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Abstract 
The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is supporting investments in metabolomics in 

collaboration with the Fraser lab at Royal Holloway University London (RHUL). The metabolome is the global 

collection of all low molecular weight chemical compounds that are produced by cell metabolism in different 

sizes, polarity and quantities. It thus provides a direct functional readout of the cell’s physiological status and 

activity under specific environmental settings. Metabolomics research in RTB has involved metabolite profiling 

for making significant marker-trait associations, assessment of genetic diversity and varietal identification. 

Therefore, this has included screening young plantlets as proxies for mature end-product quality (roots, tubers 

and banana fruits), identifying potential biomarkers for abiotic stress tolerance and for product-quality traits.  In 

this paper, we review the main findings of this work, and discuss the implications for breeding programs in the 

RTB Program. 
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Metabolomics in GGIAR Research Program 
on Roots, Tubers and Bananas (RTB) 
 

 

METABOLOMICS: WHAT IS IT? 

The metabolome, which metabolomics helps to identify and describe, is the global collection of all low molecular 

weight chemical compounds that are produced by cell metabolism in different sizes, polarity and quantities. It 

thus provides a direct functional readout of the cell’s physiological status and activity under specific 

environmental settings. Moreover, the metabolome is the synthesis—the end product—of the various complex 

steps, including interactions, feedback loops and so on. These steps are controlled by the organism’s genetics 

that take place in the cell (e.g., from DNA to RNA to protein, protein-protein interactions, enzyme activities, etc.) 

in response to stimuli, which eventually result in changes in the levels of many metabolites. Therefore, looking 

at this end product of metabolite changes both puts us closer to the trait of interest as well as leap-frogs over 

those other complex steps. Knowing and understanding the control of plant metabolism are not only critical for 

maximizing crop yield. More important, they allow us to address issues of human nutrition. Metabolites, 

however, can change in response to environmental factors (e.g., age of the plant, type of tissue, etc.), so the 

analysis is more complex and subject to confounding factors.  

 

Translational metabolomics is the application of metabolomic techniques to improve crop yield and quality, 

going beyond biomarker discovery (Alseekh et al. 2018). In the CGIAR Research Program on Roots, Tubers and 

Bananas (RTB), investments have been made in metabolomics to set the base for translational metabolomics. 

 

WHAT CAN METABOLOMICS GIVE US? 

Metabolomics adds another set of extensive data that can be used to study and analyze complex living systems. 

It provides knowledge and clues of what large network of metabolic reactions (metabolic pathways) are involved 

in yield formation, attributes of product quality and tolerance mechanisms to biotic and abiotic stresses. Indeed, 

various studies show that agronomic and consumer traits are often directly associated with metabolite 

composition (Alseekh et al. 2018). Especially in combination with other “-omics” approaches, this can lead to 

the development of biomarkers associated with important traits that can be used in breeding programs, as well 

as identifying new and important targets for breeding. For example, work with tomato heirloom varieties 

showed large variability in metabolic quality traits, thus expanding options to breed for quality-related 

compounds in tomato fruits (Tieman et al. 2017). Likewise, the use of metabolomics to identify the lost diversity 

of such compounds in modern commercial tomato cultivars could allow us to reverse the genetic bottleneck 

created by domestication and breeding (Alseekh et al. 2018; Zhu et al. 2018). Therefore, by combining 

metabolomics with genomics and transcriptomics for breeding and trait elucidation, the -omics toolkit can: 
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• discover novel genetic variation to guide breeding decisions 

• identify biomarkers associated with complex traits 

• establish chemotyped core collections capturing biochemical diversity 

• identify important targets for the breeding of complex traits 

 

METABOLOMICS IN THE RTB PROGRAM 

During its Phase 1 the RTB Program, led by Theme 1 (Nicolas Roux) and Theme 2 (Luis Augusto Becerra), 

supported investments in metabolomics in collaboration with the Fraser lab at Royal Holloway University London 

(RHUL), and initial work was directed at developing metabolite extraction protocols for the various RTB crops 

(RTB 2015). Thereafter, research has involved metabolite profiling for making significant marker-trait 

associations, assessment of genetic diversity and varietal identification. Therefore, metabolomics research has 

screened young plantlets as proxies for mature end-product quality (roots, tubers and banana fruits), and has 

attempted to identify biomarkers for abiotic stress tolerance and biomarkers for product-quality traits. 

 

The collaboration with the Fraser lab has resulted in six publications to date, all in ISI (International Scientific 

Indexing) journals. Additional publications are in the pipeline, including a review of an RTB database of 

metabolites (Price et al. forthcoming). This latter publication also sets the scene for a chemical core collection 

complementing the germplasm genebanks and its use in the enhancement of genetic resources based on the 

crop’s chemical composition. Thus, this can enhance the selection of parental lines displaying unique chemical 

features to confer resilience to climatic change, high physiological performance or the biosynthesis of high-value 

nutritional compounds for a healthy human diet. 

 

 

RESULTS TO DATE 

1. Discover genetic variation to guide breeding decisions 

Metabolite profiling was carried out in RTB diversity panels of accessions, representative of the diversity of wild 

and cultivated varieties. By analyzing the metabolic profiles, we attempted to describe the genetic diversity in 

terms of discrete profiles. This resulted in sets of chemotypes for each RTB crop and also metabolic descriptors 

that allowed the different varieties of each species to be identified.  

 

A panel of 38 banana accessions, representative of the diversity of wild and cultivated bananas, was analyzed to 

assess the range of chemotypes available globally (Drapal et al. 2019a). The 105 metabolites identified 

comprised a range of intermediates of primary and secondary metabolic pathways, with the widest metabolic 

diversity primarily found in the wild Musa acuminata and M. balbisiana accessions.  

 

In yam, a diverse collection of 49 genotypes from five different Dioscorea spp (i.e., D. rotundata, D. alata, D. 

cayenensis, D. bulbifera and D. dumetorum) commonly used in yam breeding programs was selected. More than 

200 compounds were routinely measured in tubers, providing a major advance for the chemotyping of this crop 
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(Price et al. 2017). The analysis of leaf and tuber material identified a subset of metabolites which allowed 

accurate species classification and highlighted the potential of predicting tuber composition from leaf profiles, 

based on the species classification. Therefore, D. dumetorum was defined by fatty acids, D. rotundata and D. 

cayennensis by TCA cycle intermediates and phosphate and D. alata and D. bulbifera both largely by sugars. This, 

however, needs to be validated using a larger number of samples and datasets.  

 

Likewise, work in cassava has shown the value of metabolomics to classify accessions (Drapal et al. 2019b). More 

than 9,000 molecular features were detected in the untargeted analysis by liquid chromatography-mass 

spectrometry of in vitro plantlet samples. Targeted analysis datasets included more than 100 metabolites. The 

metabolite data analyzed were applied to describe the biochemical diversity available in the panel, identifying 

South American accessions as the most diverse compared with those grown today in Africa. Genotypes with 

distinct phenotypic traits showed a representative metabolite profile and could be clearly identified, even if the 

phenotypic trait was a root characteristic (e.g., high amylose content). Therefore, this illustrated the utility of 

the methodologies to chemically differentiate cassava accessions. This result was similar to that with yams, 

where by identifying the accession type by its leaf metabolite profile, the root characteristics could be inferred.  

 

A recent publication on sweetpotato (Drapal et al. 2019d) assessed the metabolic diversity of 27 sweetpotato 

cultivars, including landraces and improved varieties. Researchers looked at metabolites both in leaves and 

storage roots and identified 130 metabolites. The results showed the value of metabolite profiling to breeding 

programs as a way to both identify differences in phenotypes/ chemotypes and characterize parental material 

for future pre-breeding resources. For example, the storage root data highlighted three cultivars which differed 

in their primary and secondary metabolite composition from most of the other accessions, and thus represent 

suitable parental material for breeding efforts. 

 

The above studies have resulted in a collection of chemotypes for the different RTB crops (Figure 1) that 

constitute a valuable resource (Price et al. forthcoming). Allowing for species and, in some cases, accession 

differentiation according to their metabolic profiles, chemotyping is a means of (1) classifying diverse and 

redundant genotypes in over-populated genebanks, complementing and validating the use of genotyping 

approaches, and (2) utilizing the approach to precisely select parental materials used in future breeding efforts. 

In many of these studies, attempts were made to correlate metabolic profiles on young tissue (leaves or in vitro 

plantlets) to more mature plants in the field, and to the root or tuber products. Given the very different 

environments and the tissue types, it is not surprising that these correlations were not usually found. The 

metabolic profiles of the young tissue helped identify the accession or species; but only by knowing the particular 

root or tuber composition of that accession or species could inferences be made. This was not the result of direct 

correlations between leaf and root or tuber metabolites. Nevertheless, differences between species could be 

determined by the differing metabolic profiles in the young tissue, allowing for species identification in bananas, 

cassava and yam. 
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Figure 1. Metabolic profiles of chemical classes identified in RTB crops (From Price et al., Forthcoming) 

 

2.  Biomarkers for biotic and abiotic stress 

Early work on potato attempted to use metabolomics to find biomarkers for drought tolerance (Drapal et al. 

2017). Consequently, five varieties, differing in their drought tolerance, were grown under normal irrigation as 

control and under water-restricted regimen; metabolite profiles were developed. Results showed that nine 

metabolites in leaves changed in response to drought stress, suggesting probable pathways involved in the stress 

response. Previous studies have shown these metabolites to interfere with the ability of drought-tolerant plants 

to retain water from the soil or antioxidant mechanisms to protect from damage. However, no relationships 

were found between concentrations of these metabolites and the physiological measures for drought stress 

(i.e., relative water content, osmotic pressure or chlorophyll content). A confounding issue is that the lines did 

not differ sufficiently in their tolerance to drought, and it was therefore not possible to identify metabolites 

associated with tolerance mechanisms. Nevertheless, the study showed the value of such an approach. More 
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extensive drought-tolerance experiments need to be carried out in RTB crops, to be evaluated for both gene 

expression and metabolites. In addition, near-infrared spectroscopy (NIRS) calibrations were developed for each 

of the drought-responsive metabolites, so that inexpensive monitoring by NIRS in large numbers of genotypes 

can be carried out for exploration of their functional role and for genetic studies.  

Work in cassava has shown the value of metabolomics to identify probable metabolites that could be involved 

in biotic stress resistance mechanisms (Drapal et al. 2019b). A line susceptible to thrips had higher free 

catechin/epicatechin levels, which could indicate lower condensed tannin levels thought to provide resistance 

to the pest. Likewise, additional metabolic profiles conducted on cassava whitefly-resistant families of 

accessions highlight the importance of structuring families with contrasting traits under similar genetic 

backgrounds (Becerra, personal communication), thus facilitating the discovery of biomarkers for breeding. In 

banana, metabolic profiling showed several metabolites to be more prevalent in the B genome, which could be 

related to biotic stress tolerance (Drapal et al. 2019a). For example, the metabolite data of Calcutta 4, a parent 

usually used in crosses to confer resistance to various diseases, showed above-average levels of rutin, 

chlorogenic acid and caffeoyl-malate, which could be related to its resistance traits. Future metabolite analysis 

of pulp and peel will show whether these metabolite differences can also be detected in the consumed banana 

product(s) of offspring and influence the quality of banana pulp. 

 

 

Figure 2.  PCA of in vitro plantlets of 23 cassava varieties based on metabolites identified. Score plot of 

varieties includes additional information about region of origin and characteristic traits (from 

Drapal et al. 2019b).  
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3. biomarkers for product quality and nutritional status after processing and cooking 

Metabolites are directly related to flavor and aroma of food products. They are also involved in carbon 

partitioning into yield components, and the eventual nutritional composition of the product, such as starch 

structure, sugars, antioxidants and carotenoids.  

 

Sensory evaluations were carried out in a panel of potato from four germplasm groups (i.e., advanced breeding 

lines, diploid landraces, wild potatoes and diploid biofortified-bred clones) in fresh tubers and boiled tubers after 

4 months of storage. These were followed by metabolite profiling, to identify metabolites associated with potato 

flavor components that may be included in breeding programs. The sensory survey addressed various quality 

parameters such as potato flavor intensity, sweetness, savoriness, sourness, bitterness and mealiness. The 

profiling identified 77 metabolites and allowed the differentiation of different germplasm groups (Drapal et al. 

2019c). They also showed why certain wild potatoes were preferred during domestication. One of the group-

specific properties was no significant change of carotenoid levels after cooking in the native hybrids bred for 

high carotenoid content. Although group-specific metabolite compositions were maintained upon cooking, the 

cooking process affected a broad range of metabolites. Glycoalkaloid levels decreased significantly after cooking, 

but less so in wild species. Breeding lines showed less starch degradation and resulting release of sugars, 

consistent with this being an important quality trait in breeding programs. The associations between metabolites 

and sensory properties are still being analyzed and will result in an additional publication. Consequently, this 

work provides guidelines for what metabolites to screen for after harvest, cold storage and cooking for product 

quality. The sensory associations should provide breeding targets for breeders. 

 

Work on sweetpotato (Drapal et al. 2019d) assessed the metabolic diversity of 27 sweetpotato cultivars 

including landraces and improved varieties. It also looked at carotenoid content, which is a very important target 

in sweetpotato-breeding programs as a biofortication strategy to combat vitamin A deficiency (Low et al. 2017). 

The use of metabolomic protocols provided a more exact profile of the different carotenoids present in roots—

much more than commonly used spectrophotometric approaches. For instance, significant levels were found of 

mutachrome, a carotenoid similar to -carotene but with less pro-vitamin A activity. Consequently, this work 

suggests that spectrophotometric approaches are good for screening large amounts of samples, yet require a 

validation step with more refined protocols for the more promising lines. This was further confirmed in follow-

up work by Drapal and Fraser (forthcoming). 
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Figure 3.  Carotenoid profiles of sweetpotato storage roots as g/g DW (dry weight). Cultivars were grouped 

into phenotypes by storage root pigmentation (from Drapal et al. 2019d). 

 

In cassava, each trait could be identified by its specific metabolite composition (Drapal et al. 2019b). For 

example, the varieties with a higher amylose root content were correlated with higher levels of TCA cycle 

intermediates in the leaves. As a result, the variety with high culinary quality correlated with higher levels of 

monosaccharides and intermediates of the TCA cycle. This suggests increased levels of glucose and fructose for 

transport to starch biosynthesis in the roots as previously observed, and so leads to the hypothesis that in vitro 

leaves can be used to screen for root phenotypes. In 2020 RTB support on metabolomics will focus on the global 

cassava genome-wide association study (GWAS) population, developed by CIAT, to validate the power of 

biomarker screening in leaves tissues as young as those from in vitro plants. 

 

In yam, further work (Price et al. 2018) looked at the carotenoid profiles in the diverse yam collection; several 

carotenoids were identified. What is more, color of the tuber flesh was not necessarily indicative of pro-vitamin 

A activity. The carotenoid epoxide mutachrome was present in various accessions, and it was also identified in 

various sweetpotato accessions. As it has less pro-vitamin A activity than -carotene, this must be taken into 

account when selecting for high carotenoid lines. Nevertheless, where levels are relatively high in yam, the 

mutachrome can contribute as much pro-vitamin A activity as can yellow cassava. Another very interesting 

carotenoid derivative, C25-epoxy-apocarotenoid persicaxanthin, has potential implications for tuber dormancy. 

It can be indicative, indirectly, of ABA levels (Schwartz et al. 2003) and thus could be a breeding target. As for 

sweetpotato (Drapal and Fraser, forthcoming), the metabolic profile of carotenoids in the yam diversity panel 

showed that tuber color is not good enough to determine pro-vitamin A activity. Even ultra-performance liquid 

chromatography, just as in sweetpotato, does not discriminate well enough between carotenoids due to the low 

levels and enrichment required.  
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4. Challenges and opportunities 

The RTB Program’s support of metabolomics work has yielded valuable new information: a set of chemotypes 

for all the crops (Price et al. forthcoming). By developing metabolic profiles on diversity panels put together by 

RTB scientists and breeders, important targets for breeding are being elucidated. These include particular 

metabolites that may be linked to traits of interest and accessions and breeding lines that can be the source of 

important metabolites for incorporation into breeding programs. 

 

The work to date provides evidence that metabolic profiles can be used to differentiate between species, and 

this can be used to help manage genetic resources. We note, however, that other approaches such as DNA 

fingerprinting can be applied more easily but presents serious limitations when trying to unravel multi-allelic 

variation. Metabolite profiles, on the other hand, do not have this limitation. Thus, metabolic profiling can help 

to fill some gaps or uncertainties when needed and provide a more comprehensive picture.  

 

Future analysis using bigger datasets will be needed to validate whether leaf metabolic profiles can be 

representative or even predictive of storage root or tuber metabolite composition. If so, initial phenotypic 

screening of breeding programs could be undertaken on leaf material. Too, profiling of root and tuber crops 

would be significantly more rapid and conducted prior to tuber formation, thus requiring less labor for material 

harvesting and rendering analyses cheaper and easier.  

 

Metabolomics requires advanced lab equipment and highly trained technical staff as well as a highly complex 

analysis of results. Therefore, it is not likely to become a component of breeding teams. Rather the expertise 

can be accessed via collaborations, as has been done between RTB Program scientists and breeders with the 

RHUL Fraser team. This said, the analytical platforms are becoming more competitive in price and easier to use. 

In addition, numerous low- and medium-income countries are realizing the need for a national center that can 

provide metabolite-profiling resources as a tool in food analysis/ safety, quality evaluation and support across 

crop breeding programs. The RHUL lab has also run several metabolite training schools for early-stage 

researchers. It is hoped that in the near future the RHUL group will be able to run one of these activities in a 

target country such as Tanzania.  

 

In any case, identifying biochemical signatures of phenotypic traits would allow metabolite marker-based 

breeding. Since metabolic profiles can provide a direct biochemical measurement of quality traits, they can be 

utilized as markers to investigate trait inheritance. Thus, NIRS equations can be developed for metabolites that 

are associated with particular traits, making the screening more high-throughput (Tumwegamire et al. 2011). 

Combining genomic analysis with metabolomics is leading to the use of metabolic GWAS (mGWAS), in which 

metabolites and their levels are treated as a trait and associated molecular markers identified. This has proven 

very powerful to elucidate the metabolites involved in tomato flavor and aroma, while developing molecular 

markers to incorporate them into breeding programs for fruit quality (Tieman et al. 2017; Zhu et al. 2018). In 

addition, it has the potential to assist in the identification of metabolites. In 2020 the global cassava GWAS 
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population will be used to undertake an mGWAS in order to identify important unknown metabolites associated 

with tolerance to short shelf life, high β-carotenoid potential and soft texture after cooking. All these traits have 

a huge influence on consumer acceptance/preference. 

 

A recent biofortification study revealed phenolic compounds as inhibitors of iron absorption by the human body 

(Andre et al. 2015). Therefore, the metabolite data developed for the biofortified potato lines (Drapal et al. 

2019c) present an ideal resource to identify potatoes suitable for such biofortification efforts. And though this 

needs further validation, it can help identify additional breeding targets that need to be pursued together with 

iron content.  

 

Consequently, when performing comparative analyses of crop growth under different environments, 

quantifying the contributions of biochemical signatures toward phenotype is often simpler than for genetic 

markers, especially in highly heterozygous crops like RTBs. This gives rise to the potential to generate chemotype 

core collections for use in breeding. With this approach material selection is based on the fixing of a complement 

of biochemical signatures that confer desired characteristics more robust to environmental variation. This is 

contrary to genotypic core collections whereby breeding tries to fix gene variants that can then often harbor 

different traits under different environments. 

 

Metabolomics can thus enhance breeding programs in various ways. It helps describe and differentiate genetic 

diversity from which new breeding lines can be developed. It can identify novel breeding targets as metabolic 

pathways involved in trait formation are identified, and these targets can then be assayed either chemically, or 

converted into more high throughput assays such as NIRS, and/or molecular markers and new chemical 

functions identified through mGWAS assays. In the case of NIRS, this spectrophotometric technique can be used 

to screen large numbers of early selection material. The most promising genotypes are then validated by more 

precise assays, such as when breeding for high -carotene content, in the presence of other carotenoids that 

contribute to flesh color but might not have high pro-vitamin A activity. 
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