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This paper presents a method for automatic detection of fish sounds in an underwater environment.

There exist two difficulties: (i) features and classifiers that provide good detection results differ

depending on the underwater environment and (ii) there are cases where a large amount of training

data that is necessary for supervised machine learning cannot be prepared. A method presented in

this paper (the proposed hybrid method) overcomes these difficulties as follows. First, novel logistic

regression (NLR) is derived via adaptive feature weighting by focusing on the accuracy of classifi-

cation results by multiple classifiers, support vector machine (SVM), and k-nearest neighbors (k-
NN). Although there are cases where SVM or k-NN cannot work well due to divergence of useful

features, NLR can produce complementary results. Second, the proposed hybrid method performs

multi-stage classification with consideration of the accuracy of SVM, k-NN, and NLR. The multi-

stage acquisition of reliable results works adaptively according to the underwater environment to

reduce performance degradation due to diversity of useful classifiers even if abundant training data

cannot be prepared. Experiments on underwater recordings including sounds of Sciaenidae such as

silver croakers (Pennahia argentata) and blue drums (Nibea mitsukurii) show the effectiveness of

the proposed hybrid method. VC 2018 Acoustical Society of America.

https://doi.org/10.1121/1.5067373

[ZHM] Pages: 2709–2718

I. INTRODUCTION

In fisheries science, it is important to identify marine spe-

cies for purposes such as estimation of distribution and abun-

dance.1 For environmental conservation and sustainable use

of marine bioresources, it is necessary to develop an identifi-

cation method that does not have influence on the ecosystem.2

To meet this necessity, methods that utilize marine

organism sounds are useful because of their non-invasive

nature for the resource stock.3–7 Research on automatic

detection of sounds from marine mammals such as whales

and dolphins has attracted much attention.8–12 However,

there have been few studies that target fish sounds despite

the fact that fish biology is an important field of study.1 As

pioneer works, methods for detecting sounds produced by

fish were proposed.13,14 Diep et al.13 proposed a method for

detecting human audible signals during spawning acts of

shad fish (Alosa fallax) on the basis of a Gaussian mixture

model (GMM)15-based approach. Since this method uses ter-

restrial recordings on the shore, however, it does not perform

well for underwater recordings. Vieira et al.14 proposed a

method using underwater acoustic data that enables individ-

ual recognition and sound type classification of the

Lusitanian toadfish (Halobatrachus didactylus) via a hidden

Markov model (HMM)16-based approach. In contrast,

Matsuo et al.17 proposed a method for automatic detection

of fish sounds from underwater acoustic data. Their method

enables detection of fish sounds by rule-based filtering; how-

ever, their method has the limitation of species-specific

parameter tuning requiring manual inspections of the sound

of target fish by humans.

In summary, the conventional methods mentioned above

have some drawbacks. Existing methods8–14,17 require exclu-

sive acoustic features of target fish sounds. The methods do

not work well for other species due to the highly diverse fea-

tures of fish and environmental sounds. Most underwater

recordings contain few target sounds in long duration record-

ing of environmental sounds. Manual collection of many fish

sounds is very time-consuming. It is difficult to prepare a

large amount of training data, which is generally required by

supervised machine learning techniques.

To overcome this difficulty, we present a supervised

machine learning method (the proposed hybrid method) for

automatic detection of fish sounds from underwater recordings.

Even if a large amount of training data cannot be prepared in

the situation in which features of fish and environmental

sounds are highly diverse, the proposed hybrid method works

well through multi-stage classification including logistic

regression via adaptive feature weighting. First, based on thea)Electronic mail: harakawa@lmd.ist.hokudai.ac.jp
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paper in Ref. 18, we realize novel logistic regression (NLR)

that enables adaptive feature weighting by focusing on the

accuracy of classification results by multiple classifiers, i.e.,

support vector machine (SVM)19 and k-nearest neighbors (k-
NN).20 Although there are cases in which a single classifier,

SVM or k-NN, cannot work well due to divergence of useful

features, NLR combined with the two methods can produce

complementary classification results. Here, we sequentially

apply machine learning algorithms including SVM, k-NN, and

NLR with consideration of the accuracy of each classifier for

fish sound detection. The multi-stage acquisition of reliable

classification results works adaptively according to the target

underwater environment to reduce performance degradation

due to diversity of useful classifiers even if a large amount of

training data cannot be prepared. Experimental results for

underwater recordings from the coast of Japan, including

vocalizations of Sciaenidae, show that the proposed hybrid

method enables successful detection of fish sounds.

II. METHODS

In this section, we first describe the method for collect-

ing underwater acoustic data used in this study. Next, we

provide an overview of the proposed hybrid method and its

details.

A. Data collection and a rule-based filter

We used underwater acoustic data including sounds of

Sciaenidae. These species produce sounds underwater.21

Stationary observation was performed from the coast of

Kashima, Japan (35� 5407.0400N, 140� 4402.4500E). We used

datasets including underwater acoustic data recorded on

0:00–5:59 and 14:00–23:59 of July 10, 2015 as examples for

testing the performance of the proposed hybrid method. It

should be noted that the recorded data contained stereo sig-

nals that were stored in MP3 format (128 kbps) and re-

sampled at 44.1 [kHz].

Points including fish sounds were clarified by a rule-

based filter designed on the basis of the literature22 that exam-

ines the characteristics of the target fish sounds. Detection

results by this rule-based filter specially designed for croakers’

sounds22 are the reference to evaluate the proposed hybrid

method. The details of the filter are shown below.

• Audio signals are loaded every 2 097 152 points.
• If the ratio of a power spectrum for 100–500 [Hz] is higher

than a threshold, we judge that the signals contain ship

and wave noise and remove them from the subsequent

processing.
• For the remaining signals, we reload signals every 16 384

points, i.e., 371 [ms]. Note that this length is approxi-

mately that of the target fish sounds.
• If the ratio of a power spectrum of the reloaded signals for

400–800 [Hz] is higher than a threshold, we judge that the

signals contain fish sounds and select them as targets for

subsequent analysis.
• A finite impulse response (FIR) filter23 is applied to the

selected signals to extract signals for which frequency

components are 400–800 [Hz].

• The envelop of the extracted signals is detected to obtain

the cyclic pulse structure. Here, we select pulses for which

intervals are 10 [ms] or more and detect peaks. Note that

filter length for the envelop detection is set to 100 points.
• We reload signals for which the length is 400 [ms] around

the point with maximum amplitude of the obtained sig-

nals. If the maximum amplitude is higher than a threshold,

subsequent analysis is performed.
• We calculate the power spectrum for 0–22.1 [kHz] and

check whether the maximum of the spectrum is within

400–800 [Hz] or not in order to verify that the peak of the

spectrum corresponds to the target fish sounds. If the max-

imum of the spectrum is within 400–800 [Hz], we obtain

the signals as targets for subsequent analysis.
• Since signals with less than five pulses may be contact

noise, signals with five or more pulses are selected from the

obtained signals as targets for the subsequent processing.
• Since the target fish sounds have approximately equivalent

pulse intervals, signals with pulse intervals for which the

standard deviation is 0.02 or less and average is 30 [ms] or

less are selected. Note that the first two pulse intervals are

ignored since there are cases in which the target fish

sounds have long intervals.
• The selected signals are adopted as the target fish sounds.

In the experiment shown later, we evaluated the perfor-

mance of the proposed hybrid method by using the obtained

points as ground truths of fish sound detection.

B. Overview of the proposed hybrid method

Figure 1 shows an overview of the proposed hybrid

method, which is a multi-stage classification framework that

combines SVM, k-NN, and NLR. As shown in the figure,

even if each classifier, i.e., SVM and k-NN, cannot work

well, successful fish sound detection becomes feasible by

sequentially using NLR that integrates them. Here, we judge

whether SVM and k-NN work well or not by monitoring

accuracy, i.e., coincidence ratio of classification results and

ground truths by the rule-based filter explained above. In the

proposed hybrid method, after screening of irrelevant seg-

ments, we extract audio features from the segments that are

likely to include fish sounds (Sec. II C). Next, we construct

classifiers, SVM and k-NN, by using the audio features and

derive NLR on the basis of classification results by SVM

and k-NN; then, fish sound detection is performed by multi-

stage classification (Sec. II D). Although features and classi-

fiers that produce good detection results differ depending on

the underwater environment, the multi-stage processing with

consideration of the accuracy of each classifier enables suc-

cessful detection of fish sounds.

C. Pre-processing of multi-stage classification

First, we perform screening of irrelevant segments for

detection of fish sounds in order to reduce computational cost

and realize accurate detection. Specifically, for each channel,

we divide the underwater acoustic data into segments for which

the interval and overlap are T and D, respectively. As shown in

Fig. 2, the power spectrum of underwater environmental

2710 J. Acoust. Soc. Am. 144 (5), November 2018 Harakawa et al.



sounds is densely distributed in less than 200 [Hz]. Since

the environmental sounds are not necessary for detecting

fish sounds, we apply a FIR filter23 to each segment

obtained from each channel. Thus, frequency components

less than 200 [Hz] are removed from the segments. In the

experiment shown later, we designed the FIR filter as a

direct II transposed structure so that the filter order becomes

254 using the hamming window.

Second, we check whether the filtered segments may

include fish sounds or not. For each channel, we calculate

the sub-band energy ratio of 400–800 [Hz] components, i.e.,

the dominant frequency components (see Fig. 2), over

0–22050 [Hz] components. The frequency band focused on

in this screening is the same as the reference data processing

described previously.22 However, since the paper21 exam-

ined sounds of 20 kinds of fish and dominant frequencies of

FIG. 1. (Color online) Overview of the

proposed hybrid method. From audio

signals, audio features are calculated

after screening of irrelevant segments.

SVM and k-NN are constructed by

using the audio features and NLR is

derived on the basis of classification

results by SVM and k-NN. Fish sounds

are detected via multi-stage classifica-

tion, i.e., sequential application of

SVM, k-NN, and NLR with consider-

ation of the accuracy of each classifier.

FIG. 2. (Color online) Example of

time signals and power spectrum of

underwater acoustic data. (a) It can be

seen that underwater environmental

sounds are densely distributed in less

than 200 [Hz]. (b) It can be seen that

the target fish sounds are densely dis-

tributed in 400–800 [Hz].
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most fish are less than 800 [Hz], the screening can also be

applied to other species. If each sub-band energy ratio for

both channels is less than Ths, we judge that the segments do

not include the target fish sounds to avoid further analysis. In

this way, the proposed hybrid method enables screening of

irrelevant segments from the enormous amount of underwa-

ter recordings to reduce computational cost and realize accu-

rate detection. This first screening is similar to the rule-based

filtering22 described in Sec. II A; however, the proposed sig-

nal processing uses more general spectral and temporal fea-

tures that can be applied to a wide variety of fish sounds.

After screening of irrelevant segments, we extract

underwater acoustic features by using the remaining seg-

ments as follows. We reload segments to capture the whole

length of the target fish sounds. In each remaining segment,

we obtain monaural signals and compute a point where the

amplitude is maximum. Then we reload segments from

underwater acoustic data for which the length is T around

the point with maximum amplitude. Furthermore, we apply

the FIR and pre-emphasis filters24 to each channel of the

reloaded segments, respectively. Thus, we can extract

signals for which frequency components are from 400 to

800 [Hz] and those for which low frequency components are

removed. For the obtained signals, we calculate the feature

vectors, which consist of the following elements:

• frequency centroid;
• frequency band width;
• spectral rolloff (85 percentile);
• zero-crossing rate;
• root-mean-square energy;
• mel-frequency cepstrum coefficients (MFCC);25

• polynomial features (these features are coefficients of fit-

ting an Npth order polynomial to the columns of a spectro-

gram. In the experiment, we varied Np from 1 to 10);
• auto correlation (auto correlation whose dimension is Da

is calculated. In the experiment, Da was defined as 100);
• root mean square (RMS) of amplitude;
• the number, maximum, minimum, mean, and standard

deviation of peaks26 (the sharp peaks of the obtained sig-

nals are detected via continuous wavelet transform26);

and
• the maximum, minimum, mean, and standard deviation of

amplitude for the obtained signals.

Here, the effectiveness of frequency centroid; frequency

band width; spectral rolloff; zero-crossing rate; root-mean-

square energy; and MFCC for audio classification is verified

in the previous literature.27–29 Furthermore, polynomial fea-

tures, auto correlation, RMS of amplitude, statistics of peaks

and signals are extracted for representing unique characteris-

tics in the spectrum and shape of fish sounds.21 In this way,

we employ the features with consideration of the usefulness

in machine learning and ecological fields. It should be noted

that features for signals through the FIR and pre-emphasis fil-

ters are concatenated into one vector, and two kinds of feature

vectors (two channels) are thus obtained per segment. In the

subsequent phases, we judge whether the obtained segments

include fish sounds or not by using the calculated feature

vectors.

Since we extract many kinds of features, some features

might have multi-collinearity and the following analysis

including k-means clustering, k-NN, and SVM and NLR

might not work well. It is reported that whitening before k-

means clustering avoids generating highly correlated cluster

centers for obtaining discriminative feature vectors;30 there-

fore, we perform whitening. Specifically, to improve the dis-

criminative power of the feature vectors, we make the

feature vectors less redundant, i.e., less correlated. To this

end, we apply zero-phase component analysis (ZCA) whit-

ening31 to the feature vectors as follows. Let us denote a

matrix, which is obtained by aligning and centering the fea-

ture vectors contained in the training dataset, by W 2 RDt�Nt

where Dt and Nt are the dimension and the number of feature

vectors, respectively. Note that all data are divided into

training and test datasets in the supervised machine learning.

The training dataset is used to fit the models, while the test

dataset is used for evaluation of the obtained models. The

aim of ZCA whitening is to approximate the covariance

matrix C ¼ WWT to the identify matrix I 2 RDt�Dt . To

achieve this aim, we first perform the eigenvalue decomposi-

tion C ¼ UKUT, where U and K are the eigenvector matrix

and diagonal matrix whose diagonal elements are eigenval-

ues, respectively. Thus, we can obtain the whitening matrix

WZCA ¼ UK–ð1=2ÞUT. Finally, we can achieve the above aim

by transferring the original data W as WZCA ¼ WZCAW. For

the feature vectors contained in the test dataset, we also per-

form ZCA whitening by using the same matrix WZCA. By

transferring the feature vectors via WZCA, the classification

accuracy can be improved since the feature vectors become

less redundant and have more discriminative power. Note

that we standardize the feature vectors after ZCA whitening

to obtain the suitable vectors for the subsequent analysis.

D. Multi-stage classification for fish sound detection

A machine learning approach, which integrates results

by multiple classifiers to improve the classification perfor-

mance, works well when classification results are less redun-

dant to each other;32 therefore, we employ classifiers

SVM,19 k-NN,20 and NLR,18 which provide classification

boundaries that are different from each other. Although each

classifier is not necessarily independent, we compared per-

formances to select the appropriate classifier. It should be

noted that we classify two classes, i.e., segments that include

fish sounds and segments that do not include fish sounds. We

define segments that include fish sounds, which were

detected by the rule-based filter explained in Sec. II A, as

“positive samples.” Segments that do not include fish sounds

are represented as “negative samples.”

First, we prepare a training dataset from the obtained fea-

ture vectors. Previous studies33,34 showed that classifiers can-

not be adequately constructed if the training dataset is an

imbalanced one in which the number of positive samples and

the number of negative samples are greatly different. If posi-

tive (negative) samples are larger than negative (positive)

samples, we have to select representative positive (negative)

samples to make the numbers of positive and negative sam-

ples the same. To this end, we apply k-means clustering35 to

2712 J. Acoust. Soc. Am. 144 (5), November 2018 Harakawa et al.



all positive (negative) samples and obtain each cluster center.

Then we select positive (negative) samples with the shortest

Euclidean distances to the obtained cluster centers, which are

utilized for the subsequent processing. In this way, the distri-

bution of the whole feature vectors can be approximated by

the samples selected via k-means clustering.

SVM, k-NN, and NLR are described briefly below.

1. SVM (Ref. 19)

SVM finds the optimal hyperplane by optimizing two

criteria, i.e., margin maximization and error minimization.

By optimizing them in a non-linear high-dimensional feature

space, we can construct a classifier that can estimate the

probability ls of each sample being a positive sample.36

Note that non-linear classification becomes feasible via the

kernel trick while parameters should be tuned for the

classification.

2. kNN(Ref. 20)

The k-NN algorithm performs classification on the basis

of majority voting of the k closest training samples to each

input test sample. In the experiment shown later, we empiri-

cally defined k as 101. We notice that k-NN can provide the

probability lk of each sample being a positive sample by

simply counting the number of samples, which are classified

as positive samples among k ones. Note that non-linear clas-

sification becomes feasible without complicated parameter

tuning while classification results tend to be influenced by

noisy data.

3. NLR

Even if SVM and k-NN cannot realize accurate classifi-

cation, NLR works well by monitoring the accuracy (reli-

ability) of each classifier and integrating multiple

classification results. Note that NLR is based on the previous

work18 that considers multiple feature vectors and unreliable

labels. Although the previous work18 assumes that low-level

features are utilized, our NLR adopts output values of SVM

and k-NN rather than the low-level features, i.e., underwater

acoustic features. By using the output values unlike the pre-

vious work,18 we can obtain high-level features for success-

ful classification. The details of NLR are described as

follows. In this paper, we call the classifiers “annotators”

and denote the annotators SVM and k-NN for each channel

by r 2 fsL; sR; kL; kRg, respectively. Based on the paper in

Ref. 18, we assign higher weights to annotators that result in

accurate classification results and integrate the results by

each annotator to obtain the final results. NLR calculates

posterior probability as

P jjz;Wð Þ ¼
exp wT

j z
� �

XJ

j0¼1

exp wT
j0 z

� � ; (1)

where W ¼ ½wj�Jj¼1 is a matrix that consists of weight vectors

wj and J is the number of classes, i.e., 2. Also, z is a new

feature vector obtained via classification results by each anno-

tator. Motivated by the paper in Ref. 37, which showed that z
generated from output values rather than elements of feature

vectors enables successful classification, we obtain z by align-

ing output values by each annotator. W is calculated as follows.

Let us denote a classification result for the ith training sample

through an annotator r 2 fsL; sR; kL; kRg by y
ðrÞ
i . Furthermore,

we define s
ðrÞ
i as 1 if y

ðrÞ
i is a correct result and 0 otherwise. In

the training phase, for the training dataset D ¼ ½ysL
i ; y

sR
i ; y

kL
i ;

ykR
i ; zi�Ni¼1 ðN being the number of training samples Þ, we

calculate W by solving the following optimization

problem:

WML ¼ arg max
W

log PðDjWÞ � kjjWjj2F
h i

:

In this equation, the first and second terms are log likelihood

and a regularization term, respectively. Based on the gradi-

ent decent method, we can derive the jth column of

WML; wj, by the following iteration:

wj  wj þ a

�
X

i2f1;2;…;Ng

X
r2fsL;sR;kL;kRg

s
ðrÞ
i fa

ðrÞ
ij �Pðjjzi;Wgzi

h i
�2kwj:

Here, a
ðrÞ
ij is 1 if y

ðrÞ
i ¼ j and 0 otherwise. In the test phase,

by using wj obtained in the training phase and z generated

from the test data, we can obtain classification results based

on Eq. (1). In this way, NLR is realized on the basis of adap-

tive feature weighting by focusing on the accuracy of classi-

fication results by SVM and k-NN.

Since useful classifiers for fish sound detection are dif-

ferent depending on the underwater environment, multiple

classifiers should be utilized adaptively. Specifically, we

sequentially apply each classifier to audio segments and

monitor its classification accuracy, i.e., reliability of the

results. If the results are not reliable, the other classifiers are

sequentially utilized to accurately detect fish sounds. The

details are given below.

a. Classification using SVM. If both probabilities ls for

two channels are more than a threshold Th1 or they are less

than a threshold Th2, we regard the results as being reliable;

then, the mean of ls for two channels is defined as the final

result. Otherwise, we do not determine the SVM results as

final results and proceed to “b.”

b. Classification using k-NN. In the same manner, if

both probabilities lk for two channels are more than Th1 or

they are less than Th2, we regard the results as being reliable;

then, the mean of lk for two channels is defined as the final

result. Otherwise, we do not determine the k-NN results as

final results and proceed to “(c).”

c. Classification using NLR. By using the results of

SVM and k-NN, NLR is performed to define the probability

shown in Eq. (1) as the final result.

J. Acoust. Soc. Am. 144 (5), November 2018 Harakawa et al. 2713



In the training phase, we determine optimal parameters

Th1 and Th2 by performing validation using the training

data. Concretely, we extract validation data from the training

data. Then we change Th1 and Th2 from 0 to 1 at intervals of

Cint and monitor the accuracy, i.e., coincidence ratio of clas-

sification results by the proposed hybrid method and ground

truths by the rule-based filter shown in Sec. II A. In the test

phase, we use Th1 and Th2 when the accuracy is maximum

to perform the multi-stage classification.

As a consequence of the multi-stage classification, suit-

able features and classifiers are adaptively selected accord-

ing to the target audio segments; thus, successful fish sound

detection becomes feasible.

III. RESULTS

A. Parameters used for the analysis

We used underwater acoustic data including sounds of

Sciaenidae recorded from the coast of Kashima, Japan (see

Sec. II A for details). When calculating audio features (see

Sec. II C), we set the window width T to 16384 points, i.e.,

about 0.371 [sec], for adjusting T to the length of the target

fish sounds. At the same time, the slide width of the window D
was set to T=2. In this analysis, the parameter for pre-

screening Ths (see Sec. II C) was set to 20. According to Sec.

II D, we performed our multi-stage classification of two clas-

ses, i.e., segments that include fish sounds and segments that

do not include fish sounds. From all samples, 1%, 3%, 5%,

10%, 20%, 40%, 60%, and 80% of the samples were randomly

selected as training data and the remaining samples were used

for test data to verify relations between the number of training

samples and detection accuracy. Table I shows the numbers of

training and test samples for each case. Note that each sample

corresponds to the obtained segments with T¼ 16 384 points.

Furthermore, we randomly divided training data into three

sets. The first set was used to train SVM and k-NN. For the

kernel function in SVM, we used the Gaussian kernel with

parameters determined through a grid search.38 By applying

the trained SVM and k-NN to the second set, training of NLR

was performed. We used the third set as validation data to

determine the parameters for our multi-stage classification, Th1

and Th2. According to Sec. II D, we performed validation by

setting Cint to 0.01 and determined Th1 and Th2.

B. Evaluations

Based on the above settings, we applied the proposed

hybrid method to the constructed dataset. Figure 3 shows exam-

ples of results of fish sound detection by the proposed hybrid

method. From Figs. 3(c) and 3(d), we can confirm that a fish

sound has higher correlation at the constant intervals than an

environmental sound; in other words, a fish sound has cyclic

pulse structure. We can confirm that the proposed hybrid method

can extract the characteristics of fish sounds, i.e., the cyclic pulse

structure, which cannot be seen in environmental sounds.

TABLE I. Numbers of training and test samples.

Ratio of training samples

to all samples

No. of training

samples

No. of test

samples

1% 423 41962

3% 1271 41114

5% 2119 40266

10% 4238 38147

20% 8477 33908

40% 16954 25431

60% 25431 16954

80% 33908 8477

FIG. 3. (Color online) Examples of

fish sound detection results by the pro-

posed hybrid method. The ratio of

training samples to all samples was set

to 1%. (a) Wave form of an audio seg-

ment that was correctly classified as a

positive sample. (b) Wave form of an

audio segment that was correctly clas-

sified as a negative sample. (c) Auto-

correlation coefficients for a fish

sound. To clarify the pulse structure,

auto-correlation coefficients for the

square of signal values shown in (a)

are calculated. (d) Auto-correlation

coefficients for an environmental

sound. As in (c), auto-correlation coef-

ficients for the square of signal values

shown in (b) are calculated.
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Next, we perform quantitative evaluations by comparing

among the proposed hybrid method, each single method

(SVM, k-NN, and NLR) and linear discriminant analysis

(LDA).39 The target species of the proposed hybrid method

and the conventional methods8–14 are not comparable. Since

the conventional method17 is not a supervised machine learn-

ing method, we adopted a commonly used classification

method, LDA (Ref. 39) for comparisons. LDA maximizes

the ratio of between-class variance to the within-class vari-

ance. We trained LDA using same training data as SVM and

k-NN in the proposed hybrid method. In addition, since a

shrinkage scheme40 is useful for improving performance of

LDA even for a small number of training samples,39 we

introduced the scheme40 into LDA. For the evaluation, we

define the sensitivity, a.k.a, recall and specificity as follows:

Sensitivity Recallð Þ ¼ TP

TPþ FN
;

Specificity ¼ TN

TN þ FP
;

where TP, TN, FP, and FP are the numbers of true positive,

true negative, false positive, and false negative, respectively.

Note that TP and TN are results that are correctly classified

as positive and negative samples, respectively, and FP and

FN are results that are mis-classified as positive and negative

samples, respectively. Here, we defined test samples includ-

ing the fish sounds as positive samples, and we defined test

samples that do not include the fish sounds as negative sam-

ples. Figure 4 shows receiver operating characteristic curves

(ROC curves) that display the sensitivity on the vertical axis

and the 1-specificity on the horizontal axis, which is a well-

known measure in the field of machine learning. We show

means of evaluation values when performing random selec-

tion of training data five times in this figure. It should be

noted that the ROC curve in the top left corner means that

the classifier works successfully. It can be seen that classifi-

cation accuracy differs depending on the classifier. The pro-

posed hybrid method can provide classification accuracy that

is equal to or greater than that of other classifiers.

Furthermore, we define the F-measure that evaluates

both the comprehensiveness and accuracy of finding positive

samples as follows:

F–measure ¼ 2� Recall� Precesion

Recall þ Precision
;

where

Precision

¼ No: of correctly classified positive samples

No: of positive samples classified by the method
:

Table II shows evaluation values where the F-measure

becomes maximum in ROC curves. We show means of eval-

uation values obtained by repeatedly performing the random

selection of training data and evaluation five times. We can

see that the proposed hybrid method worked well especially

when the ratio of training samples to all samples was small

(see 3%, 5%, and 10%). It should be noted that a small num-

ber of fish sounds are contained while most of underwater

recordings are environmental sounds. Therefore, a large

number of positive samples (fish sounds) in training data

cannot be prepared unlike other supervised learning tasks

such as Web image classification.41 Even in such a case, the

proposed hybrid method can work well by hierarchically

obtaining reliable classification results according to the tar-

get underwater environment.

IV. DISCUSSION

The merits and limitations of the proposed hybrid

method are discussed in this section. First, the proposed

hybrid method enables successful fish sound detection even

if a single classifier cannot work well (Table II). This merit

guarantees that the proposed hybrid method is suitable for a

situation in which features and classifiers that provide good

detection results differ depending on the underwater environ-

ment. Second, we confirmed the merit of the proposed

hybrid method compared with existing supervised machine

learning, which needs to a large amount of training data.

Since there are cases in which underwater acoustic data

including many fish sounds cannot be prepared, this merit

can contribute to studies such as passive acoustic monitoring

in fisheries science. Third, this experiment aims at verifying

the effectiveness of the proposed supervised classification

shown in Secs. II C and II D by using the croakers’ sounds as

a case study. For successful classification of the target fish

sounds, we performed pre-processing shown in Sec. II C,

which are similar to the reference data processing shown in

Sec. II A. However, supervised classification shown in Sec.

II D can be applied to any fish species.

On the other hand, we can also see the limitation of the

proposed hybrid method. Specifically, since the classification

boundary may not be suitably learned if the ratio of training

samples to all samples is too small (see 1%), the perfor-

mance was degraded in such a case. Although the proposed

hybrid method worked better than comparative methods

when the ratio of training samples was small (see 3%, 5%,

and 10%), we should investigate the lower limit where the

proposed hybrid method can stably provide successful

results in the future. Also, there were cases in which the

accuracy of a single classifier SVM approached that of the

proposed hybrid method as the amount of training data

increased. The proposed hybrid method improves the accu-

racy by compensating for mis-classification by each classi-

fier. Since classification results that are complementary to

those by SVM cannot be provided by k-NN, this limitation

may be caused. In the future, this limitation will be solved

by adopting new classifiers that produce classification results

that are more independent from each other. Also, we should

attempt fish sound detection on other species to verify the

generality of the proposed hybrid method. Furthermore,

future work should include more detailed analysis based on

our fish sound detection method, e.g., estimation of abun-

dance or prediction of relations of fish sounds with seasons,

time, and sex.
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FIG. 4. (Color online) ROC curves: Means of evaluation values when performing random selection of training data five times are shown. Each caption shows
the ratio of training samples to all samples. Results of the proposed hybrid method are denoted by “Ours.” “Ch1 SVM,” “Ch2 SVM,” “Ch1 k-NN,” “Ch2 k-
NN,” “Ch1 LDA,” and “Ch2 LDA” show the results obtained via each classifier, SVM, k-NN, and LDA for signals of each channel. “NLR” shows the results
obtained by integrating the results of “Ch1 SVM,” “Ch2 SVM,” “Ch1 k-NN,” and “Ch2 k-NN” via NLR.
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Finally, we note the comparison of other methods that

should be tackled in the future. This paper presents a super-

vised machine learning method to detect the target fish sounds,

which are obtained via the species-specific rule-based filter.22

To the best of our knowledge, this work is the first attempt to

detect the target fish sounds from environmental sounds by a

supervised classification scheme. For methods that are applica-

ble to our problem setting, audio classification methods by

TABLE II. Evaluation values when the F-measure becomes maximum in ROC curves. Means of evaluation values when performing random selection of train-

ing data five times are shown. Each caption shows the ratio of training samples to all samples. The definitions of “Ours,” “Ch1 SVM,” “Ch2 SVM,” “Ch1 k-
NN,” “Ch2 k-NN,” “Ch1 LDA,” and “Ch2 LDA” are the same as those in the legend of Fig. 4.

(a) 1%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.808 0.814 0.810 0.869 0.758 0.811 0.793 0.829

Precision 0.707 0.640 0.684 0.429 0.509 0.681 0.655 0.714

F-measure 0.753 0.712 0.742 0.563 0.595 0.740 0.717 0.768

(b) 3%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.893 0.878 0.882 0.764 0.764 0.857 0.867 0.880

Precision 0.766 0.754 0.765 0.630 0.615 0.772 0.764 0.763

F-measure 0.824 0.811 0.819 0.690 0.681 0.812 0.812 0.817

(c) 5%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.904 0.898 0.903 0.810 0.804 0.884 0.892 0.897

Precision 0.788 0.775 0.771 0.663 0.687 0.782 0.781 0.784

F-measure 0.842 0.832 0.832 0.729 0.741 0.830 0.833 0.837

(d) 10%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.911 0.911 0.910 0.844 0.842 0.902 0.914 0.905

Precision 0.804 0.794 0.794 0.699 0.712 0.793 0.793 0.797

F-measure 0.854 0.848 0.848 0.765 0.771 0.844 0.849 0.847

(e) 20%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.922 0.926 0.922 0.864 0.853 0.904 0.921 0.919

Precision 0.803 0.801 0.797 0.742 0.720 0.796 0.799 0.800

F-measure 0.858 0.859 0.855 0.798 0.781 0.847 0.856 0.855

(f) 40%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.922 0.923 0.922 0.884 0.862 0.927 0.921 0.919

Precision 0.810 0.808 0.809 0.752 0.732 0.794 0.807 0.806

F-measure 0.862 0.862 0.862 0.812 0.791 0.856 0.860 0.859

(g) 60%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.916 0.926 0.923 0.888 0.872 0.926 0.925 0.917

Precision 0.818 0.811 0.811 0.753 0.729 0.799 0.809 0.811

F-measure 0.864 0.865 0.863 0.815 0.795 0.858 0.863 0.861

(h) 80%

Ours Ch1 SVM Ch2 SVM Ch1 k-NN Ch2 k-NN NLR Ch1 LDA Ch2 LDA

Recall 0.922 0.931 0.931 0.892 0.886 0.924 0.923 0.920

Precision 0.815 0.808 0.803 0.746 0.738 0.800 0.810 0.810

F-measure 0.865 0.865 0.862 0.813 0.805 0.858 0.863 0.862
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applying convolutional neural networks (CNN) to the spectro-

gram have been recently proposed.42 However, in our problem

setting, the number of positive samples in the training data is

too few to use CNN and the amount of training and test data is

imbalanced. Thus, since fair comparison cannot be conducted

even if these methods with are implemented, we compared the

proposed hybrid method with sub-techniques that consist of

the proposed hybrid method (SVM, k-NN, and NLR) and LDA

to quantitatively verify the performance of the proposed hybrid

method. As a future work, we should develop a new method

based on CNN that is applicable to our problem setting and

should compare the proposed hybrid method with the devel-

oped method.
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