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Abstract. A procedure is proposed to reduce the computation time of thermo-mechanical 

simulations with large nonlinear finite element (FE) models that involve cyclic plasticity. The 

procedure is helpful when it is practically unfeasible to simulate the huge amount of cycles 

needed to bring the material model to its fully stabilised state (an unfavourable situation that 

often occurs when small plastic strains are present), as required before assessing the structural 

durability. A “reference” test case, with combined kinematic and isotropic nonlinear model 

calibrated on actual material properties, is compared to accelerated models as well as pure 

kinematic models. Guidelines on how to set up the accelerated model are finally discussed. 

1.  Introduction 

Structural durability of complex structures undergoing cyclic thermo-mechanical loadings may exploit 

results from elasto-plastic finite element (FE) analyses. On the one hand, the fatigue life assessment 

requires that the simulated cyclic material behavior reaches its complete stabilized condition (which 

occurs about at half the number of cycles to failure). On the other hand, attaining such a stabilized 

condition in large-scale nonlinear FE models may require that a huge number of cycles are simulated, 

which may become computationally unfeasible.  

In a recent study dealing with elasto-plastic analysis of a copper mold for steelmaking plant [1], it 

was estimated that the three-dimensional FE model would had required thousands of cycles (around 

60000) to simulate the material behavior until complete stabilization, due to the unfavorable 

combination of small plastic strains and low stabilization speed of the mold alloy. In turn, thousands of 

cycles would have last hundreds of simulation days, i.e. beyond any practical limit. 

The use of accelerated material models, as proposed in [2], was considered a mean to keep the 

computation time within more acceptable limits. In accelerated models, the stabilization speed is 

increased up to a “fictitious” value (see figure 1), which permits the number of cycles for simulating the 

material behavior from the onset of plasticization up to the stabilized condition to be reduced 

considerably (and so the computation time, too). In some cases, however, the stabilization speed cannot 

be increased arbitrarily and unreasonably (figure 1) if one needs to prevent numerical converge issues 

or “unrealistic” results in simulations [2].  
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Figure 1. Actual and accelerated model. Simulation time is 

decreased if the stabilization speed b is increased from its actual 

value (A) to a “fictitious” value (B). 

 

Checking the correctness of acceleration techniques is possible only by comparison with a 

“reference” case that permits the cyclic material behavior to be simulated until complete stabilization. 

In this work, the reference case is an axisymmetric FE model of a hollow copper mold subjected to 

cyclic thermal loadings. 

2.  Plasticity model: Theoretical background 

The cyclic material behaviour is modelled through a combined kinematic and isotropic model [3]: 
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where S is the deviatoric stress tensor, X is the deviatoric back-stress tensor, R is the drag stress and σ0 

is the initial yield stress. In the combined model, the yield surface both translates (controlled by X) and 

expands (controlled by R) as function of plastic strain increment dεpl and accumulated plastic strain εpl,acc. 

The kinematic part is based on the Chaboche’s nonlinear model [3]:   
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where C is the hardening modulus and γ is the recovery parameter controlling the decay of C as plastic 

strain accumulates. For i=1, equation (2) yields the Armstrong-Frederick model with only two pairs (C1, 

γ1). For γ=0, equation (2) gives the Prager model (linear kinematic), in which dX=(2/3)Clindεpl. 

The isotropic model, which controls the material hardening/softening, is based on the incremental 

relationship dR=b(R∞–R)dεpl,acc, in which R∞ is the saturated stress and b is the stabilization speed for 

hardening (R∞>0) or softening (R∞<0). Integrating the previous expression gives [3]: 

( ) accpl,exp1 bRR −−= 
 (3) 

The material stabilizes when R reaches R∞, which (according to [3]) occurs approximately when the 

exponent bεpl,acc5. In strain-controlled fully reversed cycles characterized by a plastic strain range Δεpl, 

the total plastic strain accumulated after N cycles is approximately 2NΔεpl and the stabilized condition 

becomes 2bNstabΔεpl5 (where Nstab is the number of cycles to stabilization). This relationships shows 

that Nstab is inversely proportional to both b and Δεpl (see figure 1) and explains why Nstab may become 

really large in those situations in which plastic strain accumulates rather slowly, due to a material that 

has a small b and is subjected to cycles where plastic strain is not predominant. 

Increasing b is but one of many techniques proposed in literature. If both creep and thermal fatigue 

are present, some authors [4,5] suggest that only a limited number of cycles can be simulated. Although 

not well defined, this procedure could be justified by considering that visco-elasticity tends to reduce 

the time to stabilization. If creep rupture constitutes the damage criterion in design, an extrapolation 
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technique aimed to speed up the simulation is proposed in [6]. In situations with no creep, other authors 

[7,8] adopt a kinematic model with stabilized material properties from the beginning of simulation (no 

isotropic model simulates the cyclic material hardening/softening).  

3.  Numerical case study 

3.1.  Component description 

As benchmark, numerical simulations consider a mold for continuous casting of steel, which is a hollow 

tube where the initial solidification of steel takes place (see figure 2(a)). The actual shape of mold cross 

section (round, square, rectangular) depends on the shape of the final product. On its inner surface, the 

component is subjected to a massive thermal flux q that varies along its length, from a maximum qmax 

(corresponding to the position of liquid steel) to a constant value. The overall thermal flux distribution 

also changes over time, from its full value (plant is in service) to zero (plant switched off). On its outer 

surface, the mold is water-cooled. The component is simply supported to the surrounding structure and 

is free to expand. Molds are made of copper alloys, as they have a favorable combination of high thermal 

conductivity and good mechanical strength. The mold analyzed in this study has length 1000 mm, inner 

diameter 200 mm and thickness 16 mm, and it is made of CuAg0.1 alloy, whose cyclic plasticity 

properties (estimated from experiments) are summarized in [9]. 

 

 

Figure 2. (a) component; (b) axisymmetric finite element model and mesh zoom; 

(c) temperature distribution; (d) equivalent plastic strain distribution. 

3.2.  Finite element model 

Thanks to the axial symmetry of geometry and boundary conditions, the mold can be represented by a 

two-dimensional (2D) axisymmetric FE model (see figure 2(b)), which moreover permits the 

computation time to be greatly reduced even when simulating hundreds of cycles. The model is 

constituted by 760 axisymmetric 8-node isoparametric elements, for a total of 2487 nodes. Mesh is 

refined in the region of maximum thermal flux (point A), where the highest temperatures and stress 

gradients are expected to occur. The mold thermo-mechanical response is simulated by a first thermal 

analysis that yields the temperature distribution, which is then input in following mechanical analysis. 

3.3.  Thermal analysis results 

In thermal analysis, a thermal flux of 3.2 MW/m2 proposed in [10] is applied on the inner surface, a 

convection on the outer surface (with bulk temperature 40°C and convection coefficient 48000 W/m2K). 
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The thermal flux from [10] was incremented by about 50% so that the maximum temperature reached 

the value 300°C for which material properties are available in [9]. The model also includes temperature 

dependent material properties. The change of heat flux is simulated by a sequence of steady-state 

analyses, are explained in [1]. 

Figure 2(c) displays the calculated temperature distribution. The largest temperature gradients are 

located close to the region of maximum thermal flux, where also the maximum temperature 298°C 

occurs at point A (this point will be monitored in structural analysis). 

3.4.  Mechanical analysis results 

The input is the temperature field calculated in previous thermal analysis. No mechanical constraints are 

applied to the model, as the actual mold is free to expand. A nonlinear combined kinematic and isotropic 

material model is used and brought up to complete stabilization (“reference” case). Material parameter 

values are taken from [9] (the CuAg01 exhibits cyclic softening).  

Results from the “reference” case were compared to those from other models, namely: 
⚫ accelerated (combined kinematic-isotropic) models, with an increased stabilization speed ba. In 

order to make the sensitivity analysis the widest possible, eight values – covering a wider range 

than that suggested in [2] – were scrutinized (ba=0.01b, 10b, 20b, 30b, 100b, 200b, 300b, 421b); 
⚫ only kinematic model (linear) according to Prager; 
⚫ only kinematic model (nonlinear), with the static parameters calibrated on either first or 

stabilized cycle; 

 

 

 

 

Figure 3. Stress components vs. loading 

cycles. 

 Figure 4. Evolution of hoop stress-strain at 

cycles (for clarity, only some cycles are plotted). 

 

For accelerated model, the value 0.01b represents a lower bound for which the contribution of 

isotropic part to the combined model becomes negligible (i.e. material does not show softening). By 

contrast, value 421b constitutes an upper bound for which cyclic softening occurs so rapidly that – as it 

will be discussed later on – unrealistic results (“distorted” stress-strain cycles) are obtained (for even 

higher b, simulation do not converge at all). For Prager and nonlinear kinematic models, the difference 

in material properties between initial state and stabilized state are considered by calibrating the elastic 

modulus and yield stress either on the first cycle (E1, σ0) or on the stabilized cycle (Es, σ0*). Note that 

the first quarter of first cycle corresponds to the monotonic uniaxial stress-strain curve. 

The “reference” combined model takes about 537 cycles to make the material stabilize (adopting the 

stabilization criterion described in [11]), as also confirmed by the cyclic evolution of stress components 

(radial, hoop and axial stress), see figure 3. Figure 4 depicts the evolution of hoop stress-hoop strain 

cycles at certain intervals (for more clarity, not all cycles are shown). The change of shape thorough 

cycling is evident. 

Figure 5 shows how, for various accelerated models, the maximum von Mises stress in each cycle 
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changes over the applied cycles N (which are normalized to the cycles Nstab required to complete 

stabilization, in order to better emphasize the various trends in the very first cycles). All models attain 

almost the same asymptotic stress value, except the model with ba=0.01b in which the isotropic model, 

is somehow “deactivated”. It follows that the material to exhibit any softening (the hardening shown is 

only due to the kinematic model and ends in the first 8 cycles). 

 

 

 

 

Figure 5. Evolution of max. von Mises stress 

over cycles for different accelerated models. 

 Figure 6. Evolution of equivalent strain range 

over cycles for different accelerated models. 

 

Of more interest is to monitor the evolution of the equivalent strain range ∆εeq as defined in [12] (see 

figure 6), as this parameter is used to assess the low-cycle fatigue life. For the “reference” model (not 

accelerated), the strain range ∆εeq increases throughout the whole loading cycles, with a maximum rise 

of about 18%. This trend confirms that, if cyclic loading is stopped before material had reached complete 

stabilization and ∆εeq attained its asymptotic value, the fatigue life may be overestimated (in a Manson-

Coffin curve, the life is indeed a nonlinear inverse function of strain range as ∆εeq
–c, where c is a material 

parameter). Models with a stabilization speed only moderately increased (ba=10b÷30b) display a trend 

similar to the “reference” case, whereas others with much higher values (ba=100b÷300b) follow a 

different behavior, in which stabilization is almost completed in the early cycles. In all models examined, 

though, the equivalent strain range never stays constant during cycles, which confirms how important is 

that, in simulations, the material reaches its stabilized state in order to avoid errors in following fatigue 

life assessment. 

 

 

 

 

Figure 7. Design diagram for T=300°C.  Figure 8. Comparison of ∆εeq from all models. 
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Figure 7 represents a sort of “design diagram” that applies the concepts sketched in figure 1. It 

correlates parameters b, N and ∆εpl through the relationship 2bNstabΔεpl5. The plastic strain range is 

calculated at the 5th simulated cycle. The three curves correspond to the three plastic strain range 

components (∆εpl,a=0.0554% axial, ∆εpl,θ=0.0734% hoop, ∆εpl,r=0.1289% radial). Except for the two 

bound cases (ba=0.01 and ba=421b), the other points lie close to the analytical curves, whose validity is 

thus confirmed. 

 

Table 1. Number of cycles to stabilization and ∆εeq for point A (T=300°C). 

Material ID 1 2 3 4 5 6 7 8 9 10 11 

 Comb. 

model 

Accelerated models 
NKIa NKSb 

Prager 

model 10b 20b 30b 100b 200b 300b 421b 0.01b 

Nstab 537 68 34 21 8 6 4 10 8 8 10 5 

Δεeq 

(%) 

0.400 0.402 0.402 0.402 0.400 0.401 0.398 0.397 0.339 0.339 0.366 0.357 

Δe 

(%) 

 0.41 0.40 0.36 -0.02 0.5 -0.48 -0.91 -15.30 -15.26 -8.60 -10.71 

a NKI – nonlinear kinematic model with initial parameters 
b NKS - nonlinear kinematic model with stabilized parameters 

 

Figure 8 compares the equivalent strain range ∆εeq in the stabilized state, from all the material models 

examined (pure kinematic models–both linear and nonlinear–are included, too). The values of ∆εeq 

provide an indirect measure of structure durability, as they are inversely proportional to the low-cycle 

fatigue life in a Manson-Coffin diagram. Values from figure 8 are also listed in Table 1. 

Accelerated models yield comparable ∆εeq (with a maximum relative deviation of 0.5% from the 

“reference” case), which in turn confirms that a moderate increase of the stabilization speed (below the 

upper bound ba=421b) would leave the estimated fatigue life unaltered if compared to the life estimated 

by the “reference” model. The upper bound value, of course, cannot be determined beforehand and needs 

be established for the specific engineering application under study. 

Of more interest is to observe how pure kinematic models always underestimate the ∆εeq of the 

“reference” case, with a maximum deviation up to 15%. The lowest ∆εeq comes from the nonlinear 

kinematic model considering “initial” state of material (E1, σ0). Only a small improvement yet occurs if 

the nonlinear kinematic model is calibrated based on static parameters obtained from the stabilized state, 

or it is replaced by the linear Prager model calibrated on the initial state. 

Either way, it seems apparent that neglecting the isotropic part in the combined model does not seem 

very appropriate. One the one hand, using a linear kinematic model greatly simplifies the model 

calibration, as only the monotonic tensile curve is required without any cyclic experimental data. On the 

other hand, figure 8 confirms the conclusions in [2], which caution engineers about the use of pure 

kinematic models that – regardless of being calibrated on the initial or stabilized material state – do 

completely neglect the material hardening/softening and the corresponding change in elastic-plastic 

properties over cyclic loading. 

4.  Guidelines for practical applications 

A test case is now briefly discussed to show how accelerated models can be applied in practice. For the 

FE model in figure 2, the thermal flux from [10] is incremented by only 30%, so that the maximum 

temperature is close to the value 250°C for which material parameters (and, in particular, the 

stabilization speed b) are available in [9]. 

The relationship 2bNstabΔεpl5 governs the set-up of the accelerated model. To be calibrated, that 

relationship needs the value of plastic strain range Δεpl in one structure point. This value can be 

approximated by Δεpl-5 after five cycles, which normally demands for a relatively short simulation time 

even with large-scale nonlinear FE models. The b parameter is known from experimental data.  

The actual b value normally determines a rather high number of stabilization cycles Nstab (and so is 
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the corresponding simulation time). Therefore, after establishing a target value N*<Nstab that yields a 

more affordable simulation time, the “fictitious” ba5/(2N*Δεpl-5) for the accelerated model can be 

derived accordingly (for the example under study, N*=40 gives ba=200), see figure 9. Running 40 cycles 

with ba gives an equivalent strain range Δεeq=0.3144%, which only deviates by 2.27% from the value 

obtained by simulating 1033 cycles with the actual b. This result then validates the procedure. 

 

 

Figure 9. Design diagram for T=250°C [11]. 

5.  Conclusions 

Selecting the most appropriate cyclic plasticity model is a crucial step in thermo-mechanical finite 

element analysis. It may happen that the material model that fits more closely the experimental cyclic 

plasticity behavior is also the one that, in finite element simulations, requires a too large number of 

cycles to reach its stabilized state. This would result in a very long computation time, especially with 

large-scale three-dimensional FE models. 

This work implemented several plasticity models (combined kinematic and isotropic, accelerated, 

Prager and nonlinear kinematic with “initial” and “stabilized” parameters) and compared them in terms 

of the equivalent strain range. As a basis for comparison, a “reference” test case was considered, in 

which the plasticity model is fitted on actual experimental data and the simulation carried out until 

complete material stabilization. The comparison showed that pure kinematic models, even if calibrated 

on either the initial or stabilized material state, deviated from the “reference” equivalent strain range, 

thus overestimating the actual structure fatigue life. Pure kinematic models, neglecting the material 

hardening/softening, seem inadequate and their use not recommended. By contrast, accelerated 

kinematic-isotropic models were always closed to the “reference” case, if the stabilization speed is 

increased up to two orders of magnitude (which allows the computation time to be shortened 

significantly). Guidelines were finally provided on how, in practical numerical cases, the “increased” 

stabilization speed in accelerated models can properly be set up. 

References 

[1] Srnec Novak J, Benasciutti D, De Bona F, Stanojević A and Huter P 2015 Procedia Engineering 

133 688-97 

[2] Chaboche J L and Cailletaud G 1986 Comput. Struct. 23 23-31 

[3] Chaboche J L 2008 Int. J. Plasticity 24 1642-93 

[4] Arya V K, Melis M E and Halford G R 1990 Finite Element Elastic-Plastic-Creep and Cyclic 

Life Analysis of a Cowl Lip (NASA Technical Memorandum 102342) 

[5] Amiable S, Chapuliot S, Constantinescu A and Fissolo A 2006 Fatigue Fract. Eng. Mater. Struct. 

29 209-17 

[6] Kontermann C, Scholz A and Oechsner M 2014 Mater. High Temp. 31 334-42 

N=40

Δεpl,θ-5=0.0442

Δεpl,a-5=0.0327

Δεpl,r-5=0.0769

57.0
eq

pleq, =










The 2nd International Conference on Material Strength and Applied Mechanics

IOP Conf. Series: Materials Science and Engineering 629 (2019) 012008

IOP Publishing

doi:10.1088/1757-899X/629/1/012008

8

 

 

 

 

 

 

 

 

[7] Li B, Reis L and de Freitas M 2006 Int. J. Fatigue 28 451-8  

[8] Campagnolo A, Berto F and Marangon C 2016 Theor. Appl. Fract. Mec. 81 76-88 

[9] Benasciutti D, Srnec Novak J, Moro L, De Bona F and Stanojević A 2018 Fatigue Fract. Eng. 

Mater. Struct. 41 1364-77 

[10] Galdiz P, Palacios J and Thomas B G 2014 Proc. European Cont. Casting Conf. (Graz, Austria, 

June 23–26, 2014) 

[11] Srnec Novak J, De Bona F, Benasciutti D and Moro L 2018 MATEC Web of Conf. 165 19010 

[12] Manson S S 1966 Thermal Stress and Low-cycle Fatigue (New York: McGraw-Hill) 


