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Abstract 

The aim of this study was to investigate the effects of replacing graded levels of dietary fish meal 

by a blend of two marine microalgae Tisochrysis lutea and Tetraselmis suecica on intestinal 

morpho-physiology and innate immune response in European sea bass. Two complete diets were 

formulated to be iso-nitrogenous and iso-lipidic and prepared by including a blend of the two 

microalgae, to replace approximately 15 and 45% fish meal protein of the control diet. A fourth 

diet, where the microalgae mix was substituted by soybean meal, was also prepared. Each diet 

was offered until visual satiety over 105 days to triplicated groups of European sea bass (204 ± 

12.7 g), kept in a recirculating marine water system.  

The humoral and cellular innate immune parameters of E. sea bass were affected by the dietary 

treatment. Fish fed the microalgae-containing or the soybean rich diets, showed a significantly 

greater villi height, while the thickness of intestinal epithelium was significantly reduced in fish 

fed the soybean meal-rich diet. The activity of the brush border membrane enzymes, maltase, 

sucrase-isomaltase, γ-glutamil transferase and alkaline phosphatase was not affected by dietary 

treatment but changed in different intestinal tracts. The genes sucrase-isomaltase, peptide 

transporter 1, sodium/potassium-transporting ATPase and aminopeptidase N were overexpressed 

in the pyloric and proximal region of the intestine of fish fed the microalgae-including diets. In 

conclusion, a blend of dried marine microalgae Tisochrysis lutea and Tetraselmis suecica as 

alternative ingredients to dietary fish meal did not hamper gut digestive-absorptive functions of 

E. sea bass. Moreover, it resulted in enhanced non-specific immune response, suggesting an 

effective role as an immunostimulant ingredient. 

 

Key words: serum; leukocyte; brush border; gene expression; intestinal morphology. 
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Introduction 

In aquaculture, certain marine microalgae currently receive a growing interest as alternatives to 

feed ingredients such as fish oil and meal or conventional vegetable lipid and protein sources in 

aquafeeds for carnivorous fish species. In fact, fish oil and meal are becoming environmentally 

unsustainable and too expensive to be used by the aquaculture industry (Naylor et al., 2009; 

Tacon et al., 2011; Vargas et al., 2018). Moreover, high dietary inclusion levels of certain plant-

derived ingredients have been reported to negatively affect fish growth performance, flesh 

quality (Mourente and Bell, 2006; Tibaldi et al., 2006; de Francesco et al., 2007; Bonaldo et al., 

2008; Messina et al., 2013), stress tolerance, gut and liver integrity (Bakke-McKellep et al., 

2000; Uran et al., 2008; Merrifield et al., 2009; Kokou et al., 2012), activity of the intestinal 

brush border membrane (BBM) enzymes (Tibaldi et al., 2006), intestinal microbioma (Bakke-

McKellep et al., 2007; Merrifield et al., 2009) as well as immune response (Sitjà-Bobadilla et al., 

2005; Kokou et al., 2012; Marjara et al., 2012) by physiological and molecular mechanisms 

which are not still fully understood.  

Microalgae are considered to possess high nutritional value due to their capability to synthesize 

all amino acids and their high content of proteins (30 to 70 %), lipids (10 to over 20 %) in the 

form of triacylglycerols containing ω3 and ω6 fatty acids, such as eicosapentaenoic acid (EPA), 

arachidonic acid (AA) and docosahexaenoic acid (DHA), vitamins (A, B1, B2, B6, B12, C, E, 

biotin, folic acid and pantothenic acid), minerals (phosphorous, zinc, iron, calcium, selenium, 

magnesium) and antioxidant substances (Brown et al., 1997, 2002; Renaud et al., 1999; Spolaore 

et al., 2006; Becker, 2007; Hemaiswarya et al., 2011). In particular, marine microalgae like 

Pavlova spp. and Tisochrysis lutea (Prymnesiophytes) are also rich in DHA (0.2 to 11 %), 

Nannochloropsis spp. (Eustigmatophytes) and diatoms are rich in AA (up to 4%), whereas 

Tetraselmis spp. (Prasinophyte) have a significant content of EPA (Volkman et al., 1989). 

Recently, the dry biomass of different marine microalgae has been shown to succesfully replace 

fish meal and oil in aquafeeds for European sea bass (Tulli et al., 2012; Tibaldi et al., 2015; 

Cardinaletti et al., 2018), gilthead sea bream (Palmegiano et al., 2009; Vizcaino et al., 2014) and 

Atlantic salmon (Kiron et al., 2012; Sorensen et al., 2016), while Walker and Berlinsky (2011) 

reported a palatability problem with negative consequencies on feed intake in Atlantic cod. 

Moreover, Vizcaino et al. (2018) observed, at the ultrastructural level, that dietary inclusion of 

the algal dried biomass of Tisochrysis lutea and Nannochloropsis gaditana, had a positive 

impact on the absorptive capacity of the intestinal mucosa in Senegal sole. A positive effect has 

been also observed by measuring the activity of certain BBM enzyme in fish fed diet including 

Scenedesmus almeriensis where an increase in leucine aminopeptidase and alcaline phosphatase 

activity were observed (Vizcaino et al., 2014; Vizcaino et al., 2018). 
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The expression of the genes involved in the intestinal nutrient uptake is affected by different 

factors but  results are sometimes controversial depending on experimental design, diet 

composition, fish species and salinity (Hakim et al., 2009; Terova et al., 2009, 2013; Bucking et 

al., 2012; Rimoldi et al., 2015; Tang et al., 2016; Verri et al., 2017).  

Besides providing nutrients, microalgae in fish diets are gaining attention for their functional 

properties (Spolaore et al., 2006; Yaakob et al., 2014). Their active components have already 

demonstrated immunostimulating activity in mammals where health promoting attributes of 

Chlorella sp or Spirulina sp are documented (Chou et al., 2012; Dantas et al., 1999). Amar et al. 

(2004) found enhanced innate immunity in rainbow trout fed a purified diet including a 

Dunaniella salina extract. Cerezuela et al. (2012) found that three orally administered 

microalgae (Nannochloropsis gaditana, Tetraselmis chuii and Phaedactilum tricornutum) could 

enhance certain immune defence mechanisms in gilthead sea bream. On the other hand, the 

effects of microalgae on inflammation are controversial and seem to be specie-specific. In fact, 

Reyes-Becceril et al. (2013), showed that dietary administration of the diatom Navicula sp in 

gilthead sea bream, induced upregulation of several genes involved both in digestion/absorption 

and in the inflammation response of the gut. Chlorella vulgaris had such an effect in Atlantic 

salmon (Grammes et al., 2013) while Tetraselmis sp, Chlorella sp, Pheodactilum tricornutum 

and Nannochloropsis gaditana in zebrafish (Bravo-Tello et al., 2017). Moreover, short or long 

term harmful effects on immune defences deserve particular attention as they could directly 

affect fish susceptibility and resistance to diseases (Metochis et al., 2016). 

To date, Tetraselmis suecica is one of the few marine microalgae species that is currently 

produced for aquaculture feed due to the large amount and high quality of its intracellular protein 

content together with Tisochrysis lutea that combines medium-high level and quality of protein 

with high lipid and DHA contents (Brown, 2002; Tokuşoglu and Ünal, 2003). 

It is not known if and to what extent a mix of the two cultured microalgae could display 

functional properties when included in aquafeeds.  

In this context, the aim of the present study, was to evaluate the effects of graded levels of a dry 

mix of Tisochrysis lutea and Tetraselmis suecica in the diet on European sea bass (D. labrax) 

metabolic status, its innate immune response and intestinal morpho-physiology. The experiment, 

is a part of a wider study, whose results on growth performance, nutrient digestibility, muscle 

tissue composition and quality traits have been already published in Cardinaletti et al. (2018). 
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Materials and methods  

Experimental diets and fish rearing conditions 

Four diets were formulated to be grossly iso-nitrogenous (N, 7.5 % DM) and iso-lipidic (total 

lipid, 18.5 % DM). A control diet (C) was prepared in order to have a 50/50 fish to vegetable 

protein and fish to vegetable lipid ratios, calculated by considering the crude protein and lipid 

contribution of all fish-based and vegetable-based dietary ingredients. This preparation included 

150 g/kg of toasted, dehulled and solvent extracted soybean meal. Two test diets, MA15 and 

MA45 were prepared by including a blend of T. lutea and T. suecica dried biomass in a 2:1 w:w 

ratio to replace 15 and 45% fish meal (FM) protein and 12 and 36% fish lipid, respectively, of 

the control diet. A fourth diet rich in soybean meal (SBM) was prepared with a 30:70 and 50:50 

fish to vegetable protein and lipid ratios, respectively. This latter diet was obtained from the C 

diet through a further substitution of FM with soybean meal, so as to maintain the same fish to 

vegetable lipid ratio. Moreover, the SBM diet had the same fish meal content than MA45.  

The ingredient composition and proximate analysis of the diets are shown in Table 1. All 

ingredients were ground through a 0.5 mm sieve before final mixing and dry pelleting through a 

4.5 mm die in the pilot plant of the Department of Agricultural, Food, Environmental and 

Animal Sciences of the University of Udine. The diets were stored at -20°C until used.  

One hundred and forty four fish (mean body weight 204 ± 12.7 g) were randomly divided among 

12 groups (12 specimen/group), kept in 300-L fiberglass tanks in a marine recirculating system 

ensuring optimal water condition to E. sea bass (temperature 22.8 ± 0.5°C, salinity 25.8 ± 1.3‰, 

dissolved oxygen 6.8 ± 0.43 mg/L, pH 8.0 ± 0.13, total ammonia nitrogen 0.04 ± 0.02 mg/L, 

nitrite-nitrogen 0.2 ± 0.06 mg/L). 

After stocking, fish were fed diet C and adapted to the experimental conditions over 2 weeks. At 

the end of this period, the 12 groups were assigned to the four test diets according to a random 

design with triplicate groups (tanks) per treatment. Fish were hand-fed the experimental diets 

over 105 days, in two daily meals (9:00 am and 4:00 pm) until the first feed item was refused.  

Etics 

The handling procedures and sampling methods involving fish used in the trial followed the 

guidelines of the European Union Directive 2010/63/EU on the protection of animals used for 

scientific purposes (Directive 2010/63/EU). 

Tissue sampling  

At the end of the feeding trial and after 40 hours fasting period in order to avoid any effect of the 

meal, 4 fish per tank (12 fish per dietary treatment) were sacrificed with an overdose of the 

anaesthetic MS-222 (300 mg/l, tricaine methan sulphonate, Argent Laboratories, Redmont-VI, 

USA).  
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Table 1. Ingredient and proximate composition of the test diets. 

 C  MA15 MA45 SBM 

Ingredient Composition  (g/kg)     

Chile prime fish meal 275 232 150 150 

CPSP 50 50 50 50 

Wheat gluten meal 200 200 200 200 

Dehulled soybean meal solvent 

extract (48 %CP) 

150 150 150 350 

Gelatinized starch 130 121 90 40 

Cod liver oil 56 51 45 62 

Palm oil 60 57 50 62 

Soy Lecithin 25 25 25 25 

Freeze-dried Tisochrysis lutea 0 40 120 0 

Freeze-dried Tetraselmis suecica 0 20 60 0 

L-Methionine 0 0 6 7 

Mineral supplement$  4 4 4 4 

Vitamin supplement#  5 5 5 5 

Na lignosulfite 30 30 30 30 

Celite 15 15 15 15 

Proximate composition (%)     

Dry matter 93.8 93.8 93.8 93.1 

Crude protein 45.9 46.1 46.1 46.8 

Total lipid 17.4 17.3 17.4 17.2 

Total carbohydrate§ 19.5 21.1  17.6 17.5 

Starch 15.1 14.2 11.1 8.9 

Ash 11.0 9.3 12.7 11.6 
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 $Mineral supplement composition (% mix): CaHPO4*2H2O. 78.9; MgO. 2.725 g; KCl. 0.005; NaCl. 

17.65; FeCO3. 0.335; ZnSO4*H2O. 0.197; MnSO4*H2O. 0.094; CuSO4*5H2O. 0.027; Na2SeO3. 

0.067. 

#
Vitamin supplement composition (% mix): thiamine HCL Vit B1. 0.16; riboflavin Vit B2. 0.39; 

pyridoxine HCL Vit B6, 0.21; cyanocobalamine B12, 0.21; niacin Vit PP, 2.12; calcium pantotenate, 

0.63; folic acid, 0.10; biotin Vit H, 1.05; myoinositol, 3.15; stay C Roche, 4.51; tocoferol Vit E, 3.15; 

menadione Vit K3, 0.24; Vit A (2500UI/kg diet) 0.026; Vit D3 (2400UI/kg diet) 0.05; choline 

chloride, 83.99. 

§
Includes crude fiber and nitrogen free extract 

 

and 3 fish per tank were immediately subjected to blood sampling. Blood was withdrawn from 

the caudal vessels in heparinized and non-heparinized tubes. Plasma samples from the 

heparinized blood were obtained after centrifugation at 1,500 x g for 15 min at 4°C. Serum 

samples from non-heparinized blood were obtained after clotting for 2 hours at 4°C and 

centrifugation at 1,500 x g for 15 min at 4°C. Plasma and serum samples were immediately 

stored at -80°C for subsequent metabolic profile and analysis of immune parameters, 

respectively. After blood sampling, the digestive tract was removed from the open abdomen, and 

the head kidney (HK) was aseptically removed from 2 fish per tank (6 fish per dietary treatment) 

and placed in sea bass isosmolar (360 mOsm/kg) Hank’s balanced salt solution (HBSS, Sigma-

Aldrich, Milan, Italy) containing 0.25% heparin (Sigma-Aldrich, Milan, Italy).  

The digestive tract was collected from 3 fish per tank (9 fish per dietary treatment) and divided 

into pyloric cecae (PC), proximal intestine (PI, section below the tract with PC until the increase 

in diameter indicating the start of the distal intestine) and distal intestine (DI, the terminal part of 

the intestine with larger diameter, untill the anus). The PI samples from 2 fish per tank (6 fish per 

dietary treatment) were preserved in Bouin’S solution for histological evaluation. Tissue samples 

from 2 fish per tank (6 fish per dietary treatment) were rinsed with iced saline, gently dried with 

a piece of paper, put in individual plastic tubes and stored at -20°C until the analysis of the 

activity of the brush border membrane (BBM) enzymes. Samples of PI, PC and DI from 2 fish 

per tank (6 fish per dietary treatment) were put in individual plastic tubes, frozen in liquid N and 

stored at -80°C for gene expression analysis.  

Metabolic parameters 

The plasma parameters glucose (Glu, mg dL-1), cholesterol (Chol, mg dL-1), triglycerides (Trig, 

mg dL-1), total proteins (Tp, g dL-1) and albumin (Alb, g dL-1) were determined by an automated 

analyser system for blood biochemistry (Roche Cobas Mira, Biosys, Milan, Italy) and 
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commercially available kits (Biochemical Enterprise, Milan, Italy), following the manufacturer’s 

protocols. 

Humoral immune parameters 

The serum lysozyme activity was determined by using the turbidimetric method according to 

Parry et al. (1965).  

The serum antiprotease activity was measured following the method of Bowden et al. (1997) 

with minor modifications. Ten microliters of serum were incubated with 10 µl of 0.3% trypsin 

(Sigma-Aldrich, Milan, Italy) in 0.01 M Tris-HCl (Sigma-Aldrich, Milan, Italy) pH 8.2 and 500 

µl of 5 mM Nα-benzoyl-D,L-arginine 4-nitroanilide hydrochloride (BAPNA, Sigma-Aldrich, 

Milan, Italy), then the volume was brought up to 1 ml with 0.1 M Tris-HCl pH 8.2. Samples 

were incubated at 22°C for 25 min. The reaction was stopped with 150 µl of 30% acetic acid and 

the mixture was centrifuged at 400 x g for 5 min at 4°C. The optical density (OD) of the 

supernatant was read at 415 nm against a blank in a microplate reader (Sunrise, Tecan S.r.l., 

Milan, Italy). The inhibitory activity of antiproteases was expressed in terms of percentage of 

trypsin inhibition: [(OD trypsin – OD sample)/ OD trypsin] x 100 (Zuo and Woo, 1997). 

Serum total myeloperoxidase (MPO) activity was measured according to Quade and Roth 

(1997).  

Cellular immune parameters 

The HK leukocyte isolation was performed as previously described by Volpatti et al. (2014).  

Histology  

Tissue samples were automatically processed (TISBE tissue processor, Diapath), transversely-

orientated and embedded in paraffin. One distinct paraffin block was produced for each 

individual  sample and, from each block, a single 5 μm thickness cross-section was cut (Leica 

RM 2135). Sections were dewaxed and stained with Mayer’s hematoxylin and eosin. The 

histological specimens were evaluated using an optical microscope (Leica DMRB), documented 

by a digital camera (Leica ICC50) and images were processed with LAS EZ software (Leica).  

Slide-observation was undertaken using bright-field illumination and each slide was evaluated to 

highlight any degenerative and/or inflammatory phenomena. The slides were also used for 

quantitative image analysis to measure the villi height (40x magnification) and the epithelium 

thickness (100x magnification) of the intestine by mean of UTHSCA Image Tool 2.0 software 

(open source). All the visible villi of transversal sections have been measured. The epithelium 

height has been measured for each intact villum and the thickness has been measured from basal 

lamina to lumen profile in three different points of each villum (bottom, medium and top) and is 

equivalent to the external cellular height. 

BBM enzyme activities 
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The stored sections of the gut were thawed and, when necessary, the remaining content was 

gently squeezed out. One hundred mg of gut tissue in 1 ml iced saline buffer were crushed in a 

tissue-lyser disruption system (Tissue Lyser II, Qiagen, Germany) at 30 Hz for 1 minute. 

Samples were centrifuged at 13,500 x g for 10 min at 4°C and the supernatant was used to 

measure the BBM enzyme activities (Tibaldi et al., 2006). 

The hydrolysis of maltose and sucrose, by the BBM enzyme maltase and the complex sucrase-

isomaltase (SI), was determined according to Harpaz and Uni (1999). 

Alkaline phosphatase (ALP) and γ-glutamyl transpeptidase (-GT) activity was determined using 

commercial kits (Paramedical, Pontecagnano Faiano, Sa, Italy) as indicated by the manufacturer. 

The amount of total protein in the supernatant was determined according to Bradford et al. 

(1976) using Bradford reagent (Sigma-Aldrich, Milan, Italy) and bovine serum albumin (Sigma-

Aldrich, Milan, Italy) as a standard. 

One unit (U) of enzyme activity corresponded to the amount of enzyme that transforms or 

hydrolyses 1 mole of substrate ml-1 minute-1. The specific enzymatic activity was calculated as 

U of enzyme activity per mg ml-1 of supernatant protein for maltase and saccarase and mU of 

enzyme activity per mg ml-1 of supernatant protein for ALP and -GT. 

BBM enzyme gene expression 

Total RNA was extracted using Aurum™ total RNA fatty and fibrous tissue kit (Bio-Rad, USA) 

and following the manufacturer’s protocol. Tissue disruption was performed by using 

TissueLyser II disruption systems (Qiagen, Germany) and RNA concentration and quality was 

analysed by NanodropOne spectrophotometer (Thermo Scientific, USA) and by agarose gel 

electrophoresis. After extraction, complementary DNA (cDNA) was synthesised from 1 μg of 

total RNA using the iScript™cDNA Synthesis Kit (Bio-Rad, USA), diluted 1:10 in RNase-

DNase free water and stored at -20 °C until quantitative real-time PCR (qPCR). An aliquot of 

cDNA was used to check primer pair specificity. 

qPCR was used to analyse the mRNA expression of four brush border digestive enzymes: 

sucrase-isomaltase (SI), peptide transporter 1 (PepT-1), sodium/potassium-transporting ATPase 

(Na+/K+ATPase) and aminopeptidase N (APN). qPCR primers (Sigma-Aldrich, Germany) were 

designed using Beacon Designer 8.0 software (PREMIER Biosoft International, USA) based on 

available sequences on NCBI (Table 2). To verify correct amplification, PCR products were 

excised and purified using QIAquick Gel Extraction Kit (Qiagen, USA) and sequenced by 

Eurofins MWG Operon (Ebersberg, Germany). All sequences were confirmed by alignments and 

by using NCBI nucleotide BLAST software (http://blast.ncbi.nlm.nih.gov). 

Six biological and two technical replicates per digestive tract and dietary treatment were 

analysed using CFX 96 thermal cycler (Bio-Rad, USA), including a negative control. The PCR 
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reaction were carried out in a final volume of 20 μL containing 6 μL of PCR-grade water, 10 μL 

of SsoFast  

 

Table 2. List of primers, amplicon size and efficiency of the genes.  

 

Gene
#
 GenBank 

ID 

Sense/antisense (5’-3’) Amplicon size  

(bp) 

Annealing 

temperatute °C 

SI AM419039 GTGACTTTCCAGCCTACT/ 

TAACCATAGCGACAGAGC 

176 60 

PepT-1 FJ237043 GGACTGGGCTGAGGAGAAA/ 

GGAAGAGGGATGTAGAGGAAGA 

87 60 

Na
+
/K

+

ATPase 

AM419034 CGTTACTGGAGTGGAAGA/ 

GTTGGCGATGATGAAGAG 

118 60 

APN FJ860001 ACTGCTCTATGATGAAACCT/ 

AGTCATTCCACCACCTTAG 

122 60 

EF1A* AJ866727 GACACAGAGACTTCATCAAG/ 

GTCCGTTCTTAGAGATACCA 

114 60 

18S* AM419038 CGCTAGAGGTGAAATTCTTGGA/ 

GGAACTACGACGGTATCTGAT 

125 60 

ACTB* AJ537421 TGTATGCCTCTGGTCGTA/ 

GTGGTGGTGAAGGAGTAG 

184 60 

# For the abbreviation of the Gene name refere to the text 

* reference genes.  

 

concentration 500 nM) of each forward and reverse primer. The qPCR program included an 

enzyme activation step at 95 °C (30 s) and 40 cycles each of 10 s at 95 °C and 30 s at 60 °C. The 

fluorescence signal was detected at the end of the 60°C reaction step. Moreover, a melt curve 

analysis (a heating step at 95 °C for 1 min and a final detection step from 65 to 95°C with a 

temperature transition rate of 0.5°C for 0.05 s) was performed to check specificity and/or 

absence of contaminants in the reaction. 

qPCR reaction efficiency (E) for each gene assay was determined using 10-fold serial dilutions 

of randomly pooled cDNA. R2 values of the standard curves were all > 0.98. Beta-actin (ACTB), 

elongation factor 1A (EF1A) and ribosomal protein 18S (18S) (Table 2) were evaluated as 

reference genes according to their stability as described previously (Pfaffl, 2004). EF1A was 

found to be stably expressed and was therefore used as normalisation factor. Expression of the 

target genes were calculated using the comparative Ct method (Schmittgen and Livak, 2008) and 
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expressed as fold changes of control group (values >1 indicate up-regulated genes, conversely 

value <1 indicate down regulated genes). 

 

Statistical analysis 

Data are presented as average value ± SD. Data were tested for normality and homogeneity of 

variances by using Shapiro-Wilk and Levene tests, respectively. Data of immunological and 

plasma metabolites parameters and of hystological measures were subjected to one-way 

ANOVA and Duncan’s post hoc test (significant level of 95 %) to detect significant differences 

between dietary treatments. BBM enzyme activities results were analysed with two-way 

ANOVA test followed by Duncan’s post hoc test (significant level of 95 %), considering the 

dietary treatment and intestine sections as the main factors. Gene expression results were also 

analysed with two-way ANOVA and differences between pairs of mean has been performed by 

least significant difference (LSD). All analyses were completed using the SPSS package (SPSS 

Inc., Chicago, IL).  

 
Results 

Fish promptly accepted all the experimental diets and during the trial no mortality was recorded.  

As reported earlier (Cardinaletti et al., 2018), feed intake tended to increase in response to 

graded levels of microalgae in the diets, resulting in the highest value in fish fed diet MA45 

when compared with SBM and C diets (P< 0.05). Fish fed both the microalgae containing diets 

resulted in growth performance, FCR, and PER which were similar to those attained by fish fed 

the control diet (P> 0.05), but higher to those of the E. sea bass fed the soybean rich diet (final 

weight 419.1 vs 387.7; SGR 0.68 vs 0.61; FCR 1.70 vs 1.89; PER 1.31 vs 1.13; P< 0.05).  

As shown in Table 3 dietary treatments did not affect plasma glucose, triglycerides and albumin. 

Relative to controls, fish fed the diets higher in microalgae (MA45) and in soybean meal (SBM) 

resulted in similar lower plasma cholesterol and total proteins (P<0.05). 

 

Table 3. Plasma metabolic parameters measured in E. sea bass fed the test diets at the end of the 

105-days feeding period.  

 Dietary treatments 

Plasma parameters C MA15 MA45 SBM 

Glu mg/dl 118.4±23.10 122.0±18.12 131.9±29.03 129.2±33.21 

Chol mg/dl 347.2±61.41 a 318.8±47.24 ab 276.6±48.60 bc 263.4±44.64 c 

Trig mg/dl 611.5±90.01 551.4±112.0 531.6±148.36 555.45±149.29 
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Tp g/dl 5.9±0.41 a 5.7±0.41 ab 5.4±0.51 b 5.4±0.42 b 

Alb g/dl 2.5±0.15 2.5±0.16 2.3±0.26 2.4±0.14 

Values are given as mean ± SD; (n = 3 tanks, 3 fish/tank). Different superscript lowercase letters 

in a row (a,b,c) indicate statistically significant differences (P<0.05) among experimental groups.  

Glu, glucose; Chol, cholesterol; Trig, triglicerides; Tp total protein; Alb, albumin 

 

The humoral and cellular innate immune parameters of E. sea bass fed the experimental diets 

were affected by the dietary treatment. As shown in Fig 1, the serum lysozyme, antiprotease and 

MPO activity were significantly enhanced  in fish fed the diet with the lower level of microalgae 

(MA15) relative to the C and the SBM diet (P<0.05). Antiprotease activity was particularly 

depressed in case of fish subjected to the diet high in soybean meal (P<0.05). Lastly, the RB 

activity of HK leukocytes stimulated with PMA was negatively affected by the lowest level of 

microalgae and by the SBM dietary treatments (P< 0.05) (Fig 1).  

At the hystological evaluation (Fig 2) no signs of significant degenerative or inflammatory 

processes due to the dietary treatment were detected in the proximal intestine of E. sea bass at 

the end of the experiment.  As shown in Table 4 and Figure 2, fish fed the microalgae-containing 

diets or the soybean-rich diet, showed a significantly greater villi height (P<0.05) compared to 

the control, while the thickness of intestinal epithelium was significantly reduced in fish fed the 

SBM diet (P<0.05) than in fish fed the control and both diets containing microalgae. 

 

Table 4. Height of villi and thickness of intestinal epithelium in the proximal intestine of E. sea 

bass fed the test diets at the end of the 105 days feeding period.  

 Dietary treatments 

Histological parameters 
n C n MA15 n MA45 n SBM 

Villi height (µm) 201 523±216 
c
 189 698±250 

a
 124 660±176 

a
 254 608±235 

 b
 

Thickness (µm) 213   41±13 
a
 89   44±10 

a
 112   43±10 

a
 231   36±11 

b
 

Data are presented as means ± SD. Row means with different superscript lowercase letters 

indicate significant differences among dietary treatments (a, b, c,  P < 0.05). n= total number of 

readings coming from 6 transversal sections. 

 

 As shown in Figure 3, the activity of the BBM enzymes maltase, SI and γ-GT varied according 

to the different intestinal tracts (P<0.05) but were unaffected by dietary treatments and no 

significant  interaction between dietary treatment and intestinal tract was found. 
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The PC was the major site of disaccharases activity, while the highest activity of γ-GT was found 

in the distal intestine, thus confirming the functional differences of the tracts. The activity of the 

alkaline phosphatase was little affected by both dietary treatments and intestinal tract (P>0.05).  

The results of the qPCR indicated that the expression of all the genes was differently affected by 

dietary treatments according to the intestinal sections.  

As shown in Table 5, all genes were significantly upregulated in the pyloric and proximal 

intestinal regions, in fish given the microalgae-containing diets (P<0.05) with a nearly positive 

dose dipendent trend as the microalgae level was increased in the diet. This allowed a significant 

difference to be attained for diet MA45 over diet MA15 for gene expression of SI, APN and 

Na+/K+-ATPase in the proximal intestine. 

On the opposite, in the distal portion there was a down regulation of all genes in fish fed diets 

MA15, MA45 and SBM compared to the control. In case of Na+/K+-ATPase the difference was 

significant only with the diet MA45. 

 

Table 5. Gene expression values of brush border membrane enzymes in the intestinal tracts of E. 

sea bass fed the test diets at the end of the 105-days feeding period. 

  Dietary treatments 

Enzymes and digestive tracts C MA15 MA45 SBM 

SI     

pyloric caeca 1.00±0.09 d 1.21±0.08 cd 1.35±0.09 bc 0.86±0.22 e 

proximal intestine 1.00±0.05 d 1.50±0.12 b 1.92±0.14 a 1.12±0.12 d 

distal intestine 1.02±0.21 d 0.59±0.19 f 0.52±0.12 f 0.69±0.23 ef 

PepT-1     

pyloric caeca 1.00±0.10 c 1.31±0.07 ab 1.30±0.08 b 1.02±0.10 c 

proximal intestine 1.00±0.08 c 1.39±0.13 ab 1.47±0.11 a 1.06±0.02 c 

distal intestine 1.03±0.26 c 0.73±0.11 d 0.60±0.19 d 0.49±0.08 e 

APN     

pyloric caeca 1.01±0.04 d 1.24±0.04 c 1.26±0.05 c 0.91±0.12 d 

proximal intestine 1.02±0.09 d 1.87±0.02 b 1.99±0.24 a 1.09±0.12 d 

distal intestine 1.00±0.08 d 0.75±0.09 e 0.58±0.06 f 0.64±0.15 ef 

Na+/K+ATPase     

pyloric caeca 1.00±0.03 d 1.46±0.05 bc 1.53±0.14 b 0.90±0.15 d 

proximal intestine 1.03±0.28 d 1.67±0.13 b 2.05±0.07 a 1.40±0.19 c 

distal intestine 1.02±0.24 d 0.87±0.06 d 0.62±0.13 e 0.76±0.17 de 
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SI, sucrase-isomaltase; PepT-1, peptide transporter 1; APN, aminopeptidase N; Na+/K+ATPase. 

Values are given as mean ±SD; (n = 3 tanks, 2 fish/tank) and represent fold changes relative to 

the control group and whithin each gene. Means values sharing different superscript letters are 

significant different (a, b, c, d, e, f; P<0.05). Interaction between main factors diet vs intestinal 

tract is for P<0.05. 

Discussion 

The inclusion of a blend of Tisochrysis lutea and Tetraselmis suecica in the diet of E. sea bass 

(D. labrax) did not adversely affect growth performance and feed conversion efficiency, while 

the diet high in soybean resulted in significantly depressed growth, feed and protein conversion 

efficiency when compared to C diet and both microalgae-containing diets (Cardinaletti et al., 

2018).  

The results obtained in the present study demonstrated that the blend of microalgae included in 

the diet positively enhanced the innate immune response and did not adversely affect intestine 

morphology and functionality. 

At the end of the feeding trial, the physiological status of fish, as assessed through the analysis of 

certain blood biochemical parameters (Coz-Rakovac et al., 2005), have shown that E. sea bass 

fed the diet containing the highest level of microalgae or high in soybean meal had significantly 

lower levels of plasma total proteins compared to control fish. The present findings could reflect 

lower crude protein apparent digestibility of the same diet, as reported by Cardinaletti et al. 

(2018) or an impaired liver protein synthesis, as total plasma protein concentration is closely 

related to the rate of protein synthesis in the liver. Since the level of circulating albumin was 

similar in all fish groups, we can also suppose that the synthesis of hepatic globulins may have 

been affected by dietary treatments. To what extent this would possibly involve 

immunoglobulins or other globulins remains to be addressed.  

While plasma levels of circulating glucose and triacylglycerol were not affected by dietary 

treatments, the diets MA45 and SBM resulted in a significant hypocholesterolemic effect. This is 

only partially a consequence of the lack of cholesterol in the vegetable ingredients used to 

replace dietary fish meal. In case of soybean meal, it is well known that its hypocholesterolemic 

effect goes beyond this and claims for the action of specific mechanisms reducing blood and 

tissue cholesterol levels in different animal models including E. sea bass (Messina et al., 2013). 

The hypocholesterolemic effect of MA45 in the present work confirm what has been previously 

reported in Japanese flounder fed graded levels of Chlorella ellipsoidea (Kim et al., 2002). In 

addition, lower blood triglycerides and cholesterol have been observed in yellow croacker (P. 

crocea) fed Haematococcus pluvialis enriched diets (Li et al., 2014) and in olive flounder (P. 

olivaceus) fed Eucheuma denticulatum supplemented diets (Ragaza et al., 2015). This wide 
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evidence on the hypocholesterolemic effects should be attributable to specific substances in the 

microalgae such as fucoxanthin, contained in Tisochrysis, that may act as mediator in lipid 

metabolism (Maeda, 2015) and/or to unknown mechanisms that still need to be investigated.

In this study, dietary treatments led to changes in certain innate immune parameters of E. sea 

bass. We observed an increase in serum lysozyme, antiprotease and myeloperoxidase activities 

in fish fed the diet including the lower level of microalgae mixture compared to the other groups. 

Our findings are in agreement with previous studies, showing an increased serum lysozyme, 

MPO activities and antiprotease in Pacific red snapper fed a Navicula sp. supplemented diet 

(Reyes-Becerril et al., 2014) and a significant decrease of lysozyme and complement activity in 

fish fed diets containing high levels of soybean meal (Geay et al., 2011; Peng et al., 2013). An 

enhancement of serum lysozyme and MPO activity has also been reported in olive flounder (P. 

olivaceus) fed diets containing the marine brown alga Ecklonia cava (Kim et al., 2008). Similar 

results in serum lysozyme has also been observed by Amar et al. (2004) in rainbow trout fed diet 

added with Dunaniella salina. On the contrary, Reyes-Becerril et al. (2013) failed to find any 

modulation of MPO activity in gilthead sea bream fed Navicula sp. supplemented diet. Taking 

into consideration other innate immune parameters such as respiratory burst, Cerezuela et al. 

(2012) reported an increase of the latter in gilthead seabream fed over two weeks a diet 

supplemented with 50-100g/kg of Pheodactylum tricornutum. In the present study, the 

respiratory burst was impaired only in fish fed the lowest level of microalgae and the soybean 

meal containing diet. These evidences suggest that changes in certain innate immune parameters 

in fish fed diets including microalgae are specie-specific depending on the microalgae species 

and on their level of inclusion in the diet. 

Interestingly, we observed that the serum antiprotease activity and the respiratory burst were 

significantly reduced in fish fed SBM diet. These immune parameters have been poorly 

investigated in fish in response to diet rich in soybean meal therefore further investigation is 

needed to clarify the possible mechanisms behind these results.  

Besides the effects on innate immunity, it is known that vegetable ingredients and certain marine 

microalgae such as Phaeodactylum tricornutum and Tetraselmis chuii, may adversely affect the 

integrity of the digestive system (Atalah et al., 2007; Escaffre et al., 2007; Cerezuela et al., 

2012). In the present study no negative effects were noted in the proximate intestine of E. sea 

bass fed microalgae-containing diets as previously observed in sea bream fed S. almeriensis, T. 

suecica and T. lutea, by Vizcaino et al. (2014, 2016) and in senegalese sole fed T. lutea and N. 

gaditana (Vizcaino et al., 2018). In particular, fish fed the MA15 and MA45 diets showed 

greater villi height compared to fish fed the control diet and this result could be considered a sign 

of an increased absorption ability. On the contrary, the soybean meal-rich diet reduced the villi 
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thickness as it has been observed in salmonids and other fish species (Van den Ingh et al., 1991; 

Boonyaratpalin et al., 1998).  

With the aim at evaluating possible diet-induced changes in digestive-absorptive processes, we 

have also evaluated in different intestinal tracts, the activity/gene expression of several digestive 

enzymes located in the BBM of enterocytes, responsible for the final stages of nutrient digestion 

and assimilation. The present study, has investigated the effect of dietary microalgae on the 

activity of a panel of BBM enzymes which resulted not affected by dietary treatments. On the 

contrary, several studies have reported that changes in diet nutrient or ingredient composition 

can significantly modulate the intestinal BBM enzymes activity in fish (Krogdahl et al., 1999, 

2003; Tibaldi et al., 2006). To explain the lack of effects due to the diet on BBM enzyme 

activity, it should be noted that in this study, according to Adamidou et al. (2009), tissue 

sampling time was set at 36-40 hours after the last meal to ensure a nearly complete emptying of  

intestine. This could have contributed to minimize possible changes in BBM enzyme activity due 

to the diet. For the same reason no apparent correlation was found between enzyme activities and 

the apparent nutrient or energy digestibility values reported for the same diets by Cardinaletti et 

al. (2018). 

Significant differences in maltase, SI, -GT and ALP activity were detected along the gut, 

mirroring the functional differences of the intestinal tract. The activity of both the 

disaccharidases in the final degradation of carbohydrates to glucose, was higher in the pyloric 

caeca and significantly decreased in the remaining intestinal tracts, in agreement with previous 

studies (Harpaz et al., 2005; Krogdahl et al., 1999; Tibaldi et al., 2006). 

-GT is one of the major enzymes in the intestinal microvilli and plays an essential role in the 

final digestion and absorption of dietary proteins. The microalgae-containing diets did not affect 

its activity in agreement with protein digestibility values and efficiency ratio as already reported 

in Cardinaletti et al. (2018). The enzyme showed its highest level of activity in the distal 

intestine as already reported by Tibaldi et al. (2006) in E. sea bass and by Harpaz and Uni (1999) 

in various fish species thus confirming its physiological role. 

Lastly, the alkaline phosphatase of the intestinal brush border is often used as a marker of 

intestinal integrity as it is expressed in mature enterocytes. In the present study its activity was 

not affected by the diet, indicating that the dietary substitution of fish meal with microalgae did 

not cause major functional changes in the integrity of the gut in E. sea bass, as also confirmed by 

histology.  

Regarding the results of gene expression, we found that the mRNA levels of the selected BBM 

enzymes SI, PepT-1, APN and Na+/K+ATPase varied significantly in relation to the dietary 

treatment in different intestinal tracts, as previously demonstrated in zebrafish, eel, seabass, 
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seabream, cod, waterloach and rainbow trout (Verri et al., 2003, 2008; Rønnestad et al., 2007; 

Terova et al., 2009, 2013; Ostaszewska et al., 2010; Rimoldi et al., 2015; Tang et al., 2016). 

The mechanisms that underlies changes in gene expression in response to changes in dietary 

composition are not fully elucidated (Hooton et al., 2015). SI is known to be involved in the final 

digestion and absorption of starch hydrolysate and sucrose (Goda, 2000) and in the present 

study, its mRNA level was significantly up-regulated in fish fed diets including the microalgae 

mixture in the PC section and proximal intestine.  

Templeton et al. (2012) and Laurens et al. (2012) reported that structural carbohydrates represent 

a large fraction of the algal biomass ranging from 6% to 18% depending on algal species 

considered. Based on total carbohydrate and starch contents of the diets, we can speculate that SI 

gene expression could be associated to the type of carbohydrates supplied by microalgae which 

have not been analyzed in this study and which will be worth studying in future research. 

Furthermore, microalgae provide intermediate metabolites in carnivorous fish (Hemre et al., 

2002; Krogdahl et al., 2005) and in mammals (Hooton et al., 2015) and these together with other 

products derived from monosaccharides metabolism might likely have induced such an up-

regulation of SI mRNA as previously observed in mammals (Yasutake et al., 1995). Moreover, 

due to a lack of correlation between mRNA gene expression and enzyme activity of sucrase in 

our study, the existence of post-transcriptional mechanisms cannot be ruled out and need further 

investigation. 

Several methods have been used to determine protein digestibility in fish species but only a few 

studies try to correlate protein absorption with the expression levels of intestinal amino acid and 

oligopeptide transporters (Liu et al., 2014; Ostaszewska et al., 2010; Terova et al., 2013; Rimoldi 

et al., 2015). It is known that PepT-1 is involved in di- and tri- peptide transport in enterocites 

and its expression level and function are very responsive to dietary treatments (Gilbert et al., 

2008; Verri et al., 2017). In fish, this was shown to be affected by different plant protein sources 

in the diet. In particular, in seabream fed diets including lupin and chick pea, Terova et al. (2013) 

observed an upregulation of the PepT-1 gene, positively related with fish growth and FCR. In the 

present study, we obtained similar results by including microalgae in the diet. In fact, the 

upregulation of PepT-1 mRNA observed here in the pyloric and proximal intestinal sections was 

positively related with growth and PER values (see Cardinaletti et al., 2018). In fish fed the 

microalgae-including diets, the modulation of PepT-1 gene expression could be ascribed to the 

observed increase of feed consumption due to a compensatory response to attain a same 

digestible protein intake as a consequence of a parallel slight decrease in crude protein apparent 

digestibility (Cardinaletti et al., 2018). 
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More interesting might be the hypothesis of an upregulation of PepT-1 due to the salt 

concentration of microalgae diets (the Na+ content of microalgae is 1.5%, while in fish meal is 

0.4-1.1 % and in soybean meal is 0.02%), that could increase the expression of this 

oligotransporter, as recently observed by Rimoldi et al. (2015). In the present study, the 

expression of Na+/K+ATPase was also investigated in order to see the potential effect of dietary 

manipulation on a gene that codify for an enzyme which is crucial in maintaining the 

intracellular homeostasis. Na+/K+ATPase also provides the driving force to support several Na+-

dependent transport processes. In particular, the mRNA expression level of Na+/K+ATPase show 

similar pattern of those of SI, PepT-1 and APN as also observed by Hakim et al. (2009) in 

fasted/refeed seabass. The results obtained in the present study, have demonstrated the high 

expression of the Na+/K+ATPase gene in the proximal portion of intestine that is the major site of 

nutrient absorption (Almansa et al., 2001).  

Finally, we have also evaluated the crucial role of APN mRNA expression, a BBM enzyme that 

catalyzes the cleavage of amino acids from the protein terminus (Taylor, 1993; Gonzales and 

Robert-Baudouy, 1996). In this work, the APN mRNA expression level was affected by different 

dietary treatments. In fact, the APN mRNA was higher in fish fed both the microalgae-

containing diets compared to the other groups. These results are consistent with previous data 

from carp (Hakim et al., 2009) and chicken (Gilbert et al., 2010) fed different dietary protein 

sources, so it is possible to assume a role of the protein source on the expression of APN in fish.  

 

Conclusions. 

The results of this study show that a blend of dried marine microalgae Tisochrysis lutea and 

Tetraselmis suecica biomass might be used as alternative ingredients to fishmeal in the diets for 

E. sea bass without hampering plasma homeostasis of certain metabolites and gut digestive-

absorptive functions which were improved relative to those of fish given a soybean meal-rich 

diet. Moreover, dietary microalgae inclusion resulted in an enhanced non-specific immune 

response, suggesting that microalgae can be effectively used in aquaculture as immunostimulant 

ingredients.  
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Fig 1. Serum lysozyme, antiprotease and myeloperoxidase activity (n = 3 tanks, 4 fish/tank), 

and respiratory burst activity (n = 3 tanks, 2 fish/tank) in E. sea bass at the end of the 105-

days feeding period. Data are presented as means ± SD. Different letters indicate significant 

differences among dietary treatments (P<0.05). 

 

Fig 2. Morphological appearance of the caudal portion of the proximal intestine of E. sea bass fed 

control (A), SBM (B), MA15 (C) and MA45 (D) diets at the end of the 105-days feeding period. H-E 

staining. 

 

Fig. 3. Enzymatic activity of maltase, sucrase, ALP and γ-GT in PC, PI and DI of E. sea bass 

at the end of the 105-days feeding period. Data are presented as means ± SD (n= 3 tanks, 2 

fish/tank). Different letters indicate significant differences among intestinal tracts of the same 

diet (P<0.05). 
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1) Graded levels of a mixture of Tisochysis lutea and Tetraselmis suecica dried biomass were 

tested in European sea bass diets low in fish meal and oil and compared with a soybean meal 

–rich diet. 

2) The proximal intestine of fish fed diets including microalgae showed a greater villi height 

and thickness compared to fish fed the soybean meal–rich one.  

3) Including the dried microalgae mixture in the diet, increased the gene expression of certain 

brush border membrane enzymes without affecting the activity of those involved in the final 

stages of the digestive-absorptive processes. 

4) Certain innate immune response parameters improved in fish fed diets with moderate levels 

of dietary microalgae mixture. 
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