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Runtime verification of distributed systems poses various challenges. A pivotal challenge is

the choice of how todistribute themonitors themselves across the system.Ononehand, cen-

tralisedmonitoringmay result in increased communicationoverheadand informationexpo-

sure across locations, while, on the other hand, systems with dynamic topologies and prop-

erties are difficult to address using static monitor choreographies. In this paper we present

mDPi, a location-aware π-calculus extension for reasoning about the distributed monitor-

ing scenario. We also define numerousmonitoring strategies for a regular expression-based

logic, including a novel approach in which monitors migrate to ensure local monitoring.

Finally, we present a number of results which emerge from this formalism, justifying our

approach.

©

1. Introduction

Distributed systems provide remote services, economise costs by sharing resources, and improve scalability and depend-

ability through replication. This current trend towards system distribution brings forth new challenges to modelling and

verification: not only do distributed systems have to be more defensively developed to address new potential points of

failure in any of its (non-local) sub-components, but specifications need to cater for additional information, such as locality

of data and control. Moreover, existing approaches to system analysis, from testing and debugging, to runtime verification

andmodel checking, cannot be appliedwithout substantial adaptation because of the constraints induced by the distributed

nature of the systems under analysis. For instance, in dynamic systems, where access to remote services may be discovered

at runtime, one cannot readily extract a closed system for analysis. Similarly, in the case of service contract negotiation, the

properties to be monitored may only be known at runtime, meaning that a further degree of dynamicity is required.

Runtime verification1 is oneway of addressing systemdependability — bymonitoring the system’s behaviour at runtime

and comparing it with its specification, thus enabling the discovery of specification violations and possibly also triggering

recovery behaviour. Inmonolithic systems,where the system resides in a single location, the verifying code typically consists

of a new listening subsystem located in the same address-space of the original system. However, in a distributed setting,

the choice of location of the verifier is crucial, since communication across locations is typically an expensive operation, and

may potentially lead to the exposure of sensitive information. Decisions on the locality may also impact on the structure

of the verifier. For instance, in order to locally verify different parts of the specification, the verifying code may need to be

structured in such a manner so as to be broken down into parts and distributed across locations.
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Various alternative solutions have been presented in the literature from fully orchestrated solutions, coordinated by a

central monitor at a specific location, to choreographed monitors, distributed upfront at different locations. Orchestration is

simple and may be adapted directly from the monitoring of monolithic systems. However, it disregards locality of trace

analysis, requiring such information to travel across possibly untrustedmedia; this leads to increased network traffic across

remote locations and also unnecessary information exposure. Despite these drawbacks, its simplicity makes it an appealing

approach, e.g., in [1], where web-service compositions aremonitored in an orchestrated fashion. Choreography-basedmon-

itoring [2–6] can mitigate orchestration limitations However, a characteristic shortcoming with choreography is that local

monitors have to be instrumented statically, before the analysis starts; this inflexibility prohibits choreographed monitors

from adequately dealing with dynamic systems, where network locations come and go, and dynamic properties. 2

In [7] we proposed a novel approach to distributed systemmonitoring centered around runtime migration: monitors are

installed locally but then allowed to migrate from one location to another when the need arises. Since monitors can be

located where the immediate confidential traces reside, as in choreography-based approaches, migrating monitors avoid

unnecessary data exposure. Moreover, they can also migrate to locations determined at runtime, enabling them to preserve

local monitoring despite dynamic topologies.

Although there is a substantial body of work on the use of runtime verification for distributed systems, e.g., [6,8], much

of the work revolves around tool development and issues of efficiency. We are not aware of any major work attempting to

address this area from amore theoretical perspective, answering questions such as expressivity of and equivalence between

different monitoring approaches.

In this paper, we present a unified formal framework for studying differentmonitoring strategies for distributed systems,

thereby allowing for their precise comparison— showing for instance, that twomonitoring strategiesmay producemonitors

which are distributed in different ways but behave in an equivalent manner; or that one monitoring strategy exposes less

information on global channels than another. We present a location-aware calculus supporting explicit monitoring as a first

class entity, whilst internalising behavioural traces at the operational level of the calculus (as opposed to a meta-level).

In this paper, we focus on what the literature variably refers to as asynchronous, offline or passive monitoring — in which

the monitors check the traces generated by the system asynchronrously, thus not inhibiting its progress. It is worth noting,

however, that the calculus we present can be used to model synchronous (also called online or active) monitoring, in which

the system does not proceed until the monitor processes any event generated.

We show the expressivity of the calculus by using it tomodel different distributed systemmonitoring strategies from the

literature, including migrating monitoring [7]. We later show how behavioral contracts expressed using regular expressions

can be automatically translated into monitors using different monitoring strategies. Finally, we formally prove that (i) the

various identifiedmonitoring strategies are behaviourally equivalent (up to the location ofmonitors); (ii) certain distributed

monitoring approaches, includingmigratingmonitors, are safe fromeavesdropping in that they guarantee that trace analysis

is always performed locally and thus do not broadcast logged information beyond location borders.

This paper is an extended and revised version of [7] with proofs of themain results and the following new contributions:

(i) We present a revised labelled transition system with a novel technique for dealing with partial traces, allowing us to

work with with open systems; (ii) We justify bisimulation equivalence by proving that it is a congruence with respect to

parallel composition (Theorem1); (iii)Weprove that themonitors synthesised froma regular expression using orchestrated,

choreographed and migrating translations are equivalent (Theorems 2 and 3); and (iv) We prove that whereas orchestrated

translations require remote monitoring, choreographed and migrating monitor translations do not incur such a penalty

(Theorems 4 and 5).

The paper is organised as follows. In Section 2, we outline the contractmonitoring strategies for distributed systems from

the literature, as well as the novel migrating monitor approach. We then present the monitoring distributed calculus mDPi

in Section 3.1, the semantics in section 3.2 and bisimulation proof techniques in Section 3.4. The calculus is used to model

of monitoring contracts expressed as regular expressions in Section 4.1. This is followed by Section 4.3, presenting formal

comparisons between different monitoring strategies. The work is discussed and compared to existing formalisations of

distributed monitoring in Section 5, finally concluding in section 6.

2. Approaches to distributed systemmonitoring

Distributed systems — made up of autonomous, concurrently executing sub-systems communicating through message

passing, eachwith its localmemory—pose new challenges tomonitoring,which go beyond those posed by themonitoring of

monolithic systems. Cross-border interaction is typically an expensive operation andmay take place over an unsafemedium.

Moreover, these systems are characterised by the lack of a global clock when ordering events across location boundaries.

Instead, each sub-system admits a local clock, implying a level of asynchrony across locations. The topology of such systems

may sometimes change at runtime through the addition of new subsystems or the communication of private channels.

Most internet-based and service-oriented systems, peer-to-peer systems and Enterprise Service Bus architectures [9] are

instances of such systems.

2 By dynamic properties, we refer to properties which are only known at runtime, such as contracts coming with a service which is discovered and used by a

system at runtime.
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Fig. 1. Orchestrated monitoring.

These characteristics impinge on contractmonitoring. 3 For instance, the absence of a global clock prohibits precisemon-

itoring for consequentiality properties which refer to behaviour in different locations [10]. From a monitoring perspective,

not only is it important that verification uses limited space and computational resources, but it is now also important that

it does not induce an unreasonable communication overhead, since doing so could disrupt the underlying system’s compu-

tation. Furthermore, distribution impacts on information locality; subsystem events may contain confidential information

which must not be exposed globally across unsafe mediums or locations, thereby requiring local monitoring.

Whethermonitoredcontracts areknownat compile timeor elsebecomeknownat runtimeaffectsdistributedmonitoring.

Static contracts, ones which are fully known at compile time, are not always expressive enough for distributed systemswith

dynamic topologies. Dynamic contracts — ones which are only discovered at runtime, or which are only partially known

at compile time — tend to be more appropriate for such systems. They are found, for instance, in intrusion detection [11],

where suspicious user behaviour is learnt at runtime, and in systems involving service discovery, where the chosen service

may come with a fixed or negotiated contract made known only upon discovery.

2.1. Classifying distributed system monitoring approaches

Various approaches have been proposed for monitoring of distributed systems; from centralised architectures, to stat-

ically distributed monitoring approaches and, more recently, the use of mobile monitors. In general, existing approaches

for distributed systemmonitoring can be broadly classified into two categories: orchestration-based or choreography-based.

Orchestration-based approaches relegate monitoring responsibility to a central monitor overhearing all necessary informa-

tion, whereas choreography-based approaches typically distribute monitoring across the subsystems. The main difference

between approaches lies in the flow of information; whereas orchestrated approaches require trace information to flow to

the (central) monitor, choreographed monitoring requires the verification effort to gather the information across locations.

The choice of approach often depends on a number of factors, including the underlying system characteristics, as well as the

properties under consideration.

2.1.1. Orchestration

In an orchestrated approach, all monitoring is performed centrally, accessing the data and control information from

different locations. This centralisation of monitoring facilitates the handling of dynamic contracts. The approach is depicted

in Fig. 1 showing two sub-systems located at l and k, each producing a local trace of events (T1, T2 and T3 respectively),

subsequently analysed by monitors M1,M2,M3 from remote location G (acting as a third sub-system). Shortcomings with

this technique are immediately apparent; the approach is susceptible to data exposure when contacts concern private

information, since local traces are transmitted across locations. Due to the volume of trace information which has to be

transmitted remotely for monitoring, scaling up this scenario may also lead to a considerable increase in communication

overhead across locations. Finally, the architecture poses a security risk by exposing the monitor as a central point of attack

from which sensitive information can be tapped. Nevertheless, an orchestrated monitoring approach can be suitable when

dealingwithpublic informationavailableon thecommunicationmedium.This approach isused in [1],wherepre-determined

web-service compositions expressed through pre-BPMN workflows are monitored in a statically orchestrated fashion. The

use of a central monitor is facilitated in this case by placing the monitor at the coordinating BPMN engine, through which

web-service interactions flow. The approach in [12] is similar, however also supporting orchestrated verification for dynamic

properties, by runtime verifying contracts discovered on-the-fly.

2.1.2. Choreography

In contrast to orchestrated monitoring, choreography-based approaches push verification locally, as shown in Fig. 2. This

scenario depicts three sub-systems at l, k and h each generating local traces, withmonitorsM1,M2 placed at l, andM3 placed

at k. MonitorsM2 andM3 eventually interact in order to synchronise the globalmonitoring effort. The appeal of localising the

3 Although the term contract has been used in different ways in the literature, in our case we consider contracts to be specifications of the expected behaviour

of the system, but which might be violated. This possibility motivates the need for the monitoring of such properties or contracts.
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Fig. 2. Choreographed monitoring.

Fig. 3. Choreographed monitoring.

monitoring effort is the potentialminimisation of data exposure and communication overhead. By verifying locally, we avoid

having to transmit trace information to a remotemonitor. Moreover, communication between localisedmonitors is typically

less than that induced by the remote monitoring through a central monitor. Choreography is, however, more complex to

instrument, since contracts need to be decomposed into coordinated local monitors. Furthermore, it is more intrusive, by

burdening the monitored subsystems with additional local computation, and is thus applicable only when the subsystems

allow local instrumentation of monitoring code. Statically choreographed monitors, i.e., localised monitors verifying a pre-

determined set of properties, are also instrumented upfront, which may lead to redundant local instrumentation in the

case of temporal dependencies in a contract; if monitoring at location k is dependent on verification at location l, and the

check at l is never satisfied, upfront monitor instrumentation at k is never needed. Extensive work has been done in static

choreography-based monitoring [2–6,13], where communication overhead is mitigated by breaking up contracts into parts

which can be monitored independently, synchronising between the monitors only when necessary.

2.1.3. Migrating monitors

An alternate approach to monitoring of distributed systems involves the use of migrating monitors [7]. In this approach,

monitors reside where the immediate confidential traces occur and migrate to other subsystems, possibly discovered at

runtime, when information from elsewhere is required, i.e., on a by-need basis. This monitoring strategy lends itself directly

to dynamic topologies and contracts learnt at runtime. Fig. 3 depictsmonitorM2, which starts at location l, and subsequently

migrates to locations k and h during its verification effort. The sequential nature of migration is exploited in the process to

extract a temporal order on events monitored across locations. The advantage with a migrating monitor approach is that

dynamic contracts can be directly handled, whilst still avoiding orchestration, and thus minimising data exposure. It is for

this reason that migrating monitors are considered a dynamic choreography-based strategy.

Nevertheless, the added expressivity and intrusiveness of migrating monitors requires a trust management infrastruc-

ture to ensure safe deployment of received monitors. Various solutions can be applied towards this end, from monitors

signed by a trusted entity showing that they are the result of an approved contract negotiation process, to proof-carrying

monitors which comewith a proof guaranteeing what resources they access. Migratingmonitors also burden locations with

additional computation by running locally, and are intrusive by requiring local instrumentation of monitoring computation.

Implementing migrating monitoring on an existing distributed system would require access to the individual systems, and

the ability to instrument event detection and processing of contracts. The requirements of the instrumentation phase are

not unlike those faced in choreographed monitoring. Although not all architectures may allow for migration of processes in

a secure and safe manner, this challenge can be addressed by passing the monitors across location boundaries encoded as
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data objects, and which are interpreted at the location where they are to be evaluated. These issues will not be discussed

further here, but are crucial for the practicality of migrating monitors.

2.1.4. Comparing monitoring approaches for distributed systems

Although these approaches have been individually studied in the literature, their formal comparison has not. There are

a various issues relating to these different monitoring approaches that one would like to be able to formally resolve. For

instance, how does one show that two monitors, possibly using different deployment strategies are equivalent, or that

choreographed monitoring exposes less information on global channels than orchestrated monitoring? What is required is

a common formal framework in which different approaches can be expressed, compared and contrasted.

3. A distributed monitoring language

mDPi is an extension and adaptation of the distributed π-calculus [14], with a notion of (i) explicit locations to host

processes; and (ii) monitors, a special form of processes which can (in a non-interfering manner) eavesdrop on the commu-

nication taking place on channels. In contrast to many forms of communication used in process calculi, the communication

taking place between processes in mDPi leaves a residue which monitors may read at a later stage in a non-destructive

manner.

3.1. The syntax

In mDPi, parallel processes, P,Q , R ∈ Proc, interact by communicating on channels, c, d, e, b ∈ Chans; they are dis-

tributed across a flat location structure where hosting locations, l, k,m ∈ Locs, locally administer event trace generation.

Local trace generation yields totally ordered local traces but partially ordered global traces, reminiscent of tracing in dis-

tributed settings. Monitors,M,N ∈ Mon, then asynchronously analyse these partially ordered traces to determine whether

properties are broken. Systems, S,U, V ∈ Sys, range over networks of located processes and monitors.

S,U, V ::= k�P� | k�T� | k{[M]}(l,i) | S ‖ U | new c.S

P,Q , R ::= stop | u!w.P | u?x.P | new c.P | if u=w then P elseQ | P ‖Q | ∗P
T ::= t(c,w, i)

M,N ::= stop | u!w.M | u?x.M | new c.M | if u=w then M else N | M ‖N | ∗M
| q(c, x).M | sync(u).M | go u.M | ok | fail

The syntax, summarised above, assumes denumerable sets of indices i, j, h ∈ Idx and variables x, y, z ∈ Vars apart

from channels and locations, where identifiers u,w range over Idents = Chans ∪ Locs ∪ Idx ∪ Vars. Lists of identifiers

w1, . . . ,wn is denoted as w.

The main syntactic class is that of Systems, consisting of either located processes, k�P�, located traces, k�T�, or located

monitors, k{[M]}(l,i), that can be composed in parallel, S ‖ U, and are subject to scoping of channel names, new c.S. Every
located monitor carries amonitoring context, (l, i) keeping track of the current location, l, and local position (index), i, of the

trace being monitored.

3.1.1. Distributed processes

Processes comprise standard π-calculus constructs [14] such as output, c!v.P where value tuples v may include Chans ∪
Locs ∪ Idx, and input, c?x.P, where variables x are bound in the continuation P. Processes include other constructs such

as name-matching conditional, if u = w then P elseQ , replication, ∗P, parallel composition, P ‖ Q , and name restriction,

new c.P. We will sometimes elide stop and, for example, write c!v for c!v.stop and if B then P for if B then P else stop
respectively.

Example 1. Consider the system of processes below whereby processes (1) and (4) are located at location l whereas

processes (2) and (3) are located at location k.

Sys �
(1)︷ ︸︸ ︷

l�d?x.x!1� ‖
(2)︷ ︸︸ ︷

k�d!c.c!2� ‖
(3)︷ ︸︸ ︷

k�d!b.b?z.P� ‖
(4)︷ ︸︸ ︷

l�c?y.if y=2 then Q1 else Q2�

As in the piCalculus, channels can be communicated as values over other channels in mDPi systems. Process (1) is waiting

for input on channel d and the value inputted, x, is then used as a channel to output the value 1 on it.

Sys1 �
(5)︷ ︸︸ ︷

l�c!1� ‖
(6)︷ ︸︸ ︷

k�c!2� ‖
(3)︷ ︸︸ ︷

k�d!b.b?z.P� ‖
(4)︷ ︸︸ ︷

l�c?y.if y=2 then Q1 else Q2�
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Process (1) can receive this value fromprocess (2), inwhich case the input variable, x,will be instantiated to the channelname

c and the entire system evolves to Sys1 above. At this point the input on channel c in process (4) can non-deterministically

react with either the output of process (5), resulting in the system

Sys′1 � l�stop� ‖ k�c!2� ‖ k�d!b.b?z.P� ‖ l�if 1=2 then Q1{1/y} else Q2{1/y}�
or else the output of process (6), resulting in the system

Sys′′1 � l�c!1� ‖ k�stop� ‖ k�d!b.b?z.P� ‖ l�if 2=2 then Q1{2/y} else Q2{2/y}�
Since the values communicated by these outputs differ, the input variable y at (4) may be instantiated to different values,

i.e., either 1 or 2, which will in turn affect whether this process will branch to Q1 or Q2.

Alternatively, in the original system Sys, process (1) may receive the input on channel d from process (3), in which case

the input variable xwill be instantiated to the channel b and Sys will evolve to the system Sys′2, which clearly has a different

behaviour from the former one.

Sys2 �
(7)︷ ︸︸ ︷

l�b!1� ‖
(2)︷ ︸︸ ︷

k�d!c.c!2� ‖
(8)︷ ︸︸ ︷

k�b?z.P� ‖
(4)︷ ︸︸ ︷

l�c?y.if y=2 then Q1 else Q2�

In fact, the new derivative of process (1), i.e., process (7), can not communicate with process (4) as in the case of Sys′1 above,
but may instead communicate with the derivative of process (3), i.e., process (8), yielding the system:

Sys′2 � l�stop� ‖ k�d!c.c!2� ‖ k�P{1/z}� ‖ l�c?y.if y=2 then Q1 else Q2�

3.1.2. Distributed runtime monitoring

The behaviour of such distributed systems is hard to analyse statically, due to the inherent non-deterministic nature

of concurrent communication and the dynamic instantiation of channel names, as may be apparent from Example 1. In

this work we propose how the behaviour of systems of located processes can be asynchronously monitored and verified at

runtime; runtime analysis has the advantage of only analysing the current path of execution, thereby side-stepping a large

number of problems associated with state-explosion of concurrent system analysis.

The calculus describes distributed, event-based, asynchronous monitoring. Monitoring is asynchronous because it hap-

pens in two phases, whereby themechanism for tracing is detached from that for trace-querying. This two-step setup closely

reflects the limits imposed by a distributed setting and lends itself better to the modelling of the various distributed mon-

itoring mechanisms we want to capture. Monitoring is event-based because we focus on recording and analysing discrete

events involving communication.

3.1.3. Distributed traces

Traces, made up of individual trace records, t(c, v, i), record communication of values v on channel c at timestamp i, and

are meant to be ordered as a complete log recording past process computation at a particular location. For simplicity, traces

in mDPi are limited to recording output events, but we conjecture that extensions to more expressive traces recoding other

forms of actions such as inputs and name comparisons should be a straightforward task. Note that trace records are located,

e.g., k�t(c, v, i)� for some location k, and when they are composed in parallel, their syntactic ordering is not important, e.g.,

writing k�t(c, v, i)� ‖ k�t(d,w, j)� is the same as writing k�t(d,w, j)� ‖ k�t(c, v, i)�, because parallel composition is

commutative. Rather, what is important is the relative ordering of trace records located at the same location, as dictated by

their timestamp.

Example 2. Consider the systemof four processes, discussed in Example 1. If we consider the first sequence of computations

possible, i.e., process (1) receiving the value c on channel d from process (2), followed by a communication on channel c

between processes (1) and (4), then we obtain the trace

Trc1 � k�t(d, c, i)� ‖ l�t(c, 1, j)�

whereas if we consider the communication between process (1) and process (2) on channel d, followed by the communi-

cation between processes (2) and (4) on channel c we obtain the trace

Trc2 � k�t(d, c, i)� ‖ k�t(c, 2, i + 1)�

for some index values i and j.
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Wenote two important aspects of our traces from Example 2. First, motivated by implementation concerns, the recording

of an output action as a trace entity occurs locally, e.g., t(d,c,i) is located at location k in Trc1, the location of the process

performing the output, even though the receiver resides at a different location l. Second, successive output actions at the

same location are ordered by the assigned index, e.g., t(d,c,i) and t(c,2,i+1) at k in Trc2. By contrast, temporally ordered

actions that occur at different locations, e.g., t(d,c,i) and t(c,1,j) in Trc1, lose their ordering as they are assigned unrelated

indexes by their respective locations k and l, namely i and j.

3.1.4. Distributed monitors

Monitorsareautonomouscomputingentities similar in structure toprocesses, butwithadditional capabilities for checking

and verifying distributed process computation through trace analysis. In a distributed setting, this amounts to a best-

effort sound reconstruction of distributed computation from the partial information recorded in the local traces. In mDPi,

monitors are allowed to perform this reconstruction from traces (such as those in Example 2) through a trace-querying

construct,q(c,x).M,anda trace-realignmentconstruct, sync(k).M;these twoconstructsembodyournotionof asynchronous

distributed monitoring.

Although sound, our asynchronousmonitoringmechanism of reconstructing temporal order of events across locations is

incomplete, and may miss property violations when compared to more precise mechanisms such as Vector Clocks [15] and

Lamport Timestamps [10]. These (more advanced)mechanisms however come at the price of increased construct complexity

while still not guaranteeing completeness (in practice) due to the limits inherent to distributed computing [10]. Given that

completeness is not a major concern for this study, we have opted for a construct that is clearly implementable rather going

formore expressive, albeitmore complex, constructs. In particular, the shortcomings of the constructsq(c,x).Mand sync(k).
Mdo not unfavourably affect any particular distributedmonitoring strategy we express in our framework and, therefore, do

not impact on the validity of the conclusions we reach in Section 4.

The construct q(c,x).M queries traces for the first record describing communication on channel c; the list of variables x

are bound in the continuationM. The location, l, and index, i, of the trace where the record is to be searched for are obtained

from the enclosing monitoring-context, (l, i), in a monitor located at k, k{[q(c, x).M]}(l,i). Traces can be analysed either

locally, when l = k or remotely, when l �= k; this flexibility allows us to express both orchestrated monitoring strategies,

which require remote monitoring, as well as choreographed strategies, which favour local monitoring. In order to permit

modular instrumentation of independent properties, mDPi allowsmultiplemonitors to analyse concurrently the same trace.

Trace records are thus not consumedwhen queried (unlike output messages); instead, every monitor keeps its own position

in the trace through the monitoring context.

Monitors can reconstruct a temporal ordering of events across remote traces (which are temporally unrelated) using

the realignment construct, sync(l).M. This construct resets the monitoring context, (m, h), of a monitor k{[sync(l).M]}(m,h)

to (l, i), where i is the index to be assigned to the next generated trace record at location l; this allows the monitor to

start monitoring for records at l from the present state of the computation onwards. As in the case of querying, monitor

re-alignment can be performed both locally, when l = k, as well as remotely, when l �= k, which facilitates the encoding of

various distributed monitoring strategies.

Our framework permits the monitor allocation across locations to change over the course of computation. In fact, as

opposed to processes, monitors can alsomigrate from their existing location to another location l using the construct go l.M.

This, in turn, allows us to express a wider variety of monitoring strategies such as themigratingmonitors strategy, discussed

earlier in Section 2.1.3. The other remaining constructs used exclusively by monitors are ok and fail, which allow monitors

to report success or failure respectively.

Example 3. Consider the property that prohibits outputting an integer that is less than 2 on channel x at location l after this

channel x has previously appeared as a value on channel d at location k. Monitoring whether the system Sys from Example 1

violates this property can be carried out in a variety of ways:

Morch � m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i)
Mchor � new b.

(
k{[q(d, x). b!x]}(k,i) ‖ l{[b?x. sync(l).q(x, y). if y < 2 then fail]}(l,h)

)

Mmig � k{[q(d, x).go l.sync(l).q(x, y).if y < 2 then fail]}(k,i)

Morch describes an orchestrated approach, analysing traces remotely from a central location m. Mchor is a choreographed

monitor, split into two sub-monitors, each analysing traces locally and communicating between them (on the scoped channel

b) when necessary. Finally, Mmig is a migrating monitor, which starts at location k, locally eavesdropping on channel d, and

then migrates to location l once an output on d is recorded (and the channel communicated on d is known). Note that each

monitor needs to dynamically obtain the channel to query next on the trace at location l from the first query performed

on the trace at k, which means that the monitors need to reconstruct this temporal ordering across located traces. When

executed over the trace Trc1 all three strategies should be able to raise the violation; they may nevertheless miss to raise

this violation because local traces do not provide a total ordering of events — we discuss this point at length in Section 3.3.

However, when monitoring the trace Trc2 the monitors should never flag a violation.
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There are various reasons why one monitoring strategy may be preferred over the other. Morch is perhaps the easiest

to construct and instrument; it is also the least intrusive as no monitors are instrumented at the location where the the

monitored system resides, i.e., the monitor resides at m whereas the monitored system is distributed across l and k. On the

other hand, Mchor is the option that generates the least amount of network traffic by performing all its trace queries locally

at l and k. Finally,Mmig, is able to perform all its monitoring locally but is less intrusive than Mchor, since it only migrates to

l if a communication on d at k is observed.

A proper analysis of these different strategies requires us to formalise the behaviour of these monitors first; this is the

theme of the following section.

3.2. The semantics of mDPi

The semantics of mDPi, is given in terms of a Labelled Transition System (LTS), defined over the following action labels:

μ ∈ pAct � inP(c, v) | (b)outP(c, v) (process input and output)

| inM(c, v) | (b)outM(c, v) (monitor input and output)

| inT(c, v, l, i) | (b)outT(c, v, l, i) (trace query and availability)

| τ | tick (internal and clock actions)

The different labels for both inputs and outputs allow us to discern whether the action was performed by a process,

monitor or trace. The first four labels denote the capability of a process (respectively monitor) to input/output value tuples v

on channel c. As is standard for channel-passing calculi, the list of channel names (b) in the respective output labels denotes

bound names that have been scope extruded as a result of the output. The label (b)outT(c, v, l, i) does not describe trace

record consumption but instead denotes the existence of an ith record in the trace at location l recording a process’ output

of values v on channel c (amongst which channel values (b) are scoped). Dually, the label inT(c, v, l, i) describes a monitor’s

capability to analyse the ith trace record at location l recording a process’ output of values v on c; note that the location of

themonitor is not observable. All three output actions (b)outP(c, v), (b)outM(c, v) and (b)outT(c, v, l, i) observe standard
conditions such as, b ⊆ v, i.e., scope extruded channels are indeed outputted values, and c �∈ b, i.e., the channel on which

the communication occurs is known to the receiver, and hence, not scoped. Finally, label τ denotes the (standard) silent

unobservable action, resulting from some internal computation or interaction whereas tick denotes a local clock increment.

As usual, the respective input and output actions are allowed to synchronise with one another in our LTS. To specify this,

we describe when an output action is the co-action of an input action, i.e., when the labels match wrt. their parameters 4 :

inP(c, v) = outP(c, v) inM(c, v) = outM(c, v) inT(c, v, l, i) = outT(c, v, l, i)

3.2.1. Structural equivalence

As in [14,16], we find it convenient to abstract over semantically equivalent systems with different syntactic represen-

tations. For instance, in our calculus parallel composition is commutative and, as a result, we would expect the systems

S1 ‖ S2 and S2 ‖ S1 to denote the same system. We characterise this through the structural equivalence relation, denoted

by the symbol ≡, and defined as the least relation satisfying the rules in Fig. 4; we use fn(S) to denote the free names of S,

i.e., channel names that are not bound by input prefixes and scoping.

Most of the rules in Fig. 4 are standard, such as the commutativity and associativity rules for parallel composition, sCom

and sAss. A slightly non-standard aspect is that systems form a commutative monoid wrt. parallel composition and two

forms of ‘identity’ systems, namely inert located processes, k�stop�, and inert (located) monitors, k{[stop]}(l,i), as described
by sId1 and sId2. The channel scoping rules for extrusion, sExt, and swapping, sSwp, are also standard, whereas unused

scoped channels can be discarded through either inert located processes or monitors, sScp1 and sScp2. The only rule worth

highlighting because it is peculiar to our calculus is sTrc, which allows identical trace records to be consolidated or, dually,

replicated. This rule is introduced for technical reasons thatwill be discussed in Sections 3.2.2 and 3.2.3, and then Section 3.4.

Finally, the inductive rules sCtx1, sCtx2 and sCtx3make structural equivalence a congruencewrt. parallel compositions and

scoping.

3.2.2. Configurations

Our LTS is defined over systems subject to a local logical clock at each location. These clocks permit (i) the generation of

locally-ordered trace-records, and (ii) the re-alignment of monitors to the current record timestamp in the local trace. Local

clocks are modelled as monotonically increasing counters and expressed as a partial function δ ∈ Clocks :: Locs ⇀ N,

where δ(l) denotes the next timestamp to be assigned for a trace entity generated at location l. We define a clock increment

at a particular location, say k, using standard function overriding,

4 Note that the co-action relation does not include output actions with bound names.
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Fig. 4. mDPi structural equivalence rules.

inc(δ, k) = δ[k 
→ (δ(k) + 1)].

Configurations, denoted as C,D ∈ Conf :: Clocks × Sys, are systems that are subject to a set of localised counters, i.e.,

〈δ, S〉 pairs where locs(S) ⊆ dom(δ); when such a condition holds, we denote the pair as δ � S. We limit ourselves to

well-formed configurations whereby trace records form a local linear order at each location. For this to happen, Definition 1

requires that (1) trace records are locally timestamped at an index that is strictly less than the local counter that will be

assigned to the next trace record generated at that location and (2) trace records referring to the same local timestamp (k, i)
must agree on the recorded data. 5

Definition 1 (Well-formed configurations). A configuration δ � S is well-formed iff it satisfies the following conditions:

1. S ≡ new c.
(
U ‖ k�t(c,w, i)�

)
implies δ(k) > i;

2. S ≡ new b.
(
U ‖ k�t(c,w, i)�

) ≡ new e.
(
V ‖ k�t(d, v, i)�

)
implies c = d and v = w.

We note that Definition 1 does not require that, in a well-formed configuration δ � S, all trace records for indexed less

than δ(k), for arbitrary k ∈ dom(δ), are present in S. We also note that Definition 1 does not enforce the existence of a

single trace record to be present for a particular timestamp either, but rather it permits replicated trace records, as long as

they record the same information. In fact, in what follows, trace records are perhaps best envisaged as partial information

relating to past performance that must remain invariant across a configuration.

The reason for these relaxations is thatwewant our semantics to analyse configurations in an openworld setting,whereby

resultsdeterminedover local systems (suchasequivalences) arepreserved in larger systemcontexts.Dually, these relaxations

also allow for compositional analysis of configurations, whereby a configuration of the form δ � (S1 ‖ S2) can be analysed

from its sub-configurations δ � S1 and δ � S2 (see Theorem1 in Section 3.4). In themeantime, however, note thatmissing or

replicated trace records do not affect the local linear recording of past outputs at a particular location; moreover, replicated

trace records can always be consolidated when considering systems up to structural equivalence, using the rule sTrc from

Fig. 4.

3.2.3. Transition rules

Our LTS is defined as the least ternary relation over configurations, −→:: Conf × pAct × Conf, satisfying the rules in

Figs. 5, 6 and 7; we elide some obvious process rules that can be inferred from the corresponding monitor rules (see Fig. 7).

Transitions are denoted by the following notation:

δ � S
μ−→ δ′ � S′ (1)

in lieuof 〈(δ � S), μ, (δ′ � S′)〉 ∈−→ anddescribe the computation step fromthe configuration δ � S to the configuration

δ′ � S′ as a result of some interaction with the environment (some system context), characterised by the action μ. We note

that whenever we want to restrict our analysis to a ‘closed world’ setting, disallowing the possibility of interacting with the

environment, we simply restrict configuration transition labels to just the silent action, τ .

5 The initial value of every local clock is not important, as long as it is larger than any trace record at that location — its role is merely to order future trace

records generated at that location.
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Fig. 5. mDPi LTS external action rules.

Fig. 5 describes three output rules. The process output rule, OutP, is central to our monitoring semantics. It differs from

standard output rules in two respects; first, it generates a residue trace record at the current location, k, after the output

occurs, k�t(c, v, δ(k))�, recording the channel name, c, and the values communicated on it, v, timestamped by δ(k); second,
it increments the clock at k once the trace record is generated, which is necessary so as to generate a total order on trace

records at k. Monitor output,OutM, is similar albeit simpler since neither is a trace record generated, nor is the local counter

updated. Rule OutT models a trace record’s capability to expose information relating to a process output at location k,

outputting tuple v on channel c at timestamp i. As opposed to process andmonitor outputs, the trace record is not consumed

by the action (thereby acting as a broadcast), and its persistence allows for multiple monitors to query it.

Fig. 5 also describes three (main) input rules, one for each input label. The rule for process input, InP, is standard: a process

that resides at location l, can input tuple v over channel c, substituting vi ∈ d for xi ∈ x in the continuation P. Note that the

location of the process plays no role in this action since process communication is allowed to happen across locations. The

rule for monitor output, InM, is similar; again, the location, l, and the monitoring-context, (k, i), do not affect the monitor

input.

The monitoring-context however plays a central role in a (successful) trace-query action, InT. Here, the source location

of the trace record, k, and time stamp, i, of the action label, inT(c, v, k, i), must match those of current monitoring-context

(k, i). Since the transition describes the fact that a trace record has been matched by the monitor query, the timestamp

index of themonitoring-context is incremented, (k, i+ 1), in order to progress to the next record in the local trace ordering.

The trace-query action can occur only if the corresponding trace record at (k, i) has already been generated: this can be

determined from the rule side-condition checking the clock counter at k, i.e., δ(k) > i; if the side-condition is not satisfied

then the query is blocked until the local clock is incremented accordingly (see rule OutP). Rule InT leaves a residual trace

record, k�t(c, v, δ(k))�, in the resulting configuration; this should not be confusedwith the trace record generation of OutP,

but rather, it should be understood as the generation of an invariant ensuring that all future queries of the local trace at (k, i)
consistently react with a trace record describing the output of values v on channel c. Although it may appear somewhat

intricate, this mechanismworks in tandemwith thewell-formed conditions of Definition 1 and turns out to be essential in a

setting where we want to perform compositional analysis — see example 8 in section 3.3. In a setting where only part of the

system is being analysed, the actual trace record may not be part of the sub-system; the mechanism allows us to keep track

of the trace record data queried in the current sub-system, and then checked at the composition phase to be consistent with

the trace records generated (through rule OutP) in the other sub-systems. We recall that when trace records correspond,

they can be consolidated using the structural rule sTrc from Fig. 4, which allows us to reconstruct the intuition outlined

earlier in Sections 3.1.3 and 3.1.4 that there exists at most one trace record for each located index (k, i) — see Example 5.

The final transition rule in Fig. 5 is Skp, describing an unsuccessful trace-query action. Here themonitor attempts to query

the trace record at (k, i) for outputs on channel d, and since the trace record queried happens to describe an output on some
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Fig. 6. mDPi LTS contextual rules.

other channel, c, the monitor query skips this record and proceeds up the chain to the next index, (k, i + 1). 6 The resulting

configuration of this transition again generates a residual trace record describing a system invariant, as in the case of the

previous rule inT; themotivation for this is the same as for inT, namely compositional analysis — see Examples 5 and 8 from

Section 3.3.

The first rules in Fig. 6 are contextual rules, relating to the system contexts of scoping and parallel composition. A subtle

but important aspect of our calculus, distinct from related calculi such as [14], is that scope extrusion of channel namesmay

occur both directly, through process ormonitor communication, but also indirectly through trace querying. These three cases

of scope extrusion are handled by the rule Opn which uses the action variable α to range over process, monitor and trace

output actions carrying no bound names:

α ∈ outAct � outP(c, v) | outM(c, v) | outT(c, v, l, i)

The rule uses two functions in its side condition: fn(α) returns the free names in an action as expected whereas

obj(outP(c, v)) = obj(outM(c, v)) = obj(outT(c, v, l, i)) = c.

Actions for scoped system that do not involve any extrusion of channel names are handled by the rule Scp.

Actions are preserved by systems in parallel, as stated in rule Par. The side-condition, bn(μ) ∩ fn(U) = ∅, ensures that
scope extruded channel names are fresh7 ; since we assume terms up to α-equivalence of bound channel names, these

names can be assumed to be distinct from any free variables in the surrounding systems. The only exception to this is the

trace querying action, inT(c, v, k, i), which requires a further condition stating that for the action to be preserved, systems

composed in parallel with it, U, must not be able to broadcast the existence of a trace record at (k, i). Otherwise, when U

contains the trace record queried for at (k, i), the system S is forced to synchronise with this record in system U through the

rule Com.

6 The transition action is the same for that of a successful action, namely inT(c, v, k, i), intuitively because it still denotes the interaction with a trace record

k�t(c, v, δ(k))�, even though the query was unsuccessful.
7 Analogous to fn(S), we write bn(S) to denote the bound names of S.
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All three forms of communications — process, monitor and trace — are handled uniformly by the communication rule

Com. Communication occurs when configurations δ � S, δ � U are capable of performing action μ and co-action μ
respectively, yielding a silent action τ as a result. Note that, by our definition of co-action, μmust be a plain (not containing

any bound names) output action, i.e., either outP(c, v) (process output), outM(c, v) (monitor output) or outT(c, v, l, i)
(trace broadcast), and may therefore involve the scope extrusion of certain channel names, b, local to system S emitting the

output. The side-condition, b∩ fn(U) = ∅, ensures that the scope extruded names are distinct from any free variables in the

receiving system and, as a result of the synchronisation, the scope of these names is extended to the residual system of U

after communication, i.e., U′ in new b.(S′ ‖ U′). It is worth noting that action μ must be an input action, and from the input

rules that can generate this, i.e., InP, InM, InT and Skp, we can conclude that this action does not affect the system clocks δ
in the residual of the respective premise, δ � U′. On the other hand, when μ is a process output, outP(c, v), the local clock

of the location where the action occurs is incremented in the residual system of the respective premise, δ′ � S′ (see OutP);

this is then is reflected in the resulting configuration for rule Com, δ′ � new b.(S′ ‖ U′).
Rule Str in Fig. 6 lifts transition to structurally equivalent systems. In particular, this is important for our LTS in order to

express symmetric rules for the parallel rules Par, ParT and Com through structural rules such as sCom, sAss and sExt, and

to discard remnant inert code and unused local channels through rules such as sId1 and sScp1. The last rule in Fig. 6 is Cntr

and models process communication by some system context in an open world setting, that would increase the timestamp

counter at the location where the output occurred.

Example 4. Recall the system below from Example 1.

Sys � l�d?x.x!1� ‖ k�d!c.c!2� ‖ k�d!b.b?x.P� ‖ l�c?y.if y=2 then Q1 else Q2�

When subject to the set of local clocks {l 
→ j, k 
→ i}, the semantics defined by the rules in Figs. 5 and 6 allows us to express

following behaviour:

{l 
→ j, k 
→ i} � Sys
τ−→ {l 
→ j, k 
→ i+1} � Sys1 ‖ k�t(d, c, i)�
τ−→ {l 
→ j+1, k 
→ i+1} � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)�

The first τ -transition describes the process communication of the value c on channel d, discussed in Example 1, where Sys1
was defined as

l�c!1� ‖ k�c!2� ‖ k�d!b.b?z.P� ‖ l�c?y.if y=2 then Q1 else Q2�

This transition can be derived using the rules Com, InP and OutP (together with the parallel composition rule Par and

structural manipulation of terms using Str); see derivation below where δ = {l 
→ j, k 
→ i}. In particular, rule OutP

generates the residual trace record k�t(d, c, i)� at location k, as discussed earlier in Example 2, while incrementing the local

clock at this location, k 
→ i+1.

δ � k�d!c.c!2�
outP(d,c)−−−−−→ inc(δ, k) � k�c!2� ‖ k�t(d, c, i)�

OutP

··· δ � l�d?x.x!1�
inP(d,c)−−−−→ δ � l�c!1�

InP

δ � k�d!c.c!2� ‖ l�d?x.x!1�
τ−→ inc(δ, k) � k�c!2� ‖ k�t(d, c, i)� ‖ l�c!1�

Com

δ � Sys
τ−→ inc(δ, k) � Sys1 ‖ k�t(d, c, i)�

Par, Str

The second τ -transition above describes the communication of value 1 on channel c resulting in the system Sys′1, defined in

Example 1 as

l�stop� ‖ k�c!2� ‖ k�d!b.b?z.P� ‖ l�if 1=2 then Q1{1/y} else Q2{1/y}�.
This transition can also be derived using a combination of same rules just discussed, this time incrementing the local clock

at location l. It yields the global trace k�t(d, c, i)� ‖ l�t(c, 1, j)�, i.e., Trc1 from Example 2.

{l 
→ j, k 
→ i} � Sys
τ−→ {l 
→ j, k 
→ i+1} � Sys1 ‖ k�t(d, c, i)�
τ−→ {l 
→ j, k 
→ i+2} � Sys′′1 ‖ k�t(d, c, i)� ‖ k�t(c, 2, i+1)�

We can also derive a second transition sequence shown above where Sys′′1 was defined in Example 1 as the system
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Fig. 7. mDPimonitor LTS rules.

l�c!1� ‖ k�stop� ‖ k�d!b.b?z.P� ‖ l�if 2=2 then Q1{2/y} else Q2{2/y}�,

and the residual trace generated, k�t(d, c, i)� ‖ k�t(c, 2, i+1)�, is the one discussed in Example 2, i.e., Trc2. Note that since

this sequence of transitions describes two communications where both outputs emanate from the same location, k, the

trace records generated are able to describe the relative order of the communication, i.e., from their timestamps, k�t(d, c, i)�
precedes k�t(c, 2, i+1)�.

The rules in Fig. 7 describe the remainingmonitor transitions; corresponding process transitions such as process splitting

and process branching follow the same structure as the monitor rule counterpart, but are simpler as they do not have to

cater for the monitoring context — they are also very similar to those found in [14] and are elided here. Most of the rules are

self explanatory. The only rules worth noting are the silent action described by rule Sync, which allows monitors to realign

with a trace at a particular location to start monitoring for future trace records there, and rule Go, which describes monitor

migration as found in calculi such as [14]; presently, in order to keep our framework as simple as possible, only monitors

are allowed to migrate. 8

Example 5. Recall the orchestrated monitor Morch from Example 3,

m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i)

verifying whether the monitored system violates a property by first outputting a channel name on channel d at k, followed

by an integer output that is less than 2 on this channel at location l.Whenmonitoring the system Sys fromExample 4, subject

to δ = {l 
→ j, k 
→ i}, our semantics permits the following transition sequence:

8 Process migrating would have required traces to log this information as well, so as to enable accompanying monitors to trace the migration and thus move

along with them. Although this enhancement could have been accommodated by our framework, none of the monitoring strategies surveyed in Section 2 dealt

with migrating processes.
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δ � Sys ‖ Morch

τ−→ (δ′ = inc(δ, k)) � Sys1 ‖ k�t(d, c, i)� ‖ Morch (2)

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+1) (3)

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j) (4)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j) (5)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ m{[if 1 < 2 then fail]}(l,j+1) (6)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ m{[fail]}(l,j+1) (7)

Transitions (2) and (5) are those derived earlier in Example 4, except that now they are derived in the context of a monitor

using rule Par. These transitions are however now interleaved with transitions from the orchestrated monitor’s side,Morch.

In particular, τ -transition (3) describes thequerying of the trace at location k from index i onwards for recordedoutputs on

channel d. A trace record matching the query is immediately encountered at index i, namely k�t(d, c, i)�, and the successful

reading of this record is derived using the rules Com (trace reading), OutT (trace broadcast) and InT (trace query); this latter

rule increments the monitoring context index to (k, i + 1).

δ′ � k�t(d, c, i)�
outT(d,c,k,i)−−−−−−−→ δ′ � k�t(d, c, i)�

OutT

··· δ′ � Morch inT(d,c,k,i)−−−−−−−→ δ′ � m{[sync(l). . . .]}(k,i+1) ‖ k�t(d, c, i)�
InT

δ′ � k�t(d, c, i)� ‖ Morch τ−→ δ′ � k�t(d, c, i)� ‖ m{[sync(l). . . .]}(k,i+1) ‖ k�t(d, c, i)�
Com

δ′ � k�t(d, c, i)� ‖ Morch τ−→ δ′ � k�t(d, c, i)� ‖ m{[sync(l). . . .]}(k,i+1)
Str

δ′ � Sys1 ‖ k�t(d, c, i)� ‖ Morch τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ m{[sync(l). . . .]}(k,i+1)
Par

The full derivation for the τ -transition (3) is given above and deserves some comment. In particular, we note that trace

querying generates duplicate trace records k�t(d, c, i)� immediately after the rule Com is applied; these can however be

consolidated as one record using rule Str and the structural equivalence rule sTrc from Fig. 4. Even though this may seem

redundant at first, it allows us to analyse subsystems in compositional fashion. For instance, in the case of the right axiom in

the above derivation, the behaviour of Morch was analysed without requiring the trace record form timestamp i at location

k. In fact rule InT could have even allowed us to derive a different query, say reading a different value v communicated on

channel d:

δ′ � Morch inT(d,v,k,i)−−−−−−−→ δ′ � m{[sync(l). . . .]}(k,i+1) ‖ k�t(d, v, i)�
InT

Note however how the label matching condition in rule Com and the side condition in rule Par prevent this from being

derived for our full system, which in turn guarantees that the configuration remains well-formed. We discuss this issue in

more depth in Section 3.3 — see example 8 and Lemma 1.

The silent transition (4) describes the realignment of the orchestrated monitor with the trace at location l so as to start

monitoring for future trace records there, and is derived using rule Sync. Transition (6) is another trace reading computation

(this time from the trace at location l) derived again using rules Com, OutT and InT, whereas the final τ -transition, (7), is a
branching operation (using a variant of the rule EqM.)

3.3. Calculus expressivity

In this section we argue, through a series of examples, that the operational semantics presented in Section 3.2.3 captures

the characteristic behaviour expected of asynchronous monitoring systems executing in a distributed setting, which helps

us to better understand the situations that may arise when analysing existing monitoring strategies or when designing new

ones. In particular, we showhowour calculus canmodel the various distributedmonitoring strategies discussed in Section 2.

We also discuss how, despite all the intricate concurrent interleavings, the semantics still allows us to perform compositional

analysis focussing on particular subsystems.

An inherent aspect of asynchronous runtime verification is that violation checks are only carried out on the current

system execution. This means that an otherwise erroneous concurrent system may produce an interleaved execution that

does not yield a violation, in which case no violation must be detected by the monitor. In such concurrent settings, runtime

monitoring must also to contend with interleaved events from other executions and must be able to skip trace entries that

do not pertain to the property being monitored. Distribution complicates monitoring even further, and may limit detection

capabilities across (asynchronous) locations.
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Example 6. Recall again Morch from Example 3.

δ � Sys ‖ k�c!5� ‖ k�c?x.stop� ‖ Morch

τ−→ (δ′ = inc(δ, k)) � Sys ‖ k�t(c, 5, i)� ‖ Morch (8)

τ−→ (δ′′ = inc(δ′, k)) � Sys1 ‖ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖ Morch (9)

τ−→ δ′′ �
⎛
⎝ Sys1 ‖ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)�

‖ m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1)

⎞
⎠ (10)

τ−→ δ′′ �
⎛
⎝ Sys1 ‖ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)�

‖ m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

⎞
⎠ (11)

During monitoring, trace query matching need not be immediate, as shown in the transition sequence above. Here Morch is

instrumented over a slightly more complex system that includes the subsystem k�c!5� ‖ k�c?x.stop� apart from Sys; this

larger system may yield the altered trace

k�t(c, 5, i)� ‖ k�t(d, c, i + 1)�

after two transitions, (8) and (9). In particular, the trace record describing communication on channel d is now assigned a

later timestamp, namely i+ 1. Thus the trace query fromMorch for outputs on channel d at index iwill not match the record

at index i, namely k�t(c, 5, i)�, since this record describes communication on channel c. As a result, the monitor context of

Morch is increase to i+ 1 in transition (10) through a combination of the rules Com, OutT and, most importantly, Skp. At this

point a query can be matched as before, using Com, OutT and inT, (11).

δ � Sys ‖ Morch

τ−→ · τ−→ · τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j)
τ−→ inc(δ′, l) � Sys′′1 ‖ k�t(d, c, i)� ‖ l�t(c, 2, j)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j) (12)

τ−→ inc(δ′, l) � Sys′′1 ‖ k�t(d, c, i)� ‖ l�t(c, 2, j)� ‖ m{[if 2 < 2 then fail]}(l,j+1) (13)

τ−→ inc(δ′, l) � Sys′′1 ‖ k�t(d, c, i)� ‖ l�t(c, 2, j)� ‖ m{[stop]}(l,j+1) (14)

As discussed in Example 4, system Sys is inherently non-deterministic, and after reaching Sys1, it could transition to Sys′′1
instead. This behaviour does not lead to a violation of the property monitored by Morch and, accordingly, our transition

semantics does not allow the monitor to detect a violation. This is shown in the transitions (12), (13) and (14) above, which

can be derived using the same rules used to derive the corresponding transitions (5), (6) and (7) above.

δ � Sys ‖ Morch

τ−→ (δ′ = inc(δ, k)) � Sys2 ‖ k�t(d, b, i)� ‖ Morch

τ−→ δ′ � Sys2 ‖ k�t(d, b, i)� ‖ m{[sync(l). q(b, y). if y < 2 then fail]}(k,i+1) (15)

τ−→ · τ−→ · τ−→ · τ−→ inc(δ′, l) � Sys′2 ‖ k�t(d, c, i)� ‖ l�t(b, 1, j)� ‖ m{[fail]}(l,j+1)

Anotherpossible transition sequence for Sys is theoneshownabove, i.e., (15), discussedearlier inExample1which transitions

through Sys2 reaching Sys′2 defined as:

Sys2 � l�b!1� ‖ k�d!c.c!2� ‖ k�b?z.P� ‖ l�c?y.if y=2 then Q1 else Q2�

Sys′2 � l�stop� ‖ k�d!c.c!2� ‖ k�P{1/z}� ‖ l�c?y.if y=2 then Q1 else Q2�

This time, the channel name communicated on channel d is b, not c, and subsequently, the value 1 is outputted on channel b,

as would be recorded in the residual trace. Nevertheless, this alternative computation also violates the property monitored

for by Morch and accordingly, the transition sequence above shows how Morch can still detect this violation. In particular,

after the trace reading transition (15), the subsequent trace query in Morch is set to channel b at l (as opposed to channel c

in the previous case), thereby adapting dynamically to the different trace analysis required.

We note that mDPi focuses on correct monitors (soundness), i.e., flagging violations only when these actually happen,

rather thanmonitor precision (completeness), i.e., guaranteeing detectionwhenever violation happens. As discussed earlier,
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the lack of global clocks in distributed settings prohibit tight synchronisation across locations, forcing monitoring to be

inherently asynchronous, i.e., trace generation and trace monitoring are not in lock-step. Unfortunately, this limitation is

inherent to distributed settings [17].

δ � Sys ‖ Morch

τ−→ (δ′ = inc(δ, k)) � Sys1 ‖ k�t(d, c, i)� ‖ Morch

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+1)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ m{[sync(l).q(c, y). if y < 2. . .]}(k,i+1)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j+1)

For instance, in the case of the first transition sequence of Example 5, this allows for (4) to potentially occur before (3) as

shown above (or even before (2)). This yields a situation whereby, after synchronising with l, the monitor starts analysing

the local trace at location l at index j + 1, missing the trace event l�t(c, 1, j)� as a result. Even though this may lead to the

monitor not detecting a violation, this lack of precision is not a limitation that is exclusive to our present model but is also

an inherent characteristic of distributed monitoring.

More importantly however, our semantics allows us also to derive similar transition sequences to the ones discussed

for the orchestrated monitor instrumentation in Example 5, but for the different monitoring strategies discussed earlier in

Example 3.

Example 7. Recall the choreographed monitor, Mchor, defined earlier in as

new b.
(
k{[q(d, x). b!x]}(k,i) ‖ l{[b?x. sync(l).q(x, y). if y < 2 then fail]}(l,h)

)
.

As can be shownbelow, thismonitor can also detect the property violation discussed earlier forMorch when the configuration

δ � Sys transits to inc(inc(δ, k), l) � Sys′1. In particular, transition (16), describing trace reading, is derived using the rules

Com1, OutT and InT as before, whereas transition (17), describing process communication, is derived using the rules Com1,

OutM and InM. Transition (18) describes trace alignment using rule Sync. Finally (19) is another case of a trace reading

transition, which is followed by monitor branching.

δ � Sys ‖ Mchor τ−→ (δ′ = inc(δ, k)) � Sys1 ‖ k�t(d, c, i)� ‖ Morch

τ−→ δ′ �
⎛
⎝Sys1 ‖ k�t(d, c, i)� ‖
new b.

(
k{[b!c]}(k,i+1) ‖ l{[b?x. sync(l).q(x, y). if y < 2 then fail]}(l,h)

)
⎞
⎠ (16)

τ−→ δ′ �
⎛
⎝ Sys1 ‖ k�t(d, c, i)� ‖

new b.
(
k{[stop]}(k,i+1) ‖ l{[sync(l).q(c, y). if y < 2 then fail]}(l,h)

)
⎞
⎠ (17)

τ−→ δ′ �
⎛
⎝ Sys1 ‖ k�t(d, c, i)� ‖

new b.
(
k{[stop]}(k,i+1) ‖ l{[q(c, y). if y < 2 then fail]}(l,j)

)
⎞
⎠ (18)

τ−→ inc(δ′, l) �
⎛
⎝ Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖

new b.
(
k{[stop]}(k,i+1) ‖ l{[q(c, y). if y < 2 then fail]}(l,j)

)
⎞
⎠

τ−→ inc(δ′, l) �
⎛
⎝ Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖

new b.
(
k{[stop]}(k,i+1) ‖ l{[if 1 < 2 then fail]}(l,j+1)

)
⎞
⎠ (19)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ new b.
(
k{[stop]}(k,i+1) ‖ l{[fail]}(l,j+1)

)

The same transition sequence leading to a trace violation detection can be derived as well if the configuration δ � Sys is

instrumented with a migrating-monitor Mmig; we recall that this monitor was defined earlier in Example 3 as

k{[q(d, x).go l.sync(l).q(x, y).if y < 2 then fail]}(k,i).
This transition sequence below looks verymuch like the one discussed earlier for the orchestratedmonitor instrumentation,

Morch, in Example 5. Transition (20) describes trace reading. Transition (21) is novel to what we discussed so far, and

describes monitor migration; it is derived using rule Go. This is followed by a trace realignment transition, (22), a process
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communication, generating the record l�t(c, 1, j)�, followed by a trace reading of this record, (23), and the final monitor

branching leading to the violation detection.

δ � Sys ‖ Mmig τ−→ (δ′ = inc(δ, k)) � Sys1 ‖ k�t(d, c, i)� ‖ Mmig

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ k{[go l.sync(l).q(c, y).if y < 2 then fail]}(k,i+1) (20)

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ l{[sync(l).q(c, y).if y < 2 then fail]}(k,i+1) (21)

τ−→ δ′ � Sys1 ‖ k�t(d, c, i)� ‖ l{[q(c, y). if y < 2 then fail]}(l,j) (22)

τ−→ · τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ l{[if 1 < 2 then fail]}(l,j+1) (23)

τ−→ inc(δ′, l) � Sys′1 ‖ k�t(d, c, i)� ‖ l�t(c, 1, j)� ‖ l{[fail]}(l,j+1)

It is worth noting that, in the transition sequences for bothMchor andMmig shown above, trace reading is always performed

locally, as opposed to the transition sequence forMorch. We also note how, in the case ofMmig, instrumentation at location l

is only carried out (through dynamic migration) on a by-need basis. In fact, if the query for outputs on channel d at location

k is never satisfied, then no monitor is ever instrumented at location l.

It is important to highlight the fact that the formal analysis carried out so far was performed under a closedworld setting,

i.e., we assume that the systembeing analyses is the entire systemunder consideration. In fact, the transitionswe considered

were in fact τ transitions, which correspond to more traditional reduction-based operational semantics, i.e., without any

labels. Our semantics, however, allows us to perform a similar analysis under an open world setting, i.e., in the presence of

other systems executing in parallel. An open-world semantics allows us to analyse a system compositionally.

Example 8. Recall the (closed world) transition sequence (2) up to (7) from Example 5, or even the sequence from (8) up to

(11) from the sameExample. Through external actions, our semantics allows us tomodel such computationwhile abstracting

away from the system generating the corresponding localised traces (such as Sys ‖ k�c!5� ‖ k�c?x.stop�), thereby focussing

on the monitor code in isolation.

δ � Morch tick−−→ (δ′ = inc(δ, k)) � Morch (24)

tick−−→ (δ′′ = inc(δ, k)) � Morch (25)

inT(c,5,k,i)−−−−−−−→ δ′′ � k�t(c, 5, i)� ‖ m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1) (26)

inT(d,c,k,i+1)−−−−−−−−→ δ′′ �
⎛
⎝ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)�

‖ m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

⎞
⎠ (27)

τ−→ δ′′ � k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖ m{[q(c, y). if y < 2 then fail]}(l,j) (28)

tick−−→ inc(δ′′, l) � k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖ m{[q(c, y). if y < 2. . .]}(l,j) (29)

inT(c,1,l,j)−−−−−−→ inc(δ′′, l) �
⎛
⎝ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖‖ l�t(c, 1, j)�

‖ m{[if 1 < 2 then fail]}(l,j+1)

⎞
⎠ (30)

τ−→ inc(δ′′, l) � k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖ l�t(c, 1, j)� ‖ m{[fail]}(l,j+1) (31)

The transition sequence above is one such example. Transitions (24) and (25), derived using rule Cntr, model the effect of

the corresponding process communication transitions such as (8) and (9), performed by the system abstracted away by the

open world semantics. The trace records generated by these communications are then queried through the external actions

(26) and (27), derived using rules Skp and InT respectively, which correspond to the τ -transitions (10) and (11) discussed

earlier. We here note how querying these trace records figuratively brings them in from the abstracted context to form

part of the system being analysed, i.e., the system being analysed is now extended with the trace records k�t(c, 5, i)� and
k�t(d, c, i+1)�. Transition (28) corresponds to (4) from Example 5whereas (29) and (30)model the trace record generation

and then the trace query computations described by (5) and (6) from Example 5. Finally (31) corresponds to (7), again from

Example 5.
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δ � Morch ‖ Morch tick−−→ · tick−−→ (δ′′ = inc(inc(δ, k), k)) � Morch ‖ Morch

inT(c,5,k,i)−−−−−−−→ δ′′ �
⎛
⎝ k�t(c, 5, i)� ‖ Morch

‖ m{[q(d, x).sync(l). q(x, y). if y < 2 then fail]}(k,i+1)

⎞
⎠

inT(d,c,k,i+1)−−−−−−−−→ δ′′ �
⎛
⎝ k�t(c, 5, i)� ‖ k�t(d, c, i + 1)� ‖ Morch

‖ m{[sync(l). q(c, y). if y < 2 then fail]}(k,i+2)

⎞
⎠ (32)

The reason why trace records are brought in as part of the system being analysed becomes apparent from the example

derivation above where two parallel copies of the same monitor Morch are considered. An appropriate semantics should

ensure that for certain execution interleavings, the twomonitors would reach the same verdict because they query the same

trace. The four transitions leading to (32) above correspond to the earlier transitions (24) to (27). At this point, if the second

copy of the monitor Morch is to query the trace records from (k, i) onwards, it should not be able to query and introduce

records other than k�t(c, 5, i)� and k�t(d, c, i+1)�. Accordingly, the side-condition of rule ParT from Fig. 6 prevents us from

using external trace querying (through the rules Skp and InT), and any trace querying can only be derived using Com, which

forces the second copyof themonitor to reactwith the alreadypresent internal trace records k�t(c, 5, i)� and k�t(d, c, i+1)�.

3.4. Bisimulation-based equivalences

In this section we use the LTS defined in section 3.2.3 to define a notion of system equivalence in an open-world setting.

We then prove the main result of the section, Theorem 1, which states that this equivalence is a congruence wrt. parallel

composition, and thus a sound equivalence proof technique for our open-world semantics. Uponfirst reading, the readermay

safely skip the proofs discussed below and focus on Definition 2 (Bisimulation) and how this is then employed in Example 9.

Before we embark on themain proof, we prove an important sanity check of our LTS, namely that well-formed configura-

tions are preserved by the transition rules. This guarantees that,when starting fromawell-formed configuration, subsequent

analysis is also made on well-formed configurations.

Lemma 1 (Preservation of well-formed configurations). Given a well-formed configuration δ � S, and transition δ � S
μ−→

δ′ � S′, the resulting configuration δ′ � S′ is also well-formed.

Proof. The proof proceeds by rule induction on the transition relation. We here consider two cases.

OutP: We know S = k�c!v.P�, δ′ = inc(δ, k) and S′ = k�P� ‖ k�t(c, v, δ(k))� for some k, c and v. From the structure of S′
we know that there is only one trace record to consider, k�t(c, v, δ(k))�, and thus the second condition in Definition 1

is immediately satisfied. This trace record, k�t(c, v, δ(k))�, also satisfies the first condition: from δ′ = inc(δ, k) =
δ[k 
→ (δ(k) + 1)] we know that the index of this trace record, i.e., δ(k), is strictly less than δ′(k), i.e., δ(k) + 1.

Com: We know S = S1 ‖ S2, S
′ = new b.(S′

1 ‖ S′
2) with transitions

δ � S1
(b)μ−−−→ δ′ � S′

1 (33)

and δ � S2
μ−→ δ � S′

2 (34)

Given that δ � S1 ‖ S2 is well-formed, then both δ � S1 and δ � S2 are also well-formed, since removing S1 or S2
from δ � S1 ‖ S2 cannot break any of the conditions in Definition 1. By the inductive hypothesis, we hence infer that

δ′ � S′
1 and δ � S′

2 are also well-formed. We have three subcases to consider:

• μ = inP(c, v): We know that μ = outP(c, v) and, by an appropriate sublemma, from (33) we can conclude that

δ′ = inc(δ, k) for some k, and that S′
1 ≡ (b)(S′′

1 ‖ k�t(c, v, δ(k))�) where S′′
1 has the same trace records as S1;

this means that k�t(c, v, δ(k))� is the only new trace record generated. From (34) and an appropriate sublemma

we can also deduce that no new trace records are generated in S′
2 (apart from possible trace record replication

through the structural rule sTrc which does not violate Definition 1). This means that to ensure well-formedness

for δ′ � new b.(S′
1 ‖ S′

2), we only need to check that the conditions in Definition 1 are satisfied by the new trace

record generated, k�t(c, v, δ(k))�. Since δ � S1 ‖ S2 is well-formed, then by Definition 1(1), all trace records at k

have indexes that are strictly less than δ(k); this makes k�t(c, v, δ(k))� unique in δ′ � new b.(S′
1 ‖ S′

2), thereby
trivially satisfying Definition 1(2). Moreover, k�t(c, v, δ(k))� satisfies Definition 1(1), since δ′ = inc(δ, k).

• μ = inM(c, v): Analogous to the previous case but simpler as it does not involve the generation of new trace

records. More precisely, we know that δ′ = δ and as a result the well-formedness of δ′ � new b.(S′
1 ‖ S′

2) follows

from that of δ � S1 ‖ S2.• μ = inT(c, v, l, i): We know that μ = outT(c, v, l, i), which, by an appropriate sublemma, (33) implies that

δ′ = δ and that S1 ≡ (b)(S′′
1 ‖ l�t(c, v, i)�) ≡ S′

1. From (34) and an appropriate sublemma we know that

S′
2 ≡ (S′′

2 ‖ l�t(c, v, i)�) where S′′
2 has the same trace records as S2. This ensures that Definition 1(2) is satisfied by
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δ � new b.(S′
1 ‖ S′

2). Moreover the satisfaction of Definition 1(1) follows from the well-formedness of δ � S1 ‖
S2. �

Our LTS semantics for mDPi induces an intuitive definition of program equivalences, centered around the concept of

bisimulations [14]. We here opt for the most natural version, i.e., weak bisimulation, whereby silent actions, τ , are not

considered visible; this definition relies on the concept of weak actions,
α̂�⇒, action transitive closures that abstract away

from silent actions, defined as (
τ−→)∗ if α = τ and (

τ−→)∗· α−→ ·( τ−→)∗ otherwise.

Definition 2 (Bisimulation). A family of (binary) relation over systems, indexed by a set of local clocks
⋃

δ∈Clocks
Rδ is said

to be a bisimulation iff whenever S1 Rδ S2, δ � S1 and δ � S2 are configurations, then:

• δ � S1
α−→ δ′ � S′

1 implies δ2 � S2
α̂�⇒ δ′ � S′

2 such that S′
1 R′

δ S′
2;

• δ � S2
α−→ δ′ � S′

2 implies δ � S1
α̂�⇒ δ′ � S′

1 such that S′
1 R′

δ S′
2

Bisimilarity, denoted as≈, is the largest set of indexed relation satisfying Definition 2. It comes equippedwith an elegant

proof technique: in order to show that two systems S1 and S2 are bisimilar with respect to the local clocks δ, denoted as

δ |� S1 ≈ S2, i.e., the pair of systems 〈S1, S2〉 is included in the bisimilarity relation, ≈ at index δ, it suffices to give a family

of relations that (i) satisfies the transfer properties of Definition 2 and (ii) includes this pair at the relation indexed by δ.
Since bisimilarity is the largest such set of indexed relations satisfying these transfer properties, this implies that are S1 and

S2 are bisimilar wrt. δ (see [14,16] for details).

It is easy to show that bisimilarity is an equivalence relation, i.e., it is reflexive, symmetric and transitive. Importantly, we

also prove contextuality, i.e., Theorem 1, which states that whenever we prove that two configurations are bisimilar, they

remain so under larger (system) contexts. This theorem in effect ensures that bisimilarity is a congruence (with respect

to large systems) and justifies the use of bisimilarity as a sensible behavioural equivalence. We use bisimulation as our

touchstone equivalence in the rest of the paper.

Theorem 1 (Contextuality). Under any context C :: Sys → Sys, where δ � C(S1) and δ � C(S2) are configurations:
δ |� S1 ≈ S2 implies δ |� C(S1) ≈ C(S2)

Proof. The proof is by coinduction. We define the family of relations
⋃

δ∈Clocks
R δ as follows:

• δ |� S1 ≈ S2 implies 〈S1, S2〉 ∈ R δ• 〈S1, S2〉 ∈ R δ and δ � (S1 ‖ S3), δ � (S2 ‖ S3) are configurations implies 〈(S1 ‖ S3), (S2 ‖ S3)〉 ∈ R δ• 〈S1, S2〉 ∈ R δ and δ � (S3 ‖ S1), δ � (S3 ‖ S1) are configurations implies 〈(S3 ‖ S1), (S3 ‖ S2)〉 ∈ R δ• 〈S1, S2〉 ∈ R δ implies 〈new c.S1, new c.S2〉 ∈ R δ

We then show that
⋃

δ∈Clocks
R δ satisfies the transfer property of Definition 2,whichwould imply that

(⋃
δ∈Clocks

R δ

) ⊆
≈ and hence that, whenever δ |� S1 ≈ S2, it remains so under larger system contexts.

We proceed by induction on how each R δ is defined. The base case, i.e., when 〈S1, S2〉 ∈ R δ because δ |� S1 ≈ S2 is

immediate. The other three cases are the inductive cases where we here outline the proof for the more involving subcase of

the second case; the subcases for the third case are analogous whereas the subcases for the fourth case are simpler.

We thus consider the case where 〈(S1 ‖ S3), (S2 ‖ S3)〉 ∈ R δ because

〈S1, S2〉 ∈ R δ, (35)

and consider the case where

δ � S1 ‖ S3
μ−→ δ′ � S4 (36)

We are required to show that there exists a transition δ � S2 ‖ S3
μ̂�⇒ δ′ � S5 such that S4 R δ′ S5. By case analysis and the

structure of the configuration δ � S1 ‖ S3, we know that (36) could have been generated using the rules Com1 (or its dual

Com2), Par1 (or its dual Par2), ParT1 (or its dual ParT2), or else Skp1 (or its dual Skp2). We here consider the case when (36)

was inferred using rule Com1; the other cases are analogous. From Com1, we know (36) takes the form:

δ � S1 ‖ S3
τ−→ δ′ � new b.(S1

′ ‖ S3
′) s.t. b ∩ fn(S′

3) = ∅ (37)

because:

δ � S1
(b)α−−−→ δ′ � S1

′ (38)

δ � S3
α−→ δ � S3

′ (39)
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Now by (35), (38) and the inductive hypothesis, we can infer a matching transition from δ � S2, i.e.,

δ � S2
(b)α���⇒ δ′ � S2

′ (40)

s.t. S′
1 R δ′ S2

′. (41)

Thus, from (40), (39) and Com1 we infer transition:

δ2 � S2 ‖ S3
τ�⇒ δ′

2 � new b.(S2
′ ‖ S3

′)

which is the required matching move. Finally, from (41) we obtain:

new b.(S1
′ ‖ S3

′) R δ′ new b.(S2
′ ‖ S3

′)

by the second and fourth clauses of the definition of R δ . �

Apart from justifying bisimulation as a sensible equivalence relation for our terms, Theorem 1 implies that bisimulation

admits compositional analysis. In fact, this theorem allows us to abstract away from common code when exhibiting bisim-

ulations. More precisely, to show that two configurations δ1 � S1 ‖ S3 and δ1 � S2 ‖ S3 are bisimilar, it suffices to provide

a relation including the pair 〈δ1 � S1 ‖ S3, δ1 � S2 ‖ S3〉 without considering the common sub-system S3. We will take

advantage of these compositional properties when proving bisimulations in Section 4.3.

Example 9. We can show that the monitors Morch and Mchor, defined earlier in Example 3, when monitoring the system

Sys, defined in Example 1, subject to the local clocks δ = {l 
→ j, k 
→ i}, are bisimilar:

δ |� (Sys ‖ Morch) ≈ (Sys ‖ Mchor)

Moreover, by Theorem 1, in order to show this it suffices to show:

δ |� Morch ≈ Mchor

This can be shown by giving a concrete bisimulation, which we relegate to Appendix 10.

In general, constructing concrete bisimulation relations for particular cases can be a tedious task. However, the contex-

tuality result of Theorem 1 allows us to reason about monitors by decomposing them into parts. In practice, one usually has

compositional ways of synthesising monitors from a logic formula. The contextuality of bisimulation lends itself directly to

proving properties about a general synthesis approach as we will show in the next section.

4. Comparing monitoring strategies

mDPiprovides uswithmathematical tools enablingus to reason aboutmonitoring of systems. Aswehave seen in Example

3, one can express monitors instrumented in different ways and also to reason about their observational equivalence,

despite syntactic and structural differences. Typically, in runtime verification, one expresses properties to be monitored

in a logic which is then instrumented on the system in whichever way best suits the setting. In general, a property may

thus be translated into different monitors — depending on how one would like the monitoring to take place. Correctness

of the instrumentation processes corresponds to saying that starting from any property expressible in the logic, different

instrumentations would give observationally equivalent results.

In this section we illustrate this use of mDPi to prove that three different instrumentation strategies for a regular-

expression based logic give observationally equivalent results. Furthermore, we also use the calculus, but taking location

into account to show that certain instrumentation strategies ensure that monitoring is always performed locally. It should

be emphasised that the choice of regular expressions to specify properties is an arbitrary one, and similar results can be

shown for other logics.

4.1. Regular expressions for monitoring

A regular-expression based logic is used to express properties to be monitored. Well-formed expressions in the logic

range over the following syntax:

E, F ∈ RegExp ::= (c, v)@k | (c, ∃x)@k.E | E + F | E∗ | E.F
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Standard regular expression combinators are adopted, with union over two expressions being written as E+ F , repetition as

E∗ and sequentiality as E.F . The basic component (c, v)@k matches when value v is passed over channel c emanating from

location k, while (c, ∃x)@k.E matches any communication over channel c from location k, binding the value to variables

x in the regular expression E. Any communication not matching the regular expression is ignored when matching. For

example, the regular expression (c, 7)@l.(d, 8)@l matches communication traces such as l�t(c, 7, i)� ‖ l�t(d, 8, i + 1)�,
or l�t(b, 3, i)� ‖ l�t(c, 7, i + 1)� ‖ l�t(d, 8, i + 2)�, or even l�t(c, 7, i)� ‖ l�t(b, 3, i + 1)� ‖ l�t(d, 8, i + 2)� — a

trace matches if and only if terminates with (d, 8)@l and includes an earlier (c, 7)@l. We use regular expressions to specify

counterexamples in the logic — any trace matching with the regular expression is considered to be a violation.

Example 10. Despite its simplicity, the logic is sufficiently expressive for many useful properties. Consider the property,

which states that: “If an alarm is raised (amessage is sent on channel alarm) fromeither location k1 or k2, thenno furthermes-

sages should be sent from location k0 on channel pvt”. This canbewritten as: ((alarm, 〈〉)@k1+(alarm, 〈〉)@k2).(pvt, 〈〉)@k0.

For simplicity, we use dataless communication, but this can easily be extended using the binding match operator.

Now consider the property: “Data passed over channel c emanating from location k may not repeat values”. This can be

expressed using the binding match operator as the regular expression: (c, ∃x)@k. (c, x)@k. Similarly, the operator can be

used to reason about systemswith dynamic topologies, e.g., (c, ∃badloc)@mng.(sys, 〈〉)@badlocwouldmonitor whether the

system channel can be accessed from locations which have been reported as bad by the manager at location mng.

4.2. Monitoring of regular expressions

We will now look at different ways of instrumenting an mDPi monitor from a regular expression, which we can then

compare for observational equivalence. Unlike existingwork on runtime verificationwith regular expressions formonolithic

systems such as [18], we will provide different ways of synthesising a monitor depending on the monitoring strategy we

choose to adopt.

4.2.1. Orchestrated monitoring

Orchestrated monitoring of a regular expression places all the listening components at a central location, combining the

information coming from different locations to try to match the expression.

Consider the continuation-based compilation function compile : RegExp × Mon → Mon, where compile(E,M) is an

mDPi term describing the monitor which, after matching expression E behaves as mDPi term M:

compileO :: RegExp × Mon → Mon

compileO((c, v)@k,M) � read((c, v)@k,M)

compileO((c, ∃x)@k.E,M) � sync(k).new d.
(
d! ‖ ∗d?.q(c, x).(compileO(E,M) ‖ d!)

)

compileO(E + F,M) � new d.
(
compileO(E, d!) ‖ compileO(F, d!) ‖ ∗d?.M)

compileO(E
∗,M) � new b, d.

(
(∗d?.compileO(E, b!)) ‖ (∗b?.(d! ‖ M)) ‖ b!

)

compileO(E.F,M) � compileO(E, compileO(F,M))

Sequential composition E.F corresponds directly to a continuation, while the binding operator is a combination of the

base case and sequential composition, exploiting the binding and substitution associated with querying to instantiate free

variables x in the continuation compileO(E,M) with the values obtained dynamically from the trace. Choice E + F adds a

listener to identify whether E and F has terminated before triggering the continuation. A mathematically equivalent way of

expressing compileO(E+ F,M) is as compileO(E,M) ‖ compileO(F,M). However, we chose this description since it explicitly

refers to a single instance of the continuation monitor, and is therefore closer to the intended implementation. Repetition

E∗ also adds logic to trigger the continuation repeatedly.

The case of (c, v)@k is defined exclusively in terms of read((c, v)@k,M), whichwaits for value v over channel c in location

k before triggering the continuation M, and is defined as follows:

read((c, v)@k,M) � sync(k).new d.(d! ‖ ∗d?.(q(c, x).if x = v then (M ‖ d!) else d!))

We can now define the orchestrated monitor of expression E monitorO(E) using compileO with a failing continuation to

ensure violation whenever the expression is matched, and starting at an arbitrary (central) location h; the monitor resides

in this location h throughout its entire lifetime. The definition is given below:

monitorO(E) � h{[compileO(E, fail)]}(h,1)
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Example 11. Consider the example seen earlier with ensuring that once a bad location has been identified by a manager

process, it is not used to send a systemmessage: E � (c, ∃badloc)@mng.(sys, 〈〉)@badloc. A centralised monitor for E can be

calculated as follows:

monitorO(E)

= h{[compileO(E, fail)]}(h,1)
= h{[compileO((c, ∃badloc)@mng.(sys, 〈〉)@badloc, fail)]}(h,1)
= h{[sync(mng).new d.

(
d! ‖ ∗d?.q(c, badloc).(compileO((sys, 〈〉)@badloc, fail) ‖ d!)

)
]}(h,1)

= h{[sync(mng).new d.
(
d! ‖ ∗d?.q(c, badloc).(read((sys, 〈〉)@badloc, fail) ‖ d!)

)
]}(h,1)

4.2.2. Migrating monitors

As discussed in Section 2.1.3, instead of listening from a central location, an alternative is to migrate the monitoring code

to the location where the next event is expected to occur. As in the case of orchestrated monitoring, we start by defining a

continuation-based migrating monitor:

compileM :: RegExp × Mon → Mon

compileM((c, v)@k,M) � go k.read((c, v)@k,M)

compileM((c, ∃x)@k.E,M) � go k.sync(k).new d.
(
d! ‖ ∗d?.q(c, x).(compileM(E,M) ‖ d!)

)

compileM(E + F,M) � new d.
(
compileM(E, d!) ‖ compileM(F, d!) ‖ ∗d?.M)

compileM(E∗,M) � new b, d.
(
(∗d?.compileM(E, b!)) ‖ (∗b?.(d! ‖ M)) ‖ b!

)

compileM(E.F,M) � compileM(E, compileM(F,M))

monitoring, but differ for the base cases of the definition:whenever a channel communication is to bemonitored via (c, v)@k

or (c, ∃x)@k.E, the monitor first migrates to location k where the trace query is to take place (followed by a synchronisation

to that location), thereby guaranteeing that monitoring is always performed locally.

As before, we can now define the complete monitor by using a failing continuation to mark violations:

monitorM(E) � k{[compileM(E, fail)]}(k,1)

Example12. Onceagain,wewill use theexampledisallowingsystemmessages fromabad location identifiedat runtime:E �
(c, ∃badloc)@
.mng(sys, 〈〉)@badloc. A migrating monitor can be calculated as:

monitorM(E)

= k{[compileM(E, fail)]}(k,1)
= k{[compileM((c, ∃badloc)@mng.(sys, 〈〉)@badloc, fail)]}(k,1)
= k{[go mng.sync(mng).new d.(

d! ‖ ∗d?.q(c, badloc).(compileM((sys, 〈〉)@badloc, fail) ‖ d!)
)
]}(k,1)

= k{[go mng.sync(mng).new d.(
d! ‖ ∗d?.q(c, badloc).(go badloc.read((sys, 〈〉)@badloc, fail) ‖ d!)

)
]}(k,1)

orchestrated monitoring, is that the monitor migrates to the location where the communication will take place before

eavesdropping.

4.2.3. Static choreography

The third option for instrumenting a monitor for a regular expression is that of a choreographed approach — statically

breaking the property down into communicating components each of which resides in the location where the monitored

communication is to take place. The compilation decomposes the monitor into parallel components, resulting in a compi-

lation strategy not unlike standard approaches used in hardware compilation of regular expressions, e.g., [19]. As typically

done in these approaches, we use two additional channels: b and e, with b signalling when to begin matching the regular

expression, and e, signalling the end of a match with the regular expression. The resulting structure of the compilation

follows the pattern shown in the block diagrams of Fig. 8.
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Fig. 8. Compiling E.F , E + F and E∗ (respectively).

The compilation scheme is a function of the form compileb→e
C (E), with b and e being the begin and end channels:

compileC :: Chans × Chans × RegExp × Mon → Mon

compileb→e
C ((c, v)@k) � k{[∗b?.read((c, v)@k, e!)]}(k,1)

compileb→e
C (E.F) � new d.

(
compileb→d

C (E) ‖ compiled→e
C (F)

)

compileb→e
C (E + F) � new c, d.

(
compilec→e

C (E) ‖ compiled→e
C (F) ‖ h{[∗b?.(c! ‖ d!)]}(h,1)

)

compileb→e
C (E∗) � new c, d.

(
compilec→d

C (E) ‖ h{[(∗d?.(c! ‖ e!)) ‖ (∗b?.d!)]}(h,1)
)

For simplicity, all additional machinery used to synchronise the monitors is placed at an arbitrary location h, although this

could be changed without affecting the proofs in the coming sections, given that this code does not involve any tracing.

Also note, that due to the static nature of the monitoring approach, properties discovered at runtime and dynamic locations

cannot be handled locally and thus the binding operator (c, ∃x)@k.E is not supported.

The installation of a choreographedmonitoring of expression E can be expressed in terms of compileb→e
C (E) by triggering

the monitor right at the start, and failing upon a match:

monitorC(E) � new b, e.
(
compileb→e

C (E) ‖ h{[b! ‖ ∗e?.fail]}(h,1)
)

Example 13. Consider the property: E � ((alarm, 〈〉)@k1 + (alarm, 〈〉)@k2).(pvt, 〈〉)@k0. Compiling E will result in three

monitoring components located at k0, k1 and k2 with additional communication handling processes which can be placed at

any location h:

monitorC(E)

= new b, e.
(
compileb→e

C (E) ‖ h{[b! ‖ ∗e?.fail]}(h,1)
)

= new b, e.
(
compileb→e

C (((alarm, 〈〉)@k1 + (alarm, 〈〉)@k2).(pvt, 〈〉)@k0) ‖ h{[b! ‖ ∗e?.fail]}(h,1)
)

= new b, e.⎛
⎜⎜⎜⎝

new d0.

compile
b→d0
C (((alarm, 〈〉)@k1 + (alarm, 〈〉)@k2)) ‖

compile
d0→e
C ((pvt, 〈〉)@k0)

⎞
⎟⎟⎟⎠ ‖

h{[b! ‖ ∗e?.fail]}(h,1)
= new b, e.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

new d0.⎛
⎜⎜⎜⎜⎜⎜⎝

new d1, d2.

compile
d1→d0
C ((alarm, 〈〉)@k1) ‖

compile
d2→d0
C ((alarm, 〈〉)@k2) ‖

h{[∗b?.(d1! ‖ d2!)]}(h,1)

⎞
⎟⎟⎟⎟⎟⎟⎠

‖

compile
d0→e
C ((pvt, 〈〉)@k0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

‖

h{[b! ‖ ∗e?.fail]}(h,1)
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= new b, e.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

new d0.⎛
⎜⎜⎜⎜⎜⎜⎝

new d1, d2.

k1{[∗d1?.read((alarm, 〈〉)@k1, d0!)]}(k1,1) ‖
k2{[∗d2?.read((alarm, 〈〉)@k2, d0!)]}(k2,1) ‖
h{[∗b?.(d1! ‖ d2!)]}(h,1)

⎞
⎟⎟⎟⎟⎟⎟⎠

‖

k0{[∗d0?.read((pvt, 〈〉)@k0, e!)]}(k0,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

‖

h{[b! ‖ ∗e?.fail]}(h,1)
Pushing the channel declarations to the top level and reorganising, the monitor is thus:

new b, e, d0, d1, d2.

k0{[∗d0?.read((pvt, 〈〉)@k0, e!)]}(k0,1) ‖
k1{[∗d1?.read((alarm, 〈〉)@k1, d0!)]}(k1,1) ‖
k2{[∗d2?.read((alarm, 〈〉)@k2, d0!)]}(k2,1) ‖
h{[∗b?.(d1! ‖ d2!)]}(h,1) ‖
h{[b! ‖ ∗e?.fail]}(h,1)

Note that the compilation schemata given may lose completeness since they all perform synchronisation every time a

value is to be read. For example, the compilation of (c, 2)@k.(c@1)@k results in two synchronisations, which means that

although location k may have output 2 followed by 1 on channel c, by the time the second sychronisation takes place, the

value 1 may have been missed by the monitor. There are however ways around this within the calculus itself; for instance,

in the case of orchestration andmigrating-monitor strategies, a more complete approach would be not to synchronise if the

location remains unchanged. Both schemata would thus replace a synchronisation with location k followed by amonitoring

term M (where curr is a free variable in M) with the following:

tmp?curr.if k = curr then M else (sync(k).new tmp′.
(
tmp′!k ‖ tmp′?curr.M)

)

The respective adjustments for the choreographed approach are slightlymore involved and are outlined in [7]. The proofs

in the next section can be adapted for these extensions.

4.3. Equivalence of monitoring strategies

In the previous section we have seen how different monitors can be obtained from a regular expression. Formalising

the monitors in terms of mDPi allows us to analyse them for correctness. One can prove their correctness in that a monitor

synthesised from a regular expression matches exactly the strings covered by the regular expression. Another important

question is that of relative correctness—aremonitors produced via different synthesis techniques equivalentmodulo locality

of monitoring? We focus on the latter question, since it allows us to illustrate the use of mDPi bisimulation techniques to

the utmost. In this section we thus prove this relative correctness result for the three monitoring strategies presented.

Themain results, given in Theorems 2 and 3, state that given any regular expression E, the derived orchestrated,migrating

and choreographedmonitors obtained for the expression (i.e.,monitorM(E),monitorM(E) andmonitorC(E)) are bisimilar. The

reader may safely choose to skip the lemmata and proofs leading up to Theorems 2 and 3 upon first reading.

The equivalence results follow by inductively (over the structure of the regular expression) proving how the compilation

schemas compileO, compileM and compileb→e
C are related to each other.

We start by relating orchestrated and migrating monitoring approaches.

Lemma 2. The orchestrated andmigratingmonitor compilation of an expression E are bisimilar, assuming bisimilar continuations

M and M′. If δ′ |� k{[M]}(k,i) ≈ h{[M′]}(k,i), then:
δ |� l{[compileM(E,M)]}(l,j) ≈ h{[compileO(E,M

′)]}(l,j)

Proof. By induction on the structure of E, where each case is proven by showing co-inductively that the respective compila-

tions are bisimilar. The resulting monitors for base case, E = (c, v)@k, are almost identical, apart from (i) an additional go k

in case of the migrating monitor compilation, and (ii) differences in starting location: the additional migration move for (i)
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is a silent action which can be matched by an empty move by the orchestrated monitor, whereas the location discrepancies

of (ii) are (purposefully) not reflected in the labels of the LTS.

The inductive cases follow easily from bisimulation equivalences obtained from the inductive hypotheses and Theorem 1

(Contextuality). For example, consider the compilation of E∗, for which we are required to prove that:

δ |� l{[new s, f .(∗s?.compileM(E, f !) ‖ ∗f ?.s!.M ‖ f !)]}(l,j) ≈
G{[new s, f .(∗s?.compileO(E, f !) ‖ ∗f ?.s!.M ‖ f !)]}(l,j)

It is trivially true that δ′ � k{[f !]}(k,i) can act identically to δ′ � G{[f !]}(k,i). By the inductive hypothesis we infer that δ |�
l{[compileM
(E, f !)]}(l,j) ≈ G{[compileO(E, f !)]}(l,j).

It can also be shown that δ |� l{[∗f ?.s!.M]}(l,j) ≈ G{[∗f ?.s!.M]}(l,j), sinceM andM′ are bisimilar and differences in mon-

itor location are not reflected in the LTS. Hence, using the contextuality of ≈ shown in Theorem 1, we can infer the bisim-

ilarity under δ of new s, f .(l{[compileM(E, f !)]}(l,j) ‖ l{[∗f ?.s!.M]}(l,j) ‖ l{[f !]}(l,j)) and new s, f .(G{[compileO(E, f !)]}(l,j) ‖
G{[∗f ?.s!.M]}(l,j) ‖ G{[f !]}(l,j)), from which the desired result follows. The cases for E1 + E2 and E1.E2 are analogous. �

This theorem enables us to prove the equivalence of monitorM(E) and monitorO(E):

Theorem 2. The migrating monitor and orchestrated compilations of a regular expression E are bisimilar:

δ |� monitorM(E) ≈ monitorO(E)

The proof of Theorem 3 is more complex as static choreography relies on triggers. We therefore employ an intermediary

modified version of a “triggered” orchestration to make Lemma 3 go through. 9 Proper orchestration can be then recovered

using Lemma 4.

We now turn our attention to relating choreographed and orchestrated compilation.

Lemma 3. For a continuation M, the choreographed compilation of a regular expression E without initial triggering is bisimilar

to a “triggered” orchestrated compilation:

δ |� new e.(compileb→e
C (E) ‖ h{[∗e?.M]}(h,1)) ≈ h{[∗b?.compileO(E,M)]}(h,1)

Proof. By induction on the structure of E, where each case is proved by showing co-inductively that the respective compila-

tions arebisimilar. Consider the case for catenationE.F . Theorchestrated compilation is
(
δ � h{[∗b?.compileO(E.F,M)]}(h,1)),

which can be expanded to
(
δ � h{[∗b?.compileO(E, (compileO(F,M)))]}(h,1)). By I.H. on E this acts identically to

(
δ �

new d.(compileb→d
C (E) ‖ h{[∗d?.compileO(F,M)]}(h,1))). By I.H. on F and contextuality, this acts bisimilarly to

(
δ � new d.

(compileb→d
C (E) ‖ new e.(compiled→e

C (F) ‖ h{[∗e?.M]}(h,1)))) which, up to standard structural manipulation of terms, ≡,

(see [14]) is equivalent to
(
δ � new e.(compileb→e

C (E.F) ‖ h{[∗e?.M]}(h,1))). Hence, for local clocks δ, we can show that:

δ |� new e.(compileb→e
C (E) ‖ h{[∗e?.M]}(h,1)) ≈ h{[∗b?.compileO(E,M)]}(h,1) �

This result allows us to prove, together with co-induction, that triggering the monitor once still gives the same result:

Lemma 4. The standard orchestrated compilation for E is bisimilar to a scoped, “singly-triggered” orchestrated compilation:

δ |� h{[compileO(E,M)]}(h,1) ≈ new b.(h{[b!]}(h,1) ‖ h{[∗b?.compileO(E,M)]}(h,1))
Finally, this result can be used to prove equivalence between choreographed and orchestrated monitors.

Theorem 3. The choreographed and orchestrated compilations of a regular expression E are bisimilar:

δ |� monitorC(E) ≈ monitorO(E)

Proof. By Lemma 3 and contextuality (using the context new b.
(
h{[b!]}(h,1) ‖ −)

) we have:

δ |� monitorC(E) ≈ new b.(h{[b!]}(h,1) ‖ h{[∗b?.compileO(E, fail)]}(h,1))
9 Trigger channels b, e, . . . used by compilations are always assumed to be fresh.
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and by Lemma 4 we have:

δ |� new b.(h{[b!]}(h,1) ‖h{[∗b?.compileO(E, fail)]}(h,1) ≈ monitorO(E)

The required result then follows by transitivity of ≈. �

Theorems 2 and 3, together with transitivity of the bimulation relation allow us to conclude that all three forms of

monitoring are, in fact, pairwise equivalent.

4.4. Migrating monitoring preserves locality

Although the monitoring approaches exhibit the same behaviour, there are reasons for choosing one over another —

primarily due to how the monitors are distributed across locations. In the case of choreographed and agent migration

approaches, this should ensure that the monitors listen to channels locally.

A monitor’s intention to read a trace remotely can be inferred when it is syntactically of the form δ � k{[q(c, x).M′]}(l,i),
i.e., when its current location, k, and that ofmonitoring context, l, do notmatch.We can thus inductively define the following

predicate over systems signalling remote trace violations through these rules.

k{[q(c, x).M′]}(l,i) →err

k �= l
S →err

new c.S →err

S →err

S ‖ U →err

S →err

U ‖ S →err

Definition 3. A system S is said to be local, written local(S), if for any counter values δ, err is not reachable from S:

local(S) � ∀δ¬
(
∃α1, . . . , αn, δ

′, S′ such that δ � S
α1��⇒ . . .

αn��⇒ δ′ � S′ where S′ →err

)

Proposition 1. (i) Any system S which does not contain a sub-term of the form q(c, x).M′ is local, i.e., local(S). (ii) Locality is,

in some sense, contextual: local(S) and local(U) implies local(S ‖ U) and local(new c.S).

It is easy to show that orchestrated monitoring does not always preserve locality. We can also prove that migrating and

choreographed monitoring always occurs locally.

Theorem 4. There are regular expressions E for which ¬(
local(monitorO(E))

)
.

Proof. By counter example. Consider the regular expression (c, v)@k, with k �= h where h is the global orchestration

location. One can easily verify that the respective compilation can transition into the following non-local system:

new d.
(
h{[q(c, x).if x = v then (fail ‖ d!) else d!]}(k,δ(k)) ‖ h{[∗d?.(. . .)]}(k,δ(k))

)
→err �

As before, we prove that locality is preserved for the compilation schemata compileM and compileC , from which we can

then conclude locality preservation by the monitors. Once again, the reader may safely skip the following proofs upon first

reading and proceed immediately to Theorem 5.

Lemma5. Compiling regular expressionE intoamigratingmonitorwitha local continuationM yieldsa localmonitor: local(h{[M]}(l,i))
implies local(compileM(E,M)).

Proof. By induction on the structure of E. The base case, (c, v)@k, yields the compiled monitor

h{[go k.sync(k).new d.(s! ‖∗s?.(q(c, x).if x = v then (M ‖ s!) else s!))]}(l,i)

which never produces an error since all queries are preceded by a single synchronising operation sync(k), which is, in turn,

preceded by a migration to that location, go k.

For the inductive case E+F , we need to show that err is not reachable from k{[new d.(compileM(E, d!) ‖ compileM(F, d!) ‖
∗d?.M)]}(l,j). From Proposition 1(i) we know that local(k{[d!]}(l,j)) and local(k{[∗d?.M]}(l,j)) and by I.H. on E and F we con-

clude local(k{[compileM(E, d!)]}(l,j)) and local(k{[compileM(F, d!)]}(l,j)). The result follows from Proposition 1(ii). The other

inductive cases are analogous. �

Similarly, for choreographed monitoring locality is preserved:

Lemma 6. Compiling a regular expression E into a choreographed monitor results in a local monitor: local(compileb→e
C (E)).
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Proof. By induction on the structure of E. The base case, (c, v)@k yields the monitor

k{[∗b?.read((c, v)@k, e!)]}(k,1)

which can be easily shown not to result in err.

For the inductive case of E+F , the compilationyieldsnew c, d.
(
compilec→e

C (E) ‖ compiled→e
C (F) ‖ h{[∗b?.(c! ‖ d!)]}(h,1)).

One can show that this system is local by using similar reasoning to that used for the respective inductive case of Lemma 5.

The other inductive cases are analogous. �

These two lemmata allow us to conclude locality of migrating and choreography-based monitoring.

Theorem 5. Both migrating monitors and choreography-based monitoring guarantee locality of monitoring: for any regular

expression E, both local(monitorM(E)) and local(monitorC(E)) hold.

Proof. We conclude that the migrating monitor compilation is local from Lemma 5 and the fact that local(k{[fail]}(k,j)). We

conclude that the choreographed compilation is local from Lemma 6, Proposition 1(i) (for the outer plumbing code) and

then Proposition 1(ii). �

5. Discussion and related work

In this paper we formalise distributed monitoring, thus allowing for a comparison of instrumentation strategies. This

approach is somewhat different than other frameworks presented in the literature, which typically focus on formalising and

implementing one particular strategy for a particular scenario.

Most of the work appearing in the field of runtime verification [20,21] focusses on the verification of techniques for the

analysis of traces of events generated by the system. The distinguishing features of the subset of work in the area focussing

on distributed systems are that (i) in a distributed setting, different locations generate separate traces, and given that one

usually lacks a global clock one has tomake dowith a limited notion of consequentiality [17]; and (ii) beyond the question of

how to instrumentmonitoring code, one is facedwith the question ofwhere to instrument the code, since different locations

give rise to different communication behaviour. Since the contribution of this work lies in these features, in this section we

focus on related work on runtime verification for distributed systems.

To the best of our knowledge, no other generic formal framework for reasoning about issues such as monitor correctness

and instrumentation strategies in a distributed system setting appears in the literature. Even though there are numerous

process calculi that address locations and distribution — the closest to our work being [14,22] — none of these model trace

generation and monitoring as part of the computation; rather, traces are often a meta-construct aiding system analysis. The

work by Zavattaro et al. [23,24] studiesmore expressive contract languages for Service Oriented Computing. Their aims differ

from ours in that they are concerned with the analysis of contract mechanisms such as error handling and compensations

with respect to notions of correctness such as service compliance. In contrast, our work focusses on the instrumentation

and monitoring, using contracts as a vehicle for explaining the issues that arise in distributed settings.

DiAna [2] is one of the more formal attempts based on the actor model [25], adopting knowledge vectors (which extend

vector clocks [15]) for monitoring causal properties of distributed systems. More specifically, this approach recognises the

impracticality of monitoring distributed systems in a centralised fashion due to unreasonable bandwidth overheads. To

this effect, the framework adopts a pre-compiled monitor per location, imposing a (reasonable) overhead on each across-

border interaction,which is exploited in order to share knowledge vector instances betweenmonitors. Using a simple update

strategy, themonitor on the receiving end is guaranteed toobtain the latest knownexpression evaluations, extracting a causal

order on remote events in the process. By verifying causal assertions — a well-understood subset of temporal properties —

DiAna offers amore elegant solution towards the statically choreographedmonitoring of distributed architectures. However,

this approach cannot handle dynamic architectures, since knowledge vectors are based on the assumption that contributing

nodes are known at compile time. It is for this reason that mDPi extracts temporal orderings across locations by exploiting

monitor execution, as opposed to underlying system interactions as is the case with DiAna. One should also note that this

latter framework specifies causal properties through PT-DTL, a distributed extension to PT-LTL; a logic with a proven track

record in a runtime verification setting [21,26,27]. This points to the need for the study of more expressive logics within the

setting of mDPi, and is left as future work. Finally, it is worth noting that DiAna ignores the issue of data exposure by sharing

knowledge vectors across locations.

Two other tool-oriented frameworks include DMaC [6] and GEM [5]. The former, an extension of the MaC [? ] frame-

work (originally developed for monolithic systems), makes use of declarative networking techniques for verifying system

behaviour against formalised requirements. In order to do so, PEDL scripts (a language for defining primitive events within

the system) are exploited in order to convert MEDL (similar to past-time Linear Temporal Logic) specifications to declar-

ative queries, run over distributed tables, and is hence choreography based. Although DMaC offers an implementation-

independent approach, it fails to offer solutions to the problem of asynchrony across locations. Moreover, the approach

depends on cost-based optimisations for query placement which remain unchanged during execution, a problem which
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is known to be NP-hard — although various dynamic programming techniques and heuristics are used, there is a risk of

generating inefficient query plans resulting in unreasonable bandwidth overheads. Issues of dynamic architectures and in-

formation confidentiality are not addressed. GEMalso dealswith distributedmonitoring, adopting an interpreted rule-based

language for monitoring temporal properties across locations. Crucially, it assumes the availability of a global clock, reliev-

ing itself of substantial difficulties inherent with the monitoring of distributed architectures. The framework offers basic

solutions to the loss of event orderings across locations, including the specification of a tolerated limit on event delays per

rule, keeping an event history in themeanwhile (beyondwhich subsequent events are ignored). This is achieved by delaying

the triggering of rules for a specified amount of time, with the rule evaluated on the collected event history. Clearly, these

solutions are applicable due to the assumed synchrony across locations. Although GEM allows for the loading of new rules

at runtime (being an interpreted language), it does not consider dynamic architectures. Moreover, local pertinent events are

disseminated to remote nodes, exposing information.

6. Conclusions

In this paper we presented mDPi, a location-aware calculus with explicit monitoring capabilities, whilst internalising

the local tracing of process behaviour. This calculus’ purpose is the formalisation of the distributed monitoring scenario,

allowing for the comparison of competing strategies. Apart from presenting mDPi’s syntax and LTS-based semantics, we

justify our approach in a number of ways:

1. We justify a bisimulation-based semantics for mDPi through the concept of compositionality, Theorem 1.

2. We provide orchestrated, choreographed and migrating monitor compilations for a simple regular-expression based

language, Section 4.1.

3. The three compilations are proved to be equivalent up to monitoring location, in Theorem 2 and Theorem 3.

4. We prove that, with respect to this logic, migrating monitors and static-choreography minimise information leaks by

ensuring local monitoring, whereas orchestration does not, Theorem 4 and Theorem 5.

From the point of view of the migrating monitor strategy, these results formally justify it as equally expressive to exist-

ing distributed monitoring strategies, while giving additional guarantees regarding potential information leakage through

remote monitoring. Needless to say, migrating monitors still do not solve the problem of information leaks — for instance,

the migration pattern of monitors and the content of the monitor continuations could still be used to deduce information

about the local events. While the latter aspect can be addressed using standard encryption techniques, 10 the former aspect

poses an interesting challenge that can be tackled in future work.

We also plan to extend mDPi to address issues such as clock boundaries and real-time operators, which will allow us

to devise and study monitoring strategies that are more complete. At present, the calculus also ensures that monitoring is

non-intrusive, in that it reads events from the systembut does not otherwise interactwith it. To be able to handle reparations

triggered upon contract violation, and to express correctness through monitor-oriented programming [28], this constraint

needs to be relaxed; this is another direction we would like to explore in the future.

Appendix A. Bisimulation proof for Example 9

In Example 9, we looked atmonitorsMorch andMchor (as defined in Example 3)whenmonitoring a system Sys (as defined

in Example 1). When subject to the local clocks δ = {l 
→ j, k 
→ i} we wanted to show their bisimilarity:

δ |� (Sys ‖ Morch) ≈ (Sys ‖ Mchor)

By Theorem 1, in order to show this it suffices to show:

δ |� Morch ≈ Mchor

This can in turn be proved by constructing the witness family of relations over systems indexed by clocks below (we here

denote them as a single relation over triples Clocks × Sys × Sys). This relation assumes the following definitions:

Mo � q(d, x).sync(l). q(x, y). if y < 2 then fail

Mo
1 � sync(l). q(x, y). if y < 2 then fail

Mo
2 � q(x, y). if y < 2 then fail

Mo
3 � if y < 2 then fail

Mk � q(d, x). b!x
Ml � b?x. sync(l).q(x, y). if y < 2 then fail

10 For example, the continuations can be encrypted with the public key of the next listener, and signed for authenticity.
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Fig. A.9. Bisimulation triples.

The witness relation shown in Fig. A.9 is made up of six groups of triples, and assumes the following ordering amongst local

clocks:

δ′ ≤ δ � dom(δ′) = dom(δ) ∧ (k ∈ dom(δ) ⇒ δ′(k) ≤ δ(k))

The first group of triples describe the unsuccessful queries of trace records by the respective monitors through actions

inT(cg, vg, k, g) derived using rule Skp, preceded by a series of τ -transitions increasing the local counters through rule

Cntr; every unsuccessful query increases the trace monitor index of the respective monitor and introduces the respective

trace record queried as part of the system.

The second group of triples describe the successful querying of a trace record at index (k, j′) and are transitioned to from

triples of the first group through inT(cg, vg, k, g) actions derived using rule InT. The third group relates the communication

on the scoped channel b from the choreographed monitor with a no-transition from the orchestrated monitor side. Again,

the fourth group describes unsuccessful trace record queries at location l, which then transition to the fifth group of triples

once a successful query is made. Finally, the sixth group of triples describe the possible branches that the monitor condition

may take, based on the value inputted from the trace record queried.
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