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Abstract. We study the periodic boundary value problem associated
with the φ-Laplacian equation of the form (φ(u′))′+f(u)u′+g(t, u) = s,
where s is a real parameter, f and g are continuous functions, and g is
T -periodic in the variable t. The interest is in Ambrosetti–Prodi type
alternatives which provide the existence of zero, one or two solutions
depending on the choice of the parameter s. We investigate this problem
for a broad family of nonlinearities, under non-uniform type conditions
on g(t, u) as u → ±∞. We generalize, in a unified framework, various
classical and recent results on parameter-dependent nonlinear equations.
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1. Introduction
In this paper, we study the problem of existence, non-existence, and multi-
plicity of T -periodic solutions of periodic boundary value problems associated
with the φ-Laplacian generalized Liénard equation

(Es) (φ(u′))′ + f(u)u′ + g(t, u) = s,

where s is a real parameter. Our aim is to unify, in a generalized setting,
different classical and recent results obtained in this area concerning the
trichotomy given by zero/one/two solutions by varying the parameter s. Such
kind of alternative can be traced back to the pioneering work by Ambrosetti
and Prodi [2]. In more detail, we discuss several configurations of g related
to the works by Fabry, Mawhin, Nkashama [7], and Bereanu, Mawhin [5].
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Looking at [7], the Authors considered the parameter-dependent Lié-
nard equation

u′′ + f(u)u′ + g(t, u) = s, (1.1)
with g a continuous function, T -periodic in t, and satisfying

lim
|u|→+∞

g(t, u) = +∞, uniformly in t,

In this framework, they proved the existence of a value s0 ∈ R such that the
T -periodic problem associated with (1.1) satisfies

Alternative by Ambrosetti–Prodi (AP): there exist zero, at
least one or at least two solutions, provided that s < s0, s = s0 or
s > s0.

Actually, this kind of theorems has been extended to more general equations.
In particular, the study in [15] concerns nonlinear differential operators such
as the φ-Laplacians and considers (Es) as well. A typical application of the
results in [15] can be written for the weighted equation

(WE s) (φ(u′))′ + f(u)u′ + a(t)q(u) = s+ e(t),

for q satisfying lim|u|→+∞ q(u) = +∞, and a, e : R → R continuous T -
periodic functions with min a > 0.

It is interesting to observe that phenomena similar to the one in (AP)
have been discovered also for different kinds of nonlinearities q. In this regard,
we refer to the work by Bereanu and Mawhin in [5] for the equation

(φ(u′))′ + q(u) = s+ e(t), (1.2)

with
∫ T

0
e = 0 and q satisfying q(u) > 0 for all u, along with

lim
|u|→+∞

q(u) = 0.

Indeed, in [5] the Authors, extending a previous work by Ward in [23], proved
the existence of a value s0 ∈ R such that the T -periodic problem associated
with (1.2) satisfies

Alternative by Bereanu–Mawhin (BM): there exist zero, at
least one or at least two solutions, provided that s > s0, s = s0 or
0 < s < s0.

Moreover, they proved that there are no solutions also for s < 0. The same
conclusion in (BM) was obtained in [3] for the p-Laplacian Liénard equation

(φp(u
′))′ + f(u)u′ + q(u) = s+ e(t),

where φp(ξ) := |ξ|p−2ξ, with p > 1.
At this point, we observe that such a kind of results suggests the fact

that an Ambrosetti–Prodi type alternative of the form zero, at least one or
at least two solutions, may occur for a broad class of nonlinearities which
reflect the behavior of parabola/bell-shaped functions. To be more precise,
we consider nonlinearities g(t, u) which include, as special cases, functions of
the form

g(t, u) = a(t)q(u)− e(t), (1.3)
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with q having the following behavior:
Nonlinearity of type I. There exist ω± := limu→±∞ q(u) with
q(u) < ω± for u in a neighborhood of ±∞.
Nonlinearity of type II. There exist ω± := limu→±∞ q(u) with
q(u) > ω± for u in a neighborhood of ±∞.

We notice that if ω± = +∞ then q is a nonlinearity of type I, while, if
ω± = −∞ then q is a nonlinearity of type II.

Moreover, when g has the form as in (1.3), we allow the weight a(t) to
be non-negative but possibly vanishing on sets of positive measure, so that
the uniform condition min a > 0 is no longer required. As a consequence, we
deal with situations involving non-uniform conditions on g(t, u) as u→ ±∞.

From now on, we focus our attention on the periodic boundary value
problem associated with (Es) where φ : R→ φ(R) = R is an increasing home-
omorphism such that φ(0) = 0, the map f : R → R is continuous, and the
function g : [0, T ] × R → R satisfies the Carathéodory conditions (cf. [12,
p. 28]). By a solution to (Es) we mean a function u : [0, T ] → R of class C1

such that φ(u′) is an absolutely continuous function and the equation (Es) is
satisfied for almost every t. Moreover, when u(0) = u(T ) and u′(0) = u′(T ),
we say that u is a T -periodic solution. One could equivalently consider the
function g(t, u) defined for a.e. t ∈ R and T -periodic in t. In this case, one
looks for solutions u : R → R which are T -periodic and satisfy (Es), as de-
scribed above.

It is worth noting that equation (Es) concerns the φ-Laplacian operator
which includes all the qualitative properties of the classical p-Laplacian op-
erator φp or even some more general differential operators, such as the (p, q)-
Laplacian operator defined as φp,q(ξ) := (|ξ|p−2 + |ξ|q−2)ξ, with 1 < p < q.
Such kinds of differential operators are extensively studied in the literature
for their relevance in many physical and mechanical models (cf. [13, 14, 19]).

We present now some new results concerning the T -periodic BVP as-
sociated with equation (WE s). In this introductory summary, for sake of
convenience, we assume that a, e ∈ L∞(0, T ) are such that a(t) ≥ 0 for
a.e. t ∈ [0, T ] with ā := 1

T

∫ T
0
a(t) dt = 1 and ē := 1

T

∫ T
0
e(t) dt = 0.

Theorem 1.1. Assume that ω± = +∞. Then, there exists s0 ∈ R such that:
• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s, equation (WE s) has at least two T -periodic solutions.

The above theorem extends the recent result in [21] to the case of φ-
Laplacian operators. Actually, Theorem 1.1 follows from a more general result
dealing with equation (Es), which extends some results in [15] to locally
coercive nonlinearities.

Theorem 1.2. Assume that ω± = ω ∈ R and q(u) > ω for all |u| sufficiently
large. Then, there exists s0 ∈ ]ω,+∞[ such that:
• for s > s0, equation (WE s) has no T -periodic solutions;
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• for s = s0, equation (WE s) has at least one T -periodic solution;
• for ω < s < s0, equation (WE s) has at least two T -periodic solutions.

Moreover, if q(u) > ω for all u, then, for s ≤ ω, equation (WE s) has no
T -periodic solutions.

The above theorem allows to consider the situation of [3, 5] in a nonlocal
setting.

Theorem 1.3. Assume that ω− = +∞ and q(u) ↗ ω+ ∈ R for u → +∞.
Then, there exists s0 ∈ ]−∞, ω+[ such that:
• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s < ω+, equation (WE s) has at least two T -periodic solutions;
• for s ≥ ω+, equation (WE s) has at least one T -periodic solution.

As far as we know, the above theorem covers some situations which are
not treated in the literature from the point of view of the Ambrosetti–Prodi
type alternatives.

We notice that Theorem 1.1 and Theorem 1.3 concern nonlinearities of
type I, instead Theorem 1.2 is about nonlinearities of type II. These theorems
can be considered as a model to produce different related results by means
of symmetries or change of variables (see the foregoing sections). Moreover,
they are all consequences of a general theorem given in Section 3.

The plan of the paper is as follows. In Section 2 we introduce some
preliminary results based on continuation theorems and topological degree
tools developed by Manásevich and Mawhin in [14]. Moreover, taking into
account [21], we adapt Villari’s type conditions to our setting. Section 3 is
devoted to our main results for the parameter-dependent equation (Es). The
key ingredient for the proofs is Theorem 2.2 in Section 2, combined with
arguments inspired from [5, 7, 15]. In the same section, following [16, 18],
we also recall a result of Amann, Ambrosetti and Mancini type on bounded
nonlinearities (cf. [1]). In Section 4, we illustrate some applications of the
main results achieved in Section 3 to the weighted Liénard equation (WE s)
and Neumann problems for radially symmetric solutions.

2. Preliminary results
In this section we deal with the differential equation

(φ(u′))′ + f(u)u′ + h(t, u) = 0, (2.1)

where φ : R → R is an increasing homeomorphism with φ(0) = 0, f : R → R
is a continuous function and h : [0, T ] × R → R is a Carathéodory function.
We denote by C1

T := {u ∈ C1([0, T ]) : u(0) = u(T ), u′(0) = u′(T )}, and by AC
the set of absolutely continuous functions. By a T -periodic solution to (2.1)
we mean a function

u ∈ D :=
{
u ∈ C1

T : φ(u′) ∈ AC
}
,
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satisfying equation (2.1) for a.e. t. Our purpose is to introduce the main tools
for the discussion in the subsequent section.

2.1. Definitions and technical lemmas
We start by introducing two concepts: the Villari’s type conditions, which are
inspired by [22] (cf. also [4, 14, 17]), and the upper/lower solutions (cf. [15]).

Definition 2.1. A Carathéodory function h(t, u) satisfies the Villari’s condi-
tion at +∞ (at −∞, respectively) if there exists δ = ±1 and d0 > 0 such
that

δ

∫ T

0

h(t, u(t)) dt > 0 (2.2)

for each u ∈ C1
T such that u(t) ≥ d0 (u(t) ≤ −d0, respectively) for every

t ∈ [0, T ].

Definition 2.2. Let α, β ∈ D. We say that α is a strict lower solution to (2.1),
if

(φ(α′(t)))′ + f(α(t))α′(t) + h(t, α(t)) > 0, for a.e. t ∈ [0, T ], (2.3)

and if u is any T -periodic solution to (2.1) with u(t) ≥ α(t) for all t ∈ [0, T ],
then u(t) > α(t) for all t ∈ [0, T ]. We say that β is a strict upper solution to
(2.1), if

(φ(β′(t)))′ + f(β(t))β′(t) + h(t, β(t)) < 0, for a.e. t ∈ [0, T ], (2.4)

and if u is any T -periodic solution to (2.1) with u(t) ≤ β(t) for all t ∈ [0, T ],
then u(t) < β(t) for all t ∈ [0, T ].

Following [6, Chapter 3, Proposition 1.5], we present now a useful cri-
terion that guarantees when a function α satisfying (2.3) is a strict lower
solution.

Lemma 2.1. Let h : [0, T ]× R→ R be a Carathéodory function satisfying
(A0) for all t0 ∈ [0, T ], u0 ∈ R and ε > 0, there exists δ > 0 such that if

|t− t0| < δ, |u− u0| < δ, then |h(t, u)− h(t, u0)| < ε for a.e. t.
Let a > 0 and α ∈ D be such that

(φ(α′(t)))′ + f(α(t))α′(t) + h(t, α(t)) ≥ a, for a.e. t ∈ [0, T ],

then α is a strict lower solution to (2.1).

Proof. Let u be a T -periodic solution to (2.1) with u(t) ≥ α(t) for every
t ∈ [0, T ]. Since α is not a solution to equation (2.1), there exists t0 ∈ [0, T ]
such that u(t0) > α(t0). Suppose by contradiction that there exists a maximal
interval [t1, t2] in [0, T ] containing t0 such that u(t) > α(t) for all t ∈ ]t1, t2[
with u(t1) = α(t1) or u(t2) = α(t2). Since u(t)−α(t) ≥ 0 for all t ∈ [0, T ], then
u′(t1) = α′(t1) or u′(t2) = α′(t2). First, let us suppose that u(t1) = α(t1). In
this manner, for a.e. t ∈ [0, T ], we have

(φ(u′(t)))′ − (φ(α′(t)))′ ≤
≤ −a− f(u(t))u′(t)− h(t, u(t)) + f(α(t))α′(t) + h(t, α(t)).
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From condition (A0), for ε = a/4, there exists δ > 0 such that, if |t− t1| < δ,
|u − u(t1)| < δ, then |h(t, u) − h(t, u(t1))| < a/4 for a.e. t. Furthermore, by
continuity, let η < δ be such that |u(t) − u(t1)| < δ, |α(t) − α(t1)| < δ and
|f(u(t))u′(t) − f(α(t))α′(t)| < a/2, for all t ∈ [t1, t1 + η]. Then, we have
(φ(u′(t)))′ − (φ(α′(t)))′ ≤ 0 and, by an integration on [t1, t] ⊆ [t1, t1 + η],
we obtain φ(u′(t)) − φ(α′(t)) ≤ 0 for a.e. t ∈ [t1, t1 + η]. It follows that
u′(t) ≤ α′(t) and so u(t) ≤ α(t), for all t ∈ [t1, t1 + η]. Then a contradiction
with the definition of the interval [t1, t2] occurs. Lastly, if u(t2) = α(t2), then
a contradiction is reached in the same way. Finally, α is a strict lower solution
to (2.1). �

A similar result holds for strict upper solutions.

Lemma 2.2. Let h : [0, T ] × R → R be a Carathéodory function satisfying
condition (A0). Let b > 0 and β ∈ D be such that

(φ(β′(t)))′ + f(β(t))β′(t) + h(t, β(t)) ≤ −b, for a.e. t ∈ [0, T ],

then β is a strict upper solution to (2.1).

Our approach is based on continuation theorems, hence we focus our
attention on the parameter depended equation

(φ(u′))′ + λf(u)u′ + λh(t, u) = 0, (2.5)

with λ ∈ ]0, 1]. In particular, the detection of some a priori bounds for solu-
tions to (2.5) leads to the following.

Lemma 2.3. Let h : [0, T ]×R→ R be a Carathéodory function. If there exists
d1 > 0 such that ∫ T

0

h(t, u(t)) dt 6= 0 (2.6)

for each u ∈ C1
T such that u(t) ≥ d1 for every t ∈ [0, T ], then any T -periodic

solution u of (2.5) with λ ∈ ]0, 1] satisfies minu < d1. If there exists d2 > 0
such that (2.6) holds for each u ∈ C1

T such that u(t) ≤ −d2 for every t ∈ [0, T ],
then any T -periodic solution u of (2.5) with λ ∈ ]0, 1] satisfies maxu > −d2.

Proof. Let u be a T - periodic solution to (2.5) with λ ∈ ]0, 1]. By integrating,
we have

0 =

∫ T

0

[
(φ(u′(t)))′ + λf(u(t))u′(t) + λh(t, u(t))

]
dt = λ

∫ T

0

h(t, u(t)) dt.

Suppose by contradiction that either u(t) ≥ d1 or u(t) ≤ −d2 for all t ∈ [0, T ],
then a contradiction follows with respect to (2.6). �

Lemma 2.4. Let h : [0, T ]× R→ R be a Carathéodory function satisfying the
following property:
(AI

1) there exists γ ∈ L1([0, T ],R+) such that h(t, u) ≥ −γ(t) for a.e. t ∈
[0, T ] and for all u ∈ R.
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Then, there exists a constant K0 = K0(γ) such that any T -periodic solution
u to (2.5) with λ ∈ ]0, 1] satisfies

maxu−minu ≤ K0 and ‖u′‖L1 ≤ K0.

Moreover, for any `1, `2 ∈ R with `1 < `2 there exists K1 > 0 such that any
T -periodic solution u to (2.5) with λ ∈ ]0, 1] such that `1 ≤ u(t) ≤ `2 for all
t ∈ [0, T ] satisfies ‖u′‖∞ ≤ K1.

Proof. Let λ ∈ ]0, 1] and let u be a T -periodic solution to (2.5). Let t∗ be such
that u(t∗) = maxu and define v(t) := maxu− u(t), which satisfies v′ = −u′.
By hypothesis (AI

1), we deduce that for almost every t ∈ [0, T ]

(φ(u′(t)))′ = −λf(u(t))u′(t)− λh(t, u(t)) ≤ λf(u(t))v′(t) + γ(t). (2.7)

Up to an extension of h(·, u) by T -periodicity on R, we notice that∫ t∗+T

t∗
f(u(ξ))v(ξ)v′(ξ) dξ = 0.

Multiplying (2.7) by v(t) ≥ 0 and integrating on [t∗, t∗ + T ], we obtain∫ t∗+T

t∗
(φ(u′(ξ)))′v(ξ) dξ ≤ ‖γ‖L1‖v‖∞.

At this point, from the properties of φ it follows straightway that for every
b > 0 there exists Kb > 0 such that φ(ξ)ξ ≥ b|ξ| −Kb, for every ξ ∈ R. In
this manner, via an integration by parts, it follows that∫ t∗+T

t∗
(φ(u′(ξ)))′v(ξ) dξ =

∫ t∗+T

t∗
φ(u′(ξ))u′(ξ) dξ =

∫ T

0

φ(u′(ξ))u′(ξ) dξ

≥
∫ T

0

(
b|u′(ξ)| −Kb

)
dξ = b‖u′‖L1 −KbT = b‖v′‖L1 −KbT.

Finally, we obtain

b‖v′‖L1 ≤ ‖γ‖L1‖v‖∞ +KbT ≤ ‖γ‖L1‖v′‖L1 +KbT = ‖γ‖L1‖u′‖L1 +KbT.

Then, taking b > ‖γ‖L1 and K0 := KbT/(b − ‖γ‖L1), we have ‖u′‖L1 ≤ K0

and hence maxu−minu ≤ K0.
Let `1, `2 ∈ R with `1 < `2. Let u be such that `1 ≤ u(t) ≤ `2 for all

t ∈ [0, T ]. By the Carathéodory condition on h and the boundedness of u,
there exists a constant c > 0 (independent of u and λ ∈ ]0, 1]) such that
u′(t) ∈ φ−1([−c, c]), and so there exists K1 > 0 such that ‖u′‖∞ ≤ K1. �

Lemma 2.5. Let h : [0, T ]× R→ R be a Carathéodory function satisfying the
following property:

(AII
1 ) there exists γ ∈ L1([0, T ],R+) such that h(t, u) ≤ γ(t) for a.e. t ∈ [0, T ]

and for all u ∈ R.
Then, there exists a constant K0 = K0(γ) such that any T -periodic solution
u to (2.5) with λ ∈ ]0, 1] satisfies

maxu−minu ≤ K0 and ‖u′‖L1 ≤ K0.
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Moreover, for any `1, `2 ∈ R with `1 < `2 there exists K1 > 0 such that any
T -periodic solution u to (2.5) with λ ∈ ]0, 1] such that `1 ≤ u(t) ≤ `2 for all
t ∈ [0, T ] satisfies ‖u′‖∞ ≤ K1.

Proof. Let λ ∈ ]0, 1] and let u be a T -periodic solution to (2.5). We enter
in the same setting of Lemma 2.4 via the change of variable x := −u which
leads to the study of

(φ̃(x′))′ + λf̃(x)x′ + λh̃(t, x) = 0,

where φ̃(ξ) = −φ(−ξ), f̃(ξ) = f(−ξ), and h̃(t, ξ) = −h(t,−ξ). �

2.2. Continuation theorem and abstract results
We introduce the fixed point operator and the continuation theorem for the
more general periodic boundary value problem

(φ(u′))′ + F (t, u, u′) = 0, u(0) = u(T ), u′(0) = u′(T ), (2.8)

where F : [0, T ] × R × R → R is a Carathéodory function. We consider the
following Banach spaces X := C1

T , endowed with the norm ‖u‖X := ‖u‖∞ +
‖u′‖∞, and Z := L1(0, T ), with the standard norm ‖ · ‖L1 . In the same spirit
of [14], we define the continuous projectors P : X → X by Pu := u(0), and
Q : Z → Z by Qu := 1

T

∫ T
0
u(t) dt. In the sequel, we also denote by Q the

mean value operator defined on subspaces of Z. We introduce the following
Nemytskii operator N : X → Z by (Nu)(t) := −F (t, u(t), u′(t)) for t ∈ [0, T ].

At this point, following [14], one has that u is a solution of problem
(2.8) if and only if u is a fixed point of the completely continuous operator
G : X → X defined as

Gu := Pu+QNu+KNu, u ∈ X,
where K : Z → X is the map which, to any w ∈ Z, associates the unique
T -periodic solution u(t) of the problem

(φ(u′))′ = w(t)− 1

T

∫ T

0

w(t) dt, u(0) = 0.

Let us consider the periodic parameter-dependent problem

(φ(u′))′+λF (t, u, u′) = 0, u(0) = u(T ), u′(0) = u′(T ), λ ∈ ]0, 1]. (2.9)

We are now ready to state the following continuation theorem, adapted from
[14], where by dLS(Id−G,Ω, 0) we denote the Leray–Schauder degree of Id−G
in Ω, with Ω ∈ X an open bounded set, and by dB we indicate the finite-
dimensional Brouwer degree. We refer to [14, Theorem 3.1] for the proof of
the following theorem (see also [8, Section 3]).

Theorem 2.1. Let Ω be an open bounded set in X such that the following
conditions hold:
• for each λ ∈ ]0, 1] problem (2.9) has no solution on ∂Ω;
• the equation F#(ξ) := 1

T

∫ T
0
F (t, ξ, 0) dt = 0 has no solution on ∂Ω∩R.

Then, dLS(Id−G,Ω, 0) = dB(F#,Ω∩R, 0). Moreover, if the Brouwer degree
dB(F#,Ω ∩ R, 0) 6= 0, then problem (2.1) has a solution in Ω.
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Dealing with equation (2.1), we consider now the special form of the
Carathéodory function F (t, u, u′) = f(u)u′ + h(t, u) and the following result
holds.

Theorem 2.2. Let f : R→ R be a continuous function. Let h : [0, T ]×R→ R
be a Carathéodory function satisfying (AI

1) and the Villari’s condition at −∞
with δ = 1. Suppose there exists β ∈ D which is a strict upper solution for
equation (2.1). Then, (2.1) has at least a T -periodic solution ũ such that
ũ < β. Moreover, there exist R0 ≥ d0 and K1 > 0, such that for each R > R0

and K > K1, we have
dLS(Id− G,Ω, 0) = −1

for Ω = ΩI(R, β,K) := {u ∈ C1
T : − R < u(t) < β(t), ∀ t ∈ [0, T ], ‖u′‖∞ <

K}.

Proof. First of all, we introduce the truncated function

ĥ(t, u) :=

{
h(t, u), if u ≤ β(t),
h(t, β(t)), if u ≥ β(t),

and consider the parameter-dependent equation

(φ(u′))′ + λf(u)u′ + λĥ(t, u) = 0, λ ∈ ]0, 1]. (2.10)

By the assumptions on h, it is easy to prove that ĥ satisfies condition (AI
1).

Then, we can apply Lemma 2.4 and obtain that any T -periodic solution u
to (2.10) with λ ∈ ]0, 1] satisfies maxu −minu ≤ K0 and ‖u′‖L1 ≤ K0, for
some constant K0. Let d2 > max{d0, ‖β‖∞}. By Lemma 2.3 we deduce that
maxu > −d2 and so minu > −K0 − d2 =: −R0.

We claim that, for any T -periodic solution u to (2.10) with λ ∈ ]0, 1],
there exists t̂ ∈ [0, T ] such that u(t̂) < β(t̂). Indeed, if by contradiction
u(t) ≥ β(t) for all t ∈ [0, T ], then u is a T -periodic solution to

(φ(u′))′ + λf(u)u′ + λh(t, β(t)) = 0, λ ∈ ]0, 1].

By an integration, we have
∫ T

0
h(t, β(t)) dt = 0. The strict upper solution

β is T -periodic and satisfies (2.4), then we obtain
∫ T

0
h(t, β(t)) dt < 0, a

contradiction. Therefore minu < ‖β‖∞ and so maxu < ‖β‖∞ +K0 < R0.
An application of Lemma 2.4 in the framework of (2.10) (with `1 =

−R0, `2 := ‖β‖∞ +K0) guarantees the existence of a constant K̂0 such that
‖u′‖∞ ≤ K̂0, for any T -periodic solution u to (2.10) with λ ∈ ]0, 1].

We deduce that the Leray–Schauder degree dLS(Id − Ĝ,Γ, 0) is well-
defined on any open and bounded set

Γ :=
{
u ∈ C1

T : −R < u(t) < C, ∀ t ∈ [0, T ], ‖u′‖∞ < K̂}

for any R > R0, C ≥ ‖β‖∞ +K0 and K̂ > K̂0.
Now we introduce the average scalar map ĥ# : R → R, defined by

ĥ#(ξ) := 1
T

∫ T
0
ĥ(t, ξ) dt, for ξ ∈ R. We notice that ĥ#(−R) > 0, by the
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Villari’s condition at −∞, and ĥ#(c) < 0, taking c ≥ ‖β‖∞. As a conse-
quence of Theorem 2.1, we have

dLS(Id− Ĝ,Γ, 0) = dB(F̂#,Γ ∩ R, 0) = −1,

and so problem (2.10) with λ = 1 has at least a solution ũ in Γ, more precisely
ũ satisfies −R < ũ(t) < C, for all t ∈ [0, T ], and ‖ũ′‖∞ < K̂.

We claim that ũ(t) ≤ β(t) for all t ∈ [0, T ]. We have already proved
that there exists t∗ ∈ [0, T ] such that ũ(t∗) < β(t∗). Suppose by contradic-
tion that there exists t∗ ∈ [0, T ] such that ũ(t∗) > β(t∗). Let ]t1, t2[ be the
maximal open interval containing t∗ such that ũ > β. Then ũ(t1) = β(t1)
and ũ(t2) = β(t2). Moreover ũ′(t1) ≥ β′(t1) and ũ′(t2) ≤ β′(t2), and so
φ(ũ′(t1)) ≥ φ(β′(t1)) and φ(ũ′(t2)) ≤ φ(β′(t2)), due to the monotonicity of
the homeomorphism φ. Next, by an integration and recalling the definition
of ĥ, we have

0 ≥
∫ t2

t1

[
(φ(ũ′(t)))′ − (φ(β′(t)))′

]
dt

>

∫ t2

t1

[
f(ũ(t))ũ′(t)− f(β(t))β′(t)

]
dt+

∫ t2

t1

[
ĥ(t, ũ(t))− ĥ(t, β(t))

]
dt = 0

and a contradiction is found. Then ũ(t) ≤ β(t) for all t ∈ [0, T ]. Hence, ũ is
a solution of (2.1) and, since β is a strict upper solution, ũ(t) < β(t) for all
t ∈ [0, T ].

As a final step, we apply Lemma 2.4 in the framework of (2.1) and we
obtain a constant K1 > 0 such that ‖u′‖∞ ≤ K1, for any T -periodic solution
u to (2.1). We reach the thesis via the excision property of the topological
degree. �

Analogously we obtain the following result.

Theorem 2.3. Let f : R→ R be a continuous function. Let h : [0, T ]×R→ R
be a Carathéodory function satisfying (AII

1 ) and the Villari’s condition at +∞
with δ = −1. Suppose there exists α ∈ D which is a strict lower solution for
equation (2.1). Then, (2.1) has at least a T -periodic solution ũ such that
ũ > α. Moreover, there exist R0 ≥ d0 and K1 > 0, such that for each R > R0

and K > K1, we have
dLS(Id− G,Ω, 0) = −1

for Ω = ΩII(R,α,K) := {u ∈ C1
T : α(t) < u(t) < R, ∀ t ∈ [0, T ], ‖u′‖∞ <

K}.

Remark 2.1. Assuming (A0) and given β ∈ D an upper solution to (2.1) (or
in other words satisfying the weaker form of (2.4)), one can still prove the
existence of a T -periodic solution ũ with ũ ≤ β under the weaker inequality
in (2.2), namely

∫ T
0
h(t, u(t)) dt ≥ 0 for each u ≤ −c0. To this purpose, we

introduce the auxiliary function

hε(t, u) := h(t, u) + εmin{1,max{−1,−u− ‖β‖∞ − 1}}, for ε > 0.
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Now β becomes a strict upper solution for the modified equation (φ(u′))′ +
f(u)u′+hε(t, u) = 0 (for each ε > 0). Moreover, the Villari’s condition holds
in the original strict form (for u ≤ −d0 with d0 > max{c0, ‖β‖∞ + 1}). It is
easy to check that Theorem 2.2 can be applied to obtain the existence of a
T -periodic solution ũε to (φ(u′))′ + f(u)u′ + hε(t, u) = 0 such that −R0 <
ũε ≤ β. The constants R0 and K1 can be chosen uniformly with respect to
ε due to particular form of the (bounded) perturbation. An application of
Ascoli–Arzelà theorem leads to the existence of a solution ũ for (2.1). An
analogous weaker formulation of Theorem 2.3 holds too. C

3. Main results
In this section we present our main results concerning T -periodic solutions
to the parameter-dependent equation

(Es) (φ(u′))′ + f(u)u′ + g(t, u) = s.

Along the section, we assume that φ : R→ R is an increasing homeomorphism
with φ(0) = 0, the map f : R→ R is continuous, the function g : [0, T ]×R→
R satisfies Carathéodory conditions, and s ∈ R. Furthermore, we introduce
the following condition.

(H0) For all t0 ∈ [0, T ], u0 ∈ R and ε > 0, there exists δ > 0 such that if
|t− t0| < δ, |u− u0| < δ, then |g(t, u)− g(t, u0)| < ε for a.e. t.

In the first result, the following hypotheses will be considered as well.
(HI

1) There exists γ0 ∈ L1([0, T ],R+) such that g(t, u) ≥ −γ0(t), for all u ∈ R
and a.e. t ∈ [0, T ].

(HI
2) There exist u0, g0 ∈ R such that g(t, u0) ≤ g0 for a.e. t ∈ [0, T ].

(HI
3) There exist σ > max{0, g0} and d > 0 such that 1

T

∫ T
0
g(t, u(t)) dt > σ

for each u ∈ C1
T such that u(t) ≤ −d for all t ∈ [0, T ].

(HI
4) There exist σ > max{0, g0} and d > 0 such that 1

T

∫ T
0
g(t, u(t)) dt > σ

for each u ∈ C1
T such that u(t) ≥ d for all t ∈ [0, T ].

We are now in position to state and prove our first main result.

Theorem 3.1. Assume (H0), (HI
1), (HI

2) and (HI
3) and let

σ∗ := sup
{
σ ∈ ]g0,+∞[ : (HI

3) is satisfied
}
. (3.1)

Then, there exists s0 ∈ ]−∞, σ∗[ such that:
• for s0 < s < σ∗, equation (Es) has at least one T -periodic solution;
• for s < s0, equation (Es) has no T -periodic solutions.

Moreover, if (HI
4) holds, then for

σ∗∗ := sup
{
σ ∈ ]g0, σ

∗] : (HI
4) is satisfied

}
it follows that:
• for s = s0, equation (Es) has at least one T -periodic solution;
• for s0 < s < σ∗∗, equation (Es) has at least two T -periodic solutions.
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Proof. We split the proof into two steps. In the first one, we prove that there
are no solutions to (Es) if the parameter s is sufficiently small. Moreover,
we show that the set of the parameters s for which (Es) has at least one
T -periodic solution is an interval. In the second one, we discuss the existence
and the multiplicity of solutions to (Es) in dependence of the parameter s.
We follow the approach in [7], by adapting also some arguments from [21].
We consider hs(t, u) := g(t, u)− s to deal with an equation of the form (2.1).

Step 1. If u is a T -periodic solution to (Es), then we have 1
T

∫ T
0
g(t, u(t)) dt =

s, taking the average of the equation on [0, T ]. Hence, from condition (HI
1),

it follows that equation (Es) has no T -periodic solutions for

s < s# := − 1

T

∫ T

0

γ0(t) dt. (3.2)

It is worth noting that assumption (H0) implies that the function hs
satisfies (A0). For each s > g0, the constant function β ≡ u0 is a strict upper
solution to (Es). Indeed, we observe that

(φ(β′(t)))′ + f(β(t))β′(t) + hs(t, β(t)) = g(t, u0)− s ≤ g0 − s < 0

and so, by Lemma 2.2 we have the claim.
Let σ1 satisfying assumption (HI

3) so that the Villari’s condition at −∞
with δ = 1 holds. Therefore, we are in position to apply Theorem 2.2 and we
obtain the existence of at least one T -periodic solution u of (Es) for s = σ1

with u < u0.
We claim now that if w is a T -periodic solution to (Es) for some s =

σ̃ < σ1, then (Es) has a T -periodic solution for each s ∈ [σ̃, σ1]. Indeed, let
s ∈ ]σ̃, σ1[, then by applying Lemma 2.2, we notice that w is a strict upper
solution to (Es), since

(φ(w′(t)))′ + f(w(t))w′(t) + g(t, w(t))− s = σ̃ − s < 0.

Moreover, as observed above, for σ ∈ [σ̃, σ1], assumption (HI
3) implies again

the Villari’s condition at −∞ with δ = 1. In this manner, by Theorem 2.2
there exists at least one T -periodic solution u of (Es) for s = σ with u < w.

Recalling (3.2), we have deduced that the set of the parameters s ≤ σ1

for which equation (Es) has T -periodic solutions is an interval bounded from
below (by s#). Let

s0 := inf
{
s ∈ R : (Es) has at least one T -periodic solution

}
.

By the arbitrary choice of σ1 and the definition of σ∗, we conclude that there
exists at least a T -periodic solution to (Es) for each s ∈ ]s0, σ

∗[.

Step 2. Let Ns the Nemytskii operator associated with f(u)u′ + hs(t, u),
namely (Nsu)(t) := f(u(t))u′(t) + hs(t, u(t)), u ∈ X. Defining

Gλ,su := Pu+ λQNsu+ λKNsu, u ∈ X, λ ∈ ]0, 1].

we obtain that problem (2.9) is equivalent to u = Gλ,su.
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Let σ1 satisfy assumptions (HI
3) and (HI

4). We claim that there exists
a positive constant Λ = Λ(σ1) such that for each s ≤ σ1 any solution of
u = Gλ,su, with 0 < λ ≤ 1, satisfies ‖u‖∞ < Λ.

An application of Lemma 2.3 ensures that maxu > −d and minu < d,
for any possible T -periodic solution u to

(φ(u′(t)))′ + λf(u(t))u′(t) + λhs(t, u(t)) = 0, λ ∈ ]0, 1]. (3.3)

Moreover, by (HI
1) and s ≤ σ1, it follows that hs(t, u) ≥ −γ0(t) − σ1, for

a.e. t ∈ [0, T ]. Now we apply Lemma 2.4 with γ(t) := γ0(t) + |σ1|, and so
there exists a positive constant K0 = K0(σ1) such that maxu−minu ≤ K0,
for any possible T -periodic solution u to (3.3). Thus the claim follows, since
by the above inequalities, we have that ‖u‖∞ < Λ(σ1) := K0(σ1) + d.

Let us fix now a constant σ2 < s#. Let also ρg be a non-negative L1-
function such that |hs(t, u)| ≤ ρg(t) + max{σ1, |σ2|}, for a.e. t ∈ [0, T ], for
all s ∈ [σ2, σ1], for all u ∈ [−Λ(σ1),Λ(σ1)]. From Lemma 2.4 there exists a
constant K1 = K1(σ1, σ2) > 0 such that, for each s ∈ [σ2, σ1], any solution
of u = Gλ,su with 0 < λ ≤ 1 satisfies ‖u′‖∞ < K1.

By considering the homotopic parameter s ∈ [σ2, σ1] and defining

Ω1 = Ω1(R0, R1) :=
{
u ∈ C1

T : ‖u‖∞ < R0, ‖u′‖∞ < R1

}
,

we obtain that

dLS(Id−G1,σ1
,Ω1, 0) = dLS(Id−G1,σ2

,Ω1, 0) = 0, ∀R0 ≥ Λ(σ1), ∀R1 ≥ K1.
(3.4)

From the conclusions achieved in Step 1, (Es) has a T -periodic solution
for every s ∈ ]s0, σ

∗∗[ ⊆ ]s0, σ
∗[.

Let ũ1 be a T -periodic solution to (Es) for some s = σ̃1 ∈ ]s0, σ
∗∗[. Let

us fix s ∈ ]σ̃1, σ
∗∗[ and claim that a second solution to (Es) exists. Clearly,

since s > σ̃1, it follows that ũ1 is a strict upper solution to (Es).
By the validity of the Villari’s condition at −∞ with δ = 1 and an

application of Theorem 2.2 we have

dLS(Id− G1,s,Ω
I(R0, w,R1), 0) = −1, (3.5)

where R0 ≥ Λ(σ1) + 1 and R1 ≥ K1.
Now, from (3.4), (3.5) and ΩI(R0, w,R1) ⊆ Ω1, we obtain that there

exists also a second solution to (Es) contained in Ω1 \ ΩI(R0, w,R1), via the
additivity property of the topological degree.

We conclude the proof by showing that for s = s0 there is at least one
T -periodic solution.

Let us fix σ1, σ2 with σ2 < s0 < σ1 < σ∗∗. Let (sn)n ⊆ ]s0, σ1] be a
decreasing sequence with sn → s0. By the above estimates, for each n there
exists at least one T -periodic solution wn to

(φ(w′n(t)))′ + f(wn(t))w′n(t) + g(t, wn(t)) = sn

with ‖wn‖∞ ≤ Λ(σ1) and ‖w′n‖∞ ≤ K1(σ1, σ2). Passing to the limit as
n → ∞ and applying Ascoli–Arzelà theorem, we achieve the existence of at
least one T -periodic solution to (Es) for s = s0, concluding the proof. �
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The following hypotheses will be assumed in the next result.
(HII

1 ) There exists γ0 ∈ L1([0, T ],R+) such that g(t, u) ≤ γ0(t), for all u ∈ R
and a.e. t ∈ [0, T ].

(HII
2 ) There exist u0, g0 ∈ R such that g(t, u0) ≥ g0 for a.e. t ∈ [0, T ].

(HII
3 ) There exist ν < min{0, g0} and d > 0 such that 1

T

∫ T
0
g(t, u(t)) dt < ν

for each u ∈ C1
T such that u(t) ≤ −d for all t ∈ [0, T ].

(HII
4 ) There exist ν < min{0, g0} and d > 0 such that 1

T

∫ T
0
g(t, u(t)) dt < ν

for each u ∈ C1
T such that u(t) ≥ d for all t ∈ [0, T ].

Our second main result is the following, which can be viewed as a “dual”
version of Theorem 3.1.

Theorem 3.2. Assume (H0), (HII
1 ), (HII

2 ) and (HII
4 ) and let

ν∗ := inf
{
ν ∈ ]−∞, g0[ : (HII

4 ) is satisfied
}
.

Then, there exists s0 ∈ ]ν∗,+∞[ such that:
• for ν∗ < s < s0, equation (Es) has at least one T -periodic solution;
• for s > s0, equation (Es) has no T -periodic solutions.

Moreover, if (HII
3 ) holds, then for

ν∗∗ := sup
{
ν ∈ [ν∗, g0[ : (HII

3 ) is satisfied
}

it follows that:
• for s = s0, equation (Es) has at least one T -periodic solution;
• for ν∗∗ < s < s0, equation (Es) has at least two T -periodic solutions.

Proof. As in the proof of Lemma 2.5, the change of variable x := −u trans-
forms (Es) to

(φ̃(x′))′ + f̃(x)x′ + g̃(t, x) = −s, (3.6)

where φ̃(ξ) = −φ(−ξ), f̃(ξ) = f(−ξ), and g̃(t, ξ) = −g(t,−ξ). Then we apply
Theorem 3.1 to the T -periodic problem associated with (3.6). Precisely, there
exists s̃0 ∈ ]−∞, σ∗[ such that equation (3.6) has: no T -periodic solutions,
for s < s̃0; at least one T -periodic solution, for s = s̃0; at least one T -
periodic solution, for s̃0 < s < σ∗; at least two T -periodic solutions, for
s̃0 < s < σ∗∗ ≤ σ∗. Defining s0 := −s̃0 and observing that ν∗ = −σ∗ and
ν∗∗ = −σ∗∗, the thesis follows. �

Remark 3.1. We stress that conditions (HI
2) and (HII

2 ) ensure the existence
of a strict upper/lower solution to (Es), respectively, which is given by the
constant function u0. In place of those conditions, one can assume the fol-
lowing.

(HF
2 ) There exist a function u0 ∈ D and g0 ∈ R such that

(φ(u′0))′ + f(u0)u′0 + g(t, u0) = g0.

Indeed, by assuming condition (HF
2 ), we immediately have the existence of a

T -periodic solution u0 to (Es) for s = g0, which in turns is a strict upper/lower
to (Es) for s > g0 and for s < g0, respectively. C
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We conclude the section by proving that (HF
2 ) holds for semi-bounded

nonlinearities g (see Proposition 3.2).
As a first step, recalling the definitions of the Banach spaces Z and

D, and of the projector Q given in Section 2.2, we introduce the following
subspaces

Z̃ :=
{
w ∈ Z : Qz = 0}, D̃ :=

{
u ∈ D :

∫ T

0

u(t) dt = 0

}
.

We state the following result, which is a minor variant of [14, Lemma 2.1],
where the operator K̃ in our context takes the form K̃ = K −QK (with the
notation introduced in Section 2.2).

Lemma 3.1. For every w ∈ Z̃ there exists unique u ∈ D̃ such that

(φ(u′))′ = w. (3.7)

Furthermore, let K̃ : Z̃ → D̃ be the operator which associates to w the unique
solution u to (3.7). Then, K̃ is continuous, maps bounded sets on bounded
sets, and sends equi-integrable sets into relatively compact sets.

As a second step, for u ∈ D let ū := 1
T

∫ T
0
u(t) dt. Then, we have that

u = ū+ ũ, with ũ ∈ D̃. We deal now with the problem (φ(ũ′))′ = λ

(
F (t, ū+ ũ, ũ′)− 1

T

∫ T

0

F (ξ, ū+ ũ(ξ), ũ′(ξ)) dξ

)
,

ũ ∈ D̃, λ ∈ [0, 1],

(3.8)

which can be equivalently written as a fixed point problem of the form

ũ = Ñ (ū, ũ;λ) := K̃(λF(ū+ ũ)), ũ ∈ D̃, λ ∈ [0, 1],

where (Fu)(t) = F (t, u(t), u′(t))−QF (·, u, u′)(t), for t ∈ [0, T ]. In this setting
the following result adapted from [18] holds (see also [1, 10, 16]).

Lemma 3.2. Suppose that there exists ū0 ∈ R such that for ū = ū0 the set of
solutions ũ to (3.8) with λ ∈ [0, 1] is bounded. Moreover, assume that for any
M > 0 there exists M ′ > 0 such that if |ū| ≤ M then ‖ũ‖C1 ≤ M ′, where
(ū, ũ) is a solution pair to (3.8) for λ = 1. Then, there exists a closed and
connected set C ⊆ R × C1

T of solutions pairs (ū, ũ) to (3.8) for λ = 1 such
that {ū ∈ R : (ū, ũ) ∈ C } = R.

As a third step, we present an application of Lemma 3.2 for problem (φ(ũ′))′ + f(ū+ ũ)ũ′ + λg(t, ū+ ũ)− λ

T

∫ T

0

g(ξ, ū+ ũ(ξ)) dξ = 0,

ũ ∈ D̃, λ ∈ [0, 1].

(3.9)

Proposition 3.1. Assume that there exists a function ρ ∈ L1([0, T ],R+) such
that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ∈ R. Then, the following
results hold.
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(i) There exists K = K(φ, ρ) > 0 such that any solution pair (ū, ũ) to (3.9)
satisfies ‖ũ′‖L1 ≤ K and ‖ũ‖∞ ≤ K.

(ii) For any M > 0 there exists M ′ = M ′(φ, f, ρ) > 0 such that if |ū| ≤ M
then ‖ũ‖C1 ≤M ′, where (ū, ũ) is a solution pair to (3.9) for λ = 1.

Proof. Let λ ∈ [0, 1] and let (ū, ũ) be a solution pair to (3.9). We proceed
similarly as in the proof of Lemma 2.4. Multiplying (3.9) by ũ and integrating
on [0, T ], we obtain ∫ T

0

(φ(ũ′(ξ)))′ũ(ξ) dξ ≤ ‖ρ‖L1‖ũ‖∞.

We notice that for every b > 0 there existsKb > 0 such that φ(ξ)ξ ≥ b|ξ|−Kb,
for every ξ ∈ R. Hence, via an integration by parts, it follows that∫ T

0

(φ(ũ′(ξ)))′ũ(ξ) dξ =

∫ T

0

φ(ũ′(ξ))ũ′(ξ) dξ

≥
∫ T

0

(
b|ũ′(ξ)| −Kb

)
dξ = b‖ũ′‖L1 −KbT.

Finally, we obtain

b‖ũ′‖L1 ≤ ‖ρ‖L1‖ũ‖∞ +KbT ≤ ‖ρ‖L1‖ũ′‖L1 +KbT.

Then, taking b > ‖ρ‖L1 and K = K(φ, ρ) := KbT/(b − ‖ρ‖L1), we have
‖ũ′‖L1 ≤ K and so ‖ũ‖∞ ≤ K. Hence, (i) is proved.

Let (ū, ũ) be a solution pair to (3.9) for λ = 1. Let M > 0 and suppose
that |ū| ≤ M . By the assumptions on f and g, and the above remarks, we
have that f(ū+ ũ)ũ′ + g(t, ū+ ũ)− 1

T

∫ T
0
g(ξ, ū+ ũ(ξ)) dξ is bounded in L1.

Next, proceeding as in the last step of the proof of Lemma 2.4, we have
‖ũ′‖∞ ≤ K1 and so, from (i), ‖ũ‖C1 ≤ M ′ := K + K1. The proof of (ii) is
completed. �

In the next proposition we combine the results of Proposition 3.1 with
an argument exploited in [5].

Proposition 3.2. Assume that there exists a function ρ ∈ L1([0, T ],R+) such
that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≥ 0 (or for all u ≤ 0,
respectively). Then, for every d > 0 there exists g0 ∈ R such that equation
(Es) for s = g0 has a T -periodic solution u0 with u0(t) ≥ d for all t ∈ [0, T ]
(or with u0(t) ≤ −d for all t ∈ [0, T ], respectively).

Proof. Let us suppose that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≥ 0.
Let us define the nonlinearity ĝ : [0, T ]× R→ R as follows

ĝ(t, u) :=

{
g(t, 0), if u ≤ 0,
g(t, u), if u ≥ 0.

We notice that |ĝ(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ∈ R. Let us
consider the equation

(Ês) (φ(u′))′ + f(u)u′ + ĝ(t, u) = s.
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As a direct application of Lemma 3.2 and Proposition 3.1, we obtain that
there exists a continuum C ⊆ R× D̃ of solution pairs (ū, ũ) to (3.9) for λ = 1
such that {ū ∈ R : (ū, ũ) ∈ C } = R. As a consequence, for every ū ∈ R there
exists a solution ũ ∈ D̃ to (3.9) for λ = 1 and satisfying conditions (i) and (ii).
Let ū0 ≥ d+K and let ũ0 be the corresponding solution to (3.9) for λ = 1.
Let us define u0 := ū0 + ũ0. We notice that u0 is a T -periodic solution to
(Ês) for s = g0 := 1

T

∫ T
0
ĝ(t, u0(t)) dt. Moreover, u0(t) ≥ d+K − ‖ũ0‖∞ > d,

for all t ∈ [0, T ]. Then u0 is a T -periodic solution to (Es) for s = g0 with
u0(t) ≥ d, for all t ∈ [0, T ].

If we assume that |g(t, u)| ≤ ρ(t) for a.e. t ∈ [0, T ] and for all u ≤ 0,
one can proceed in a similar manner. The theorem is thus proved. �

4. Applications

In this final section, we present two consequences of the theorems illustrated
in Section 3. More precisely, first we show some results in the framework of
T -periodic forced Liénard-type equations for which theorems illustrated in
the introduction are straightforward corollaries. Secondly, we analyse Neu-
mann problems in the framework of radially symmetric solutions to partial
differential equations.

4.1. Weighted periodic problems
We deal with the T -periodic forced Liénard-type equation

(WE s) (φ(u′))′ + f(u)u′ + a(t)q(u) = s+ e(t),

where s ∈ R is a parameter, φ : R → R is an increasing homeomorphism
such that φ(0) = 0, the functions f, q : R → R are continuous. We also
assume a ∈ L∞(0, T ) and e ∈ L1(0, T ). Moreover, we suppose a(t) ≥ 0 for
a.e. t ∈ [0, T ] with ā := 1

T

∫ T
0
a(t) dt > 0. When the limits of the continuous

function q at ±∞ exist, we set

lim
u→−∞

q(u) = ω−, lim
u→+∞

q(u) = ω+. (4.1)

In the sequel we apply the general results achieved in Section 3 to the
broadest class of nonlinear terms q. In order to do this, we observe that it
is not restrictive to assume that ē := 1

T

∫ T
0
e(t) dt = 0, and, moreover, that

min{ω−, ω+} > 0, if q is bounded from below, or that max{ω−, ω+} < 0, if
q is bounded from above. Indeed, if necessary, one can include in the forcing
term e(t) the function a(t)(− inf q+ ε) (or a(t)(− sup q− ε), respectively) for
some ε > 0, and, next, add the mean value ē in the parameter s.

We are now in position to present some corollaries of Theorem 3.1, The-
orem 3.2 and their variants. In more detail, we are interested in applications
which always involve (AP) or (BM) alternatives, where the existence of at
least two T -periodic solutions to (WE s) is considered. Beside these results,
we warn that even partial alternatives, concerning only the existence of at
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least one or non-existence of T -periodic solutions, could be performed within
our framework.

For nonlinearities q bounded from below, the following result holds true.

Theorem 4.1. Assume that there exists a number u0 ∈ R such that

0 ≤ q(u0) < min{ω−, ω+}

and
āmin{ω−, ω+} > ‖a‖∞q(u0) + ‖e−‖∞. (4.2)

Then, there exists s0 ∈ ]−∞, āω−[ such that:

• for s < s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for s0 < s < āω−, equation (WE s) has at least one T -periodic solution;
• for s0 < s < āmin{ω−, ω+}, equation (WE s) has at least two T -periodic
solutions.

Proof. We apply Theorem 3.1 for g(t, u) := a(t)q(u) − e(t). We notice that,
since q is continuous and a is an L∞-function, condition (H0) is satisfied.
Moreover, since q(u0) < min{ω−, ω+}, we obtain that q0 := min q ∈ R is well
defined. Then, defining γ0 as the negative part of a(t)q0−e(t), condition (HI

1)
holds. Furthermore, for g0 = ‖a‖∞q(u0) + ‖e−‖∞, (HI

2) is satisfied too.
Lastly, we need that both Villari’s type conditions (HI

3) and (HI
4) are

satisfied as well. Let σ ∈ ]g0, āω−[ and notice that the interval is well defined
and non-empty, since by hypothesis we have g0 < āω−. From (4.1) it follows
that there exists κσ > 0 such that āq(ξ) > σ, for all ξ ≤ −κσ. Let d = κσ and
let u ∈ C1

T be such that u(t) ≤ −d for every t ∈ [0, T ]. From the generalized
mean value theorem, there exists t̃ ∈ [0, T ] such that the following holds

1

T

∫ T

0

g(t, u(t)) dt =
1

T

∫ T

0

a(t)q(u(t)) dt = āq(u(t̃)) > σ

and so (HI
3) is satisfied. By the arbitrary choice of σ we have that (HI

3) is
satisfied for every σ ∈ ]g0, āω−[. Recalling the definition of σ∗ in (3.1), we
claim that σ∗ = āω−. Indeed, if ω− = +∞, then the claim is straightforward
verified. If ω− < +∞, the claim is reached by noticing that (HI

3) is not true for
σ > āω−. Analogously, one can prove that (HI

4) holds for every σ ∈ ]g0, σ
∗∗[,

with σ∗∗ = āmin{ω−, ω+}. The thesis follows. �

Applying the variant of Theorem 3.1 introduced in Remark 3.1 we have
the following result.

Theorem 4.2. Assume that there exists D > 0 such that

q(u) < ω−, for u ≤ −D, and q(u) < ω+, for u ≥ D. (4.3)

Moreover, suppose that min{ω−, ω+} < +∞. Then, the conclusion of Theo-
rem 4.1 holds.
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Proof. Let us suppose that min{ω−, ω+} = ω− < +∞. We apply Theorem 3.1
for g(t, u) := a(t)q(u) − e(t). The conditions (H0) and (HI

1) are verified as
in the proof of Theorem 4.1. Furthermore, an application of Proposition 3.2
ensures that condition (HF

2 ) is satisfied for some g0 ∈ R and u0 ∈ C1
T . Indeed,

since ω− < +∞, it follows that there exist g0 ∈ R and u0 ∈ C1
T such that

u0(t) ≤ −D for every t ∈ [0, T ], with D > 0 as in the statement. Then, on
the light of Remark 3.1, one has only to verify the Villari’s type conditions
(HI

3) and (HI
4). In order to do this, we first observe that

g0 =
1

T

∫ T

0

a(t)q(u0(t)) dt < āω− ≤ āω+.

Then, as in the proof of Theorem 4.1, we have that (HI
3) is satisfied for every

σ ∈ ]g0, āω−[ and (HI
4) is verified too for every σ ∈ ]g0, āmin{ω−, ω+}[.

On the other hand, if we suppose that min{ω−, ω+} = ω+ < +∞, we
achieve the thesis in a similar way. �

Analogously, the following results for nonlinearities q bounded from
above can be obtained as an application of Theorem 3.2 (cf. also Remark 3.1).

Theorem 4.3. Assume that there exists a number u0 ∈ R such that

0 ≥ q(u0) > max{ω+, ω−}
and

āmax{ω−, ω+} < ‖a‖∞q(u0)− ‖e+‖∞. (4.4)
Then, there exists s0 ∈ ]āω−,+∞[ such that:
• for s > s0, equation (WE s) has no T -periodic solutions;
• for s = s0, equation (WE s) has at least one T -periodic solution;
• for āω− < s < s0, equation (WE s) has at least one T -periodic solution;
• for āmax{ω−, ω+} < s < s0, equation (WE s) has at least two T -periodic
solutions.

Theorem 4.4. Assume that there exists D > 0 such that

q(u) > ω−, for u ≤ −D, and q(u) > ω+, for u ≥ D. (4.5)

Moreover, suppose that max{ω−, ω+} > −∞. Then, the conclusion of Theo-
rem 4.3 holds.

We conclude the discussion concerning the T -periodic forced Liénard-
type equation (WE s) by presenting some examples. In this manner, we high-
light the potentiality of the results proposed in this paper that, acting in a
unified framework, lead to a generalization of some classical theorems. Fur-
thermore, our approach allows us to treat more general situations by consid-
ering several types of nonlinearities (cf. Table 1).

Example 4.1. Let us consider q : R → R defined as q(u) := |u|. We notice
that ω± = +∞. This nonlinearity is of type I and characterizes the classical
Ambrosetti–Prodi periodic problem. An application of Theorem 4.1 ensures
the existence of s0 ∈ R such that (WE s) has zero, at least one or at least two
T -periodic solutions according to s < s0, s = s0 or s > s0.



20 G. Feltrin, E. Sovrano and F. Zanolin

Table 1. Illustration of the graphs of the nonlinearities q
considered in the examples presented in Section 4.1.

u

q(u)

u

q(u)

Example 4.1 Example 4.2

u

q(u)

u

q(u)

Example 4.3 Example 4.4

u

q(u)

u

q(u)

Example 4.5 Example 4.6
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Example 4.2. Let us consider q : R → R defined as q(u) := e−u
2

. We notice
that q is a Gaussian function with ω± = 0, so that is of type II, and cor-
responds to the classical problem by Ward. An application of Theorem 4.4
ensures the existence of s0 ∈ R such that (WE s) has zero, at least one or at
least two T -periodic solutions according to s > s0, s = s0 or 0 < s < s0.
Moreover, by an integration on a period, one can observe that for s ≤ 0
equation (WE s) has no T -periodic solutions.

We notice that, if we consider q(u) := e−u
2

+ κ with κ 6= 0, then the
(BM) alternative holds without assuming a uniform condition in the limits.
More precisely, there are zero, at least one or at least two T -periodic solutions
according to s > s0, s = s0 or āκ < s < s0. In the same context, one could be
also driven to apply Theorem 4.3. However, this an example of the difference
between these results. Indeed, if for example κ = −1, then Theorem 4.3
ensures the existence of s0 ∈ ]−ā,+∞[ such that (WE s) satisfies the above
alternative under the additional hyphotesis ā > ‖e+‖∞ (cf. condition (4.4)).

Example 4.3. Let us consider q : R→ R defined as

q(u) :=
(eu + 1)u2

u2 + 1
,

where ω− = 1 and ω+ = +∞. An application of Theorem 4.2 guarantees the
existence of s0 ∈ R such that (WE s) has zero, at least one or at least two
T -periodic solutions according to s < s0, s = s0 or s0 ≤ s < āω−. On the
other hand, since ω− ∈ ]0,+∞], whether the terms a, e satisfy the additional
condition (4.2), the same alternative can be proved via Theorem 4.1.

Example 4.4. Let us consider q : R → R defined as q(u) := u e−u
2

, where
ω± = 0. We notice that either condition (4.3) or condition (4.5) are not
satisfied, so that, both Theorem 4.2 and Theorem 4.4 cannot be applied
in such a framework. However, one can recover an (AP) alternative through
Theorem 4.1 for the auxiliary equation (φ(u′))′+f(u)u′+a(t)q1(u) = `+e1(t),
where q1(u) = q(u) − min q, e1(t) = e(t) − ē − (a(t) − ā) min q, and ` =
s+ ē− āmin q. In this way a, e1 satisfy (4.2). On the other hand, in a similar
manner, one can recover a (BM) alternative through Theorem 4.3.

Example 4.5. Let us consider q : R→ R defined as

q(u) :=
(e−u

2

+ 2)(u6 − u4 − u2 + 1)

u6 + 1
+ 5e−u

2

− 3,

where ω± = −1. We notice that condition (4.3) is satisfied, so that from
Theorem 4.2 we can prove that there exists s0 < −ā such that (WE s) has
zero, at least one or at least two T -periodic solutions according to s < s0,
s = s0 or s0 < s < −ā. On the other hand, if condition (4.4) is satisfied too,
then an application of Theorem 4.3 gives the existence of s1 > −ā such that
(WE s) has zero, at least one or at least two T -periodic solutions according to
s > s1, s = s1 or −ā < s < s1. In this manner, a combination of the classical
(AP) and (BM) alternatives hold simultaneously, leading to an interesting
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phenomenon of 0 1 2 - 2 1 0 solutions to the periodic problem associated
with (WE s).

Example 4.6. Let us consider q : R→ R defined as q(u) := u2n+1, with n ∈ N,
or q(u) := arctan(u). In these cases, q is a non-decreasing function, and con-
sequently, the above theorems do not apply. However, when the nonlinearity
is bounded, one could achieve the existence of at least a T -periodic solution
for some ranges of the parameter s (cf. [16, 18]).

4.2. Radial Neumann problem on annular domains
Let us consider the open annular domain

A :=
{
x ∈ RN : Ri < |x| < Re

}
, with 0 < Ri < Re,

where |·| denotes the usual Euclidean norm in RN , with N ≥ 2. In the present
section we study non-existence, existence and multiplicity of (classical) radi-
ally symmetric solutions to the parameter-dependent Neumann problem∇ · (A(|∇u|)∇u) +G(|x|, u) = s in A,

∂u

∂ν
= 0 on ∂A,

(4.6)

where A : ]0,+∞[ → ]0,+∞[ is a continuous function such that the map
φ(ξ) = A(|ξ|)ξ for ξ 6= 0 and φ(0) = 0 is a homeomorphism on the real line,
G : [Ri, Re] × R → R is a continuous map, and s ∈ R. In this manner, we
pursue the study started in [20, 21] for Neumann problems with local coercive
nonlinearities.

When dealing with radially symmetric solutions to (4.6), one is led to
define r = |x|, v(r) = v(|x|) = u(x), and so to study the problem{

(rN−1A(|v′|)v′)′ + rN−1G(r, v) = rN−1s,

v′(Ri) = v′(Re) = 0.
(4.7)

We notice that the map ξ 7→ A(|ξ|)ξ is an increasing homeomorphism. Hence,
looking at solutions to (4.7), we now present our result in the framework of
a more general problem. Namely, we deal with a Neumann problem of the
form {

(ζ(t)φ(u′))′ + g(t, u(t)) = p(t)s,

u′(a) = u′(b) = 0,
(4.8)

where a < b, ζ, p : [a, b] → ]0,+∞[ are continuos functions, φ : R → R is an
increasing homeomorphism such that φ(0) = 0, g : [a, b] × R → R satisfies
Carathéodory conditions, and s ∈ R.

First of all, let X :=
{
u ∈ C1([a, b]) : u′(a) = u′(b) = 0

}
be the Banach

space endowed with the norm ‖u‖X := ‖u‖∞ + ‖u′‖∞. Next we define the
completely continuous operator G : X → X as

(Gu)(t) := u(a)− 1

b− a

∫ b

a

h(t, u(t)) dt+

∫ t

a

φ−1

(
− 1

ζ(t)

∫ s

a

h(ξ, u(ξ)) dξ

)
ds,
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where h(t, u) := g(t, u) − p(t)s. One can easily verify that u is a solution to
problem (4.8) if and only if u is a fixed point of G (cf. [11, Section 2]).

In this setting, up to minimal changes in the discussion in Section 2 and
Section 3, all the results presented therein hold for problem (4.8), too.

Taking into account that∫
Ω

G(|x|, u(x)) dx = ωN−1

∫ Re

Ri

rN−1G(|r|, u(r)) dr,

where ωN−1 is the area of the unit sphere in RN (cf. [9, Section 2.7]), we
obtain the following theorem for radially symmetric solutions to the Neumann
problem (4.6).

Theorem 4.5. Assume that
(G1) there exists C0 > 0 such that G(|x|, u) ≥ −C0, for all u ∈ R and x ∈ Ω;
(G2) there exists u0, g0 ∈ R such that G(|x|, u0) ≤ g0, for all x ∈ Ω;
(G3) for each σ there exists dσ > 0 such that 1

|Ω|
∫

Ω
G(|x|, u(x)) dx > σ for

each radially symmetric u ∈ C0(Ω) ∩ C1(Ω) with u(x) ≤ −dσ for all
x ∈ Ω;

(G4) for each σ there exists dσ > 0 such that 1
|Ω|
∫

Ω
G(|x|, u(x)) dx > σ for

each radially symmetric u ∈ C0(Ω)∩C1(Ω) with u(x) ≥ dσ for all x ∈ Ω.
Then, there exists s0 ∈ R such that
• for s < s0, problem (4.6) has no radially symmetric solutions;
• for s = s0, problem (4.6) has at least one radially symmetric solution;
• for s > s0, problem (4.6) has at least two radially symmetric solutions.

A direct application of Theorem 4.5 is the following one.

Corollary 4.1. Let a ∈ C([Ri, Re],R+) be such that a(ξ0) > 0 for some ξ0 ∈
[Ri, Re]. Let q ∈ C(R) be such that lim|u|→+∞ q(u) = +∞. Let G(|x|, u) :=
a(|x|)q(u). Then, the conclusion of Theorem 4.5 holds.
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