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ABSTRACT A great deal of attention has been recently given to Machine Learning (ML) techniques
in many different application fields. This paper provides a vision of what ML can do in Power Line
Communications (PLC). We first and briefly describe classical formulations of the ML, and distinguish
deterministic from statistical learning models with relevance to communications. We then discuss ML
applications in PLC for each layer, namely, for characterization and modeling, for the development of
physical layer algorithms, for media access control and networking. Finally, other applications of the PLC
that can benefit from the usage of ML, as grid diagnostics, are analyzed. Illustrative numerical examples
are reported to serve the purpose of validating the ideas and motivate future research endeavors in this
stimulating signal/data processing field.

INDEX TERMS Machine learning, statistical learning, communications, power line communications,
channel modeling, physical layer, MAC layer, network layer, grid diagnostics.

I. INTRODUCTION
Modern communication systems have reached a high degree
of performance, meeting demanding requirements in numer-
ous application fields. Significant progress in the analysis
and design of communication systems has been rendered
possible by the milestone work of Shannon [1] that pro-
vided a methodological approach to attack the challenge of
reliably transmitting information through a given commu-
nication mean. Shannon’s mathematical approach suggests
to represent the system as a chain of blocks mathemati-
cally modeled, namely, the transmitter, the channel, and the
receiver. The transmitter can be further divided into a source
coder, a channel coder and a signal modulator. The channel is
represented by a transfer function (in most cases considered
linear time invariant, or time variant) and an additive noise
term. Three generations of scientists and engineers grew
up with this mathematical mindset which provided tools to
acquire domain knowledge and use it to build a model for
each block, so that the overall behavior becomes known. Such
a framework intrinsically has the advantage that each block
can be individually studied and optimized. We would refer to
this approach as physical and bottom-up.
From an epistemological point of view, the mathematical

theory of communications is based on knowledge coming
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from a priori justifications and relying on intuitions and the
nature of these intuitions, which is intrinsically what mathe-
matics does. On the contrary, a posteriori knowledge is cre-
ated by what is known from experience, therefore generated
afterwards with an empirical and top-down approach. The
immense contributions of I. Kant with his philosophy of tran-
scendental aesthetics and logic [2], made a step further into
the understanding and the definition of knowledge: knowl-
edge of the structure of time and space and their relationships,
is a priori knowledge; knowledge acquired from observations
is a posteriori knowledge; most of our knowledge comes
from the process of learning and observing phenomena, and
without a priori knowledge it is impossible to reach the true
knowledge. In this respect, Machine Learning (ML) [3], [4],
which is the topic of this paper, can be considered an imple-
mentation by humans of techniques in machines to acquire
knowledge from a posteriori observations of natural phe-
nomena. The origin of success of ML relies on its ability to
derive relations among phenomena and potentially discover
the hidden (latent) state of a system, i.e, potentially provide an
intrinsic true knowledge of the system. System identification
andmodel based design through the aid ofML [5] constitute a
first step to find undiscovered system properties via a mixed
a priori - a posteriori learning approach, which, retrospec-
tively, follows Kant’s philosophical structure.

ML is indeed bringing new lymph in the domain of
communication systems modeling, design, optimization,
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and management. It provides a paradigm shift: rather than
concentrating on a physical bottom-up description of the
communication scheme, ML aims to learn and capture infor-
mation from a collection of data, to derive the input-output
relations of the system, or of a given task in the system.
We would argue that a miraculous solution of communica-
tions challenges with ML does not yet exist. In addition, what
is learned via ML tools is not necessarily representative of
the physical reality, i.e., wrong believes about relations and
dependencies among data may be generated. Consequently,
the results have to be validated through the support of a
probabilistic approach and an understanding of the system
physics. But the path has been mapped out: ML offers a great
deal of opportunities to research and design communication
systems.

A. BUT WHAT ARE THE DOMAINS OF APPLICATION
OF ML IN COMMUNICATIONS?
The applications of ML in communications are a multitude
and cover all three fundamental protocol stacks: the physical
layer, the MAC layer and the network layer. More specifi-
cally, the same applies to Power Line Communications (PLC)
which is the technology that exploits the existing power
deliver infrastructure to convey information signals [6].When
things become complex and a bottom-up model is diffi-
cult to derive or has too many uncertainties, ML can help,
no doubt. This is particularly true in PLC since, despite the
advances in channel and noise modeling [7], the communi-
cation media is still not fully understood and modeled espe-
cially when it comes to noise and interference. Consequently,
the transceiver techniques designed so far might not be opti-
mal [8]. Media access control and resource allocation in mas-
sive PLC networks (as smart metering ones) is an extremely
complex task that can benefit from ML approaches [9]. The
analysis of PLC signals exchanged among nodes can reveal
properties of the grid status and detect anomalies in the
cables, loads and generators, which is relevant for grid pre-
dictive maintenance [10], [11].

B. PAPER CONTRIBUTION
In this paper, we will discuss in detail the application of
ML in PLC providing concrete insights (tips) of what can
be done and with what ML tools (tricks). Several numerical
examples are reported to validate the ideas and to stimulate
further work in this research domain. To better understand
ML, we start our short journey into ML for PLC by proving
a compact introduction to ML with focus on applications in
communications. This serves also the purpose of surveying,
at the best of the authors knowledge, the existing literature on
the topic and the initial studies conducted.

In detail, the paper is organized as follows. In Sec. II, ML
fundamentals for both supervised and unsupervised learn-
ing are reported. Specific tools are described. They include
artificial neural networks, and support vector machines (for
supervised ML), and clustering, autoencoders, and gener-
ative networks (for unsupervised ML). Convolutional and

Recurrent Neural Networks as well as Reinforcement Learn-
ing are also briefly discussed. In Sec. III, we focus on PLC
and ML for the characterization of the medium and its mod-
eling through the use of a data driven, synthetic approach.
In Sec. IV, ML for physical layer PLC is discussed while
the MAC and network layers are considered in Sec. V. Other
applications of ML for PLC are the topic of Sec. VI. The
conclusions then follow.

II. MACHINE LEARNING BASICS FOR COMMUNICATIONS
Following the definition provided byMitchell [12], ML algo-
rithms can be categorized according to the learning process
(the kind of experience E the machine has), the specific
task T and the performance measure P. If we focus on the
experience, learning is divided into supervised, unsupervised
and reinforcement learning. According to different interpre-
tations of the experience, one could distinguish between a
deterministic or probabilistic interpretation/description of the
system. Since in communication theory, signals are always
studied as stochastic processes, we prefer to encapsulate ML
tools into statistical learning tools, thus, under a stochas-
tic/probabilistic framework.

Now, as discussed in the introduction, the paradigm shift
in ML for communications is to frame the problem into an
initial black-box description of the system and then learn
and capture information from a collection of data so that
a target task can be realized [13]. Examples of tasks, are
system modeling, or more in general system identification,
data detection, resource allocation, network management etc.

In the following, we summarize learning methods and
tools and we report specific examples of ML based solutions
already proposed in the literature using however a unified
description approach.

A. SUPERVISED LEARNING
1) PRELIMINARIES AND DEFINITIONS
Let (xi, yi) ∼ p(x, y), i = 1, . . . ,N , be samples col-
lected into a training set D belonging to the joint distribu-
tion (pdf) p(x, y). Supervised learning, under a determin-
istic model, aims to find a mapping between all pairs of
input-output vectors (xi, yi), thus, an inferred function F
that element-wise satisfies y = F(x). The ideal scenario
wouldmap unseen samples x̃ into the right, initially unknown,
label/target ỹ. As we want to address the problem under a
stochastic/probabilistic approach, we state that probabilistic
supervised learning tries to predict y from x by estimating
p(y|x) under a discriminative model or by estimating the joint
distribution p(x, y) under a generative model. Fig. 1 schemat-
ically distinguishes between deterministic and probabilistic
approaches in ML.

If the outputs are continuous variables, we consider it as
a regression problem, while if the targets are discrete, then
we have a classification problem. A standard way to proceed
during the learning process is to define a cost function C ,
namely a performance measure that evaluates the quality
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FIGURE 1. Taxonomy of learning models.

of our prediction ŷ. In most applications, we can rely only
on the observed dataset D and derive an empirical sample
distribution since we do not have knowledge of the true joint
distribution p(x, y). In particular, the goal of the training
process is to minimize

C(ŷ) = E(x,y)∼D[δ(y, ŷ)] (1)

where δ is a measure of distance between the wanted target y
and the prediction ŷ, and E denotes expectation.

2) TOOLS: NEURAL NETWORKS
Neural Networks (NNs) are among the most popular tools
in this field since they are known being universal function
approximators [14], they can be implemented in parallel on
concurrent architectures and most importantly, they can be
trained by backpropagation [15].

A feedforward neural network with L layers maps a given
input x0 ∈ RD0 to an output xL ∈ RDL by implementing a
function F(x0; θ ) where θ represents the parameters of the
NN. To do so, the input is processed through L iterative steps

xl = fl(xl−1; θl), l = 1, . . . ,L (2)

where fl(xl−1; θl) maps the input of the l-th layer to its
output. The most used layer is the fully connected one, whose
mapping is expressed as

fl(xl−1; θl) = σ (Wl · xl−1 + bl) (3)

where σ (·) is the activation function while Wl and bl are the
parameters, weights and the biases, respectively. According
to the specific application, several different types of layers
and activation functions can be defined. Fig. 2 shows a gen-
eral fully-connected architecture.

Defined a metric δ and a cost function C , the easiest and
most classical algorithm to find the feasible set of parameters
θ is the gradient descent which iteratively updates θ as θt =
θt−1 − η∇C(θt−1) where η is the learning rate. Its popular
variants are Stochastic Gradient Descent (SGD) and adaptive
learning rates (Adam) [16]. Common choices for the cost

FIGURE 2. Structure of a fully connected neural network with 2 hidden
layers.

function, in a deterministic model, are the mean squared error
and categorical cross entropy, for which δ in (1) takes the form
δ(y, ŷ) = ||y− ŷ||2 and δ(y, ŷ) = −y · log ŷ, respectively.

In the context of probabilistic discriminative models,
the fundamental learning criterion is the maximum likelihood
estimator which finds a value of θ in a parameterized family
of models p(y|x; θ ) that is the most likely to have generated
the observed data D, formally

θ = argmax
θ

p(y|x; θ ). (4)

From the dataset samples and using the log-likelihood func-
tion, (4) can be empirically estimated as

θ = argmax
θ

N∑
i=1

log p(yi|xi; θ ). (5)

Note that the deterministic and probabilistic approaches col-
lapse together when we consider Gaussian or categorical
models since we will end up solving a least squares or a
cross-entropy minimization problem, respectively. We leave
the description of generative models for Sec. II-B since they
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are typically and formally introduced under unsupervised
learning, and then they have been extended to supervised
versions. This is the reason why they can be cast in hybrid
models.

NNs are only one of the several different tools introduced
so far by the ML’s community. Since they are excellent in
finding patterns, in the context of PLC, as we will discuss,
they can be used to find deterministic and probabilistic rela-
tionships between physical measured quantities such as the
line impedence, the channel transfer function, the radiated
power. Channel emulation can be realized with neural net-
works, an early example of which is [17]. NNs can also be
used for prediction and network management purposes.

3) TOOLS: SUPPORT VECTOR MACHINES
Another relevant approach to supervised learning is the usage
of a Support Vector Machine (SVM) [18], [19]. We briefly
describe the SVM classifier since regression follows from
the same idea with minor modifications. The SVM classifier
predicts that a certain sample xi belongs to a class yi if
wT xi − b is positive, where wT xi − b = 0 is the equation for
the decision boundary. The aim is to maximize the distance
d = 2/||w|| between the supporting rescaled hyperplanes
wT xi − b = 1 and wT xi − b = −1 (see Fig 3). This
leads to the following dual Lagrangian formulation for the
linear SVM

Ld =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjxixj (6)

where αi are the Lagrange multipliers (non-negatives) and N
the number of samples. When data are non linearly separable
in the domain space, transforming them into an higher dimen-
sional one using the mapping x → φ(x) increases the com-
plexity of the classifier. A concept called kernel trick over-
comes this problem; the key idea behind the kernel trick is
that the inner product between xi and xj is similar to the inner
product between φ(xi) and φ(xj). Moreover, since we are not
interested in knowing φ but only the scalar product xi · xj,
such product is represented by the kernel function K (xi, xj).
Consequently, we can make predictions using the function

f (x) = b+
∑
i

αiK (x, xi), (7)

which is a non-linear function w.r.t. x but linear w.r.t. φ(x)
and α. The most commonly used kernel is the radial basis
function (RBF) kernel with expression

K (xi, xj) = exp
(
−
||xi − xj||2

σ 2

)
. (8)

As an example, in the context of PLC, SVM was recently
explored to monitor and detect cable degradations [20].

4) OTHER TOOLS
Another very simple non-probabilistic supervised learning
algorithm is k-nearest neighbors. It is a non-parametric algo-
rithm in the sense that, since there is no learning process,

FIGURE 3. Decision boundaries and maximum separation for SVM
framework.

at the test time we predict yi for a given test input xi. The main
idea is to find the k-nearest neighbors (for example using an
Euclidean metric) to xi in the training set x. The algorithm
returns the average, if regression is considered, and the mode,
if classification is considered, of the corresponding y, also
called training class. This algorithm is very easy to implement
but it becomes significantly slower as the number of samples
increases.

Naive Bayes, decision trees, and random forest [21] are
other popular examples of supervised learning algorithms.

5) APPLICATION OF SUPERVISED LEARNING
TO COMMUNICATIONS
Supervised learning algorithms have been applied in commu-
nications scenarios with promising results with focus from
physical layer to networking at the edge or at the cloud
segment.

• Physical Layer: At the transmitter, the problem of
maximizing energy efficiency has been addressed via
resource allocation with deep neural networks [22].
At the receiver, several problems have been considered
such as data detection and decoding [23], channel esti-
mation and symbol detection in an OFDM system [24],
linear codes decoding [25], decoding for non-linear
channels like those in optical communications [26],
modulation recognition [27]. In addition, also radio-
localization using discriminant adaptive neural networks
has been proposed in [28];

• Link andMedium Access Control Layer: feedback on the
decodability of the received signal has been proposed
usingML techniques in [29]; spectrum sensing and allo-
cation in cognitive networks in presence of interfering
devices has been done in [30]; interference management
was considered in [31] and estimation of the number of
active nodes in a wireless network testing various ML
techniques was the objective of [32].

• Network and Application Layers: At the edge, caching
popular contents in echo state networks exploiting
a ML framework was investigated in [33]; at the cloud,
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a network controller was designed for routing using a
predictive approach [34]; lastly, a survey of ML tech-
niques for traffic classification was offered in [35].

B. UNSUPERVISED LEARNING
1) PRELIMINARIES AND DEFINITIONS
Let xi ∼ p(x), i = 1, . . . ,N , be samples collected into a
training set D belonging to the probability distribution func-
tion (PDF) p(x). Unsupervised learning aims to find useful
properties of the structure of a dataset D, ideally inferring
the true unknown distribution p(x). Several different tasks are
solved using unsupervised learning, roles such as: clustering,
which divides the data into cluster of similar samples, fea-
ture extraction, which transforms data in a different latent
space easier to handle and interpret, density estimation and
generation/synthesis of new samples, whose objective is to
learn, from data in D, the distribution p(x) and to produce
new unseen samples from it. Contrarily to the supervised
one, unsupervised learning does not have an unified accepted
formulation. This is even clearer if we think that many unsu-
pervised learning tasks require the introduction or the pres-
ence of an hidden variable zi for each sample, leading to the
selection of different models under a probabilistic approach
(as shown in Fig. 1):

• Discriminative models, where the latent code zi has to
be extracted from data xi by defining a family p(z|x; θ )
parameterized by a vector θ .

• Autoencoders, where xi is encoded into a latent variable
zi so that recovering xi from zi is possible through a
decoder. This model, as discussed in Sec. II-B.3, is very
popular nowadays and can be interpreted also under
a supervised learning approach, where xi is the input
data, and xi is itself the corresponding target. In the
classical deterministic approach, the problem consists
of the parameterization of two functions, namely the
encoder z = F(x; θ), and the decoder x = G(z; θ ).
In the probabilistic approach, the encoder has to model
p(z|x; θ ), while the decoder models p(x|z; θ ).

• Generative models, where there exists an hidden zi
that generates the observation xi. After a specifica-
tion of a parameterized family p(z|θ ), the distribu-
tion of the observation can be rewritten as p(x|θ) =∑

z p(z|θ)p(x|z; θ ).

For a fully and exhaustive description of the different mod-
els and the corresponding tools like Expectation Maxi-
mization (EM) and Evidence Lower BOund (ELBO), the
interested reader is referred to [36]. We will focus only on
clustering algorithms for discriminative models and autoen-
coders since they are now getting a lot of attention by com-
munication researchers.

2) TOOLS: CLUSTERING
Clustering analysis includes different algorithms whose com-
mon task is to discover the hidden unknown structure and
relationships between input data. Several algorithms are

FIGURE 4. Autoencoder block with neural networks. A latent
representation z is learned by the encoder and used as input of the
decoder for recovering x.

available in the literature for this purpose. The most common
and reliable ones are K-means, Hierarchical Clustering (HC),
clustering using representatives (CURE), and Self Organizing
Maps (SOM).

K-means is a clustering algorithm that allows to partition
the input data in K sets, based on a certain metric exploiting
expectation maximization algorithms. K-means clustering,
considers a set of N data points in a D-dimensional space
RD and an integer K . The problem is to determine a set
of K points in RD, called centroids, so as to minimize the
mean squared distance from each data point to its nearest
centroid [37]. Usually, this clustering algorithm is solved
efficiently with heuristic methods such as Lloyd’s.

HC algorithms are mainly classified into agglomera-
tive methods (bottom-up methods) and divisive methods
(top-down methods), depending on how the hierarchical
dataset is formed [38]. Multiple implementations and varia-
tions of the HC algorithms are described in the literature [39].
Essentially, they follow a procedure where a tree of clusters
called dendrogram is generated.

The CURE algorithm attempts to uncover the cluster shape
using a collection of representative points from the main
dataset [40]. This algorithm is efficient for large databases,
and compared toK-means clustering ismore robust to outliers
and able to identify clusters with complex shapes.

SOM is a grid ofmap units [41]. Each unit is represented by
a prototype vector that defines its space position. The units are
connected to the adjacent ones to form a network. The number
of map units corresponds to the final number of clusters, thus,
a higher number of units corresponds to a higher accuracy of
data separation. A training procedure is used to stretch the
network and map the space of input data.

3) TOOLS: AUTOENCODERS
An autoencoder is a particular type of artificial neural net-
work consisting of an encoding block which tries to learn
a latent representation z, typically in a lower-dimensional
space, of the input variable x, and a decoding block which
reconstructs x at the output exploiting the code z (Fig. 4).
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A typical learning formulation for deterministic autoen-
coders requires to solve

θopt = argmin
θ

δ(x,G(F(x; θ1); θ2)), (9)

where δ is a distance measure, θ = (θ1, θ2), while F and
G stand for the encoder and decoder function, respectively.
When F and G are linear functions, we get the Principal
Component Analysis (PCA). Given a set/matrix x of N
D-dimensional samples xi ∈ RD, PCA sets the encoder as
F(x; θ ) = WT x and the decoder as G(z; θ ) = Wz where
W is the unknown parameter, a D × M matrix where M is
the dimension of the latent space. If δ is the quadratic loss
function, then (9) can be rewritten as

Wopt = argmin
W

N∑
i=1

||xi −WWT xi||2. (10)

Let 6 be the sample covariance matrix of x, then W is given
by the M principal eigenvectors of 6. The geometric idea
in PCA consists of finding a rotation of the domain space
that aligns the principal axes of variance with the basis of
the new representation latent space associated with z. Under
a probabilistic model, the resulting transform is a vector z
whose elements are mutually uncorrelated. PCA is broadly
used also as a feature extractor, something which is very
useful for the analysis of both the channel response and the
noise in PLC, for instance.

Correlation is an indicator of linear dependence, but in
most cases we are interested in representations where fea-
tures have a different form of dependence. For example,
in generative networks, Dinh [42], [43] proposed a non-linear
deterministic transform of the data which maps them into a
latent space of independent variables where the probability
density results tractable. Another interesting and suitable type
of autoencoder for communications is the Denoising AutoEn-
coder (DAE) [44]. The idea is to train a machine in order to
minimize the following denoising criterion:

LDAE = Ex∼D[δ(x,G(F(x̃)))], (11)

where x̃ is a stochastic corruption of x. When we train a
DAE using the expected quadratic loss and a corruption noise
x̃ = x + ε with ε ∼ N (0, σ I ), Alain and Bengio [45]
proved that the autoencoder recovers properties of the train-
ing density p(x). They also showed that the DAE with a small
noise corruption of variance σ 2 is similar to a Contractive
AutoEncoder (CAE) with penalty coefficient λ = σ 2. The
contractive autoencoder [46] is a particular form of regular-
ized autoencoder which is trained in order to minimize the
following reconstruction criterion:

LCAE = Ex∼D

[
δ(x,G(F(x)))+ λ

∣∣∣∣∂F(x)∂x

∣∣∣∣2
F

]
, (12)

where |A|F is the Frobenius norm. The idea behind CAE is
that the regularization term attempts to make F(·) or G(F(·))
as simple as possible, but at the same time the reconstruction

FIGURE 5. GAN framework in which the generator and discriminator are
learned during the training process.

error must be small. Typically, autoencoders find a low-
dimensional representation of the input vector x at some
intermediate level.

Now, in the domain of communications it has been pro-
posed in [47] to learn a robust representation z of the input
x in order to overcome channel perturbations (noise, fad-
ing, distortion, etc.). In this way the transmitted signal can
be recovered with small probability of error exploiting the
redundancy learned by the autoencoder. The findings in [45]
are somehow remarkable when applied in a communications
framework because they assert that corrupting the transmitted
signal with some form of noise can be beneficial for the
autoencoder in the reconstruction’s phase.

4) TOOLS: GENERATIVE NETWORKS
Autoencoders can be studied also as generative models.
Based on variational inference, Kingma and Welling intro-
duced in [48] the concept of variational autoencoders.
Denoted z as the latent variable of the observed value x
for a parameter θ1, then p(z|x; θ1) represents the intractable
true posterior which can be approximated by a tractable one,
q(z|x;φ), for a parameter φ. A probabilistic encoder produces
q(z|x;φ) while a probabilistic decoder produces p(x|z; θ2).
Rather than outputting the code z, the encoder outputs param-
eters describing a distribution for each dimension of the latent
space. When the prior is assumed to be Gaussian, z will
consist of mean and variance. Tuning the parameters in the
latent space, and passing the new latent samples through the
decoder is a way to generate new data.

Finally, in the generative models framework, it is worth
mentioning Generative Adversarial Networks (GAN) pro-
posed by Goodfellow et al. [49]. The main idea is to train
a pair of networks in competition with each other (Fig. 5):
a generator model G that captures the data distribution and a
discriminator model D that distinguishes if a sample is a true
sample coming from real data rather than a fake one coming
from data generated by G. The training procedure for G is
to maximize the probability of D making a mistake. GANs
can be thought as a minimax two-player game which will end
when a Nash equilibrium point is reached. Given an input
noise vector y with distribution pnoise(y), the map into data
space is achieved through G(y; θgen). Defining the following
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value function

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ey∼pnoise(y)[1− logD(G(y))], (13)

it was shown that the generator implicitly learns the
true distribution since the equilibrium is reached when
pgen = pdata.

This generation technique has several applications in com-
munication theory like stochastic channel modeling and
channel coding [50]. As we will discuss in the following
(Sec. III-B), it has also application in PLC due to the ability
of generating synthetic data from a given distribution, thus,
modeling for example the PLC channel response or noise.

5) APPLICATION TO COMMUNICATIONS
Herein, we review some recent applications of unsupervised
learning to communication systems for different layers of the
protocol stack.
• Physical Layer: Autoencoders for deep learning were
firstly interpreted as a communication system in [47].
The application of unsupervised learning to end-to-end
communications can be divided according to the pres-
ence or not of an a priori knowledge of the channel
model for the training part. If the channel model is
available, the usage of autoencoders with deep learning
can help to design an optimal encoding/decoding pro-
cedure. For instance applications are found in optical
fiber communications [51], in AWGN channels with
unreliable feedback [52], sparse code multiple access
schemes where deep neural networks are used to learn a
decoding strategy to minimize bit-error rate [53]. When
Channel State Information (CSI) is available, channel
charting [54] for localization exploiting CSI has been
realized using autoencoders. If the channel model is
unknown, several new approaches have been recently
proposed. In order to design a radio communication
system with autoencoders and to overcome the lack of
channel knowledge, a two-phase training strategy was
followed in [55]. For the same objective, [56] and [57]
utilized stochastic perturbation and policy gradients
techniques, respectively. Generative models can be used
to generate samples of a given communication channel,
in particular GANs have been exploited in [50] and [58].

• Link andMedium Access Control Layer: Spectrum sens-
ing exploiting GANs and resource management for LTE
were studied in [59] and [60], respectively.

• Network and Application Layers: Clustering algorithms
are the fundamental tools to be used in the network and
application layers. Routing can be improved via cluster-
ing [61], while in the application layer, identification of
clustering communities, which is a social networks goal,
has been considered in [62].

C. OTHER LEARNING SCHEMES
In the following sections, we briefly discuss Convo-
lutional Neural Networks (CNNs), Recurrent Neural

FIGURE 6. Graphical learning models of: 1) Convolutional Neural Network
with one convolutional layer; 2) Recurrent Neural Network with simple
feedback loop; 3) Reinforcement learning setting for actor-critic method.

Networks (RNNs) and the Reinforcement Learning (RL)
approach to offer an exhaustive overview of other ML tools
that may have application in PLC.

1) CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (CNNs) (Fig. 6.1) are able
to capture the spatial and temporal dependencies of data, and
for this reason they find application in image and document
recognition [63], medical image analysis [64], natural lan-
guage processing [65], and more in general pattern recogni-
tion. CNNs are Multi Layer Perceptrons (MLP) (Sec. II-A.2)
with a regularization approach since they consist of multi-
ple convolutional layers to ensure the translation invariance
characteristics. In particular, given an input data matrix Ii,
the feature map Fj is obtained as

Fj = σ
( C∑
i=1

Ii ∗Ki,j + Bj

)
(14)

namely, through the superposition of C layers, e.g., C = 3
for RGB images, each comprising a convolution between the
input matrix Ii and a kernel matrix Ki,j, plus an additive bias
term Bj, and a final application of non-linear activation func-
tion σ (·), typically, a sigmoid, or tanh, or ReLU. Each set of
kernel matrices represents a filter that extracts local features.
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To control the problem of over fitting, the dimension of data
and features to be extracted is reduced by pooling layers.
Finally, fully-connected layers are used to extract semantic
information from features.

2) RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are a class of supervised
and unsupervised ML tools that are capable of representing
time dependencies. Since they introduce the notion of time
into the model, they have been successfully applied to tasks
such as speech [66] and handwriting recognition [67], health
care [68], and machine translation [69]. Bearing in mind the
architecture of the NNs presented in Sec. II-A.2, RNNs can
be seen as feedforward NNs made of artificial neurons with
one or more feedback loops (Fig. 6.2).

If we consider a simple RNN made of the input layer,
an hidden layer, and the output layer, then the hidden
layer or memory of the system ht , can be obtained as

ht = σ (WI ,t · xt +WH ,t · ht−1 + bt ) (15)

where xt is a real-valued input vector available at time t , σ (·)
is the activation function, while WI ,t , WH ,t and bt are the
weight matrix connecting the input to the hidden layer, and
the weight matrix connecting the previous hidden layer to the
current one and the biases, respectively. At time t , the hidden
layer ht is influenced by the current input xt but also by the
previous hidden state ht−1, such that the output yt depends
on the evolution over time of the hidden layer.

Several different architectures for RNNs have been pro-
posed such as Long Short-Term Memory (LSTM) [70]
and Bidirectional RNNs [71]. For further details and a
wide survey on RNNs, the interested reader is referred
to [72] and [73], respectively.

3) REINFORCEMENT LEARNING
Reinforcement Learning (RL) addresses the problem of an
agent learning to act in a dynamic environment by finding
the best sequence of actions that maximizes a reward func-
tion. The basic idea is that the agent explores the interactive
environment. According to the observation experience it gets,
it changes his actions in order to receive higher rewards. RL
finds several applications, from robots control [74], to games
such as Atari [75], and Go [76].

Basic RL can be modeled as a Markov Decision Process
(MDP). Let St be the observation (or state) provided to the
agent at time t . The agent reacts by selecting an action At
to obtain from the environment the updated reward Rt+1,
the discount γt+1, and the next state St+1. In particular,
the agent-environment interaction is formalized by a tuple
〈S,A,T , r, γ 〉 where S is a finite set of states, A is a finite
set of actions, T (s, a, s′) = P[St+1 = s′|St = s,At = a]
is the transition probability from state s to state s′ under
the action a, r(s, a) = E[Rt+1|St = s,At = a] is the
reward function, and γ ∈ [0, 1] is a discount factor. To find
out which actions are good, the agent builds a policy, i.e,
a map π : S × A → [0, 1] that defines the probability

of taking an action a when the state is s. If we denote with

Gt =
∑
∞

k=0

(∏k
i=1 γt+i

)
Rt+k+1 the discount return, then

the goal of the agent is to maximize the expected discount
return (value) qπ (s, a) = Eπ [Gt |St = s,At = a], by finding
a good policyπ (s, a).When the state or action sets are defined
in high-dimensional spaces, the policy π and the value q can
be represented by deep neural networks (Sec. II-A.2).

With some more detail, there are essentially three different
RL algorithms [77], [78]: a) policy based methods, when the
agent, given the observation as input, optimizes the policy
π without using a value function q; b) value based meth-
ods, when the agent, given the observation and the action
as inputs, learns a value function q; c) actor critic methods,
where a critic measures how good the action taken is (value-
based), and an actor controls the behaviour of the agent
(policy-based) (Fig. 6.3).

4) APPLICATION TO COMMUNICATIONS
In [79], CNNs naively extract features and use them for
radio modulation recognition on time series of radio signals.
A similar approach is adopted in [80] where CNNs automat-
ically detect and identify frequency domain signatures for
the IEEE 802.x standard compliant technologies. RNNs have
been firstly introduced as channel equalizers in [81], while
recently in [82], LSTM RNNs have been applied for network
traffic anomaly detection. Dynamic spectrum assignment in
PLC has been investigated in [83] under a RL approach. Due
to the dynamic environment, RL finds several applications in
communications and networking, mostly covered in [84].

III. ML FOR PLC MEDIUM CHARACTERIZATION
AND MODELING
In the following sections. We will mostly highlight the rel-
evance and applications of the supervised and unsupervised
ML tools described in Sec. II-A and Sec. II-B in this context.
Reinforcement learning will also be briefly discussed in the
context of resource allocation in PLC.

We start from medium characterization since this is a key
topic in PLC. It includes the analysis of the channel response
(in time and frequency domain), the line impedance, the noise
and interference [7].

A. STATISTICAL LEARNING
Up to date studies, have focused on the statistical charac-
terization of the PLC channel and noise. For what matters
the channel, datasets have been collected in several scenar-
ios, such as in-home [85]–[88], outdoor-access [89], [90]
and in-vehicle (cars, ships, planes) [91]–[95]. A great deal
of knowledge has been acquired (mostly for the broad-
band channel in the in-home scenario) and some consensus
has been reached on the main characteristics. For instance,
the frequency response and the average channel gain have
a log-normal distribution [96], [97]. Periodic channel time
variations are exhibited especially in the narrow band spec-
trum, or for frequencies up to 10 MHz [98]. Correlation is
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TABLE 1. Features description.

exhibited among the multi-conductor channels in MIMO
setups [99].

Noise has a very complex nature in PLC since it comprises
not only thermal noise components but also (and mostly)
components generated by active loads and electronic cir-
cuits via direct coupling and conduction, e.g., harmonics and
emissions from power converters, or inductive/EM coupling
especially at high frequencies [100]. Noise is extremely het-
erogeneous and temporal dependent. As such, its modeling is
challenging. The existing description relies on a physical phe-
nomena classification into stationary, cyclostationary, impul-
sive, and interference from radio transmissions that couple in
the lines [101]. Only initial results for the description of the
multi-conductor noise have been reported [102]–[105].

As in all communication systems, the accurate knowledge
of the medium is a prerequisite for the design of a reliable and
energy efficient communication technology. ML can bring
new insights on the medium characterization. Firstly, it can
be used to analyze and extract features. Then, to classify
data from measurements. The definition of the features that
contain the information necessary to separate the data into

classes is not a trivial step in the noise classification pro-
cess. Aiming at obtaining a statistical understanding of the
medium, the features include energy, moments of multiple
order, approximated entropy and correlation. A comprehen-
sive list of features that can be considered, is reported in
Tab. 1. The knowledge about the PLC physical properties
aids a lot to identify the most relevant features. For instance,
the entropy is useful to recognize narrow band noise signals
that are characterized by a sinusoidal behavior. The a priori
knowledge that electromagnetic coupling effects among con-
ductors may exist, suggests to study the correlation between
noise traces in multiple conductor networks.

Classification tools can then be applied to determine
the most prominent features and the significant number of
classes. An example is PCA (Sec. II-B.3) analysis which is
useful to reduce the dimensions of large datasets of variables
and determine the most important features in the data.

Now, let us consider multi-conductor PLC noise. The
exploitation of unsupervised learning allows the identifi-
cation of noise classes. For this task, in [109], a library
of features was created for a dataset of multi-conductor
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narrow band (NB) noise traces obtained via measurements
in the band 3-500 KHz in an office environment. Different
methods were tested to extract the features (listed in Tab. 1),
and then provide a classification of the noise. Features such
as the distance correlation (dCor), the Person correlation
(pears), or the differential entropy (diffEnt) are useful to
highlight the relations between the noise traces. SOM [41]
provided the best results among the tested algorithms. Finally,
for each class a statistical analysis of the associated traces
was carried out. An example of results obtained with this
classification approach is shown in Fig. 7. Herein, the energy
of the noise voltage trace on the first pair of conductors
(neutral-ground, namely VCH1(t)) is related to the energy of
the noise trace on the second pair of conductors (neutral-
phase, namely VCH2(t)). The identified cluster PDFs are also
reported in the legend of Fig. 7.
This data driven approach can classify and discover fea-

tures in a more general way than the conventional approach
that starts from a physical description of the phenomena gen-
erating noise, and essentially it partitions the noise into sta-
tionary, cylostationary synchronous/asynchronous with the
mains frequency, and impulsive [110].

Another example is the analysis of the line impedance and
the verification of whether it has a relation with the channel
response [88], [111], [112]. This is a relevant question since
should this be the case, then the forward link (transmitter-
receiver) channel can be inferred from the measurement of
the line impedance at the transmitter node [112]. In principle,
the answer to this question could be obtained with a physical
analysis of the lines and loads using Transmission Line (TL)
and circuit theory. Some results following this approach have
been recently obtained and proved that such a dependence
does not exist if not at very low frequencies and for particular
circumstances where the cables and wiring structures have
conductors that do not have per-unit-length cross impedance
terms [112]. However, one can object that the proof has
been obtained under the assumption of transverse electro-
magnetic propagation for which TL holds true. Therefore,
in general a non-linear, complex and time dependent relation
may exist. Here is where ML comes into place: to discover
dependencies.

Another example is the analysis of the dependence of the
line impedance at the transmitter and at the receiver. Should
such a dependence exist, then physical layer security tech-
niques could be applied to exploit such common informa-
tion for the generation of secure keys without the (insecure)
exchange of information between sender and recipient [113].

B. STATISTICAL-SYNTHETIC MODELING
Once the medium is characterized, next, modeling kicks in.
A number of relevant results have been obtained for modeling
the linear periodically time variant channel response [87].
They include so called bottom-up approaches and top-down
approaches. In the former case, TL theory is applied to a
deterministic or statistical description of the network topol-
ogy which includes the network graph, cable types, cable

FIGURE 7. Example of noise data analyzed with SOM. The clusters are
labeled with the associated PDF. The energy of the trace pairs 1 and 2 are
normalized w.r.t. to their maximum.

lengths, and loads [114]. In the latter case, a mixed physical
and phenomenological description of the channel response
is given with the use of a parametric model derived from an
abstract description of the link which accounts for multipath
propagation, transmission-reflection effects, cable attenua-
tion with length and frequency [115], [116].

Deterministic or stochastic fitting of the model with data
from measurements was done to derive either a deterministic
model or a random channel model. More recently, it was
observed that if we had an accurate statistical description of
the channel response, then a purely phenomenological model
could be derived [117]. Essentially, such a model would be
able to generate synthetic data that follow the observed statis-
tics, totally abstracting from the physical interpretation of
propagation of EM signals along the wires. This is essentially
what ML approaches are nowadays trying to do when used
as generators of fake data in image and sound applications.
Indeed the question is how to statistically analyze data and,
in a more challenging way, how to generate synthetically
such distributions. The work in [117] proposed an approach
which, with now an eye onML techniques, can be further and
significantly improved. For instance, GANs are an innovative
tool to generate synthetic data following the same statistics of
a given dataset. In particular, for communications, stochastic
channel synthesis is a relevant topic since, for instance, new
coding and modulation schemes require realistic channels to
be effectively tested. Sec. II-B.4 describes the full methodol-
ogy to design and train generative networks for this purpose.
As an example, we report in Fig. 8 the result of using a GAN
for the generation of the broad band PLC channel frequency
response. The neural network architecture is trained with a
dataset of 1000 measured single-input-single-output channel
transfer functions with bandwidth of 100 MHz obtained from
measurements in the in-home environment [97]. Fig. 8 shows
that the synthetically generated channel frequency responses
look very consistent with the measured ones and span the
large dynamic range of attenuation from 10 to 90 dB.

A similar approach can be adopted on other domains,
for example, GANs along with RNNs (Sec. II-C) are
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FIGURE 8. Broad-Band PLC channels measured and generated with GAN.

promising tools to generate PLC synthetic noise while taking
into account time dependence. In addition, another area
where ML can provide help is modeling electro-magnetic-
interference and mode conversions occurring along the
medium on the signal [118]. Radiation in PLC occurs at the
network discontinuities and its radiation pattern depends on
the length of each branch. The electromagnetic radiation of
the cables can be accounted for in a per-unit-length equivalent
circuit model using a series of resistances [119]. An unsu-
pervised optimization approach (using the techniques
in Sec. II-B) can be followed to obtain the optimal parameters.
Alternatively, starting from an initial set of known parameters
obtained for a given measurement dataset, supervised learn-
ing (using the techniques in Sec. II-A) provides a method-
ology for the generalization and realization of a statistical
channel generator that accounts for radiation effects.

IV. ML FOR PHYSICAL LAYER PLC
PLC physical layer design [8] encompasses the tasks
of designing the channel coder, the modulator and the
associated algorithms at the receiver side, which includes
synchronization, channel estimation, detection/equalization,
interference/noise mitigation, channel decoding. In addition,
precoding at the transmitter side in the form of power
allocation, bit allocation, precoding, and interference align-
ment are also tasks classically relegated to the physical
layer [120]–[122].

Physical layer PLC design was a vivid activity which
brought innovation (partly derived from the results firstly
obtained by the wireless communications community) in the
form of:
• Analysis and optimization of concatenated codes, bit-
interleaved codes, LDPC, Turbo codes, Fountain codes
and associated decoding strategies taking into account
the assumed peculiar amplitude statistics of noise, e.g.,
Middletone distributed [8, Sec. 5.8].

• Development of single carrier modulation (coded FSK,
CDMA in first generation PLC devices), UWB mod-
ulation, multicarrier modulation (OFDM and filter

bank modulation in second generation PLC devices)
[8, Sec. 5.2-5.5].

• Precoding design taking into account the periodically
time variant behavior of the medium so that the signal-
to-noise ratio exhibits a periodic behavior over mains
cycles [9, Sec. 6], [120].

• MIMO techniques (also adopted by standards) and
selection combining schemes including hybrid approa-
ches that merge PLC links with radio links to improve
diversity [121], [123].

Although most of the above mentioned aspects are com-
mon to any communication system, the PLC channel speci-
ficities introduce several challenges, e.g., transmission is
more band limited than in other systems, up-to-now a PSD
constraint rather than a total power constraint has been
imposed at the transmitter, spectrum management is relevant
for coexistence, prediction of channel and noise is also rel-
evant and may be enabled with new understanding of the
medium.

The question is whether ML can bring new lymph in PLC
PHY layer design. We envision a number of ways forward as
detailed below.

Focusing at the receiver and at its tasks, ML can be used
for estimation problems such as channel estimation and syn-
chronization. For instance, assuming a certain parametric
model of the channel, the parameters can be estimated via
learning and inference. Similarly training of the equalizer can
also be done via learning from field data. More in general,
the receiver task, i.e. data detection, can be seen as a classi-
fication problem. It can be solved with supervised learning,
namely usingNNs (Sec. II-A.2) or SVMs (Sec. II-A.3), where
the received signal is the input and the known transmitted bits
are the output during the training process.

If we now look at the full communication system, a fasci-
nating idea is to treat it as an autoencoder [47] (Sec. II-B.3).
Let s ∈M = {1, 2, . . . ,M} be a message out of M possible
ones and let F : M 7→ Rn be the transform realized by
the encoding stage that maps the input message s into the
transmitted signal x = F(s). This first block can be consid-
ered as the transmitter block which generates the waveform
x = F(s). After it, the middle block of the autoencoder,
learns the transform made by the channel and stochastically
described by the conditional probability density function
p(y|x) where y corresponds to the received signal. Lastly,
the decoding block (receiver) takes y as input and esti-
mates the transmitted message s by computing the transform
G : Rn

7→ M. Each of these blocks can be implemented
using NNs so that their chain constitutes a deep neural net-
work which, trained end-to-end, reconstructs the input mes-
sage at the output. Since the input is the message s and the
desired output is the same reconstructed message s, this leads
to a classification task where the cross-entropy is a natural
choice for the cost function. The end-to-end learning process
enables the autoencoder to find a robust representation of
the input signal which can lead to the identification of opti-
mal coding and decoding schemes for stochastic channels.
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FIGURE 9. Representation of a PLC system as an autoencoder.

The autoencoder may find a solution that outperforms exist-
ing modulation and coding methods. In fact, the autoencoder
approach works without any assumption on the channel and is
able to recognize, in principle, its dynamics without the need
to rely on the current view of the PLC channel as a linear
periodically time-variant system [87].

An autoencoder for application in PLC, schematically
described in Fig. 9, has been implemented using TensorFlow
libraries [124]. The transmitter and receiver blocks were
modeled as a cascade of multiple fully connected layers. The
channel block was designed with a first layer that embeds the
channel response (medium) and a second additive layer of
Gaussian noise. An arbitrary channel response for the simula-
tion was taken from the dataset described in [97] consisting of
several channel realizations with bandwidth of 100MHz. The
autoencoder takes as input symbols with cardinality 4 and 16
(2 or 4 bits), respectively referred to as 4-autoencoder, and
16-autoencoder. The performance of the autoenconder
(in terms of symbol error rate) has been compared to that
attained by an impulsive 4-PAM or 16-PAM modulation
scheme with an ideal matched filter receiver [125]. The
results are shown in Fig. 10 as a function of the Signal-to-
Noise Ratio (SNR) per bit.

It is interesting to notice that the 4-autoencoder per-
forms 1 dB worse than the 4-PAM scheme in the considered
SNR range which is also due to the fact that the 4-PAM
scheme assumes perfect knowledge of the channel. However,
by increasing the input signal cardinality the autoencoder
manifests very good performance exceeding that of 16-PAM
for all the considered SNRs. Furthermore, at a given SNR
level we note an autoencoder cliff effect, i.e., a significant
increase of the SER curve slope. This can be justified if we
think that the autoencoder finds a more suitable non-linear
coding and decoding scheme when it has a larger hyperspace
to search in.

Another bunch of applications of ML for PLC is in the
domain of optimization problems that arise at the transmitter
side, namely, PHY layer resource allocation. Let us think for
instance to the water filling problem that aims at distributing
optimally power across the available spectrum [9]. Instead of
pursuing a physical model based approach, we may want to
train a NN to provide the power allocation as the result of

FIGURE 10. SER versus Eb/N0 for the autoencoder of Fig. 9 and the
M-PAM modulation scheme.

observing data from the field and defining a cost function
which can be the bit-error rate or throughput. It should be
noted that with a bottom-up approach this task can be solved
by identifying the system state (channel response and noise),
perform classification and estimation, and then dynamically
determine the optimal allocation for the specific identified
system state. However, a physical agnostic neural network
can embed in one shot all these tasks and efficiently pro-
vide the solution. Of course, how to train the network and
how complex the network has to be is a research question
especially in PLC where the system state can have abrupt
changes due to network topology changes, load changes,
and noise generators changes. In addition, another approach
based on reinforcement (Sec. II-C) learning can be exploited
as done in [83].

V. ML FOR MAC AND NETWORK LAYER PLC
Media access control and networking can also enjoy the
use of ML. State-of-the-art PLC systems use contentious
based media access techniques, i.e., CSMA, Aloha, flooding,
as well as adaptive TDMA and FDMA [9]. A universally
optimal solution has not yet been found especially because
of the heterogeneity of applications, services, traffic require-
ments, variability of medium conditions and network con-
figurations. Let us think for instance of a typical automatic
metering application in the access network managed by the
concentrator at the MV-LV sub-station, in contrast to a PLC
in-building network managed by cell coordinators, or a street
light control application, in contrast to a PLC backhauling
solution for 5G wireless micro-cells. Although chip sets
and transceivers (both NB and BB) have been developed to
serve as enabling communication devices for the plethora of
above applications, and although they can provide point-to-
point connectivity, the optimization of their performance in
a massive networked environment is still a challenge. This
is because multiple layers need to be optimized and so far
limited data was available to learn how to exploit the wide
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flexibility of parameters at both the PHY and MAC layers.
Things get even more complex when cooperation is required,
i.e., when relaying and routing has to be implemented to offer
full coverage in large massive networks [126], [127]. In brief,
cross layer optimization, resource allocation, spectrum man-
agement and scheduling etc. are challenging tasks in PLC
networks, as the results coming from field trials and large
deployments are telling us. The dynamics of the channel and
traffic, the abrupt network shut-downs and the need for fast
reconfiguration, render these tasks extremely demanding if a
layer by layer approach is considered, as traditionally done.
This is because the traditional approach requires modeling
each layer and function, which is prohibitively complex. Here
is where ML comes into place.

ML andmore in general artificial intelligence is envisioned
as a relevant tool to develop a more abstract and synthetic
model of the network behavior and to realize the network
orchestration tasks [128]. The network behavior has to be
learned via the acquisition of real data sets where events,
actions and results are labeled to create time series that can
train optimization algorithms. In essence the orchestration
of the network can be seen as a control problem where
data observers serve as sensors, a global cost function is
then formulated and minimized via learning from field data.
To the best of our knowledge, efforts in applying ML tech-
niques in routing problems have been carried out mostly for
wireless networks and specifically Mobile Ad-hoc Networks
(MANETs), where topology information is not available to
nodes and the data-driven nature of the application poses sig-
nificant challenges in terms of adaptation to run-time changes
and scalability [129]–[132]. Most studies also show that clas-
sical solutions, such as Bellman-Ford, Ad-hoc On-demand
Distance Vector (AODV), Destination-Sequenced Distance-
Vector (DSDV), Low-Energy Adaptive Clustering Hierarchy
(LEACH), shortest path and the such, perform poorer than
ML approaches when it comes to achievable throughput,
end-to-end delay and time required to converge to a better
solution when run-time changes occur. The most widespread
approach to tackle these problems is reinforcement learn-
ing [133], where cost functions are defined in order to switch
the behavior of a router based on environmental and link con-
ditions (Sec. II-C). This is done by implementing a rewarding
(or penalizing) system, which influences the probability of an
element to make a specific choice, that keeps track of past
states of the network and uses them to predict the possible
future changes in the traffic load. The main disadvantage of
RL is its computational demand, which weighs on every node
of the network when implemented in a distributed kind of
architecture. In the following, we present a different, compu-
tationally lighter approach, where supervised learning is used
to synthetically train neural networks to implement a decen-
tralized smart routing solution that is able to react to changes
in PLC networks by using readily available information.

In more detail, the envisioned application aims at using the
power line distribution network as a fronthaul infrastructure
for a small cell radio network. In [134] the small cell radio

FIGURE 11. Inferred average capacity of an end-to-end PLC link based on
easily-observable topology parameters.

network and the underlying power line infrastructure are
brought together in a joint paradigm and the capacity of the
PLC fronthaul is analyzed through a bottom-up emulation
tool [114], [135]. A regression approach is developed to
tackle the problem of determining the capacity of an end-to-
end power line link based solely on geometrical/topological
properties of the network, for instance the density of nodes
(radio cells) in the overall service area, and the distance
between the communicating nodes.

With the approach followed, it is possible to infer depen-
dencies of the channel capacity and routing performance on a
number of parameters (Fig. 11), e.g., topology type, density
of nodes (branches), cable type, loads, electrical distance, etc.
The channel model used to generate synthetic data is a TL
model where the topology, loads, cable electrical characteris-
tics etc. are included. It generates frequency selective channel
responses for any pair of nodes in the network. Distance
here refers to the length of the power line backbone that
connects two considered nodes. In detail, Fig. 11 shows the
capacity inferred through regression of two nodes pertaining
to a PLC network when the communication is implemented
in the broad-band spectrum (2-86 MHz). The curve shows an
aberration for low densities and high distances: capacity does
not actually increase with distance for low densities. This
is due to the fact that regression is implemented through a
simulator that first deploys loads (small cells) on the territory
and then tries to connect them in a way that power line is
minimized. This means that for low densities, high distances
are never achieved, thus the regression algorithm does not
have data for that specific density-distance subset.

The capacity inferred through regression enables a ML
approach that can be used by nodes of the network to infer
the best position of a global router to extend coverage and
maximize capacity, given that the topology is known at every
point (Fig. 12). This information can be set by the manager of
the power line infrastructure, otherwise, whenever a new node
is added to the network, the topology can be reconstructed
by a self-discovery mechanism. With every node being able
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FIGURE 12. NN used for determining routing.

to infer quickly and easily the capacity of the links in the
network, a simple ML-based routing algorithm can easily
increase capacity, as shown in Fig. 13, where the capacity
gained with ML routing is compared to the optimal solution,
the latter achieved with full knowledge of topology and an
exhaustive solution of the optimization problem.

On the other hand, we can also implement routing by
considering the number of hops as themetric to beminimized,
while imposing a constraint on the minimum capacity to be
achieved. In addition, PLC can be used as an access network
infrastructure for narrowband applications [136]. Sensor net-
works, which usually communicate viawireless technologies,
can be supported by a PLC infrastructure where this solution
has better penetration than a wireless one. A popular protocol
for routing in these networks is the Lightweight On-demand
Ad-hoc Distance-vector (LOADng) protocol developed by
G3-PLC [136]. This protocol relies on information tables in
order to connect all nodes in the network; topology is dis-
covered by broadcasting route request packets, and routes are
determined byminimizing a cost function. Asymmetric links,
burst traffic and noise, as well as nodes with limited resources
on power, computation and memory offer constraints that
can be solved with lightweight neural networks. As shown
in Fig. 12, we can train our learning machine to devise the
optimal number of routers and the best path for a message to
reach any point in the network, both in downlink and uplink.
The training set is herein generated synthetically by means
of the aforementioned emulation tool, thus a big number of
random network samples can be used to let the NN learn the
underlying relations between topology and the optimal rout-
ing strategy. Specifically, theNN scheme accepts as inputs the
source-destination IDs, the number of nodes in the network,
the maximum distance between these nodes, the minimum
capacity required to consider a link as functioning, and some
other geometrical descriptors. The scheme outputs the num-
ber of routers required to achieve connectivity and the best
path for connection. The basic idea of this implementation
is that the nodes do not need to know the topology of the
network, but only the few parameters referenced in Fig. 12.
Fig. 14 reports the percentage of correct guessed routing
paths, i.e., the ratio of routing paths obtained by ML that
are equal to the ones obtained with the exhaustive solution
of the optimization problem and the perfect knowledge of the

FIGURE 13. Capacity gain using ML routing in a PLC backhauling cellular
network as a function of the radio cells density in the area.

FIGURE 14. Probability of determining the optimal routing scheme via NN
as a function of the number of nodes and training set dimension in a
metering PLC network.

link capacity. The results show a high probability of success.
Furthermore, it is worth noticing that the NN was trained
with network topologies with a number of nodes ranging
from 100 to 175. To prevent overfitting, an initial dropout
layer [137] (drop rate p = 0.5) was also added. The set used
for testing the performance of the NN is nevertheless larger,
i.e., networks with less than 100 or more than 175 nodes are
simulated in order to assess the capabilities of our approach
to find routing solutions for unobserved situations during
the training stage. This explains the somewhat lower perfor-
mance of ML routing w.r.t. the optimal routing for a number
of nodes smaller than 100 and larger than 175.

In conclusion, based on the results presented, ML for net-
working in PLC is promising. Further investigations should
be done: representative datasets have to be generated, super-
vised and unsupervised ML techniques have to be compared,
and appropriate training algorithms have to be developed.

VI. OTHER APPLICATIONS
PLC is not a mere communication technology. The power
grid is a fully interconnected system where all electrical
phenomena affect the entire network. Moreover, it is influ-
enced by external physical events. Hence, PLC nodes can
be used to sense the grid itself as well as the surrounding
environment. In other words, PLC transceivers can act as
probes for grid diagnostics by analyzing the electromagnetic
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field and the data traffic in the PLC frequency bands [11].
Possible applications of PLC for grid sensing are topol-
ogy reconstruction [138], [139] and anomalies detec-
tion, i.e., fault detection, cable aging, load identification
[140]–[142]. The former application enables grid operators to
better the knowledge about the grid configuration, the status
of switches and feeders which is not always complete espe-
cially in the LV part of the access network. The knowledge of
the network topology is also important for networking aspects
since it allows to locate nodes, and implement for instance
geo-routing algorithms. The latter application enables grid
operators to better monitor the grid status, malfunctions etc.
which in turn enables predictive maintenance of the grid
and therefore grants a better energy delivery service. Some
recent results have provided a better understanding of the
propagation of high frequency signals (as PLC ones) in multi-
conductor transmission lines [141]. Essentially, it has been
shown that we can relate the state of the grid, cables and
loads to several electrical quantities that can be measured and
that provide information to detect the presence of anomalies.
The results offer an analytic framework described by a set of
complex but extremely informative functions. Nonetheless,
diagnosis of malfunctions ends up into an estimation prob-
lem or classification problem [140]. In this context, [142]
has already provided results on the usage of ML for cable
degradation detection, for instance.

To provide a numerical result, we consider the problem
of detecting anomalies in a distribution grid by the analysis
of high frequency PLC signals. In [141] it was shown that
for this objective, the line admittance at the nodes (Yin),
the reflection coefficient (ρin), and the transfer function (H)
between pairs of nodes can be exploited. Supervised learning
(Sec. II-A) can be very powerful here; once several sampled
signals x are stored with the respective labels y, NNs or SVMs
can learn the deterministic relationship y = F(x) (which can
be arbitrarily complex) and predict new unknown labels for
different sensed signals. Here, we consider a simple neural
network approach. A dataset was realized based on a single
topology realization with 20 nodes and average node length
of 700 m. Anomalies occurring on the grid have been added
to obtain 10000 realizations of a perturbed grid, specifically,
load impedances changes, concentrated faults and distributed
faults according to the models described in [141].

The training process was conducted using 50% of the
data, while testing was done using the other unbiased half
part. We used only one hidden layer with 100 neurons and a
softmax layer to work with probabilities as output. Input sig-
nals are the ratios between the measurement of the electrical
parameters Yin, ρin and H at a given time, and the reference
value of the respective signal in the band 4.3− 500 kHz
with 4.3 kHz sampling frequency. The reference values were
obtained when there was no anomaly. The output signals
from the classifier are 4 different class indicators accord-
ing to the particular type of fault: 1. unperturbed, 2. load
impedance change, 3. concentrated fault, 4. distributed fault.
The obtained results are similar for all three types of electrical

FIGURE 15. Confusion matrix (accuracy of the prediction) for 4-classes
anomaly detection using the reflection coefficient as the main input
signal.

signals considered, so we present here only the accuracy
values of the classifier when using the reflection coefficient.
Furthermore, both the case of load impedances that stay con-
stant (at 2 k�) or that are randomly variable are considered.

TABLE 2. Anomaly detection accuracy with constant and variable load
impedances.

The first column of Tab. 2 reports the ability to detect the
presence of a fault and this is achieved through an accuracy
of 87.8% when the load impedances are constant, and 98.7%
when they change, respectively. The second column shows
the ability to detect and classify the type of anomaly: the
average accuracy is 87.8% when the load impedances are
constant, and 89.2% when they change, respectively. It is
rather interesting to notice that, when the load impedances
are constant, the neural network is not able to fully distinguish
between the unperturbed network (class 1) and the distributed
fault event (class 4). This suggests to remove from the data
the last type of anomaly, and study the ability of the neural
network to classify the remaining first 3 classes. This is pre-
sented in the third column, where it is shown that the accuracy
reaches 100% when the load impedances are constant, and
87.1% when they change, which means that most of the
uncertainty is introduced by the last class. More details are
offered by Fig. 15, which reports the confusion matrix of 4
classes anomaly detection with variable loads. In this case,
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the confusion matrix shows a conflict between class 2 and
class 4, in particular the NN erroneously tends to predict
(around 1/3 of the times) class 2 when the correct class
is instead the 4th. The results are promising and encourage
further work for tuning the NN hyper-parameters.

VII. CONCLUSIONS
This paper has provided an overview of ML as a signal/data
processing tool to improve the knowledge and the perfor-
mance of PLC systems. A clear distinction among determinis-
tic and probabilistic ML formulations has been made. Several
new ideas of application ofML in PLC have been presented in
the domain of medium characterization, statistical modeling,
PHY layer, MAC layer and grid diagnostics. The paper has
discussed what ML supervised and unsupervised tools can be
used for the problem at hand. The concepts have been sup-
ported by numerical results using synthetic or real datasets.
They have provided encouraging evidence that ML has a
role in PLC. Despite its infancy, in this application domain,
ML stimulates an all new era of research activities in PLC.
Several future research directions have been envisioned,
among which the exploitation of domain knowledge of PLC
to better extract features via ML tools. For instance, the a pri-
ori physical knowledge of the channel (through parametric
models) offers a guidance to better learn and characterize
it. Furthermore, how to train, validate and test the machine
(which is a core topic in ML), and how to compare the
ML tools opens the door to several research endeavors. The
starting point in PLC will be the development of representa-
tive data sets. This has to be followed by a statistical learn-
ing approach where the validity of results is measured in a
probability framework.
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