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1 Introduction

1.1 Background

Elasticity is the property of a body to resist a distorting influence and to return to its original
size and shape when that influence or force is removed. Natural frequency, also known as
eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any
driving or damping force. Resonance is a phenomenon that occurs when the frequency at
which a force is periodically applied is equal or nearly equal to one of the natural frequencies of
the system. This type of force causes the system to oscillate with larger amplitude than forces
of other frequencies. Studies of the characteristic vibrations of elastic bodies are extremely
effective methods of analysis in engineering and physics due to its numerous applications such
as reduction of noise pollution of machines, efficiency of automotive tires, construction of safer
buildings and so on.

We introduce some examples of how eigenfrequencies and building safety are related. The
Tacoma Narrows Bridge was a suspension bridge in the state of Washington, U.S.A. that was
designed to withstand winds of up to 60m/s. However in November 7, 1940 the bridge started
to oscillate violently and eventually collapsed even though the speed of the wind was 19m/s.
The cause was highly debated by experts who concluded that the bridge started vibrating due
to a mixture of resonance and aeroelastic fluttering. Angers Bridge, also called the Basse-
Chain Bridge, was a suspension bridge in France that collapsed in 1850 while a battalion of
French soldiers was marching across it. The pace of the soldiers’ march matched the natural
frequency of the suspension bridge, and as a consequence, the amplitude of the oscillations
started increasing. The structure could not withstand the bending and collapsed, bringing the
number of casualties up to 226. Since then, the military issues orders that troops should walk
ordinarily when crossing a bridge.

After these incidents, winds and other environmental phenomena are well studied and taken
into account before building a new bridge. This is a measure to adjust the natural frequencies
of the bridge so that it does not resonate with other influences.

Resonances can also be detected far from the epicenter of seismic activities. For example,
after the 2007 Niigata Chtetsu Offshore earthquake or the 2011 earthquake off the Pacific coast
of Tohoku, long-periodic mechanical resonances caused by these earthquakes were detected in
the Kanto region of Japan. In general, low-rise and middle-rise buildings as well as buildings
with wide floor space do not have small eigenfrequencies. On the other hand, high-rise build-
ings, skyscrapers and buildings with narrow floor space have small natural frequencies. It is
for this reason that tall and thin buildings are more easily affected by long-periodic seismic
motions and can cause the structure to crumble. Therefore, vibrations must be thoroughly
studied from different fields and point of view. These studies are applied in the safety of
large-scale architectural structures in the following way. For example, they are used to develop
new technologies for seismic base isolation and vibration control. Seismic base isolation, also
called vibration damping, is used to change the value of the eigenfrequencies in order to avoid
mechanical resonance from happening.

From all these examples, it is clear that the control of natural frequencies is crucial during
the whole process of planning and construction of an architectural structure. Not only in archi-



tecture, but also in many fields of engineering, other aspects must be taken into consideration,
such as the gradual change of the eigenfrequencies caused by natural processes like deteriora-
tion over time or changes on the site environment. Moreover, shape also plays an important
roll in order to control the natural frequencies. We give some examples: a particular shape of a
tunnel exit helps reduce the noise pollution it produces after a train passes through it, opening
some holes in an industrial machine can make it more difficult to vibrate against outside influ-
ence and therefore more efficient, achieving an optimal shape for a tire can drastically reduce
a vehicle interior noise, etc. Thus, the study of natural frequencies of all types of structures
and shapes is of much importance in engineering. Moreover, novel contributions with studies
from the point of view of mathematics gives a further advancement of the understanding of
mechanical resonance and eigenfrequencies.

The description of a general shape with mathematical equations is not an easy task and
the more complex the structure is, the harder it is to work with it mathematically. We explain
the motivation of a usual mathematical approach using the case of buildings. Since most of
the interior of a building can be thought as empty space, one can reduce its fundamental shape
to a joint of walls and pillars. These simpler structures can be represented mathematically as
plates and rods. As a first approach, one may assume that the thinness of the plates and rods
is negligible, so that we work with 2-dimensional plates and 1-dimensional rods. However, in
architecture it is well known that the thickness of the plates and rods has an influence on the
eigenfrequences. Therefore a 3-dimensional model has to be considered.

There are physical 3-dimensional models that use partial differential equations to describe
the deformation of an elastic body. We know that in general one cannot explicitly solve the
PDE and have a solution written in terms of elementary functions. Therefore, in engineering
and architecture, although they have explicit equations for the 1-dimensional model, they rely
almost completely on simulations for the 3-dimensional case. However, the partial differential
equation modelling the problem is also interesting from the point of view of mathematics and
important information about the eigenfrequencies can be extracted, which can help to provide
even better simulation methods.

We may think that the basic structure of buildings is made of thin plates and thin rods.
This thinness can be represented by a small parameter. As a mathematical approach, one
wants to study the asymptotic behavior of the solutions and natural frequencies as the thinness
associated to the thin plates and thin rods goes to 0. In the case of the eigenfrequencies, we
perform the spectral analysis of the partial differential equation that arises from the elasticity
problem.

Using mathematical tools, such as asymptotic analysis, variational methods, and so on, we
know that in the particular case of the linearized elasticity model of a homogeneous and isotropic
rod there are several types of natural frequencies, associated to bending (or flexural), torsional
and stretching modes, each with its different asymptotic behavior. In this thesis we analyze
the asymptotic behavior of small eigenvalues and eigenfunctions (associated to bending mode)
of the linearized elasticity eigenvalue problem of a thin rod with non-uniform cross-section (see
Figure 1), as well as the asymptotic behavior of eigenvalues and eigenfunctions (associated to
torsional and stretching modes) of the linearized elasticity eigenvalue problem of a thin rod
with non-uniform symmetric cross-section.



1.2 Previous research

There are many works on such type of spectral problems of singularly deformed domains
in these several decades (cf. Courant-Hilbert [9], Egorov-Kondratiev [13], Maz’ya-Nazarov-
Plamenevskij [26]). Particularly, eigenvalue problems of vibration of thin elastic bodies like
plates and rods are of much importance and interest from PDE theory and engineering point
of view (see for example Antman [1], Ciarlet [6], Cioranescu-Saint Jean Paulin [8], Love [25],
Nazarov [28]).

Ciarlet and Kesevan [7] pioneered ideas on elastic plates that would further be adapted to
the case of thin rods. To name some previous works, Kerdid [18] studied the behavior of small
eigenvalues of the linearized elasticity eigenvalue problem of a thin rod with constant cross-
section. Tambaca [31] gives a result on the convergence of the eigenvalues and eigenfunctions
in the case of a thin curved rod. Both studies consider that the ends of the rod are clamped.
Kerdid [19] and [20] also considered a joint of two rods with one of the ends without clamping.

In other similar works on linear elasticity problems that are related to the present thesis,
Le Dret [21] treat the junction of two rods while Le Dret [22], [23] and [24] deals with folded
plates. Griso ([14] among other works) studies the asymptotic behavior of structures made of
junctions of curved rods, plates and combinations of both types. Irago-Viafio [15] obtained
higher order approximations of flexural eigenvalues of a thin straight rod using an asymptotic
expansion procedure. Irago-Kerdid-Viano [16] studied the case of high-frequency vibrations
related to stretching and torsional modes of thin rods. Nazarov [27], Nazarov-Slutskii [29]
and Buttazzo-Cardone-Nazarov [4], [5] provide an elaborate research on asymptotic expansion
methods for anisotropic and non-homogeneous elastic thin rods and plates. The study of
eigenvalue problems on thin multi-structures for different equations is common and of much
interest in the PDE theory. For example, works like Bunoiu-Cardone-Nazarov [2], [3] deal with
the case of the Poisson equation for junctions of rods and a plate. For an extensive list of
references, see Ciarlet [6].

1.3 Plan of the thesis

The present thesis contains two main results and is organized as follows. In Section 2 we ex-
plain the common mathematical setting of the problems as well as some tools and preliminaries
needed throughout the proofs of the results. The purpose of Section 3 is to give similar results
of the behavior of small eigenvalues associated to the bending mode in more general rods. We
obtain the characterization formula, which is derived from a fourth order ordinary differential
equation system on the one-dimensional limit set of the thin elastic body. We make full use
of the variational characterization of the eigenvalues as well as detailed analysis of the weak
formulation of the eigenfunctions. Previous works considered rods with simply connected, con-
stant cross-section and such that its barycenter or “center of mass” is constant. We remove
these restrictions and we deal with a rod that has non-uniform connected cross-section. Fur-
thermore, we consider the case when both ends of the rod are clamped, and also the case when
only one end is clamped. In Section 4 we give a result for high-frequency vibrations related to
stretching and torsional modes of thin rods with axis-symmetric cross-section. We fully prove
that the limit of this type of eigenfunction is non-zero, which leads to two completely indepen-



dent second order ordinary differential equations, one for each vibration mode, describing the
limit behavior. We provide a proof for the H!-strong convergence and we give the idea of how
to prove a more general result in curved rods. In Section A we give proof to some lemmas and
further details on some computations stated in the main body of the thesis. The results of this
thesis are based on a joint work with professor Shuichi Jimbo.



2 Mathematical settings and preliminaries

Let © C R? be a bounded domain with smooth enough boundary. We want to study the
oscillations of an elastic body with the shape of €.

We denote by u = (u1,u2,ug) : @ — R3 the displacement vector field associated with
the oscillations. Let A1, Aa > 0 be positive real constants corresponding to the mechanical
properties of the elastic body. We define the tensors

1 /0u; Ou;
e(u) = (eij(u)i<ij<s = <2 (835. + a;.)) ’
j i)/ 1<ij<3

o(u) = A tr(e(w)) Ids +2X2e(u),

where tr is the trace of a matrix and Ids is the 3 x 3 identity matrix. e(u) is called the
linearized strain tensor and o(u) is the stress tensor derived from Hooke’s law in the case of a
homogeneous isotropic elastic body (cf. Ciarlet [6]).
With this notation, the operator of the elastic equation is defined as the second order linear
elliptic operator
9
Llu) = divo(u), ie (L[ul)i=)_ o0, (oij(u)) (1 <i<3),

92U L, (2.1)

where o > 0 is the mass density.

We take o = 1 and we assume that the oscillations are periodic of period %’r (w>0). In
this case, we can write the displacement field as u(z,t) = e™v(z). Thus, % = —w?u(x,t).
Putting 1 = w?, the wave equation (2.1) becomes the eigenvalue problem

L[v] + pv = 0.

Let 'y be a subset of the boundary 02 such that its 2 dimensional area is positive and let
Iy = 0Q\I';. Denote n the unit outward normal vector on 92. The main eigenvalue problem
we study is as follows.
Liul|+ pu=0 in Q
u=20 on I'y (2.2)
o(uyn=20 on I'y

It is known (cf. Courant-Hilbert [9], Edmunds-Evans [12], Egorov-Kondratiev [13]) that the
eigenvalues of (2.2) are a sequence of non-negative real numbers without points of accumulation,
that is, the set of eigenvalues counting multiplicities is {,uk}z;’ol satisfying

0<p <po <+ <pp<...with lim pp=+cc. (2.3)
k—+o00

We introduce some common tools we need in order to prove the main results. We start
with Korn’s inequality (cf. Ciarlet [6], Dautray-Lions [10]).



Proposition 2.1 (Korn’s inequality). Let Q be a bounded domain in R®. IfT'y is a measurable
subset of the boundary 02 such that its 2 dimensional area is positive, then there exists a
constant C > 0 such that

3 2
[vllgroprs) < C Z Hez‘j(U)”%?(Q)
ij=1
for any v € H'(Q,R3) with v, =0.
1
In order to characterize the eigenvalues of (2.2), we introduce the Rayleigh quotient.

Definition 2.2. Let ¢,v € H'(2,R3)\{0}. We define the bilinear form

3
Blovil = [ [ Adivo dive+ 20 3 ey(0)e () | da
ij=1
and the Rayleigh quotient by
Blg, ¢]
R(p) = —5——.
) = oo

It is easy to see that the Rayleigh quotient satisfies R(cg) = R(¢) for all ¢ > 0 (homogeneity
condition).

Let k € N. We write Hy_1(-,R3) the set of all linear subspaces of dimension k — 1 of
L?(-,R?). We introduce the so-called Maxz-Min principle, which we use to characterize the
eigenvalues of (2.2).

Proposition 2.3 (Max-Min principle). Let W be the function space
W={pc H(QR? | p=0 onT}

and let py, be the k-th eigenvalue of the problem (2.2). Then we have the following characteri-
zation of the eigenvalues.

pe = sup  inf{R(¢) | € W\{0},¢ L X in L*(Q,R?)}. (2.4)
XeHp_1(2,R3)

We introduce some notation. Let f{, f5 be two real functions depending on a parameter
€ > 0. Assume that there exists a constant C' independent of ¢, such that f; < Cf5. Then we
denote this relation by f{ < f5. For a real constant h > 0, we denote f§ = O(g") for h > 0 in
a normed vector space X, whenever

lim sup

1fllx
e—0 eh

is finite.
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3 Bending eigenfrequencies of a thin elastic rod with
non-uniform cross-section

In this section we discuss the low-frequency eigenvalues of a thin elastic rod with non-uniform
cross-section. We prepare the mathematical setting of our problem. We start presenting the
domain €. = 2, where € > 0 is a small parameter corresponding to the thickness of the elastic
rod. Let [ > 0 and let B C R? be a connected bounded domain such that the boundary is C3
with m € N connected components. We consider the sets

S =B x(0,1), s =B x {0},
s =B x {1}, 3= 0B x (0,1).

Note that 95 = ng) U sgﬂ U sg. Let F': R? — R3 be a C3-diffeomorphism which satisfies the

following properties.
1) F(2) = (F1(2), F2(2),23) (2= (21,22,23) € 5).
ii) F3(0,0,2z3) =0 (i=1,2, 0<z3<I).
iii) The determinant of the Jacobian matrix of F' is positive for all z € S.
We define F¢(z) = (eFi1(z),eF2(z), z3). With this notation, we consider the following sets

in R3.
Q.= F(S), T =F ("), T =F(s{"), Tae=F(s2).

Figure 1: Example of {2

We can think of €. as a slightly smoothly deformed thin cylinder (see Figure 1). It is easy
to see 00 = Fg_a) U Fg? UT'y .. Moreover, we obtain {2y, Fg_l), I‘ﬁ), Iy 1 just by putting e = 1
in the previous definition. Note that Q1 = F (9). 7 7

Let ¢ = (z1,22,23), y = (y1,92,y3) and z = (z1, 22, z3) be the coordinates in the sets .,

Q1 and S, thus obtaining the relation between the coordinates
(z1, 2, 23) = (€Y1, €¥2,Y3),

(Y1, Y2, 43) = (F1(2), F2(2), 23), (3.1)
(.’El, o, 553) = (6F1(Z), 6F2(Z), 23).

11



We want to study the small eigenvalues (low-frequency oscillations related to bending vi-
brations, also called flexural vibrations) associated with the thin elastic body .. We denote
by u = (u1,uz,u3) : Q. — R3 the displacement vector field associated with the oscillations.

With this notation, the main subject of this section is to study the eigenvalues and eigen-
functions when the parameter € goes to zero of the following eigenvalue problems.

Llu] + pu=0 1in Q.

uw=0 on T ur(? (DD)
ocluyn=0 onI'y .

Liul| + pu=0 1in Q.

u=20 on Fg;) (DN)

on Iy, U I‘g—;)

where n is the unit outward normal vector on 9Q.. The case (DD) corresponds to a thin rod
with both ends clamped while the case (DN), to a thin rod with only one clamped end.

3.1 Main result

In order to state the main results we first introduce several notations.
Denote dy’ = dy1dys and define the set Q(y3) to be the cross-section of ; = F(S) at
y3 € [0,1]. Furthermore, for 1 <14, j < 2, we define the functions

H(y:s):/A 1dy/, K@-(ys):/A yidy', Aij(yi’)):/A yiy;dy (y3 € [0,1])
Q(ys3) Q(y3) Q(y3)

and write Y = %, known as the Young modulus.

We use the fact we presented in the equation (2.3) and adapt it to our thin rods. If we denote
by {ufP (e) 1] and {uPN (€)}25 the eigenvalues of problem (DD) and (DN) respectively, for
any € > ( there are infinite discrete sequences of positive eigenvalues

0<putP(e) <udPle) < - <pP(e) < pfi(e) < -+ with lim P (e) = +oo

k—+o0

DN

0<puNE) <N (Ee) < <N (e) < pp(e) < -+ with kETOONkDN(g) = +00

which are arranged in increasing order, counting multiplicities.
We present the main results of this section.

Theorem 3.1 (Both ends clamped). Let P (¢) be the k-th eigenvalue of problem (DD). Then
the following statements hold for each k € N.

a) uPP(e) = O(?) ase — 0.

b) Moreover, we have the limit
L)

e—0 62

DD
= Ak s

12



where AkDD denotes the k-th eigenvalue of the 4th order ordinary differential operator

( d2771
dr2
d2 AH(T) A12(7‘) —Kl(T) d2 ?71
Vi <A21(T) Ann(7) —K2<T>> dTmJ = AR ) O<r<d)
dns
d d d d dr d
dr (H()dT>:dT <K1(T)d7721—’—K()d77 (0<7<)
m(0) = m(0) = TE(0) =0 (i=12),
m(h) = m(b) = TE@) =0 (=12

Theorem 3.2 (Only one end clamped). Let uPN () be the k-th eigenvalue of problem (DN).

Then the following statements hold for each k € N.
a) uPN(e) = O(e?) as e — 0.

b) Moreover, we have the limit

DN
lim Pk 2(5) — ADN,

e—0 £

where AkDN denotes the k-th eigenvalue of the 4th order ordinary differential operator

d2771
ar?
d? A (1) Apa(r) —Ki(7) d2 - m
Y@ (Azl(T) Aga(T) —K2(T)> ?7722 = AH(T) <772> (0<7 <),
dns
dr 5
L (%) = £ (1SS +rm $E) 0<r<),
m(0) = m(0) = TE(0) = 0 (i=1,2)
dng . d?pi . dn o o
\ E(Z)_ 172 ()= 173 (=0 (i=1,2).

Remark 3.3. There are several works which are closely related to our results, such as Irago-

Viafio [15], Kerdid [19], Tambaca [31].

These works assume that the cross-section is simply

connected and constant, that is, the cross-section does not change along the rod. This translates
to A;j being constants for 1 < 7,5 < 2. In this case, one can assume without loss of generality
that K; = 0 for ¢ = 1,2. The main novelty of Theorem 3.1 and Theorem 3.2 is studying
the influence in the limit equation of A;; and K; for 1 < 4,5 < 2 when they are functions of

13



ys. In addition, we remove the assumption over the simply connectedness of the cross-section.
Moreover, we also see that the boundary conditions of the limit equations are independent
of the shape of the rod. Our method takes full advantage of variational technique by direct
construction of test functions. Hence the proofs are straightforward and comprehensive.

Remark 3.4. Note that if the functions K; = 0 for ¢ = 1,2, then the ordinary differential
equations in Theorem 3.1 and Theorem 3.2 get simpler. Using the corresponding boundary
conditions, the equation

d dns d d*m d?n
— |H(r)— ) =— [ K — + K — 0 l
dr ( (7) dT) dr < 1(7) dr2 + Ka(7) dr? (O<7<

yields 3 = 0, and hence the ODE in Theorem 3.1 and Theorem 3.2 is simplified to

d*m
d? A1 (7) A12(T)> dr? m
y— =AH
a2 <A12(T) Aan()) | 2y @1,
dr2?
with the respective boundary conditions.

The proofs of Theorem 3.1 and Theorem 3.2 are given in Sections 3.2 to 3.5.

3.2 Variational formulation

Recall that = (x1, 2, z3) and y = (y1, y2,ys3) are used as the coordinates in Q. and Q; = F(S),
respectively with the relation given in (3.1). We change the variables to transform €. into F'(5).
We now compute the new expressions of stress and strain tensors in terms of the new variables
in F(S).

We begin to study the problem by variational methods. In order to consider the stress and
strain tensors in terms of y, we introduce the scaling and change of variable

uy = €U1, Ug = €U2, us = E2U3.

We obtain the following expressions of e;;(u).
aui 8Uj 1 1 aul 1 an 1 3U1 an
+ = (== += =z +
890]- al‘l 2 \e 8yj 9 ayz 2 8yj 8yz

8Ui 8U3 1 aul 1 3U3 1 aUZ 8U3 .o
() — _ = - — = <ij<
eis(u) 2 (8:103 + 85%) 2 <8y3 + € 3yi> 82 <8y3 + 8yi) (I1<4j<2)

e3(0) = G = Oy Oy

eij(u) =

[ = DN =

We observe that after the change of variables we just introduced, we rewrote the strain tensor
eij(u) in terms of U = (Uy, Ua, Us). Therefore, for 1 <i,j < 2 we can define

1 /0U; oU.; 1 /0U; oU3 oUs3
Ei;(U) == L) E; = ., E =2,
) =1 ( 5o+ 8%), JV) = & ( o 8%) u(U) = 5

14



Note also that since we have symmetry, i.e. e;j(u) = eji(u) (1 < 4,57 < 3), we also define
Es;(U) = Ei3(U) (i = 1,2). With this notation, we have the relation

eij(u) = EZ(U), ei3(u) = EEig(U) (1 S i,j § 2), 633(u) = €2E33(U). (32)
Furthermore, using (3.2), we proceed to write the divergence in terms of U.

_Ou , Ouz , Ouy
- (3.%1 81‘2 81‘3
= En(U) + Exn(U) + 2Es3(U). (3.3)

div(u) = e11(u) + ea2(u) + es3(u)

Our next step is to rewrite the Rayleigh quotient and to describe the eigenvalues in terms
of y. We distinguish between the (DD) case and the (DN) case.

3.2.1 (DD) case

We adapt Proposition 2.3 to our thin rod as follows. We define the set
W.={pe H'(Q.,R®) | ¢=0onT{) UTV}.

For every ¢ € W. we set B.[¢, 9] and R. analogously to Definition 2.2, that is

3
B.[p, 4] = /Q A(dive)® +2X2 Y eii(¢)? | da
e i,j=1
_ B¢, 9]
Re(9) L~
We change ¢ = ¢(z) = (¢1(2), ¢2(x), #3(2)) into © = @(y) = (P1(y), P2(y), P3(y)) by di(z) =

e®;(y) (i = 1,2), ¢3(v) = e2P3(y) according to the coordinate change = = (cy1,ey2,y3)
described in (3.1). Define now the set

Wi ={®e H\(F(S),R*) | & =0 onT{) UT{)}. (3.4)

)

We want to describe the k-th eigenvalue u2” (g) in terms of the new spaces and functions after
the change of variables. Note that ¢ € W, if and only if & € Wj. Thus, using this fact together
with the relations (3.2) and (3.3), and substituting them into B.[¢, ¢] and R.(¢), for every
® € W, we define

B.[®, ] = /F(S) {)\1 (E11(®) + Egp(®) + 2 Es3(®))”

2 2
+2x [ Y Ey(®)? +222 ) Eig(®)” + ' Ba3 () }e2dy, (3.5)
=1

ij=1
€ - .
/ (27 + 2®3 + ' 03) edy
F(S)

(3.6)

15



Furthermore, for all ®, ¥ € W; we say that ® 1. ¥ if and only if
/ (®1U] + oWy + 2D3W3)dy = 0.
F(S)

Due to this definition, ¢ L + if and only if ® L. W. For every Z € Hy_1(F(S),R3) we define
the set
Zte={®ecW |® L. T foral Ve Z}

which is a closed subspace of W;.
Using the Max-Min principle (Proposition 2.3), after the change of variables, the charac-
terization (2.4) of pPP () can be rewritten as

uPP(e) = sup inf{R.(®) | ® € Wi\{0},® € Z*<}. (3.7)
ZeHr1(F(S),R3)

3.2.2 (DN) case

For the case of the eigenvalues uPV(¢), we can similarly characterize p2 () with

PN (e) = sup inf{R.(®) | ® € W\{0},® € Z+<}
ZeH_1(F(S),R3)

where

Wi = {® e H'(F(S),R®) |[® =0 on I'{})}. (3.8)
3.3 Order of the eigenvalues
3.3.1 (DD) case

We show that PP () = O(g?) as e — 0. In order to do so, we will find an upper bound of the
eigenvalue 2P () using the Max-Min principle and (3.7).
Let us take test functions T() = Y)(y) = (Tgs) (y), Tgs) (y), Tés) (y)) (s € N) as follows:

" dni” " g’
dys dys ’

where {ngs),nés), nés)} N is a linearly independent system satisfying
sE

0 ns e H2((0,1)),n5) € HY((0,1)),
) =) =0 (i=1,2,3),
dnl® dp!®

1O =F-m=0 (=12
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Choose an arbitrary Z € Hy,_1(F(S),R3) and let Z = L H [Y® Y@ . Y®] denote the
minimal linear space that contains the set {x® r@ . r®1 Since each T(s) € Wi (for all
s € N), we have that Z C W,. Since dim Z < dlmZ there exist a function ¥ € Z N Z1< and
a vector (ci,...,c;) = (c1(€),...,cu(e)) € R¥\{0} such that

k
U=> c,(e)T. (3.9)

s=1

Note that since both Z and Z= are subsets of W1, we have also that ¥ € Wi and due the fact
that (c1,...,cx) € R¥\{0} we deduce that ¥ € W;\{0}, so we can apply R. to ¥ (cf. (3.6)).
Using the definition of T(*) we compute

Eij(T) = (3.10)
3'1*(5) aT(S) dn(k) dﬁ(k)

Fig(T® 3 - 1<i,j<2). 11

3( ) ( 8y3 + ayl ng ng 0 ( >7%)> ) (3 )

Now we want to calculate ﬁg(ﬁ/) Using the linearity of the operator E;;, (3.10) and (3.11),
we see that

k k
= a(e)Ey (YD) =0, = c(e)E =0 (1<i,7<2). (3.12)

s=1 s=1

Hence, using (3.12) and the definition in (3.5), we get

Eg[\y, \I/] = /F(S) {)\1 (EH(\I/> + EQQ(\I/) + €2E33(\I/))2

2 2
+ 29 (Z Ei;(0)? +22) " Eig(V) + 54E33(\I/)2) }s2dy
i=1

1,j=1
= / <>\1 (€2E33(\If))2 + 29 (€4E33(\If)2)) €2dy
F(8)
= 66/ ()\1 + 2)\2)E33(\I’)2dy.
F(S)
Therefore, we have

56/ (A1 + 2X2) E33(0)?dy €6/ (M1 +2X2) E33(P)3dy
F(S F(S)
Ro(T) = (5) -5 (5)
/ ( U2+ 203 + 54\P§) edy
F(S)

U3+ 52‘1’3) dy

ﬁj\

/ (A1 + 220) a3 (0)%dy
2JF(S)

/ (\I/% + \If%) dy
F(S)

17
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Now substitute the definition (3.9) into the previous equation to obtain

k

/(S)()q +2)\2) Z cp(e)cq(5)E33(T(p))E33(T(q))dy
~ F —
Re(¥) <& e (3.13)
[ 3 e (TP TP ay
F(S) i1
Let us put
Tog = / Es3(T®) Bgy(Y@)dy, 7y = / (ePT P ay.
F(S) F(S)

Note that since we chose the system {ngs),ngs), nés)} N to be linearly independent and by the
se€

Symmetry Ypq = Yap> Ypg = Vgp» We have that (Ypg)1<pq<i and (Ypg)1<pq<k are positive definite
matrices. Therefore, all of its eigenvalues are positive. Let v, be the biggest eigenvalue of
(Vpg)1<p,g<k and 7, the smallest eigenvalue of (Fpq)1<pq<k- With this notation, we have the
bounds

k
Z cp(€)cq(€)pg < valcr(e)® + -+ + cil(e)?),

Therefore, (3.13) becomes

k
(A1 +22) D cple)eq(e)pg
R () < &2 pa=1 < 2 (A1 +2X2)ye(c1(e)? + - - - 4 ci(e)?)
o i (e)eq)R . Feler(e)? + -+ eile)?)
— P q\€)Vpq
_ 2t 20)y
B

Put C = ()‘122#)%‘ We obtained that for a certain ¥ € W, there exists a positive constant

C independent of € and independent of the choice of Z such that ﬁg(llf) < €2C. Thus, taking
the infimum, we have

inf{R.(®) | ® € W\{0},® € Z-} < R.(¥) < £2C.

Since Z was arbitrary and C' does not depend on the choice of Z, we can take the supremum
on both sides over Hy,_1(F(5),R?) to obtain

0<uPP(e)=  sup {inf{ﬁa(é) | & Wi\{0},® e ZLe}} e
ZeMi_1(F(S) )

18



Here we used the characterization (3.7) deduced in the previous section. Therefore we obtain
pPP(e) = 0(e?) ase —0

which proves Theorem 3.1-a).

3.3.2 (DN) case

For the case of the eigenvalues u’VV(¢), note that due to the definition of the sets Wy and W]
(see (3.4) and (3.8)), we see that Wy C W, therefore, the infimum over W is not greater than
over Wy. Thus 0 < uPN(e) < PP (e) and Theorem 3.2-a) also holds.

3.4 Weak formulation and deduction of the limit ODE
The weak formulation of the equation of (DD) and (DN) is

3

/ A divudivo 4+ 29 Z eij(u)eij(v) | de = / Z w;v;d.
€ Q

4,j=1 € =1

Here p is an eigenvalue, u is the corresponding eigenfunction and v = (v1,ve,v3) € W (or W)
is a test function. By the change of the variable given in (3.1) together with u; = eU;, v; = €V}
(i = 1,2) and u3 = £2Us, v3 = £2V3, the previous weak formulation is rewritten in terms of y
as follows.

/F(s) {)\1 (E11(U) + Ex(U) + E33(U)) (B11(V) + Exn(V) + E33(V))

2
+ 2X9 Z Eij( —|— 22 Z Ezg —|— 15 E33(U)E33(V) }dy
ij=1
= u/ (e2UW Vi + e°UsVa + U3 V3) dy. (3.14)
F(S)

3.4.1 (DD) case

The proofs for the (DD) case and the (DN) case are very similar. Therefore, for simplicity,
we will analyze the (DD) case and explain the main differences afterwards. From now on, to
simplify the notation, we write i (¢) instead of uP? (e).

Let {@ék)}; ={(® 1’2, <I>(2k€, <I>(k)) /2% be the corresponding eigenfunctions of the eigenval-

ues {(e)}; 25 and such that

k k k
[, (@ @2+ @) ay =1,
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Now we put U =V = o™ in (3.14) so that we get

/ {M (En(‘I)( ) + Exn(@)) + 62E33(<I>(k))>
F(S)

2
+2x0 [ Y By (@) + 252213,3 N2 4 et By (0))? }dy
ij=1
= Mk(E)/ (52@5]2)2 +€2(<I>( )) +e (<I>( )) )dy (3.15)
F(S)

Note that by the choice of the {@2’“)};3 and by Theorem 3.1-a), i.e. up(e) = O(e?) as
e — 0, we see that the right-hand side of (3.15) is O(e*) as ¢ — 0. Therefore, the left-hand
side must also satisfy the same condition and we conclude that

Ejj(@) = 0(?), Ep(@) =0(e), En@®)=0(1) (3.16)

in the L2(F(S),R?) sense for 1 <4, j < 2. Combining this fact with Korn’s inequality (Propo-

sition 2.1), we can see that 3™ is bounded in HY(F(S),R3). Let {Ep} 1 be any positive
sequence such that €, — 0 as p —+ +o00. Then, using the previous facts, there exists a subse-
quence {&p(q)} q:‘Xf such that

lim &%) = &% weakly in H!(F(S),R?).

q——+o00o EP(‘Z)

Moreover, from Rellich’s theorem, we have

lim &) = @®) in L2(F(S),R%) with |0®| 1255y Rs) = 1,

q——+oo EP(Q)

so we have non-trivial limit functions {®®*)} %0 = { ( k) ,® k))

thonormal basis of L2(F(S),R3). For 1 <i,j S 2 we now set

}42, which form an or-

1 1
wiy = ejEij(q)gk))’ Kiz = e i3(@0), K53 = Eaa(d).

Furthermore, we define x5; = x5;. We remark that for 1 < 4,5 <3, each /ifj depends also on k.
Due to (3.16) we have that x; = O(1) (1 <1i,5,<3) as e — 0 in the L%(F(S),R3) sense, that
is, xF; are bounded in L2(F(S),R?). Therefore, there exists a further subsequence {&,(4(n)) }i23
such that

. Enlaln . ..

lim K,,L-;(Q( ) = kij weakly in L*(F(S),R?%) (1 <i,j <3).

Note again, that each k;; still depends on k. Furthermore, in virtue of Theorem 3.1.a) there

(

exists a constant ¢ such that “’;—f) < ¢ and we conclude that there exist an even further

subsequence {¢, 17 C {ep(q(n)) }n2] and a constant Ay, that satisfy

lim 'uk(gr) = /N\k

r—+00

(3.17)

r
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This proves the existence of the limit for a subsequence of {sp};rjf

We characterize {Kk}zg We take particular test functions and deduce several conditions
for the limit functions ®*) and kij. We put U = @é]:), e = (, substitute them into (3.14) and
after dividing both sides by ¢? we obtain

/F © {)\1(/111 K+ 53) (Bn (V) + Exa(V) + G Es3(V))

2
+ 20 Y K E(V +2<rzﬁ V) + Cr$yEs3(V) }dy
2,7=1
:,%(gr)/ ( ®) v+ o) v+ o) )dy (3.18)
F(8)

for any test function V' = (V1,Va, V3) € W. By letting » — 400 in (3.18), we get

/( ) A (k11 + ko2 + k33) (B11 (V) + Exa(V)) + 200 Y ki Eij (V) | dy = 0. (3.19)
7,7=1

Next we choose V5 = 0. We see that Fa(V) = 0, and since k12 = K21, (3.19) becomes

oVi oVi oy
2 =
/F(S) {)‘1 Z“ppa +2Xg (511 un + K12 8y2> }dy 0

oVi ovi
A Kpp + 2X2K + 2Xok dy = 0. 3.20
/F(S){ 1; op 2| g 21283/} (3.20)

By integration by parts in (3.20) we obtain

) : )
— / P )\1 Z Kpp + 2/\2%11 V1 + 87 (2)\2/4312) V1 dy =0
F(S) p=1 Y2

oy
—/ i Aim + 2X9K —f-i(Q)\li ) Vidy =0
() E 1p:1 PP 2KR11 A 2K 12 1ay = U.

In fact, due to the arbitrariness of V; we have

3
0 0
@ A1 E Kpp + 2XoK11 | + =— (2)\2&12) =0 (3.21)
1
=1
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in the distribution sense. Similarly, letting V3 = 0 we also deduce that

Vs > Vs
2Xok12) =— + | A Kpp + 2X0kK —= »dy =0, 3.22
/F(S){( 2 12)33/1 1}; op 2z | 5y (3.22)
9 0 5
E (2X\2k12) + I A Z Kpp + 2X2k22 | = 0. (3.23)
Y1 Y2 1
We write
3
=\ Z Kpp + 2A2K11, g = 2\gK12,
=1 5 (3.24)
B1 = 2X2k12, B2 = A1 Z Kpp + 2A2ka2,
p=1

so that (3.20), (3.21), (3.22) and (3.23) become

oV ovi ) / ( aVa 3V2>
— +« dy =0, =0, 3.25
/F(S) < Yo T oy )T F(S) o oY1 s (3.25)

8041 8042 8,31 a,82
—— = ==_ 3.26
o1 Oy Oy1 0y (3:26)

Note however that the functions V5 and V5 in (3.25) are arbitrary test functions. Therefore,
for every ¢ € HY(F(S)) with ¢ =0 on Fgﬁ) U ngl), we have

99 0PN 4 dp 96
/F< s) ( Loy +a23y2) =0 /F(S) (ﬁlayl % 5y ) =0 (3.27)

We use the following lemma.

Lemma 3.5. Assume that properties (3.26) and (3.27) are satisfied. Then the following state-
ments hold.

a) There exist functions hy, hy € L*(F(S)) such that ” € L2(F(S)) for 1 <j,p <2 and

Ohy 8h1 Oha
L ), 22 g 3.28
o0 Qs o~V o —B2 " =B (3.28)

Moreover, hy, ho take values on the boundary and hp’r € L?(Ty1) forp=1,2.
2,1

b) Write o1 = g1 U---U gy, where each g; is the i-th connected component of I'a1 (m € N,
i=1,...,m). Then, fori =1,...,m the functions h1|g,7h2’g. do not depend on (y1,y2)

along g;.
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For the proof of this lemma see Section A Appendix. Let us use the functions h; and hg

given by this lemma. From (3.24) and (3.28), we note

Oh1  Ohs
L B =0
o0 + 90 B — a2 )
3
oh oh
(Ty; - Tyf =a1+f2 = 2/\1;:1%&;;;; + 2X2(K11 + K22).
For brevity, let us write
oy oy
dya Oy

We rewrite the equality (3.30) with @ and we calculate

3 3
Q=2 )xlzlipp—i-)\g(/ﬂl +H22) =2 (/\1 +)\2)Zﬁpp—)\2/£33
p=1 p=1
3
MQ =2 A(A1+ o) Z Kpp — A1A2K33
p=1

3
)\1@ + 2)\2(3)\1 + 2)\2)/{33 = 2()\1 =+ )\2) A1 Z Kpp + 2Xo K33
p=1

Eventually, we obtain

A )\2(3)\1 + 2)\2)
Q+
2(M\ —i—)\g) A1+ A

K33 = A1 Z Kpp + 2A2K33.
p=1

This computation will be useful afterwards.

(3.29)

(3.30)

(3.31)

We go back to (3.18) with some particular test functions. Take functions p; = p1(y3),

p2 = p2(Y3), p3 = p3(y3) such that

p1,p2 € H*((0,1)),  ps € H'((0,1)),

/212( )_pl( =0 (i:17273)’
Pi -

Loy = L =0 (i=1.2)

and put a test function V = (V4, V5, V3) € Wy by

Vi(y) = p1(ys3),
Va(y) = p2(y3), . .
Va(y) = p3(y3) — dly)l Y2 d’y)i
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For this test function we note that £;;(V') =0, E;3(V) = 0for 1 < 4,5 < 2 (see the computations
n (3.10) and (3.11)). Substituting the new test function into (3.18), dividing both sides by ¢2,
letting r — +o00 and using (3.17) we deduce

3
/(S) MY Fpp + 2\akiss | Ess(V)dy = Ak/ (<I>(1k)p1 + ol )pQ) dy. (3.32)
F

Now we begin the next step to characterize the behavior of the eigenvalue limit. We substitute
(3.31) into (3.32) to get

A1 )\2(3)\1 + 2)\2) > ~ / (k) (k)
+ ka3 | E33(V)dy = A P + & dy. (3.33
Lo G 2 Eaian =& (#0+ 0m) an. a9

Using the above test function V', we have

ovs  d d? d?
5SS, S0 (3.34)

Es3(V) =
3(V) dys  dys dys dys3

Define dy’ = dy;dys and let Q(ys) be the the cross-section of F(S) at y3 € [0,1]. We now look
into equation (3.33) and we rewrite

!
d d d
| eawiay= | / Q(d’”” d"l—ygd”) dy/'dys
F(S) 0 J/Q(ys) 3 Y3 Y3
I
dps
= [ Q—dy + [ le sy + Qyz dys
/0 ( Q(ys) Y3 Q(ys) dy 2 Q(ys) dz 2

l

d d2 d2

= / 7dp3 [ Qdy +7p1  Qudy' + — P2 | Quedy | dys. (3.35)
0 Y3 JQ(ys) dy3 Q(ys) dy Qys3)

We use the following lemma (see the proof in Section A Appendix).

Lemma 3.6. With the same notation as above, for every ys € [0,1] it holds that

[ Qly =0, [ Qudy =0 (i=12)
Q(y3) Q(y3)

Using this lemma, we see that (3.35) becomes

QE33(V)dy = 0.
F(S)

As a consequence, (3.33) simplifies to

Ap(3M; + 2\ -
/ wm%mdy: i, /
F(S)

o) (k)
@ dy. 3.36
A1+ A2 F(S) ( pL+ s p2> ( )
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We now proceed to compute r33. Recall that ksz = F33(®*). We know by (3.16) that
Eij(@®) = Ei(®®) = 0 for 1 < i,j < 2. This will help us find a more explicit form of the
functions ®*). In order to solve the partial differential equation in the weak sense for ®*), we

first write
1 (9a®  oa® 1 (0" oo
Ei‘ q)(k) [ i J E’L (I)(k) — 4 3 .
i(®) 2 ( y; - oyi )’ 3(27) 2\ 9ys * yi

(k)

For i = 1,2, from Ey;(®®) = 0 we have ag); = (0 and therefore we deduce that @gk) does not

depend on y;. By E12(®*)) = 0, we see

09" ool 0o 9ol
+ =0 and thus L 2 in F'(S).
Ay oy 0ya oy (5)

. (k) ook ool
Note that since ®;”’ does not depend on y;, 8—;2 does not depend on y; and 8;1 does not

depend on 7. Due to the relation we found in the previous equation, we conclude that there
exists a function £*)(y3) € L2((0,1)) depending only on y3 such that

k k
8<I>§ ) = _8<I>§ ) = —£M)(ys).
0yo o

For further details see Section A Proposition A.1. Hence, there exist functions ngk)(yg),

nék)(z;;) € H'((0,1)) that depend only on ys such that

o () = =W (ya)ys + P (), P (1) = €®) (ys)un + 0 (vs) 1,2)

(i = )
Applying the boundary conditions, we see £()(0) = 0. Moreover, due to E;3(®*)) =0,

paf” 90 ™ ap®  aed’  sel" de® and”

oy dys  Pdys  dys dyo ays  dys  dys

Differentiating the first equation with respect to y and the second equation with respect to y;
de(k)
dys
by the boundary condition we know that £*) (0) = 0, thus we see that in fact ¢®) = 0. Hence,

and comparing the two results, we see that = 0, and therefore, £ (k) is a constant. However,

o3y dnp™ oo _dng’“)

oy dys ’ Y2 dys

(k) (k)
. d d k .
Since a% (— (;7;3 ) = 3%1 <— g;s > = 0 we can solve for (IDZ()) ), and we get the solution

<I>§:> (y) = n%f(yg),

o3 (y) = 15" (ys). . . (3.37)
d d

B () = n$ (y) — g1 = i



Now we are able to compute

dn(k) d277(k) d277(k)
Kgg = Bag(@W)) = =58 — gy =L =2 3.38
(@) dys dy3 dy? (3.38)
i — 22(B3A1+42)2) ; : -
For commodity, let us put ¥ = =#57-"=*>. We substitute (3.34) and (3.38) into (3.36), so it
becomes
k k k
/ Y dné ) - d2n§ ) - y2d2né ) (dp3 - y17d2p1 - y2d2p2) dy
F(S) dys dy3 dy3 dys dy3 dy3
X k k
= Ak/ (77§ 'o1+ 1 )pQ) dy. (3.39)
F(S)

Let us now analyze the integrals of (3.39). For 1 < 4,5 < 2 let us define the following
functions.

H = H(ys3) Z/A 1dy/, K; = K;i(y3) Z/A yidy/,
Q(ys) Q(ys3)

Ay = Aij(ys) Z/A yiy;dy (y3 €[0,1]).
Q(ys)

(3.40)

With this notation and using integration by parts accordingly, we have

an® g U an™ g I q dnt®
/() s %dy:/H 3 f’?’dz?,:—/ HEE ) padzs,
F(S

dy3 dyg d2’3 dZ3 0 ng dZ3
g pi / i fd? )
K; = — | Ki—— id y
/F( )y dys dy3 dZ3 dzg dz2 dz3 piczs
d?n;” dos o / d*n;" dps / n,"
i—5 Ki—%5—— i 3dz3,
/F(S)y dy3 dz2 dz dz d 2 paces

d2 ( )d2p] l d277( )d2p d2 d277‘( )
it dy / A, o :/ L, T s,
/F( s) J dy3 dy3 0o Y dz3 d23 0 dz% J dzg J
l
k
Ak/ (77§ 'o1 + né )pz) dy = Ak/ H (77§ Jo1 + né )pg) dzs.
F(S) 0

Plugging this into (3.39) and rearranging it we obtain

l d2 d2 (k) d2 (k) d (k)
Y { A oy Al B K 3 p1
0

dzg dzg dz§ dzs
d2 d277( ) d2’l7( ) d’l’]( )
— A 1 A 2 3

+ 22 ( 12 d:2 + A2z dz2 p2

2" dz
d d2 (k) d2 (k) d (k) . l

e <K1 Z} + Koy _H d3 ps $dzg = Ay H(ngk)m—l—nék)m)dzg. (3.41)
0

26



Choosing p1, po = 0, we see that

d2’l7 k) d2 (k) dn(k)
Y K -+ K —H-B dzs = 0. 42
/ d23 ( 1742 2 dz % dzs p3dzs =0 (3.42)

Note now that (3.42) holds for all p3 € HE((0,1)), so we deduce that

2 (k) 2, (k) (k)
d <K1d : +K2d T2 —Hd773 ):0,
3

dzs d 32) dzg dzg

(k) 2, (k) 2 (k)
d dns d d*m, d*n
— | H =— | K K . 3.43
ng ( ng ) d23 ( ! dZ% + Ao dZ% ( )
Plugging (3.42) into (3.41), we get
d2,,7(k) d2’l’](k) dﬁ(k)
Y A L 1+ A4 2 K3
/{ ( 1 dzg +A1 dzg ! dzs P

a2 a2y a2 an® e
+dz§<A12 12 + Ago a2 - K» dz |7 ng—AkOH<7]1 p1+ 15 p2>dz3' (3.44)

and thus

Now taking p2 = 0 in (3.44), we see

d2 (k) d2 (k) d (k) - l
Y / (An A= — KT P | e = A | HyPprdas.
V4 z3 0

Since p; is arbitrary, we conclude that

d2 d2?’]( ) d277(k) dn(k) - i
Yo [ An =0 + A= — g, =B | = Ky, 3.45
dz§<11d2§+12d§ "z KEI (3.45)
Similarly, with the same argument but taking p; = 0, we get
d2 d2’l7(k) d2n(k’) dn(k) - i
Yo [ A = 4+ Agp—2— — Ky =B ) = At 3.46
422 < ATy ARty T Mg B2 (3.46)
Combining the equations (3.43), (3.45) and (3.46) we obtain the system of differential equations
( d2771
dz?
2 _ 2 ~
Y% <i11 im §1> d 7722 —AH (m) (0< 2 < 1),
23 21 22 2 dz3 2 (3.47)
dus
9 ng 9
d dns d d*m d*ne
S (5B = S (S kSR 0 0).
d23< d23> d23< 1dz§+ 2dz§ (0<z <)




We now discuss the boundary conditions of the functions nlgk) for i = 1,2,3 for the (DD)
case, that is, the case with both ends clamped. Then, we know that q)(k)(yl,yg,O) = 0 and
®®) (y1,y2,1) = 0. From (3.37) we can deduce that

(k) () — () dm(k) _
1z (0) = ;" (0) = 0)=0 .
? (1=1,2). (dd)
D) =) = ) =0
23

Let {Ay};:2, be the set of eigenvalues of problem (3.47) with (dd) boundary conditions.
Then, we have proved that A, € {Ay-}£2,, and more generally {Ak} 0 C {Ap- 3522, Thus,
we can assure that B

Ay > Ag (k € N) (348)

It still remains to prove that Ay, < Ay for k € N (cf. Section 3.5).

3.4.2 (DN) case

We now cover the case of 4™ (g). The proof is pretty similar to the case of PP (¢) with some
minor changes, specially on the boundary.
The function space W; changes to

Wi = {¢ € H'(F(S),R*) | ¢ =0 on I'{ )},
)

and the test functions chosen during the proof, now only vanish on Fg_l . In particular, p;(0) =0
for i = 1,2,3 and SZ; (0) = 0 for i = 1,2. Let us now discuss the boundary conditions of the

functions nl(k)

(k)
see that ni(k)(O) =0 for i =1,2,3 and dg;g (0) =0 for i = 1,2. We go back to (3.39) and put
p2 = 0 and p3 = 0, to obtain

dn(k) d277(k) dQT](k) d2p1 . (k)
Y/ —— Bty —tp—2 |y dy = Ak/ m p1dy.
F(S) ( dys dy3 dy3 dy3 Fs)

Using the definition (3.40) of the functions H, K; and A;; for 1 <, < 2, we transform the
previous equation into

for i = 1,2,3. With the same argument as before, on the clamped end, we easily

d d2 (k) d2 (k) d2 . l
Y / 773 AN A+ AR ) SR = Ry / Hy" prdzs. (3.49)
dz3 dz3 dz3 0
To simplify notation we write
d” a2} d?ns”
P; = —K; A; A; =1,2),
(23) (23)-p - + Ain(2s) 122 + Aiz(23) 122 (i )
dﬁ(k) d277(k) d277(k)
P =H 3 _K L _K 2
5(23) = H(z3) 1os 1(23) 122 2(23) 122



We use integration by parts two times in (3.49) to obtain

dp 1! dpP : La2p ~ [ w
P B — | — _ = .
) ([ 1(23)d23]0 [dz?, p1(23) ; +/0 42 p1dz3 Ak/o Hry prdasg

Using (3.45), we see that the previous equation becomes

([rerte] [t -

Note that in the (DD) case, we can see that all terms above vanish. However, in the (DN) case
we have that p1(0) = 0 and %(O) = 0. Therefore

%l _dP1

—(O)p(l) =0

Pl (l) dZ'g, ng

Using proper test functions p;, we conclude P;(l) = 0 and %(1) = 0. In a similar fashion,
choosing p; = 0 and p3 = 0, we deduce P»(l) = 0 and %(l) = 0. Finally, taking p; = 0 and
p2 = 0, we get P3(l) = 0. Moreover, from (3.43), we also get %(U = 0. Thus, we have seen
that P;(1) = 0 and §2!

(I) =0 for i = 1,2,3 and therefore solving the systems we obtain

d2n(k) d377§k) dn(k) d2n(k)
()= —%-(1)=0 (i=1,2 ()= —=2-(1)=0.
dzg ( ) dzg ( ) (Z 9 )7 dz3 ( ) dZ?Q) ( ) 0
To sum up, we have the boundary conditions
(k)
k k d77i
1570 = (0) = 5= (0) =0
an® a2 a2 ™ (1=1,2)
)= l)= L—(1) = t—()=0
) = 50 = ) = o)
(k)
Remark 3.7. It can be shown that the condition S S 0 is not independent and can be

dz?z)
deduced from the other conditions and equations. Thus we can drop it when stating the main
result of this section.

3.5 Upper bound for the limit eigenvalues

In Section (3.4) we have seen that Ay > A, where Ay is the limit Aj = liril C%,uk(g) (see
rT—>400 >7r

(3.17)) and Ay is the k-th eigenvalue of the ordinary differential equation (3.47) with (dd)
boundary condition. We now start to prove that Ay < Aj. Consider the system of ordinary
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differential equations

d*m
dz3
4z - 2
Yﬁ <ﬁ11 iu _§1> d 7]22 oAb (771> (0< 2 < 1),
23 21 A2 2 dz3 2 (3.50)
dns
d23 9
d dns d d*m d*na
— | H— ) =— | K3 + K 0< l).
| dzs ( ng) dz3 < dz3 242 dz3 ( <)

where Y = % In a very similar fashion as before, we first consider the (DD) case, so

we assume the functions satisfy the (dd) boundary condition.
Let Ay be the k-th eigenvalue of the problem (3.50) with (dd) boundary condition and

nk) = (77§k),77§ ),77:(3 )) its associated eigenfunction. By the relation we have in (3.50), nék)

satlsﬁestS<H | = o K a2 + Ko dz .

We recall that A, = EI_EI C%uk(gr) and the eigenvalue py(e) can be characterized by
T [cohty

Rayleigh’s quotient via

pr(e) = sup inf{R.(®) | & € Wi\{0},® € Z+<}.
ZeHr_1(F(S),R3)

(see (3.7)). We want to show that Ay < Ay.
We multiply the system (3.50) by (11,72) and integrate over the interval (0,7). Applying
the integration by parts we obtain

l 2 2, 12 2 2
d“n; d*n; dm; d
Y E A--—nﬂ— E K; . S1s dzs3 = A/ 1—}—172 d23
= 3 i—1

0 dzg ng

Using the relationship between 13 and (n1,72) we have in (3.47), we deduce that

2

d?n; d?n; d?n; dns dns Y !
Y Y Ay=i Sy Ejmif H(SB) | des= A H (2 +12) das.
/0 P E I B R E R e R WP “3 /0 (ni +12) dzs

Therefore, if n*) = (n&k),né )) is the k-th eigenfunction of the ordinary differential equation
(3.50), we have that

1 2 2. (k) 42,,(F) 2 2. (k) 1 (k) (k) \?2
d?p,” d°n d?n;” dn dn
Y A S Nt g S Dy (D d

/0 ;1 1422 d2? ; 22 dzs 0\ e =

[ (e ) o
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We recall Rayleigh’s quotient R. introduced in (3.6). We try new test functions ©(y) =

© = (01,02,03), d(y) = ¢ = (¢1, d2, ¢3) given by
O =mn+e*g  (i=1,2),
dm dnp
dys 2 dys + £¢3,
where the functions n; for i = 1,2,3 depend only on y3. The choice of these test functions

comes from the fact that we want E;;(©) to satisfy (3.16). Indeed, since for 1 <i,j < 2 we
have E;;(n) = 0 and E;3(n) = 0, we calculate

Ez](@) - 52Ezg (¢)

O3 =13 —

a¢z 6(253 ..
E3(0) = 1<4,j<2),
() =5 (250 +:50) i<y
d773 d? mo d 72 o3
E i
2(0) = dys  Magz T agd e dys

For brevity we write N = % Y1 %;71 - ygd 2 With this notation, we compute R.(©).

091 092 93\ 2
A 2Y%1L +e 2 2N + 3Y%o + 2\ 4Ei . 2 d
/F(S) ' <€ o Oy2 e © Bys 2 2 ' Ey(0)" | dy

1,j=1

/F(S) <<‘52(771 +e%01)% + 2(ng +e22)? + (3 — yl% - 3/2d772 +e¢3) )

2 200 _065\° < ¢>3>
/F < Z ( ys ayi) e N+633 dy

/F(S) (6 (m +e%¢1)” + (2 +°2)* + ' (3 — 1 T2 — 1o G2 +€¢>3)2)dy

ﬁ«s(@) =

Multiplying by E% and taking the limit € — 0, we see

2
/ A1 (? + 02 + N> dy
F(S) vy Oy

lim, €2R +(0) =

We want to find the ¢ = (¢1, 2, ¢3) that minimizes the numerator in (3.52)

2

Op1 O ) 2 1 <3¢3) 2
M :/ A1 <++N + 2 Eij(¢)” + = +N* | |dy.

ij=1 i=1
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In order to minimize M, we put the test function ¢ as follows.

2 2
¢i(y) =Y g+ By (i=1,2), (3.53)
p,g=1 p=1
¢3(y) =0

where a;(,iq) and Bl(f) depend only on y3 for 1 < p,q,i < 2 and satisfy agg = agl) fori=1,2.
When we substitute this test function into M we obtaln an expression that can be written
as a polynomial of degree 2 on the variables apq and ﬁ for 1 <i,p,q <2 (in total there are
10 variables). Thus, it can be further rewritten as fo ( Txa+ ya) dy for a certain matrix
valued function X' and a certain vector valued function ) (for the explicit forms of X and Y
see Appendix Remark A.2) with
1) (2 (1 2) H2N\T
= (0451)70‘§2 ’O‘§2)7O‘§1)7O‘12)7 227 1 ),52 ' P1 )755 )) :
Since we want the minimum, we differentiate the expression fé (aTX a—+ ya) dy with respect
to a and solve the linear system 2Xa + Y = 0 for a. After long but simple calculations we
obtain

O A AP A _ 1 N &P O 1N P
i 4/\1+)\2 dy?’ 270N g 2 40+ Ao dy?’

o2 1N d?n, O 1 N dPn No 1 N &P
1 AA+Xdyz’ P AN+ dy’ P AN+ A dyd

5(1):_1 At dmg @ _ 1 At dms
1 20 + Ao dys’ 2 2)\1+)\2dy3‘

In fact, the matrix X in the system is degenerate and we additionally obtain the condition
ﬁ?) + ﬁél) = 0. It can also be checked that the minimum obtained is always the same, so to
simplify, we put BEZ) =0 and ﬁél) = 0. Therefore, recalling (3.53), we obtain

1 N Py 5 AP d*m d773
= — — 27 —_
1(y) 4>\1+/\2<d§ LA v T g r e Ty,
1 )\1 d2772 2 d m d 772 2 d’l’]3
= - — 22— - 2—= 3.54
¢3(y) =0

Substituting (3.54) into (3.52) and after long but elementary computations we obtain the

minimum (3 o)
/ 2(3A1 + 2A2) N2dy
Fis) Mt A2

/ (77 +m3)dy
F(s)
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Substituting (11, 12,n3) = (ngk),ngk),nék)) and the definition of N into (3.55) and integrating

over the cross-section we have

1 2 2, (k) q2,,%) 2 2, (k) 5 (k) (k) \?
d?n;” d7n; d?n;" dn dn
Y > A — - -2 Kt H | =3 d

0 h J dZ2 d22 - dZ2 ng + ng 3
1 4,j=1 3 3 i=1 3

R(©) = /OlH <<n§k))2 R (Tlék))2> 0,

lim 5
e—0 €

)

which, from (3.51), turns out to be

1 ~
lim — = Ay.
z—:g% g2 RE (6) F
These computations are a motivation of how to choose proper test functions for our next
goal, which is to use the Max-Min method in order to prove the inequality Ax < Ap. First, we
consider the eigenfunction n*) = (n%k), nék), n:gk)) corresponding to the eigenvalue Ay of problem
(3.50) with (dd) boundary condition. We also choose the functions 7(¥) so that

[ (o nn) dy = oo ), (3.56)
F(S)

where 0 is the Kronecker delta. We define

Using the weak formulation of (3.50) we know that
F(S)

Let us consider the test functions

with s € N and

ORI & +2 ‘) Y12 — PR Y1
D mdni+ e | dg2 ™! dy?2 dy2 72 T dy ’
(s) 2 (s) 2, (5) (s)
) 1 A d2772 2 d*ny d®ny " 4 dns
= - - +2 + ) .
2 T ANt N ( A2 Mg T gz T Ty,

Choose an arbitrary Z € Hj,_1(F(S),R3) and let Z = L.H. [(b(l), @ CID(k)] be the minimal
linear space that contains the set {<D(1),<I>(2), .. ,<I>(k)}. Note that dim Z = k and that each
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() € Wy (for all s € N), so we have that Z C W. Since dim Z < dim Z, we know that there
exist a function ¥ = (U1, Wy, ¥3) € Z N Z1+< and a vector (c1,...,cx) = (c1(e),...,cr(€)) €
R*\{0} such that

U=> c,(e)0.
s=1

Note that since both Z and Z-1< are subsets of Wi, we have also that ¥ € W, and~due the fact
that (ci(e),...,cx(€)) € RF\{0} we deduce that ¥ € W;\{0}, so we can apply R. to ¥. We
compute

k k
Eu(P) = cal@) gt Ne,  Es(¥) =€) cl(e)Eis(¢)  (1<4,5<2),
s=1 s=1
Epp(¥) = B (V) =0,  Es(¥) =) ci(e)N,

s=1

Using these computations, the numerator of the Rayleigh quotient ﬁg(ﬁl) is

k k 2
/F o A (52 (ch(e)/\l)fAst>> +2)\y Ze (Z ;M%;MNS) dy

s=1 s=1

2 4 k 2 k 2
+ /F (S)2>\2 254Z4<522c3<s>&3<¢>> +et (;cs(sws) dy

=1 s=1
k k
=t Z cp(e)eq(e) Y N,N,dy + ° Z cp(e)eq(e)R(p, g, €) (3.58)
p,q=1 F(S) p,g=1

for some functions k(p, ¢,e) = O(1) as e — 0. Note that these functions k(p, ¢, ) do not depend
on the choice of Z. Due to (3.57), it follows that (3.58) becomes

k
et Z cp(e)eq(e / Y N,N,dy + ° Z cp(e)cq(e)k(p, g, €)

p,q=1 p,g=1

=c Zcp 2Ap + €8 Z cp(e)eq(e)k(p, g, €). (3.59)

p,q=1
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Note also that the denominator of R.(¥) satisfies

2 23,2 2 2 2
£ /F(S) (U + 03 +203) dy > ¢ /F(S) (U7 + ¥3) dy
2 k 2
/ (ch e >> + (ch@)(nés)ﬂ%és))) dy
s=1
2
/ Zcp £)eqle (Z ) + 260 (P + 260 >)dy
k

pql

=2 ) ep(e)eg(e) /F (S)w%) n? + P ns?)dy + & Z cp(e)eg(e)R(p,ae)  (3.60)

p,q=1 p,q=1

for certain functions k(p,q,e) = O(1) as ¢ — 0. Note again that the functions k(p,q,e) do
not depend on the choice of Z. By the homogeneity property of Rayleigh’s quotient we may
assume without loss of generality that Z’;Zl cp(€)? = 1. Thus we have |c,(¢)] < 1for 1 < p < k.
Combining this fact with the orthogonality in (3.56), we get

k k
23 cyle)cqle) /F (S)w%p)nﬁ D PNy + et Y eple)eq( @R 0r€)

P,q=1 p,q=1
k
_eQZcp —I—s4Zcp €)cq(e)k(p, q,e) = ¢ ~|—64ch e)cq(€)E(p, g, €)
=1 p,q=1 p,q=1
k
4 Z |Cp ||Cq || (pa q,¢ )| > € _84 Z |’{ p,q,€ )| (361)
p,g=1 pg=1
Therefore, with (3.60) and (3.61), we deduce that
k

52/ (U5 + W3 4+ 203) dy > e — &* Z |(p,q,€)l. (3.62)

F(S) p,q=1

Using (3.59), the bound (3.62) and the fact that Ay < Agy; for k € N, we obtain

4Zcp )2A, —1—6620;, e)cq(e)k(p, q,€)

1 ~ 1 p=1 p,q=1
?Rs(m)ﬁg .
52 - 84 Z ‘g(p7 q, 6)
qul
k k
Z )2+ €2 Zcp e)eg(@)R(p,q.€) A+ D [R(pg.e)|
< v pa=1 < pa=1 (3.63)
1—822\ Rlp,q.e 1—€2Z| Rp,q.e
p,q=1 p,q=1
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provided that the denominator is positive (this is possible because ¢ is a small real parameter).
Let us denote the right hand side of the previous inequality

k
Ak + 52 Z |E(p7 Q7€)‘

=1
Li(e) = K

? |
1-22 3" [R(p,q.9)

p,g=1

Note once again that £4(e) does not depend on the choice of Z. We know from (3.63) that
1. ~ 1 ~
= inf{R.(®) | ® € W;\{0},® € Z1<} < ;2735(\1/) < £ (e).

Since Z € Hy_1(F(S),R3) was arbitrary, we take the supremum over Hj_1(F(S),R?), so we
obtain the upper estimate

1
k(€)= Lile).
Taking the limit ¢ — 0 and using (3.17), we have

~ 1
Ap <limsup — ux(e) < limsup £ (e) = Ay,
e—0 € e—0

which agrees to the desired inequality Kk < Ay (k € N). We combine this fact together with
(3.48) to conclude that N
A = Ay (k € N).

We proved 1igl % = Ay, only for a certain subsequence {¢G3 C {6p};§‘f , but note
r—+00 T

that we have shown that A, = A, independently of the first chosen sequence {5p};r:“1’ . Since
this sequence was arbitrary, we can see that in fact for every k € N we have

. Mk(E)_~
;I—I}(l) g2 = M.

Similarly, we prove the same result in the case (DN).
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4 Torsional and stretching modes

In this section we discuss high-frequency eigenvalues of a thin elastic rod with axis-symmetric
cross-section that varies along the rod. We prepare the mathematical setting of our problem.
Let I > 0,let a: [0,1] — (0,+0c0) be a C? positive function and ¢ > 0, a small parameter related
to the thinness of the rod. We consider the following domain.

Qe = {(z1,22,23) € R3 | 22 + 22 < 2a(x3)?, 0 < 23 < 1},
Fl,e,a = {(ml,xg,xg) S R3 | .73% + $% < Eza(xg)Q, 3 =0 or x3 = l},
FQ,e,a = 8Qe,a\rl,5,a‘

We study the following eigenvalue problem.

Liul +pu=0 in Q. g,
u=0 onI'icq, (4.1)
ocluyn=0 on 'y 4.

Here m is the unit outward normal vector on 0€).,. Note that this eigenvalue problem is a
particular case of (DD), studied in Section 3, so we may use the results we obtained in the
previous section. We denote by {11;(g)}/ 25 the set of eigenvalues of problem (4.1) and we recall
that for any € > 0 there is an infinite discrete sequence of positive eigenvalues

0 <pa(e) <pe) < <pple) < ppya(e) <--- with lim pg(e) = 400,

k——+o0

which are arranged in increasing order, counting multiplicities. Moreover, by Theorem 3.1, we
know that for each k& € N we have p(e) = O(?). Thus, we have

lim pg(e) = +oo for each € > 0,
k—4o00

lim px(e) = 0 for each k € N.
e—0

p1(e) p2(e) ps(e)  pale) ps(e) p()

g1 <¢e

-

g9 < €1

Figure 2: General behavior of the eigenvalues () as € becomes smaller
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These eigenvalues are low-frequency eigenvalues corresponding to flexural vibrations (bend-
ing mode). However, it is known ([16] or [17]) that there exist high-frequency eigenvalues
corresponding to stretching and torsional vibrations, which do not tend to zero as the thinness
gets smaller. These high-frequency eigenvalues cannot be analyzed when the subindex k is
fixed. As an example, we can focus on the eigenvalue us(e) of Figure 2. If we assume that this
eigenvalue does not indeed converge to 0 as € becomes smaller, then low-frequency eigenvalues
will progressively “overtake” it, as seen in Figure 2. Due to the convergence lim._,q p(g) = 0,
we see that in order to “catch” this eigenvalues, we have to vary the subindex k£ and the pa-
rameter € simultaneously. In this section we study the eigenvalues related to torsional and
stretching modes.

4.1 Main result

We present the main result of this section. Recall that A, Ao are the Lamé constants and
Y = )\2(3)\1—{-2)\2)
- A1+A2 :

Theorem 4.1. Let k € N and let ux(e) be the k-th eigenvalue of (4.1). Then the following
statements hold.

a) For every k € N, there exists a sequence (q(k,€))e>0 with q(k,e) € N, q(k,e) < q(k + 1,¢)
and q(k,e) = 400 as € = 0 and a constant & > 0 such that

lim Hq(k,e) (e) = &

e—0
b) There exists a subset {uf () ,—:j U {uf(a)};:j = {uq(k,g)(a)}:j C {ux(e)};=5 such that
for every k € N,

Ii S — S li T — T
El_Ig%Mk(E) Foge 5 613(1)#1@(5) Hi s

with {ME}ZS U {ug}:j = {fk}giol Here ,uf and ,u{ are the respective k-th eigenvalues of
the following eigenvalue problems.

{ ~Y g (a(ys)2%> = pSalys)’t (0 <ys <),

7(0)=7(1) =0
{—Agdcg ays) 42 ) = uTalys)p (0 <ys <),
p(0) = p(1) =0

c) Let vék)(m) and wék)(a:), x € Qq, be the eigenfunctions associated to pg(e) and pk(e)
respectively. Then,

ol (2) = (@M (s,23), 22x P (5, 03), 7N (5, 23)),

wék)(w) = (—$2P§k)(8,$3),wlﬂ(k)(swzs),o),

£

where s = \/x? + 22, for some functions xgk),ﬂgk),pgk) € H'(Q.q) with ng),Ts(k),ng) =0
onI'icq.
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d) If we denote yﬁ’“) (s,y3) = ch) (€3,y3), é’“

with 0 < y3 <1, 0 <5 <a(ys), then

5, ys) = 27 (e5, y3) and P 5, ys) = (€5, ys)

¥ 0 weakly in H'(Q14),
fgk) — ()

e — p®

strongly in H*(Q1,4),
strongly in H*(Q1.4),

as € — 0, where ™) and p®) are the eigenfunctions associated to uf and uf respectively.

The proof of Theorem 4.1 is given in Sections 4.2 to 4.5. In Section 4.6 we provide a
sufficient condition and an example of the case that the convergence of yé’f) in Theorem 4.1.d)
is strong in H'(21,). In Section 4.7 we try to generalize Theorem 4.1 to curved rods and we
give a conjecture about the stretching and torsional modes on a curved rod with non-uniform
cross-section.

4.2 Characterization of torsional and stretching eigenvalues

We adapt to our domain €, , the Rayleigh quotient and the Max-Min characterization of the
eigenvalues that we introduced in Section 2. Let ¢, € H' (. o, R3)\{0}. We define

3

Bealot] = [ [ Mdivodive 20 3 e(@)e(w) | dr,

Qe.a i,j=1
BE a I
Rs,a(¢) = - [d) ¢]

R

Furthermore, we set the function space
Wea={d € H' (2,0, R’) [¢=00nT1c0}.
Then the k-th eigenvalue is characterized as follows:

pr(e) = sup inf{R.a(¢) | € Wu\{0},¢ L X in L*(Q,,R?)}.
XEkal(ng,l,R:a)

We begin to study the torsional and stretching modes by variational methods. We rewrite
the Rayleigh quotient and make sure that we exclude the bending mode. We put the test
function v = (v1¢, V2, v3,) € W4 as follows.

Ul,z—:(x) = _mZPE(S’ 173) + xlXE(Sa 1:3)7
V2.£(7) = T1pe(5, T3) + Taxe (s, T3), (4.3)
U3,€($) = TE(S,SL‘?,),
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where s = /27 +25. We compute R.,(v:). After the change of variables z1 = scos,
xg = ssind, 0 <Y <27, 0 < s < ea(z3), the numerator B; 4[ve, ve] becomes

/ {Al( B 2t ) (4.4)
2% <(8TE) + 3 (she + %) +( % +xs) +x2+ 5 <(%”;)2+ (ggg)2>>}sdsdx3,

and the denominator HUEH%Q(Q g3y becomes
£,a

/ (s?p2 + 87x2 + 72) sdsdas.
QE a

We use variational methods in R, 4(v:) and obtain functions (p., 7, xc) that satisfy the PDEs

( A2 (%%p;_{_ 52 )"’gsps—o
(M + 2)\2)8 =+ Ao i%ﬂs + )\28 =+ 2(\ + )\2)8)(5 + (A + )\2) 8589& + &7 =0 pin Qg 4,

Pt L (A + A2) 22 +3(A +2X2) 1 25 + (A + 2X0) ¥ =0
p=20

T=0p0nI1,4,
X=0

%e — cal(z 3)352 =0

Az ( ‘3?,;‘; + BTS) —ed/(x3) ()‘1‘98)(E + 21X + (A1 + 2X2) 57 8T€ =03 on Ty,
(A1 +2X2)85 %= 4+ 2(M + Ao)xe + A1g 875 —ed(z3) N2 <sg§§ + 3 aTE =0

(4.5)

Note that p. is independent of the pair (¢, x-). Moreover, (4.5) is an elliptic equation so we
can assure the existence of a sequence {&;(g)}}>; of positive eigenvalues.

However, these arguments do not prove that v. is an eigenfunction of (4.1). It is left to
prove that there are eigenfunctions v, of (4.1) with the same structure as defined in (4.3). In
other words, for ( > 0 we want to see that

d
dig‘ (Ra,a(ve + C‘I’E))

for every ®. € W, such that (ve, ®c)r2(q. , r3) = 0, so that v is a critical point of Rayleigh’s
quotient and thus v, is in fact an eigenfunction of (4.1). Since B; , is symmetric and bilinear,

oo = 0, (4.6)
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we note that
B: alve + (Pc, v + (O]

l|lve + C(I)EH%Q(QE,Q,R?’)
3 Bealve, ve] + 2(Be o[ve, Pc] + *Be o[ P, O]
el mey T 26(ver @) 1200 m2) + S 19cl T2 )
 Begve,ve] + 2¢Be o[ve, B + (2 Be o[ P, O I

Ra,a(ve + Cq)e) =

H%Hm(ﬂmm) + ¢ || ”L2(QMR3)

In order to prove (4.6), we only have to see that B 4[ve, ®.] = 0. For that purpose, let Hrg
denote the closed subspace of W; , made of functions v, defined as in (4.3). By definition we
have v. € Hrg. We write &, = \Tle + ¥, with \/I}E € Hrg and ¥, € H"st~ It is clear that
(\Tle,\IIE)LQ(Qm,Rs) = 0. We consider the case when \Tle is not a multiple of v.. Then from

the construction of Hrg we have (v, (I\IE)LQ(Qs k3 =0 and B q[ve, \/I\'g] = 0. Moreover, since
ve € Hrs and U, € Hag, we see that (ve, ¥ ) 12(Q..0,r%) = 0. Thus,

Ba,a[vaa q)a] = Ba,a[U57 \/I\’a + \IJa] = Ba,a[vﬁ \I’a]' (47)
We write U, = (¥ ., Uy, U3,.). We compute

3
B o[ve, U] = / A1 divo. div W, + 2\, Z eij(ve)ei;(Ve) | da.
=a ij=1

We perform the integral by parts and pass all the derivatives to v.. Therefore, we obtain

0%v; 0%v; 0%v;
B:q E A Ja + A L J:€ U, .d
calve, ¥ /Q ( ! 2 < 0x;  Ox;i0x; <

g0 j j=1

3 ov; ov; ov;
E M —2En, + A Le L€\ n,. ) U, - dA.
+ k/Bsta = < 1 81.] Ny, + A2 < aw‘] + axZ n J ,€

We compute B; q[ve, V.| using (4.3) and the boundary conditions of (4.5), and after long and
elementary computations the previous equation becomes

Al e 8 5)

a1 (A +()\1+)\2)1 0

[ o e+ 5+ 81)

+p (Ag 8Xf + (A1 + A2 )ifsgg 300+ 220) 1% (0 +200)

(A1 4+ 222) 1 %= 4 (A +2)0)

2
aaf) } Pie
és> :| \112,5

+ ((/\1 + 2)\2)86;35 + )\2%%7: + )\26 T +2(M + )\2)3)(5 + (M + )\2) 8561 ) \11375}(11'.
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We use the equations in (4.5) to deduce

BE,a[Usa \IIE] = - {(_1325595 + xl&eXf—:) \I’l,s + (xlgsps + 1‘25:—:)(5) \Ij2,5 + 557'5‘1’3,5} dz
Qe,a

==& / {(—ﬁgpa + xlXE) \111,8 + (mlpa + xQXa) \IJ2,£ + Ta\ij},a} dz
Qe.a

= —§a/ (V1 V1 +ve2Woe + e 3Ws ) do = —E&c(ve, Ue) 2., r3) = 0
Qe .a

since (ve, ¥e)r2(q. ,r3) = 0. Thus we have seen that Be 4[ve, V] = 0. Hence, from (4.7) we see
B; o[ve, ®c] = 0 and we conclude

d
dig (Re,a(vs +(®.))
and v, is indeed an eigenfunction of (4.1).

Using the characterization of the eigenvalues, we know that {&(e) ];“i - {,uk(s)}];“i and
(k) (k) (k)

’4:0 =0,

that the associated functions v = (v1cs V90, V3,2 ) With
nga) = —wop (s, w3) + 21X (s, 23),
) = 21p® (s, 25) + 22X P (s, 23), (4.8)
k
Ui(%,a) = Ts(k)(87 1.3)7

are eigenfunctions of (4.1).

However, these eigenfunctions are not related (and in fact are orthogonal) to the bending
mode eigenfunctions (see Section 3). From the Max-Min characterization we prove that the
eigenvalues & (g) are bounded for € > 0 and each fixed k € N. For that purpose, we note that
we can split the eigenvalue problem (4.5) into two different eigenvalue problems, since there is
no equation involving p. and (xe,7:) (or its derivatives) at the same time. Thus, we write

{& (12T = (R (125 Uk ()12 S L) 1S,

We perform the following change of variables. For z = (21,22, 23) € Qc 4, let s = \/x% + x%,

and (x1,x2,x3) = (€y1,€Y2,Y3), SO that s = es with 5 = \/y% + y% We write y = (y1, Y2, y3)-
We define the following function spaces.

Wie={¢p€ H (0,4,R) |¢=0o0nT11,},
Wia= {pe Hl(QLa) | ¢ =0 on Fl,l,a}-

We define fg to be the smallest closed subspace of W , such that if v2 = (vfe, vgs, vgjs) €
g, then

(Uls,aﬂ U2S,aa U?ﬁg) = (leE(ga y3)7 yQXE(ga y3)a Ts(ga 3/3))7
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for some x., 7. € Wi ,4. Let Uf € $Hs. The Rayleigh quotient for the stretching mode is rewritten
as

. 1 _ 2

S¢..S OXe v o1

RE (’Us) = ~2 o X / {)\]_ (%‘8)% +%%X€+ 6;3)
/Q (XE + Te) sdsdys Q10

1,a

2 - 2 N2
Ote 1 (OXe 4 107 1 9%e 1132 ) (> g~
+2)\2<(3;3) +§<8§§3 +58T'§> +<E 8X§) +(E§Xs) >}3d3dy37

(4.9)

with X:(S,y3) = esx(S,y3). Using the Max-Min principle (Proposition 2.3), after the change
of variables, p7 (¢) is rewritten as

15, (e) = sup inf{RZ(®) | ® € H\{0},® L Z in L*(Q4)}.
ZeMk—1(21,q,R3)

Let {7(™(y3)}1>% be a linearly independent system satisfying 7" = 7" (y3) € Wy, for
each n € N. For each n € N, let vgn) = (0,0,T(”)) € Hg. We fix kK € N. Choose an arbitrary
7 € Hp_1(01,4,R3) and let 7 = L.H. vgl),vg),...,vgk) be the minimal linear space that
contains the set {Ug),vg), e ,Uék)}. Note that dim Z = k and that each Ugn) € Wi, (for all

n € N), so we have that Z C W ,. Since dim Z < dim Z , we know that there exist a function
U € ZNZ* and a vector (c1(¢),...,cr(e)) € R¥\{0}, £ > 0, such that

k
U= e (o).
n=1

Note that since both Z and Z+ are subsets of Wi 4, we have also that ¥ € W, and due the
fact that (c1(g),...,cx(c)) € R¥\{0} we deduce that ¥ € W ,\{0}, so we can apply RZ to .
We compute R (¥) and obtain

K 2
drm\ _
/Q (A1 4 2X2) (Z cs(€) (Iyg ) sdsdys
58 1a n=1
Ra (\Il) = . 2
/ (ZCS(E)T(n)> sdsdys
Qa0 \p=1
k
dr® q4r@
A1+ 2 cple)ce sds
/ﬂl,a< 1 2)p§1 p(€)cq Qs v Y3
— . (4.10)
/ Z Cp(E)Cq({:‘)T(p)T(Q)S dsdys
Ql‘lp,q—l
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Let us put

dr® qr@ _ N o
~y :/ sdsdys, ~ =/ TP DF d3dys.
P Jay. dys dys " o

Note that since we chose the system {T(") }:3 to be linearly independent and by the symmetry

Ypg = Vap> VIpq = Vgp» We have that (Vpq)i<pg<t and (Ypq)1<pq<k are positive definite matrices.
Therefore, all of its eigenvalues are positive. Let 7, be the biggest eigenvalue of (Vpq)1<pg<k
and 7y, the smallest eigenvalue of (Vpq)1<p,q<k- With this notation, we have the bounds

k
3" epe)cg(e)rpg < vlea(e)? + -+ enle)?),

Therefore, (4.10) becomes

k
(A1 4 2)A2) Z cp(€)cq(€)pg ) ,
7%5(\1,) _ p.g=1 < (A1 4 2X2)7x(c1(e)® 4 - -+ + cr(e)?) _ (A1 + 2X0)7s
c k - =~ 2 4 ... 2 = .
Z c (5)6 (5)& ’7*(01(5) + + Ck(&) ) Ve

p,g=1

Put C = ()‘1%2& We obtained that for a certain ¥ € W , there exists a positive constant

C independent of ¢ and independent of the choice of Z such that RS(¥) < C. Thus, taking
the infimum, we have

inf{R3(®) | ® € H\{0},® L Z in L*(Q1,4)} < RE(¥) < C.

Since Z was arbitrary and C' does not depend on the choice of Z, we can take the supremum
on both sides over Hk,l(QLa,RZJ’) to obtain

g (€) = sup inf{R3(®) | ® € H\{0},® L Z in L*(Q1,4)} < C.
ZEHk_l(QLa,R?’)

Here we used the characterization of ,uf (€). Therefore we obtain
p(e) =0(1) ase— 0, (4.11)

that is, uf (¢) is bounded for £ > 0 and for each fixed k € N. Thus, there exists a subsequence,
still denoted by ¢, such that lim._,g ,uf(e) = ,EE

Remark 4.2. Since bending eigenvalues satisfy lim._,o pi(e) = 0 (Theorem 3.1), if we see that
ﬁf # 0, that would mean that for every k € N there exists a sequence q(k,e) — 400 as e — 0
such that

: _~S
L pig(r, ) () = Hig-

We will see a similar result for torsional eigenvalues.
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Analogously, we define 7 to be the smallest closed subspace of W , such that if Ug =
('U%;, 'U%;, Uga) € YJT, then

(Ufsvvgsavgja) = (—y2p:(5,73), y10:(5,3), 0),

for some p. € Wy ,. Let vg € 9. The Rayleigh quotient for the torsional mode is rewritten as

(1 3\ (9p\P) -

/ o33 - ( FE) + ( p8> dsdys

~7r, 7 .0 e Js 8y3
R (v;) = . (4.12)
/ 5 p2 dsdys
Ql,a

After the change of variables, u] (¢) is rewritten as

pti(e) = sup inf{RY(®) | ® € H7\{0},® L Z in L*(,)}.
ZE’kal(Qlya,RS)

Let {p(™(y3) 22 be a linearly independent system satisfying ™ = p)(y3) € Wi 4 for each

n € N. For each n € N, let Ur}n) = (—y2pe,Yy1pe,0) € HT. For each fixed k € N, we repeat a
similar process as before, to obtain that

pl(e)=0(1) ase—0,

that is, uZ(e) is bounded for € > 0 and for each fixed & € N. Thus, there exists a subsequence,
still denoted by &, such that lim._, ,u;{(e) = ﬁg

Our goal is to study the limit eigenvalue problem of the sequence {7y} U {fZ}23, so
we restrict ourselves to torsional and stretching eigenvalues.

4.3 [L? convergence of the eigenfunctions

We prove that the eigenfunctions related to torsional and stretching modes of (4.1) have a
non-zero limit. Note that in Rayleigh’s quotient in (4.4) there are no cross-terms involving p.
and (xe,7:) (or its derivatives). Thus, we split the computations into two parts.

4.3.1 Stretching mode

We deal with the stretching mode. We fix k € N. Let ,uf (€) be the k-th stretching eigenvalue
of the problem (4.1) and let vék)(x) = = (vgkg, vé{?,vé’fg), x € Qc with

vék) = (.’IZ‘lX{gk) (37 333)7 xQXQk) (87 .’1,’3), Tz—,‘(k)(s7 'CUS))’

be its associated stretching eigenfunction. Here s = /27 + x3. For commodity we write sxgk) =

N@. We change the domain to € ,, hence we perform the change of variable s = ¢s. The

~ ~ =(k) ~ ~ ~
previous functions in the new domain become Uék)(s, y3) = vék) (€3, y3), Xi )(s, y3) = ng) (€3, y3)

and ?é’“) (s,y3) = Ta(k) (es,y3) with 0 < y3 < 1,0 < s < a(y3). However, for commodity purposes,
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we abuse notation and we still denote the new functions in Wi , by )ng), Tg(k). With this notation,

the weak formulation for the stretching eigenfunction vék) is
103 1150) ordk 109 |, 11
/Q {)\1 (6 i%s +E7 + 87—:1:3 ) <685+ ¢+6x3>
1,a
or™ ap 1 (ox® | 107 1oxMod 117 s s
+2>\ <8Ta:3 6:;)0;),+2<§x3 +6 gs (8;@,_}_787@)—’_52 gs 87%+£72?X5 w SdeaZg
2 2
= 1S (e) / <(>z§k>) + (T§k>) >§d§d$3, (4.13)
Ql,a
where @D p € Wy, are test functions. We put 1/} Xe ), p= Tg( ) n (4.13) and obtain
17 11 ( ), artM
/Q {/\1 <a b tesXe T G
1,a
ar™\? 1 (ax® | 10:® ? 103 2 110\ )~ 4=
T2 <8x3> T3\ om T2 ) T 705 +<E§X€ ) sdsdzs
s <> W\ 7=
= py (5)/ <<X£» )> + (7’8( )) > sdsdzxs. (4.14)
Q,a

We fix the norm
/Q ((Xg >) + (Tg’f))Q) Fdsdas = 1. (4.15)
1,a

Let (ap);fl’ be any positive sequence such that e, — 0 as p — +o00. From (4.11), we know that
the eigenvalue yy (g,) is bounded. Therefore, from (4.14) we deduce that

37'5(5)
=0(1 4.16
- o), (4.10
ox) 1 o7l
=0(1 4.17
o+ -2~ o), (4.17)
a%(k)
=0 4.18
% _ o), (118)
1._
X =0(,), (4.19)
~(k)
as p — +oo in the L*(Qy,) sense. From (4.18) we know that 83” is bounded in L?*(Q1,), so
2~(k> ~(k) 2. (k)
?993 4= is bounded in H~'(£2;4). On the other hand, from (4.17) we see that 2 6x3 Py L Bagzp is
92+ (k)
bounded in H~1(Q 4). Combining this two facts, we get that —=£- is bounded in H~(Q1,4).
o7k 2 (k)

From (4.16) we know that lf; is bounded in L?(£2;,), so g%;& is bounded in H~1(Q1,).
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(k)

. . . a £ . . —
Moreover, since Tg(f) is bounded in LQ(QLQ), we see that ggp is bounded in H 1(91@). To

3Tg(k) 82T5(k> 827'5(k) 1 8Tg(k>
D P p 3 - D 3
sum up, —5%, —5= and .05 are all bounded in H™*(Q1,4), so we deduce that —2- is

o (k) Ors) oty 2 (k) .
bounded in L*(f21,). Note that 72,”, —5Z- and 8’; are bounded in L*(€;4), hence 7, is

bounded in H(Q 4). Therefore, there exists a subsequence (51,(,]));:1 C (ep) such that

k) s (k) weakly in Hl(Ql,a) as ¢ — +oo. (4.20)

€p(q)
From Rellich’s theorem, we moreover know that

E(k()) — ) strongly in L*(Q1,4) as ¢ — +oo.

We combine this with (4.15) and (4.19) to see that HT(’“)HB(QM) = 1 and we conclude that

(k)
Tep(q)
ar(®)

converges strongly in L?(Q;,) to a non-zero function 7®). From (4.17) we deduce that

= 0, so we have 7?) = 7(K)(z3). Furthermore, in virtue of the boundedness of 115 (ep)s

s
there exists an even further subsequence ()% C (e »(g)) and a constant fiy such that
li — S
Jim (G =

We deduce the limit equation for the stretching mode. To simplify notation, we define ¢§’“),

@gk), q>§’“) by the following relations.

¢(k ~(k)

)

o) — 3¢ Lo
€ 8%3 ’

(4.21)

. a% L1 e
8955 € 88 '

From (4.16)-(4.19), we note that (bé]:) = 0O(1), @é’:) = O(1) and \I/g:) = O(1) in L*(Q4)
as 7 — +oo. We write (), ®®) W*) their respective (weak-L?(,)) limit. The weak
formulation is then written as follows.

(k) (170y | 2
/(21,a {>\1(I)E (E 88+ w+8:r:3>

) - - ~ i~
+2) (8523 2o +1ul® (0L +152)+1 < 090 | pk >(s‘;?;%§+z/)) +;¢£’“)w> }Sdsdxg

STAG /Q (320 + 70 p) 5dsaas, (4.22)
1l,a

where ¢, o € Wi 4 are test functions. We put € = ¢, in (4.22). We let ¢ = 0 and (4.22) becomes
(k)

¢ ore” dp 1 10

o) Cr (k) 1 0p o 5 *)

79"’2 +— +5¥ drs = . S d3da.
/m,a {)\1 Qs A2 drs Oxz 2 & (9% sdsdrs = py (¢ )/Ql,a e, s dsdrs
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We let ¢ = ¢(z3) and take the limit » — +o00. Recall that ag;f) =0 and 3 () — fiy. We

obtain
d dr®) ¢
/ Ad® S 4 9y, 2 sdsdas = i / ") p3 dsdus.
Ql,a dﬂ?g d.ng d.fvg Ql,a

Using the definition of <I>§’“), we know that ®*) = ~8¢( ) + 2¢k) 4 dT( ). We substitute this
expression in the previous equation and we get

_{ 0¢® dr \ do dr®) dp | _ o
A 20 4 — ] = ]2\ dd:S/ () »5 d5das.
/Ql,a< 1 (3 (s 7% + 2¢ dx;;) dx3>+ 25 P sdxs = pu, Ql,aT psdsdxs

We integrate respect to s to see

l 24 (k) d l 2
/ (Ala(m3)2¢(k)(a(w3),:c3) + (A1 + 2)\2>a(23) T & dzs = uf/ a(x23) T(k)cp dzs.
0 0

dxg dxg

(4.23)

We go back to equation (4.22), and we put ¢ = 0 and ¥ = (1 so it becomes

) (9N G k) O o _an ®. | s~
(I) 2 2 — —
/Ql,a{)\ < % + 77>—|— )\2( . D +( 7% )(sa§+n + ¢ | psdsdas

— 55 /Q 2207 dsdas,

We put n = n(z3). Then the previous equation becomes

(k) Cr g k) an gbCT ®) o
/(vzlya {Alq)g“ <20+ 2X9 ( 61'3 ( 95 + ¢<7‘ ) n+ chT n) }5 dsdxs
—_— ~2,2 (k) ~
= Mg (<7”)/Q S Crd)cr ns d3d$3

1,a

We take the limit » — +o0o0 and we see

(k)
/ <2A1<I>(k)n§+ 2o <§a¢~ <k>) ng) dsdzs = 0,
Ql o 88
dr
2\ 2™ )+ sn) + 2\ 26 77) dsdzs =0,
L (o (5 (o) 2z (#0%) n) asi,

dr k)
201 + 2)0) — (320 ) + 205 dsdzs = 0.
[, (e rom (o) + st ) s
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We integrate with respect to s and get

l 2 4+ ()
/ (2()\1 + Ag)a(w3)2¢(k) (a(z3), x3) + 21 a(x;,) CZ— ndxs = 0.
0 T3

Since 7 is an arbitrary test function, we deduce

dr )
diL'3

2(A1 + A)a(zs)20™ (a(xs), x3) + Aa(xs)? = 0.

We know that a(z3) is a positive function so we obtain the relation

1 N dr®

(k) - -

(4.24)

We substitute this relation into (4.23) and conclude

dr® d s [
Y/ )2 ¥ SOd x3 :MS/ a(z3)?r® o ds. (4.25)
x3 :E3 0

We recall that Y = % The test function p(x3) € Wy, satisfies p(0) = ¢(I) = 0, so we
use the integration by parts and deduce

b d dr®) :
-V 2 :NS 2__(k) )
/deg a(x3) dzs pdzg Mk/o a(z3)" T dws

Since ¢ is an arbitrary test function, we get

d dr (k)
Y — 2 =y 27 (k) 4.26
o ( (@22 5 | = Afa(as)?r (4:26)
Moreover, note that the eigenfunction vék) satisfies the Dirichlet conditions vgk) =0onI'1.,.

Since véka) — 7% we have that the limit function 7(¥) satisfies 7®0) = 7 (1) = 0. We
combine these boundary conditions with (4.26) and conclude that the pair (i, 7(¥)) satisfies
the eigenvalue problem

d
v (a ( 70
M (0) = = 0.
Note however, that these eigenvalues {uk} might not be all the eigenvalues of the previous

eigenvalue problem, in other words, if we 1et {,u °] be the set of all eigenvalues of the
eigenvalue problem

$3 T(k) (O<.CI}3 <l),

{ Y L (a4 ) = mfaly)* (0<ys <),
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then we proved {77}/ C {ug}/>5. Since the sets are discrete, alternatively, we see that for
every k € N, the inequality

~S

fig > 1y (4.27)

holds. Moreover, we note that uf # 0, hence ﬁf > (0. In Section 4.4.1 we will prove that the
inequality ﬁf < uf also holds.

Remark 4.3. The fact ﬁf > 0 contrasts with the nature of bending eigenvalues. If u(e) is
the k-th eigenvalue (without restricting to any mode) of (4.1), then we know from Section
(3) that lim._,o ug(e) = 0. However if we restrict ourselves to stretching eigenvalues, then
lim_,q uf (e) # 0. Therefore, there exists a sequence ¢(k,&) — +00 as € — 0 such that

lim g (k,e) (8) - /jg

e—0

The same statement holds for torsional eigenvalues, as we will see in the next part.

4.3.2 Torsional mode

We repeat a similar procedure for torsional vibrations. Let ul (¢) be the k-th torsional eigen-
value of the problem (4.1) and let wl) = (—xgpgk)(s,xg),:nlpgk)(s,:z:g),()) be its associated
eigenfunction. As before, we perform the change of variables s = €s and the weak formulation

of the problem becomes

(1900 9 a0\ _ _ ) .
A | = = — =L / 3 (k) 49
Q/QMS (52 93 8'§+ I sdsdxs = py, () Ql,as pe’0dsdxs, (4.28)

where § € Wy, is a test function. We fix the norm
/ B 2d3das = 1.
Ql,a

As before, let (Sp);:OCf be any positive sequence such that e, — as p — +o00. Since ul(ep) is

(k) (k)

bounded, from (4.28) with € = ¢, and 6 = pé’;), we have that 82}” = O(gp), 88;1752, = 0(1) in
(k) (k)

the L?(€) o) sense. Therefore, since pgi), ang and 8;;; are bounded in L?*(Q; ), we have that

pg;) is bounded in H*(Qy,). Therefore, there exists a subsequence (sp(q));;o‘f C (gp) such that

pglzzq) — p®) weakly in HY(Q,) as ¢ — +o0.

By Rellich’s theorem, we furthermore know that

péi?q) — p(k) strongly in LQ(QLG) as ¢ — +oo.

From the strong convergence and ||p(k)||L2(Q1 .) = 1, we have that p®) is a non-zero function.
Ap*)
Js

Note moreover that = 0 and in particular p*) = p(¥)(z3). Furthermore, in virtue of
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the boundedness of pl(g,), there exists an even further subsequence (¢.)1% C (ep(g)) and a
constant /il such that
tim (G = A

T—+00

We remark that the subsequences (g,(,)) and (¢;) might not be the same as in the stretching
case. However, with abuse of notation, we denote them the same way.
We now deduce the limit equation for the torsional mode. We put ¢ = (,, 6 = 6(x3) in

(4.28) and take the limit 7 — +oo. Recall that 8p< =0 and pl(¢) — fF. We obtain

dp®) 46
o / $BL T 5day = @b / 3009 dsdas,
dazg dxs Qo

Yrdp®™ de g Ta(zs)t
4 s duy 2 _“’f/o P 0des

The test function 0(x3) € WLa satisfies 6(0) = 6(1) = 0, so we perform the integration by parts

to see
l d dp(k) l
X [ — 0dzs = 450 dzs.
2/0 s a(zs)* s r3 = uk/o a(z3)"p x3

Since @ is an arbitrary test function we deduce

d dp) _
“hag (a<x3)4 o ) — W a(zs)o®. (4.20)

Moreover, note that the eigenfunction wék) satisfies the Dirichlet condition wék) =0onI'1c,.

Since (wgkg,wékg)) = (— xgpgk),xlpg )), we have that the limit function p*) satisfies p(*)(0) =
p¥) (1) = 0. We combine these boundary conditions with (4.29) and conclude that the pair

(iF, p®)) satisfies the eigenvalue problem

(k) ~
{ ozt (alws) 4 ) = ifalas)tp® (0 <ws <),

pM(0) = p® (1) = 0.
Note however, that these eigenvalues {ﬁ;{}gﬁ‘{ might not be all the eigenvalues of the previous

eigenvalue problem, in other words, if we let {M;}F 2’;’01 be the set of all eigenvalues of the
eigenvalue problem

{ Dol (alys) 42 ) = ifalys)*p (0 <ys <),
p(0) = p(1) =0,

then we proved {7} }/°5 C {uf}>]. Since the sets are discrete, alternatively, we see that for
every k € N, the mequahty

TAENTA
holds. Moreover, we note that ul # 0, hence il. In Section 4.4.2 we will prove that the

inequality ﬁ% < M;}F also holds.
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4.4 Upper bound for the limit eigenvalues

From Section 4.2 we know that the problem (4.1) has eigenvalues {13 ()}, and {u} ()}
associated to stretching and torsional vibrations. We let {47} and {uf}°] be the set of
eigenvalues of the following eigenvalue problems respectively.

{ _Yd%S (a($3)2%> = pa(xs)?r (0 < a3 <),

7(0) = 7(1) = 0.
{ “dagh; (a@a) 52 ) = nlalas)p (0< 5 <),
p(0) = p(l) =0

We have proved in Section 4.3 that for every sequence (51,);2‘{ with €, — 0 as p — 400 there

exists a subsequence ((,) C (gp) such that
Ii S ) li T _ T
Jm g (Gr) =g, g (Gr) = g,
vaith {2 % {pg 2] and {al 12 € {uf},25. As a consequence, we have t}f inequalities
uf > ,u,f and uf > uf. In this section, our aim is to prove the inequalities ,uf < uf and
ﬁ;{ < ,ug. Furthermore, we prove that the previous convergence does not depend on the
sequence (&p).
We perform the change of variables (z1,z2,23) = (ey1,€y2,y3) and we rewrite in terms of
y = (y1,y2,y3) the Rayleigh quotient introduced in (4.2).

_ 1 1 1 2
RealU) = 1z % / A1 (EH(U) +-Exn(U) + E33(U))
HUHLQ(QLmRii) Qa € €

2 2

1

+20 | 5 D leij<U>2+2§ 1:El-g(U>2+E33<U)2 }dy
1,]= 1=

where U = (Uy, Uz, Uz) € Wy ,\{0} and for 1 <i,j <2

1 /0U; 0U; 1 /0U; 19U; oUs3
Eii(U) == L), E; == - ., E =2,
i) 2 <3Z/j * 3%) » Ea(U) 2 <3y3 e 3%) (V) ys3

4.4.1 Stretching eigenvalues

We first work with the stretching mode. Consider the eigenvalue problem of the ordinary
differential equation

{ ~Y 5 (a(y3)2§773) = palys)*t (0 <ys <), (4.30)
7(0) =7(l) = 0.

Let uf be the k-th eigenvalue of the problem (4.30) and 7(*) its associated eigenfunction. We
recall that for stretching eigenvalues we have ﬁf = hlll ,uf (&).
T—+00
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We want to show that 7 < py. We multiply the system (4.30) by 7 and integrate over the
interval (0,1). Applying the integration by parts we obtain

: o (AT 2 s : 2.2
Y/ a(ys) <d> dys = p /a(yg) T dys.
0 Y3 0
Therefore, if 7(%) is the eigenfunction associated to the ,ug , we have that
dr (k)
v / a(ys) ( ) dys

| (4.31)
/0 a(zs)? (T(k)) dys

We try new test functions ©(y) = ©

= (617627@3)7 ¢(y) = ¢ = (gblad)?ad):i) given by
@i = €d)i (Z = 1,2),

@3 :T+6(Z)3,

where the function 7 = 7(y3) depends only on y3. We calculate

Knowing this, we compute ﬁm(@).

dp1 | Opy | dr a¢3>2 2 ,
A to =+ ——te ) +2% ) Ej d
~ /ﬂl,a : ( Oyr Oy, dys | Oys 2 ;::1 i(9)” | dy
R87a(@) 5

/Q (a%ﬁ% + 203 + (1 + a¢3)2) dy

0¢i  0¢s\? <dT a¢3>2
+/ma (22 <3y3 &Uz’) T W

dys3
/Q <52q51 + 202 + (1 + 6q§3)2>dy
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We take the limit ¢ — 0 and we see

dp1  O¢po  dT )
A1 +— + d
/Qm < oyi  oye | dys) Y

lim R. a(®) =
Ql,a
2 2 2 2
1 6(253 dr
2\ Eij(¢)? + = il d
/Ql,a ’ ijzzl i(?) +2;(8yi) +<dy3> Y
+ : (4.32)
/ 2dy
Ql,a,
We want to find ¢ = (¢1, ¢2, ¢3) that minimizes the numerator of (4.32)
2 2 2 2
Op1 | O > 5 1 <8¢3> ( dr >
M :/ A<++ +2X Eij(¢)® + - (S5 ] )y
s(?) Q4 "oy " ays T dys 2 ”21 i(9) 2=\ Oyi dys Y
In order to minimize Mg, we put the test function ¢ as follows.
2
=> BPs)y,  (i=1,2). (4.33)
p=1

¢3(y) =0

Remark 4.4. Note that we could have put the same ¢ as in (3.53). In this case we would obtain

az(,iq) =0 for all 1 < p,q,7 <2, so it makes sense to drop them.

If we substitute the test function ¢ into Mg we obtain an expression that can be written
as a polynomial of degree 2 on the variables B,(f) for 1 < i,p < 2. Thus, it can be further

rewritten as fol (ﬂTX B8+ yﬂ) dys for a certain matrix valued function X and a certain vector
valued function ) with

B = (,3%1) 1) 51 (2))T‘
Since we want the minimum, we differentiate the expression fé (BTX 5+ yﬁ) dys with respect

to B and solve the linear system 2X 3 4+ ) = 0 for 5. After long but simple calculations we

obtain
m__ 1 M dr o 1 A dr

g 20+ hedys’ 2T 2M + dedys’
In fact, the matrix X in the system is degenerate and we additionally obtain the condition

(2) + ﬁ(l) = 0. It can also be checked that the minimum obtained is always the same, so to
snnphfy, we put ﬂf) =0 and Bél) = 0. Therefore, recalling (4.33), we obtain

1 N dr

1 N dr
P2(y) = 2)\1 g A ? (4.34)
¢3(y) =
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Substituting (4.34) into (4.32) we obtain the minimum

/ A2(3A1 + 2X9) (df)?d
Ql,a >\1 + AQ dy3 Y

lim R, o(©) = : (4.35)
e—0 / T2dy
Ql,a

Substituting 7 = ) into (4.35) and integrating over the cross-section we have

2
! dr)
-
Y/ a(ys)? ] dys
~ 0 Y3
lim R, ,(©) = ; ,
e—0 9 (k) 2d
a(ys)” (7 Y3
0

which, from (4.31), turns out to be

: s> _ S
;I_I}(l] Rs,a((a) = M-

These computations are a motivation of how to choose proper test functions for our next
goal, which is to use the Max-Min method in order to prove the inequality ﬁ,f < ,ug . We
consider the eigenfunction 7(*) corresponding to the eigenvalue ,ug of problem (4.30). We
choose the functions 7(*) so that

/ 7O E)dy = §(k, k), (4.36)
Ql,a

where k, k" € N and § is the Kronecker delta. Using the weak formulation of (4.30) we know
that

dr®) qr &)
Y/ = dy = ok, k). 4.37
oy dys y = pgd(k, k') (4.37)
Let us consider the test functions
1 A dr®™ ,
o™ —c. [ -2 ; =1,2),
i=€ ( 2N+ Ao dy3y> (=12 (4.38)
o\ = 7,

with n € N, so that ®™ = (@gn),q)gn),q)én)) € s € Wi, Choose an arbitrary Z €
Hy—1(Q1,4,R3) and let Z = L.H. [Cb(l), o <I>(k)] be the minimal linear space that con-
tains the set {1, ®®@ . &®1}. Note that dimZ = k and that each &™) ¢ Wi, (for all
n € N), so we have that ZC Wi q. Since dim Z < dim 7 , we know that there exist a function
U = (U, Uy, U3) € ZN Z+ and a vector (c1,...,cx) = (c1(e),. .., cx(e)) € RF\{0} such that

U=> c(e)0™.

n=1
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Note that since both Z and Z- are subsets of Wi 4, we have also that ¥ € W , and due the

fact that (c1(g),...,ck(e)) € R¥\{0} we deduce that ¥ € W; ,\{0}, so we can apply ﬁm to
¥. We compute

(”) 1 k aq)( n)
dr .o
:_Ezcn 2)\1+)\2 dy EZ3(\II) 25520 ( ) 83/3 (1 SZ,] §2>7
n= 1
Epp(V) = Epn(¥) =0,  Ez3(¥ Z cn(e dy3
where 51(»") = %q)gn) = % /\1)4\:/\2 g;S)yi for ¢ = 1,2. Using these computations, the numerator

of the Rayleigh quotient Rg,a( ) is

2 2
e 2k oy de®
/Q1 ch AlfAz s 20 | D ()i dus dy

i=1 \n=1

[RES DRI o W (S
+ cn(e + cple

Q1,0 ’ i=1 ay3 n=1 dy3

k

dr®) 4@

= > el [ YIS WAe Y o@a@rpas (430
pa=1 Qa Y3 dys pa=1

for some functions k(p, q,e) = O(1) as ¢ — 0. Note that these functions k(p, ¢, ) do not depend
on the choice of Z. Due to (4.37), it follows that (4.39) becomes

k k
dr® qr@ _
> a@eE [ YEET e S qearpae)
pa—1 Q.a Y3 dys pa=1
k
= Z Mp o+ e Z cp(€)eq(e)E(p, g, €). (4.40)
p=1 p,q=1

Note also that the denominator of R, ,(¥) satisfies

k 2
/ (WF + W35 4+ 03) dy > / V2dy = / (Z Cn(g)Tm) dy
Ql’a Ql,a Ql,a 1

/ Z cp(e)eq(e P) @)y (4.41)
Qapg=1

By the homogeneity property of Rayleigh’s quotient we may assume without loss of generality
that 2];:1 cp(€)? = 1. Combining this fact with the orthogonality in (4.36), we get

k
ldy=> cp(e)’ =1  (442)
p=1

k

I > ey = 3 el /

La pg=1 p,q=1 Ma
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Therefore, with (4.41) and (4.42), we deduce that
/ (UF+ 03+ ¥3)dy > 1. (4.43)
Q1.4

Using (4.40), the bound (4.43) and the fact that pg < ,ufﬂ holds for £ € N, we obtain

k
Z ,Up +52 Z Cp Cq p:Qa )
Rea(W) < 22 ""11
k k
Z 24 Z cp(e)eg(e)F(p,q,e) < pi +€° Y [Rp,g,e)|. (4.44)
p=1 pyg=1 p,q=1
We denote i
@) =uf + Y [R(poa, o)l
p,g=1

Note once again that £7 () does not depend on the choice of Z. We know from (4.44) that
Inf{R. o(®) | ® € Hs\{0},® L Z in L}(Q4)} < Rea(¥) < £7(e).

Since Z € Hy—1(Q1,q, R?) was arbitrary and £7 (¢) does not depend on the choice of Z, we take
the supremum over Hk_l(QLa,]R?’), so we obtain the upper estimate

Hi(e) < £ ().

Taking the limit ¢ — 0 and using 5 (¢) — fi; (for a certain subsequence), we have

fi, < limsup i () < limsup £ () = pj,,

e—0 e—0

which agrees to the desired inequality ﬁf < uf (k € N). We combine this fact together with
the inequality (4.27) to conclude that for every k € N,

~S S
Hig = K-
We proved lir+n (13 (¢) = Jiy for a certain subsequence (¢,)1%5 C (sp);;’j’, but note that
r—r—+00

we have shown that ﬁf = ,u,f independently of the first chosen sequence (ap);ff. Since this
sequence was arbitrary, we can see that in fact for every k € N we have

lim 1§ (<) = 11§ (4.45)

e—0
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4.4.2 Torsional eigenvalues

Similarly, we prove a similar result for the torsional mode. We consider the ordinary differential
equation

g (alw) 50 ) = i ala)te (0<m <)

p(0) = p(l) = 0.

Let uf be the k-th eigenvalue of the problem (4.46) and p¥) its associated eigenfunction. We
repeat a similar process we employed in Section 4.4.1 with some minor changes. In this case
we use the test functions

with n € N (compare these test functions with the ones in (4.38)). Following similar steps we
prove that for every k € N we have

Ay = Mg
and
lim ij; (¢) = p; -

e—0

4.5 H' convergence

We now prove a result on the strong convergence in H 1(QLQ) of stretching and torsional eigen-
functions. We follow the notation in Section 4.3. We define

(k) (k)
)y 1Oxe” 11 ) O
0 =5 Yo
n dry 2 2\ oz T a5 |08 c 95
(k) (k)
k11 g (k) _ 10pe k), .\ _ Ope

From (4.16) and the weak convergence PN (z3) in HY(Q1,4) (see (4.20)), we know that
'yik)(s) — ddT—;z) weakly in L?(Q1,). From (4.18), (4.19), the definitions in (4.21) and the

: k (k) k (k)
equation (4.24), we see that 'y:g )(s) — k) = _%/\1);1& ddm , %(L )(5) — ¢k = —%)\lﬁ‘:/\Q ddxg
and ’yék) (e) = U weakly in L?(Qy,4). We note that fy(()k) (e) = %k) (e) + ’yék) (e) + 'yflk) (e) and
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we write
k) _ Ao dr®)
00T TN O day

g _dr® gy 1
mMmo= I By
dxs V2
w_ 1 A dr®
T 2\ + Ao dxsg ’

o® k) _ _1 A\ dr)
E 2\ + Ao dxsg

so that fy-(k) (e) — 'yi(k) weakly in L*(Q1,) for i =0,...,4. We now prove that these limits are

1
in fact in the strong sense in L%(2;,). We define

4
Ao = / <A1( 00 =" + 20 30176 %-(’“))2> s dsdas. (4.47)
Mo i=1

It is clear that A, > 0. For ¢ = 0,...,4 we have that

k k
9 (€)= 1320,y S A (4.48)
by the ellipticity of the operator. We use (4.14) to compute A in (4.47).

As =1 () /Q <(>?§’“’)2 + (r§k>)2> 5 dsday
+/91,a (Al ((vé N2 9y (B0 (o )) +2A2§;((%(k>)2_2,y§ NCIE ))> 5 d5das,

From the weak convergences 'yl-(k) () = 'yl-(k) in L2(Q1,) as € — 0, we deduce that there exists

a constant A > 0 such that lim._,g A = A. Moreover, we compute A and get

! 2 9 4
A=u /O “(“”’“’23) (TUf)) das — /Q </\1(’y(gk))2 +2X Z(’yi(k))2> Fdsdzs, (4.49)
1,a

i=1

where we used (4.45). From (4.25) (with ¢ = 7(%) and the fact that iy = 1), we see that

S/l a(zs)” (+) y/l alas)? ()" (4.50)
M : 9 T xr3 = ) 9 dx3 xIs3. .

We compute the latter integral of the equation (4.49).

4
/ (Al(vé’“f + 2 Zw}’“)?) 5 dsday
a i=1

1 )2 dr® i @\ ~ 1~
/ < MA) + 2 (1+2<2A1+1A2) )) vl IRE (qf ) 5 dsdus
(k) 2

/ ( T ) Fdades + Ao / (w>) $dsdus.

Ql,a
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We substitute this computation and (4.50) into (4.49) and we see

A==X) W20, -

However, we know that A > 0 and Ay > 0. Therefore, A = 0 and ||\I’(k)”L2(QLa) = 0. Since

A =0, from (4.48) we furthermore obtain that %-(k) (e) — %-(k) strongly in L?(€ 4) as € — 0 for
i=0,...,4. Using a very similar argument as in the proof of the L?(£); ,)-convergence of T,g(k),
we conclude that

7®) 5 78 strongly in HY(Qy,) as € — 0. (4.51)
(k)
For stretching eigenfunctions we repeat a similar argument with pgk). We know that 85753 —

(k)
d(fx(? and %8%—% — o) for a certain function o) weakly in L*(Q1,) as € — 0. We define

(k)
2B = o) 4 = ) g

» V6
R 2 2
A, = )\2/ ((%()k) (e) — ’yék)> + <7ék) (e) — ’yék)) > sdsdzs.
Ql,a

We take the corresponding limit and compute

2
l 4 l 4 (k) 9
N MG O A a(zs)” (dp _ ®\2 ==
A—Mk/o 1 (p ) dxz — A2 .4 425 dxz — A2 o (g ) sdsdxs

2

— e
L1 L

Therefore, A = 0, fy.(k) (e) — fy.(k) strongly in L?(Qy,) for i = 5,6 and

p®) —s p*) strongly in H'(Qy,4) as e — 0. (4.52)
(k)

Recall that torsional eigenfunctions are written as wg (s,z3) = (—xgpgk),xlpgk) 0). If
we write w0 (s,z3) = w® (es,x3), from (4.52), we deduce that e converges strongly in
Hl(Ql’a,Rg). Let consider stretching eigenfunctions vék)(s,xg) = (mlxgk),xgxgk),n-(k))

write 70" (s,z3) = o) (€8, x3), from (4.51) we see that 5§k€) converges strongly in H!(Q4).

. If we

However, we do not have information about the strong convergence of ng) (or ng)) in HY(Q1.,4),
so we cannot claim the same convergence result for the components ﬁﬁ) and ﬁé’? . This finishes
the proof of Theorem 4.1.

We conjecture that chék) also converges strongly in H'( ,) in general. In Section 4.6 we

present a proof of this conjecture under some assumptions.

4.6 Korn’s inequality for torsional and stretching modes

In the previous sections we have proved all items of Theorem 4.1. We now further discuss
some topics about the convergence of the eigenfunctions. In Section 2 we introduced a Korn
inequality. There are several versions of Korn’s inequality specific for each situation. In order to
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prove the strong convergence of stretching eigenfunctions of (4.1), we may use a Korn inequality
designed specifically for torsional and stretching vibrations. Our next goal is to prove a Korn
inequality that works for these kind of high-frequency modes. Let ve = (v1¢,v2,¢,V3.) € Weq
be such that

Vl1,e = _xQPE(Sa 1‘3) + les(S, .%‘3),
V2 = T1pe(8,13) + 22X (5, 73),

V3. = T:(S,x3).

For commodity, we write sxy. = X. and we do the change of variables s = €s. Moreover, set
VS(UE) = (’ﬁ(vs)v cee 7’78(7)5% where

c - 87'& c o 8%& 187'5 c o 185(/5

le(,U&) - ax37 72(08) - a$3 + € 83/7 73( €) - € 8:;7
g _ llfv 5 _ lap&‘ I3 _ 8/)&

'74(7}6) -z »8va7 75(“5) T 05 76(”6) = O3

These are the terms that appear in Rayleigh’s quotient (4.14) and (4.28) (with 6 = pgk)).

|

Then there exists a constant C > 0 such that

Proposition 4.5. Assume

OXe
8:133

) —0 as e—0. (4.53)
H 2(T21,q4)

[0l 1 @r.03) < Ol (V) 22021, 0,R5)-

Remark 4.6. Let a(x3) = ¢ be a constant function and we assume slip conditions on the
boundary I'y . o, that is, u-n = 0 and (e(u) - n) x n = 0 on I'y.,. In this case assumption
(4.53) is satisfied. We conjecture that this assumption should hold in general.

Remark 4.7. By the characterization of the eigenfunctions in (4.8), we note that assumption
(4.53) is not necessary for Korn’s inequality for the torsional mode.

Proof of Proposition 4.5. The proof is divided in three steps.

Step 1: We assume the contrary.

Let us assume that for all C, eg > 0 there exist 0 < (C,e9) < €9 and voe, € Wi, such
that

020l 1 (01,0.83) > ClIV (V020 £2(024 0 RO)-

The functions vc ., can be chosen with norm equal to one. For a special choice C' = m, g9 = %,

m € N it follows that there exist &, with 0 < €,,, < £ and ve,, € Wy o with Ve | (021 0 r3) = 1
such that

1
Iy (Ve ) L2 (@ o ko) < -
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From the boundedness of v, in H* (1,4, R3), it follows that there exist a subsequence denoted
by ve, € Wi, and a function v with ||v]| g1, )3 = 1 such that

ve, — v  weakly in H'(Qy 4, R?), (4.54)

n

¥ (ve,) = 0 strongly in L?(Q1 4, RP), (4.55)

when &, — 0.

Step 2: Strong convergence of v., in H( 4, R3)

We want to now prove that in fact v., converges strongly in H*(Q1 4, R3). From (4.54) and
ggz and %pg all converge strongly in L*(Q1,) so we
conclude that p. converges strongly to a function p in H'(Q14).

We prove the strong convergence of 7.. We compute

(4.55) for v£(ve), 7§(ve) we see that p.,

075 (ve) _5875(1)5) _OXe n 18275 —51 ?xe 18275
0s Ors  050x3 e 032 £ 050x3 € 032

We see that 2% converges strongly in H=Y(01,). From (4.54) for vs. and (4.55) for ~5(v:)

032
9r. 0% O1e e

we see that ¢, 7%= and £ all converge strongly in H “1(Q1,4). Therefore %= converges

strongly in L?(€2; ;). Finally, combining this with (4.54) for v3 . and (4.55) for 75 (v.) we deduce
that 7. converges strongly to a function 7 in H'(Q 4).
To see the convergence of X, we do the following.

~ 1 ~ ~ 112 1 ~
/ <8X5 + an) Oz 5 dadars = Haxs +/ 197 Oe g,
Do Oxs € 0s ) Oxs 03 L2(Q1.0) Qo € 0s Oxs

We want to prove that the L?(; ,) norm of gg; tends to 0. We rearrange the previous equation

and get
2 ~ ~ ~
1 1
= - / 107 OXe s 3y + / <8X€ + 875) OXe 5 4.
L2(1.4) Mo € 9s Oz Q10 Oxs € 0s ) Oxs

Using absolute values we estimate

Haxf < / 107 OXe £ 43t
Qo € Js Oxs

OXe
81’3

2

+ . (4.56)

0x3 -

o%. 10m\ O%.. _
1o% 43
/Q (axg T a'g) Bag” 15T

Note that by (4.55) for 75(v.) and Cauchy-Schwartz inequality we can estimate

Oxe 1072\ OXe~ ~
-— d
/&21’04 (01‘3 + € 85) 8x38d8 s

We combine this equation with Young’s inequality, and substitute it into (4.56) to obtain

' < / 1%axgsdsdscg
L2(Q1.4) Q1. € 0s 8ZE3

LQ(Ql,a)

ox. 107
O3 + e 0s

OXe
8%3

L2(Q1,a) L2(Q,a)

X ||?
6953

(4.57)
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We use the integration by parts on the integral of the right hand side of (4.57) and get

1 - 1 1 _0x -
/ Ore OXe sdsdzs| = / Oxe ~—nzdA — / *TEQN <88X5> dsdzs|.
Q10 0 4 3963 Q.6 05\ O3

e 05 83:3
Note that since 7. converges strongly in H'(Q ) we deduce, by the trace theorem, that 7. also

converges strongly in H %(PQJ’G). Using assumption (4.53) we see that the first integral of the
right-hand side of the previous equation converges to 0. We analyze the second integral of the

right-hand side of the previous equation.
1 0 ([ _0x. / 1 Pxe - 10X\ .~
—Ter= dsd - - dsd
/fll’a €T€63 ( 8:53) SATs Q14 \E 886x38+ ETE Oxs 53

Note that 7. converges strongly in H'(£,) and g=te ~ converges strongly to 0 in H 1 Q1.0),
so that

(4.58)

1 O*Xe ~
/91 =559 €3sdsd$3 —0 as e—0. (4.59)

On the other hand we apply integration by parts to the second integral of the right-hand side
of (4.58) to see

1 e 1 1 =
/ X —~“dsdzs —/ —TeXeNadA — o —Xedsdzs. (4.60)
Q14 a$3 0 .q € O € o3

By a similar argument as before, since 7. converges strongly in H 1(QLQ), it can be seen by the
trace theorem that 7. converges strongly in L? (I'21,4). It remains to see that %)ZE converges to
0 in the L?(T'21 4) sense. Let § > 0 and let +(3) be a smooth function in (0, 4+00) with

1 if3> 2,
L(@_{o 1f0<s<g

88% converge strongly to 0 in L?(£2 4)

We define ;E(’sv, x3) = (s, x3)Xe. 1t is clear that ;a and
as € — 0, and Y.(a(x3),z3) = Xe(a(xs),z3). We compute

1~

ng

2 l 1 2
= 277/ Xc(a(zs), z3)
L2(T2,1,q) 01¢€

V 1+ d(xs)?das. (4.61)

-X

On the other hand

2 2
1~ 2 5\ [ |10 __ )| 1oy 1
‘Exs(a(mg),xg) < <a(x3) — 3)/g . af (s,z3)| ds S/g - 8; (5, 23) sg ds.
Substituting this into (4.61), we obtain
~ 12
1~ a(z3) 1ax o 10X,
—Xe = (5,x3)| sdsdas = |- == — 0
€ [2(Ts1.0) e 0s e Js )
L2(Q1,q)
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as € — 0 sinc 88~ — 0 strongly in L%(, a) as € = 0. Thus *Xa — 0 in L?(I's14) and due
to Xe(a($3), x3) = Xe(a(z3),x3), we get that 13, — 0 in L*(I'z1,4). Therefore,

1
/ TEXEnIBdA — 0 as —0. (4.62)
an a

We rewrite the second integral of the right-hand side of (4.60) as follows.

1
/ O7e Xedsdzs = / ( ~X€> O7e sdsdxs
01, € O3 Q1. \E5 ) D3

Using the strong convergence in L?(Q1,,) of g;Z and v§(ve) — 0 in L?(Q1,) we see that

107 _
/Q 5 8TZXsd3d3«"3 —0 as —0. (4.63)
1l,a

We use (4.62) and (4.63) in (4.60) to see that

1
/ Oxe ——=dsdzg — 0 as e¢—0. (4.64)
. € O3

Combining (4.59) and (4.64) and substituting them into (4.58) we get

1 82X& -1 8X5
- - dsd
/Ql’a (E 858:1:3 st ETe 03 53

and finally, using this convergence in (4.57) we conclude that

—0 as £—0,

—0 as e—0.
L2(Q1.4)

H 6903

Thus, the L?(2;,) convergence of % is strong. To sum up, Xe, % and % all converge
strongly in L?(Q1,4). Therefore, X. converges to a function X strongly in H (€1 ,).

Step 3: v=0

From (4.55) for 7£(v:) and 7§(v:) we see that & = = az = 0. Combining this with the
Dirichlet boundary conditions p(0) = p(I) = 0 we conclude that p = 0. From (4.55) for v§(v:)
we clearly have that x = 0. Finally, combining (4.55) for 7§ (v:), v5(vs) and x = 0 we conclude
that 7 = 0. Since 7 = x = p = 0, we see that v = 0, but at the same time we have that
[Vl 71 (02, 0,r3) = 1, 80 we get a contradiction. O

4.7 Generalization to curved rods

In this part we give a conjecture about the stretching and torsional modes on a curved rod
with non-uniform cross-section.

We start presenting the domain ) x, where € > 0 is a small parameter that corresponds
to the thickness of the elastic curved rod and K correspond to the curve defined by the curved
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rod. We follow similar notations as those in Section 3. Let [ > 0 and let B C R? be a connected
bounded domain such that the boundary is C? with m € N connected components. We consider
the sets

S =B x (0,1), s1 = B x {0,1}, 59 = 0B x (0,1).

Note that 98 = s; U so. Let F' : R3 — R? be a C3-diffeomorphism such that it satisfies the
following properties.

1) F(2) = (F1(2), Fa2(2),23) (2= (21,22,23) € 5).

11) E(())O?Zi’)):o (Z: 1)27 0<z3 SZ)

iii) The determinant of the Jacobian matrix of F' is positive for all z € S.
We define F¢(z) = (¢Fi(z),eF>(z),23). With this notation, we consider the following sets in
R3.

8&* ZFE(S), 8175 ZFE(81>, 8278 :FE(SQ).

It is easy to see 0S; = S1. U Sy .. Moreover, we obtain that S; = F(S). Let K : [0,{] — R3 be
a generic space curve with curvature x and torsion (or bicurvature) 7. Let {7,N, B} be the

Frenet reference of the curve K, so that 7T is the tangent vector, A is the normal vector and B
is the binormal vector of the curve K. Define P(y) = K + 11N + y2B. Finally, we set

Qa,IC = 7)(86)7 Fl,e,lC - 73(81,5)7 FQ,&,IC - P(82,8)'

In this subsection we discuss high-frequency eigenvalues of a thin elastic curved rod with
non-uniform cross-section that varies along the rod. We study the following eigenvalue problem.

Llul + pu=0 in Q. k,
u=0 on I't -, (4.65)
oluyn=20 on 'y .

eigenvalues of problem (4.65) and we recall that for any ¢ > 0 there is an infinite discrete
sequence of positive eigenvalues

Here m is the unit outward normal vector on 9 x. We denote by {my(e)}}>5 the set of

0 <mg(e) <ma(e) <--- <my(e) <myyi(e) <--- with lim my(e) = 400
k——+o0
which are arranged in increasing order, counting multiplicities. Tambaca [31] gives a result on
the convergence of the eigenvalues my(¢) in the case of a thin curved rod with simply connected,
constant cross-section and such that its barycenter or “center of mass” is also constant. We
combine the main result in Tambaca [31] with the tools and the know-how we give in Section
3, to conclude that for each k € N we have my(g) = O(g?). Thus, we know

lim my(e) = +oo for each € > 0,
k—+o0

lim my(e) = 0 for each k € N.
e—0
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These eigenvalues are low-frequency eigenvalues corresponding to the bending mode. However,
we conjecture that there exist high-frequency eigenvalues corresponding to stretching and tor-
sional vibrations, which do not tend to zero as the thinness gets smaller. These high-frequency
eigenvalues cannot be analyzed when the subindex k is fixed.

In order to state the main conjecture we first introduce several notations. Denote dy’ =
dy1dys and define the set Si (y3) to be the cross-section of S; at y3 € [0,(]. Furthermore, for
1 <14,7 <2, we define the functions

H(ys)—/A 1dy/, Ki(yfi)—/A yi Ay, Az‘j(y?))—/A viy;dy' (y3 €[0,1])
S(ys) S(ys) S(y3)

and write H = H(y3), K; = K;(y3), Aij = Aij(y3), and Y = % For every y3 € [0,1],

let pe H 1(§ (y3)) be the unique solution of the following problem.
dp or Op or r_ 1/Q ’r_
Ly ) -4+ (52 +y1 ) 5= ) dy' = 0 for every r € H'(S(y3)), / pdy = 0.
/g(%) ((31/1 ) oyt <<9y2 ) 8y2> S(us)
(4.66)

With abuse of notation, we write p = p(y1, y2,y3) as a function of (y1,v2,v3), ¥ = (y1,¥2,y3) €
S1. We then define

J—J(y)—/ <8p—y>2+(8p+y>2 dy’
’ S(ys) \ \OU1 2 dyy '

Remark 4.8. Assume that we have K1 = Ko = 0 and A12 = As; = 0. In this case p = 0, so
that

J:/A (y%+y§>dy,:A11+A22-
S(ys)
With this notation, we state the following conjecture.

Conjecture 4.9. Let {my(e)}ren be the set of eigenvalues of the eigenvalue problem (4.65).
Then, for every k € N there exists a sequence (q(k,€))e>0 with q(k,e) € N, q(k,e) < q(k+1,¢)
and q(k,e) = 400 as € — 0 and a constant I, > 0 such that

lim g o) (2) = L.
Moreover, 11, is the k-th eigenvalue of the spectral problem

(IL, 0, ¢, w1, ws) € (0, +00) x HE(0,1)*, (8,¢, w1, ws) # (0,0,0,0),
!
[{r
0

d¢ dep
(== -
(dy3 le) (dy3 FMl)
d d
+ Kok (0 <('0 - nw1> + x (C — /43’[1)1)) + A22m2x(9
dys dys

l
= H/ {H(C(p + wiwy + w2w2) — K2(0w1 + le) + K1(9(,U2 + Xwg) + (A11 + AQQ)@X} dys
0

fO’f’ all (X7§07W17W2) € H&(Ovl)4
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Remark 4.10. Note that the spectral problem does not depend on the torsion 7.

The ideas of the proof of Theorem 4.1, should also be valid for the current case. We remark
where the main differences lie.

First, we perform a change of variable to transform €, x into S;. After the change of
variable, the energy becomes

3

/QEJC()\l(tr u)? + 2 Y eij(u)?) da = /

ij=1 S

6
<A1(®§(v) +05(v) + O5(v)) + ) @f(v)Q) dy,
1 =1

where v = (v, v2,v3) = v(y) = u(P(y)) (y € S1) and

1 8’[)1 81)1 81}2 8111 8’1}3 2 81]2 81}3
W)= | T <+e —Tys | m—+eq> ) —er — 4+
1( ) (1 _ Myz)g A1 Y3 e E Y2 o E Y2Y3 Ays | By
Ov Ov TRY3 + K
+672y§—2—|—672y2—3—|—5 Y3 y2v
0o 0ys 1 —erys
1
1= crys (—(1 —eky2)’k +e(T'ys — T2y2) + X((K'T — K7")yoys + e2kT2 (y5 + y%))vz
1_7% (5(/47', - K/T)yg —7'yp — 7'2y3) V3,
1 8212
CH =——,
2(”) c ayQ
1 82;3
CH =——
3(1}) c ayg
1 1 /10v; Ovy 1 0vg ovs 1 TKY3
oc S el ittt STt R Zr2 Z23 - _ g3
i) 1 —eryz [2 <5 2 * 5@/1) 2" <8y3 * “oys 1o eryy t e eryn
1 + 8122
- —TV3 + TY3——
1— crYa 3 Y3 (93/2 )
1 1 1 81)1 8U3 1 81)2 8’03 6113
)= | [+ 22 f s o2+ == ) — Ty ,
+(v) 1 —eryo !2 <€ y3 * 5?/1) Ty <6y3 * 0y Tyzayg e
1 87)2 8'1}3
ox(v) = ( + ) |
6( ) e \Oys  Oyo

As in Section 4.2, we need a candidate to torsional or stretching eigenfunction. In this
case, since we do not have axial symmetry and we have influence from the curvature x and the
torsion 7, it is difficult to construct a candidate on ) x before taking the limit, even though
we can predict the behavior as ¢ — 0.

Due to the complexity of the weak form, the manipulation of Korn’s inequality will also be
complicated.

Finally, when searching for an upper bound as in Section 3.5 and Section 4.4, we have to
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minimize the operator

2

a¢1 8¢>2 dC )2 )
M :/ A<++——9 + + 2\ E;j
<(9) 31{ "\ Oy By | dys (=042 +wi)s 2 MZZI (0)
+ 2<28y1 + 5 <—dy3y2 + dy3> + (K — (93/1 + w2)7->
+ 2 <2 8y2 + 9 <_ dy3 1 + dy3 > + (_0y2 + uﬂ)T) + <dy3 — (—0y2 + ’I,Ul)/{, dy’

where ¢ = (¢1, P2, ¢3) is a test function. In order to minimize My, we have to be careful.
Note that in (4.67) there are no cross-terms involving (¢1, ¢2) and ¢3 so we can deal with them
separately. We put

2

2
b (y) = Z O‘;(;Zq) (y3)ypyq + Z ﬁ;(;l) (y3)yp-

p,q=1 p=1

Here a%) = a;il) for i = 1,2. Analogously, but following similar steps as in Section 3.5, we

deduce

of) =0, o) = 135 oy =0
o zluli:Az ! oz =0 0z = _zlulilAg ’
et (), = (& )
We define

Mic(¢3)—/812)\2 [2 <;?)jf + % <—§;y2 + i;;;) + ¢k — (Oy1 + w2)7)2

106 1/ d0  duws
92273
- <2 9y2 T3 (

2
- —_— — . 4.
s Y1 + dys > + ( Oys + w1)7> ]dy ( 68)

Note that in contrast with (3.53) and (4.33), ¢3 = 0 does not minimize M. In this case, let
¢3 be a solution of

93 1 dw; 1.do op
—rS _ -7 0 It
8y1 < 2d 3 CH + el + T + 2 dyg 6y1
O3 1 dwy 1df op
7S g2 Te 0 -7
Y2 ( 2dy; oy 2 dys Oy
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where p is defined as in (4.66), so that

S R (CE C) RYCT 1) P

Then ¢3 minimizes M - Indeed, let 1* be another function so that we have ¥* = ¢3+ 1 (with
Y = —¢3 + ¢*). Using the properties of p in (4.66) and (4.69), we compute

o [ Ldo (ap 00\, (140 (op )aw)
M (¢ )—/0 /§(y3) (<2dy3 <8y1 —y2> + ay1> + <2dy3 <8y2 +y1 ) + 0y dy
N I 5 2 Y 2 —
_i v ) ) dy > Mic(s).
o [ [ ((,@1) (2 ) )= M(os)

Therefore, ¢ minimizes the operator M.
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A Appendix

In this appendix we give the proofs of Lemma 3.5 and Lemma 3.6 and some additional facts
which we used before in the proof of the main results.

Proof of Lemma 3.5. a) Let ¢,1 € Cj*(R) such that [ ¢ (¢t)dt = 1 and [ ¢(t)dt = 1. For
any ® € C°(R?) with supp(®) C F(S), we construct hy such that

~
~

hi, ®) = (ag, ® — |1, | (s, 92, 43)d
(hy, ®) (az )L?(F(S)) <041/R (5,92,93) S¢(y1))L2(F(S))

50) = [ (#tmom) ~ ([ o mis) o(0) e
o) = [ (#nrom) ~ ([ 2 tawie) vl o

Note (hi,-) denotes the linear functional on Cj*>°(F(S)). With these definitions, the following
holds.

where

5% 70 50
—— =0(y), — =0, — =a(y).
oy ) oy 0y ()

Using these facts and combining it with property (3.26), we can see after some computations
that

9D 0d
<h1’ 8y1> = (a2, ®)p2(p(s)) and <h1’ 8yz> = (@1 2) 2 (s

which proves g—Z; = a1 and g—Zi = —apg in the distribution sense. Moreover, it can also be

shown that [(h1, ®)| < C||®| 12(p(s)) for some constant C' > 0. Using that Cy°(F(9)) is dense
in L?(F(S)) and Riesz’s Theorem we deduce that h; € L?(F(S)). Furthermore, since g—};;, g—g;
belong to L2(F(S)), we can take values on the boundary and h1|8F(S) € L?(0F(S)). Similar
arguments can be done for hy. This proves item a) of the lemma.

b) We change variables according to (3.1) and work with z in S. Before beginning with
the proof of this item we introduce some notation. Recall that B was an arbitrary connected
bounded domain in R? and that so = OB x (0,1). Write 9B = by U --- U by, where b; are its
connected components. With this notation, for ¢ = 1,...,m we define ¢; = b; x (0,1) so that
so =¢1 U+ -Ugy,. We parametrize the boundary 0B by the arclength 6 and, accordingly, each
b; by ;. Through this notes, n = (n1,n2,n3) will denote the unit outward normal vector on
S9.

Let hi(z) = hi(F(2)) and let ¢ = ¢(z) € C*°°(5) be a smooth test function such that
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d(21,292,0) = $(zl,zz,l) = 0, namely, $| () gl-) = 0. We compute
S1 Y5
00 02 06 02 _/~ 9 09

/52 dA /hl (8,21 96 " 92 aa)dA_ L Treg, Ty, )4

_ 29 = 09

= /82 (nlhl 822 nghl 621> dA

(o (zoi)_ o (s 0 [ (oo _anos

N /S ((921 (hl 822) 622 <h1 821>> ledZ?dZS_/S <821 822 822 821) dz.

With the change of variables (y1, y2,y3) = (F1(z), F2(2), z3) and (3.26), with some computations
it can be seen that

({08 _vhoi), (00,
g\ 0z1 0z 0z 021 F(S) 8y2 18y1 4
where ¢ € CT*°(F(S)). Due to (3.27), we conclude

/ dA Z/hl -dA = 0. (A1)

For any i = 1,...,m, choose a test function ¢~$such that gz~5|§ =0 for j # i. Then (A.1) becomes
J

[~ 99 9o
Z/_hlaejdA hlaedA—O

We will now show that Ellg. does not depend on (z1,292) over ¢; for i = 1,...,m. Let

¢ = ¢(0, z3) € CT°(s5) be a test function such that ¢(6,0) = ¢(6,1) = 0. We define ¢ and x
such that fori =1,...,m

- - O ~
- [ 0@, g = [ 60,8
b; Jo

We compute

/ T8, 23)d A = Z/ Fi6(0;, 25)d
Z/g Iy <¢(0,zg) —/b_qﬁ(g, Z3)d5+/b (0, zg)d§> dA

m
=1 J
m

Z/ ha (g;‘j(ej,zg)+/b.¢(e},z3)d§> dA. (A.2)

j=1 Sj

<
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From (A.1), we can easily see that for any j =1,...,m

ox
/qj h186 (&,Zg)dA—O

Therefore, we continue the computations in (A.2) and we obtain

Z/h@ 0;,23)dA = Z/m 0;,23) </ $(0;, 23)d )d&dzg
_Z qb(g 2’3 (/b ﬁl(ej,Z;g)dgj) dgdZ;g

=1YSj j
— Z $(0;, 23) (/ ha (6, Z3)d§> d6dzs,
=1vYSj b;

where we used Fubini’s Theorem and we renamed the variables §; and 0. Sending it all to the
left-hand side we see

Z/ (hl 9],23 /b %1(5, 23)d5> ¢(9j,23)d9jd23 = 0.

J

For any ¢ = 1,...,m, we choose a test function ¢ such that (ﬁ’g‘ = 0 for j # i so that the
J

previous equation becomes

/ (ﬁl(ei,zg) -~ /b T (6, 23)d§) ¢(0;, 23)d0;dz3 = 0.
i ;
Since (25‘9 is arbitrary, we conclude that
By, = /b P (B, 2)dd,
hence EHC does not depend on 6;, that is, it does not depend on (z1, 22) along ¢;. Therefore,

using the Zr(—:'gulaurity of F'; we conclude that h1|g_ does not depend on (yi1,y2) along g;. All of

the above calculations can be made similarly to prove that h2|g_ does not depend on (y1,y2)

along g;. O
Proof of Lemma 3.6. Let n = (n1,n2) be the unit outward normal vector on 89(3/3) and write
8Q(y3) = g1(y3) U--- U gm(ym), where g;j(y3) are the connected components of BQ(yg) (j =
1,...,m). We use the divergence theorem for the 2-dimensional bounded domain enclosed by
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9j(y3) to see that for every y3 € [0,1] and j = 1,...,m we have

/' ndL =0,  (i=1,2) (A.3)
95 (s)
/ yoni1dL = 0, / y1nedL = 0, (A.4)
i (y3) 95 (y3)
/ (yan2 — y1n1)dL = 0. (A.5)
95 (y3)
Throughout the next computations, we will use the fact that for j = 1,..., m we have that

! a. -
h1|§i(y3)’ h2|§i(y3) do not depend on 3’ = (y1,y2) along g;(y3) (see Lemma 3.5-b)), so we can

write hp| G(s) — hf”|§j (y3)(y3) for p = 1,2. Using the divergence theorem we first calculate
oh oh
. Qdy/ = /A <1 - 2) dy’ = /A (h1n2 — hgnl) dL
O(ys) Ows) \OY2  Oy1 20(ys)
= Z/ (h1n2 — hgnl) dL
j=1 ?]\j(y3)
= Z (hl . / nodL — hg’,\‘ / nldL> =0.
T\ g0 92) 13, (2)

The last equality is due to (A.3). We have seen that

- Qdy' =0.
Q(ys)

We now proceed to prove that fﬁ(ys) Qyidy’ = 0 for i = 1,2. For that purpose, from (3.28)
and (3.29), we see that

Ohy 8h2> ,
—— +t 5 |ndy =0
/ﬁ(ys) (81/1 ayx )

/A (y1hong 4+ y1hiny) dL — [ hidy' =0
0Q(ys3) Q(y3)

Z h2| / yinodL + hl‘ / yindL | — /\ hldyl =0
o\ TI0) g 95s) /g, (ys) O(ys)

> <h1| / ymldL> — /A hidy’ =0

j=1 9i(y3) y3) Q(ys)

where we used (A.4) in the last step. Therefore

h dL | = hidy'. A6
Z( 1|gj (43) / yg)ylnl ) /ﬁ(ys) 1dy (A.6)
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Similarly, again from (3.29), we see

and we get
m

ha|.. / yonodL :/ hody/'. A7
Z( 2‘9]’(1/3) 35 (y3) 2 ) ﬁ(yg) 2 ( )

Jj=1

Using integration by parts and (A.4) again we compute

8hl ahg ,
Qudy’ = / ( - ) y1dy A8
6(113) ' ﬁ(y3) 82:2 821 ! ( )
- /A (y1hing — yrhony) dL _/A —hody’
% us) (ys)
= h1 —~ / y1n2dL - hg N / ylnldL> _|_/A thy/
jgl ( 91() 95 (ys) |gj(y3) 95 (s) Q(ys)
- —ha| / ylnldL> +/\ hgdy/.
jz; ( ‘g]‘(yg) g;(ys) Q(y3)

Using the relation found in (A.7) and property (A.5), the equation (A.8) becomes

—ha|.. / ylnldL) +/A hody'

;( 509 g, O(y3)
—ha|.. / y1n1dL> + <h2 _ / y2n2dL>
( |9j(93) i (y3) ]Z:: ‘gj(yS) 95 (y3)

1
_ Ll =
<h2 3, () /jq\j(yg)(me ying)d ) 0

and we see that fﬁ(yg) Qy1dy’ = 0. In a similar way, using (A.4), (A.5) and (A.6), we can prove
that fﬁ(%) Qyady’ = 0. O

s 1M

Proposition A.1. Let Q be a domain in R? and let Vi(y1,v2), Va(y1,y2) € D'(Q). If

oV n ov; _
3yj 0yi

0 forl<i,j<2

in the distribution sense, then there exist constants C1,Cs, C3 € R such that

Vi(y1,y2) = —Csya + C1,  Va(y1,y2) = Csy1 + Ca.
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Proof. The idea of the proof is to use a 2-dimensional version of the fact that if for V =

(Vi,Va,V3) and 1 < i,j < 3 we have E;;(V) %(gg‘;/; + %) = 0, then V = Qy + C, where

O € M3y3(R) is an anti-symmetric matrix and C' € R3 is a constant vector. In addition, this
can be shown using that

O*Vi  OEx(V) L 9E;(V) OE;,(V)

= 1<4i,j,k<3).
0y Oy Jy; Oy 0yi (1< )

Further details can be seen in Duvaut-Lion [11] and Schwartz [30]. O

Remark A.2. We present here the explicit forms of the matrix X and the vector ) used in
Section 7 in order to find a minimum.

where

(4)\1+8/\2)A11
(4M1+8X2) A1
_ 0
Xi= 0
401 A1
4N1A12

(2)\1 +4)\2)K1

(2)\1 +4>\2)K2

0

Xo 0
2201 K4
2A1 Ko

4X171
4172

4
AX172

Y X A
&L a3
(4/\1+8>\2)A12 0
4)\2A11+(4)\1+8)\2)A22 4X2A12
4A2A12 4)\2A22
4AXp A1 A2 Ag2
(4X1+4X2)A12 4X2 A2o
4X1 Ago 0
0 0 201 Ky
202 K1 2X2K1 221 Ko
2X2 Ko 2X2 Ko 0
200 K1 2X0 K, 0
202 Ko 2X2 Ko (2)\1+4)\2)K1
0 0 (2A1+4X2) Ko
2M170
Vo = 8 with
2170
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4>\2A11 (4)\14’4)\2)1412 4)\11422
42 A12 4X2 Aoz 0
4N A1y 42 Ag2 0
4X2A12  (4X14+8X2)A11+4X2A22  (4X1+8X2)A12
0 (4)\1+8)\2)A12 (4)\1+8/\2)A22
(AM+2X2)H O 0 MH
_ 0 Mo H NoH 0
, A3 = 0  XHXH 0
MH 0 0 (M422)H
_ pgdns _ g P g P
Yo =Hag, — Kigs — Kogz,
_ g, dns d?m d?no
N =Kigy —Angs — Awgs,
P U/ d?m d%n
12 = Kaqy, — Ar2gs — Ang g
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