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1. Introduction

For a space X , let F(X ) be the collection of all nonempty closed subsets of X , and C(X )  that of all compact membersof F(X ). An interesting class of spaces was introduced by Dolecki, Greco and Lechicki in [11, 12]: a space X was called
consonant if on the hyperspace F(X ) the co-compact topology coincides with the upper Kuratowski topology. Thisclass became of great interest especially after it was noticed by Nogura and Shakhmatov [25] that two other classicalhyperspace topologies, the Fell and Kuratowski topologies, (automatically) coincide on F(X ) provided X is consonant.It was proved in [12] that Čech-complete spaces are consonant. It is also known that metrizable consonant spaces arehereditarily Baire [4]. These results prompted Nogura and Shakhmatov to ask whether consonant metrizable spaces areČech-complete [25, Problem 11.4]. The question was resolved by Bouziad [6] by showing that the statement all analytic
metrizable consonant spaces are completely metrizable is independent of usual axioms for set theory.Consonant spaces can be described in terms out of the framework of hyperspace topologies. One way (following theoriginal definition in [11, 12]) is for a space X to consider the lattice T of all open subsets of X equipped with the Scotttopology, see [29]. A Scott open subset H ⊂ T, called also a compact family, is such that U ∈ H for every U ∈ T whichcontains an element of H; and if ⋃U ∈ H for some U ⊂ T, then ⋃V ∈ H for some finite V ⊂ U. Now, a space X isconsonant if and only if each Scott open set H ⊂ T is compactly generated, i.e. for each U ∈ H there exists a compact
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Consonance and Cantor set-selectors

subset K ⊂ X such that V ∈ H for every V ∈ T, with K ⊂ V . Another more geometrical way is in terms of sectionsfor set-valued mappings, it was suggested by Bouziad in [6], see also [7]. In order to state it, recall that a set-valuedmapping φ : Z → F(X ) is lower semi-continuous (l.s.c.) if the set φ−1[U ] = {z ∈ Z : φ(z) ∩ U 6= ∅} is open in Z forevery open U ⊂ X . Following [6], we say that a subset A ⊂ X is a section for φ : Z → F(X ) if A ∩ φ(z) 6= ∅ for every
z ∈ Z . In particular, we say that a section A for φ is open (compact, etc.) if A is an open (respectively, compact, etc.)subset of X .
Theorem 1.1 ([6]).
A space X is consonant if and only if for every l.s.c. mapping φ : Z → F(X ), where Z is a compact space, every open
section U ⊂ X for φ contains a compact section K ⊂ X for φ.

In this characterisation, compact spaces are not assumed to be Hausdorff, consequently compact subsets of these spacesare not necessarily closed.A mapping θ : Z → F(X ) is upper semi-continuous (u.s.c.) if the set φ−1[F ] is closed in Z for every closed F ⊂ X ; and
θ is called usco it if is nonempty-compact-valued and u.s.c. Let A ⊂ X be a compact section for φ : Z → F(X ). Then,one can define a usco mapping θ : Z → C(X ) by θ(z) = A, z ∈ Z , which now has the property that θ(z) ∩ φ(z) 6= ∅ forevery z ∈ Z . Such mappings were called sections in [15], i.e. the above θ is a usco section for φ. Finally, a mapping
θ : Z → F(X ) is a multi-selection (or, a set-valued selection) for φ : Z → F(X ) if θ(z) ⊂ φ(z) for every z ∈ Z .If X is a completely metrizable space and Z is paracompact, then every l.s.c. mapping φ : Z → F(X ) has a uscomulti-selection θ : Z → C(X ) [22, Theorem 1.1]. Conversely, if X is a metrizable space with the property that for everyparacompact space Z , every l.s.c. mapping φ : Z → F(X ) has a usco multi-selection θ : Z → C(X ), then X must beČech-complete (i.e., completely metrizable) [24, Proposition 6], see also [28, Lemma 2]. Motivated by this, a space Xwas called a Cantor set-selector, or a C-selector [16], provided every l.s.c. mapping φ : C→ F(X ), from the Cantor set C,has a u.s.c. multi-selection θ : C → F(X ). In [16] there was considered a question whether every metrizable C-selectoris Čech-complete (equivalently, completely metrizable). The question was resolved by van Mill, Pelant and Pol [23] byshowing that the statement all analytic metrizable C-selectors are completely metrizable is independent of usual axiomsfor set theory. This motivated the author to pose the following question in [15].
Question 1 ([15]).Is every metrizable consonant space a C-selector?
In this paper we prove the following theorem which provides the solution to Question 1.
Theorem 1.2.
Every metrizable consonant space is a C-selector.

Theorem 1.2 has a remarkably simple proof, it is presented in the next section. This proof is based on the fact thatevery Gδ-subset of a metrizable consonant space is consonant as well, see Section 2. This fact is related to propertiesof hyperspaces over consonant spaces. They are discussed in Section 3, where we show that “all” Vietoris hyperspacesof compact subsets of metrizable consonant spaces are consonant, see Theorem 3.2 and Corollary 3.3. This reveals astronger property of metrizable consonant spaces that all such hyperspaces are also C-selectors. Another ingredientimplicitly involved in the solution of Question 1 is the fact that the “first” Vietoris hyperspace C(X ) of a metrizableconsonant space X is hereditarily Baire (i.e., each closed subset of it has the Baire property). This result was achievedin [5] by using measure theoretical arguments that every such hyperspace is a Prohorov space. In Section 4, we relatethis property to compact sections of l.s.c. mappings with values in hyperspaces, see Proposition 4.1. However, suchproperties remain unclear for Cantor set-selectors, see Questions 3 and 4. We conclude the paper with a remark showingthat if, in Theorem 1.1, “Z is compact” is replaced by “Z is metrizable” in a suitable way, then the resulting propertyimplies Čech-completeness of a metrizable X , Corollary 5.2; in fact, this is derived as a consequence of a known resultfor a similar modification of the Cantor set-selector property, [23, Theorem 7.1].
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2. Proof of Theorem 1.2

Let X be a metrizable consonant space, Z be a compact metric space, and let φ : Z → F(X ) be an l.s.c. mapping. Also,let
Y = Graphφ = {(z, x) ∈ Z ×X : x ∈ φ(z)}

be the graph of φ. Since φ is l.s.c. and closed-valued, Y is a Gδ-subset of Z ×X , see, for instance, [21, Lemma 11.3],also [14, Propositions 6.8 and 6.9]. According to [12, Theorem 7.1], Z ×X also is a consonant space. Since Z ×X ismetrizable, by [5, Theorem 6], each Gδ-subset of Z ×X is a consonant space, hence so is Y . Then, define a mappingΦ: Z → F(Y ) by Φ(z) = {z}×φ(z), z ∈ Z . Since φ is l.s.c., so is Φ, and by Theorem 1.1, Φ has a compact section K ⊂ Y .This K defines a mapping θ from Z to the subsets of X which has K as its graph, i.e. Graph θ = K . Then, θis nonempty-valued because ∅ 6= K ∩ Φ(z) = K ∩ ({z}×φ(z)), z ∈ Z , and is also a multi-selection for φ becauseGraphθ ⊂ Graphφ. Finally, θ is usco because the projection pZ : Graphθ → Z is perfect, see for instance [3,Theorem 2.6], also [8, Proposition 1.1]. The proof of Theorem 1.2 is completed. 2Some interesting consequences follow from Theorem 1.2. A classical theorem of Suslin states that every analytic subsetof a Polish space is either countable or contains a copy of the Cantor set. For non-separable metrizable spaces, theresult has been generalised by Stone [30] (for absolutely Borel spaces), El’kin [13] (for absolutely analytic spaces)and Koumoullis [18] (for Prohorov spaces). According to [16, Theorem 2], every metrizable Cantor set-selector is eitherscattered or contains a copy of the Cantor set. Consequently, by Theorem 1.2, the same is true for metrizable consonantspaces which allows to get the following results for such spaces.A space X is dissonant if it is not consonant. It was shown in [25, Examples 9.1 and 9.3] that there are metrizabledissonant spaces; in the same paper (remark added in the proof) there was announced a result by Alleche and Calbrixthat there exists a hereditarily Baire separable metrizable dissonant space. The example provided by them is a Bernsteinset [1, Corollary 3.6]. This is now an immediate consequence of Theorem 1.2.
Corollary 2.1.
There exists a separable metrizable space X each closed subset of which is a Baire space, but X is not a consonant
space. In fact, every Bernstein space is of this kind.

Proof. A subset X of an uncountable Polish space Y is said to be a Bernstein set if neither X nor Y \ X contains acopy of the Cantor set. Each uncountable Polish space contains a Bernstein set [19, p. 514]. According to [16, Theorem 2],every metrizable Cantor set-selector without isolated points contains a copy of the Cantor set. Thus, there is a separablemetrizable space X each closed subset of which has the Baire property but X is not consonant. Indeed, by Theorem 1.2,every Bernstein space is of this kind.
Here is another consequence generalising the main result of [9, Theorem 1], also simplifying significantly the proof ofthis fact.
Corollary 2.2.
Every metrizable consonant space without isolated points contains a copy of the Cantor set. In particular, every
metrizable space without isolated points, such that every compact subset of it is scattered, is dissonant.

It follows immediately from Theorem 1.2 and [16, Theorem 2].
3. Consonance of hyperspaces

The following simple observation was done in [6], it will be found useful in our next considerations.
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Proposition 3.1.
A regular space X is consonant if and only if for every compact space Z, every l.s.c. mapping φ : Z → F(X ) has a
compact section K ⊂ X.

In what follows, we will examine hyperspaces of consonant spaces. Our considerations will involve C(X ) endowed withthe Vietoris topology τV . Recall that τV is generated by all collections of the form
〈V〉 = {

S ∈ C(X ) : S ⊂⋃V and S ∩ V 6= ∅, whenever V ∈ V
}
,

where V runs over finite families of open subsets of X . For convenience, for an open subset V ⊂ X , we write 〈V 〉 ratherthan 〈{V}〉. Throughout this paper, C(X ) will always be endowed with the Vietoris topology when it comes to considerit as a topological space.Let us mention that, for a metric space (X, d), the Vietoris topology on C(X ) is metrizable by the Hausdorff metric

H(d)(S, T ) = inf {ε > 0 : S ⊂ Bdε (T ), T ⊂ Bdε (S)}, S, T ∈ C(X ).
Here, Bdε (A) = {x ∈ X : d(x, A) < ε}.
Theorem 3.2.
A metrizable space X is consonant if and only if its Vietoris hyperspace C(X ) is consonant.

Proof. For a metrizable X , the Vietoris hyperspace C(X ) is also metrizable as mentioned above. If C(X ) is consonant,then each closed subset of it also is consonant [12, Proposition 4.2], see also Proposition 3.1. Since x 7→ {x}, x ∈ X , isan embedding of X in C(X ) as a closed subset, X itself is a consonant space. Suppose now that X is consonant, andtake an l.s.c. mapping φ : Z → F(C(X )) for some compact space Z . We follow the idea of [5, Proposition 4]. Namely,let H be the family of all open subsets V ⊂ X such that 〈V 〉 is a section for φ. Since Z is compact and φ is l.s.c., thisis a nonempty compact family (i.e., a Scott open set). Then, H is compactly generated. Take U ∈ H and let K ⊂ Ube a compact subset of X such that V ∈ H for every open V ⊂ X , with K ⊂ V . If z ∈ Z and K ∩⋃φ(z) = ∅, then
V = X \

⋃
φ(z) is an open set such that K ⊂ V , hence V ∈ H, but 〈V 〉 is not a section for φ, and so V /∈ H. Thus, wemust have that K ∩⋃φ(z) 6= ∅. So, K is a nonempty compact subset of X , and we may consider the nonempty compactsubset C(K ) of C(X ). Suppose that C(K )∩φ(z) = ∅ and take a metric d on X compatible with the topology of X . Since

C(K ) is a compact subset of C(X ) disjoint from the closed subset φ(z), there exists ε > 0 such that BH(d)
ε (C(K ))∩φ(z) = ∅.According to the definition of H(d) and the fact that C(K ) consists of all nonempty compact subsets of K , we now have

K ∈ 〈Bdε (K )〉 ⊂ BH(d)
ε (C(K )) and, in particular, that 〈Bdε (K )〉 is not a section for φ, while by the property of K we alsohave that Bdε (K ) ∈ H. A contradiction. Thus, C(K ) is a section for φ and, by Proposition 3.1, the proof is completed.

Motivated by Theorem 3.2, to every metrizable space X we may associate the sequence of hyperspaces C(n)(X ), n < ω,defined by
C(0)(X ) = X and C(n+1)(X ) = C

(
C(n)(X )).

It now follows from Theorem 3.2 that consonance is stable with respect to these hyperspaces.
Corollary 3.3.
If a metrizable space X is consonant, then each C(n)(X ), n < ω, is also consonant.

Combining Theorems 1.2 and 3.2, we also have the following interesting consequence which reveals more about therelationship between consonant spaces and Cantor set-selectors.
Corollary 3.4.
If a metrizable space X is consonant, then each C(n)(X ), n < ω, is a Cantor set-selector.
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Motivated by Corollary 3.4, we have the following natural question.
Question 2.Does there exist a metrizable Cantor set-selector X such that C(X ) is not a Cantor set-selector?
Of course, if the answer to Question 2 is “yes”, then such a space must be dissonant.
4. Prohorov spaces

Let B(X ) be the smallest σ-algebra that contains all closed subsets of a space X , i.e. the Borel σ-algebra associatedto X ; the elements of B(X ) are often called Borel subsets of X . A countably additive function µ : B(X ) → [0,+∞] is a
Radon measure if

µ(B) = sup{µ(K ) : K ⊂ B, K is compact}, B ∈ B(X ).
A Radon probability measure is a Radon measure µ with µ(X ) = 1, and we use P(X ) to denote the set of all such measures.Every µ ∈ P(X ) uniquely defines a positive linear functional µ(g) = ∫

gdµ, where g runs over bounded continuousfunctions on X . As a topological space, we consider P(X ) endowed with the weakest topology with respect to whichall these functionals are continuous. Thus, a net {µα} ⊂ P(X ) converges to µ ∈ P(X ) if and only if {µα (g)} convergesto µ(g) for every bounded continuous function g : X → R. In particular, for every closed F ⊂ X and ε > 0, the set
{µ ∈ P(X ) : µ(F ) < ε} is open in P(X ).The famous Prohorov theorem [27] states that if X is a Polish space, then for every compact Z ⊂ P(X ) and every ε > 0there exists a compact K ⊂ X , with µ(X \K ) < ε for all µ ∈ Z . Spaces having this property, called Prohorov spaces, arewidely investigated in the literature. It is well known that Čech-complete spaces are Prohorov [26], and more generallyall sieve-complete spaces, see [17].Prohorov spaces are defined by compact sets and behave in a similar way as consonant spaces. For instance, it wasproved in [26, Theorem 6] that a co-analytic separable metrizable space is Prohorov if and only if it is Čech-complete;also that every Gδ-subset of a Prohorov space is a Prohorov space [26, Theorem 1].Prohorov spaces have been the main interface between consonant spaces and hereditarily Baire spaces. Let us mentionDebs’ result [10, Théorème 5.1] that every Prohorov space having a dense first countable subspace is a Baire space. Onthe other hand, it was proved by Bouziad [4, Theorem 2.2] that every completely regular consonant space is Prohorov.It was further proved by Bouziad [5, Proposition 4] that the hyperspace C(X ) is a Prohorov space for every completelyregular consonant space X . Combining these results, Bouziad derived in [5, Proposition 5] that C(X ) is hereditarily Bairefor every metrizable consonant space X . The following observation follows the idea of the proof of [17, Theorem 3.1], andoffers some explanation for this relationship.
Proposition 4.1.
Let X be a metrizable space such that every l.s.c. mapping φ : C→ F(C(X )) has a compact section K ⊂ C(X ). Then, X
is a Prohorov space.

Proof. Given ε > 0, define a mapping Ψ from P(X ) to the subsets of C(X ) by
Ψ(µ) = {K ∈ C(X ) : µ(X \K ) < ε}, µ ∈ P(X ),

and let Φ(µ) be the τV -closure of Ψ(µ) in C(X ), for each µ ∈ P(X ). By [17, Proposition 2.1] and [20, Proposition 2.3],Φ: P(X )→ F(C(X )) and it is l.s.c. Take a compact subset Z ⊂ P(X ). According to [2, Theorem 2.27], P(X ) is metrizable,hence Z is a compact metrizable space (in particular, a continuous image of C), and, by hypothesis, the l.s.c. mapping
φ = Φ�Z has a compact section K ⊂ C(X ). Then, K = ⋃K is a compact subset of X , see for instance [17, Proposition 2.3].Finally, take µ ∈ Z and A ∈ K ∩ φ(µ) ⊂ Φ(µ). By [17, Proposition 2.2], µ(X \K ) ≤ µ(X \A) ≤ ε, i.e. X is a Prohorovspace.

345

Unauthenticated
Download Date | 11/28/19 7:37 AM



Consonance and Cantor set-selectors

According to Debs’ result [10, Théorème 5.1] and Corollary 3.3, we have
Corollary 4.2.
If X is a metrizable consonant space, then each C(n)(X ), n < ω, is a Prohorov space. In particular, each C(n)(X ), n < ω,
is hereditarily Baire.

The property that each Gδ-subset of a metrizable consonant space X is also consonant [5, Theorem 6], is essentiallybased on the fact that C(X ) is hereditarily Baire. In turn, this property was the most essential one to show that everymetrizable consonant space is a Cantor set-selector. It seems, the situation with hyperspaces of metrizable Cantorset-selectors is unclear; for instance, the following question is still open.
Question 3 ([16]).Is every Gδ-subset of a metrizable Cantor set-selector also a Cantor set-selector?
The above question can be resolved affirmatively following the idea of [5, Theorem 6] provided that the Vietoris hyperspace
C(C×X ) is hereditarily Baire for a metrizable C-selector X .According to [16, Theorem 1] (which has a very simple direct proof), every metrizable Cantor set-selector is hereditarilyBaire. However, Cantor set-selectors were defined by the existence of u.s.c. multi-selections which are not necessarilycompact-valued. In this regard, let us agree that a space X is a usco C-selector if every l.s.c. mapping φ : C → F(X )has a usco multi-selection θ : C→ C(X ). We now have also the following natural question.
Question 4.Is every metrizable usco C-selector a Prohorov space?
5. Consonance and complete metrizability

As it was mentioned in Introduction, a metrizable space X is Čech-complete iff for every paracompact space Z , everyl.s.c. mapping φ : Z → F(X ) has a usco multi-selection θ : Z → C(X ). In fact, a bit stronger result was proved in [23] thatit suffices to consider this property only for metrizable spaces Z . To this end, recall that a mapping φ : Z → F(X ) froma space Z to the subsets of a metric space (X, d) is d-u.s.c. (respectively, d-l.s.c.) if for every ε > 0, every z0 ∈ Z has aneighbourhood U such that φ(z) ⊂ Bdε (φ(z0)) (respectively, φ(z0) ⊂ Bdε (φ(z))) for every z ∈ U . A mapping φ : Z → F(X )is called d-continuous (sometimes, also, Hausdorff continuous) if it is both d-l.s.c. and d-u.s.c. Let us remark that every
d-l.s.c. mapping is l.s.c. and every u.s.c. is d-u.s.c., but neither of these is invertible.
Theorem 5.1 ([23, Theorem 7.1]).
Let (X, d) be a metric space such that for every metrizable Z , every d-continuous mapping φ : Z → F(X ) has a usco
multi-selection ψ : Z → C(X ). Then, X is Čech-complete.

Theorem 5.1 implies the following consequence which sheds also some light on [15, Question 1].
Corollary 5.2.
Let X be a metrizable space such that for every metrizable Z , every l.s.c. mapping φ : Z → F(X ) has a usco sec-
tion θ : Z → C(X ). Then, X is Čech-complete.

Proof. Let Z be metrizable, d be a compatible metric on X , φ : Z → F(X ) be d-continuous and θ : Z → C(X ) be ausco section for φ. Define another mapping ψ : Z → C(X ) by ψ(z) = θ(z) ∩ φ(z), z ∈ Z . Then, ψ is a multi-selectionfor φ and, by Theorem 5.1, it suffices to show that ψ is usco. Since φ is d-continuous, its graph Graphφ is closed
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in Z ×X . Since θ is usco, its graph Graphθ also is closed in Z ×X and πZ �Graphθ is perfect, where πZ : Z ×X → Xis the projection. According to the definition of ψ, Graphψ = Graphθ ∩ Graphφ, hence Graphψ is closed in Graph θ,and πZ �Graphψ is perfect as well. Thus, ψ is usco.
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