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Abstract
Aim: Amazon‐nut	 (Bertholletia excelsa)	 is	a	hyperdominant	and	protected	tree	spe‐
cies,	 playing	 a	 keystone	 role	 in	 nutrient	 cycling	 and	 ecosystem	 service	 provision	
in	 Amazonia.	 Our	main	 goal	 was	 to	 develop	 a	 robust	 habitat	 suitability	model	 of	
Amazon‐nut	and	to	identify	the	most	important	predictor	variables	to	support	con‐
servation	and	tree	planting	decisions.
Localization: Amazon	region,	South	America.
Methods: We	collected	3,325	unique	Amazon‐nut	records	and	assembled	>100	spa‐
tial	predictor	variables	organized	across	climatic,	edaphic,	and	geophysical	catego‐
ries.	We	compared	suitability	models	using	variables	(a)	selected	through	statistical	
techniques;	(b)	recommended	by	experts;	and	(c)	integrating	both	approaches	(a	and	
b).	We	applied	different	spatial	filtering	scenarios	to	reduce	overfitting.	We	addition‐
ally	fine‐tuned	MAXENT	settings	to	our	data.	The	best	model	was	selected	through	
quantitative	and	qualitative	assessments.
Results: Principal	 component	 analysis	 based	 on	 expert	 recommendations	was	 the	
most	appropriate	method	for	predictor	selection.	Elevation,	coarse	soil	 fragments,	
clay,	slope,	and	annual	potential	evapotranspiration	were	the	most	important	predic‐
tors.	Their	relative	contribution	to	the	best	model	amounted	to	75%.	Filtering	of	the	
presences	within	a	radius	of	10	km	displayed	lowest	overfitting,	a	satisfactory	omis‐
sion	rate	and	the	most	symmetric	distribution	curve.	Our	findings	suggest	that	under	
current	environmental	conditions,	 suitable	habitat	 for	Amazon‐nut	 is	 found	across	
2.3	million	km2,	that	is,	32%	of	the	Amazon	Biome.
Main conclusion: The	combination	of	statistical	techniques	with	expert	knowledge	
improved	the	quality	of	our	suitability	model.	Topographic	and	soil	variables	were	the	
most	important	predictors.	The	combination	of	predictor	variable	selection,	fine‐tun‐
ing	of	model	parameters	and	spatial	 filtering	was	critical	 for	 the	construction	of	a	
reliable	habitat	suitability	model.
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1  | INTRODUC TION

Range‐wide	 management	 and	 conservation	 of	 socio‐economically	
important	 tree	 species	 require	 a	 comprehensive	 understanding	 of	
species	habitat	preferences	and	the	magnitude	and	nature	of	anthro‐
pogenic	and	natural	threats	to	their	in	situ	persistence.	However,	in	
Amazonia	such	knowledge	often	remains	incomplete	and	based	on	
local	experience	 rather	 than	 rigorous	 scientific	data.	Furthermore,	
existing	 knowledge	 on	Amazonian	 forest	 species	 has	 been	 poorly	
integrated	within	conservation	planning	frameworks	(Addison	et	al.,	
2013;	Gardner,	Barlow,	Chazdon,	Robert,	&	Harvey,	2009).	As	a	re‐
sult,	biodiversity	conservation	strategies	have	failed	to	protect	the	
majority	of	endemic	species	in	Brazil	(Oliveira	et	al.,	2017).	The	latter	
authors	found	that	<40%	of	the	estimated	distribution	area	for	some	
species	 fell	 inside	 protected	 areas.	 Conservation	 decision‐making	
processes	 in	Amazonia	can	be	greatly	 improved	through	the	 inclu‐
sion	of	species	distribution	models	(SDMs)	which	is	currently	not	the	
case	in	most	Amazon	countries.

The	 complexity	 of	 SDMs,	 both	 in	 terms	 of	 development	 and	
understanding,	 is	 a	 common	 constraint	 to	 their	 application	 in	 de‐
cision‐making	(Addison	et	al.,	2013).	Nonetheless,	SDMs	are	an	in‐
creasingly	 important	 tool	 for	 predicting	 habitat	 suitability	 and	 for	
understanding	species	environmental	 tolerances	 (Stolar	&	Nielsen,	
2014).	SDMs	are	also	essential	to	guide	field	collections,	as	well	as	
to	 inform	 or	 reinforce	 management,	 reforestation,	 and	 conserva‐
tion	plans	(Franklin,	2010).	The	value	and	importance	of	a	well‐con‐
structed	 SDM	 have	motivated	 an	 explosion	 of	 methods	 aimed	 at	
building	more	accurate	models	 (Elith	et	al.,	2011;	Kuhnert,	Martin,	
&	Griffiths,	2010).	However,	few	efforts	have	been	made	to	develop	
a	 collaborative	 model‐building	 process	 among	 modelers,	 ecolo‐
gists,	and	decision‐makers	to	improve	model	quality	(Calixto‐Pérez	
et	al.,	2018)	and	to	facilitate	clear	communication	of	model	results	
(Addison	et	al.,	2013).

One	 of	 the	 most	 widely	 used	 methods	 of	 developing	 SDMs	
is	 MAXENT	 (Phillips,	 Anderson,	 Dudík,	 Schapire,	 &	 Blair,	 2017).	
MAXENT	is	a	correlative	model	based	on	the	principle	of	maximum	
entropy	to	predict	or	infer	species	occurrence	using	presence‐only	
data	 and	 environmental	 variables	 (Phillips,	 Anderson,	 &	 Schapire,	
2006).	The	probability	of	occurrence	is	then	modeled	using	a	logis‐
tic	equation	fitted	to	presence	data	and	background	locations	cho‐
sen	 randomly	 or	 in	 target‐groups	 that	MAXENT	 contrasts	 against	
the	 presence	 (Phillips	 &	 Dudík,	 2008).	 Several	 studies	 have	 high‐
lighted	 that	 the	performance	of	MAXENT	models	 is	 influenced	by	
(a)	biases	in	occurrence	data	that	cause	overfitting	(Kramer‐Schadt	
et	al.,	2013)	and	 (b)	 the	uncritical	use	of	default	settings	based	on	
taxonomic	groups	studied	by	MAXENT	designers	(Phillips	&	Dudík,	
2008).	 Indeed,	 there	 is	 growing	 evidence	 that	 the	most	 appropri‐
ate	 settings	 vary	 according	 to	 species	 and	 study	 area.	 However,	
only	 3.7%	of	 articles	 published	 between	2013	 and	2015	 tested	 if	
the	default	regularization	and	feature	class	parameters	were	appro‐
priate	 for	 their	data	 (Morales,	Fernández,	&	Baca‐González,	2017;	
Radosavljevic	 &	 Anderson,	 2014).	 When	 adequately	 fine‐tuned,	

these	parameters	prevent	the	algorithm	from	fitting	the	input	data	
too	closely	(Phillips	&	Dudík,	2008).

Errors	can	furthermore	be	introduced	into	MAXENT‐based	anal‐
ysis	through	multi‐collinearity	among	predictors	that	can	inflate	the	
variance	 and	 standard	 errors	 of	 regression	 parameter	 estimates.	
Careful	selection	of	candidate	predictor	variables	 is	 therefore	rec‐
ommended	(Dormann	et	al.,	2013).	Statistical	analysis	has	been	com‐
monly	used	to	address	this	 issue,	as	for	example	through	principal	
component	analysis	(PCA)	(Everitt	&	Dunn,	2001).	However,	models	
using	maximum	entropy	have	also	been	improved	by	integrating	ex‐
pert	knowledge	in	the	predictor	selection	stage	of	model	develop‐
ment	(Porfirio	et	al.,	2014).

An	expert	 is	someone	who	has	gained	knowledge	through	his/
her	 life	 experience,	 education,	 or	 training,	 and	who	 is	 responsible	
for	 providing	 judgments	 (Mcbride	&	Burgman,	 2012).	 Experts	 can	
contribute,	 for	 example,	 to	 the	 choice	 of	 variables	 based	 on	 their	
knowledge	of	a	species'	life	cycle	(Porfirio	et	al.,	2014),	to	determine	
geographic	 limits	 to	 the	 presumed	 species	 (Jones,	 Dye,	 Pinnegar,	
Warren,	 &	 Cheung,	 2012),	 to	 provide	 knowledge	 when	 empirical	
data	are	lacking	(Kuhnert	et	al.,	2010),	or	simply	to	provide	feedback	
on	model	 results.	 Expert‐based	 information	 has	 been	 successfully	
used	 to	 improve	 management	 of	 environmental	 systems	 (Perera,	
Drew,	&	Johnson,	2012),	but	has	been	seldom	used	in	the	develop‐
ment	of	SDMs	(Kuhnert	et	al.,	2010;	Porfirio	et	al.,	2014).

1.1 | Amazon‐nut modeling distribution

MAXENT	 has	 been	 applied	 previously	 to	model	 the	 distribution	
of	the	Amazon‐nut	(Bertholletia excelsa),	specifically	at	Para	State,	
Brazil	 (Albernaz	&	Avila‐Pires,	2009).	However,	 results	 from	 this	
study	are	 limited	in	their	utility	for	conservation	planning	due	to	
paucity	of	presences	used,	the	restricted	spatial	extent	of	analysis,	
and	the	limited	diversity	of	environmental	predictors	considered.	
Thomas,	 Alcázar,	 Loo,	 and	 Kindt	 (2014)	 also	 examined	 Amazon‐
nut	distribution	using	an	ensemble	modeling	approach.	Their	goal	
was	to	assess	the	distribution	of	Amazon‐nut	across	the	Amazon	
basin	and	make	projections	to	past	and	future	climate	conditions.	
They	found	that	the	current	spatial	distribution	of	this	species	was	
shaped	by	an	initial	period	of	range	contraction	in	the	Pleistocene,	
followed	by	range	expansion	in	the	Holocene	resulting	in	its	con‐
temporary	 distribution.	 Although	 these	 findings	 are	 informative	
and	compelling,	the	model	of	distribution	of	suitable	habitat	esti‐
mated	showed	a	high	degree	of	overfitting	and	had	limited	out	of	
sample	 (OOS)	 predictive	 power.	 Such	 reduced	 predictive	 power	
was	clearly	observed	at	eastern	Amazon,	where	they	had	few	re‐
cords	of	presence.

Developing	robust	models	with	a	high	OOS	for	the	Amazon‐nut	
is	now	possible	thanks	to	the	availability	of	high‐quality	environmen‐
tal	data	(e.g.,	Wordclim	(Fick	&	Hijmans,	2017)	and	Soilgrid	platforms	
(Hengl	et	al.,	2014)).	Additionally,	species	occurrence	data	are	being	
generated	 in	 scientific	 collaboration	 networks	 with	 standardized	
accessibility	 policies	 (e.g.,	 Global	 Biodiversity	 Information	 Facility;	
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https	://www.gbif.org).	Specifically	for	B. excelsa,	a	Brazilian	project	
named	MAPCAST	“Mapping	of	Amazon‐nut	groves	and	socio‐envi‐
ronmental	 and	 economic	 characterization	 of	 Amazon‐nut	 produc‐
tion	 systems	 in	 the	 Amazon”	was	 carried	 out	 from	 2013	 to	 2018	
(https	://www.embra	pa.br/en/projetos).	 It	 generated	 direct	 biologi‐
cal	 information	and	the	formation	of	a	group	of	specialists	on	this	
taxonomic	group.

Amazon‐nut	(Bertholletia excelsa)	is	one	of	the	largest	and	lon‐
gest	living	hyperdominant	tree	species	in	Amazonia	(Ter	Steege	et	
al.,	2013).	In	old‐growth	forest,	Amazon‐nut	trees	can	reach	60	m	
in	 height	 and	4	m	 in	 diameter	 at	 breast	 height	 (Müller,	 1995).	 It	
ranked	 third	 in	 the	 top	20	 accumulators	 of	 aboveground	woody	
biomass	in	Amazonia	(Fauset	et	al.,	2015)	and	has	provided	critical	
ecosystem	services	 to	humans	since	prehistory	 (Roosevelt	et	al.,	
1996).	The	fruits	are	hard,	indehiscent,	and	can	often	be	opened	by	
large	species	of	psittacid	(Ara	sp)	and	rodents	(Agouts	sp).	Agouts	
and	human	both	play	an	important	role	in	Amazon‐nut	dispersion,	
rodents	 can	 carry	 fruits	 as	 far	 as	 60	m	 (Haugaasen,	Haugaasen,	
Peres,	Gribel,	&	Wegge,	2012)	and	humans	positively	 influenced	
its	abundance	in	the	past	(Thomas	et	al.,	2014).	Species	distribu‐
tion	differs	for	being	broad	and	discontinuous,	 leading	to	forma‐
tion	of	groves	in	some	areas	(Salomão,	2009)	and	scattered	trees	
in	others	(Wadt,	Kainer,	&	Gomes‐Silva,	2005).	However,	its	trees	
population	has	been	vulnerable	to	illegal	activities	in	the	Amazon	
for	 the	 last	 forty	years,	mainly	 in	southern	and	eastern	Amazon,	
region	named	 “arch	of	 deforestation”	 (Scoles,	Canto,	Almeida,	&	
Vieira,	2016).

Amazon‐nut	is	legally	protected	and	one	of	the	most	important	
nontimber	forest	product	 (NTFP),	on	which	tens	of	thousands	of	
local	people	depend,	mainly	in	Brazil,	Bolivia,	and	Peru	(Guariguata,	
Cronkleton,	 Duchelle,	 &	 Zuidema,	 2017).	 The	 fruit's	 success	 is	
recently	 attributed	 to	 health	 benefits	 offered	 by	 the	 seeds	 rich	
in	 selenium	 and	 other	 micronutrients	 (Cardoso,	 Duarte,	 Reis,	 &	
Cozzolino,	 2017).	 Its	 cultural	 and	 economic	 importance	 brings	
various	 common	 names	 constantly	 associated	 with	 geographic	
localization	 (Brazil‐nut,	 Pará‐nut,	 Acre‐Nut,	 and	 Bolivian	 Brazil‐
nut)	to	the	fruit	market.	Here,	we	adopted	the	term	Amazon‐nut	
instead	of	Brazil‐nut,	 the	most	common	name,	 to	be	more	 inclu‐
sive	of	other	Amazonian	countries,	in	which	the	species	is	native.	
Extensive	research	has	been	dedicated	to	evaluating	the	sustain‐
ability	of	nut	harvesting	(Bertwell,	Kainer,	Cropper,	Staudhammer,	
&	Oliveira	Wadt,	2017),	 characterizing	demographic	and	genetic	
structure	within	and	among	(Salomão,	2009;	Sujii,	Martins,	Wadt,	
Azevedo,	 &	 Solferini,	 2015),	 and	 understanding	 the	 natural	 and	
human	drivers	of	its	current	distribution	(Thomas,	Alcázar	Caicedo,	
Mcmichael,	Corvera,	&	Loo,	2015).	Despite	this	rich	body	of	work,	
surprisingly	 little	 is	 known	 about	 the	 environmental	 predictors	
that	determine	species	occurrence.

In	this	paper,	we	develop	a	novel	SDM	using	MAXENT	with	the	
goal	of	 improving	our	understanding	of	the	habitat	extent	and	the	
suitable	 environmental	 to	B. excelsa	 occurrence,	 in	 order	 to	 guide	
conservation	 and	 tree	 planting	 strategies.	 Given	 the	 importance	
of	careful	selection	of	potential	predictor	variables	and	removal	of	

bias	in	SDMs	(Boria,	Olson,	Goodman,	&	Anderson,	2014;	Franklin,	
2010),	we	also	 address	 three	methodological	 questions:	 (a)	Which	
strategy	of	predictor	selection	is	most	adequate	to	model	B. excelsa 
habitat	suitability?	(b)	What	are	the	best	MAXENT	settings	based	on	
the	distribution	of	our	data	across	Amazonia?	(c)	What	is	the	mini‐
mum	distance	between	occurrence	points	to	remove	bias	and	fit	ro‐
bust	models	statistically	and	ecologically?	Finally,	we	evaluated	the	
usefulness	of	incorporating	expert	knowledge	in	predictor	variable	
selection	for	enhancing	the	quality	of	SDM	for	B. excelsa.

2  | METHODS

2.1 | Occurrence data

This	study	was	conducted	in	the	Amazonia	biome,	the	world's	largest	
tropical	 rainforest,	occupying	7.2	million	of	km2.	Amazon‐nut's	oc‐
currence	data	(n	=	3,325)	were	collected	from	a	diversity	of	sources:	
datasets	provided	by	 researchers	acquired	 in	 field	collection;	data	
available	from	Emilio	Goeldi	Museum	and	Embrapa	herbarium	col‐
lections;	 Global	 Biodiversity	 Information	 Facility	 (GBIF)	 database;	
scientific	publications	 and	data	 recorded	 in	 field	 expeditions	 from	
2015	 to	 2018	 supported	 by	 São	 Paulo	 Research	 Foundation	 (see	
Table	 S1.1).	 In	 Figure	 1,	 we	 exhibited	 the	 biggest	 specimen	 tree	
found	 in	 our	 field	 expedition	 in	 2016,	 and	 in	 Figure	2,	 the	 spatial	
distribution	of	the	presence	data	obtained.

2.2 | Environmental data

Predictor	variables	were	derived	from	globally	available	raster	data	
at	30	arc‐second	spatial	resolution	(~1	km).	A	total	of	102	predictors	
were	 assembled	 for	 this	 study	 (Table	 S1.2).	 Nineteen	 bioclimatic	
variables	were	obtained	from	http://www.world	clim.org,	which	are	
based	on	interpolation	data	from	1950	to	2000	(Hijmans,	Cameron,	

F I G U R E  1  Amazon‐nut	(B. excelsa)	tree	with	10.65	m	of	
circunference	mesured	at	breast	height	in	2016.	It	was	found	in	a	
forest	fragment	of	the	rural	agroextractivist	settlement	Praia	Alta	
Piranheira,	in	Nova	Ipixuna	do	Pará,	Brazil.	This	specimen	is	known	
as	“majestade”	(Majesty)	in	this	rural	community
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Parra,	 Jones,	 &	 Jarvis,	 2005).	 From	 these	 layers,	 monthly	 poten‐
tial	 evapotranspiration	 (PET),	 aridity	 (ARI),	 and	 soil	water	 content	
(SWC)	layers	were	calculated	and	available	by	http://www.cgiar‐csi.
org/data.

Predictors	 for	 physical	 and	 chemical	 soil	 properties	 were	 ob‐
tained	 for	 seven	 depths	 (0	 up	 to	 200	 cm)	 from	https	://www.soilg	
rids.org.	Selected	predictors	included	soil	organic	carbon	(g/kg),	soil	
pH	×	10	 in	H2O,	sand,	silt	and	clay	fractions	 (%),	bulk	density	 (kg/
m3),	cation‐exchange	capacity	(cmol+/kg),	and	coarse	fragments	(%)	
(Hengl	 et	 al.,	 2014).	 To	 test	 for	 differences	 between	 soil	 variable	
means	at	different	depths,	we	used	ANOVA	followed	by	post	hoc	
Tukey tests	computed	using	the	multcompView	package	for	R	(Graves,	
Piepho,	Sundar,	Maintainer,	&	Selzer,	2015).	Prior	to	ANOVA,	we	ver‐
ified	the	assumption	of	normality	and	homogeneity	of	data	variance,	
using	Shapiro–Wilk	and	F tests,	respectively.	To	minimize	multi‐collin‐
earity	among	soil	predictors,	only	layers	with	significantly	different	
mean	values	were	retained	for	further	modeling.	Boxplots	are	given	
in	Figure	S1.1.

Global	terrain	elevation	data	(GMTED2010)	were	retrieved	from	
the	 USGS/	 NASA	 database:	 https	://topot	ools.cr.usgs.gov/gmted_
viewe	r/.	These	data	were	used	to	derive	topography	and	hydrolog‐
ical	variables,	such	as	slope,	aspect,	Compound	Topographic	Index,	
and	Stream	Power	Index	via	ARCGIS	10.3.	Geological	data	were	also	
obtained	 from	 NASA	 https	://daac.ornl.gov/SOILS/	guide	s/Global_
Soil_Regol	ith_Sedim	ent.html.	These	variables	provided	estimates	of	
the	thickness	of	the	permeable	layers	above	bedrock	like	soil,	rego‐
lith,	and	sedimentary	deposit	(Pelletier	et	al.,	2016).

2.3 | Removing bias

One	 source	 of	 inaccuracy	 in	 SDMs	 is	 sampling	 bias	 in	 presence	
data	(Boria	et	al.,	2014).	For	example,	it	has	been	shown	that	pres‐
ences	 recorded	 may	 suffer	 from	 problems	 of	 locational	 under‐
specification,	 geocoding	errors,	 taxonomic	 changes,	 among	others	
(Franklin,	Serra‐Diaz,	Syphard,	&	Regan,	2017).	To	minimize	poten‐
tial	biases,	we	removed	all	presences	within	a	radius	of	5	km	from	

F I G U R E  2  Geographical	localization	of	the	Amazon	in	South	America.	The	black	points	indicate	the	localization	of	the	Amazon‐nut	
(B. excelsa)	observation	points	obtained	to	this	study	(3,252).	The	coordinate	system	adopted	was	Albers	equal‐area	conic	projected	for	
continental	areas
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municipal	centers.	For	this,	we	created	a	distance	surface	from	cit‐
ies	using	Euclidian	distance	on	geographic	information	system	(GIS).	
Additionally,	presences	 in	savanna	within	the	Amazon	biome	were	
not	used	because	 there	were	 few	Amazon‐nut	occurrences	 found	
in	 these	dry	 forest	patches,	and	species	persistence	 in	 these	drier	
environments	requires	 further	 investigation.	The	omission	of	sam‐
ples	 from	 the	Cerrado	 regions	was	also	 strongly	 suggested	by	ex‐
perts	consulted.	After	this	 first	 filtering,	3,252	occurrence	records	
remained.

Bias	also	occurs	when	presence	data	are	spatially	clustered,	often	
due	to	more	frequent	sampling	in	regions	that	are	more	accessible,	
or	due	to	dispersal	limitation	causing	natural	clusters.	Consequently,	
parts	 of	 the	 environmental	 space	 suitable	 for	 a	 species	 are	 over‐
represented,	 while	 other	 parts	 are	 absent	 or	 poorly	 represented	
(Fourcade,	 Engler,	 Rödder,	 Secondi,	 &	 Brooks,	 2014).	 Inconsistent	
spatial	representation	of	potential	species	habitat	can	lead	to	over‐
fitting	 (Radosavljevic	&	Anderson,	 2014)	 and	 biased	 inference.	 To	
address	this	problem,	spatial	filtering	can	be	used	reducing	overrep‐
resentation	and	improving	model	quality	(Boria	et	al.,	2014;	Kramer‐
Schadt	et	al.,	2013).

To	reduce	biases	and	find	optimal	geographic	distance	between	
trees,	we	 filtered	our	Amazon‐nut	 presence	data	 through	 random	
rarefication	of	3,252	presences	considering	minimum	Euclidian	dis‐
tances	between	them	of	3,	5,	10,	15,	and	20	km.	Filtering	was	imple‐
mented	using	the	Sdmtoolbox	ArcGIS	toolbox	(Brown,	2014).	These	
distances	were	selected	because	many	of	the	presence	points	in	our	
dataset	were	clustered	at	spatial	resolutions	below	1	km,	the	grain	
size	 of	 our	 predictor	 variables,	 in	 order	 to	 evaluate	 how	 environ‐
mental	 heterogeneity	was	maintained	 according	 to	 the	 increasing	
geographic	distance.	These	experiments	have	been	suggested	in	the	
literature	(Boria	et	al.,	2014).

2.4 | Predictor selection

When	developing	SDMs,	researchers	often	prioritize	predictors	as‐
sociated	with	primary	plant	resources	(e.g.,	water,	temperature	and	
nutrients)	or	those	related	to	human	or	natural	disturbance	(e.g.,	fire	
and	insect	outbreaks)	(Guisan	&	Thuiller,	2005).	However,	problems	
may	arise	on	the	one	hand	because	predictors	choices	may	be	sub‐
jective	and	on	the	other	because	subsets	of	predictors	may	be	highly	
correlated.	Automated	model	 selection	methods	have	been	devel‐
oped	 to	 address	 some	 of	 these	 subjectivity	 issues,	 because	 they	
apply	different	combinations	of	variables	without	researcher's	inter‐
ference	to	find	the	“best”	model.	This	selection	is	given	by	the	model	
weight	that	is	computed	by	means	of	metrics,	such	as	minimization	
of	 the	 Akaike	 information	 criterion	 (Burnham	&	Anderson,	 2002).	
Despite	the	advances,	it	remains	challenging	to	identify	a	meaning‐
ful	and	informative	subset	of	SDM	predictors	(Galipaud,	Gillingham,	
David,	&	Dechaume‐Moncharmont,	2014),	 largely	due	 to	 the	con‐
founding	influence	of	multi‐collinearity	(Dormann	et	al.,	2013).

Principal	 component	 analysis	 (PCA)	 has	 been	 suggested	 to	 re‐
duce	 the	 dimensionality	 of	 predictor	 variables	 through	 the	 gener‐
ation	 of	 multiple	 orthogonal	 synthetic	 variables	 (Everitt	 &	 Dunn,	

2001).	 The	 downside	 is	 that	 PCA	 results	 can	 be	 difficult	 to	 inter‐
pret,	especially	when	 trying	 to	determine	which	variables	contrib‐
ute	meaningfully	to	each	component	(Vaughan	&	Ormerod,	2005).	
However,	also	external	information	can	be	useful	to	interpretation	of	
ecological	structure.	Expert	knowledge	previously	considered	to	be	
subjective	has	recently	been	recognized	for	its	vast	potential	to	im‐
prove	ecological	models	(Kuhnert	et	al.,	2010;	Porfirio	et	al.,	2014).	
Here,	we	compare	three	methods	for	variable	selection:	one	based	
on	ordination	(PCA),	one	based	on	expert	knowledge,	and	another	
that	combines	both	approaches.

2.4.1 | Ordination‐based variable selection

We	used	PCA	to	reduce	collinearity	and	dimensionality	in	our	large	
predictor	 dataset	 (Legendre	&	 Legendre,	 2012).	 PCA‐derived	 syn‐
thetic	predictors	were	calculated	using	environmental	data	covering	
the	entire	geographic	space	of	the	Amazon	(Pan‐Amazon)	at	spatial	
resolution	 of	 30	 arc	 seconds	 (~1	 km).	 Prior	 to	 analysis,	 all	 predic‐
tors	were	 standardized	 to	 zero	mean	 and	 unit	 variance.	 Then,	we	
explored	 correlations	 between	 variables	 using	 Pearson's	 R.	 We	
grouped	variables	by	category	(i.e.,	climatic,	edaphic,	and	geophysi‐
cal)	 and	 submitted	 each	 group	 to	 a	 PCA.	 The	 eigenvectors	 were	
normalized	for	each	group,	and	we	retained	the	subset	of	principal	
components	accounting	for	80%	of	the	variance	in	the	original	data	
(Jolliffe,	1972).

The	 predictors	 that	 maximally	 contributed	 to	 explaining	 vari‐
ance	in	principal	components	were	identified	based	on	correlations	
between	variables	and	PCA	axes	(eigenvector	and	its	standard	de‐
viation).	Using	 graphics	 produced	 in	 the	 factorextra	 package	 for	 R	
(Kassambara	&	Mundt,	2017),	we	obtained	the	contribution	of	each	
variable	 to	 the	 overall	 axis	 expressed	 as	 a	 percentage.	 Only	 the	
variables	whose	contribution	was	greater	than	the	average	were	re‐
tained.	We	iteratively	recalculated	a	new	PCA	on	this	restricted	set	
of	predictors.	Next,	we	applied	collinearity	tests	at	a	95%	confidence	
interval	using	mctest	package	for	R	(Ullah	&	Aslam,	2017).	Once	col‐
linearity	persisted,	one	for	every	two	variables	with	Pearson	R	>	|.7|	
in	the	correlation	matrix	was	rejected.	The	variables	retained	follow‐
ing	this	procedure	will	be	referred	to	as	Group	1.

2.4.2 | Expert‐based variable selection

In	2016,	we	convened	an	expert	panel	in	Amapa	State,	Brazil,	com‐
posed	 of	 twelve	 researchers	 (PhDs	 and	 graduate	 students)	 with	
different	 types	 of	 expertise	 on	 Amazon‐nut	 to	 a	 workshop	 titled	
“Maxent	modelling	 and	 its	 application	 in	 the	estimation	of	prefer‐
ential	areas	to	B. excelsa,”	organized	by	the	MAPCAST	project.	The	
panel	was	established	to	collect	expert	knowledge	on	the	geophysi‐
cal	 and	 biological	 factors	 influencing	 Amazon‐nut	 distribution	 for	
incorporation	in	the	SDM	building	process.

The	102	variables	in	the	original	database,	as	well	as	preliminary	
PCA	results,	were	submitted	to	their	appraisal.	The	panel	of	experts	
was	 specifically	 asked	 the	 following	 questions:	 Which	 variables	
should	be	included	in	the	model?	What	is	the	maximal	period	during	
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which	the	plant	can	be	exposed	to	water	and	heat	stress?	Should	all	
available	 depths	 of	 soil	 variables	 be	 used?	Were	 the	 variables	 se‐
lected	by	PCA	adequate	to	model	B. excelsa?	After	analysis	and	dis‐
cussion,	the	experts	reached	consensus	and	provided	a	list	of	what	
they	considered	to	be	the	most	 important	variables	 for	 the	occur‐
rence	of	Amazon‐nut	(Table	S1.2).	This	variable	set	will	be	referred	
to	as	Group	2.	Combining	both	approaches,	we	also	calculated	a	PCA	
from	the	set	of	variables	selected	by	the	expert	panel.	The	variable	
set	will	be	referred	to	as	Group	3.

2.5 | Setting and fitting models

We	calibrated	and	projected	all	models	using	the	ENMeval	package	
for	R	(v.	0.2.2;	Muscarella	et	al.,	2014),	which	includes	some	of	the	
latest	functions	developed	to	help	modelers	find	parsimonious	mod‐
els	using	maximum	entropy	(v.	3.3.3k;	Phillips	et	al.,	2017).

Presence	 data	 were	 used	 to	 determine	 appropriate	 feature	
classes	 (FC)	 and	 regularization	 multiplier	 (β)	 parameters	 within	
MAXENT	for	our	study	area.	Feature	classes	are	functions	 (linear,	
quadratic,	 hinge,	 product,	 threshold,	 and	 categorical)	 created	 by	
MAXENT	for	each	environmental	variable	(Phillips	&	Dudík,	2008).	
By	 default,	 features	 choice	 is	 usually	 conditioned	 by	 the	 number	
of	observations	(n).	When	n	>	80,	all	features	are	used	and	conse‐
quently,	model	complexity	 increases	 (Elith	et	al.,	2011).	To	reduce	
complexity,	users	can	specify	FCs	manually	and	adjust	the	level	of	
regularization	via	 the	multiplier	 coefficient	 (β),	which	controls	 the	
smoothness	of	 the	distribution	curve.	 It	 is	equilibrated	by	 lambda	
regularization	 parameter	 in	 the	 regression	 equation.	 By	 default,	
β	 =	 1	 is	 often	 selected	 to	 balance	 fit	 and	 complexity,	 but	 studies	
have	mentioned	that	higher	values	result	in	smoother	models	(Elith	
et	al.,	2011),	while	according	to	others,	values	of	β	above	4.0	may	
lead	to	decline	in	models	quality	(Radosavljevic	&	Anderson,	2014).

We	 sought	 to	 identify	 the	 best	 FC	 and	 β	 parameters	 for	 our	
MAXENT	model	of	Amazon‐nut	occurrence.	As	such,	we	examined	
five	feature	classes	and	combination	thereof	(L,	H,	T,	LQ,	LQP,	LQH,	
LQHP,	LQHPT,	where	L	=	linear,	Q	=	quadratic,	H	=	hinge,	P	=	product,	
and	T	=	threshold),	and	four	levels	of	regularization	from	0.5	to	2.0,	in	
increments	of	0.5.	We	examined	the	suitability	of	these	combinations	
of	parameters	 for	both	 filtered	 (rarefied	occurrence)	 and	unfiltered	
models	for	each	of	the	three	groups	of	candidate	predictors.	We	used	
random	k‐fold	cross‐validation	selection	of	training	and	testing	data,	
adopting	k	=	10	to	assess	model	accuracy	(Kohavi,	1995).	Overall,	576	
models	were	run,	taking	10,000	random	pseudo‐absences	from	the	
Pan‐Amazonia	background	(Phillips	&	Dudík,	2008).

2.6 | Model performance

Model	performance	was	evaluated	using	the	three	metrics:	 (a)	 the	
corrected	Akaike	information	criterion	(AICc)	(Burnham	&	Anderson,	
2002);	(b)	the	area	under	the	curve	of	the	receiver	operating	charac‐
teristic	(ROC)	for	the	test	data	(AUCTEST)	(Elith	et	al.,	2011;	James,	
Robert,	Wotton,	Martell,	&	Fleming,	2017);	and	(c)	the	10%	training	
omission	 rate	 (OR10)	 (Fielding	&	Bell,	 1997;	 Liu,	White,	&	Newell,	

2013).	All	metrics	were	calculated	using	the	ENMeval	package	in	R	
(Muscarella	et	al.,	2014).

We	compared	all	models	with	ΔAICc	<	2,	which	indicates	equiv‐
alent	 models	 (Burnham	 &	 Anderson,	 2002)	 using	 AUC	 and	OR10	
values	 to	 identify	 the	 most	 appropriate	 groups	 of	 predictors	 and	
filtering	distance.	Even	based	on	these	three	metrics,	it	was	not	triv‐
ial	to	select	the	most	appropriate	spatial	filtering	distance.	For	this	
reason,	we	ran	MAXENT	using	R	dismo	package	just	for	the	six	best	
models	 (Hijmans,	 Phillips,	 Leathwick,	&	 Elith,	 2011).	 This	 resource	
was	chosen	because	it	offers	some	useful	functions	to	complement	
our	model	evaluation,	as	nicheOverlap	and	evaluate.

We	 used	 the	 nicheOverlap	 function	 to	 compute	 Schoener's	 D	
statistic	 (Warren,	Glor,	&	 Turelli,	 2008),	which	 quantifies	 pairwise	
similarities	among	the	best	unfiltered	and	filtered	models.	Confusion	
matrices	were	also	reevaluated	using	the	evaluate	function	for	con‐
structing	 density	 curves,	 and	 determining	 the	 relative	 contribu‐
tions	 of	 environmental	 variables,	 as	 well	 as	 different	 thresholds.	
Continuous	 maps	 were	 transformed	 into	 binary	 maps	 using	 the	
maximum	sensitivity	and	specificity	sum	 (max	SSS	threshold).	This	
threshold	has	provided	good	results	when	reliable	absence	data	are	
unavailable	 (Liu	et	 al.,	2013).	Pixels	with	values	equal	 to	or	higher	
than	the	threshold	were	considered	suitable.

The	final	maps	were	examined	visually	by	six	of	twelve	Amazon‐
nut	experts	consulted	who	were	asked	to	provide	feedback	on	three	
aspects:	(a)	whether	the	model	showed	predictive	power	to	identify	
underrepresented	areas;	(b)	whether	the	distribution	of	the	habitat	
of	the	B. excelsa	had	been	well‐represented;	(c)	whether	the	most	im‐
portant	selected	variables	made	ecological	sense.	This	 information	
was	used	in	complement	to	the	statistical	metrics.	The	model‐build‐
ing	process	is	summarized	in	Figure	3.

3  | RESULTS

3.1 | Candidate predictor variables

For	Group	1,	we	identified	moderate	to	high	correlations	among	pre‐
dictor	variables	within	the	climatic	(Figure	4a),	edaphic	(Figure	4b),	
and	geophysical	(Figure	4c)	predictor	groups.	For	the	set	of	37	ana‐
lyzed	climate	variables,	87%	of	 the	variance	was	explained	by	 the	
first	 three	 ordination	 axes.	 For	 the	 soil	 (n	 =	 43)	 and	 geophysical	
(n	=	10)	predictors,	four	and	five	axes,	respectively,	were	required	to	
capture	at	least	80%	of	the	variance.

Following	 initial	 examination	 of	 PCA	 results,	 we	 retained	 22	
climate	 variables,	 24	 soil	 variables,	 and	 five	 geophysical	 variables	
which	have	 loadings	on	 the	 respective	PCA	axes	 greater	 than	 av‐
erage	(Figure	3d–f).	These	variables	were	again	submitted	to	a	PCA	
which	 resulted	 in	a	new	set	of	PCA	scores	by	category.	From	this	
PCA	17	 climatic	 variables,	 16	 soil	 variables	 and	 three	 geophysical	
variables	had	 the	highest	 contributions.	Several	of	 these	variables	
remained	correlated.	To	reduce	multi‐collinearity,	we	retained	only	
variables	with	 pairwise	 correlations	 (Pearson's	 r)	 <.7.	 Temperature	
of	the	driest	quarter	and	evapotranspiration	of	driest	quarter	had	a	
stronger	relationship	with	the	first	axis,	whereas	soil	water	content	



     |  7TOURNE ET al.

of	driest	quarter	had	a	stronger	correlation	with	the	second	one.	The	
soil	 and	 geophysical	 variables	 that	were	most	 correlated	with	 the	
first	three	axes	were	bulk	density	(fine	earth)	in	kg/m3,	soil	pH‐H2O,	
silt	mass	fraction	%,	aspect,	hillslope	valley‐bottom	and	average	soil,	
and	sedimentary	deposit	thickness.	Additional	details	on	ordination	
including	factor	loadings	can	be	found	in	Table	S2.1.

For	Group	2,	29	environmental	variables	of	the	initial	set	of	102	
were	highlighted	by	experts	(Table	S1.2).	They	included	only	two	soil	
depths,	one	superficial	(0–5	cm)	and	the	other	deeper	(100–200	cm),	
to	 represent	 variation	 of	 the	 soil	 variables.	 Among	 the	 climatic	
variables,	 temperature	 and	 soil	 water	 content	 of	 the	 driest	 quar‐
ter	were	indicated	to	represent	stressful	periods,	as	well	as,	annual	

precipitation	because	water	supply	is	a	determining	factor	for	fruit	
production.

A	PCA	based	on	the	variables	selected	by	experts	(Group	3)	cap‐
tured	most	of	the	variance	in	the	first	two	ordination	axes	of	climatic	
(86.8%)	and	geophysical	 (90.0%)	predictors.	Four	climatic	and	two	
geophysical	 variables	 showed	 contributions	 above	 average:	Mean	
temperature	of	driest	quarter	showed	the	highest	correlation	with	
the	first	axis,	followed	by	mean	temperature	of	the	coldest	quarter	
and	annual	mean	temperature,	whereas	the	annual	potential	evapo‐
transpiration	had	stronger	relation	with	the	second	axis.	The	relation	
between	the	predictor	variables	and	the	first	two	principal	compo‐
nents	are	visualized	in	Figure	5a–c.

F I G U R E  3  Summary	of	the	model‐building	process	executed	to	identify	the	suitable	habitat	for	Amazon‐nut	(B. excelsa)	in	the	Pan‐
Amazon
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Among	 the	 geophysical	 predictors,	 terrain	 elevation	 and	 slope	
were	strongly	associated	with	 the	 first	axis.	For	 the	soil	 variables,	
83.5%	of	the	variance	was	explained	by	the	first	five	axes,	for	which	
eight	variables	were	above	average:	coarse	fragments	>2	mm,	cation‐
exchange	capacity,	 soil	 pH,	 sand	mass	 fraction,	 clay	mass	 fraction	
and,	silt	mass	fraction.	In	Table	S2.2,	additional	details	on	ordination	
of	this	group	can	be	found.

3.2 | Habitat suitability model

Values	of	AUC	and	omission	rates	of	the	best	18	models	with	low‐
est	AICc	 (i.e.	ΔAICc	<	2)	are	 illustrated	 in	Figure	6.	All	metrics	are	
provided	in	Table	S2.3.

3.2.1 | Maxent settings

There	was	a	high	degree	of	variation	 in	both	FC	and	β	parameters	
among	 the	 best	 models.	 The	most	 frequent	 regularization	 coeffi‐
cient	was	β	=	1.5	(44%),	followed	by	β	=	1	(39%)	and	β	=	2.0	(17%).	
LQHPT	feature	classes	appeared	in	56%	of	the	best	models,	includ‐
ing	the	final	model.

3.2.2 | Choice of variables

PCA	based	on	expert	recommendations	(Group	3)	was	the	most	ap‐
propriate	method	to	select	predictors	on	both	unfiltered	and	filtered	
model	based	on	the	metrics	(Table	S2.3).	Among	unfiltered	models,	
the	highest	AUC	(0.89)	was	obtained	for	Group	3	and	omission	rates	

were	within	the	expected	errors	(10%)	(Figure	6a,b),	but	this	model	
was	considered	unreliable	due	to	overfitting	caused	by	biased	data	
used	in	calibration	(Figure	6).	The	unfiltered	model	on	the	left	showed	
a	 high	 probability	 of	 presence	 close	 to	 sampled	 occurrences	 (dark	
blue)	and	consequently,	 low	out	of	sample	 (OOS)	predictive	power.	
This	is	not	visualized	on	the	filtered	model	on	the	right	(at	10	km	of	
tree	distance),	because	its	probability	distribution	is	more	regular.

Models	based	on	all	variables	selected	by	experts	(Group	2)	had	
better	discriminatory	power	than	models	based	on	the	other	groups,	
regardless	 of	 the	 scale	 of	 spatial	 filtering	 applied	 (3–20	 km),	 with	
AUC	values	ranging	from	0.80	to	0.86	(Figure	5a).	However,	these	
models	 had	 omission	 rates	 between	 12%	 and	 17%,	 that	 is,	 rates	
above	 the	 expected	 theoretical	 threshold	 (10%).	 This	 reflects	 low	
accuracy	and	predominance	of	false‐negative	errors	in	the	confusion	
matrix.	However,	after	removing	multi‐collinearity	of	the	predictors	
selected	by	experts	via	PCA	(Group	3),	omission	rates	were	reduced	
to	11%,	as	well	as	overfitting	(Table	S2.3).	Therefore,	this	group	of	
variables	was	selected	for	modeling	the	distribution	of	Amazon‐nut.

3.2.3 | Spatial filtering

Unfiltered	models	were	found	to	perform	better	than	filtered	mod‐
els	on	the	basis	of	AUC	(Figure	6).	However,	through	visual	exami‐
nation	of	the	maps	we	noted	strong	signs	of	overfitting	to	training	
data	for	the	former	models	(Figure	7),	confirming	that	poorly	fitted	
models	 with	 biased	 samples	 can	 have	 good	 discriminatory	 power	
(Lobo,	 Jiménez‐valverde,	 &	 Real,	 2008),	 but	 may	 be	 nonetheless	
overfit.	In	Figure	7,	the	probabilistic	maps	suggested	that	overfitting	

F I G U R E  4  The	first	two	principal	axes	of	PCA	for	the	environmental	predictors	in	the	Amazon	geographical	space	(Group	1):	(a)	37	
climate	variables;	(b)	43	soil	variables;	and	(c)	10	geophysical	variables.	Variables	percentage	of	contribution	in	the	principal	components	with	
the	large	variance	of	the	data.	The	red‐dashed	line	indicates	the	expected	average	contribution:	(d)	22	climate	variables;	(e)	24	soil	variables;	
and	(f)	5	geophysical	variables	were	selected
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was	reduced	with	spatial	filtering	improving	model	quality.	We	high‐
lighted	 two	areas	with	high	density	of	presence	data	 in	unfiltered	
and	filtered	models,	and	detected	adjustment	of	biases	and	increase	
of	the	area	extension	predicted	in	the	filtered	model.	However,	our	
results	 expressed	 high	 similarity	 between	 filtered	 and	 unfiltered	
models	 using	 rarefied	 data	 from	 3	 to	 20	 km	 based	 on	 results	 of	
Schoener's	D	comparisons	(Table	S2	3).

The	 minimum	 distance	 between	 occurrence	 points	 was	 also	
highlighted	through	density	curves.	The	unfiltered	model	showed	
signs	of	highly	clustered	data,	featuring	three	peaks	in	the	distri‐
bution	 curve,	 while	 in	 filtered	 models,	 curves	 were	 bell‐shaped	
with	a	single	peak	(Figure	S2.1).	The	model	simulated	with	10	km	
of	distance	between	records	achieved	a	higher	peak	in	the	inter‐
val	of	0.5–0.8	 than	other	 filtered	models,	as	well	as	satisfactory	
discrimination	power	via	AUC	 test	 (0.8)	 and	 lower	omission	 rate	
(0.11).

The	final	model	and	the	most	important	predictors	are	shown	in	
Figure	8.	This	model	was	fit	using	records	of	Amazon‐nut	distributed	
spatially	filters	at	10	km	resolution	(557	presence	points),	regulariza‐
tion	multiplier	 (β	=	1.5),	 feature	classes	combination	 (LQHPT),	and	
Group	3	predictors.	The	minimum	probability	of	occurrence	was	lim‐
ited	by	the	Max	SSS	threshold	of	0.5,	representing	an	omission	rate	
of	11%.	The	five	predictors	with	highest	contribution	highlighted	by	
MAXENT	were	 elevation	 (19.4%),	 coarse	 soil	 fragments	 >2	mm	 in	
%	 (18.3%),	clay	mass	 fraction	%	 (18.2%),	slope	 (11.9%),	and	annual	
potential	evapotranspiration	(6.9%).	Our	results	suggest	that	under	
current	environmental	conditions,	suitable	habitat	for	Amazon‐nut	is	
found	across	2.3	million	km2	or	32%	of	the	Amazon	Biome.

4  | DISCUSSION

4.1 | Amazon‐nut habitat suitability

We	best	model	 indicates	across	2.3	million	km2	 is	potentially	suit‐
able	 for	B. excelsa.	 This	 area	 is	 far	 greater	 than	 that	 suggested	by	
previous	studies	(1.3	million	km2),	in	which	the	authors	(Thomas	et	
al.,	2014),	highlighted	that	some	areas	along	the	Tocantins	River	and	
in	 southeastern	 Amazonia	may	 have	 been	 underrepresented.	Our	
model	identified	that	these	and	other	areas	in	the	eastern	Amazon	
are	suitable	(Figure	8).

With	 respect	 to	 the	most	 important	predictors	 that	control	 its	
spatial	 distribution,	our	 results	 are	 similar	 to	 those	 found	 in	other	
studies.	 In	 Peru,	 seed	 production	was	 found	 to	 be	 positively	 cor‐
related	with	clay	content	and	negatively	with	sand	content	(Thomas	
et	al.,	2017).	In	Brazil,	Guerreiro	et	al.	(2017)	found	that	the	species	
has	a	preference	soils	with	a	clayey	to	very	clayey	texture.	However,	
none	of	the	previous	studies	identified	the	presence	of	coarse	soil	
fragments	>2	mm	as	being	relevant	to	species	distribution,	despite	
its	known	occurrence	in	high	stem	densities	on	lateritic	soils	which	
contain	coarse	fragments	 (Müller,	1995;	Salomão,	2009)	and	often	
are	 rich	 in	 iron	 oxide	 and	 aluminum	 (Horbe	 &	 Da	 Costa,	 2005).	
Concerning	 chemical	 attributes,	 soil	 influence	 on	 fruit	 production	
has	 been	 shown	 to	 be	 positively	 associated	with	 cation‐exchange	
capacity	 (Kainer,	 Wadt,	 &	 Staudhammer,	 2007).	 However,	 other	
studies	found	highly	productive	trees	in	areas	with	higher	levels	of	
exchangeable	Al	and	low	soil	pH,	confirming	that	species	can	also	be	
productive	in	acidic	and	less	fertile	soil	(Costa,	Tonini,	&	Filho,	2017).

F I G U R E  5  The	first	two	principal	axes	of	PCA	for	the	environmental	predictors	proposed	by	experts	in	the	Amazon	geographical	space	
(Group	3):	(a)	10	climate	variables;	(b)	17	soil	variables;	and	(c)	3	geophysical	variables.	Variables	percentage	of	contribution	in	the	principal	
components	with	the	large	variance	of	the	data.	The	red‐dashed	line	indicates	the	expected	average	contribution:	(d)	4	climate	variables;	(e)	
8	soil	variables;	and	(f)	2	geophysical	variables	were	selected
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Among	topographic	predictors,	elevation	was	one	of	the	stron‐
gest	predictors.	 In	 the	map,	 species	probability	of	occurrence	was	
lower	at	higher	altitudes,	as	in	the	northern	and	southern	extremes	
of	 the	Amazon	basin.	Amazon‐nut	 trees	have	been	 recorded	 from	
sea	level	to	~400	m	above	sea	level	(ASL)	(Thomas	et	al.,	2014).	Our	
data	included	specimens	found	up	to	562	m	ASL	in	the	south	of	Para,	
Brazil.	In	addition,	our	model	indicates	that	many	lowland	areas	were	

suitable	in	contrast	to	the	prevailing	notion	that	this	species	prefers	
upland	areas	 (Scoles	et	al.,	2016).	 Indeed,	species	seed	production	
has	been	shown	to	be	lower	when	trees	were	close	to	rivers	(Thomas	
et	al.,	2017).	The	unexpected	inclusion	of	lowland	areas	as	suitable	
Amazon‐nut	habitat	was	discussed	with	experts.

Some	 experts	 emphasized	 that	 several	 islands	 in	 the	 Amazon	
estuary	 should	 not	 have	 been	 classified	 as	 suitable,	 because	 they	

F I G U R E  6  Results	of	the	receiver	
operating	characteristic	(ROC)	for	the	test	
data	(AUC	test)	and	omission	rates	(OR)	
in	the	18	best	models	with	lowest	AICc	
(i.e.,	ΔAICc	<	2)	classified	by	group	of	
predictors.	(a)	AUC	and	(b)	OR.	For	each	
data‐partitioning	approach,	we	adopted	
10	interactions	(k	=	10)
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are	often	flooded	and	have	soils	rich	 in	silt,	with	growth	condition	
adverse	those	where	the	species	is	commonly	found.	Others	experts	
suggested	that	although	Amazon‐nut	occurrence	in	areas	prone	to	
flooding	 is	 rare,	 it	 can	 happen.	 They	 reported	 an	 example	 in	 the	
lago capanã grande	reserve,	in	Manicoré,	Amazonas,	where	the	local	
community	affirms	that	the	Amazon‐nut	trees	in	flooded	areas	are	
more	productive	than	those	found	in	nonflooded	areas	thanks	to	the	
presence	 of	 river	 sediments.	 Similarly,	 occurrences	 and	 high	 fruit	
productivity	have	been	described	in	Peruvian	Amazonian	lowlands,	
notably	in	Madre	de	Dios	(Nunes	et	al.,	2012).	Amazon‐nut	popula‐
tion	observed	closer	to	the	river	has	been	recently	associated	with	
dispersal	 by	 ancient	 humans	 who	 strongly	 contributed	 to	 expand	
species	distribution	 in	the	habitat	 (Thomas	et	al.,	2014,	2015).	For	
future	studies,	we	recommend	a	more	detailed	investigation	about	
Amazon‐nut	suitability	 in	periodically	flooded	areas	using	environ‐
mental	data	at	finer	spatial	resolutions,	also,	taking	into	account	fre‐
quency	and	duration	of	flooding.

Climate	was	less	important	than	soil	and	topography	to	Amazon‐
nut	habitat	suitability	in	the	best	model.	This	was	unexpected	given	

the	known	 importance	of	climate	to	spatial	patterns	 in	 floristic	di‐
versity	across	Amazonia	(da	Silva	et	al.,	2011).	However,	our	findings	
are	 similar	 to	 those	of	 a	 recent	 study	 that	highlighted	 the	 relative	
importance	 of	 edaphic	 conditions	 to	 plant	 occurrence	 in	 Amazon	
(Figueiredo	et	al.,	2017).	We	attributed	this	result	to	recognized	im‐
portance	of	soil	attributes	to	Amazon‐nut	ecology	and	productivity	
(Costa	et	al.,	2017;	Kainer	et	al.,	2007).	Moreover,	we	highlight	that	
the	percent	contribution	values	ranked	by	MAXENT	are	determined	
by	how	much	of	variation	a	model	with	only	that	variable	explains,	
it	 considers	 environmental	 variables	 separately	 (Bradie	 &	 Leung,	
2017).	A	 low	variation	 in	climate	predictors	was	confirmed	though	
our	PCA	analysis	(Table	S2.2).

Despite	 low	 variation,	 the	 annual	 potential	 evapotranspiration	
contributed	with	7%	 in	the	final	model.	Derived	from	climatic	vari‐
ables,	this	predictor	represents	the	amount	of	soil	water	lost	by	evap‐
oration	and	transpiration	from	plants	into	the	atmosphere	under	given	
conditions	(Zomer,	Trabucco,	Straaten,	&	Bossio,	2006).	Inclusion	of	
this	variable	in	the	final	model	makes	ecological	sense	as	the	Amazon‐
nut	is	an	emergent	tree	that	receives	a	high	level	of	solar	radiation.	

F I G U R E  7  The	best	unfiltered	and	filtered	models	to	estimate	the	Amazon‐nut	(B. excelsa)	habitat	based	on	current	environmental	
conditions	(Group	3	of	predictors).	We	highlighted	for	two	areas	where	we	had	high	density	of	sampled	points	(red	points).	Area1:	at	the	
border	between	Brazil,	Peru	and	Bolivia.	Area	2:	southern	Amapa	State,	Brazil
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Consequently,	Amazon‐nut	trees	are	vulnerable	to	drought	and	water	
loss.	It	has	been	noted	that	this	species	is	most	vulnerable	to	drought	
during	the	dry	season,	and	that	dry	and	warm	conditions	negatively	
affect	species	seed	production	(Thomas	et	al.,	2017).	Facing	climate	
changes,	forest	loss	and	rapid	land‐use	changes,	many	uncertainties	
hover	on	Amazon‐nut	future.	Therefore,	natural	and	human	factors,	
as	well	 as	 their	 consequences	on	 the	 species	distribution,	must	be	
urgently	assessed	to	ensure	its	conservation.

The	above	reflections	were	supported	by	experts	consulted	who	
believe	 that	 the	model	was	adequate	 to	 representing	Amazon‐nut	
habitat	 suitability.	 Although,	 some	 areas	 were	 deemed	 underpre‐
dicted	 in	 Venezuela,	 Guyana,	 and	 Colombia.	 This	 was	 attributed	
to	 limited	presence	data	obtained	 in	these	countries.	 In	Brazil,	 the	
country	that	contains	the	greatest	percentage	of	habitat	for	this	spe‐
cies	(91%),	many	microregions	classified	as	suitable	were	confirmed	
by	 experts,	 such	 as:	 in	Amazonas	 (microregion	 of	 Purus,	Madeira,	
medium	 and	 low	 Rio	 Negro);	 southern	 of	 Amapá	 (microregion	 of	
Mazagao);	Pará	 (microregion	of	Santarém,	Óbidos,	 Itaituba,	Tome‐
Açú,	Marabá);	and	Rondonia	 (Microregion	of	Porto	velho).	Experts	
also	 identified	areas	that	were	not	suitable	for	B. excelsa,	although	
the	 model	 identified	 them	 to	 be	 as,	 such	 as:	 in	 microregions	 of	
Roraima	 (Roraima)	 and	Cruzeiro	 do	 Sul	 (Acre).	 According	 to	 these	
experts,	this	was	not	a	commission	error	inherent	to	model	because	
there	are	Amazon‐nut	trees	planted	and	growing	in	arboretums	and	
nurseries,	but	not	in	natural	forest	in	the	Cruzeiro	do	Sul,	for	exam‐
ple.	These	potential	areas	not	naturally	occupied	can	be	justified	by	
ecological	factors.

Unfortunately,	 biologic	 information	was	 not	 considered	 in	 our	
model,	due	to	the	scarcity	of	spatial	data.	Fauna	studies	are	often	

local	 and	 focused	 on	 population	 dynamic	 (demography,	 displace‐
ment,	and	food	availability)	(Haugaasen	et	al.,	2012).	Fauna	habitat	
modeling	may	be	extremely	useful	to	tree	distribution	studies,	but	it	
is	seldom	investigated	for	terrestrial	Amazon	species.	Besides	fauna	
interaction,	 very	 little	 is	 known	 on	Amazon‐nut	 dominated	 plants	
communities	and	their	roles	on	species	distribution.

4.2 | Methodological aspects

Our	results	demonstrated	that	a	hybrid	strategy	based	on	statisti‐
cal	modeling	and	expert	opinion	allowed	identifying	the	best	model	
for	B. excelsa.	This	 finding	 reinforces	 that	 the	 relationships	among	
original	 predictors	 should	 be	 understood	 not	 only	 through	 their	
statistical	behavior,	but	also	by	the	ecological	role	they	play	in	the	
species	distribution.	Although	PCA	is	a	highly	informative	ordination	
technique	and	has	been	extensively	applied	 in	community	ecology	
since	1954	(Legendre	&	Legendre,	2012),	interpretation	of	outputs	
requires	biological	knowledge	(Janekovi	&	Novak,	2012).

Detailed	 biological	 knowledge	 is	 still	 scarce	 or	 incomplete	 for	
many	if	not	most	Amazonian	plant	species.	Therefore,	expert‐based	
information	has	been	proposed	as	an	alternative	approach	to	iden‐
tifying	meaningful	predictors	 in	habitat	modeling	 (Calixto‐Pérez	et	
al.,	2018).	Our	findings	showed	that	PCA	was	effective	in	reducing	
omission	error	rates,	data	collinearity,	and	dimensionality,	as	well	as	
preserving	maximum	 variance,	 when	 applied	 to	 a	 set	 of	 variables	
preselected	 by	 experts.	 Thus,	 among	 29	 variables	 chosen	 by	 ex‐
perts,	fifteen	were	selected	via	PCA	and	used	to	fit	our	model.	Five	
of	them	had	a	contribution	of	75%	in	the	best	model	found	ensuring	
statistical	and	ecological	representativeness.

F I G U R E  8  Distribution	of	suitable	habitat	for	Amazon‐nut	(B. excelsa)	in	the	Pan‐Amazon	to	a	probability	of	presence	>0.5	(Max	sss	
threshold)	and	percent	of	contribution	of	the	variables	in	the	final	model.	Dashed	red	line	indicates	five	biggest	contributions	to	Amazon‐nut	
distribution.	Elevation	(19.4%),	coarse	fragments	volumetric	>2	mm	in	%	(18.3%),	clay	mass	fraction	%	(18.2%),	slope	(11.9%),	and	annual	
potential	evapotranspiration	(6.9%)
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Even	using	the	best	set	of	predictors,	we	observed	that	the	dis‐
criminatory	ability	of	filtered	models	measured	by	AUC	was	gradu‐
ally	reduced	at	larger	filtering	distances.	Ironically,	our	most	biased	
model	 (poorly	 fitted)	 received	 the	 highest	 AUC	 value.	 Similar	 re‐
sults	were	 found	by	Radosavljevic	 and	Anderson	 (2014).	 This	was	
expected,	because	the	AUC	has	been	shown	to	be	 insufficient	 for	
model	evaluation	when	no	true	absence	data	are	available	(Jiménez‐
valverde,	 2012;	 Lobo	 et	 al.,	 2008).	 Through	 visual	 interpretation,	
we	 identified	 clear	 positive	 effects	 of	 spatial	 filtering	on	 reducing	
overfitting	(Figure	7),	supporting	previous	research	(Kramer‐Schadt	
et	al.,	2013).	However,	the	challenge	was	to	define	at	which	distance	
the	filtering	became	too	strict,	because	statistically,	there	was	high	
similarity	between	 filtered	models.	We	addressed	 this	problem	by	
comparing	metrics	and	density	curves	(Table	S2.4	and	Figure	S2.1).

The	minimum	distance	of	10	km	between	presence	data	was	
considered	 appropriate	 to	 the	 adopted	 scale.	Models	 using	data	
filtered	in	this	way	displayed	the	highest	peak	in	density	curve	in	
the	interval	of	0.5–0.8,	satisfactory	discrimination	power	via	AUC	
test	 and	 lower	 omission	 rate.	 The	 same	 distance	 has	 been	 used	
and	recommended	in	other	studies	of	highly	heterogeneous	areas	
(Boria	et	 al.,	2014;	Kramer‐Schadt	et	 al.,	2013).	However,	10	km	
does	not	 represent	a	distance	between	populations	or	groves,	 it	
was	only	chosen	 in	order	 to	 reduce	geographical	bias	existing	 in	
the	data.	 If	AUC	would	have	been	 the	only	 evaluation	metric,	 it	
would	have	been	misleading.	But,	together	with	other	metrics	and	
visual	evaluation,	this	index	was	useful,	because	the	biased	models	
with	highest	AUC	were	used	as	reference	to	compare	with	other	
metrics.

Regarding	Maxent	settings,	 the	variation	of	FC	and	β	between	
experiments	 led	 us	 to	 conclude	 that	 these	 parameters	 should	 be	
fine‐tuned	on	a	species	and	dataset‐specific	basis	(Radosavljevic	&	
Anderson,	2014).	However,	contrary	to	our	expectations,	 the	data	
were	well‐fitted	 to	 the	combinations	of	all	 feature	classes,	usually	
suggested	as	default	 (Phillips	&	Dudík,	2008),	when	we	compared	
to	more	simplified	functions.	Similar	results	were	found	by	(Elith	et	
al.,	2011),	when	comparing	models	with	all	features	to	those	using	
only	the	hinge	function,	with	no	differences	in	the	predictive	ability	
of	either	model	were	 found.	For	 the	β,	 values	 ranged	 from	1	 to	2	
among	the	18	best	models.	This	corresponds	with	the	optimal	range	
obtained	by	Radosavljevic	and	Anderson	(2014).

5  | CONCLUSION

The	outcomes	suggest	 that	we	may	be	able	 to	 fit	 a	 robust	habi‐
tat	suitability	model	by	developing	a	collaborative	model‐building	
process.	 The	 combinations	 of	 statistical	 techniques	 with	 expert	
knowledge	were	decisive	in	the	selection	of	predictors.	The	PCA	
despite	 being	 powerful	 should	 be	 complemented	 by	 ecological	
knowledge.	 By	 involving	 experts	 actively,	 we	 were	 also	 able	 to	
better	define	the	addressed	ecological	and	methodological	ques‐
tions,	as	well	as	to	evaluate	our	results	with	their	feedback.	Other	
positive	strategy	for	the	construction	of	a	reliable	model	was	the	

application	of	spatial	filtering	that	helped	us	identify	the	minimum	
distance	between	presence	points.	Fine‐tuning	of	model	param‐
eters	 also	 allowed	 us	 to	 understand	 their	 effects	 in	 the	 model	
quality.	At	last,	combining	qualitative	and	quantitative	methodolo‐
gies,	we	could	identify	spatial	variations	between	models,	evaluate	
metrics	efficiency	and	the	model	accuracy.

The	best	model	showed	that	2.3	million	km2	of	the	Amazon	re‐
gion	 is	potentially	suitable	for	B. excelsa	based	on	the	existence	of	
appropriate	 environmental	 conditions.	 Topographic	 and	 soil	 vari‐
ables	were	the	predictors	with	the	highest	contribution	to	the	model,	
expressing	that	geomorphology	and	soil	physic	are	more	important	
than	soil	chemistry	and	climate	to	explain	species	occurrence	in	the	
adopted	scale	 (extension	and	grain	 size).	 It	 is	also	crucial	 to	 stress	
that	 the	 real	 habitat	 occupied	by	 this	 species	 is	 smaller	 than	32%	
of	 the	Amazon,	mainly	due	 to	other	 ecological	 and	anthropogenic	
factors,	generally	unknown	or	rarely	monitored,	such	as	predation,	
pollination,	natural	dispersal	 limitation,	genetic	variation,	 fragmen‐
tation,	among	others.

Our	model	can	efficiently	assist	new	site	selections	for	planting;	
however,	aggregation	with	additional	information	to	reach	planting	
success	 is	 strongly	 suggested,	 such	 as	 proximities	with	 conserved	
forest	 fragments	 to	 allow	pollination	process;	planting	mixed	with	
other	 species	 to	 facilitate	 the	 bee's	 flight	 up	 to	 the	 Amazon‐nut	
flowers;	 make	 seeds	 selection	 to	 ensure	 healthy	 individuals	 with	
high	fruit	productivity;	and	conduct	management	and	forestry	treat‐
ments.	The	generated	model	can	also	be	used	as	basis	for	modeling	
studies	considering	future	scenarios	for	climate	change	and	to	sup‐
port	 conservation	 practices.	We	 recommended	 that	 other	 studies	
be	developed	in	a	small	scale,	constantly	including	decision‐makers	
in	the	processes.
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