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1 Introduction

1.1 Background

Elasticity is the property of a body to resist a distorting influence and to return to its original
size and shape when that influence or force is removed. Natural frequency, also known as
eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any
driving or damping force. Resonance is a phenomenon that occurs when the frequency at
which a force is periodically applied is equal or nearly equal to one of the natural frequencies of
the system. This type of force causes the system to oscillate with larger amplitude than forces
of other frequencies. Studies of the characteristic vibrations of elastic bodies are extremely
effective methods of analysis in engineering and physics due to its numerous applications such
as reduction of noise pollution of machines, efficiency of automotive tires, construction of safer
buildings and so on.

We introduce some examples of how eigenfrequencies and building safety are related. The
Tacoma Narrows Bridge was a suspension bridge in the state of Washington, U.S.A. that was
designed to withstand winds of up to 60m/s. However in November 7, 1940 the bridge started
to oscillate violently and eventually collapsed even though the speed of the wind was 19m/s.
The cause was highly debated by experts who concluded that the bridge started vibrating due
to a mixture of resonance and aeroelastic fluttering. Angers Bridge, also called the Basse-
Châın Bridge, was a suspension bridge in France that collapsed in 1850 while a battalion of
French soldiers was marching across it. The pace of the soldiers’ march matched the natural
frequency of the suspension bridge, and as a consequence, the amplitude of the oscillations
started increasing. The structure could not withstand the bending and collapsed, bringing the
number of casualties up to 226. Since then, the military issues orders that troops should walk
ordinarily when crossing a bridge.

After these incidents, winds and other environmental phenomena are well studied and taken
into account before building a new bridge. This is a measure to adjust the natural frequencies
of the bridge so that it does not resonate with other influences.

Resonances can also be detected far from the epicenter of seismic activities. For example,
after the 2007 Niigata Chūetsu Offshore earthquake or the 2011 earthquake off the Pacific coast
of Tōhoku, long-periodic mechanical resonances caused by these earthquakes were detected in
the Kantō region of Japan. In general, low-rise and middle-rise buildings as well as buildings
with wide floor space do not have small eigenfrequencies. On the other hand, high-rise build-
ings, skyscrapers and buildings with narrow floor space have small natural frequencies. It is
for this reason that tall and thin buildings are more easily affected by long-periodic seismic
motions and can cause the structure to crumble. Therefore, vibrations must be thoroughly
studied from different fields and point of view. These studies are applied in the safety of
large-scale architectural structures in the following way. For example, they are used to develop
new technologies for seismic base isolation and vibration control. Seismic base isolation, also
called vibration damping, is used to change the value of the eigenfrequencies in order to avoid
mechanical resonance from happening.

From all these examples, it is clear that the control of natural frequencies is crucial during
the whole process of planning and construction of an architectural structure. Not only in archi-
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tecture, but also in many fields of engineering, other aspects must be taken into consideration,
such as the gradual change of the eigenfrequencies caused by natural processes like deteriora-
tion over time or changes on the site environment. Moreover, shape also plays an important
roll in order to control the natural frequencies. We give some examples: a particular shape of a
tunnel exit helps reduce the noise pollution it produces after a train passes through it, opening
some holes in an industrial machine can make it more difficult to vibrate against outside influ-
ence and therefore more efficient, achieving an optimal shape for a tire can drastically reduce
a vehicle interior noise, etc. Thus, the study of natural frequencies of all types of structures
and shapes is of much importance in engineering. Moreover, novel contributions with studies
from the point of view of mathematics gives a further advancement of the understanding of
mechanical resonance and eigenfrequencies.

The description of a general shape with mathematical equations is not an easy task and
the more complex the structure is, the harder it is to work with it mathematically. We explain
the motivation of a usual mathematical approach using the case of buildings. Since most of
the interior of a building can be thought as empty space, one can reduce its fundamental shape
to a joint of walls and pillars. These simpler structures can be represented mathematically as
plates and rods. As a first approach, one may assume that the thinness of the plates and rods
is negligible, so that we work with 2-dimensional plates and 1-dimensional rods. However, in
architecture it is well known that the thickness of the plates and rods has an influence on the
eigenfrequences. Therefore a 3-dimensional model has to be considered.

There are physical 3-dimensional models that use partial differential equations to describe
the deformation of an elastic body. We know that in general one cannot explicitly solve the
PDE and have a solution written in terms of elementary functions. Therefore, in engineering
and architecture, although they have explicit equations for the 1-dimensional model, they rely
almost completely on simulations for the 3-dimensional case. However, the partial differential
equation modelling the problem is also interesting from the point of view of mathematics and
important information about the eigenfrequencies can be extracted, which can help to provide
even better simulation methods.

We may think that the basic structure of buildings is made of thin plates and thin rods.
This thinness can be represented by a small parameter. As a mathematical approach, one
wants to study the asymptotic behavior of the solutions and natural frequencies as the thinness
associated to the thin plates and thin rods goes to 0. In the case of the eigenfrequencies, we
perform the spectral analysis of the partial differential equation that arises from the elasticity
problem.

Using mathematical tools, such as asymptotic analysis, variational methods, and so on, we
know that in the particular case of the linearized elasticity model of a homogeneous and isotropic
rod there are several types of natural frequencies, associated to bending (or flexural), torsional
and stretching modes, each with its different asymptotic behavior. In this thesis we analyze
the asymptotic behavior of small eigenvalues and eigenfunctions (associated to bending mode)
of the linearized elasticity eigenvalue problem of a thin rod with non-uniform cross-section (see
Figure 1), as well as the asymptotic behavior of eigenvalues and eigenfunctions (associated to
torsional and stretching modes) of the linearized elasticity eigenvalue problem of a thin rod
with non-uniform symmetric cross-section.
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1.2 Previous research

There are many works on such type of spectral problems of singularly deformed domains
in these several decades (cf. Courant-Hilbert [9], Egorov-Kondratiev [13], Maz’ya-Nazarov-
Plamenevskij [26]). Particularly, eigenvalue problems of vibration of thin elastic bodies like
plates and rods are of much importance and interest from PDE theory and engineering point
of view (see for example Antman [1], Ciarlet [6], Cioranescu-Saint Jean Paulin [8], Love [25],
Nazarov [28]).

Ciarlet and Kesevan [7] pioneered ideas on elastic plates that would further be adapted to
the case of thin rods. To name some previous works, Kerdid [18] studied the behavior of small
eigenvalues of the linearized elasticity eigenvalue problem of a thin rod with constant cross-
section. Tambača [31] gives a result on the convergence of the eigenvalues and eigenfunctions
in the case of a thin curved rod. Both studies consider that the ends of the rod are clamped.
Kerdid [19] and [20] also considered a joint of two rods with one of the ends without clamping.

In other similar works on linear elasticity problems that are related to the present thesis,
Le Dret [21] treat the junction of two rods while Le Dret [22], [23] and [24] deals with folded
plates. Griso ([14] among other works) studies the asymptotic behavior of structures made of
junctions of curved rods, plates and combinations of both types. Irago-Viaño [15] obtained
higher order approximations of flexural eigenvalues of a thin straight rod using an asymptotic
expansion procedure. Irago-Kerdid-Viaño [16] studied the case of high-frequency vibrations
related to stretching and torsional modes of thin rods. Nazarov [27], Nazarov-Slutskii [29]
and Buttazzo-Cardone-Nazarov [4], [5] provide an elaborate research on asymptotic expansion
methods for anisotropic and non-homogeneous elastic thin rods and plates. The study of
eigenvalue problems on thin multi-structures for different equations is common and of much
interest in the PDE theory. For example, works like Bunoiu-Cardone-Nazarov [2], [3] deal with
the case of the Poisson equation for junctions of rods and a plate. For an extensive list of
references, see Ciarlet [6].

1.3 Plan of the thesis

The present thesis contains two main results and is organized as follows. In Section 2 we ex-
plain the common mathematical setting of the problems as well as some tools and preliminaries
needed throughout the proofs of the results. The purpose of Section 3 is to give similar results
of the behavior of small eigenvalues associated to the bending mode in more general rods. We
obtain the characterization formula, which is derived from a fourth order ordinary differential
equation system on the one-dimensional limit set of the thin elastic body. We make full use
of the variational characterization of the eigenvalues as well as detailed analysis of the weak
formulation of the eigenfunctions. Previous works considered rods with simply connected, con-
stant cross-section and such that its barycenter or “center of mass” is constant. We remove
these restrictions and we deal with a rod that has non-uniform connected cross-section. Fur-
thermore, we consider the case when both ends of the rod are clamped, and also the case when
only one end is clamped. In Section 4 we give a result for high-frequency vibrations related to
stretching and torsional modes of thin rods with axis-symmetric cross-section. We fully prove
that the limit of this type of eigenfunction is non-zero, which leads to two completely indepen-
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dent second order ordinary differential equations, one for each vibration mode, describing the
limit behavior. We provide a proof for the H1-strong convergence and we give the idea of how
to prove a more general result in curved rods. In Section A we give proof to some lemmas and
further details on some computations stated in the main body of the thesis. The results of this
thesis are based on a joint work with professor Shuichi Jimbo.
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2 Mathematical settings and preliminaries

Let Ω ⊆ R3 be a bounded domain with smooth enough boundary. We want to study the
oscillations of an elastic body with the shape of Ω.

We denote by u = (u1, u2, u3) : Ω −→ R3 the displacement vector field associated with
the oscillations. Let λ1, λ2 > 0 be positive real constants corresponding to the mechanical
properties of the elastic body. We define the tensors

e(u) = (eij(u))1≤i,j≤3 =

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

))
1≤i,j≤3

,

σ(u) = λ1 tr(e(u)) Id3+2λ2e(u),

where tr is the trace of a matrix and Id3 is the 3 × 3 identity matrix. e(u) is called the
linearized strain tensor and σ(u) is the stress tensor derived from Hooke’s law in the case of a
homogeneous isotropic elastic body (cf. Ciarlet [6]).

With this notation, the operator of the elastic equation is defined as the second order linear
elliptic operator

L[u] = div σ(u), i.e. (L[u])i =

3∑
j=1

∂

∂xj
(σij(u)) (1 ≤ i ≤ 3),

and the oscillations of an elastic body can be described by the wave equation

ϱ
∂2u

∂t2
= L[u], (2.1)

where ϱ > 0 is the mass density.
We take ϱ = 1 and we assume that the oscillations are periodic of period 2π

ω (ω > 0). In

this case, we can write the displacement field as u(x, t) = eiωtv(x). Thus, ∂2u
∂t2

= −ω2u(x, t).
Putting µ = ω2, the wave equation (2.1) becomes the eigenvalue problem

L[v] + µv = 0.

Let Γ1 be a subset of the boundary ∂Ω such that its 2 dimensional area is positive and let
Γ2 = ∂Ω\Γ1. Denote n the unit outward normal vector on ∂Ω. The main eigenvalue problem
we study is as follows. 

L[u] + µu = 0 in Ω
u = 0 on Γ1

σ(u)n = 0 on Γ2

(2.2)

It is known (cf. Courant-Hilbert [9], Edmunds-Evans [12], Egorov-Kondratiev [13]) that the
eigenvalues of (2.2) are a sequence of non-negative real numbers without points of accumulation,
that is, the set of eigenvalues counting multiplicities is {µk}+∞

k=1 satisfying

0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µk ≤ . . . with lim
k→+∞

µk = +∞. (2.3)

We introduce some common tools we need in order to prove the main results. We start
with Korn’s inequality (cf. Ciarlet [6], Dautray-Lions [10]).
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Proposition 2.1 (Korn’s inequality). Let Ω be a bounded domain in R3. If Γ1 is a measurable
subset of the boundary ∂Ω such that its 2 dimensional area is positive, then there exists a
constant C > 0 such that

∥v∥H1(Ω,R3) ≤ C

 3∑
i,j=1

∥eij(v)∥2L2(Ω)

 1
2

for any v ∈ H1(Ω,R3) with v|Γ1
= 0.

In order to characterize the eigenvalues of (2.2), we introduce the Rayleigh quotient.

Definition 2.2. Let ϕ, ψ ∈ H1(Ω,R3)\{0}. We define the bilinear form

B[ϕ, ψ] =

∫
Ω

λ1 div ϕ divψ + 2λ2

3∑
i,j=1

eij(ϕ)eij(ψ)

dx

and the Rayleigh quotient by

R(ϕ) =
B[ϕ, ϕ]

∥ϕ∥2
L2(Ω,R3)

.

It is easy to see that the Rayleigh quotient satisfies R(cϕ) = R(ϕ) for all c > 0 (homogeneity
condition).

Let k ∈ N. We write Hk−1( · ,R3) the set of all linear subspaces of dimension k − 1 of
L2( · ,R3). We introduce the so-called Max-Min principle, which we use to characterize the
eigenvalues of (2.2).

Proposition 2.3 (Max-Min principle). Let W be the function space

W = {ϕ ∈ H1(Ω,R3) | ϕ = 0 on Γ1}

and let µk be the k-th eigenvalue of the problem (2.2). Then we have the following characteri-
zation of the eigenvalues.

µk = sup
X∈Hk−1(Ω,R3)

inf{R(ϕ) | ϕ ∈ W\{0}, ϕ ⊥ X in L2(Ω,R3)}. (2.4)

We introduce some notation. Let f ε1 , f
ε
2 be two real functions depending on a parameter

ε > 0. Assume that there exists a constant C independent of ε, such that f ε1 ≤ Cf ε2 . Then we
denote this relation by f ε1 ≲ f ε2 . For a real constant h ≥ 0, we denote f ε1 = O(εh) for h ≥ 0 in
a normed vector space X, whenever

lim sup
ε→0

∥f ε1∥X
εh

is finite.

10



3 Bending eigenfrequencies of a thin elastic rod with
non-uniform cross-section

In this section we discuss the low-frequency eigenvalues of a thin elastic rod with non-uniform
cross-section. We prepare the mathematical setting of our problem. We start presenting the
domain Ωε = Ω, where ε > 0 is a small parameter corresponding to the thickness of the elastic
rod. Let l > 0 and let B ⊆ R2 be a connected bounded domain such that the boundary is C3

with m ∈ N connected components. We consider the sets

S = B × (0, l), s
(−)
1 = B × {0},

s
(+)
1 = B × {l}, s2 = ∂B × (0, l).

Note that ∂S = s
(−)
1 ∪ s(+)

1 ∪ s2. Let F : R3 → R3 be a C3-diffeomorphism which satisfies the
following properties.

i) F (z) = (F1(z), F2(z), z3) (z = (z1, z2, z3) ∈ S).

ii) Fi(0, 0, z3) = 0 (i = 1, 2, 0 ≤ z3 ≤ l).

iii) The determinant of the Jacobian matrix of F is positive for all z ∈ S.

We define F ε(z) = (εF1(z), εF2(z), z3). With this notation, we consider the following sets
in R3.

Ωε = F ε(S), Γ
(−)
1,ε = F ε(s

(−)
1 ), Γ

(+)
1,ε = F ε(s

(+)
1 ), Γ2,ε = F ε(s2).

Figure 1: Example of Ωε

We can think of Ωε as a slightly smoothly deformed thin cylinder (see Figure 1). It is easy

to see ∂Ωε = Γ
(−)
1,ε ∪Γ

(+)
1,ε ∪Γ2,ε. Moreover, we obtain Ω1, Γ

(−)
1,1 , Γ

(+)
1,1 , Γ2,1 just by putting ε = 1

in the previous definition. Note that Ω1 = F (S).
Let x = (x1, x2, x3), y = (y1, y2, y3) and z = (z1, z2, z3) be the coordinates in the sets Ωε,

Ω1 and S, thus obtaining the relation between the coordinates
(x1, x2, x3) = (εy1, εy2, y3),
(y1, y2, y3) = (F1(z), F2(z), z3),
(x1, x2, x3) = (εF1(z), εF2(z), z3).

(3.1)
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We want to study the small eigenvalues (low-frequency oscillations related to bending vi-
brations, also called flexural vibrations) associated with the thin elastic body Ωε. We denote
by u = (u1, u2, u3) : Ωε −→ R3 the displacement vector field associated with the oscillations.

With this notation, the main subject of this section is to study the eigenvalues and eigen-
functions when the parameter ε goes to zero of the following eigenvalue problems.

L[u] + µu = 0 in Ωε

u = 0 on Γ
(−)
1,ε ∪ Γ

(+)
1,ε

σ(u)n = 0 on Γ2,ε

(DD)


L[u] + µu = 0 in Ωε

u = 0 on Γ
(−)
1,ε

σ(u)n = 0 on Γ2,ε ∪ Γ
(+)
1,ε

(DN)

where n is the unit outward normal vector on ∂Ωε. The case (DD) corresponds to a thin rod
with both ends clamped while the case (DN), to a thin rod with only one clamped end.

3.1 Main result

In order to state the main results we first introduce several notations.
Denote dy′ = dy1dy2 and define the set Ω̂(y3) to be the cross-section of Ω1 = F (S) at

y3 ∈ [0, l]. Furthermore, for 1 ≤ i, j ≤ 2, we define the functions

H(y3) =

∫
Ω̂(y3)

1dy′, Ki(y3) =

∫
Ω̂(y3)

yidy
′, Aij(y3) =

∫
Ω̂(y3)

yiyjdy
′ (y3 ∈ [0, l])

and write Y = λ2(3λ1+2λ2)
λ1+λ2

, known as the Young modulus.
We use the fact we presented in the equation (2.3) and adapt it to our thin rods. If we denote

by {µDDk (ε)}+∞
k=1 and {µDNk (ε)}+∞

k=1 the eigenvalues of problem (DD) and (DN) respectively, for
any ε > 0 there are infinite discrete sequences of positive eigenvalues

0 < µDD1 (ε) ≤ µDD2 (ε) ≤ · · · ≤ µDDk (ε) ≤ µDDk+1(ε) ≤ · · · with lim
k→+∞

µDDk (ε) = +∞

0 < µDN1 (ε) ≤ µDN2 (ε) ≤ · · · ≤ µDNk (ε) ≤ µDNk+1(ε) ≤ · · · with lim
k→+∞

µDNk (ε) = +∞

which are arranged in increasing order, counting multiplicities.
We present the main results of this section.

Theorem 3.1 (Both ends clamped). Let µDDk (ε) be the k-th eigenvalue of problem (DD). Then
the following statements hold for each k ∈ N.

a) µDDk (ε) = O(ε2) as ε→ 0.

b) Moreover, we have the limit

lim
ε→0

µDDk (ε)

ε2
= ΛDDk ,
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where ΛDDk denotes the k-th eigenvalue of the 4th order ordinary differential operator

Y
d2

dτ2


(
A11(τ) A12(τ) −K1(τ)
A21(τ) A22(τ) −K2(τ)

)


d2η1
dτ2

d2η2
dτ2

dη3
dτ



 = ΛH(τ)

(
η1
η2

)
(0 < τ < l),

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l),

η3(0) = ηi(0) =
dηi
dτ

(0) = 0 (i = 1, 2),

η3(l) = ηi(l) =
dηi
dτ

(l) = 0 (i = 1, 2).

Theorem 3.2 (Only one end clamped). Let µDNk (ε) be the k-th eigenvalue of problem (DN).
Then the following statements hold for each k ∈ N.

a) µDNk (ε) = O(ε2) as ε→ 0.

b) Moreover, we have the limit

lim
ε→0

µDNk (ε)

ε2
= ΛDNk ,

where ΛDNk denotes the k-th eigenvalue of the 4th order ordinary differential operator

Y
d2

dτ2


(
A11(τ) A12(τ) −K1(τ)
A21(τ) A22(τ) −K2(τ)

)


d2η1
dτ2

d2η2
dτ2

dη3
dτ



 = ΛH(τ)

(
η1
η2

)
(0 < τ < l),

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l),

η3(0) = ηi(0) =
dηi
dτ

(0) = 0 (i = 1, 2),

dη3
dτ

(l) =
d2ηi
dτ2

(l) =
d3ηi
dτ3

(l) = 0 (i = 1, 2).

Remark 3.3. There are several works which are closely related to our results, such as Irago-
Viaño [15], Kerdid [19], Tambača [31]. These works assume that the cross-section is simply
connected and constant, that is, the cross-section does not change along the rod. This translates
to Aij being constants for 1 ≤ i, j ≤ 2. In this case, one can assume without loss of generality
that Ki = 0 for i = 1, 2. The main novelty of Theorem 3.1 and Theorem 3.2 is studying
the influence in the limit equation of Aij and Ki for 1 ≤ i, j ≤ 2 when they are functions of
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y3. In addition, we remove the assumption over the simply connectedness of the cross-section.
Moreover, we also see that the boundary conditions of the limit equations are independent
of the shape of the rod. Our method takes full advantage of variational technique by direct
construction of test functions. Hence the proofs are straightforward and comprehensive.

Remark 3.4. Note that if the functions Ki ≡ 0 for i = 1, 2, then the ordinary differential
equations in Theorem 3.1 and Theorem 3.2 get simpler. Using the corresponding boundary
conditions, the equation

d

dτ

(
H(τ)

dη3
dτ

)
=

d

dτ

(
K1(τ)

d2η1
dτ2

+K2(τ)
d2η2
dτ2

)
(0 < τ < l)

yields η3 ≡ 0, and hence the ODE in Theorem 3.1 and Theorem 3.2 is simplified to

Y
d2

dτ2

(A11(τ) A12(τ)
A12(τ) A22(τ)

)
d2η1
dτ2

d2η2
dτ2


 = ΛH(τ)

(
η1

η2

)

with the respective boundary conditions.

The proofs of Theorem 3.1 and Theorem 3.2 are given in Sections 3.2 to 3.5.

3.2 Variational formulation

Recall that x = (x1, x2, x3) and y = (y1, y2, y3) are used as the coordinates in Ωε and Ω1 = F (S),
respectively with the relation given in (3.1). We change the variables to transform Ωε into F (S).
We now compute the new expressions of stress and strain tensors in terms of the new variables
in F (S).

We begin to study the problem by variational methods. In order to consider the stress and
strain tensors in terms of y, we introduce the scaling and change of variable

u1 = εU1, u2 = εU2, u3 = ε2U3.

We obtain the following expressions of eij(u).

eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2

(
1

ε

∂ui
∂yj

+
1

ε

∂uj
∂yi

)
=

1

2

(
∂Ui
∂yj

+
∂Uj
∂yi

)
ei3(u) =

1

2

(
∂ui
∂x3

+
∂u3
∂xi

)
=

1

2

(
∂ui
∂y3

+
1

ε

∂u3
∂yi

)
= ε

1

2

(
∂Ui
∂y3

+
∂U3

∂yi

)
(1 ≤ i, j ≤ 2)

e33(u) =
∂u3
∂x3

=
∂u3
∂y3

= ε2
∂U3

∂y3

We observe that after the change of variables we just introduced, we rewrote the strain tensor
eij(u) in terms of U = (U1, U2, U3). Therefore, for 1 ≤ i, j ≤ 2 we can define

Eij(U) =
1

2

(
∂Ui
∂yj

+
∂Uj
∂yi

)
, Ei3(U) =

1

2

(
∂Ui
∂y3

+
∂U3

∂yi

)
, E33(U) =

∂U3

∂y3
.
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Note also that since we have symmetry, i.e. eij(u) = eji(u) (1 ≤ i, j ≤ 3), we also define
E3i(U) = Ei3(U) (i = 1, 2). With this notation, we have the relation

eij(u) = Eij(U), ei3(u) = εEi3(U) (1 ≤ i, j ≤ 2), e33(u) = ε2E33(U). (3.2)

Furthermore, using (3.2), we proceed to write the divergence in terms of U .

div(u) =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= e11(u) + e22(u) + e33(u)

= E11(U) + E22(U) + ε2E33(U). (3.3)

Our next step is to rewrite the Rayleigh quotient and to describe the eigenvalues in terms
of y. We distinguish between the (DD) case and the (DN) case.

3.2.1 (DD) case

We adapt Proposition 2.3 to our thin rod as follows. We define the set

Wε = {ϕ ∈ H1(Ωε,R3) | ϕ = 0 on Γ
(−)
1,ε ∪ Γ

(+)
1,ε }.

For every ϕ ∈ Wε we set Bε[ϕ, ϕ] and Rε analogously to Definition 2.2, that is

Bε[ϕ, ϕ] =

∫
Ωε

λ1 (div ϕ)2 + 2λ2

3∑
i,j=1

eij(ϕ)
2

 dx

Rε(ϕ) =
Bε[ϕ, ϕ]

∥ϕ∥2
L2(Ωε,R3)

.

We change ϕ = ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) into Φ = Φ(y) = (Φ1(y),Φ2(y),Φ3(y)) by ϕi(x) =
εΦi(y) (i = 1, 2), ϕ3(x) = ε2Φ3(y) according to the coordinate change x = (εy1, εy2, y3)
described in (3.1). Define now the set

W1 = {Φ ∈ H1(F (S),R3) | Φ = 0 on Γ
(−)
1,1 ∪ Γ

(+)
1,1 }. (3.4)

We want to describe the k-th eigenvalue µDDk (ε) in terms of the new spaces and functions after
the change of variables. Note that ϕ ∈ Wε if and only if Φ ∈ W1. Thus, using this fact together
with the relations (3.2) and (3.3), and substituting them into Bε[ϕ, ϕ] and Rε(ϕ), for every
Φ ∈ W1 we define

B̃ε[Φ,Φ] =

∫
F (S)

{
λ1
(
E11(Φ) + E22(Φ) + ε2E33(Φ)

)2
+ 2λ2

 2∑
i,j=1

Eij(Φ)
2 + 2ε2

2∑
i=1

Ei3(Φ)
2 + ε4E33(Φ)

2

}ε2dy, (3.5)

R̃ε(Φ) =
B̃ε[Φ,Φ]∫

F (S)

(
ε2Φ2

1 + ε2Φ2
2 + ε4Φ2

3

)
ε2dy

. (3.6)
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Furthermore, for all Φ,Ψ ∈ W1 we say that Φ ⊥ε Ψ if and only if∫
F (S)

(Φ1Ψ1 +Φ2Ψ2 + ε2Φ3Ψ3)dy = 0.

Due to this definition, ϕ ⊥ ψ if and only if Φ ⊥ε Ψ. For every Z ∈ Hk−1(F (S),R3) we define
the set

Z⊥ε = {Φ ∈ W1 | Φ ⊥ε Ψ for all Ψ ∈ Z},

which is a closed subspace of W1.
Using the Max-Min principle (Proposition 2.3), after the change of variables, the charac-

terization (2.4) of µDDk (ε) can be rewritten as

µDDk (ε) = sup
Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}. (3.7)

3.2.2 (DN) case

For the case of the eigenvalues µDNk (ε), we can similarly characterize µDNk (ε) with

µDNk (ε) = sup
Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W ′
1\{0},Φ ∈ Z⊥ε}

where
W ′

1 = {Φ ∈ H1(F (S),R3) | Φ = 0 on Γ
(−)
1,1 }. (3.8)

3.3 Order of the eigenvalues

3.3.1 (DD) case

We show that µDDk (ε) = O(ε2) as ε→ 0. In order to do so, we will find an upper bound of the
eigenvalue µDDk (ε) using the Max-Min principle and (3.7).

Let us take test functions Υ(s) = Υ(s)(y) =
(
Υ

(s)
1 (y),Υ

(s)
2 (y),Υ

(s)
3 (y)

)
(s ∈ N) as follows:

Υ
(s)
1 (y) = η

(s)
1 (y3),

Υ
(s)
2 (y) = η

(s)
2 (y3),

Υ
(s)
3 (y) = η

(s)
3 (y3)− y1

dη
(s)
1

dy3
− y2

dη
(s)
2

dy3
,

where
{
η
(s)
1 , η

(s)
2 , η

(s)
3

}
s∈N

is a linearly independent system satisfying

η
(s)
1 , η

(s)
2 ∈ H2((0, l)), η

(s)
3 ∈ H1((0, l)),

η
(s)
i (0) = η

(s)
i (l) = 0 (i = 1, 2, 3),

dη
(s)
i

dz3
(0) =

dη
(s)
i

dz3
(l) = 0 (i = 1, 2).
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Choose an arbitrary Z ∈ Hk−1(F (S),R3) and let Z̃ = L.H.
[
Υ(1),Υ(2), . . . ,Υ(k)

]
denote the

minimal linear space that contains the set {Υ(1),Υ(2), . . . ,Υ(k)}. Since each Υ(s) ∈ W1 (for all
s ∈ N), we have that Z̃ ⊆ W1. Since dimZ < dim Z̃, there exist a function Ψ ∈ Z̃ ∩ Z⊥ε and
a vector (c1, . . . , ck) = (c1(ε), . . . , ck(ε)) ∈ Rk\{0} such that

Ψ =
k∑
s=1

cs(ε)Υ
(s). (3.9)

Note that since both Z̃ and Z⊥ε are subsets of W1, we have also that Ψ ∈ W1 and due the fact
that (c1, . . . , ck) ∈ Rk\{0} we deduce that Ψ ∈ W1\{0}, so we can apply R̃ε to Ψ (cf. (3.6)).

Using the definition of Υ(s) we compute

Eij(Υ
(s)) = 0, (3.10)

Ei3(Υ
(s)) =

1

2

(
∂Υ

(s)
i

∂y3
+
∂Υ

(s)
3

∂yi

)
=

1

2

(
dη

(k)
i

dz3
−

dη
(k)
i

dz3

)
= 0 (1 ≤ i, j ≤ 2). (3.11)

Now we want to calculate R̃ε(Ψ). Using the linearity of the operator Eij , (3.10) and (3.11),
we see that

Eij(Ψ) =
k∑
s=1

cs(ε)Eij(Υ
(s)) = 0, Ei3(Ψ) =

k∑
s=1

cs(ε)Ei3(Υ
(s)) = 0 (1 ≤ i, j ≤ 2). (3.12)

Hence, using (3.12) and the definition in (3.5), we get

B̃ε[Ψ,Ψ] =

∫
F (S)

{
λ1
(
E11(Ψ) + E22(Ψ) + ε2E33(Ψ)

)2
+ 2λ2

 2∑
i,j=1

Eij(Ψ)2 + 2ε2
2∑
i=1

Ei3(Ψ)2 + ε4E33(Ψ)2

}ε2dy
=

∫
F (S)

(
λ1
(
ε2E33(Ψ)

)2
+ 2λ2

(
ε4E33(Ψ)2

))
ε2dy

= ε6
∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy.

Therefore, we have

R̃ε(Ψ) =

ε6
∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
ε2Ψ2

1 + ε2Ψ2
2 + ε4Ψ2

3

)
ε2dy

=
ε6

ε4

∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy

≤ ε2

∫
F (S)

(λ1 + 2λ2)E33(Ψ)2dy∫
F (S)

(
Ψ2

1 +Ψ2
2

)
dy

.
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Now substitute the definition (3.9) into the previous equation to obtain

R̃ε(Ψ) ≤ ε2

∫
F (S)

(λ1 + 2λ2)

k∑
p,q=1

cp(ε)cq(ε)E33(Υ
(p))E33(Υ

(q))dy

∫
F (S)

k∑
p,q=1

cp(ε)cq(ε)
(
Υ

(p)
1 Υ

(q)
1 +Υ

(p)
2 Υ

(q)
2

)
dy

. (3.13)

Let us put

γpq =

∫
F (S)

E33(Υ
(p))E33(Υ

(q))dy, γ̂pq =

∫
F (S)

(
Υ

(p)
1 Υ

(q)
1 +Υ

(p)
2 Υ

(q)
2

)
dy.

Note that since we chose the system
{
η
(s)
1 , η

(s)
2 , η

(s)
3

}
s∈N

to be linearly independent and by the

symmetry γpq = γqp, γ̂pq = γ̂qp, we have that (γpq)1≤p,q≤k and (γ̂pq)1≤p,q≤k are positive definite
matrices. Therefore, all of its eigenvalues are positive. Let γ∗ be the biggest eigenvalue of
(γpq)1≤p,q≤k and γ̂∗, the smallest eigenvalue of (γ̂pq)1≤p,q≤k. With this notation, we have the
bounds

k∑
p,q=1

cp(ε)cq(ε)γpq ≤ γ∗(c1(ε)
2 + · · ·+ ck(ε)

2),

k∑
p,q=1

cp(ε)cq(ε)γ̂pq ≥ γ̂∗(c1(ε)
2 + · · ·+ ck(ε)

2).

Therefore, (3.13) becomes

R̃ε(Ψ) ≤ ε2

(λ1 + 2λ2)

k∑
p,q=1

cp(ε)cq(ε)γpq

k∑
p,q=1

cp(ε)cq(ε)γ̂pq

≤ ε2
(λ1 + 2λ2)γ∗(c1(ε)

2 + · · ·+ ck(ε)
2)

γ̂∗(c1(ε)2 + · · ·+ ck(ε)2)

= ε2
(λ1 + 2λ2)γ∗

γ̂∗
.

Put C = (λ1+2λ2)γ∗
γ̂∗

. We obtained that for a certain Ψ ∈ W1 there exists a positive constant

C independent of ε and independent of the choice of Z such that R̃ε(Ψ) ≤ ε2C. Thus, taking
the infimum, we have

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε} ≤ R̃ε(Ψ) ≤ ε2C.

Since Z was arbitrary and C does not depend on the choice of Z, we can take the supremum
on both sides over Hk−1(F (S),R3) to obtain

0 ≤ µDDk (ε) = sup
Z∈Hk−1(F (S),R3)

{
inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}

}
≤ ε2C.
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Here we used the characterization (3.7) deduced in the previous section. Therefore we obtain

µDDk (ε) = O(ε2) as ε→ 0

which proves Theorem 3.1-a).

3.3.2 (DN) case

For the case of the eigenvalues µDNk (ε), note that due to the definition of the sets W1 and W ′
1

(see (3.4) and (3.8)), we see that W1 ⊆ W ′
1, therefore, the infimum over W ′

1 is not greater than
over W1. Thus 0 ≤ µDNk (ε) ≤ µDDk (ε) and Theorem 3.2-a) also holds.

3.4 Weak formulation and deduction of the limit ODE

The weak formulation of the equation of (DD) and (DN) is

∫
Ωε

λ1 div udiv v + 2λ2

3∑
i,j=1

eij(u)eij(v)

 dx = µ

∫
Ωε

3∑
i=1

uividx.

Here µ is an eigenvalue, u is the corresponding eigenfunction and v = (v1, v2, v3) ∈ Wε (or W ′
ε)

is a test function. By the change of the variable given in (3.1) together with ui = εUi, vi = εVi
(i = 1, 2) and u3 = ε2U3, v3 = ε2V3, the previous weak formulation is rewritten in terms of y
as follows.∫

F (S)

{
λ1
(
E11(U) + E22(U) + ε2E33(U)

) (
E11(V ) + E22(V ) + ε2E33(V )

)
+ 2λ2

 2∑
i,j=1

Eij(U)Eij(V ) + 2ε2
2∑
i=1

Ei3(U)Ei3(V ) + ε4E33(U)E33(V )

}dy
= µ

∫
F (S)

(
ε2U1V1 + ε2U2V2 + ε4U3V3

)
dy. (3.14)

3.4.1 (DD) case

The proofs for the (DD) case and the (DN) case are very similar. Therefore, for simplicity,
we will analyze the (DD) case and explain the main differences afterwards. From now on, to
simplify the notation, we write µk(ε) instead of µDDk (ε).

Let {Φ(k)
ε }+∞

k=1 = {(Φ(k)
1,ε ,Φ

(k)
2,ε ,Φ

(k)
3,ε)}

+∞
k=1 be the corresponding eigenfunctions of the eigenval-

ues {µk(ε)}+∞
k=1 and such that∫

F (S)

(
(Φ

(k)
1,ε)

2 + (Φ
(k)
2,ε)

2 + (Φ
(k)
3,ε)

2
)
dy = 1.

19



Now we put U = V = Φ
(k)
ε in (3.14) so that we get∫

F (S)

{
λ1

(
E11(Φ

(k)
ε ) + E22(Φ

(k)
ε ) + ε2E33(Φ

(k)
ε )
)2

+ 2λ2

 2∑
i,j=1

Eij(Φ
(k)
ε )2 + 2ε2

2∑
i=1

Ei3(Φ
(k)
ε )2 + ε4E33(Φ

(k)
ε )2

}dy
= µk(ε)

∫
F (S)

(
ε2(Φ

(k)
1,ε)

2 + ε2(Φ
(k)
2,ε)

2 + ε4(Φ
(k)
3,ε)

2
)
dy. (3.15)

Note that by the choice of the {Φ(k)
ε }+∞

k=1 and by Theorem 3.1-a), i.e. µk(ε) = O(ε2) as
ε → 0, we see that the right-hand side of (3.15) is O(ε4) as ε → 0. Therefore, the left-hand
side must also satisfy the same condition and we conclude that

Eij(Φ
(k)
ε ) = O(ε2), Ei3(Φ

(k)
ε ) = O(ε), E33(Φ

(k)
ε ) = O(1) (3.16)

in the L2(F (S),R3) sense for 1 ≤ i, j ≤ 2. Combining this fact with Korn’s inequality (Propo-

sition 2.1), we can see that Φ
(k)
ε is bounded in H1(F (S),R3). Let {εp}+∞

p=1 be any positive
sequence such that εp → 0 as p → +∞. Then, using the previous facts, there exists a subse-
quence {εp(q)}+∞

q=1 such that

lim
q→+∞

Φ(k)
εp(q)

= Φ(k) weakly in H1(F (S),R3).

Moreover, from Rellich’s theorem, we have

lim
q→+∞

Φ(k)
εp(q)

= Φ(k) in L2(F (S),R3) with ∥Φ(k)∥L2(F (S),R3) = 1,

so we have non-trivial limit functions {Φ(k)}+∞
k=1 = {(Φ(k)

1 ,Φ
(k)
2 ,Φ

(k)
3 )}+∞

k=1, which form an or-
thonormal basis of L2(F (S),R3). For 1 ≤ i, j ≤ 2, we now set

κεij =
1

ε2
Eij(Φ

(k)
ε ), κεi3 =

1

ε
Ei3(Φ

(k)
ε ), κε33 = E33(Φ

(k)
ε ).

Furthermore, we define κε3i = κεi3. We remark that for 1 ≤ i, j ≤ 3, each κεij depends also on k.

Due to (3.16) we have that κεij = O(1) (1 ≤ i, j,≤ 3) as ε→ 0 in the L2(F (S),R3) sense, that

is, κεij are bounded in L2(F (S),R3). Therefore, there exists a further subsequence {εp(q(n))}+∞
n=1

such that
lim

n→+∞
κ
εp(q(n))

ij = κij weakly in L2(F (S),R3) (1 ≤ i, j ≤ 3).

Note again, that each κij still depends on k. Furthermore, in virtue of Theorem 3.1.a) there

exists a constant c such that µk(ε)
ε2

≤ c and we conclude that there exist an even further

subsequence {ζr}+∞
r=1 ⊆ {εp(q(n))}+∞

n=1 and a constant Λ̃k that satisfy

lim
r→+∞

µk(ζr)

ζ2r
= Λ̃k. (3.17)
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This proves the existence of the limit for a subsequence of {εp}+∞
p=1.

We characterize {Λ̃k}+∞
k=1. We take particular test functions and deduce several conditions

for the limit functions Φ(k) and κij . We put U = Φ
(k)
ζr

, ε = ζr, substitute them into (3.14) and

after dividing both sides by ζ2r we obtain∫
F (S)

{
λ1(κ

ζr
11 + κζr22 + κζr33)

(
E11(V ) + E22(V ) + ζ2rE33(V )

)
+ 2λ2

 2∑
i,j=1

κζrijEij(V ) + 2ζr

2∑
i=1

κζri3Ei3(V ) + ζ2rκ
ζr
33E33(V )

}dy
= µk(ζr)

∫
F (S)

(
Φ
(k)
1,ζr

V1 +Φ
(k)
2,ζr

V2 + ζ2rΦ
(k)
3,ζr

V3

)
dy (3.18)

for any test function V = (V1, V2, V3) ∈ W1. By letting r → +∞ in (3.18), we get

∫
F (S)

λ1(κ11 + κ22 + κ33) (E11(V ) + E22(V )) + 2λ2

2∑
i,j=1

κijEij(V )

dy = 0. (3.19)

Next we choose V2 = 0. We see that E22(V ) = 0, and since κ12 = κ21, (3.19) becomes∫
F (S)

{
λ1

3∑
p=1

κpp
∂V1
∂y1

+ 2λ2

(
κ11

∂V1
∂y1

+ κ12
∂V1
∂y2

)}
dy = 0

∫
F (S)

{λ1 3∑
p=1

κpp + 2λ2κ11

 ∂V1
∂y1

+ 2λ2κ12
∂V1
∂y2

}
dy = 0. (3.20)

By integration by parts in (3.20) we obtain

−
∫
F (S)

{
∂

∂y1

λ1 3∑
p=1

κpp + 2λ2κ11

V1 +
∂

∂y2
(2λ2κ12)V1

}
dy = 0

−
∫
F (S)

{
∂

∂y1

λ1 3∑
p=1

κpp + 2λ2κ11

+
∂

∂y2
(2λ2κ12)

}
V1dy = 0.

In fact, due to the arbitrariness of V1 we have

∂

∂y1

λ1 3∑
p=1

κpp + 2λ2κ11

+
∂

∂y2
(2λ2κ12) = 0 (3.21)
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in the distribution sense. Similarly, letting V1 = 0 we also deduce that

∫
F (S)

{
(2λ2κ12)

∂V2
∂y1

+

λ1 3∑
p=1

κpp + 2λ2κ22

 ∂V2
∂y2

}
dy = 0, (3.22)

∂

∂y1
(2λ2κ12) +

∂

∂y2

λ1 3∑
p=1

κpp + 2λ2κ22

 = 0. (3.23)

We write

α1 = λ1

3∑
p=1

κpp + 2λ2κ11, α2 = 2λ2κ12,

β1 = 2λ2κ12, β2 = λ1

3∑
p=1

κpp + 2λ2κ22,

(3.24)

so that (3.20), (3.21), (3.22) and (3.23) become∫
F (S)

(
α1
∂V1
∂y1

+ α2
∂V1
∂y2

)
dy = 0,

∫
F (S)

(
β1
∂V2
∂y1

+ β2
∂V2
∂y2

)
dy = 0, (3.25)

∂α1

∂y1
= −∂α2

∂y2
,

∂β1
∂y1

= −∂β2
∂y2

. (3.26)

Note however that the functions V1 and V2 in (3.25) are arbitrary test functions. Therefore,

for every ϕ ∈ H1(F (S)) with ϕ = 0 on Γ
(+)
1,1 ∪ Γ

(−)
1,1 , we have∫

F (S)

(
α1

∂ϕ

∂y1
+ α2

∂ϕ

∂y2

)
dy = 0,

∫
F (S)

(
β1
∂ϕ

∂y1
+ β2

∂ϕ

∂y2

)
dy = 0. (3.27)

We use the following lemma.

Lemma 3.5. Assume that properties (3.26) and (3.27) are satisfied. Then the following state-
ments hold.

a) There exist functions h1, h2 ∈ L2(F (S)) such that
∂hp
∂yj

∈ L2(F (S)) for 1 ≤ j, p ≤ 2 and

∂h1
∂y1

= −α2,
∂h1
∂y2

= α1,
∂h2
∂y1

= −β2,
∂h2
∂y2

= β1. (3.28)

Moreover, h1, h2 take values on the boundary and hp|Γ2,1
∈ L2(Γ2,1) for p = 1, 2.

b) Write Γ2,1 = g1 ∪ · · · ∪ gm where each gi is the i-th connected component of Γ2,1 (m ∈ N,
i = 1, . . . ,m). Then, for i = 1, . . . ,m the functions h1|gi , h2|gi do not depend on (y1, y2)

along gi.

22



For the proof of this lemma see Section A Appendix. Let us use the functions h1 and h2
given by this lemma. From (3.24) and (3.28), we note

∂h1
∂y1

+
∂h2
∂y2

= β1 − α2 = 0, (3.29)

∂h1
∂y2

− ∂h2
∂y1

= α1 + β2 = 2λ1

3∑
p=1

κpp + 2λ2(κ11 + κ22). (3.30)

For brevity, let us write

Q =
∂h1
∂y2

− ∂h2
∂y1

.

We rewrite the equality (3.30) with Q and we calculate

Q = 2

λ1 3∑
p=1

κpp + λ2(κ11 + κ22)

 = 2

(λ1 + λ2)

3∑
p=1

κpp − λ2κ33


λ1Q = 2

λ1(λ1 + λ2)

3∑
p=1

κpp − λ1λ2κ33


λ1Q+ 2λ2(3λ1 + 2λ2)κ33 = 2(λ1 + λ2)

λ1 3∑
p=1

κpp + 2λ2κ33

 .

Eventually, we obtain

λ1
2(λ1 + λ2)

Q+
λ2(3λ1 + 2λ2)

λ1 + λ2
κ33 = λ1

3∑
p=1

κpp + 2λ2κ33. (3.31)

This computation will be useful afterwards.
We go back to (3.18) with some particular test functions. Take functions ρ1 = ρ1(y3),

ρ2 = ρ2(y3), ρ3 = ρ3(y3) such that

ρ1, ρ2 ∈ H2((0, l)), ρ3 ∈ H1((0, l)),
ρi(0) = ρi(l) = 0 (i = 1, 2, 3),
dρi
dy3

(0) =
dρi
dy3

(l) = 0 (i = 1, 2),

and put a test function V = (V1, V2, V3) ∈ W1 by

V1(y) = ρ1(y3),
V2(y) = ρ2(y3),

V3(y) = ρ3(y3)− y1
dρ1
dy3

− y2
dρ2
dy3

.
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For this test function we note that Eij(V ) = 0, Ei3(V ) = 0 for 1 ≤ i, j ≤ 2 (see the computations
in (3.10) and (3.11)). Substituting the new test function into (3.18), dividing both sides by ζ2r ,
letting r → +∞ and using (3.17) we deduce

∫
F (S)

λ1 3∑
p=1

κpp + 2λ2κ33

E33(V )dy = Λ̃k

∫
F (S)

(
Φ
(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy. (3.32)

Now we begin the next step to characterize the behavior of the eigenvalue limit. We substitute
(3.31) into (3.32) to get∫

F (S)

(
λ1

2(λ1 + λ2)
Q+

λ2(3λ1 + 2λ2)

λ1 + λ2
κ33

)
E33(V )dy = Λ̃k

∫
F (S)

(
Φ
(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy. (3.33)

Using the above test function V , we have

E33(V ) =
∂V3
∂y3

=
dρ3
dy3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

. (3.34)

Define dy′ = dy1dy2 and let Ω̂(y3) be the the cross-section of F (S) at y3 ∈ [0, l]. We now look
into equation (3.33) and we rewrite∫

F (S)
QE33(V )dy =

∫ l

0

∫
Ω̂(y3)

Q

(
dρ3
dz3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

)
dy′dy3

=

∫ l

0

(∫
Ω̂(y3)

Q
dρ3
dy3

dy′ +

∫
Ω̂(y3)

Qy1
d2ρ1
dy23

dy′ +

∫
Ω̂(y3)

Qy2
d2ρ2
dz23

dy′

)
dy3

=

∫ l

0

(
dρ3
dy3

∫
Ω̂(y3)

Qdy′ +
d2ρ1
dy23

∫
Ω̂(y3)

Qy1dy
′ +

d2ρ2
dy23

∫
Ω̂(y3)

Qy2dy
′

)
dy3. (3.35)

We use the following lemma (see the proof in Section A Appendix).

Lemma 3.6. With the same notation as above, for every y3 ∈ [0, l] it holds that∫
Ω̂(y3)

Qdy′ = 0,

∫
Ω̂(y3)

Qyidy
′ = 0 (i = 1, 2).

Using this lemma, we see that (3.35) becomes∫
F (S)

QE33(V )dy = 0.

As a consequence, (3.33) simplifies to∫
F (S)

λ2(3λ1 + 2λ2)

λ1 + λ2
κ33E33(V )dy = Λ̃k

∫
F (S)

(
Φ
(k)
1 ρ1 +Φ

(k)
2 ρ2

)
dy. (3.36)
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We now proceed to compute κ33. Recall that κ33 = E33(Φ
(k)). We know by (3.16) that

Eij(Φ
(k)) = Ei3(Φ

(k)) = 0 for 1 ≤ i, j ≤ 2. This will help us find a more explicit form of the
functions Φ(k). In order to solve the partial differential equation in the weak sense for Φ(k), we
first write

Eij(Φ
(k)) =

1

2

(
∂Φ

(k)
i

∂yj
+
∂Φ

(k)
j

∂yi

)
, Ei3(Φ

(k)) =
1

2

(
∂Φ

(k)
i

∂y3
+
∂Φ

(k)
3

∂yi

)
.

For i = 1, 2, from Eii(Φ
(k)) = 0 we have

∂Φ
(k)
i

∂yi
= 0 and therefore we deduce that Φ

(k)
i does not

depend on yi. By E12(Φ
(k)) = 0, we see

∂Φ
(k)
1

∂y2
+
∂Φ

(k)
2

∂y1
= 0 and thus

∂Φ
(k)
1

∂y2
= −∂Φ

(k)
2

∂y1
in F (S).

Note that since Φ
(k)
i does not depend on yi,

∂Φ
(k)
1

∂y2
does not depend on y1 and

∂Φ
(k)
2

∂y1
does not

depend on y2. Due to the relation we found in the previous equation, we conclude that there
exists a function ξ(k)(y3) ∈ L2((0, l)) depending only on y3 such that

∂Φ
(k)
1

∂y2
= −∂Φ

(k)
2

∂y1
= −ξ(k)(y3).

For further details see Section A Proposition A.1. Hence, there exist functions η
(k)
1 (y3),

η
(k)
2 (z3) ∈ H1((0, l)) that depend only on y3 such that

Φ
(k)
1 (y) = −ξ(k)(y3)y2 + η

(k)
1 (y3), Φ

(k)
2 (y) = ξ(k)(y3)y1 + η

(k)
2 (y3) (i = 1, 2).

Applying the boundary conditions, we see ξ(k)(0) = 0. Moreover, due to Ei3(Φ
(k)) = 0,

∂Φ
(k)
3

∂y1
= −∂Φ

(k)
1

∂y3
= y2

dξ(k)

dy3
− dη

(k)
1

dy3
,

∂Φ
(k)
3

∂y2
= −∂Φ

(k)
2

∂y3
= −y1

dξ(k)

dy3
− dη

(k)
2

dy3
.

Differentiating the first equation with respect to y2 and the second equation with respect to y1

and comparing the two results, we see that dξ(k)

dy3
= 0, and therefore, ξ(k) is a constant. However,

by the boundary condition we know that ξ(k)(0) = 0, thus we see that in fact ξ(k) ≡ 0. Hence,

∂Φ
(k)
3

∂y1
= −dη

(k)
1

dy3
,

∂Φ
(k)
3

∂y2
= −dη

(k)
2

dy3
.

Since ∂
∂y2

(
−dη

(k)
1

dy3

)
= ∂

∂y1

(
−dη

(k)
2

dy3

)
= 0 we can solve for Φ

(k)
3 , and we get the solution

Φ
(k)
1 (y) = η

(k)
1 (y3),

Φ
(k)
2 (y) = η

(k)
2 (y3),

Φ
(k)
3 (y) = η

(k)
3 (y3)− y1

dη
(k)
1

dy3
− y2

dη
(k)
2

dy3
.

(3.37)
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Now we are able to compute

κ33 = E33(Φ
(k)) =

dη
(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23
. (3.38)

For commodity, let us put Y = λ2(3λ1+2λ2)
λ1+λ2

. We substitute (3.34) and (3.38) into (3.36), so it
becomes ∫

F (S)
Y

(
dη

(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23

)(
dρ3
dy3

− y1
d2ρ1
dy23

− y2
d2ρ2
dy23

)
dy

= Λ̃k

∫
F (S)

(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dy. (3.39)

Let us now analyze the integrals of (3.39). For 1 ≤ i, j ≤ 2 let us define the following
functions.

H = H(y3) =

∫
Ω̂(y3)

1dy′, Ki = Ki(y3) =

∫
Ω̂(y3)

yidy
′,

Aij = Aij(y3) =

∫
Ω̂(y3)

yiyjdy
′ (y3 ∈ [0, l]) .

(3.40)

With this notation and using integration by parts accordingly, we have∫
F (S)

dη
(k)
3

dy3

dρ3
dy3

dy =

∫ l

0
H

dη
(k)
3

dz3

dρ3
dz3

dz3 = −
∫ l

0

d

dz3

(
H

dη
(k)
3

dz3

)
ρ3dz3,∫

F (S)
yi
dη

(k)
3

dy3

d2ρi
dy23

dy =

∫ l

0
Ki

dη
(k)
3

dz3

d2ρi
dz23

dz3 =

∫ l

0

d2

dz23

(
Ki

dη
(k)
3

dz3

)
ρidz3,∫

F (S)
yi
d2η

(k)
i

dy23

dρ3
dy3

dy =

∫ l

0
Ki

d2η
(k)
i

dz23

dρ3
dz3

dz3 = −
∫ l

0

d

dz3

(
Ki

d2η
(k)
i

dz23

)
ρ3dz3,∫

F (S)
yiyj

d2η
(k)
i

dy23

d2ρj
dy23

dy =

∫ l

0
Aij

d2η
(k)
i

dz23

d2ρj
dz23

dz3 =

∫ l

0

d2

dz23

(
Aij

d2η
(k)
i

dz23

)
ρjdz3,

Λ̃k

∫
F (S)

(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dy = Λ̃k

∫ l

0
H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3.

Plugging this into (3.39) and rearranging it we obtain

Y

∫ l

0

{
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1

+
d2

dz23

(
A12

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
ρ2

+
d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
ρ3

}
dz3=Λ̃k

∫ l

0
H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3. (3.41)
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Choosing ρ1, ρ2 = 0, we see that

Y

∫ l

0

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
ρ3dz3 = 0. (3.42)

Note now that (3.42) holds for all ρ3 ∈ H1
0 ((0, l)), so we deduce that

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23
−H

dη
(k)
3

dz3

)
= 0,

and thus
d

dz3

(
H

dη
(k)
3

dz3

)
=

d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23

)
. (3.43)

Plugging (3.42) into (3.41), we get

Y

∫ l

0

{
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1

+
d2

dz23

(
A12

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
ρ2

}
dz3=Λ̃k

∫ l

0
H
(
η
(k)
1 ρ1 + η

(k)
2 ρ2

)
dz3. (3.44)

Now taking ρ2 = 0 in (3.44), we see

Y

∫ l

0

d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
ρ1dz3 = Λ̃k

∫ l

0
Hη

(k)
1 ρ1dz3.

Since ρ1 is arbitrary, we conclude that

Y
d2

dz23

(
A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23
−K1

dη
(k)
3

dz3

)
= Λ̃kHη

(k)
1 . (3.45)

Similarly, with the same argument but taking ρ1 = 0, we get

Y
d2

dz23

(
A21

d2η
(k)
1

dz23
+A22

d2η
(k)
2

dz23
−K2

dη
(k)
3

dz3

)
= Λ̃kHη

(k)
2 . (3.46)

Combining the equations (3.43), (3.45) and (3.46) we obtain the system of differential equations

Y
d2

dz23


(
A11 A12 −K1

A21 A22 −K2

)


d2η1
dz23
d2η2
dz23
dη3
dz3




= Λ̃H

(
η1
η2

)
(0 < z3 < l),

d

dz3

(
H

dη3
dz3

)
=

d

dz3

(
K1

d2η1
dz23

+K2
d2η2
dz23

)
(0 < z3 < l).

(3.47)

27



We now discuss the boundary conditions of the functions η
(k)
i for i = 1, 2, 3 for the (DD)

case, that is, the case with both ends clamped. Then, we know that Φ(k)(y1, y2, 0) = 0 and
Φ(k)(y1, y2, l) = 0. From (3.37) we can deduce that

η
(k)
3 (0) = η

(k)
i (0) =

dη
(k)
i

dz3
(0) = 0

η
(k)
3 (l) = η

(k)
i (l) =

dη
(k)
i

dz3
(l) = 0

(i = 1, 2). (dd)

Let {Λk∗}+∞
k∗=1 be the set of eigenvalues of problem (3.47) with (dd) boundary conditions.

Then, we have proved that Λ̃k ∈ {Λk∗}+∞
k∗=1, and more generally {Λ̃k}+∞

k=1 ⊆ {Λk∗}+∞
k∗=1. Thus,

we can assure that
Λ̃k ≥ Λk (k ∈ N). (3.48)

It still remains to prove that Λ̃k ≤ Λk for k ∈ N (cf. Section 3.5).

3.4.2 (DN) case

We now cover the case of µDNk (ε). The proof is pretty similar to the case of µDDk (ε) with some
minor changes, specially on the boundary.

The function space W1 changes to

W ′
1 = {ϕ ∈ H1(F (S),R3) | ϕ = 0 on Γ

(−)
1,1 },

and the test functions chosen during the proof, now only vanish on Γ
(−)
1,1 . In particular, ρi(0) = 0

for i = 1, 2, 3 and dρi
dz3

(0) = 0 for i = 1, 2. Let us now discuss the boundary conditions of the

functions η
(k)
i for i = 1, 2, 3. With the same argument as before, on the clamped end, we easily

see that η
(k)
i (0) = 0 for i = 1, 2, 3 and

dη
(k)
i

dz3
(0) = 0 for i = 1, 2. We go back to (3.39) and put

ρ2 = 0 and ρ3 = 0, to obtain

Y

∫
F (S)

(
−dη

(k)
3

dy3
+ y1

d2η
(k)
1

dy23
+ y2

d2η
(k)
2

dy23

)
y1

d2ρ1
dy23

dy = Λ̃k

∫
F (S)

η
(k)
1 ρ1dy.

Using the definition (3.40) of the functions H, Ki and Aij for 1 ≤ i, j ≤ 2, we transform the
previous equation into

Y

∫ l

0

(
−K1

dη
(k)
3

dz3
+A11

d2η
(k)
1

dz23
+A12

d2η
(k)
2

dz23

)
d2ρ1
dz23

dz3 = Λ̃k

∫ l

0
Hη

(k)
1 ρ1dz3. (3.49)

To simplify notation we write

Pi(z3) = −Ki(z3)
dη

(k)
3

dz3
+Ai1(z3)

d2η
(k)
1

dz23
+Ai2(z3)

d2η
(k)
2

dz23
(i = 1, 2),

P3(z3) = H(z3)
dη

(k)
3

dz3
−K1(z3)

d2η
(k)
1

dz23
−K2(z3)

d2η
(k)
2

dz23
.
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We use integration by parts two times in (3.49) to obtain

Y

([
P1(z3)

dρ1
dz3

]l
0

−
[
dP1

dz3
ρ1(z3)

]l
0

+

∫ l

0

d2P1

dz23
ρ1dz3

)
= Λ̃k

∫ l

0
Hη

(k)
1 ρ1dz3.

Using (3.45), we see that the previous equation becomes

Y

([
P1(z3)

dρ1
dz3

]l
0

−
[
dP1

dz3
ρ1(z3)

]l
0

)
= 0

Note that in the (DD) case, we can see that all terms above vanish. However, in the (DN) case
we have that ρ1(0) = 0 and dρ1

dz3
(0) = 0. Therefore

P1(l)
dρ1
dz3

(l)− dP1

dz3
(l)ρ1(l) = 0

Using proper test functions ρ1, we conclude P1(l) = 0 and dP1
dz3

(l) = 0. In a similar fashion,

choosing ρ1 = 0 and ρ3 = 0, we deduce P2(l) = 0 and dP2
dz3

(l) = 0. Finally, taking ρ1 = 0 and

ρ2 = 0, we get P3(l) = 0. Moreover, from (3.43), we also get dP3
dz3

(l) = 0. Thus, we have seen

that Pi(l) = 0 and dPi
dz3

(l) = 0 for i = 1, 2, 3 and therefore solving the systems we obtain

d2η
(k)
i

dz23
(l) =

d3η
(k)
i

dz33
(l) = 0 (i = 1, 2),

dη
(k)
3

dz3
(l) =

d2η
(k)
3

dz23
(l) = 0.

To sum up, we have the boundary conditions
η
(k)
3 (0) = η

(k)
i (0) =

dη
(k)
i

dz3
(0) = 0

dη
(k)
3

dz3
(l) =

d2η
(k)
3

dz23
(l) =

d2η
(k)
i

dz23
(l) =

d3η
(k)
i

dz33
(l) = 0

(i = 1, 2).

Remark 3.7. It can be shown that the condition
d2η

(k)
3

dz23
= 0 is not independent and can be

deduced from the other conditions and equations. Thus we can drop it when stating the main
result of this section.

3.5 Upper bound for the limit eigenvalues

In Section (3.4) we have seen that Λ̃k ≥ Λk, where Λ̃k is the limit Λ̃k = lim
r→+∞

1
ζ2r
µk(ζr) (see

(3.17)) and Λk is the k-th eigenvalue of the ordinary differential equation (3.47) with (dd)
boundary condition. We now start to prove that Λ̃k ≤ Λk. Consider the system of ordinary
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differential equations

Y
d2

dz23


(
A11 A12 −K1

A21 A22 −K2

)


d2η1
dz23
d2η2
dz23
dη3
dz3




= ΛH

(
η1
η2

)
(0 < z3 < l),

d

dz3

(
H

dη3
dz3

)
=

d

dz3

(
K1

d2η1
dz23

+K2
d2η2
dz23

)
(0 < z3 < l).

(3.50)

where Y = λ2(3λ1+2λ2)
λ1+λ2

. In a very similar fashion as before, we first consider the (DD) case, so
we assume the functions satisfy the (dd) boundary condition.

Let Λk be the k-th eigenvalue of the problem (3.50) with (dd) boundary condition and

η(k) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) its associated eigenfunction. By the relation we have in (3.50), η

(k)
3

satisfies d
dz3

(
H

dη
(k)
3

dz3

)
= d

dz3

(
K1

d2η
(k)
1

dz23
+K2

d2η
(k)
2

dz23

)
.

We recall that Λ̃k = lim
r→+∞

1
ζ2r
µk(ζr) and the eigenvalue µk(ε) can be characterized by

Rayleigh’s quotient via

µk(ε) = sup
Z∈Hk−1(F (S),R3)

inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε}.

(see (3.7)). We want to show that Λ̃k ≤ Λk.
We multiply the system (3.50) by (η1, η2) and integrate over the interval (0, l). Applying

the integration by parts we obtain

Y

∫ l

0

 2∑
i,j=1

Aij
d2ηi
dz23

d2ηj
dz23

−
2∑
i=1

Ki
d2ηi
dz23

dη3
dz3

dz3 = Λ

∫ l

0
H
(
η21 + η22

)
dz3.

Using the relationship between η3 and (η1, η2) we have in (3.47), we deduce that

Y

∫ l

0

 2∑
i,j=1

Aij
d2ηi
dz23

d2ηj
dz23

− 2
2∑
i=1

Ki
d2ηi
dz23

dη3
dz3

+H

(
dη3
dz3

)2dz3 = Λ

∫ l

0
H
(
η21 + η22

)
dz3.

Therefore, if η(k) = (η
(k)
1 , η

(k)
2 ) is the k-th eigenfunction of the ordinary differential equation

(3.50), we have that

Λk =

Y

∫ l

0

 2∑
i,j=1

Aij
d2η

(k)
i

dz23

d2η
(k)
j

dz23
− 2

2∑
i=1

Ki
d2η

(k)
i

dz23

dη
(k)
3

dz3
+H

(
dη

(k)
3

dz3

)2 dz3

∫ l

0
H

((
η
(k)
1

)2
+
(
η
(k)
2

)2)
dz3

. (3.51)
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We recall Rayleigh’s quotient R̃ε introduced in (3.6). We try new test functions Θ(y) =
Θ = (Θ1,Θ2,Θ3), ϕ(y) = ϕ = (ϕ1, ϕ2, ϕ3) given by

Θi = ηi + ε2ϕi (i = 1, 2),

Θ3 = η3 − y1
dη1
dy3

− y2
dη2
dy3

+ εϕ3,

where the functions ηi for i = 1, 2, 3 depend only on y3. The choice of these test functions
comes from the fact that we want Eij(Θ) to satisfy (3.16). Indeed, since for 1 ≤ i, j ≤ 2 we
have Eij(η) = 0 and Ei3(η) = 0, we calculate

Eij(Θ) = ε2Eij(ϕ),

Ei3(Θ) =
1

2

(
ε2
∂ϕi
∂y3

+ ε
∂ϕ3
∂yi

)
(1 ≤ i, j ≤ 2),

E33(Θ) =
dη3
dy3

− y1
d2η1
dy23

− y2
d2η2
dy23

+ ε
∂ϕ3
∂y3

.

For brevity we write N = dη3
dy3

− y1
d2η1
dy23

− y2
d2η2
dy23

. With this notation, we compute R̃ε(Θ).

R̃ε(Θ) =

∫
F (S)

λ1(ε2∂ϕ1
∂y1

+ ε2
∂ϕ2
∂y2

+ ε2N + ε3
∂ϕ3
∂y3

)2

+ 2λ2

2∑
i,j=1

ε4Eij(ϕ)
2

dy∫
F (S)

(
ε2(η1 +ε

2ϕ1)
2 + ε2(η2 +ε

2ϕ2)
2 + ε4(η3 − y1

dη1
dy3

− y2
dη2
dy3

+ εϕ3)
2
)
dy

+

∫
F (S)

2λ2

(
2ε2

2∑
i=1

1

4

(
ε2
∂ϕi
∂y3

+ ε
∂ϕ3
∂yi

)2

+ ε4
(
N + ε

∂ϕ3
∂y3

)2
)
dy∫

F (S)

(
ε2(η1 +ε

2ϕ1)
2 + ε2(η2 +ε

2ϕ2)
2 + ε4(η3 − y1

dη1
dy3

− y2
dη2
dy3

+ εϕ3)
2
)
dy

.

Multiplying by 1
ε2

and taking the limit ε→ 0, we see

lim
ε→0

1

ε2
R̃ε(Θ) =

∫
F (S)

λ1

(
∂ϕ1
∂y1

+
∂ϕ2
∂y2

+N

)2

dy∫
F (S)

(η21 + η22)dy

+

∫
F (S)

2λ2

 2∑
i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2

+N2

dy∫
F (S)

(η21 + η22)dy

. (3.52)

We want to find the ϕ = (ϕ1, ϕ2, ϕ3) that minimizes the numerator in (3.52)

M(ϕ)=

∫
F (S)

λ1(∂ϕ1
∂y1

+
∂ϕ2
∂y2

+N

)2

+ 2λ2

 2∑
i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2

+N2

dy.
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In order to minimize M, we put the test function ϕ as follows.

ϕi(y) =
2∑

p,q=1

α(i)
pq ypyq +

2∑
p=1

β(i)p yp (i = 1, 2), (3.53)

ϕ3(y) = 0

where α
(i)
pq and β

(i)
p depend only on y3 for 1 ≤ p, q, i ≤ 2 and satisfy α

(i)
12 = α

(i)
21 for i = 1, 2.

When we substitute this test function into M we obtain an expression that can be written

as a polynomial of degree 2 on the variables α
(i)
pq and β

(i)
p for 1 ≤ i, p, q ≤ 2 (in total there are

10 variables). Thus, it can be further rewritten as
∫ l
0

(
αTXα+ Yα

)
dy for a certain matrix

valued function X and a certain vector valued function Y (for the explicit forms of X and Y
see Appendix Remark A.2) with

α = (α
(1)
11 , α

(1)
12 , α

(1)
22 , α

(2)
11 , α

(2)
12 , α

(2)
22 , β

(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2 )T .

Since we want the minimum, we differentiate the expression
∫ l
0

(
αTXα+ Yα

)
dy with respect

to α and solve the linear system 2Xα + Y = 0 for α. After long but simple calculations we
obtain

α
(1)
11 =

1

4

λ1
λ1 + λ2

d2η1
dy23

, α
(1)
12 =

1

4

λ1
λ1 + λ2

d2η2
dy23

, α
(1)
22 = −1

4

λ1
λ1 + λ2

d2η1
dy23

,

α
(2)
11 = −1

4

λ1
λ1 + λ2

d2η2
dy23

, α
(2)
12 =

1

4

λ1
λ1 + λ2

d2η1
dy23

, α
(2)
22 =

1

4

λ1
λ1 + λ2

d2η2
dy23

,

β
(1)
1 = −1

2

λ1
λ1 + λ2

dη3
dy3

, β
(2)
2 = −1

2

λ1
λ1 + λ2

dη3
dy3

.

In fact, the matrix X in the system is degenerate and we additionally obtain the condition

β
(2)
1 + β

(1)
2 = 0. It can also be checked that the minimum obtained is always the same, so to

simplify, we put β
(2)
1 = 0 and β

(1)
2 = 0. Therefore, recalling (3.53), we obtain

ϕ1(y) =
1

4

λ1
λ1 + λ2

(
d2η1
dy23

y21 + 2
d2η2
dy23

y1y2 −
d2η1
dy23

y22 − 2
dη3
dy3

y1

)
,

ϕ2(y) =
1

4

λ1
λ1 + λ2

(
−d2η2

dy23
y21 + 2

d2η1
dy23

y1y2 +
d2η2
dy23

y22 − 2
dη3
dy3

y2

)
, (3.54)

ϕ3(y) = 0.

Substituting (3.54) into (3.52) and after long but elementary computations we obtain the
minimum

lim
ε→0

1

ε2
R̃ε(Θ) =

∫
F (S)

λ2(3λ1 + 2λ2)

λ1 + λ2
N2dy∫

F (S)
(η21 + η22)dy

. (3.55)
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Substituting (η1, η2, η3) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) and the definition of N into (3.55) and integrating

over the cross-section we have

lim
ε→0

1

ε2
R̃ε(Θ) =

Y

∫ l

0

 2∑
i,j=1

Aij
d2η

(k)
i

dz23

d2η
(k)
j

dz23
− 2

2∑
i=1

Ki
d2η

(k)
i

dz23

dη
(k)
3

dz3
+H

(
dη

(k)
3

dz3

)2 dz3

∫ l

0
H

((
η
(k)
1

)2
+
(
η
(k)
2

)2)
dz3

,

which, from (3.51), turns out to be

lim
ε→0

1

ε2
R̃ε(Θ) = Λk.

These computations are a motivation of how to choose proper test functions for our next
goal, which is to use the Max-Min method in order to prove the inequality Λ̃k ≤ Λk. First, we

consider the eigenfunction η(k) = (η
(k)
1 , η

(k)
2 , η

(k)
3 ) corresponding to the eigenvalue Λk of problem

(3.50) with (dd) boundary condition. We also choose the functions η(k) so that∫
F (S)

(
η
(k)
1 η

(k′)
1 + η

(k)
2 η

(k′)
2

)
dy = δ(k, k′), (3.56)

where δ is the Kronecker delta. We define

Nk =
dη

(k)
3

dy3
− y1

d2η
(k)
1

dy23
− y2

d2η
(k)
2

dy23
.

Using the weak formulation of (3.50) we know that

Y

∫
F (S)

NkNk′dy = Λkδ(k, k
′). (3.57)

Let us consider the test functions

Φ
(s)
i = η

(s)
i + ε2ϕ

(s)
i (i = 1, 2),

Φ
(s)
3 = η

(s)
3 − y1

dη
(s)
1

dy3
− y2

dη
(s)
2

dy3
,

with s ∈ N and

ϕ
(s)
1 =

1

4

λ1
λ1 + λ2

(
d2η

(s)
1

dy23
y21 + 2

d2η
(s)
2

dy23
y1y2 −

d2η
(s)
1

dy23
y22 − 2

dη
(s)
3

dy3
y1

)
,

ϕ
(s)
2 =

1

4

λ1
λ1 + λ2

(
−d2η

(s)
2

dy23
y21 + 2

d2η
(s)
1

dy23
y1y2 +

d2η
(s)
2

dy23
y22 − 2

dη
(s)
3

dy3
y2

)
.

Choose an arbitrary Z ∈ Hk−1(F (S),R3) and let Z̃ = L.H.
[
Φ(1),Φ(2), . . . ,Φ(k)

]
be the minimal

linear space that contains the set {Φ(1),Φ(2), . . . ,Φ(k)}. Note that dim Z̃ = k and that each
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Φ(s) ∈ W1 (for all s ∈ N), so we have that Z̃ ⊆ W1. Since dimZ < dim Z̃, we know that there
exist a function Ψ = (Ψ1,Ψ2,Ψ3) ∈ Z̃ ∩ Z⊥ε and a vector (c1, . . . , ck) = (c1(ε), . . . , ck(ε)) ∈
Rk\{0} such that

Ψ =

k∑
s=1

cs(ε)Φ
(s).

Note that since both Z̃ and Z⊥ε are subsets of W1, we have also that Ψ ∈ W1 and due the fact
that (c1(ε), . . . , ck(ε)) ∈ Rk\{0} we deduce that Ψ ∈ W1\{0}, so we can apply R̃ε to Ψ. We
compute

Eii(Ψ) = ε2
k∑
s=1

cs(ε)
1
2

λ1
λ1+λ2

Ns, Ei3(Ψ) = ε2
k∑
s=1

cs(ε)Ei3(ϕ) (1 ≤ i, j ≤ 2),

E12(Ψ) = E21(Ψ) = 0, E33(Ψ) =

k∑
s=1

cs(ε)Ns.

Using these computations, the numerator of the Rayleigh quotient R̃ε(Ψ) is

∫
F (S)

λ1(ε2( k∑
s=1

cs(ε)
λ2

λ1+λ2
Ns

))2

+ 2λ2

 2∑
i=1

ε4

(
k∑
s=1

cs(ε)
1
2

λ1
λ1+λ2

Ns

)2
dy

+

∫
F (S)

2λ2

2ε4
2∑
i=1

1

4

(
ε2

k∑
s=1

cs(ε)Ei3(ϕ)

)2

+ ε4

(
k∑
s=1

cs(ε)Ns

)2
 dy

= ε4
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

Y NpNqdy + ε6
k∑

p,q=1

cp(ε)cq(ε)κ̃(p, q, ε) (3.58)

for some functions κ̃(p, q, ε) = O(1) as ε→ 0. Note that these functions κ̃(p, q, ε) do not depend
on the choice of Z. Due to (3.57), it follows that (3.58) becomes

ε4
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

Y NpNqdy + ε6
k∑

p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

= ε4
k∑
p=1

cp(ε)
2Λp + ε6

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε). (3.59)
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Note also that the denominator of Rε(Ψ) satisfies

ε2
∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy ≥ ε2

∫
F (S)

(
Ψ2

1 +Ψ2
2

)
dy

= ε2
∫
F (S)

( k∑
s=1

ck(ε)(η
(s)
1 + ε2ϕ

(s)
1 )

)2

+

(
k∑
s=1

ck(ε)(η
(s)
2 + ε2ϕ

(s)
2 )

)2
 dy

= ε2
∫
F (S)

k∑
p,q=1

cp(ε)cq(ε)

(
2∑

n=1

(η(p)n + ε2ϕ(p)n )(η(q)n + ε2ϕ(q)n )

)
dy

= ε2
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

(η
(p)
1 η

(q)
1 + η

(p)
2 η

(q)
2 )dy + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε) (3.60)

for certain functions κ̂(p, q, ε) = O(1) as ε → 0. Note again that the functions κ̂(p, q, ε) do
not depend on the choice of Z. By the homogeneity property of Rayleigh’s quotient we may
assume without loss of generality that

∑k
p=1 cp(ε)

2 = 1. Thus we have |cp(ε)| ≤ 1 for 1 ≤ p ≤ k.
Combining this fact with the orthogonality in (3.56), we get

ε2
k∑

p,q=1

cp(ε)cq(ε)

∫
F (S)

(η
(p)
1 η

(q)
1 + η

(p)
2 η

(q)
2 )dy + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε)

=ε2
k∑
p=1

cp(ε)
2 + ε4

k∑
p,q=1

cp(ε)cq(ε)κ̂(p, q, ε) = ε2 + ε4
k∑

p,q=1

cp(ε)cq(ε)κ̂(p, q, ε)

≥ε2 − ε4
k∑

p,q=1

|cp(ε)||cq(ε)||κ̂(p, q, ε)| ≥ ε2 − ε4
k∑

p,q=1

|κ̂(p, q, ε)|. (3.61)

Therefore, with (3.60) and (3.61), we deduce that

ε2
∫
F (S)

(
Ψ2

1 +Ψ2
2 + ε2Ψ2

3

)
dy ≥ ε2 − ε4

k∑
p,q=1

|κ̂(p, q, ε)|. (3.62)

Using (3.59), the bound (3.62) and the fact that Λk ≤ Λk+1 for k ∈ N, we obtain

1

ε2
R̃ε(Ψ) ≤ 1

ε2

ε4
k∑
p=1

cp(ε)
2Λp + ε6

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

ε2 − ε4
k∑

p,q=1

|κ̂(p, q, ε)|

≤

Λk

k∑
p=1

cp(ε)
2 + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

≤

Λk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

(3.63)
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provided that the denominator is positive (this is possible because ε is a small real parameter).
Let us denote the right hand side of the previous inequality

Lk(ε) =

Λk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|

1− ε2
k∑

p,q=1

|κ̂(p, q, ε)|

.

Note once again that Lk(ε) does not depend on the choice of Z. We know from (3.63) that

1

ε2
inf{R̃ε(Φ) | Φ ∈ W1\{0},Φ ∈ Z⊥ε} ≤ 1

ε2
R̃ε(Ψ) ≤ Lk(ε).

Since Z ∈ Hk−1(F (S),R3) was arbitrary, we take the supremum over Hk−1(F (S),R3), so we
obtain the upper estimate

1

ε2
µk(ε) ≤ Lk(ε).

Taking the limit ε→ 0 and using (3.17), we have

Λ̃k ≤ lim sup
ε→0

1

ε2
µk(ε) ≤ lim sup

ε→0
Lk(ε) = Λk,

which agrees to the desired inequality Λ̃k ≤ Λk (k ∈ N). We combine this fact together with
(3.48) to conclude that

Λ̃k = Λk (k ∈ N).

We proved lim
r→+∞

µk(ζr)
ζ2r

= Λ̃k only for a certain subsequence {ζr}+∞
r=1 ⊆ {εp}+∞

p=1, but note

that we have shown that Λ̃k = Λk independently of the first chosen sequence {εp}+∞
p=1. Since

this sequence was arbitrary, we can see that in fact for every k ∈ N we have

lim
ε→0

µk(ε)

ε2
= Λ̃k.

Similarly, we prove the same result in the case (DN).
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4 Torsional and stretching modes

In this section we discuss high-frequency eigenvalues of a thin elastic rod with axis-symmetric
cross-section that varies along the rod. We prepare the mathematical setting of our problem.
Let l > 0, let a : [0, l] → (0,+∞) be a C2 positive function and ε > 0, a small parameter related
to the thinness of the rod. We consider the following domain.

Ωε,a = {(x1, x2, x3) ∈ R3 | x21 + x22 < ε2a(x3)
2, 0 < x3 < l},

Γ1,ε,a = {(x1, x2, x3) ∈ R3 | x21 + x22 < ε2a(x3)
2, x3 = 0 or x3 = l},

Γ2,ε,a = ∂Ωε,a\Γ1,ε,a.

We study the following eigenvalue problem.
L[u] + µu = 0 in Ωε,a,
u = 0 on Γ1,ε,a,
σ(u)n = 0 on Γ2,ε,a.

(4.1)

Here n is the unit outward normal vector on ∂Ωε,a. Note that this eigenvalue problem is a
particular case of (DD), studied in Section 3, so we may use the results we obtained in the
previous section. We denote by {µk(ε)}+∞

k=1 the set of eigenvalues of problem (4.1) and we recall
that for any ε > 0 there is an infinite discrete sequence of positive eigenvalues

0 < µ1(ε) ≤ µ2(ε) ≤ · · · ≤ µk(ε) ≤ µk+1(ε) ≤ · · · with lim
k→+∞

µk(ε) = +∞,

which are arranged in increasing order, counting multiplicities. Moreover, by Theorem 3.1, we
know that for each k ∈ N we have µk(ε) = O(ε2). Thus, we have

lim
k→+∞

µk(ε) = +∞ for each ε > 0,

lim
ε→0

µk(ε) = 0 for each k ∈ N.

Figure 2: General behavior of the eigenvalues µk(ε) as ε becomes smaller
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These eigenvalues are low-frequency eigenvalues corresponding to flexural vibrations (bend-
ing mode). However, it is known ([16] or [17]) that there exist high-frequency eigenvalues
corresponding to stretching and torsional vibrations, which do not tend to zero as the thinness
gets smaller. These high-frequency eigenvalues cannot be analyzed when the subindex k is
fixed. As an example, we can focus on the eigenvalue µ3(ε) of Figure 2. If we assume that this
eigenvalue does not indeed converge to 0 as ε becomes smaller, then low-frequency eigenvalues
will progressively “overtake” it, as seen in Figure 2. Due to the convergence limε→0 µk(ε) = 0,
we see that in order to “catch” this eigenvalues, we have to vary the subindex k and the pa-
rameter ε simultaneously. In this section we study the eigenvalues related to torsional and
stretching modes.

4.1 Main result

We present the main result of this section. Recall that λ1, λ2 are the Lamé constants and
Y = λ2(3λ1+2λ2)

λ1+λ2
.

Theorem 4.1. Let k ∈ N and let µk(ε) be the k-th eigenvalue of (4.1). Then the following
statements hold.

a) For every k ∈ N, there exists a sequence (q(k, ε))ε>0 with q(k, ε) ∈ N, q(k, ε) < q(k + 1, ε)
and q(k, ε) → +∞ as ε→ 0 and a constant ξk > 0 such that

lim
ε→0

µq(k,ε)(ε) = ξk.

b) There exists a subset
{
µSk (ε)

}+∞
k=1

∪
{
µTk (ε)

}+∞
k=1

=
{
µq(k,ε)(ε)

}+∞
k=1

⊆ {µk(ε)}+∞
k=1 such that

for every k ∈ N,

lim
ε→0

µSk (ε) = µSk , lim
ε→0

µTk (ε) = µTk ,

with
{
µSk
}+∞
k=1

∪
{
µTk
}+∞
k=1

= {ξk}+∞
k=1. Here µSk and µTk are the respective k-th eigenvalues of

the following eigenvalue problems.{
−Y d

dy3

(
a(y3)

2 dτ
dy3

)
= µSa(y3)

2τ (0 < y3 < l),

τ(0) = τ(l) = 0.{
−λ2 d

dy3

(
a(y3)

4 dρ
dy3

)
= µTa(y3)

4ρ (0 < y3 < l),

ρ(0) = ρ(l) = 0.

c) Let v
(k)
ε (x) and w

(k)
ε (x), x ∈ Ωε,a, be the eigenfunctions associated to µSk (ε) and µTk (ε)

respectively. Then,

v(k)ε (x) = (x1χ
(k)
ε (s, x3), x2χ

(k)
ε (s, x3), τ

(k)
ε (s, x3)),

w(k)
ε (x) = (−x2ρ(k)ε (s, x3), x1ρ

(k)
ε (s, x3), 0),

where s =
√
x21 + x22, for some functions χ

(k)
ε , τ

(k)
ε , ρ

(k)
ε ∈ H1(Ωε,a) with χ

(k)
ε , τ

(k)
ε , ρ

(k)
ε = 0

on Γ1,ε,a.
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d) If we denote χ
(k)
ε (s̃, y3) = χ

(k)
ε (εs̃, y3), τ

(k)
ε (s̃, y3) = τ

(k)
ε (εs̃, y3) and ρ

(k)
ε (s̃, y3) = ρ

(k)
ε (εs̃, y3)

with 0 < y3 < l, 0 ≤ s̃ < a(y3), then

χ
(k)
ε −⇀ 0 weakly in H1(Ω1,a),

τ
(k)
ε −→ τ (k) strongly in H1(Ω1,a),

ρ
(k)
ε −→ ρ(k) strongly in H1(Ω1,a),

as ε→ 0, where τ (k) and ρ(k) are the eigenfunctions associated to µSk and µTk respectively.

The proof of Theorem 4.1 is given in Sections 4.2 to 4.5. In Section 4.6 we provide a

sufficient condition and an example of the case that the convergence of χ
(k)
ε in Theorem 4.1.d)

is strong in H1(Ω1,a). In Section 4.7 we try to generalize Theorem 4.1 to curved rods and we
give a conjecture about the stretching and torsional modes on a curved rod with non-uniform
cross-section.

4.2 Characterization of torsional and stretching eigenvalues

We adapt to our domain Ωε,a the Rayleigh quotient and the Max-Min characterization of the
eigenvalues that we introduced in Section 2. Let ϕ, ψ ∈ H1(Ωε,a,R3)\{0}. We define

Bε,a[ϕ, ψ] =

∫
Ωε,a

λ1 div ϕ divψ + 2λ2

3∑
i,j=1

eij(ϕ)eij(ψ)

dx,

Rε,a(ϕ) =
Bε,a[ϕ, ϕ]

∥ϕ∥2
L2(Ωε,a,R3)

. (4.2)

Furthermore, we set the function space

Wε,a = {ϕ ∈ H1(Ωε,a,R3) | ϕ = 0 on Γ1,ε,a}.

Then the k-th eigenvalue is characterized as follows:

µk(ε) = sup
X∈Hk−1(Ωε,a,R3)

inf{Rε,a(ϕ) | ϕ ∈ Wε,a\{0}, ϕ ⊥ X in L2(Ωε,a,R3)}.

We begin to study the torsional and stretching modes by variational methods. We rewrite
the Rayleigh quotient and make sure that we exclude the bending mode. We put the test
function vε = (v1,ε, v2,ε, v3,ε) ∈ Wε,a as follows.

v1,ε(x) = −x2ρε(s, x3) + x1χε(s, x3),

v2,ε(x) = x1ρε(s, x3) + x2χε(s, x3), (4.3)

v3,ε(x) = τε(s, x3),
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where s =
√
x21 + x22. We compute Rε,a(vε). After the change of variables x1 = s cosϑ,

x2 = s sinϑ, 0 ≤ ϑ < 2π, 0 < s < εa(x3), the numerator Bε,a[vε, vε] becomes∫
Ωε,a

{
λ1

(
s∂χε

∂s + 2χε +
∂τε
∂x3

)2
(4.4)

+ 2λ2

((
∂τε
∂x3

)2
+ 1

2

(
s∂χε

∂x3
+ ∂τε

∂s

)2
+
(
s∂χε

∂s + χε

)2
+ χ2

ε+
s2

2

((
∂ρε
∂s

)2
+
(
∂ρε
∂x3

)2))}
sdsdx3,

and the denominator ∥vε∥2L2(Ωε,a,R3) becomes∫
Ωε,a

(
s2ρ2ε + s2χ2

ε + τ2ε
)
sdsdx3.

We use variational methods in Rε,a(vε) and obtain functions (ρε, τε, χε) that satisfy the PDEs

λ2

(
3
s
∂ρε
∂s + ∂2ρε

∂s2
+ ∂2ρε

∂x23

)
+ ξερε = 0

(λ1 + 2λ2)
∂2τε
∂x23

+ λ2
1
s
∂τε
∂s + λ2

∂2τε
∂s2

+ 2(λ1 + λ2)
∂χε

∂x3
+ (λ1 + λ2)s

∂2χε

∂s∂x3
+ ξετε = 0

λ2
∂2χε

∂x23
+ (λ1 + λ2)

1
s
∂2τε
∂s∂x3

+ 3(λ1 + 2λ2)
1
s
∂χε

∂s + (λ1 + 2λ2)
∂2χε

∂s2
+ ξεχε = 0

 in Ωε,a,

ρ = 0
τ = 0
χ = 0

 on Γ1,ε,a,

∂ρε
∂s − εa′(x3)

∂ρε
∂x3

= 0

λ2

(
s∂χε

∂x3
+ ∂τε

∂s

)
− εa′(x3)

(
λ1s

∂χε

∂s + 2λ1χε + (λ1 + 2λ2)
∂τε
∂x3

)
= 0

(λ1 + 2λ2)s
∂χε

∂s + 2(λ1 + λ2)χε + λ1
∂τε
∂x3

− εa′(x3)λ2

(
s∂χε

∂x3
+ ∂τε

∂s

)
= 0

 on Γ2,ε,a.

(4.5)

Note that ρε is independent of the pair (τε, χε). Moreover, (4.5) is an elliptic equation so we
can assure the existence of a sequence {ξk(ε)}+∞

k=1 of positive eigenvalues.
However, these arguments do not prove that vε is an eigenfunction of (4.1). It is left to

prove that there are eigenfunctions vε of (4.1) with the same structure as defined in (4.3). In
other words, for ζ > 0 we want to see that

d

dζ
(Rε,a(vε + ζΦε)) |ζ=0

= 0, (4.6)

for every Φε ∈ Wε,a such that (vε,Φε)L2(Ωε,a,R3) = 0, so that vε is a critical point of Rayleigh’s
quotient and thus vε is in fact an eigenfunction of (4.1). Since Bε,a is symmetric and bilinear,
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we note that

Rε,a(vε + ζΦε) =
Bε,a[vε + ζΦε, vε + ζΦε]

∥vε + ζΦε∥2L2(Ωε,a,R3)

=
Bε,a[vε, vε] + 2ζBε,a[vε,Φε] + ζ2Bε,a[Φε,Φε]

∥vε∥2L2(Ωε,a,R3) + 2ζ(vε,Φε)L2(Ωε,a,R3) + ζ2 ∥Φε∥2L2(Ωε,a,R3)

=
Bε,a[vε, vε] + 2ζBε,a[vε,Φε] + ζ2Bε,a[Φε,Φε]

∥vε∥2L2(Ωε,a,R3) + ζ2 ∥Φε∥2L2(Ωε,a,R3)

.

In order to prove (4.6), we only have to see that Bε,a[vε,Φε] = 0. For that purpose, let HTS

denote the closed subspace of Wε,a made of functions vε defined as in (4.3). By definition we

have vε ∈ HTS. We write Φε = Ψ̂ε + Ψε with Ψ̂ε ∈ HTS and Ψε ∈ H⊥
TS. It is clear that

(Ψ̂ε,Ψε)L2(Ωε,a,R3) = 0. We consider the case when Ψ̂ε is not a multiple of vε. Then from

the construction of HTS we have (vε, Ψ̂ε)L2(Ωε,a,R3) = 0 and Bε,a[vε, Ψ̂ε] = 0. Moreover, since

vε ∈ HTS and Ψε ∈ H⊥
TS, we see that (vε,Ψε)L2(Ωε,a,R3) = 0. Thus,

Bε,a[vε,Φε] = Bε,a[vε, Ψ̂ε +Ψε] = Bε,a[vε,Ψε]. (4.7)

We write Ψε = (Ψ1,ε,Ψ2,ε,Ψ3,ε). We compute

Bε,a[vε,Ψε] =

∫
Ωε,a

λ1 div vε divΨε + 2λ2

3∑
i,j=1

eij(vε)eij(Ψε)

 dx.

We perform the integral by parts and pass all the derivatives to vε. Therefore, we obtain

Bε,a[vε,Ψε] =−
∫
Ωε,a

3∑
i,j=1

(
λ1

∂2vj,ε
∂xi∂xj

+ λ2

(
∂2vi,ε
∂2xj

+
∂2vj,ε
∂xi∂xj

))
Ψi,ε dx

+

∫
∂Ωε,a

3∑
i,j=1

(
λ1
∂vj,ε
∂xj

nxi + λ2

(
∂vi,ε
∂xj

+
∂vj,ε
∂xi

)
nxj

)
Ψi,ε dA.

We compute Bε,a[vε,Ψε] using (4.3) and the boundary conditions of (4.5), and after long and
elementary computations the previous equation becomes

−
∫
Ωε,a

{[
−x2

(
λ2

(
3
s
∂ρε
∂s + ∂2ρε

∂s2
+ ∂2ρε

∂x23

))
+x1

(
λ2

∂2χε

∂x23
+ (λ1 + λ2)

1
s
∂2τε
∂s∂x3

+ 3(λ1 + 2λ2)
1
s
∂χε

∂s + (λ1 + 2λ2)
∂2χε

∂s2

) ]
Ψ1,ε

+
[
x1

(
λ2

(
3
s
∂ρε
∂s + ∂2ρε

∂s2
+ ∂2ρε

∂x23

))
+x2

(
λ2

∂2χε

∂x23
+ (λ1 + λ2)

1
s
∂2τε
∂s∂x3

+ 3(λ1 + 2λ2)
1
s
∂χε

∂s + (λ1 + 2λ2)
∂2χε

∂s2

) ]
Ψ2,ε

+
(
(λ1 + 2λ2)

∂2τε
∂x23

+ λ2
1
s
∂τε
∂s + λ2

∂2τε
∂s2

+ 2(λ1 + λ2)
∂χε

∂x3
+ (λ1 + λ2)s

∂2χε

∂s∂x3

)
Ψ3,ε

}
dx.
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We use the equations in (4.5) to deduce

Bε,a[vε,Ψε] = −
∫
Ωε,a

{(−x2ξερε + x1ξεχε)Ψ1,ε + (x1ξερε + x2ξεχε)Ψ2,ε + ξετεΨ3,ε}dx

= −ξε
∫
Ωε,a

{(−x2ρε + x1χε)Ψ1,ε + (x1ρε + x2χε)Ψ2,ε + τεΨ3,ε} dx

= −ξε
∫
Ωε,a

(vε,1Ψ1,ε + vε,2Ψ2,ε + vε,3Ψ3,ε) dx = −ξε(vε,Ψε)L2(Ωε,a,R3) = 0

since (vε,Ψε)L2(Ωε,a,R3) = 0. Thus we have seen that Bε,a[vε,Ψε] = 0. Hence, from (4.7) we see
Bε,a[vε,Φε] = 0 and we conclude

d

dζ
(Rε,a(vε + ζΦε)) |ζ=0

= 0,

and vε is indeed an eigenfunction of (4.1).
Using the characterization of the eigenvalues, we know that {ξk(ε)}+∞

k=1 ⊆ {µk(ε)}+∞
k=1 and

that the associated functions v
(k)
ε = (v

(k)
1,ε , v

(k)
2,ε , v

(k)
3,ε ) with

v
(k)
1,ε = −x2ρ(k)ε (s, x3) + x1χ

(k)
ε (s, x3),

v
(k)
2,ε = x1ρ

(k)
ε (s, x3) + x2χ

(k)
ε (s, x3), (4.8)

v
(k)
3,ε = τ (k)ε (s, x3),

are eigenfunctions of (4.1).
However, these eigenfunctions are not related (and in fact are orthogonal) to the bending

mode eigenfunctions (see Section 3). From the Max-Min characterization we prove that the
eigenvalues ξk(ε) are bounded for ε > 0 and each fixed k ∈ N. For that purpose, we note that
we can split the eigenvalue problem (4.5) into two different eigenvalue problems, since there is
no equation involving ρε and (χε, τε) (or its derivatives) at the same time. Thus, we write

{ξk(ε)}+∞
k=1 = {µSk (ε)}+∞

k=1 ∪ {µTk (ε)}+∞
k=1 ⊆ {µk(ε)}+∞

k=1,

We perform the following change of variables. For x = (x1, x2, x3) ∈ Ωε,a, let s =
√
x21 + x22,

and (x1, x2, x3) = (εy1, εy2, y3), so that s = εs̃ with s̃ =
√
y21 + y22. We write y = (y1, y2, y3).

We define the following function spaces.

W1,a = {ϕ ∈ H1(Ω1,a,R3) | ϕ = 0 on Γ1,1,a},
W1,a = {ϕ ∈ H1(Ω1,a) | ϕ = 0 on Γ1,1,a}.

We define HS to be the smallest closed subspace of W1,a such that if vSε = (vS1,ε, v
S
2,ε, v

S
3,ε) ∈

HS, then

(vS1,ε, v
S
2,ε, v

S
3,ε) = (y1χε(s̃, y3), y2χε(s̃, y3), τε(s̃, y3)),
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for some χε, τε ∈W1,a. Let v
S
ε ∈ HS. The Rayleigh quotient for the stretching mode is rewritten

as

R̃S
ε (v

S
ε ) =

1∫
Ω1,a

(
χ̃2
ε + τ2ε

)
s̃ds̃dy3

×
∫
Ω1,a

{
λ1

(
1
ε
∂χ̃ε

∂s̃ + 1
ε
1
s̃ χ̃ε +

∂τε
∂y3

)2

+ 2λ2

((
∂τε
∂y3

)2
+ 1

2

(
∂χ̃ε

∂y3
+ 1

ε
∂τε
∂s̃

)2
+
(
1
ε
∂χ̃ε

∂s̃

)2
+
(
1
ε
1
s̃ χ̃ε
)2)}

s̃ds̃dy3,

(4.9)

with χ̃ε(s̃, y3) = εs̃χε(s̃, y3). Using the Max-Min principle (Proposition 2.3), after the change
of variables, µSk (ε) is rewritten as

µSk (ε) = sup
Z∈Hk−1(Ω1,a,R3)

inf{R̃S
ε (Φ) | Φ ∈ HS\{0},Φ ⊥ Z in L2(Ω1,a)}.

Let {τ (n)(y3)}+∞
n=1 be a linearly independent system satisfying τ (n) = τ (n)(y3) ∈ W1,a for

each n ∈ N. For each n ∈ N, let v(n)S = (0, 0, τ (n)) ∈ HS. We fix k ∈ N. Choose an arbitrary

Z ∈ Hk−1(Ω1,a,R3) and let Z̃ = L.H.
[
v
(1)
S , v

(2)
S , . . . , v

(k)
S

]
be the minimal linear space that

contains the set {v(1)S , v
(2)
S , . . . , v

(k)
S }. Note that dim Z̃ = k and that each v

(n)
S ∈ W1,a (for all

n ∈ N), so we have that Z̃ ⊆ W1,a. Since dimZ < dim Z̃, we know that there exist a function

Ψ ∈ Z̃ ∩ Z⊥ and a vector (c1(ε), . . . , ck(ε)) ∈ Rk\{0}, ε > 0, such that

Ψ =

k∑
n=1

cs(ε)v
(n)
S .

Note that since both Z̃ and Z⊥ are subsets of W1,a, we have also that Ψ ∈ W1,a and due the

fact that (c1(ε), . . . , ck(ε)) ∈ Rk\{0} we deduce that Ψ ∈ W1,a\{0}, so we can apply R̃S
ε to Ψ.

We compute R̃S
ε (Ψ) and obtain

R̃S
ε (Ψ) =

∫
Ω1,a

(λ1 + 2λ2)

(
k∑

n=1

cs(ε)
dτ (n)

dy3

)2

s̃ds̃dy3

∫
Ω1,a

(
k∑

n=1

cs(ε)τ
(n)

)2

s̃ds̃dy3

=

∫
Ω1,a

(λ1 + 2λ2)
k∑

p,q=1

cp(ε)cq(ε)
dτ (p)

dy3

dτ (q)

dy3
s̃ds̃dy3

∫
Ω1,a

k∑
p,q=1

cp(ε)cq(ε)τ
(p)τ (q)s̃ds̃dy3

(4.10)
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Let us put

γpq =

∫
Ω1,a

dτ (p)

dy3

dτ (q)

dy3
s̃ds̃dy3, γ̂pq =

∫
Ω1,a

τ (p)τ (q)s̃ds̃dy3.

Note that since we chose the system
{
τ (n)

}+∞
n=1

to be linearly independent and by the symmetry
γpq = γqp, γ̂pq = γ̂qp, we have that (γpq)1≤p,q≤k and (γ̂pq)1≤p,q≤k are positive definite matrices.
Therefore, all of its eigenvalues are positive. Let γ∗ be the biggest eigenvalue of (γpq)1≤p,q≤k
and γ̂∗, the smallest eigenvalue of (γ̂pq)1≤p,q≤k. With this notation, we have the bounds

k∑
p,q=1

cp(ε)cq(ε)γpq ≤ γ∗(c1(ε)
2 + · · ·+ ck(ε)

2),

k∑
p,q=1

cp(ε)cq(ε)γ̂pq ≥ γ̂∗(c1(ε)
2 + · · ·+ ck(ε)

2).

Therefore, (4.10) becomes

R̃S
ε (Ψ) =

(λ1 + 2λ2)

k∑
p,q=1

cp(ε)cq(ε)γpq

k∑
p,q=1

cp(ε)cq(ε)γ̂pq

≤ (λ1 + 2λ2)γ∗(c1(ε)
2 + · · ·+ ck(ε)

2)

γ̂∗(c1(ε)2 + · · ·+ ck(ε)2)
=

(λ1 + 2λ2)γ∗
γ̂∗

.

Put C = (λ1+2λ2)γ∗
γ̂∗

. We obtained that for a certain Ψ ∈ W1,a there exists a positive constant

C independent of ε and independent of the choice of Z such that R̃S
ε (Ψ) ≤ C. Thus, taking

the infimum, we have

inf{R̃S
ε (Φ) | Φ ∈ HS\{0},Φ ⊥ Z in L2(Ω1,a)} ≤ R̃S

ε (Ψ) ≤ C.

Since Z was arbitrary and C does not depend on the choice of Z, we can take the supremum
on both sides over Hk−1(Ω1,a,R3) to obtain

µSk (ε) = sup
Z∈Hk−1(Ω1,a,R3)

inf{R̃S
ε (Φ) | Φ ∈ HS\{0},Φ ⊥ Z in L2(Ω1,a)} ≤ C.

Here we used the characterization of µSk (ε). Therefore we obtain

µSk (ε) = O(1) as ε→ 0, (4.11)

that is, µSk (ε) is bounded for ε > 0 and for each fixed k ∈ N. Thus, there exists a subsequence,
still denoted by ε, such that limε→0 µ

S
k (ε) = µ̃Sk .

Remark 4.2. Since bending eigenvalues satisfy limε→0 µk(ε) = 0 (Theorem 3.1), if we see that
µ̃Sk ̸= 0, that would mean that for every k ∈ N there exists a sequence q(k, ε) → +∞ as ε→ 0
such that

lim
ε→0

µq(k,ε)(ε) = µ̃Sk .

We will see a similar result for torsional eigenvalues.
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Analogously, we define HT to be the smallest closed subspace of W1,a such that if vTε =
(vT1,ε, v

T
2,ε, v

T
3,ε) ∈ HT, then

(vT1,ε, v
T
2,ε, v

T
3,ε) = (−y2ρε(s̃, x3), y1ρε(s̃, y3), 0),

for some ρε ∈W1,a. Let v
T
ε ∈ HT. The Rayleigh quotient for the torsional mode is rewritten as

R̃T
ε (v

T
ε ) =

∫
Ω1,a

λ2s̃
3

(
1

ε2

(
∂ρε
∂s̃

)2

+

(
∂ρε
∂y3

)2
)
ds̃dy3∫

Ω1,a

s̃3ρ2ε ds̃dy3

. (4.12)

After the change of variables, µTk (ε) is rewritten as

µTk (ε) = sup
Z∈Hk−1(Ω1,a,R3)

inf{R̃T
ε (Φ) | Φ ∈ HT\{0},Φ ⊥ Z in L2(Ω1,a)}.

Let {ρ(n)(y3)}+∞
n=1 be a linearly independent system satisfying ρ(n) = ρ(n)(y3) ∈ W1,a for each

n ∈ N. For each n ∈ N, let v(n)T = (−y2ρε, y1ρε, 0) ∈ HT. For each fixed k ∈ N, we repeat a
similar process as before, to obtain that

µTk (ε) = O(1) as ε→ 0,

that is, µTk (ε) is bounded for ε > 0 and for each fixed k ∈ N. Thus, there exists a subsequence,
still denoted by ε, such that limε→0 µ

T
k (ε) = µ̃Tk .

Our goal is to study the limit eigenvalue problem of the sequence {µ̃Sk }
+∞
k=1 ∪ {µ̃Tk }

+∞
k=1, so

we restrict ourselves to torsional and stretching eigenvalues.

4.3 L2 convergence of the eigenfunctions

We prove that the eigenfunctions related to torsional and stretching modes of (4.1) have a
non-zero limit. Note that in Rayleigh’s quotient in (4.4) there are no cross-terms involving ρε
and (χε, τε) (or its derivatives). Thus, we split the computations into two parts.

4.3.1 Stretching mode

We deal with the stretching mode. We fix k ∈ N. Let µSk (ε) be the k-th stretching eigenvalue

of the problem (4.1) and let v
(k)
ε (x) = v

(k)
ε = (v

(k)
1,ε , v

(k)
2,ε , v

(k)
3,ε ), x ∈ Ωε,a with

v(k)ε = (x1χ
(k)
ε (s, x3), x2χ

(k)
ε (s, x3), τ

(k)
ε (s, x3)),

be its associated stretching eigenfunction. Here s =
√
x21 + x22. For commodity we write sχ

(k)
ε =

χ̃
(k)
ε . We change the domain to Ω1,a, hence we perform the change of variable s = εs̃. The

previous functions in the new domain become v
(k)
ε (s̃, y3) = v

(k)
ε (εs̃, y3), χ̃

(k)
ε (s̃, y3) = χ̃

(k)
ε (εs̃, y3)

and τ
(k)
ε (s̃, y3) = τ

(k)
ε (εs̃, y3) with 0 < y3 < l, 0 < s̃ < a(y3). However, for commodity purposes,

45



we abuse notation and we still denote the new functions inW1,a by χ̃
(k)
ε , τ

(k)
ε . With this notation,

the weak formulation for the stretching eigenfunction v
(k)
ε is∫

Ω1,a

{
λ1

(
1
ε
∂χ̃

(k)
ε
∂s̃ + 1

ε
1
s̃ χ̃

(k)
ε + ∂τ

(k)
ε

∂x3

)(
1
ε
∂ψ̃
∂s̃ + 1

ε
1
s̃ ψ̃ + ∂φ

∂x3

)
+ 2λ2

(
∂τ

(k)
ε

∂x3
∂φ
∂x3

+ 1
2

(
∂χ̃

(k)
ε

∂x3
+ 1

ε
∂τ

(k)
ε
∂s̃

)(
∂ψ̃
∂x3

+ 1
ε
∂φ
∂s̃

)
+ 1

ε2
∂χ̃

(k)
ε
∂s̃

∂ψ̃
∂s̃ +

1
ε2

1
s̃2
χ̃
(k)
ε ψ̃

)}
s̃ds̃dx3

= µSk (ε)

∫
Ω1,a

((
χ̃(k)
ε

)2
+
(
τ (k)ε

)2)
s̃ds̃dx3, (4.13)

where ψ̃, φ ∈W1,a are test functions. We put ψ̃ = χ̃
(k)
ε , φ = τ

(k)
ε in (4.13) and obtain∫

Ω1,a

{
λ1

(
1
ε
∂χ̃

(k)
ε
∂s̃ + 1

ε
1
s̃ χ̃

(k)
ε + ∂τ

(k)
ε

∂x3

)2

+ 2λ2

((
∂τ

(k)
ε

∂x3

)2
+ 1

2

(
∂χ̃

(k)
ε

∂x3
+ 1

ε
∂τ

(k)
ε
∂s̃

)2

+

(
1
ε
∂χ̃

(k)
ε
∂s̃

)2

+
(
1
ε
1
s̃ χ̃

(k)
ε

)2)}
s̃ds̃dx3

= µSk (ε)

∫
Ω1,a

((
χ̃(k)
ε

)2
+
(
τ (k)ε

)2)
s̃ds̃dx3. (4.14)

We fix the norm ∫
Ω1,a

((
χ̃(k)
ε

)2
+
(
τ (k)ε

)2)
s̃ds̃dx3 = 1. (4.15)

Let (εp)
+∞
p=1 be any positive sequence such that εp → 0 as p→ +∞. From (4.11), we know that

the eigenvalue µSk (εp) is bounded. Therefore, from (4.14) we deduce that

∂τ
(k)
εp

∂x3
= O(1), (4.16)

∂χ̃
(k)
εp

∂x3
+

1

εp

∂τ
(k)
εp

∂s̃
= O(1), (4.17)

∂χ̃
(k)
εp

∂s̃
= O(εp), (4.18)

1

s̃
χ̃(k)
εp = O(εp), (4.19)

as p → +∞ in the L2(Ω1,a) sense. From (4.18) we know that
∂χ̃

(k)
εp

∂s̃ is bounded in L2(Ω1,a), so
∂2χ̃

(k)
εp

∂x3∂s̃
is bounded in H−1(Ω1,a). On the other hand, from (4.17) we see that

∂2χ̃
(k)
εp

∂x3∂s
+ 1

εp

∂2τ
(k)
εp

∂s̃2
is

bounded in H−1(Ω1,a). Combining this two facts, we get that
∂2τ

(k)
εp

∂s̃2
is bounded in H−1(Ω1,a).

From (4.16) we know that
∂τ

(k)
εp

∂x3
is bounded in L2(Ω1,a), so

∂2τ
(k)
εp

∂x3∂s̃
is bounded in H−1(Ω1,a).
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Moreover, since τ
(k)
εp is bounded in L2(Ω1,a), we see that

∂τ
(k)
εp

∂s̃ is bounded in H−1(Ω1,a). To

sum up,
∂τ

(k)
εp

∂s̃ ,
∂2τ

(k)
εp

∂s̃2
and

∂2τ
(k)
εp

∂x3∂s̃
are all bounded in H−1(Ω1,a), so we deduce that

∂τ
(k)
εp

∂s̃ is

bounded in L2(Ω1,a). Note that τ
(k)
εp ,

∂τ
(k)
εp

∂s̃ and
∂τ

(k)
εp

∂x3
are bounded in L2(Ω1,a), hence τ

(k)
εp is

bounded in H1(Ω1,a). Therefore, there exists a subsequence (εp(q))
+∞
q=1 ⊆ (εp) such that

τ (k)εp(q)
⇀ τ (k) weakly in H1(Ω1,a) as q → +∞. (4.20)

From Rellich’s theorem, we moreover know that

τ (k)εp(q)
→ τ (k) strongly in L2(Ω1,a) as q → +∞.

We combine this with (4.15) and (4.19) to see that ∥τ (k)∥L2(Ω1,a) = 1 and we conclude that

τ
(k)
εp(q) converges strongly in L2(Ω1,a) to a non-zero function τ (k). From (4.17) we deduce that
∂τ (k)

∂s̃ = 0, so we have τ (k) = τ (k)(x3). Furthermore, in virtue of the boundedness of µSk (εp),
there exists an even further subsequence (ζr)

+∞
r=1 ⊆ (εp(q)) and a constant µ̃Sk such that

lim
r→+∞

µSk (ζr) = µ̃Sk .

We deduce the limit equation for the stretching mode. To simplify notation, we define ϕ
(k)
ε ,

Φ
(k)
ε , Φ

(k)
ε by the following relations.

ϕ(k)ε =
1

εs̃
χ̃(k)
ε ,

Φ(k)
ε = s̃

∂ϕ
(k)
ε

∂s̃
+ 2ϕ(k)ε +

∂τ
(k)
ε

∂x3
, (4.21)

Ψ(k)
ε = εs̃

∂ϕ
(k)
ε

∂x3
+

1

ε

∂τ
(k)
ε

∂s̃
.

From (4.16)-(4.19), we note that ϕ
(k)
ζr

= O(1), Φ
(k)
ζr

= O(1) and Ψ
(k)
ζr

= O(1) in L2(Ω1,a)

as r → +∞. We write ϕ(k), Φ(k), Ψ(k) their respective (weak-L2(Ω1,a)) limit. The weak
formulation is then written as follows.∫

Ω1,a

{
λ1Φ

(k)
ε

(
1
ε s̃

∂ψ
∂s̃ + 2

εψ + ∂φ
∂x3

)
+2λ2

(
∂τ

(k)
ε

∂x3
∂φ
∂x3

+ 1
2Ψ

(k)
ε

(
s̃ ∂ψ∂x3 +

1
ε
∂φ
∂s̃

)
+ 1
ε

(
s̃∂ϕ

(k)
ε
∂s̃ +ϕ

(k)
ε

)(
s̃∂ψ∂s̃ + ψ

)
+ 1

εϕ
(k)
ε ψ

)}
s̃ds̃dx3

=µSk (ε)

∫
Ω1,a

(
s̃2εϕ(k)ε ψ + τ (k)ε φ

)
s̃ds̃dx3, (4.22)

where ψ,φ ∈W1,a are test functions. We put ε = ζr in (4.22). We let ψ = 0 and (4.22) becomes∫
Ω1,a

{
λ1Φ

(k)
ζr

∂φ

∂x3
+ 2λ2

∂τ (k)ζr

∂x3

∂φ

∂x3
+

1

2
Ψ

(k)
ζr

1

ζr

∂φ

∂s̃

}s̃ds̃dx3 = µSk (ζr)

∫
Ω1,a

τ
(k)
ζr
φs̃ds̃dx3.
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We let φ = φ(x3) and take the limit r → +∞. Recall that ∂τ (k)

∂s̃ = 0 and µSk (ζr) → µ̃Sk . We
obtain ∫

Ω1,a

(
λ1Φ

(k) dφ

dx3
+ 2λ2

dτ (k)

dx3

dφ

dx3

)
s̃ds̃dx3 = µ̃Sk

∫
Ω1,a

τ (k)φs̃ds̃dx3.

Using the definition of Φ
(k)
ε , we know that Φ(k) = s̃∂ϕ

(k)

∂s̃ + 2ϕ(k) + dτ (k)

dx3
. We substitute this

expression in the previous equation and we get∫
Ω1,a

(
λ1

(
s̃

(
s̃
∂ϕ(k)

∂s̃
+ 2ϕ(k) +

dτ

dx3

)
dφ

dx3

)
+ 2λ2s̃

dτ (k)

dx3

dφ

dx3

)
ds̃dx3 = µ̃Sk

∫
Ω1,a

τ (k)φs̃ds̃dx3.

We integrate respect to s̃ to see∫ l

0

(
λ1a(x3)

2ϕ(k)(a(x3), x3) + (λ1 + 2λ2)
a(x3)

2

2

dτ (k)

dx3

)
dφ

dx3
dx3 = µ̃Sk

∫ l

0

a(x3)
2

2
τ (k)φdx3.

(4.23)

We go back to equation (4.22), and we put φ = 0 and ψ = ζrη so it becomes

∫
Ω1,a

{
λ1Φ

(k)
ζr

(
s̃
∂η

∂s̃
+ 2η

)
+ 2λ2

ζr
2
Ψ

(k)
ζr

∂η

∂x3
+

s̃∂ϕ(k)ζr

∂s̃
+ ϕ

(k)
ζr

(s̃∂η
∂s̃

+ η

)
+ ϕ

(k)
ζr
η

}s̃ds̃dx3
= µ̃Sk (ζr)

∫
Ω1,a

s̃2ζ2rϕ
(k)
ζr
ηs̃ds̃dx3.

We put η = η(x3). Then the previous equation becomes

∫
Ω1,a

{
λ1Φ

(k)
ζr

· 2η + 2λ2

ζr
2
Ψ

(k)
ζr

∂η

∂x3
+

s̃∂ϕ(k)ζr

∂s̃
+ ϕ

(k)
ζr

 η + ϕ
(k)
ζr
η

}s̃ds̃dx3
= µSk (ζr)

∫
Ω1,a

s̃2ζ2rϕ
(k)
ζr
ηs̃dsdx3.

We take the limit r → +∞ and we see∫
Ω1,a

(
2λ1Φ

(k)ηs̃+ 2λ2

(
s̃
∂ϕ(k)

∂s̃
+ 2ϕ(k)

)
ηs̃

)
ds̃dx3 = 0,∫

Ω1,a

(
2λ1

(
∂

∂s̃

(
s̃2ϕ(k)

)
η + s̃

dτ

dx3
η

)
+ 2λ2

∂

∂s̃

(
s̃2ϕ(k)

)
η

)
ds̃dx3 = 0,

∫
Ω1,a

(
(2λ1 + 2λ2)

∂

∂s̃

(
s̃2ϕ(k)

)
+ 2λ1s̃

dτ (k)

dx3

)
η ds̃dx3 = 0.
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We integrate with respect to s̃ and get∫ l

0

(
2(λ1 + λ2)a(x3)

2ϕ(k)(a(x3), x3) + 2λ1
a(x3)

2

2

dτ (k)

dx3

)
η dx3 = 0.

Since η is an arbitrary test function, we deduce

2(λ1 + λ2)a(x3)
2ϕ(k)(a(x3), x3) + λ1a(x3)

2dτ
(k)

dx3
= 0.

We know that a(x3) is a positive function so we obtain the relation

ϕ(k)(a(x3), x3) = −1

2

λ1
λ1 + λ2

dτ (k)

dx3
. (4.24)

We substitute this relation into (4.23) and conclude

Y

∫ l

0
a(x3)

2dτ
(k)

dx3

dφ

dx3
dx3 = µ̃Sk

∫ l

0
a(x3)

2τ (k)φdx3. (4.25)

We recall that Y = λ2(3λ1+λ2)
λ1+λ2

. The test function φ(x3) ∈W1,a satisfies φ(0) = φ(l) = 0, so we
use the integration by parts and deduce

−Y
∫ l

0

d

dx3

(
a(x3)

2dτ
(k)

dx3

)
φdx3 = µ̃Sk

∫ l

0
a(x3)

2τ (k)φdx3.

Since φ is an arbitrary test function, we get

−Y d

dx3

(
a(x3)

2dτ
(k)

dx3

)
= µ̃Ska(x3)

2τ (k). (4.26)

Moreover, note that the eigenfunction v
(k)
ε satisfies the Dirichlet conditions v

(k)
ε = 0 on Γ1,ε,a.

Since v
(k)
3,ε = τ

(k)
ε , we have that the limit function τ (k) satisfies τ (k)(0) = τ (k)(l) = 0. We

combine these boundary conditions with (4.26) and conclude that the pair (µ̃Sk , τ
(k)) satisfies

the eigenvalue problem{
−Y d

dx3

(
a(x3)

2 dτ (k)

dx3

)
= µ̃Ska(x3)

2τ (k) (0 < x3 < l),

τ (k)(0) = τ (k)(l) = 0.

Note however, that these eigenvalues {µ̃Sk }
+∞
k=1 might not be all the eigenvalues of the previous

eigenvalue problem, in other words, if we let {µSk }
+∞
k=1 be the set of all eigenvalues of the

eigenvalue problem {
−Y d

dy3

(
a(y3)

2 dτ
dy3

)
= µSka(y3)

2τ (0 < y3 < l),

τ(0) = τ(l) = 0,
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then we proved {µ̃Sk }
+∞
k=1 ⊆ {µSk }

+∞
k=1. Since the sets are discrete, alternatively, we see that for

every k ∈ N, the inequality
µ̃Sk ≥ µSk (4.27)

holds. Moreover, we note that µSk ̸= 0, hence µ̃Sk > 0. In Section 4.4.1 we will prove that the
inequality µ̃Sk ≤ µSk also holds.

Remark 4.3. The fact µ̃Sk > 0 contrasts with the nature of bending eigenvalues. If µk(ε) is
the k-th eigenvalue (without restricting to any mode) of (4.1), then we know from Section
(3) that limε→0 µk(ε) = 0. However if we restrict ourselves to stretching eigenvalues, then
limε→0 µ

S
k (ε) ̸= 0. Therefore, there exists a sequence q(k, ε) → +∞ as ε→ 0 such that

lim
ε→0

µq(k,ε)(ε) = µ̃Sk .

The same statement holds for torsional eigenvalues, as we will see in the next part.

4.3.2 Torsional mode

We repeat a similar procedure for torsional vibrations. Let µTk (ε) be the k-th torsional eigen-

value of the problem (4.1) and let w
(k)
ε = (−x2ρ(k)ε (s, x3), x1ρ

(k)
ε (s, x3), 0) be its associated

eigenfunction. As before, we perform the change of variables s = εs̃ and the weak formulation
of the problem becomes

λ2

∫
Ω1,a

s̃2

(
1

ε2
∂ρ

(k)
ε

∂s̃

∂θ

∂s̃
+
∂ρ

(k)
ε

∂x3

∂θ

∂x3

)
s̃ds̃dx3 = µTk (ε)

∫
Ω1,a

s̃3ρ(k)ε θ ds̃dx3, (4.28)

where θ ∈W1,a is a test function. We fix the norm∫
Ω1,a

s̃3(ρ(k)ε )2ds̃dx3 = 1.

As before, let (εp)
+∞
p=1 be any positive sequence such that εp → as p → +∞. Since µTk (εp) is

bounded, from (4.28) with ε = εp and θ = ρ
(k)
εp , we have that

∂ρ
(k)
εp

∂s̃ = O(εp),
∂ρ

(k)
εp

∂x3
= O(1) in

the L2(Ω1,a) sense. Therefore, since ρ
(k)
εp ,

∂ρ
(k)
εp

∂s̃ and
∂ρ

(k)
εp

∂x3
are bounded in L2(Ω1,a), we have that

ρ
(k)
εp is bounded in H1(Ω1,a). Therefore, there exists a subsequence (εp(q))

+∞
q=1 ⊆ (εp) such that

ρ(k)εp(q)
⇀ ρ(k) weakly in H1(Ω1,a) as q → +∞.

By Rellich’s theorem, we furthermore know that

ρ(k)εp(q)
→ ρ(k) strongly in L2(Ω1,a) as q → +∞.

From the strong convergence and ∥ρ(k)∥L2(Ω1,a) = 1, we have that ρ(k) is a non-zero function.

Note moreover that ∂ρ(k)

∂s̃ = 0 and in particular ρ(k) = ρ(k)(x3). Furthermore, in virtue of
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the boundedness of µTk (εp), there exists an even further subsequence (ζr)
+∞
r=1 ⊆ (εp(q)) and a

constant µ̃Tk such that
lim

r→+∞
µTk (ζr) = µ̃Tk .

We remark that the subsequences (εp(q)) and (ζr) might not be the same as in the stretching
case. However, with abuse of notation, we denote them the same way.

We now deduce the limit equation for the torsional mode. We put ε = ζr, θ = θ(x3) in

(4.28) and take the limit r → +∞. Recall that ∂ρ(k)

∂s̃ = 0 and µTk (ζr) → µ̃Tk . We obtain

λ2

∫
Ω1,a

s̃3
dρ(k)

dx3

dθ

dx3
ds̃dx3 = µ̃Tk

∫
Ω1,a

s̃3ρ(k)θ ds̃dx3,

λ2

∫ l

0

a(x3)
4

4

dρ(k)

dx3

dθ

dx3
dx3 = µ̃Tk

∫ l

0

a(x3)
4

4
ρ(k)θ dx3.

The test function θ(x3) ∈W1,a satisfies θ(0) = θ(l) = 0, so we perform the integration by parts
to see

−λ2
∫ l

0

d

dx3

(
a(x3)

4dρ
(k)

dx3

)
θ dx3 = µ̃Tk

∫ l

0
a(x3)

4ρ(k)θ dx3.

Since θ is an arbitrary test function we deduce

−λ2
d

dx3

(
a(x3)

4dρ
(k)

dx3

)
= µ̃Tk a(x3)

4ρ(k). (4.29)

Moreover, note that the eigenfunction w
(k)
ε satisfies the Dirichlet condition w

(k)
ε = 0 on Γ1,ε,a.

Since (w
(k)
1,ε , w

(k)
2,ε ) = (−x2ρ(k)ε , x1ρ

(k)
ε ), we have that the limit function ρ(k) satisfies ρ(k)(0) =

ρ(k)(l) = 0. We combine these boundary conditions with (4.29) and conclude that the pair
(µ̃Tk , ρ

(k)) satisfies the eigenvalue problem{
−λ2 d

dx3

(
a(x3)

4 dρ(k)

dx3

)
= µ̃Tk a(x3)

4ρ(k) (0 < x3 < l),

ρ(k)(0) = ρ(k)(l) = 0.

Note however, that these eigenvalues {µ̃Tk }
+∞
k=1 might not be all the eigenvalues of the previous

eigenvalue problem, in other words, if we let {µTk }
+∞
k=1 be the set of all eigenvalues of the

eigenvalue problem {
−λ2 d

dy3

(
a(y3)

4 dρ
dy3

)
= µTk a(y3)

4ρ (0 < y3 < l),

ρ(0) = ρ(l) = 0,

then we proved {µ̃Tk }
+∞
k=1 ⊆ {µTk }

+∞
k=1. Since the sets are discrete, alternatively, we see that for

every k ∈ N, the inequality
µ̃Tk ≥ µTk

holds. Moreover, we note that µTk ̸= 0, hence µ̃Tk . In Section 4.4.2 we will prove that the
inequality µ̃Tk ≤ µTk also holds.
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4.4 Upper bound for the limit eigenvalues

From Section 4.2 we know that the problem (4.1) has eigenvalues {µSk (ε)}
+∞
k=1 and {µTk (ε)}

+∞
k=1

associated to stretching and torsional vibrations. We let {µSk }
+∞
k=1 and {µTk }

+∞
k=1 be the set of

eigenvalues of the following eigenvalue problems respectively.{
−Y d

dx3

(
a(x3)

2 dτ
dx3

)
= µSa(x3)

2τ (0 < x3 < l),

τ(0) = τ(l) = 0.{
−λ2 d

dx3

(
a(x3)

4 dρ
dx3

)
= µTa(x3)

4ρ (0 < x3 < l),

ρ(0) = ρ(l) = 0.

We have proved in Section 4.3 that for every sequence (εp)
+∞
p=1 with εp → 0 as p → +∞ there

exists a subsequence (ζr) ⊆ (εp) such that

lim
r→+∞

µSk (ζr) = µ̃Sk , lim
r→+∞

µTk (ζr) = µ̃Tk ,

with {µ̃Sk }
+∞
k=1 ⊆ {µSk }

+∞
k=1 and {µ̃Tk }

+∞
k=1 ⊆ {µTk }

+∞
k=1. As a consequence, we have the inequalities

µ̃Sk ≥ µSk and µ̃Tk ≥ µTk . In this section, our aim is to prove the inequalities µ̃Sk ≤ µSk and
µ̃Tk ≤ µTk . Furthermore, we prove that the previous convergence does not depend on the
sequence (εp).

We perform the change of variables (x1, x2, x3) = (εy1, εy2, y3) and we rewrite in terms of
y = (y1, y2, y3) the Rayleigh quotient introduced in (4.2).

R̃ε,a(U) =
1

∥U∥2
L2(Ω1,a,R3)

×
∫
Ω1,a

{
λ1

(
1

ε
E11(U) +

1

ε
E22(U) + E33(U)

)2

+ 2λ2

 1

ε2

2∑
i,j=1

Eij(U)2 + 2

2∑
i=1

Ei3(U)2 + E33(U)2

}dy
where U = (U1, U2, U3) ∈ W1,a\{0} and for 1 ≤ i, j ≤ 2

Eij(U) =
1

2

(
∂Ui
∂yj

+
∂Uj
∂yi

)
, Ei3(U) =

1

2

(
∂Ui
∂y3

+
1

ε

∂U3

∂yi

)
, E33(U) =

∂U3

∂y3
.

4.4.1 Stretching eigenvalues

We first work with the stretching mode. Consider the eigenvalue problem of the ordinary
differential equation {

−Y d
dy3

(
a(y3)

2 dτ
dy3

)
= µSa(y3)

2τ (0 < y3 < l),

τ(0) = τ(l) = 0.
(4.30)

Let µSk be the k-th eigenvalue of the problem (4.30) and τ (k) its associated eigenfunction. We
recall that for stretching eigenvalues we have µ̃Sk = lim

r→+∞
µSk (ζr).
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We want to show that µ̃Sk ≤ µSk . We multiply the system (4.30) by τ and integrate over the
interval (0, l). Applying the integration by parts we obtain

Y

∫ l

0
a(y3)

2

(
dτ

dy3

)2

dy3 = µS
∫ l

0
a(y3)

2τ2dy3.

Therefore, if τ (k) is the eigenfunction associated to the µSk , we have that

µSk =

Y

∫ l

0
a(y3)

2

(
dτ (k)

dy3

)2

dy3∫ l

0
a(x3)

2
(
τ (k)

)2
dy3

. (4.31)

We try new test functions Θ(y) = Θ = (Θ1,Θ2,Θ3), ϕ(y) = ϕ = (ϕ1, ϕ2, ϕ3) given by

Θi = εϕi (i = 1, 2),
Θ3 = τ + εϕ3,

where the function τ = τ(y3) depends only on y3. We calculate

Eij(Θ) = εEij(ϕ),

Ei3(Θ) =
1

2

(
ε
∂ϕi
∂y3

+
∂ϕ3
∂yi

)
(1 ≤ i, j ≤ 2),

E33(Θ) =
dτ

dy3
+ ε

∂ϕ3
∂y3

.

Knowing this, we compute R̃ε,a(Θ).

R̃ε,a(Θ) =

∫
Ω1,a

λ1(∂ϕ1
∂y1

+
∂ϕ2
∂y2

+
dτ

dy3
+ ε

∂ϕ3
∂y3

)2

+ 2λ2

2∑
i,j=1

Eij(ϕ)
2

 dy∫
Ω1,a

(
ε2ϕ21 + ε2ϕ22 + (τ + εϕ3)

2
)
dy

+

∫
Ω1,a

2λ2

(
2

2∑
i=1

1

4

(
ε
∂ϕi
∂y3

+
∂ϕ3
∂yi

)2

+

(
dτ

dy3
+ ε

∂ϕ3
∂y3

)2
)
dy∫

Ω1,a

(
ε2ϕ21 + ε2ϕ22 + (τ + εϕ3)

2
)
dy

.
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We take the limit ε→ 0 and we see

lim
ε→0

R̃ε,a(Θ) =

∫
Ω1,a

λ1

(
∂ϕ1
∂y1

+
∂ϕ2
∂y2

+
dτ

dy3

)2

dy∫
Ω1,a

τ2dy

+

∫
Ω1,a

2λ2

 2∑
i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2

+

(
dτ

dy3

)2
 dy∫

Ω1,a

τ2dy

. (4.32)

We want to find ϕ = (ϕ1, ϕ2, ϕ3) that minimizes the numerator of (4.32)

MS(ϕ)=

∫
Ω1,a

λ1(∂ϕ1
∂y1

+
∂ϕ2
∂y2

+
dτ

dy3

)2
+ 2λ2

 2∑
i,j=1

Eij(ϕ)
2 +

1

2

2∑
i=1

(
∂ϕ3
∂yi

)2
+

(
dτ

dy3

)2dy.

In order to minimize MS , we put the test function ϕ as follows.

ϕi(y) =

2∑
p=1

β(i)p (y3)yp (i = 1, 2). (4.33)

ϕ3(y) = 0,

Remark 4.4. Note that we could have put the same ϕ as in (3.53). In this case we would obtain

α
(i)
pq = 0 for all 1 ≤ p, q, i ≤ 2, so it makes sense to drop them.

If we substitute the test function ϕ into MS we obtain an expression that can be written

as a polynomial of degree 2 on the variables β
(i)
p for 1 ≤ i, p ≤ 2. Thus, it can be further

rewritten as
∫ l
0

(
βTXβ + Yβ

)
dy3 for a certain matrix valued function X and a certain vector

valued function Y with
β = (β

(1)
1 , β

(1)
2 , β

(2)
1 , β

(2)
2 )T .

Since we want the minimum, we differentiate the expression
∫ l
0

(
βTXβ + Yβ

)
dy3 with respect

to β and solve the linear system 2Xβ + Y = 0 for β. After long but simple calculations we
obtain

β
(1)
1 = −1

2

λ1
λ1 + λ2

dτ

dy3
, β

(2)
2 = −1

2

λ1
λ1 + λ2

dτ

dy3
.

In fact, the matrix X in the system is degenerate and we additionally obtain the condition

β
(2)
1 + β

(1)
2 = 0. It can also be checked that the minimum obtained is always the same, so to

simplify, we put β
(2)
1 = 0 and β

(1)
2 = 0. Therefore, recalling (4.33), we obtain

ϕ1(y) = −1

2

λ1
λ1 + λ2

dτ

dy3
y1,

ϕ2(y) = −1

2

λ1
λ1 + λ2

dτ

dy3
y2, (4.34)

ϕ3(y) = 0.

54



Substituting (4.34) into (4.32) we obtain the minimum

lim
ε→0

R̃ε,a(Θ) =

∫
Ω1,a

λ2(3λ1 + 2λ2)

λ1 + λ2

(
dτ

dy3

)2

dy∫
Ω1,a

τ2dy

. (4.35)

Substituting τ = τ (k) into (4.35) and integrating over the cross-section we have

lim
ε→0

R̃ε,a(Θ) =

Y

∫ l

0
a(y3)

2

(
dτ (k)

dy3

)2

dy3∫ l

0
a(y3)

2
(
τ (k)

)2
dy3

,

which, from (4.31), turns out to be

lim
ε→0

R̃ε,a(Θ) = µSk .

These computations are a motivation of how to choose proper test functions for our next
goal, which is to use the Max-Min method in order to prove the inequality µ̃Sk ≤ µSk . We
consider the eigenfunction τ (k) corresponding to the eigenvalue µSk of problem (4.30). We
choose the functions τ (k) so that ∫

Ω1,a

τ (k)τ (k
′)dy = δ(k, k′), (4.36)

where k, k′ ∈ N and δ is the Kronecker delta. Using the weak formulation of (4.30) we know
that

Y

∫
Ω1,a

dτ (k)

dy3

dτ (k
′)

dy3
dy = µSk δ(k, k

′). (4.37)

Let us consider the test functions

Φ
(n)
i = ε ·

(
−1

2

λ1
λ1 + λ2

dτ (n)

dy3
yi

)
(i = 1, 2),

Φ
(n)
3 = τ (n),

(4.38)

with n ∈ N, so that Φ(n) = (Φ
(n)
1 ,Φ

(n)
2 ,Φ

(n)
3 ) ∈ HS ⊆ W1,a. Choose an arbitrary Z ∈

Hk−1(Ω1,a,R3) and let Z̃ = L.H.
[
Φ(1),Φ(2), . . . ,Φ(k)

]
be the minimal linear space that con-

tains the set {Φ(1),Φ(2), . . . ,Φ(k)}. Note that dim Z̃ = k and that each Φ(n) ∈ W1,a (for all

n ∈ N), so we have that Z̃ ⊆ W1,a. Since dimZ < dim Z̃, we know that there exist a function

Ψ = (Ψ1,Ψ2,Ψ3) ∈ Z̃ ∩ Z⊥ and a vector (c1, . . . , ck) = (c1(ε), . . . , ck(ε)) ∈ Rk\{0} such that

Ψ =

k∑
n=1

cs(ε)Φ
(n).
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Note that since both Z̃ and Z⊥ are subsets of W1,a, we have also that Ψ ∈ W1,a and due the

fact that (c1(ε), . . . , ck(ε)) ∈ Rk\{0} we deduce that Ψ ∈ W1,a\{0}, so we can apply R̃ε,a to
Ψ. We compute

Eii(Ψ) = −ε
k∑

n=1

cn(ε)
1
2

λ1
λ1+λ2

dτ (n)

dy3
, Ei3(Ψ) = ε

1

2

k∑
n=1

cn(ε)
∂Φ̃

(n)
i

∂y3
(1 ≤ i, j ≤ 2),

E12(Ψ) = E21(Ψ) = 0, E33(Ψ) =
k∑

n=1

cn(ε)
dτ (n)

dy3
,

where Φ̃
(n)
i = 1

εΦ
(n)
i = −1

2
λ1

λ1+λ2
dτ (n)

dy3
yi for i = 1, 2. Using these computations, the numerator

of the Rayleigh quotient R̃ε,a(Ψ) is∫
Ω1,a

λ1( k∑
n=1

cn(ε)
λ2

λ1+λ2

dτ (n)

dy3

)2

+ 2λ2

2∑
i=1

(
k∑

n=1

cn(ε)
1
2

λ1
λ1+λ2

dτ (n)

dy3

)2
 dy

+

∫
Ω1,a

2λ2

2
2∑
i=1

1

4

(
ε2

k∑
n=1

cn(ε)
∂Φ

(n)
i

∂y3

)2

+

(
k∑

n=1

cn(ε)
dτ (n)

dy3

)2
 dy

=

k∑
p,q=1

cp(ε)cq(ε)

∫
Ω1,a

Y
dτ (p)

dy3

dτ (q)

dy3
dy + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε) (4.39)

for some functions κ̃(p, q, ε) = O(1) as ε→ 0. Note that these functions κ̃(p, q, ε) do not depend
on the choice of Z. Due to (4.37), it follows that (4.39) becomes

k∑
p,q=1

cp(ε)cq(ε)

∫
Ω1,a

Y
dτ (p)

dy3

dτ (q)

dy3
dy + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

=

k∑
p=1

cp(ε)
2µSp + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε). (4.40)

Note also that the denominator of R̃ε,a(Ψ) satisfies∫
Ω1,a

(
Ψ2

1 +Ψ2
2 +Ψ2

3

)
dy ≥

∫
Ω1,a

Ψ2
3dy =

∫
Ω1,a

(
k∑

n=1

cn(ε)τ
(n)

)2

dy

=

∫
Ω1,a

k∑
p,q=1

cp(ε)cq(ε)τ
(p)τ (q)dy (4.41)

By the homogeneity property of Rayleigh’s quotient we may assume without loss of generality
that

∑k
p=1 cp(ε)

2 = 1. Combining this fact with the orthogonality in (4.36), we get∫
Ω1,a

k∑
p,q=1

cp(ε)cq(ε)τ
(p)τ (q)dy =

k∑
p,q=1

cp(ε)cq(ε)

∫
Ω1,a

τ (p)τ (q)dy =

k∑
p=1

cp(ε)
2 = 1 (4.42)
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Therefore, with (4.41) and (4.42), we deduce that∫
Ω1,a

(
Ψ2

1 +Ψ2
2 +Ψ2

3

)
dy ≥ 1. (4.43)

Using (4.40), the bound (4.43) and the fact that µSk ≤ µSk+1 holds for k ∈ N, we obtain

R̃ε,a(Ψ) ≤

k∑
p=1

cp(ε)
2µSp + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε)

1

≤ µSk

k∑
p=1

cp(ε)
2 + ε2

k∑
p,q=1

cp(ε)cq(ε)κ̃(p, q, ε) ≤ µSk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|. (4.44)

We denote

LSk (ε) = µSk + ε2
k∑

p,q=1

|κ̃(p, q, ε)|.

Note once again that LSk (ε) does not depend on the choice of Z. We know from (4.44) that

inf{R̃ε,a(Φ) | Φ ∈ HS\{0},Φ ⊥ Z in L2(Ω1,a)} ≤ R̃ε,a(Ψ) ≤ LSk (ε).

Since Z ∈ Hk−1(Ω1,a,R3) was arbitrary and LSk (ε) does not depend on the choice of Z, we take
the supremum over Hk−1(Ω1,a,R3), so we obtain the upper estimate

µSk (ε) ≤ LSk (ε).

Taking the limit ε→ 0 and using µSk (ε) → µ̃Sk (for a certain subsequence), we have

µ̃Sk ≤ lim sup
ε→0

µSk (ε) ≤ lim sup
ε→0

LSk (ε) = µSk ,

which agrees to the desired inequality µ̃Sk ≤ µSk (k ∈ N). We combine this fact together with
the inequality (4.27) to conclude that for every k ∈ N,

µ̃Sk = µSk .

We proved lim
r→+∞

µSk (ζr) = µ̃Sk for a certain subsequence (ζr)
+∞
r=1 ⊆ (εp)

+∞
p=1, but note that

we have shown that µ̃Sk = µSk independently of the first chosen sequence (εp)
+∞
p=1. Since this

sequence was arbitrary, we can see that in fact for every k ∈ N we have

lim
ε→0

µSk (ε) = µSk . (4.45)
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4.4.2 Torsional eigenvalues

Similarly, we prove a similar result for the torsional mode. We consider the ordinary differential
equation  −λ2

d

dy3

(
a(x3)

4 dρ

dy3

)
= µTa(x3)

4ρ (0 < y3 < l),

ρ(0) = ρ(l) = 0.
(4.46)

Let µTk be the k-th eigenvalue of the problem (4.46) and ρ(k) its associated eigenfunction. We
repeat a similar process we employed in Section 4.4.1 with some minor changes. In this case
we use the test functions

Φ
(n)
1 = −y2ρ(n),

Φ
(n)
2 = y1ρ

(n),

Φ
(n)
3 = 0,

with n ∈ N (compare these test functions with the ones in (4.38)). Following similar steps we
prove that for every k ∈ N we have

µ̃Tk = µTk

and
lim
ε→0

µTk (ε) = µTk .

4.5 H1 convergence

We now prove a result on the strong convergence in H1(Ω1,a) of stretching and torsional eigen-
functions. We follow the notation in Section 4.3. We define

γ
(k)
0 (ε) =

1

ε

∂χ̃
(k)
ε

∂s̃
+

1

ε

1

s̃
χ̃(k)
ε +

∂τ
(k)
ε

∂x3
,

γ
(k)
1 (ε) =

∂τ
(k)
ε

∂x3
, γ

(k)
2 (ε) =

1√
2

(
∂χ̃

(k)
ε

∂x3
+

1

ε

∂τ
(k)
ε

∂s̃

)
, γ

(k)
3 (ε) =

1

ε

∂χ̃
(k)
ε

∂s̃
,

γ
(k)
4 (ε) =

1

ε

1

s̃
χ̃(k)
ε , γ

(k)
5 (ε) =

1

ε

∂ρ
(k)
ε

∂s̃
, γ

(k)
6 (ε) =

∂ρ
(k)
ε

∂x3
.

From (4.16) and the weak convergence τ
(k)
ε ⇀ τ (k)(x3) in H

1(Ω1,a) (see (4.20)), we know that

γ
(k)
1 (ε) ⇀ dτ (k)

dx3
weakly in L2(Ω1,a). From (4.18), (4.19), the definitions in (4.21) and the

equation (4.24), we see that γ
(k)
3 (ε) ⇀ ϕ(k) = −1

2
λ1

λ1+λ2
dτ (k)

dx3
, γ

(k)
4 (ε) ⇀ ϕ(k) = −1

2
λ1

λ1+λ2
dτ (k)

dx3

and γ
(k)
2 (ε) ⇀ Ψ(k) weakly in L2(Ω1,a). We note that γ

(k)
0 (ε) = γ

(k)
1 (ε) + γ

(k)
3 (ε) + γ

(k)
4 (ε) and
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we write

γ
(k)
0 = − λ2

λ1 + λ2

dτ (k)

dx3
,

γ
(k)
1 =

dτ (k)

dx3
, γ

(k)
2 =

1√
2
Ψ(k), γ

(k)
3 = −1

2

λ1
λ1 + λ2

dτ (k)

dx3

γ
(k)
4 = −1

2

λ1
λ1 + λ2

dτ (k)

dx3
,

so that γ
(k)
i (ε) ⇀ γ

(k)
i weakly in L2(Ω1,a) for i = 0, . . . , 4. We now prove that these limits are

in fact in the strong sense in L2(Ω1,a). We define

Λε =

∫
Ω1,a

(
λ1(γ

(k)
0 (ε)− γ

(k)
0 )2 + 2λ2

4∑
i=1

(γ
(k)
i (ε)− γ

(k)
i )2

)
s̃ds̃dx3. (4.47)

It is clear that Λε ≥ 0. For i = 0, . . . , 4 we have that

∥γ(k)i (ε)− γ
(k)
i ∥2L2(Ω1,a)

≲ Λε (4.48)

by the ellipticity of the operator. We use (4.14) to compute Λε in (4.47).

Λε =µ
S
k (ε)

∫
Ω1,a

((
χ̃(k)
ε

)2
+
(
τ (k)ε

)2)
s̃ds̃dx3

+

∫
Ω1,a

(
λ1

(
(γ

(k)
0 )2 − 2γ

(k)
0 γ

(k)
0 (ε)

)
+ 2λ2

4∑
i=1

(
(γ

(k)
i )2 − 2γ

(k)
i γ

(k)
i (ε)

))
s̃ds̃dx3.

From the weak convergences γ
(k)
i (ε) ⇀ γ

(k)
i in L2(Ω1,a) as ε → 0, we deduce that there exists

a constant Λ ≥ 0 such that limε→0 Λε = Λ. Moreover, we compute Λ and get

Λ = µSk

∫ l

0

a(x3)
2

2

(
τ (k)

)2
dx3 −

∫
Ω1,a

(
λ1(γ

(k)
0 )2 + 2λ2

4∑
i=1

(γ
(k)
i )2

)
s̃ds̃dx3, (4.49)

where we used (4.45). From (4.25) (with φ = τ (k) and the fact that µ̃Sk = µSk ), we see that

µSk

∫ l

0

a(x3)
2

2

(
τ (k)

)2
dx3 = Y

∫ l

0

a(x3)
2

2

(
dτ (k)

dx3

)2

dx3. (4.50)

We compute the latter integral of the equation (4.49).∫
Ω1,a

(
λ1(γ

(k)
0 )2 + 2λ2

4∑
i=1

(γ
(k)
i )2

)
s̃ds̃dx3

=

∫
Ω1,a

(λ1 ( λ2
λ1+λ2

)2
+ 2λ2

(
1 + 2

(
1
2

λ1
λ1+λ2

)2))(dτ (k)

dx3

)2

+ λ2

(
Ψ(k)

)2 s̃ds̃dx3

=

∫
Ω1,a

Y

(
dτ (k)

dx3

)2

s̃ds̃dx3 + λ2

∫
Ω1,a

(
Ψ(k)

)2
s̃ds̃dx3.
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We substitute this computation and (4.50) into (4.49) and we see

Λ = −λ2∥Ψ(k)∥2L2(Ω1,a)
.

However, we know that Λ ≥ 0 and λ2 > 0. Therefore, Λ = 0 and ∥Ψ(k)∥L2(Ω1,a) = 0. Since

Λ = 0, from (4.48) we furthermore obtain that γ
(k)
i (ε) → γ

(k)
i strongly in L2(Ω1,a) as ε→ 0 for

i = 0, . . . , 4. Using a very similar argument as in the proof of the L2(Ω1,a)-convergence of τ
(k)
ε ,

we conclude that
τ (k)ε −→ τ (k) strongly in H1(Ω1,a) as ε→ 0. (4.51)

For stretching eigenfunctions we repeat a similar argument with ρ
(k)
ε . We know that ∂ρ

(k)
ε

∂x3
⇀

dρ(k)

dx3
and 1

ε
∂ρ

(k)
ε
∂s̃ ⇀ ϱ(k) for a certain function ϱ(k) weakly in L2(Ω1,a) as ε → 0. We define

γ
(k)
5 = ϱ(k), γ

(k)
6 = dρ(k)

dx3
and

Λ̂ε = λ2

∫
Ω1,a

((
γ
(k)
5 (ε)− γ

(k)
5

)2
+
(
γ
(k)
6 (ε)− γ

(k)
6

)2)
s̃ds̃dx3.

We take the corresponding limit and compute

Λ̂ = µTk

∫ l

0

a(x3)
4

4

(
ρ(k)

)2
dx3 − λ2

∫ l

0

a(x3)
4

4

(
dρ(k)

dx3

)2

dx3 − λ2

∫
Ω1,a

(
ϱ(k)

)2
s̃ds̃dx3

= −λ2
∥∥∥ϱ(k)∥∥∥2

L2(Ω1,a)
.

Therefore, Λ̂ = 0, γ
(k)
i (ε) → γ

(k)
i strongly in L2(Ω1,a) for i = 5, 6 and

ρ(k)ε −→ ρ(k) strongly in H1(Ω1,a) as ε→ 0. (4.52)

Recall that torsional eigenfunctions are written as w
(k)
ε (s, x3) = (−x2ρ(k)ε , x1ρ

(k)
ε , 0). If

we write w̃
(k)
ε (s̃, x3) = w

(k)
ε (εs̃, x3), from (4.52), we deduce that w̃

(k)
ε converges strongly in

H1(Ω1,a,R3). Let consider stretching eigenfunctions v
(k)
ε (s, x3) = (x1χ

(k)
ε , x2χ

(k)
ε , τ

(k)
ε ). If we

write ṽ
(k)
ε (s̃, x3) = v

(k)
ε (εs̃, x3), from (4.51) we see that ṽ

(k)
3,ε converges strongly in H1(Ω1,a).

However, we do not have information about the strong convergence of χ
(k)
ε (or χ̃

(k)
ε ) inH1(Ω1,a),

so we cannot claim the same convergence result for the components ṽ
(k)
1,ε and ṽ

(k)
2,ε . This finishes

the proof of Theorem 4.1.

We conjecture that χ̃
(k)
ε also converges strongly in H1(Ω1,a) in general. In Section 4.6 we

present a proof of this conjecture under some assumptions.

4.6 Korn’s inequality for torsional and stretching modes

In the previous sections we have proved all items of Theorem 4.1. We now further discuss
some topics about the convergence of the eigenfunctions. In Section 2 we introduced a Korn
inequality. There are several versions of Korn’s inequality specific for each situation. In order to
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prove the strong convergence of stretching eigenfunctions of (4.1), we may use a Korn inequality
designed specifically for torsional and stretching vibrations. Our next goal is to prove a Korn
inequality that works for these kind of high-frequency modes. Let vε = (v1,ε, v2,ε, v3,ε) ∈ Wε,a

be such that

v1,ε = −x2ρε(s, x3) + x1χε(s, x3),

v2,ε = x1ρε(s, x3) + x2χε(s, x3),

v3,ε = τε(s, x3).

For commodity, we write sχε = χ̃ε and we do the change of variables s = εs̃. Moreover, set
γε(vε) = (γε1(vε), . . . , γ

ε
6(vε), where

γε1(vε) =
∂τε
∂x3

, γε2(vε) =
∂χ̃ε
∂x3

+
1

ε

∂τε
∂s̃

, γε3(vε) =
1

ε

∂χ̃ε
∂s̃

,

γε4(vε) =
1

ε

1

s̃
χ̃ε, γε5(vε) =

1

ε

∂ρε
∂s̃

, γε6(vε) =
∂ρε
∂x3

.

These are the terms that appear in Rayleigh’s quotient (4.14) and (4.28) (with θ = ρ
(k)
ε ).

Proposition 4.5. Assume∥∥∥∥∂χ̃ε∂x3

∥∥∥∥
H− 1

2 (Γ2,1,a)

−→ 0 as ε −→ 0. (4.53)

Then there exists a constant C > 0 such that

∥vε∥H1(Ω1,a,R3) ≤ C∥γε(vε)∥L2(Ω1,a,R6).

Remark 4.6. Let a(x3) = c be a constant function and we assume slip conditions on the
boundary Γ2,ε,a, that is, u · n = 0 and (e(u) · n) × n = 0 on Γ2,ε,a. In this case assumption
(4.53) is satisfied. We conjecture that this assumption should hold in general.

Remark 4.7. By the characterization of the eigenfunctions in (4.8), we note that assumption
(4.53) is not necessary for Korn’s inequality for the torsional mode.

Proof of Proposition 4.5. The proof is divided in three steps.
Step 1: We assume the contrary.
Let us assume that for all C, ε0 > 0 there exist 0 < ε(C, ε0) < ε0 and vC,ε0 ∈ W1,a such

that
∥vC,ε0∥H1(Ω1,a,R3) > C∥γε(vC,ε0)∥L2(Ω1,a,R6).

The functions vC,ε0 can be chosen with norm equal to one. For a special choice C = m, ε0 =
1
m ,

m ∈ N it follows that there exist εm with 0 < εm ≤ 1
m and vεm ∈ W1,a with ∥vεm∥H1(Ω1,a,R3) = 1

such that

∥γεm(vεm)∥L2(Ω1,a,R6) <
1

m
.
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From the boundedness of vεm in H1(Ω1,a,R3), it follows that there exist a subsequence denoted
by vεn ∈ W1,a and a function v with ∥v∥H1(Ω1,a)3 = 1 such that

vεn ⇀ v weakly in H1(Ω1,a,R3), (4.54)

γεn(vεn) → 0 strongly in L2(Ω1,a,R6), (4.55)

when εn → 0.
Step 2: Strong convergence of vεn in H1(Ω1,a,R3)
We want to now prove that in fact vεn converges strongly in H1(Ω1,a,R3). From (4.54) and

(4.55) for γε5(vε), γ
ε
6(vε) we see that ρε,

∂ρε
∂x3

and ∂ρε
∂s̃ all converge strongly in L2(Ω1,a) so we

conclude that ρε converges strongly to a function ρ in H1(Ω1,a).
We prove the strong convergence of τε. We compute

∂γε2(vε)

∂s̃
− ε

∂γε3(vε)

∂x3
=

∂2χ̃ε
∂s̃∂x3

+
1

ε

∂2τε
∂s̃2

− ε
1

ε

∂2χ̃ε
∂s̃∂x3

=
1

ε

∂2τε
∂s̃2

.

We see that ∂2τε
∂s̃2

converges strongly in H−1(Ω1,a). From (4.54) for v3,ε and (4.55) for γε1(vε)

we see that ∂2τε
∂s̃2

, ∂2τε
∂x3∂s̃

and ∂τε
∂s̃ all converge strongly in H−1(Ω1,a). Therefore ∂τε

∂s̃ converges

strongly in L2(Ω1,a). Finally, combining this with (4.54) for v3,ε and (4.55) for γε1(vε) we deduce
that τε converges strongly to a function τ in H1(Ω1,a).

To see the convergence of χ̃ε we do the following.∫
Ω1,a

(
∂χ̃ε
∂x3

+
1

ε

∂τε
∂s̃

)
∂χ̃ε
∂x3

s̃ds̃dx3 =

∥∥∥∥∂χ̃ε∂x3

∥∥∥∥2
L2(Ω1,a)

+

∫
Ω1,a

1

ε

∂τε
∂s̃

∂χ̃ε
∂x3

s̃ds̃dx3.

We want to prove that the L2(Ω1,a) norm of ∂χ̃ε

∂x3
tends to 0. We rearrange the previous equation

and get ∥∥∥∥∂χ̃ε∂x3

∥∥∥∥2
L2(Ω1,a)

= −
∫
Ω1,a

1

ε

∂τε
∂s̃

∂χ̃ε
∂x3

s̃ds̃dx3 +

∫
Ω1,a

(
∂χ̃ε
∂x3

+
1

ε

∂τε
∂s̃

)
∂χ̃ε
∂x3

s̃ds̃dx3.

Using absolute values we estimate∥∥∥∥∂χ̃ε∂x3

∥∥∥∥2
L2(Ω1,a)

≤

∣∣∣∣∣
∫
Ω1,a

1

ε

∂τε
∂s̃

∂χ̃ε
∂x3

s̃ds̃dx3

∣∣∣∣∣+
∣∣∣∣∣
∫
Ω1,a

(
∂χ̃ε
∂x3

+
1

ε

∂τε
∂s̃

)
∂χ̃ε
∂x3

s̃ds̃dx3

∣∣∣∣∣ . (4.56)

Note that by (4.55) for γε2(vε) and Cauchy-Schwartz inequality we can estimate∣∣∣∣∣
∫
Ω1,a

(
∂χ̃ε
∂x3

+
1

ε

∂τε
∂s̃

)
∂χ̃ε
∂x3

s̃ds̃dx3

∣∣∣∣∣ ≤
∥∥∥∥∂χ̃ε∂x3

+
1

ε

∂τε
∂s̃

∥∥∥∥
L2(Ω1,a)

∥∥∥∥∂χ̃ε∂x3

∥∥∥∥
L2(Ω1,a)

.

We combine this equation with Young’s inequality, and substitute it into (4.56) to obtain∥∥∥∥∂χ̃ε∂x3

∥∥∥∥2
L2(Ω1,a)

≲
∣∣∣∣∣
∫
Ω1,a

1

ε

∂τε
∂s

∂χ̃ε
∂x3

sdsdx3

∣∣∣∣∣ (4.57)
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We use the integration by parts on the integral of the right hand side of (4.57) and get∣∣∣∣∣
∫
Ω1,a

1

ε

∂τε
∂s̃

∂χ̃ε
∂x3

s̃ds̃dx3

∣∣∣∣∣ =
∣∣∣∣∣
∫
∂Ω1,a

1

ε
τε
∂χ̃ε
∂x3

ns̃ dA−
∫
Ω1,a

1

ε
τε
∂

∂s̃

(
s̃
∂χ̃ε
∂x3

)
ds̃dx3

∣∣∣∣∣ .
Note that since τε converges strongly in H1(Ω1,a) we deduce, by the trace theorem, that τε also

converges strongly in H
1
2 (Γ2,1,a). Using assumption (4.53) we see that the first integral of the

right-hand side of the previous equation converges to 0. We analyze the second integral of the
right-hand side of the previous equation.∣∣∣∣∣

∫
Ω1,a

1

ε
τε
∂

∂s̃

(
s̃
∂χε
∂x3

)
ds̃dx3

∣∣∣∣∣ =
∣∣∣∣∣
∫
Ω1,a

(
1

ε
τε
∂2χ̃ε
∂s̃∂x3

s̃+
1

ε
τε
∂χ̃ε
∂x3

)
ds̃dx3

∣∣∣∣∣ (4.58)

Note that τε converges strongly in H1(Ω1,a) and ∂2χ̃ε

∂s̃∂x3
converges strongly to 0 in H−1(Ω1,a),

so that ∫
Ω1,a

1

ε
τε
∂2χ̃ε
∂s̃∂x3

s̃ds̃dx3 −→ 0 as ε→ 0. (4.59)

On the other hand we apply integration by parts to the second integral of the right-hand side
of (4.58) to see∫

Ω1,a

1

ε
τε
∂χ̃ε
∂x3

dsdx3 =

∫
∂Ω1,a

1

ε
τεχ̃εnx3dA−

∫
Ω1,a

1

ε

∂τε
∂x3

χ̃εdsdx3. (4.60)

By a similar argument as before, since τε converges strongly in H1(Ω1,a), it can be seen by the
trace theorem that τε converges strongly in L2(Γ2,1,a). It remains to see that 1

ε χ̃ε converges to
0 in the L2(Γ2,1,a) sense. Let δ > 0 and let ι(s̃) be a smooth function in (0,+∞) with

ι(s̃) =

{
1 if s̃ > 2δ

3 ,

0 if 0 ≤ s̃ ≤ δ
3 .

We define ˜̃χε(s̃, x3) = ι(s̃, x3)χ̃ε. It is clear that ˜̃χε and ∂ ˜̃χε
∂s̃ converge strongly to 0 in L2(Ω1,a)

as ε→ 0, and ˜̃χε(a(x3), x3) = χ̃ε(a(x3), x3). We compute∥∥∥∥1ε ˜̃χε
∥∥∥∥2
L2(Γ2,1,a)

= 2π

∫ l

0

∣∣∣∣1ε ˜̃χε(a(x3), x3)
∣∣∣∣2√1 + a′(x3)2dx3. (4.61)

On the other hand∣∣∣∣1ε ˜̃χε(a(x3), x3)
∣∣∣∣2 ≤ (a(x3)− δ

3

)∫ a(x3)

δ
3

∣∣∣∣∣1ε ∂ ˜̃χε∂s̃ (s̃, x3)

∣∣∣∣∣
2

ds̃ ≲
∫ a(x3)

δ
3

∣∣∣∣∣1ε ∂ ˜̃χε∂s̃ (s̃, x3)

∣∣∣∣∣
2

s̃
1
δ
3

ds̃.

Substituting this into (4.61), we obtain∥∥∥∥1ε ˜̃χε
∥∥∥∥2
L2(Γ2,1,a)

≲
∫ l

0

∫ a(x3)

δ
3

∣∣∣∣∣1ε ∂ ˜̃χε∂s̃ (s̃, x3)

∣∣∣∣∣
2

s̃ds̃dx3 =

∥∥∥∥∥1ε ∂ ˜̃χε∂s̃
∥∥∥∥∥
2

L2(Ω1,a)

−→ 0
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as ε → 0 since 1
ε
∂ ˜̃χε
∂s̃ → 0 strongly in L2(Ω1,a) as ε → 0. Thus 1

ε
˜̃χε → 0 in L2(Γ2,1,a) and due

to ˜̃χε(a(x3), x3) = χ̃ε(a(x3), x3), we get that 1
ε χ̃ε → 0 in L2(Γ2,1,a). Therefore,∫

∂Ω1,a

1

ε
τεχ̃εnx3dA −→ 0 as ε→ 0. (4.62)

We rewrite the second integral of the right-hand side of (4.60) as follows.∫
Ω1,a

1

ε

∂τε
∂x3

χ̃εds̃dx3 =

∫
Ω1,a

(
1

ε

1

s̃
χ̃ε

)
∂τε
∂x3

s̃ds̃dx3

Using the strong convergence in L2(Ω1,a) of
∂τε
∂x3

and γε4(vε) → 0 in L2(Ω1,a) we see that∫
Ω1,a

1

ε

∂τε
∂x3

χ̃εds̃dx3 −→ 0 as ε→ 0. (4.63)

We use (4.62) and (4.63) in (4.60) to see that∫
Ω1,a

1

ε
τε
∂χ̃ε
∂x3

ds̃dx3 −→ 0 as ε→ 0. (4.64)

Combining (4.59) and (4.64) and substituting them into (4.58) we get∣∣∣∣∣
∫
Ω1,a

(
1

ε
τε
∂2χ̃ε
∂s̃∂x3

s̃+
1

ε
τε
∂χ̃ε
∂x3

)
ds̃dx3

∣∣∣∣∣ −→ 0 as ε→ 0,

and finally, using this convergence in (4.57) we conclude that∥∥∥∥ ∂χ̃∂x3
∥∥∥∥2
L2(Ω1,a)

−→ 0 as ε→ 0.

Thus, the L2(Ω1,a) convergence of ∂χ̃
∂x3

is strong. To sum up, χ̃ε,
∂χ̃
∂s̃ and ∂χ̃

∂x3
all converge

strongly in L2(Ω1,a). Therefore, χ̃ε converges to a function χ̃ strongly in H1(Ω1,a).
Step 3: v = 0
From (4.55) for γε5(vε) and γε6(vε) we see that ∂ρ

∂s̃ = ∂ρ
∂x3

= 0. Combining this with the
Dirichlet boundary conditions ρ(0) = ρ(l) = 0 we conclude that ρ = 0. From (4.55) for γε4(vε)
we clearly have that χ = 0. Finally, combining (4.55) for γε1(vε), γ

ε
2(vε) and χ = 0 we conclude

that τ = 0. Since τ = χ = ρ = 0, we see that v = 0, but at the same time we have that
∥v∥H1(Ω1,a,R3) = 1, so we get a contradiction.

4.7 Generalization to curved rods

In this part we give a conjecture about the stretching and torsional modes on a curved rod
with non-uniform cross-section.

We start presenting the domain Ωε,K, where ε > 0 is a small parameter that corresponds
to the thickness of the elastic curved rod and K correspond to the curve defined by the curved
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rod. We follow similar notations as those in Section 3. Let l > 0 and let B ⊆ R2 be a connected
bounded domain such that the boundary is C3 with m ∈ N connected components. We consider
the sets

S = B × (0, l), s1 = B × {0, l}, s2 = ∂B × (0, l).

Note that ∂S = s1 ∪ s2. Let F : R3 → R3 be a C3-diffeomorphism such that it satisfies the
following properties.

i) F (z) = (F1(z), F2(z), z3) (z = (z1, z2, z3) ∈ S).

ii) Fi(0, 0, z3) = 0 (i = 1, 2, 0 ≤ z3 ≤ l).

iii) The determinant of the Jacobian matrix of F is positive for all z ∈ S.

We define F ε(z) = (εF1(z), εF2(z), z3). With this notation, we consider the following sets in
R3.

Sε = F ε(S), S1,ε = F ε(s1), S2,ε = F ε(s2).

It is easy to see ∂Sε = S1,ε ∪ S2,ε. Moreover, we obtain that S1 = F (S). Let K : [0, l] → R3 be
a generic space curve with curvature κ and torsion (or bicurvature) τ . Let {T ,N ,B} be the
Frenet reference of the curve K, so that T is the tangent vector, N is the normal vector and B
is the binormal vector of the curve K. Define P(y) = K + y1N + y2B. Finally, we set

Ωε,K = P(Sε), Γ1,ε,K = P(S1,ε), Γ2,ε,K = P(S2,ε).

In this subsection we discuss high-frequency eigenvalues of a thin elastic curved rod with
non-uniform cross-section that varies along the rod. We study the following eigenvalue problem.

L[u] + µu = 0 in Ωε,K,
u = 0 on Γ1,ε,K,
σ(u)n = 0 on Γ2,ε,K.

(4.65)

Here n is the unit outward normal vector on ∂Ωε,K. We denote by {mk(ε)}+∞
k=1 the set of

eigenvalues of problem (4.65) and we recall that for any ε > 0 there is an infinite discrete
sequence of positive eigenvalues

0 < mk(ε) ≤ m2(ε) ≤ · · · ≤ mk(ε) ≤ mk+1(ε) ≤ · · · with lim
k→+∞

mk(ε) = +∞

which are arranged in increasing order, counting multiplicities. Tambača [31] gives a result on
the convergence of the eigenvalues mk(ε) in the case of a thin curved rod with simply connected,
constant cross-section and such that its barycenter or “center of mass” is also constant. We
combine the main result in Tambača [31] with the tools and the know-how we give in Section
3, to conclude that for each k ∈ N we have mk(ε) = O(ε2). Thus, we know

lim
k→+∞

mk(ε) = +∞ for each ε > 0,

lim
ε→0

mk(ε) = 0 for each k ∈ N.
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These eigenvalues are low-frequency eigenvalues corresponding to the bending mode. However,
we conjecture that there exist high-frequency eigenvalues corresponding to stretching and tor-
sional vibrations, which do not tend to zero as the thinness gets smaller. These high-frequency
eigenvalues cannot be analyzed when the subindex k is fixed.

In order to state the main conjecture we first introduce several notations. Denote dy′ =
dy1dy2 and define the set Ŝ(y3) to be the cross-section of S1 at y3 ∈ [0, l]. Furthermore, for
1 ≤ i, j ≤ 2, we define the functions

H(y3) =

∫
Ŝ(y3)

1 dy′, Ki(y3) =

∫
Ŝ(y3)

yi dy
′, Aij(y3) =

∫
Ŝ(y3)

yiyj dy
′ (y3 ∈ [0, l])

and write H = H(y3), Ki = Ki(y3), Aij = Aij(y3), and Y = λ2(3λ1+2λ2)
λ1+λ2

. For every y3 ∈ [0, l],

let p ∈ H1(Ŝ(y3)) be the unique solution of the following problem.∫
Ŝ(y3)

((
∂p
∂y1

− y2

)
∂r
∂y1

+
(
∂p
∂y2

+ y1

)
∂r
∂y2

)
dy′ = 0 for every r ∈ H1(Ŝ(y3)),

∫
Ŝ(y3)

p dy′ = 0.

(4.66)

With abuse of notation, we write p = p(y1, y2, y3) as a function of (y1, y2, y3), y = (y1, y2, y3) ∈
S1. We then define

J = J(y3) =

∫
Ŝ(y3)

((
∂p

∂y1
− y2

)2

+

(
∂p

∂y2
+ y1

)2
)
dy′.

Remark 4.8. Assume that we have K1 = K2 = 0 and A12 = A21 = 0. In this case p ≡ 0, so
that

J =

∫
Ŝ(y3)

(y21 + y22) dy
′ = A11 +A22.

With this notation, we state the following conjecture.

Conjecture 4.9. Let {mk(ε)}k∈N be the set of eigenvalues of the eigenvalue problem (4.65).
Then, for every k ∈ N there exists a sequence (q(k, ε))ε>0 with q(k, ε) ∈ N, q(k, ε) < q(k+1, ε)
and q(k, ε) → +∞ as ε→ 0 and a constant Πk > 0 such that

lim
ε→0

mq(k,ε)(ε) = Πk.

Moreover, Πk is the k-th eigenvalue of the spectral problem

(Π, θ, ζ, w1, w2) ∈ (0,+∞)×H1
0 (0, l)

4, (θ, ζ, w1, w2) ̸= (0, 0, 0, 0),∫ l

0

{
Y

[
H

(
dζ

dy3
− κw1

)(
dφ

dy3
− κω1

)

+K2κ

(
θ

(
dφ

dy3
− κω1

)
+ χ

(
dζ

dy3
− κw1

))
+A22κ

2χθ

]
+ λ2J

dθ

dy3

dχ

dy3

}
dy3

= Π

∫ l

0
{H(ζφ+ w1ω1 + w2ω2)−K2(θω1 + χw1) +K1(θω2 + χw2) + (A11 +A22)θχ}dy3

for all (χ, φ, ω1, ω2) ∈ H1
0 (0, l)

4.
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Remark 4.10. Note that the spectral problem does not depend on the torsion τ .

The ideas of the proof of Theorem 4.1, should also be valid for the current case. We remark
where the main differences lie.

First, we perform a change of variable to transform Ωε,K into S1. After the change of
variable, the energy becomes∫

Ωε,K

(λ1(tru)
2 + 2λ2

3∑
i,j=1

eij(u)
2) dx =

∫
S1

(
λ1(Θ

ε
1(v) + Θε

2(v) + Θε
3(v))

2 +
6∑
i=1

Θε
i (v)

2

)
dy,

where v = (v1, v2, v3) = v(y) = u(P(y)) (y ∈ S1) and

Θε
1(v) =

1

(1− εκy2)2

[
∂v1
∂y1

+ τy3

(
∂v1
∂y2

+ ε
∂v2
∂y1

)
− τy2

(
∂v1
∂y3

+ ε
∂v3
∂y1

)
− ετ2y2y3

(
∂v2
∂y3

+
∂v3
∂y2

)
+ ετ2y23

∂v2
∂y2

+ ετ2y2
∂v3
∂y3

+ ε
τκy3 + κ′y2
1− εκy2

v1

+
1

1− εκy2

(
−(1− εκy2)

2κ+ ε(τ ′y3 − τ2y2) + ε2((κ′τ − κτ ′)y2y3 + ε2κτ2(y22 + y23)
)
v2

+
ε

1− εκy2

(
ε(κτ ′ − κ′τ)y22 − τ ′y2 − τ2y3

)
v3

]
,

Θε
2(v) =

1

ε

∂v2
∂y2

,

Θε
3(v) =

1

ε

∂v3
∂y3

,

Θε
4(v) =

1

1− εκy2

[
1

2

(
1

ε

∂v1
∂y2

+
∂v2
∂y1

)
− 1

2
τy2

(
∂v2
∂y3

+ ε
∂v3
∂y2

)
+

1

1− εκy2
κv1 + ε

τκy3
1− εκy2

v2

− 1

1− εκy2
τv3 + τy3

∂v2
∂y2

]
,

Θε
5(v) =

1

1− εκy2

[
1

2

(
1

ε

∂v1
∂y3

+
∂v3
∂y1

)
+

1

2
τy3

(
∂v2
∂y3

+
∂v3
∂y2

)
− τy2

∂v3
∂y3

+ τv2

]
,

Θε
6(v) =

1

ε

(
∂v2
∂y3

+
∂v3
∂y2

)
.

As in Section 4.2, we need a candidate to torsional or stretching eigenfunction. In this
case, since we do not have axial symmetry and we have influence from the curvature κ and the
torsion τ , it is difficult to construct a candidate on Ωε,K before taking the limit, even though
we can predict the behavior as ε→ 0.

Due to the complexity of the weak form, the manipulation of Korn’s inequality will also be
complicated.

Finally, when searching for an upper bound as in Section 3.5 and Section 4.4, we have to
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minimize the operator

MK(ϕ)=

∫
S1

{
λ1

(
∂ϕ1
∂y1

+
∂ϕ2
∂y2

+
dζ

dy3
− (−θy2 + w1)κ

)2

+ 2λ2

[
2∑

i,j=1

Eij(ϕ)
2

+ 2

(
1

2

∂ϕ3
∂y1

+
1

2

(
− dθ

dy3
y2 +

dw1

dy3

)
+ ζκ− (θy1 + w2)τ

)2
+ 2

(
1

2

∂ϕ3
∂y2

+
1

2

(
− dθ

dy3
y1 +

dw2

dy3

)
+ (−θy2 + w1)τ

)2
+

(
dζ

dy3
− (−θy2 + w1)κ

)2 ]}
dy,

(4.67)

where ϕ = (ϕ1, ϕ2, ϕ3) is a test function. In order to minimize MK, we have to be careful.
Note that in (4.67) there are no cross-terms involving (ϕ1, ϕ2) and ϕ3 so we can deal with them
separately. We put

ϕi(y) =
2∑

p,q=1

α(i)
pq (y3)ypyq +

2∑
p=1

β(i)p (y3)yp.

Here α
(i)
12 = α

(i)
21 for i = 1, 2. Analogously, but following similar steps as in Section 3.5, we

deduce

α
(1)
11 = 0, α

(1)
12 = −1

4

λ1
λ1 + λ2

θ, α
(1)
22 = 0,

α
(2)
11 =

1

4

λ1
λ1 + λ2

θ, α
(2)
12 = 0, α

(2)
22 = −1

4

λ1
λ1 + λ2

θ,

β
(1)
1 = −1

2

λ1
λ1 + λ2

(
dζ

dy3
− w1κ

)
, β

(2)
2 = −1

2

λ1
λ1 + λ2

(
dζ

dy3
− w1κ

)
, β

(2)
1 = β

(1)
2 = 0.

We define

M̃K(ϕ3)=

∫
S1

2λ2

[
2

(
1

2

∂ϕ3
∂y1

+
1

2

(
− dθ

dy3
y2 +

dw1

dy3

)
+ ζκ− (θy1 + w2)τ

)2
+ 2

(
1

2

∂ϕ3
∂y2

+
1

2

(
− dθ

dy3
y1 +

dw2

dy3

)
+ (−θy2 + w1)τ

)2 ]
dy. (4.68)

Note that in contrast with (3.53) and (4.33), ϕ3 = 0 does not minimize M̃K. In this case, let
ϕ3 be a solution of

∂ϕ3
∂y1

= 2

(
−1

2

dw1

dy3
− ζκ+ w2τ + θτy1 +

1

2

dθ

dy3

∂p

∂y1

)
,

∂ϕ3
∂y2

= 2

(
−1

2

dw2

dy3
− w1τ + θτy2 +

1

2

dθ

dy3

∂p

∂y1

)
,
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where p is defined as in (4.66), so that

M̃K(ϕ3) =

∫
S1

((
1

2

dθ

dy3

(
∂p

∂y1
− y2

))2

+

(
1

2

dθ

dy3

(
∂p

∂y2
+ y1

))2
)
dy. (4.69)

Then ϕ3 minimizes M̃K. Indeed, let ψ
∗ be another function so that we have ψ∗ = ϕ3+ψ (with

ψ = −ϕ3 + ψ∗). Using the properties of p in (4.66) and (4.69), we compute

M̃K(ψ
∗) =

∫ l

0

∫
Ŝ(y3)

((
1

2

dθ

dy3

(
∂p

∂y1
− y2

)
+
∂ψ

∂y1

)2

+

(
1

2

dθ

dy3

(
∂p

∂y2
+ y1

)
+
∂ψ

∂y2

)2
)
dy

=M̃K(ϕ3) +

∫ l

0

∫
Ŝ(y3)

((
∂ψ

∂y1

)2

+

(
∂ψ

∂y2

)2
)
dy ≥ M̃K(ϕ3).

Therefore, ϕ minimizes the operator MK.
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A Appendix

In this appendix we give the proofs of Lemma 3.5 and Lemma 3.6 and some additional facts
which we used before in the proof of the main results.

Proof of Lemma 3.5. a) Let ϕ, ψ ∈ C+∞
0 (R) such that

∫
R ψ(t)dt = 1 and

∫
R ϕ(t)dt = 1. For

any Φ ∈ C+∞
0 (R3) with supp(Φ) ⊆ F (S), we construct h1 such that

⟨h1,Φ⟩ =
(
α2, Φ̂

)
L2(F (S))

−
(
α1,

∫
R

̂̂
Φ(s, y2, y3)ds ϕ(y1)

)
L2(F (S))

where

Φ̂(y) =

∫ y1

−∞

(
Φ(t, y2, y3)−

(∫
R
Φ(s, y2, y3)ds

)
ϕ(t)

)
dt,

̂̂
Φ(y) =

∫ y2

−∞

(
Φ(y1, τ, y3)−

(∫
R
Φ(y1, t, y3)dt

)
ψ(τ)

)
dτ.

Note ⟨h1, ·⟩ denotes the linear functional on C+∞
0 (F (S)). With these definitions, the following

holds.

∂̂Φ

∂y1
= Φ(y),

̂̂
∂Φ

∂y1
= 0,

̂̂
∂Φ

∂y2
= Φ(y).

Using these facts and combining it with property (3.26), we can see after some computations
that 〈

h1,
∂Φ

∂y1

〉
= (α2,Φ)L2(F (S)) and

〈
h1,

∂Φ

∂y2

〉
= − (α1,Φ)L2(F (S))

which proves ∂h1
∂y2

= α1 and ∂h1
∂y1

= −α2 in the distribution sense. Moreover, it can also be

shown that |⟨h1,Φ⟩| ≤ C∥Φ∥L2(F (S)) for some constant C > 0. Using that C+∞
0 (F (S)) is dense

in L2(F (S)) and Riesz’s Theorem we deduce that h1 ∈ L2(F (S)). Furthermore, since ∂h1
∂y1

, ∂h1∂y2

belong to L2(F (S)), we can take values on the boundary and h1|∂F (S)
∈ L2(∂F (S)). Similar

arguments can be done for h2. This proves item a) of the lemma.
b) We change variables according to (3.1) and work with z in S. Before beginning with

the proof of this item we introduce some notation. Recall that B was an arbitrary connected
bounded domain in R2 and that s2 = ∂B × (0, l). Write ∂B = b1 ∪ · · · ∪ bm where bi are its
connected components. With this notation, for i = 1, . . . ,m we define ςi = bi × (0, l) so that
s2 = ς1 ∪ · · · ∪ ςm. We parametrize the boundary ∂B by the arclength θ and, accordingly, each
bi by θi. Through this notes, n = (n1, n2, n3) will denote the unit outward normal vector on
s2.

Let h̃1(z) = h1(F (z)) and let ϕ̃ = ϕ̃(z) ∈ C+∞(S) be a smooth test function such that
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ϕ̃(z1, z2, 0) = ϕ̃(z1, z2, l) = 0, namely, ϕ̃|s(+)
1 ∪s(−)

1

= 0. We compute

∫
s2

h̃1
∂ϕ̃

∂θ
dA =

∫
s2

h̃1

(
∂ϕ̃

∂z1

∂z1
∂θ

+
∂ϕ̃

∂z2

∂z2
∂θ

)
dA =

∫
s2

h̃1

(
−n2

∂ϕ̃

∂z1
+ n1

∂ϕ̃

∂z2

)
dA

=

∫
s2

(
n1h̃1

∂ϕ̃

∂z2
− n2h̃1

∂ϕ̃

∂z1

)
dA

=

∫
S

(
∂

∂z1

(
h̃1
∂ϕ̃

∂z2

)
− ∂

∂z2

(
h̃1
∂ϕ̃

∂z1

))
dz1dz2dz3=

∫
S

(
∂h̃1
∂z1

∂ϕ̃

∂z2
− ∂h̃1
∂z2

∂ϕ̃

∂z1

)
dz.

With the change of variables (y1, y2, y3) = (F1(z), F2(z), z3) and (3.26), with some computations
it can be seen that∫

S

(
∂h̃1
∂z1

∂ϕ̃

∂z2
− ∂h̃1
∂z2

∂ϕ̃

∂z1

)
dz = −

∫
F (S)

(
α2

∂ϕ

∂y2
+ α1

∂ϕ

∂y1

)
dy

where ϕ ∈ C+∞(F (S)). Due to (3.27), we conclude∫
s2

h̃1
∂ϕ̃

∂θ
dA =

m∑
j=1

∫
ςj

h̃1
∂ϕ̃

∂θj
dA = 0. (A.1)

For any i = 1, . . . ,m, choose a test function ϕ̃ such that ϕ̃|ςj ≡ 0 for j ̸= i. Then (A.1) becomes

m∑
j=1

∫
ςj

h̃1
∂ϕ̃

∂θj
dA =

∫
ςi

h̃1
∂ϕ̃

∂θi
dA = 0.

We will now show that h̃1|ςi does not depend on (z1, z2) over ςi for i = 1, . . . ,m. Let

ϕ = ϕ(θ, z3) ∈ C+∞(s2) be a test function such that ϕ(θ, 0) = ϕ(θ, l) = 0. We define ϕ̂ and χ
such that for i = 1, . . . ,m

ϕ̂|ςi = ϕ|ςi −
∫
bi

ϕ(θ̃, z3)dθ̃, χ|ςi =
∫ θi

0
ϕ̂(θ̂, z3)dθ̂.

We compute∫
s2

h̃1ϕ(θ, z3)dA =
m∑
j=1

∫
ςj

h̃1ϕ(θj , z3)dA

=
m∑
j=1

∫
ςj

h̃1

(
ϕ(θ, z3)−

∫
bj

ϕ(θ̃, z3)dθ̃ +

∫
bj

ϕ(θ̃, z3)dθ̃

)
dA

=
m∑
j=1

∫
ςj

h̃1

(
∂χ

∂θj
(θj , z3) +

∫
bj

ϕ(θ̃j , z3)dθ̃

)
dA. (A.2)
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From (A.1), we can easily see that for any j = 1, . . . ,m∫
ςj

h̃1
∂χ

∂θj
(θj , z3)dA = 0.

Therefore, we continue the computations in (A.2) and we obtain

m∑
j=1

∫
ςj

h̃1ϕ(θj , z3)dA =

m∑
j=1

∫
ςj

h̃1(θj , z3)

(∫
bj

ϕ(θ̃j , z3)dθ̃

)
dθdz3

=

m∑
j=1

∫
ςj

ϕ(θ̃, z3)

(∫
bj

h̃1(θj , z3)dθj

)
dθ̃dz3

=

m∑
j=1

∫
ςj

ϕ(θj , z3)

(∫
bj

h̃1(θ̃, z3)dθ̃

)
dθdz3,

where we used Fubini’s Theorem and we renamed the variables θj and θ̃. Sending it all to the
left-hand side we see

m∑
j=1

∫
ςj

(
h̃1(θj , z3)−

∫
bj

h̃1(θ̃, z3)dθ̃

)
ϕ(θj , z3)dθjdz3 = 0.

For any i = 1, . . . ,m, we choose a test function ϕ such that ϕ|ςj ≡ 0 for j ̸= i so that the

previous equation becomes∫
ςi

(
h̃1(θi, z3)−

∫
bi

h̃1(θ̃, z3)dθ̃

)
ϕ(θi, z3)dθidz3 = 0.

Since ϕ|ςi is arbitrary, we conclude that

h̃1|ςi =
∫
bi

h̃1(θ̃, z3)dθ̃,

hence h̃1|ςi does not depend on θi, that is, it does not depend on (z1, z2) along ςi. Therefore,

using the regularity of F , we conclude that h1|gi does not depend on (y1, y2) along gi. All of

the above calculations can be made similarly to prove that h2|gi does not depend on (y1, y2)

along gi.

Proof of Lemma 3.6. Let n = (n1, n2) be the unit outward normal vector on ∂Ω̂(y3) and write
∂Ω̂(y3) = ĝ1(y3) ∪ · · · ∪ ĝm(ym), where ĝj(y3) are the connected components of ∂Ω̂(y3) (j =
1, . . . ,m). We use the divergence theorem for the 2-dimensional bounded domain enclosed by
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ĝj(y3) to see that for every y3 ∈ [0, l] and j = 1, . . . ,m we have∫
ĝj(y3)

nidL = 0, (i = 1, 2) (A.3)∫
ĝj(y3)

y2n1dL = 0,

∫
ĝj(y3)

y1n2dL = 0, (A.4)∫
ĝj(y3)

(y2n2 − y1n1)dL = 0. (A.5)

Throughout the next computations, we will use the fact that for j = 1, . . . ,m we have that
h1|ĝi(y3), h2|ĝi(y3) do not depend on y′ = (y1, y2) along ĝi(y3) (see Lemma 3.5-b)), so we can

write hp|ĝj(y3) = hp|ĝj(y3)(y3) for p = 1, 2. Using the divergence theorem we first calculate∫
Ω̂(y3)

Qdy′ =

∫
Ω̂(y3)

(
∂h1
∂y2

− ∂h2
∂y1

)
dy′ =

∫
∂Ω̂(y3)

(h1n2 − h2n1) dL

=
m∑
j=1

∫
ĝj(y3)

(h1n2 − h2n1) dL

=
m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

n2dL− h2|ĝj(y3)

∫
ĝj(y3)

n1dL

)
= 0.

The last equality is due to (A.3). We have seen that∫
Ω̂(y3)

Qdy′ = 0.

We now proceed to prove that
∫
Ω̂(y3)

Qyidy
′ = 0 for i = 1, 2. For that purpose, from (3.28)

and (3.29), we see that∫
Ω̂(y3)

(
∂h1
∂y1

+
∂h2
∂y2

)
y1dy

′ = 0∫
∂Ω̂(y3)

(y1h2n2 + y1h1n1) dL−
∫
Ω̂(y3)

h1dy
′ = 0

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y1n2dL+ h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
−
∫
Ω̂(y3)

h1dy
′ = 0

m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
−
∫
Ω̂(y3)

h1dy
′ = 0

where we used (A.4) in the last step. Therefore

m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
=

∫
Ω̂(y3)

h1dy
′. (A.6)
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Similarly, again from (3.29), we see∫
Ω̂(y3)

(
∂h1
∂y1

+
∂h2
∂y2

)
y2dy

′ = 0

and we get
m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y2n2dL

)
=

∫
Ω̂(y3)

h2dy
′. (A.7)

Using integration by parts and (A.4) again we compute∫
Ω̂(y3)

Qy1dy
′ =

∫
Ω̂(y3)

(
∂h1
∂z2

− ∂h2
∂z1

)
y1dy

′ (A.8)

=

∫
∂Ω̂(y3)

(y1h1n2 − y1h2n1) dL−
∫
Ω̂(y3)

−h2dy′

=
m∑
j=1

(
h1|ĝj(y3)

∫
ĝj(y3)

y1n2dL− h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′

=

m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′.

Using the relation found in (A.7) and property (A.5), the equation (A.8) becomes

m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

∫
Ω̂(y3)

h2dy
′

=
m∑
j=1

(
−h2|ĝj(y3)

∫
ĝj(y3)

y1n1dL

)
+

m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

y2n2dL

)

=
m∑
j=1

(
h2|ĝj(y3)

∫
ĝj(y3)

(y2n2 − y1n1)dL

)
= 0

and we see that
∫
Ω̂(y3)

Qy1dy
′ = 0. In a similar way, using (A.4), (A.5) and (A.6), we can prove

that
∫
Ω̂(y3)

Qy2dy
′ = 0.

Proposition A.1. Let Ω̃ be a domain in R2 and let V1(y1, y2), V2(y1, y2) ∈ D′(Ω̃). If

∂Vi
∂yj

+
∂Vj
∂yi

= 0 for 1 ≤ i, j ≤ 2

in the distribution sense, then there exist constants C1, C2, C3 ∈ R such that

V1(y1, y2) = −C3y2 + C1, V2(y1, y2) = C3y1 + C2.
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Proof. The idea of the proof is to use a 2-dimensional version of the fact that if for V =
(V1, V2, V3) and 1 ≤ i, j ≤ 3 we have Eij(V ) = 1

2(
∂Vi
∂yj

+
∂Vj
∂yi

) = 0, then V = Oy + C, where

O ∈ M3×3(R) is an anti-symmetric matrix and C ∈ R3 is a constant vector. In addition, this
can be shown using that

∂2Vi
∂yj∂yk

=
∂Eik(V )

∂yj
+
∂Eij(V )

∂yk
−
∂Ejk(V )

∂yi
(1 ≤ i, j, k ≤ 3).

Further details can be seen in Duvaut-Lion [11] and Schwartz [30].

Remark A.2. We present here the explicit forms of the matrix X and the vector Y used in
Section 7 in order to find a minimum.

X =

(
X1 X2

X T
2 X3

)
, Y =

(
Y1

Y2

)
,

where

X1=


(4λ1+8λ2)A11 (4λ1+8λ2)A12 0 0 4λ1A11 4λ1A12

(4λ1+8λ2)A12 4λ2A11+(4λ1+8λ2)A22 4λ2A12 4λ2A11 (4λ1+4λ2)A12 4λ1A22

0 4λ2A12 4λ2A22 4λ2A12 4λ2A22 0
0 4λ2A11 4λ2A12 4λ2A11 4λ2A12 0

4λ1A11 (4λ1+4λ2)A12 4λ2A22 4λ2A12 (4λ1+8λ2)A11+4λ2A22 (4λ1+8λ2)A12

4λ1A12 4λ1A22 0 0 (4λ1+8λ2)A12 (4λ1+8λ2)A22

,

X2 =


(2λ1+4λ2)K1 0 0 2λ1K1

(2λ1+4λ2)K2 2λ2K1 2λ2K1 2λ1K2

0 2λ2K2 2λ2K2 0
0 2λ2K1 2λ2K1 0

2λ1K1 2λ2K2 2λ2K2 (2λ1+4λ2)K1

2λ1K2 0 0 (2λ1+4λ2)K2

, X3 =

(
(λ1+2λ2)H 0 0 λ1H

0 λ2H λ2H 0
0 λ2H λ2H 0

λ1H 0 0 (λ1+2λ2)H

)
,

Y1 =


4λ1γ1
4λ1γ2

0
0

4λ1γ1
4λ1γ2

 , Y2 =

(
2λ1γ0

0
0

2λ1γ0

)
with


γ0 = H dη3

dy3
−K1

d2η1
dy23

−K2
d2η2
dy23

,

γ1 = K1
dη3
dy3

−A11
d2η1
dy23

−A12
d2η2
dy23

,

γ2 = K2
dη3
dy3

−A12
d2η1
dy23

−A22
d2η2
dy23

.

75



B Acknowledgements

First of all, I would like to thank specially my mentor and advisor Prof. Shuichi Jimbo, for
the warm welcome to Japan and for the kind instructions and advices, not only in discussions
about mathematics and physics, but also about health and lifestyle. Thank you very much.

I would like to thank all of my friends I made here in Japan during my stay as a PhD
Student. I had lots of fun having new fresh experiences in Japan and they helped me a lot
during my research, for example, when they kindly listened to my investigation whenever I
had trouble making new progress, even though they are from different fields of mathematics.
Special thanks go to Yūsuke Aikawa, Keisuke Asahara, Yūki Chino, Shū Etō, Satoshi Handa,
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