activate the reagents is not enough to
establish the required stereocontrol; in fact, in general, an additional chiral catalyst or a bifunctional
catalyst is needed. For example, Tsogoeva et al. reported the use of chiral diamino-compounds
(XV–XVIII) as stoichiometric additives, besides a dipeptide catalyst (XIX–XX), to increase the e�ciency
of a conjugate addition of 2-nitropropane 46 to 2-cyclohexen-1-one 39 (Scheme 18).Catalysts 2019, 9, x FOR PEER REVIEW 13 of 36 
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Bifunctional catalysts tend to be widely used since the spatial proximity of the catalytic units,
generating two types of interaction with the reagents, may promote a controlled transition state
giving rise to high enantioselectivity. Jacobsen et al. reported ground-breaking examples in the area,
with chiral thiourea bifunctional catalysts [9]; it was established that the presence of two m-CF3 groups
on the aromatic ring improves the e�ciency of the reaction [8,12,46].

A related group of bifunctional catalysts is the squaramide-derived one, introduced by Rawal.
Thanks to the higher e�ciency shown, this type of catalyst is proving increasingly successful
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(Scheme 19) [47]. Moreover, thiosquaramides show superior performance compared to thioureas,
as described by Wheeler and et al. [48].

Catalysts 2019, 9, x FOR PEER REVIEW 13 of 36 

 

 

Scheme 18. Chiral diamino-compounds as stoichiometric additive to a dipeptide catalyst. 

Bifunctional catalysts tend to be widely used since the spatial proximity of the catalytic units,  
generating two types of interaction with the reagents, may promote a controlled transition state 
giving rise to high enantioselectivity. Jacobsen et al. reported ground-breaking examples in the area, 
with chiral thiourea bifunctional catalysts [9]; it was established that the presence of two m-CF3 
groups on the aromatic ring improves the efficiency of the reaction [8,12,46].  

A related group of bifunctional catalysts is the squaramide-derived one, introduced by Rawal. 
Thanks to the higher efficiency shown, this type of catalyst is proving increasingly successful (Scheme 
19) [47]. Moreover, thiosquaramides show superior performance compared to thioureas, as described 
by Wheeler and et al. [48].  

 

Scheme 19. The addition to nitrostyrene catalyzed of squaramide-derived catalyst, introduced by 
Rawal. 

Hydrogen bonding is very relevant in biological systems for several reasons; indeed, the 
architecture of hydrogen bonding bifunctional catalysts is inspired by the interactions within the 
cavity of enzymes. For example, Malkov reported an interesting study about the activation of two 

Scheme 19. The addition to nitrostyrene catalyzed of squaramide-derived catalyst, introduced by Rawal.

Hydrogen bonding is very relevant in biological systems for several reasons; indeed,
the architecture of hydrogen bonding bifunctional catalysts is inspired by the interactions within
the cavity of enzymes. For example, Malkov reported an interesting study about the activation of
two reagents by dipeptide-derivatives XXII in an enantioselective reaction of ketimines 51 using
trichlorosilane. The complementarity between the reagents and the “catalytic site”, along with the
weak interaction established, recalls an enzyme. In the transition state 51a, three non-covalent contacts
are established between the catalyst and the two reagents, two hydrogen bonds and one ⇡-⇡ interaction
(Scheme 20), thus emphasizing the importance of non-covalent bonds [49]. Therefore, synergistic
activations that exploit the hydrogen bond can help when weak interactions are not enough for
successful activation.
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3.1. Synergistic Catalysis with Hydrogen Bonding Catalysts

3.1.1. Combination with Transition Metal-Based Catalysts

A catalytic system, combining Cinchona alkaloid-derived squaramide-based catalyst with AgSbF6
was reported by Zhao, Shi et al. to perform a highly diastereo- and enantio-selective formal [3 + 2]
cycloaddition of ↵-aryl isocyanoacetates 52 with N-aryl-substituted maleimides 54 (Scheme 21) [50].
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Scheme 21. Synergistic catalysis combining a Cinchona alkaloid-derived squaramide-based catalyst
with AgSbF6.

The high stereocontrol is provided by the synergistic catalytic system, in which one carbonyl
group of the maleimide is hydrogen-bonded to the squaramide motif; at the same time, Ag(I)
chelates to the terminal carbon of the isocyano group, enhancing the acidity of the isocyanoacetate
proton that can, therefore, be deprotonated by the quinuclidine nitrogen of the Cinchona catalyst.
This multifunctional, well-designed, transitional state orients the isocyanoacetate enolate to attack
the maleimide; subsequently, a 5-endo-dig cyclisation takes place, forming the product 55 with a
third stereocentre.

Oh and Kim developed a domino aldol-cyclisation reaction between aldehydes 10 and methyl
↵-isocyanoacetate 56 [51]. This synergistic catalysis exploits a chiral cobalt complex, which works in
concert with an achiral thiourea (Scheme 22).
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3.1.2. Combination with Other Organocatalysts

In 2011, Jacobsen reported a novel and elegant synergistic strategy to obtain tricyclic structures by
[5 + 2] dipolar cycloaddition using a dual catalytic system [52].

The system consists of two di↵erent types of thiourea-based catalysts; while XXIV exploits the
primary amino group for enamine activation, XXIII activates the other reaction partner via a H-bond.
The synergistic catalysis was demonstrated with a series of reactions run with di↵erent bifunctional
chiral catalysts in the presence and absence of XXIII; this way, a clear and dramatic cooperative e↵ect
was observed (Scheme 23).

Catalysts 2019, 9, x FOR PEER REVIEW 15 of 36 

 

Oh and Kim developed a domino aldol-cyclisation reaction between aldehydes 10 and methyl 
α-isocyanoacetate 56 [51]. This synergistic catalysis exploits a chiral cobalt complex, which works in 
concert with an achiral thiourea (Scheme 22).  

 

Scheme 22. Domino aldol-cyclisation reaction between aldehydes 9 and methyl α-isocyanoacetate 56 
catalysed by cobalt and thiourea catalysts. 

3.1.2. Combination with other Organocatalysts 

In 2011, Jacobsen reported a novel and elegant synergistic strategy to obtain tricyclic structures 
by [5 + 2] dipolar cycloaddition using a dual catalytic system [52]. 
The system consists of two different types of thiourea-based catalysts; while XXIV exploits the 
primary amino group for enamine activation, XXIII activates the other reaction partner via a H-bond. 
The synergistic catalysis was demonstrated with a series of reactions run with different bifunctional 
chiral catalysts in the presence and absence of XXIII; this way, a clear and dramatic cooperative effect 
was observed (Scheme 23).  

 

Scheme 23. Synergistic catalysis mediated by two different thiourea-based catalysts. 

The authors propose that XXIII induce ionization to the pyrylium ion and acts as a carboxylate-
binding agent to generate, cooperatively with XXIV whose amine condenses with the ketone to yield 

Scheme 23. Synergistic catalysis mediated by two di↵erent thiourea-based catalysts.

The authors propose that XXIII induce ionization to the pyrylium ion and acts as a
carboxylate-binding agent to generate, cooperatively with XXIV whose amine condenses with the
ketone to yield dienamine after tautomerisation, the reactive ion pair that undergoes intramolecular
cycloaddition. The initial substrate condensation with the primary amine function present on catalyst
XXIV generates an electron delocalization, which involves a C–C bond breaking, also leaving a positive
charge on the oxygen atom. The second catalyst XXIII, by forming a hydrogen bond, assists the leaving
group on the substrate. In this regard, the dipolarophile cycloaddition may occur.

Pihko developed a three-component reaction yielding a �,�-functionalized aldehyde exploiting
the synergy of a chiral secondary amine catalyst and a multiple-hydrogen-bond catalyst. This synthesis
is a versatile strategy to avoid self-condensation of aldehydes and the whole study exemplifies the
importance of evaluating the reactivity of each reaction partner during the synthesis design [53].
During the first reaction step, an aliphatic aldehyde 10, activated as iminium-ion by the amine catalyst,
undergoes condensation with nitromethane 60, activated by the multiple H-bond donor catalyst XXV,
providing a nitro-olefin 61. The nitro-olefin can then be activated by the H-bond catalyst and reacts
with the nucleophilic aldehyde activated via enamine by the secondary amine catalyst, to yield the
�,�-functionalised aldehyde 62 (Scheme 24).
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3.1.3. Combination with Photocatalyst

Photoredox catalysis has emerged recently as a powerful tool for the generation of synthetically
useful high-energy organic intermediates such as free radicals [54] and radical anions and cations [55,56].
Successful e↵orts to induce enantioselective catalytic control in such photocatalysed processes have
relied, thus far, on covalent organocatalysis, and only recently on chiral anion-binding catalysts [57].

Stephenson et al. describe the successful development of a dual catalyst strategy with a chiral
H-bond donor catalyst XXVI in combination with [Ru(bpy)3]2+, for the enantioselective oxidative
alkylation of tetrahydroisoquinolines 63 with silyl ketene acetals 64 via enantioselective oxidative
Mannich reactions, to yield tetrahydroisoquinoline-derived �-amino esters 65 [58].

An accurate screening of the reaction conditions, suitable for both transformations, allowed the
combination of two very di↵erent methodologies for obtaining products with high enantiomeric excess
in good yields (Scheme 25).

The asymmetric reduction of 1,2-diketones provides enantiomerically enriched ↵-hydroxy ketones,
which are very useful as organic frameworks building blocks and as important intermediates in the
pharmaceutical industry [59]. Based on the first work of Knowles et al. [60], where the presence of a
hydrogen-bonding interaction between a Brønsted acid catalyst XXVII and the ketyl intermediate was
verified, Jiang et al. reported the first example of asymmetric photoredox reduction of 1,2-diketones
through a dual catalysis platform using a H-bonding organocatalyst [61]. In an attempt to work
without using metals as catalysts, they tested a dicyanopyrazine-derived chromophore (DPZ) as the
photoredox catalyst instead of ruthenium derivatives. The reaction worked with 0.5 mol% of DPZ,
1.0 equiv of THIQ-2 (2-naphthyl N-substituted tetrahydroisoquinolines), 10 mol% guanidinium salt
XXVII and 10 mol% of NaBArF in PhCl solvent at 0 �C and under irradiation with a 3 W blue LED,
giving chiral secondary alcohols 67. All tested 1,2-diketones react completely, providing optically
active ↵-hydroxy ketones in 60%–99% yields with 80%–98% ee (Scheme 26).
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Scheme 26. Hydrogen-bond based catalyst working in concert with photocatalysis [60].

The possibility to select a chiral Brønsted acid for proton shuttle permits two distinct reductions,
through highly enantioselective protonation, and allows the synthesis of diverse and valuable chiral
↵-hydroxy ketones with high ee values.

4. Cinchona Alkaloids Organocatalysis

Cinchona alkaloids are a complex mixture of organic compounds derived from the bark of Cinchona
and used for the treatment of malaria fever. This class of compounds presents five chiral centers and
two di↵erent heterocycles, quinuclidine and a quinolinic one. (Figure 3)

Cinchona alkaloids are bifunctional catalysts (Figure 4); the nitrogen atom in the quinuclidinic ring
works as a base activator site which can deprotonate and activate through a base-catalyzed mechanism
a nucleophile having a pKa = up to 10–11. After deprotonation, a tight ion pair is formed between the
protonated catalyst and the deprotonated nucleophile, enabling a better enantiocontrol thanks to the
steric hindrance. The 9-OH acts as a H-bond donor activating the electrophilic species [62] (Figure 4).

Cinchona alkaloids can be functionalized on the 9-OH with a range of functional groups, to obtain
modular catalysts according to operative needs. In addition, their versatility derives from the fact that
they can be easily functionalized as required in other positions, for example on the C5’ position, [63]
or the nitrogen atom of the quinuclidinic portion can be quaternized to provide, for example, PTC
catalysts that enable the activation of nucleophilic substrates with a pKa values between 11 and 21
(Scheme 27).
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Cinchona alkaloids were first employed in organic chemistry in 1859 as a chiral auxiliary by
Pasteur for the resolution of the racemate of tartaric acid [64]. The first asymmetric reaction employing
Cinchona alkaloids was reported in 1912 by Bredig and Fiske [1]. Cinchonine Ia deprotonates HCN,
forming a tight chiral ion pair that directs the attack of cyanide onto the benzaldehyde enantioselectively
(Scheme 28).
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Furthermore, Wynberg and Hiemstra developed, in 1981, an enantioselective 1,4-addition of thiols
to unsaturated ketones [65,66] (Scheme 29).
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Since then, Cinchona alkaloids have been used extensively in organocatalysis. The most common
derivatives are functionalized at the C9 position, with either bulky groups, H-bonding moieties,
or primary amines able to condense with carbonyls (Figure 5) [67,68].
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4.1. Synergistic Catalysis with Cinchona Alkaloids

4.1.1. Combination with Transition Metal-Based Catalysts

A remarkable example of Cinchona-derived bifunctional catalysts in combination with
metal-catalysts exploits copper(I) triflate to perform an asymmetric Conia-ene reaction of �-ketoesters
70 [69] (Scheme 30).Catalysts 2019, 9, x FOR PEER REVIEW 21 of 36 
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Scheme 30. Synergistic catalysis mediated by Cinchona-derived bifunctional catalysts in combination
with copper(I) triflate.

The organocatalyst acts as a Brønsted base and as a ligand for the copper enolate, imparting high
levels of enantiocontrol. In a preliminary study, the thiourea-based organocatalysts derived from
9-amino-9-deoxyepicinchonidine were tested in synergy with transition-metal ions [70–72].
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Lectka et al. reported a high-yielding diastero- and enantio-selective synthesis of �-lactam
products exploiting a synergistic catalytic system, in which a chiral nucleophile organic molecule
works in concert with an achiral Lewis acidic metal salt [73–78] (Scheme 31).
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According to their mechanistic studies, the pure organocatalytic pathway with Cinchona catalyst
activates acyl chlorides, providing ketene-derived zwitterionic enolates that subsequently add to
electrophilic imines 73, giving rise to �-lactam four-members rings 74 with excellent enantiomeric
excess (over 95%), albeit in modest yields from 40% to 65%.

Aiming to improve the yields and suppressing the formation of undesired by-products,
they proposed the addition of a Lewis acid catalyst to activate the imine. The combination of
In(OTf)3, as a Lewis acid, and benzoylquinine XXX, as a Brønsted base, proved to be the optimal one
for the synthesis of �-lactams, using a powerful synergistic strategy maintaining high levels of diastero-
and enantio-selectivity, while improving the yields (Scheme 32).Catalysts 2019, 9, x FOR PEER REVIEW 22 of 36 
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4.1.2. Combination with Other Organocatalysts

An asymmetric Michael reaction between 1-azido-2-(2-nitrovinyl)benzene 76 and acetone 3,
catalyzed by a combination of an amino acid with a Cinchona-derived bifunctional catalyst XXIX,
was reported by Ramachary [79].

As depicted in Scheme 33, the proposed transition state features a network of hydrogen bonds
between the thiourea catalyst XXIX with the azido- and nitro-group on the electrophile 76. Acetone 3,
on the other hand, is activated via enamine by the amino acid XIIIe, which is also part of the H-bond
network with the quinuclidinic nitrogen. The proximal e↵ect influenced the facial approach between
both activated reagents.
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Scheme 33. Asymmetric Michael reaction catalyzed by a combination of amino acid XIIIe with the
Cinchona-derived bifunctional catalyst XXIX.

Enantioselective additions of aldehydes to nitro-olefins, catalyzed by a combination of proline
and a quinidine-thiourea catalyst and developed by Zhao (Scheme 34) [80,81], were recently further
investigated by Sunoj [82]. The two original research papers are a Michael addition of butanone 78
to nitrostyrene 49 and a tandem Michael-Michael cascade reaction. The proline condenses with the
aldehyde 80 to form a nucleophilic enamine, while the Cinchona alkaloid activates the nitro-olefin via a
H-bond network. In the tandem cascade reaction, the condensation of proline occurs more rapidly
with the aldehyde than with the ketone, given the di↵erence in reactivity (Scheme 34).
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The Cinchona catalyst XXIX establishes a tight H-bond network, with a well-defined geometry;
the thiourea coordinates with the proline carboxylate group while the protonated quinuclidinic ring
with the nitrostyrene. Following the first Michael addition, and several rearrangements of hydrogen
bonds, the intermediate is oriented in such a way that the electronic deficiency on the carbon adjacent
to the nitro-group is near the electrophilic position, so that a new Michael addition can occur to yield
the cyclic product 81 after hydrolysis (Scheme 35).Catalysts 2019, 9, x FOR PEER REVIEW 24 of 36 
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4.1.3. Combination with Photocatalysts

Asymmetric alkylation of cyclic ketones with alkyl bromides, to obtain of ↵-alkylated products,
has been studied by Melchiorre et al., with high levels of regio-, diastereo-, and enantioselectivity [83].
Cyclohexanone derivatives 82 were reacted with substituted benzyl bromide 83 using quinine-derived
primary amines Ig or Ii as catalyst.

The process is confirmed as photochemical since it requires light in order to proceed.
The experiments were conducted using a household full-spectrum 23 W compact fluorescent lightbulb
(CFL). The electron-rich enamine 82a, formed from the condensation of ketones 82 (or aldehydes) with
a chiral secondary amine Ig/I (Cinchona-based catalyst), and the electron-accepting alkyl bromide 83
form the coloured EDA complexes by means of molecular aggregations, which occur in the ground
state of both compounds [84]. Light irradiation induced an electron transfer from the enamine to the
bromide and a facile radical fragmentation of the latter. The ion pair radical puts the two reagents into
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a geometrically restricted chiral space and into very close proximity. This condition facilitated a stereo
controlled radical combination within the solvent cage to form a new carbon–carbon bond and the
↵-carbonyl stereogenic centre of the final product 84 (Scheme 36).Catalysts 2019, 9, x FOR PEER REVIEW 25 of 36 
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Scheme 36. Mechanistic insights in the intermolecular asymmetric alkylation of cyclic ketones with
alkyl bromides, mediated by Cinchona alkaloids-based catalysis merged with photocatalysis.

In this, the photocatalyst is not present but the photochemically reactive species is the adduct
formed by molecular aggregation of the two reagents with the chiral catalyst.

Another example of synergistic photoredox activation for the direct �-arylation of ketones in
combination with Cinchona alkaloids is presented by MacMillan [85]. The authors showed the use
of [Ir(ppy)3] as a photocatalyst to promote a single-electron transfer with 1,4-dicyanobenzene 85 to
a↵ord the corresponding arene radical anion. Iridium complexes have a strong absorption in the
visible range, allowing them to accept a photon from a variety of light sources to populate the *Ir(ppy)3
metal-to-ligand charge transfer excited state, which has strong reductant properties.

In combination with this photoredox step, cyclohexanone 82 should condense with the amine
group of a Cinchona-derived organocatalyst Ik to form the electron-rich enamine.

At this juncture the photoredox and organocatalytic cycles would merge, as the electron-deficient
IrIV(ppy)3 intermediate should readily accept an electron, via SET, from the electron-rich enamine
to generate the corresponding radical cation and subsequent �-enamine radical formation,
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eventually giving the �-arylation product 86 with promising levels of enantioselectivity (82% yield,
50% ee) (Scheme 37).Catalysts 2019, 9, x FOR PEER REVIEW 26 of 36 
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5. Phosphoric Acids Catalysis

A powerful class of chiral catalyst used in asymmetric synthesis is represented by BINOL-derived
phosphoric acids used as Brønsted acids in electrophilic catalysis, imitating what nature does with
enzymes. The phosphoric acid group can decrease the energy of the LUMO orbital of an electrophilic
substrate through the formation of an intermolecular hydrogen bond. Thanks to the high steric hindered
substituents, substrates are confined to an extremely limited space, enabling stereocontrol. Thanks to
the Brønsted acid and Lewis base sites, and to the potential steric hindrance, BINOL derivatives can
have multiple modes of activation (Figure 6).
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Figure 6. Activation modes of substrates by phosphoric acids.

In 1975, Cornforth used a similar catalyst derived from phosphinic acid for the hydration reaction
of alkenes, paving the way for the study of chiral phosphoric catalyst [86,87]. Despite the early
reports by Cornforth, it was only several decades later that chiral phosphoric acids were used as
catalysts; in 2004, Akiyama [88] and Terada [89] simultaneously developed a Mannich reaction using
two di↵erent BINOL-derived catalysts, a phosphoric acid and a phosphoramide, respectively [90]
(Scheme 38).
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5.1. Synergistic Catalysis with Phosphoric Acids

5.1.1. Combination with Transition Metal-Based Catalysts

Beller et al. developed an asymmetric hydrogenation of imines, using an inexpensive metal catalyst
and ligand in combination with TRIP [91], mimicking well-known biocatalysts, such as iron-based
hydrogenases [92]. The iron complex catalyst XXXII and chiral acid XXXI work synergistically in a
cooperative manner, enabling enantioselective hydrogenation (Scheme 39).
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Scheme 39. Asymmetric hydrogenation of imines using iron-based catalyst XXXII synergistically with
TRIP XXXI.

The Brønsted acid (S)-TRIP protonates the starting imine to form the corresponding chiral
ion-pair. This intermediate accepts the hydride from Knölker complex, producing enantioenriched
secondary amines.
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Luo et al. developed the first regio- and enantio-selective hetero-Diels-Alder reaction of
cyclopentadienes employing a chiral phosphoric acid/InBr3 catalytic system (Scheme 40) [93].
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Scheme 40. Enantioselective hetero-Diels–Alder reaction of cyclopentadienes exploiting a chiral
phosphoric acid/InBr3 catalytic system.

The chiral phosphoric acid XXXIII proved to be unable to catalyse the reaction; by combining
it with a transition metal Lewis acid, the synergistic catalytic system is competent in activating the
reaction partners towards the hetero-Diels-Alder pathway with good results in terms of both reactivity
(99% yield) and enantioselectivity (ee 99%). It was shown that the free InBr3 favours the DA pathway
rather than HDA, demonstrating that the synergistic combinations of phosphoric acid and metal Lewis
acid was needed for e↵ective catalysis.

5.1.2. Combination with other Organocatalysts

An elegant asymmetric fluorination of carbonyl compounds, carried out in a biphasic system,
was reported by Toste [94].

The sodium salt of the chiral phosphoric acid XXXIV acts as a PTC, transporting Selectfluor 96 as
a double chiral ionic pair, at the interphase; the carbonyl compound present in the organic phase is
activated via enamine by the primary amine function of aminoacid derived XXXV. The two activated
substrates can then react at the interphase, where an additional weak interaction is established between
the amino group and one of the oxygens of XXXIV (Scheme 41).

To avoid disrupting the well-balanced H-bond network, it was necessary to protect the carboxylic
moiety of the amino acid.

A direct asymmetric �-alkylation of ↵-substituted linear ↵,�-unsaturated aldehydes 98 with
secondary alcohols 99 was reported by Melchiorre (Scheme 42) [95].

The reaction is formally a SN1 reaction that proceeds through nucleophile attack of the activated
98 compound to the carbocation generated from 99. The activate-nucleophile species is the
dienamine, generated from the condensation between 60-hydroxy-9-amino-9-deoxy-epiquinidine
and the ↵,�-unsaturated aldehyde. The phosphoric acid protonates the pro-electrophile generating
a stabilized carbocation that can be intercepted by the dienamine. A complex mechanistic model is
proposed where the Cinchona catalyst coordinates with two phosphoric acids, on one hand via the
60-OH and on the other hand with the protonated quinuclidinic nitrogen. The mechanistic model is
supported by the fact that a 60-OH group is needed for high enantiomeric excess.
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5.1.3. Combination with Photocatalysts

Stereocontrol in light-driven photochemical reactions still remains one of the most ambitious
goals [96]. To achieve this goal, many dual catalytic systems based on the contemporary use of
transition-metal photosensitizers and stereocontrollers have been successfully introduced, leading to
the establishment of highly stereoselective protocols for the assembly of chiral molecules [60,97].

Phipps et al. disclose the direct Minisci-type addition of↵-amino alkyl radicals 102 to the 2-position
of basic heteroarenes 101, with excellent control of both enantioselectivity and regioselectivity, by virtue
of a combination of asymmetric Brønsted acid catalysis and photoredox catalysis [98].

Protonation significantly reduces the energy of the LUMO of the heteroarene, and the conjugate
anion of the chiral acid remain associated with the pyridinium cation through electrostatic and
hydrogen-bonding interactions. Therefore, the substrate is activated by a chiral environment.

They use RAEs (Redox Active Ester), as precursors to N-acyl ↵-amino alkyl radicals,
which are prochiral and nucleophilic radicals that possess hydrogen bond donor functionality.
Breaking into several fragments of the RAE is induced via electron transfer from an Ir(II)
species generated after irradiation of photocatalyst [Ir(dF(CF3)ppy)2(dtbpy)]PF6, with dF(CF3)ppy
= 2-(2,4-difluorophenyl)-5-(trifluoromethyl)-pyridinyl and dtbpy = 4,40-bis(tert-butyl)-bipyridine,
with blue LEDs. The chiral Brønsted acid were (R)-TRIP XXXI or (R)-TCYP XXXVIII (Scheme 43).Catalysts 2019, 9, x FOR PEER REVIEW 31 of 36 
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Scheme 43. Minisci-type addition of ↵-amino alkyl radicals to the 2-position of basic heteroarenes
performed thanks to a combination of Brønsted acid catalysis and photoredox catalysis.

Ooi et al., instead, developed a highly enantioselective ↵-coupling of N-arylaminomethanes
105 with N-sulfonyl aldimines 104 using a chiral tetraaminophosphonium ion XXXIX and Ir-centred
photosensitizer with visible light irradiation [99]. They adopted N-sulfonyl imines as the precursors of
anion radicals due to their a�nity to the hydrogen-bond donor catalyst (Scheme 44).
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The iridium complex [Ir(ppy)2(bpy)]BArF (where Hppy= 2-phenylpyridine, bpy= 2,20-bipyridine,
HBArF = tetrakis [3,5-bis(trifluoromethyl)phenyl]-borate) was reversibly promoted to its excited state,
under visible light irradiation. Subsequent reductive quenching of the *Ir(III) species with 105 lead to
the formation of electronically neutral Ir(II) complex and the cation-radical of 105 in presence of the
counterion BArF�. The Ir(II) complex gives an electron to the imine 104 to form the corresponding
anion-radical that should be spontaneously paired with the positively charged of the Ir(III) complex.

This complex would undergo prompt ion exchange with the catalysis, to a↵ord the parent
photosensitizer and the adduct between the imine anion-radical and the Brønsted acid XXXIX.

At the same time, an aminomethyl radical is formed via deprotonation of the Ph2NMe cation-radical
by a basic species. Then, a coupling reaction between the imine anion-radical and the aminomethyl
radical take place by means of the chiral catalyst to enantioselectively produce the 1,2-diamine
derivatives 106.

6. Conclusions

Synergistic catalysis evolved from organocatalysis combined with other types of catalysis to
access new activation modes. As discussed, there is a range of di↵erent combinations that have been
discovered and many more that still need to be designed. We believe that this relatively new field of
catalysis holds high potential and will greatly contribute to synthetic chemistry, both in academia and
in industry.
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