
1

A Hardware Runtime for Task-based
Programming Models

Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard Ayguadé,
and Mateo Valero, Fellow, IEEE

Abstract—Task-based programming models such as OpenMP 5.0 and OmpSs are simple to use and powerful enough to exploit task
parallelism of applications over multicore, manycore and heterogeneous systems. However, their software-only runtimes introduce
relevant overhead when targeting fine-grained tasks, resulting in performance losses. To overcome this drawback, we present a
hardware runtime Picos++ that accelerates critical runtime functions such as task dependence analysis, nested task support, and
heterogeneous task scheduling. As a proof-of-concept, the Picos++ hardware runtime has been integrated with a compiler
infrastructure that supports parallel task-based programming models. A FPGA SoC running Linux OS has been used to implement the
hardware accelerated part of Picos++, integrated with a heterogeneous system composed of 4 symmetric multiprocessor (SMP) cores
and several hardware functional accelerators (HwAccs) for task execution. Results show significant improvements on energy and
performance compared to state-of-the-art parallel software-only runtimes. With Picos++, applications can achieve up to 7.6x speedup
and save up to 90% of energy, when using 4 threads and up to 4 HwAccs, and even reach a speedup of 16x over the software
alternative when using 12 HwAccs and small tasks.

Index Terms—Fine-grained parallelism; Task-dependence analysis; Nested tasks; Heterogeneous task scheduling; Energy saving;
FPGA; Task-based programming models;

F

1 INTRODUCTION

PARALLEL computing has become an ubiquitous prin-
ciple to gain performance on multicore and many-

core platforms. However, it exposes significant challenges,
such as detecting parallel regions, distributing tasks/works
evenly and synchronizing them. Furthermore, current pro-
cessor architectures evolve towards more heterogeneity
which only aggravates the aforementioned difficulties. Task-
based programming models are quickly evolving to target
these challenges. Significant examples are OpenMP 5.0 [1],
OmpSs [2], etc. Using these programming models, an ap-
plication can be expressed as a collection of tasks with
dependences, whose execution orders and potential data
movements are enforced through dynamically constructing
their task dependency graph (TDG) in runtime. Although
with moderate size tasks, those programming models are
able to exploit high levels of task parallelism with their de-
fault software-only runtimes, with fine-grained tasks, they
suffer different degrees of performance degradation due to
the runtime overhead and thread contention [3], [4], [5].

A straightforward way to overcome this deficiency and
enable a finer task parallelism is to improve the overall run-
time by accelerating its most critical functions in hardware.
For homogeneous multicores, task dependence analysis is
the most critical function [5], [6], [7]. For heterogeneous
architectures, the task scheduling cost is also very high
due to the load balance challenge caused by the execu-
tion time difference, the necessary data movements and
synchronization between different memories [8], [9], [10].
Previous works of hardware task dependence management

• All authors are with the Barcelona Supercomputing Center (BSC) and
Universitat Politècnica de Catalunya (UPC).
E-mail: name.surname@bsc.es, {calvarez, djimenez}@ac.upc.edu

have showed great scalability and performance improve-
ment over their software-only alternatives [4], [11], [12],
[13]. However, firstly these works did not support nested
tasks, that is, tasks that have been created by another task;
secondly they did not support task scheduling to different
hardware in heterogeneous systems; finally they have not
been evaluated in a real system integrated as a hardware
support within a programming model runtime. The most
comprehensive analysis of a hardware task dependence
manager [14] up to the moment was done targeting a small
system with only two cores presenting good performance
results but with a very limited scope.

In this paper we make a thorough analysis of Picos++,
a general purpose hardware for task dependence manage-
ment, nested task support and heterogeneous task schedul-
ing for task-based programming models. The main contri-
butions of this paper are as follows:

• A new heterogeneous task scheduling support. For
the first time a hardware task scheduler is able to
schedule tasks to different hardware execution units
(SMPs and hardware accelerators).

• A novel hardware/software co-design for support-
ing nested tasks. The original version developed
for SMP only systems has been extended to pre-
vent deadlocks when the heterogeneous hardware
resources are fully used.

• Picos++ implementation fully integrated with a task-
based programming model in a heterogeneous FPGA
system running Linux OS and being able to execute
problems concurrently in both FPGA and SMP.

• Detailed scalability and energy consumption stud-
ies during real executions of applications compar-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/237679074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Listing 1: multisort with OpenMP directives
1 void mult isor t (s i z e t n , T data [n] , T tmp [n]) {
2 i n t i = n/4L ; i n t j = n/2L ;
3 i f (n < CUTOFF) { s e q u e n t i a l s o r t (. . .) ; } e l s e {
4 #pragma omp task depend (inout : data [0] , tmp [0])
5 mult isor t (i , &data [0] , &tmp [0]) ;
6 #pragma omp task depend (inout : data [i] , tmp [i])
7 mult isor t (i , &data [i] , &tmp [i]) ;
8 #pragma omp task depend (inout : data [j] , tmp [j])
9 mult isor t (i , &data [j] , &tmp [j]) ;

10 #pragma omp task depend (inout : data [3L∗ i] , tmp[3L∗ i])
11 mult isor t (i , &data [3L∗ i] , &tmp[3L∗ i]) ;
12
13 #pragma omp task depend (in : data [0] , data [i]) \
14 depend (out : tmp [0])
15 merge (i , &data [0] , &data [i] , &tmp [0]) ;
16 #pragma omp task depend (in : data [j] , data [3L∗ i]) \
17 depend (out : tmp [j])
18 merge (i , &data [j] , &data [3L∗ i] , &tmp [j]) ;
19 #pragma omp task depend (in : tmp [0] , tmp [j]) \
20 depend (out : data [0])
21 merge (j , &tmp [0] , &tmp [j] , &data [0]) ;
22 #pragma omp taskwai t }}

ing both Picos++ and software-only runtime sys-
tems, where tasks are executed in both threads and
HwAccs. For the first time the real executions is ex-
tended to up to 15 execution units, providing insight
of the impact of the hardware runtime with more
hardware devices in the system.

• Execution trace support for application and Picos++
analysis.

The paper is organized as follows: Section 2 describes
the background and previous work. Section 3 presents the
Picos++ system. In Section 4, the experimental setup and
benchmarks are described. Section 5 presents detailed stud-
ies of the impact of Picos++ on performance and energy
consumption. Finally, in Sections 6 and 7 we discuss related
work and conclude this paper.

2 BACKGROUND

2.1 Task-based Programming Model

OpenMP provides a powerful way of annotating
sequential programs with directives to exploit task
parallelism. For example in C/C++ language: #pragma
omp task depend(in: ...) depend(out: ...)
depend(inout: ...) is used to specify a task with the
direction of its data dependences (scalars or arrays). Implicit
synchronization between tasks is ensured by the task
dependence analysis in runtime. Explicit synchronization
is managed by using #pragma omp taskwait, which
makes a thread wait until all its child tasks finish before it
can resume the code execution.

An example of multisort source code with OpenMP
annotations is shown in Listing 1. Each multisort task in-
stance can create four child multisort tasks and three child
merge tasks as shown in lines 4-21. When the compiler
finds a task annotation in the program it outlines the next
statement and introduces a runtime system call to create a
task (represented as a Task Descriptor). At execution time,
the runtime system manages task creation, computes TDG,
and schedules tasks when all their dependences are ready.
The taskwait pragma at line 22 will wait for all the child
tasks to finish.

Listing 2: Matmul block functions with OmpSs annotation
1 #pragma omp t a r g e t device (fpga) copy deps
2 onto (0) num instances (4)
3 #pragma omp task inout ([bs]C) in ([bs]A, [bs] B)
4 void matmulBlock (T (∗A) [bs] , T (∗B) [bs] , T (∗C) [bs]){
5 unsigned i n t i , j , k ;
6
7 #pragma HLS a r r a y p a r t i t i o n v a r i a b l e =A block f a c t o r =bs/2
8 #pragma HLS a r r a y p a r t i t i o n v a r i a b l e =B block f a c t o r =bs/2
9 f o r (i = 0 ; i < bs ; i ++) {

10 f o r (j = 0 ; j < bs ; j ++) {
11 #pragma HLS p i p e l i n e I I =1
12 T sum = 0 ;
13 f o r (k = 0 ; k < bs ; k++) {
14 sum += A[i] [k] ∗ B [k] [j] ; }
15 C[i] [j] += sum ; }}}
16
17 #pragma omp t a r g e t device (smp) no copy deps
18 implements (matmulBlock)
19 #pragma omp task in ([bs]A, [bs] B) inout ([bs]C)
20 void matmulBlockSmp (T (∗A) [bs] , T (∗B) [bs] , T (∗C) [bs]){
21 T const alpha = 1 . 0 ; T const beta = 1 . 0 ;
22 cblas gemm (CblasRowMajor , CblasNoTrans , CblasNoTrans ,
23 bs , bsize , bs , alpha , a , bs , b , bs , beta , c , bs) ;
24 }

2.1.1 Nested tasks

The aforementioned child tasks are also named nested tasks
in the OpenMP standard. They are supported to improve
the programmability and nested parallelism. For instance,
a nested task can be found in recursive code where the
recursive function is a task that can be further decomposed
(like in Multisort), or even when using tasks to call libraries
with embedded tasks. Therefore, nested task support is a
necessary feature of any task manager that wants to execute
general-purpose code. Besides the fact that a parent task has
to wait for all its child tasks, there are two more definitions
that are important to consider: 1) A “child task” can only
have a subset of its parent task’s dependences. 2) The
dependences of a “child task” only affect its sibling tasks
(“child tasks of the same parent”).

2.1.2 Heterogeneous Task Scheduling

The OmpSs programming model is developed as a fore-
runner for the OpenMP standard. In this work we will
use it as an example for heterogeneous task scheduling.
Listing 2 shows an example of OmpSs application with two
instances of Matmul block functions that can be executed
in either HwAccs in FPGA or in SMP threads. For example,
the matmulBlock function in line 4 is annotated with both
task and target device pragmas. The task pragma indicates
the data dependences. The target device indicates that this
task is going to be executed in the FPGA. At compile time,
4 instances of type 0 HwAcc for this function are created
as indicated by onto(0) num instances(4) clause. In addition,
the copy deps specifies to copy the task dependence data
from the host memory to the HwAccs (for input data) and
from the HwAccs to the memory (for output data). The
source-to-source Mercurium compiler generates the SMP
code with the runtime (Nanos++) calls, task function code
for SMP tasks, and the HwAccs for FPGA tasks [15]. Gcc
compiler generates the binary code of the SMP, and the
Xilinx tools Vivado and Vivado HLS, generate the bitstream
of the FPGA.

3

2.2 Picos Overview

The Picos hardware design [13] started with the aim to
accelerate task dependence management for task-based pro-
gramming models to exploit fine-grained task parallelism.
From the software point of view, it can be seen as a blackbox
that (1) reads new tasks and dependences from memory
at task creation time; (2) writes ready-to-execute tasks in
memory for the worker threads and (3) processes finished
tasks.

The first hardware prototype of Picos [4] has a similar
architecture to Picos++, shown in Figure 1. Picos is com-
posed of five main components. Gateway (GW) fetches new
and finished tasks from outside, and dispatches them to
Task Reserve Station (TRS) and Dependence Chain Tracker
(DCT). TRS is the major task management unit. It stores in-
flight tasks, tracks the readiness of new tasks and manages
the deletion of finished tasks. It includes a Task Memory
(TM) with 256 entries for up to 256 in-flight tasks, not
shown in the figure. Each entry stores the task identification
(TaskID), the number of dependences per task (#Deps), the
position in the DCT where each dependence is saved, and
a reference to the next task consumer of each dependence.
DCT is the major dependence management unit. It manages
task dependences through one Dependence Memory (DM)
and one Version Memory (VM). DM stores the memory
addresses of dependences as tags and performs address
match for each new dependence to these arrived earlier,
to track data dependences. VM keeps the last consumer
and the chain of producers of all the references to the
same dependence address (called versions). Arbiter (ARB)
manages the communication between TRS and DCT. Task
Scheduler (TS) stores all ready tasks and schedules them to
idle workers. Each pair of components are connected with
FIFOs to ensure asynchronous communications.

Picos uses synchronous communication [4] between soft-
ware and hardware. In fact, due to the communication
mechanism the overall system performance is burdened.
Threads are in charge of program- ming the DMA for each
data movement (new, ready, finished task) between main
memory and Picos. Although simple, this method is costly
due to the frequent and small data exchanges in the system.

2.2.1 Hardware task scheduling applicability

Although Picos and Picos++ (as will be explained) have
been implemented in a system composed of (few) ARM
cores and an FPGA, this implementation aims to be only
a proof-of-concept of its usability and capabilities. Picos and
Picos++ are designed to work in a different scenario from
the one presented. Such scenario is a multicore system of
any type of SMP processors (i.e. ARM, Risc-V, Intel, IBM
processors, etc.), where Picos++ would be implemented as
an ASIC connected to all the cores. In such a system, Picos++
will run at the same frecuency as the cores and manage
even more fine grained tasks (as the communication will be
faster that in the current implementation). Such system is
expected to obtain even higher benefits from hardware task
scheduling than the ones obtained in the current paper. If
the system is in addition composed of some heterogeneous
components (such different SMP cores, FPGAs or GPUs
or any other type) Picos++ ASIC will also take care of

S

Applications
Task-based Programming Model

Nanos++ / Picos++ APIs
Task Descriptors

Finished task Buffer

Ready task Buffer

New task Buffer

 GW

TRS DCT

TS

ARB

Main memory

Data Communication Logic

A
P

U
F

P
G

A

HwAccID, #Deps
Dep
Addr

Dep
Dir

TaskID (SMP,HwAcc,Bypass)&Picos++ID

Picos++ID

Bypass task Buffer

ACC1 ...ACC0

Clock 0

Clock 1

Computation data
For HwAccs

DRS

ACCN

Central Interconnection

AXI Interconnection

Bypass
 tasks Finished HW

/
SMP ready tasks

...

HwAccID, #Deps
Dep
Addr

Dep
Dir ...

...

...

Picos++

TaskID

TaskID

N2

N1 F1

N3

N4

N5/F4

N6

F2

F3

N5

F5

F6
/

R2

R1’

R1 R3

R4

N5/F4

HwAccs

HwAcc tasks

Fig. 1: Picos++ system organization

this components. In current environments, the SMP threads
are the ones in charge of managing the accelerators and
this work also adds overheads that Picos++ ASIC would
mitigate.

The same could be said about the programming model
used. Although in this paper we target OmpSs as a pro-
gramming model that already has good support for FPGA
task execution, any task based programming model would
benefit from Picos++. The API of Picos++ for receiving a
task with dependences, releasing ready tasks and receiving
notitifications of finished tasks is general enough to be
adapted to other task-based programming models runtimes
(e.g. OpenMP runtimes) and even to other programming
models. In this sense, the aim of this work is to prove that
the task scheduler is one the next components that should
be moved from software to hardware in future processors.

3 PICOS++ SYSTEM

Picos++ is an evolution of the previous design with sev-
eral important new features introduced to support nested
tasks, tasks with unlimited number of dependences and
heterogeneous task scheduling. The main new components
in Picos++ not included in the previous Picos design
showed in figure 1 are: the Bypass task buffer stored in
main memory for communication, the Dependence Reserve
station (DRS) module in Picos++, the TS communication
with the hardware accelerators (HwAccs) and the HwAccs
themselves. In addition to those, the modifications also
include a new hardware-software asynchronous communi-
cation scheme [14] and different GW, DCT and TS behaviors,
including a new DCT memory as described in section 3.2.

Figure 1 shows the sequence of new (labeled N#) and
finished task (labeled F#) processing. The ready task pro-
cessing (labeled R#) will be introduced later. When a new
task arrives, GW reads the task and its dependences (N1)
and requests a free TM entry from TRS (N2). Afterwards, it
distributes the task to TRS (N3) and its dependences to DCT
(N4). TRS saves the task information including TaskID
and #Deps in the corresponding TM entry. DCT performs
address match of each dependence to those arrived earlier.
If there is no match, DCT notifies TRS that this dependence
is ready (N5). Otherwise, there is a possible producer or
consumer match, DCT saves the producer match and only

4

Task A

Previous Task

Next Task

Task A2

Task A1

Task A3

Spliting into
3 tasksDep1 . . . Dep16

Dep1 . . . EDep14

Dep1 . . . EDep14

Dep15 EDep16

Fig. 2: Process for managing tasks with more than 15 depen-
dences

notifies TRS of the consumer match (N5). By doing this, for
all the producer-consumer chain (aka. true-date dependence
chains), the producer is saved in DCT while the consumers
are saved in TRS. TRS processes all these notifications. For
each ready one, TRS checks if all the dependences of this
task are resolved; if so, TRS marks it ready and schedules
it either to an idle thread or HwAcc (N6) meanwhile TRS
forwards a ready message to the next consumer task (if
it exists) dependent on this ready dependence (also N5).
Otherwise TRS saves this possible consumer match. When
a finished task arrives, GW reads (F1) and forwards it to
TRS (F2). TRS checks the corresponding TM entry for all the
dependences and sends finished notification of them to DCT
(F3). DCT checks DM and VM for each finished dependence
to either delete its instances or send ready notifications to
TRS to wake up the dependences that were previously not
ready (F4).

Figure 1 also shows the Picos++ system implementation.
It mainly consists of the application processing unit (APU)
with SMP inside, a FPGA and a shared main memory.
Picos++ and HwAccs are inside the FPGA, using clock
domains 0 and 1 respectively. All the data exchange between
these two clock domains are dealt with either asychronous
FIFOs or clock-crossing (standard method to pass multibits
or 1-bit data safely from one clock domain to another).

There are two sets of communications: first is for new,
ready, finished and bypass tasks, where Picos++ and APU
share them in the main memory; second is the computation
data required by the HwAccs. Each HwAcc used is capable
of reading input data from the main memory, does com-
putation and then writes back results to the main memory,
without help from the SMP threads inside APU.

3.1 Hardware/Software Synchronization
For the task communication between SMP threads and
Picos++ in FPGA, there are four circular buffers, one for
each type of tasks shown in Figure 1. Each buffer can store
up to N units representing N tasks. At the beginning of
the application execution, the software side of the runtime
starts Picos++ and allocates those buffers in main memory.
Afterwards, it sends the buffer addresses and lengths to
Picos++. When the application finishes, it deallocates the
buffers and stops Picos++ [14].

New task buffer stores new task information required
by Picos++. Each new task entry consists of: TaskID (8
bytes), HwAccID (2 bytes), #Dependences (2 bytes), and for
each dependence, the dependence memory address (8 bytes)
and direction (4 bytes). HwAccID identifies which are the

hardware devices where a particular task can be executed
(currently, up to 16 different types).

The current hardware implementation supports a max-
imum of 15 dependences per task. In the case of more
dependences, as this is known at compile time, the task can
be splitted into an artificial chain of tasks with at most 15
dependences each. Figure 2 shows how an original task A
with 16 dependences is split into three tasks A1, A2 and
A3 that have 15 or less dependences per task and maintains
the correct execution order. Task A1 will be created with
14 of the original dependences and an Extra (E) helper
dependence with inout type. A1 will be a empty task that
has no computation. Task A2 will have the remaining 15th
and 16th original dependences and the same Extra (E)
helper dependence with inout type. It will inherit all the
computation from the original Task A. This way through the
inout dependence chain, the original code will be executed
only after all the original dependences are ready. Finally,
another empty helper task A3 will do the same function as
task A1. This last task will ensure that any task that depends
on any of the 16 original dependences is executed in the
correct order. This simple mechanism can be replicated for
any number of dependences using more helper tasks. In fact,
it allows Picos++ to process tasks with more dependences
than fit in its internal memories (as the helper tasks dont
need to be processed as a single unit) and maintains the
parallel processing in a nested task environment.

Ready task buffer holds not only the ready-to-execute
SMP tasks, but also messages that signal the software part
of the runtime that a HwAcc has finished executing a ready
task. Each unit includes TaskID (8 bytes), (SMP, HwAccs,
Bypass) (3 bits) and Picos++ID (14 bits). For each SMP task
(identified by the SMP bit), the software runtime schedules
it to execute in threads; for each finished executing HW task
(identified by the HwAcc or Bypass bit), the software run-
time deletes the corresponding task descriptor in memory.

Finished task buffer stores the information (Picos++ID)
of finished tasks from threads, to send it back into Picos++
for TDG update. Note that this is only for tasks scheduled
to execute in threads. For tasks scheduled to execute in the
HwAccs, they are directly sent to HwAccs and retrieved
back through separate FIFO queues inside the FPGA. There-
fore, those finished tasks would not appear in this buffer.

Bypass task buffer stores bypass tasks, with the same
format as the new task buffer. The bypass tasks are already
ready to execute. This concept is introduced to tackle two
new situations raised by HwAccs. The first one is to handle
applications that want to accelerate part of the code using
the HwAccs without Picos++ task dependence manager.
They need a direct communication mechanism from the
APU to the FPGA that bypasses the dependence manager
and directly executes in HwAccs. The second situation
appears in applications with nested tasks. When all the Pi-
cos++ internal task dependence management resources are
used up, and this channel allows us to continue executing
tasks in HwAccs.

In the case of new, finished and bypass task buffers,
SMP threads write to these buffers while Picos++ hardware
reads them while in the case of the ready task buffer, the
communication works in the opposite direction. For all the
buffers, entry fields have valid bits to inform the Picos++

5

multisort
1.2

multisort
1.3

multisort
1.4

merge
1.5

merge
1.6

merge
1.7

multisort
2.1

multisort
2.2

multisort
2.3

multisort
2.4

merge
2.5

merge
2.6

merge
2.7

multisort 1.1

Fig. 3: Multisort with nested task dependences

hardware and software part that those entries are valid or
not, and also the type of tasks.

The data communication between software and Picos++
hardware is important for the final system performance.
Picos++ implements a buffered and asynchronous com-
munication which requires small support from threads. It
decouples the data communication between software and
hardware, ensuring an efficient small data exchange suitable
for our user case. As a result, Picos++ obtains a high overall
system performance [14].

3.2 Nested Task Support
To support nested tasks, we add a new field parentID for
each new task in the task buffer. This parentID together
with taskID allow the dependences of non-sibling tasks to
be maintained in separate TDGs inside Picos++.

Nonetheless, this is not enough to avoid corner cases
that can lead to a whole system deadlock. Those corner
cases derive from the fact that hardware task managers,
opposed to the software ones, have a limited amount of
memory. Thus, it is possible for them to read a task and
get their internal memory full in the middle of processing
task dependences. Without nested tasks, this is not a prob-
lem because previous processed tasks go to execution and
eventually they finish and free out resources that will allow
the hardware to proceed with the stalled tasks.

For nested tasks with dependences, the situation is much
more complicated. To simplify and explain a possible dead-
lock scenario, assume that Picos++ has memory capacity
for only 7 tasks. Figure 3 shows the TDG of the Multisort
application when two levels of nested tasks have been
reached. Tasks in level i are labeled i.X, where X is the
number of the sibling task order creation. While all tasks
in level 1 are shown, only child tasks of multisort 1.1 are
shown for the second level. In this case, the first level tasks
would quickly fill the Picos++ hardware manager when the
executing multisort 1.1 tries to create new tasks. In partic-
ular, multisort 1.1 will create the first child task multisort
2.1, that will get stuck due to a full memory problem. As a
parent task multisort 1.1 has to wait until all its child tasks
end (and they will not end), it cannot finish and all the
following multisort (which can create similar child tasks)
and merge 1.X tasks, already inside the hardware manager,
can not proceed (and free memory for more tasks), so the
system goes into a deadlock.

3.2.1 Deadlock Free Hardware/Software Co-design
In order to support nested tasks without deadlocks, we
introduce a hardware/software co-design in Picos++.

Atomic task processing is the hardware solution which
offers the first step to avoid deadlocks by reading and
processing tasks atomically. Once a task is read all its
dependences should be processed (i.e. integrated in the

TDG). Using a non-atomic task processing would allow the
GW to read new tasks without considering the free spaces
in all the internal memories (TM, DM and VM) until the
FIFOs connecting them are full. Without nested tasks, this
method ensures efficient inter-component communication.
However, it leads to deadlocks easily with nested tasks. For
instance, multisort 2.1 shown in Figure 3 could get stuck
in those FIFOs and cause a deadlock. Thus, in Picos++
the hardware is modified to read and process tasks as a
whole, which means GW is conscious of the free spaces in
all Picos++ memories before it reads a new task.

This awareness has two cases to consider: when the new
task has no new dependences (all of them are versions of
dependences already in the hardware) and when there are
new dependences. For the first case, it is easy to ensure
the processing of a new task and new versions of already
known dependences as they can be stored in any place of
their respective memories (TM and VM). In this case, one
empty space in the TM and 15 empty spaces in the VM are
enough to read a new task. For the second case, ensuring
the processing of new dependences is more difficult as they
are stored using a hash process in order to have a fast
location mechanism in DM [4]. DM uses hashing and a 8-
way associative memory, a full-associative memory has been
discarded due to its complexity and resource requirement.
Therefore, a dependence may not be stored because the
memory set that should store the dependence is full, inde-
pendently of the whole DM usage. This problem can not be
anticipated and results in a negligible slow-down without
nested tasks, but with nested tasks may lead to a deadlock.
To overcome it, Picos++ has a new fall-back memory that
is able to store up to 15 dependences. This memory is used
whenever a new dependence cannot be stored in DM. Once
it is used, it raises the memory full signal. This signal stops
the GW from reading more new tasks while allows it to con-
tinue processing the remaining dependences of the current
task. As soon as DM has free space, the dependences are
moved from the fall-back memory back to DM, so Picos++
resumes new task processing.

Buffered task recovery is the software solution to work
together with atomic task processing to avoid deadlocks.
As described in the previous paragraph, the GW will not
read multisort 2.1 when there is no space inside Picos++,
so multisort 2.1 is stored inside the new task buffer in
the main memory. However, in order for the application
to proceed, it has to be processed somehow. The key to
solve the deadlock is that multisort 2.1 is the first non-
executed child of its parent in the buffer. Due to the fact that
child dependences are always a subset of their parent, the
first non-executed child (previous sibling tasks have been
executed and their dependences released) is always ready.
This does not hold true for the subsequent ones. Therefore,
if the first non-executed child is still in the new task buffer, it
has to be processed (somehow) in order to avoid deadlocks.
Otherwise, if it has reached the hardware there is not going
to be a deadlock. In both cases, the remaining children of
a task must remain in the queue waiting to be processed
until the hardware processes them in order to avoid race
conditions.

To fulfill this requirement, the software support of Pi-
cos++ keeps track of the entries in the new task buffer where

6

Four registers for each hardware device:
//Updated each time there is a ready or finished task
//The third register = The first register – The second register
SMP_readytask_wait_cnt = SMP_readytask_cnt SMP_finishtask_cnt;
Acc0_readytask_wait_cnt = Acc0_readytask_cnt – Acc0_finishtask_cnt;
Acc1_readytask_wait_cnt = Acc1_readytask_cnt – Acc1_finishtask_cnt;
Acc2_readytask_wait_cnt = Acc2_readytask_cnt – Acc2_finishtask_cnt;
Acc3_readytask_wait_cnt = Acc3_readytask_cnt – Acc3_finishtask_cnt;

//The fourth register: average task execution time registers
T_SMP, T_Acc0, T_Acc1, T_Acc2
SMP_readytask_wait_cnt * T_SMP, Acc0_readytask_wait_cnt * T_Acc0,
Acc1_readytask_wait_cnt * T_Acc1, Acc2_readytask_wait_cnt * T_Acc2,
Acc3_readytask_wait_cnt * T_Acc3

Ready task scheduling
If(ready task from Picos++) or the bypass buffer){
 Read it from TRS and its dependences from DRS;
 Get the 5bits HwAccID}
Else If(ready task from the bypass buffer){
 Read it and its dependences from the bypass buffer;
 Get the 5bits HwAccID}

If(HwAccID only has one ‘1’ bit)
 Send it to the FIFO connecting to the corresponding hardware device;
Else{
 device = select(HwAccID, SMP_readytask_wait_cnt,
 Acc0_readytask_wait_cnt,
 Acc1_readytask_wait_cnt,
 Acc2_readytask_wait_cnt,
 Acc3_readytask_wait_cnt,
 Optional(average time registers));
 Send it to the processing unit (device)}

Bypass task
 FIFO

Bypass task
 FIFO

Ready task
FIFO to SMP

Ready task
FIFO to SMP

Ready task
from Picos++

Ready task
from Picos++

Ready task
FIFO to Acc0

Ready task
FIFO to Acc0

Finish task
FIFO from Acc0

Finish task
FIFO from Acc0

Finish task
FIFO from SMP

Finish task
FIFO from SMP

DRSDRS

Ready task
FIFO to Acc3

Ready task
FIFO to Acc3

Finish task
FIFO from Acc3

Finish task
FIFO from Acc3...

Fig. 4: Task scheduling to different hardware units

a parent has stored its children. Whenever a full condition
arises, it checks the state of the first non-executed child.
If it has been read, the software support stays at normal
state. Otherwise the software support intervenes to avoid
a possible deadlock. First, the thread locks the new task
buffer and removes all its child tasks. Then, the buffer is
reconstructed if it has any remaining tasks (created by other
running tasks). Afterwards, either the child tasks removed
are directly executed in order by the thread (without allow-
ing them to create more tasks) or submitted as a whole
to a software task dependence manager. Finally, when the
full condition in hardware is cleared, the software support
reverts to use hardware for dependence processing. The first
option is simpler and keeps the complexity of the software
part at bay. The second may allow extra parallelism to be
extracted in some corner cases. In any case, tasks can be
sent to HwAccs through the bypass task buffer.

3.3 Heterogeneous task scheduling support

To support task scheduling to up to 16 different hardware
execution units, a new module called Dependence Reserve
station (DRS) is introduced, in addition, the task scheduler
(TS) module is modified.

3.3.1 Dependence Reserve Station (DRS)
As in Figure 1, DRS receives new dependence packets from
GW. For each of them, DRS saves it into an internal memory
indexed by the TRS entry address. When TS wants to
schedule a task to a HwAcc, all the dependence memory
addresses required can be read sequentially from DRS.
This module allows easier and faster access for dependence
addresses when scheduling tasks to HwAccs.

3.3.2 Task Scheduler (TS)
TS is mainly responsible for scheduling all the ready tasks
to suitable hardware execution units to achieve an earliest
finish execution time. Figure 4 shows a simplified scheme of
the heterogeneous task scheduling algorithm in TS, assum-
ing that there are one SMP and 4 HwAccs, that is, a total of 5
hardware units. Picos++ has one ready and one finished task

queue for SMP, and one ready and finished task queue for
each HwAcc. There are two sources of ready tasks: normal
ones that are deemed ready by the Picos++ task dependence
manager, and bypass tasks. TS checks alternatively from
these two sources.

The TS has also four registers associated with each
hardware device. Two registers count the number of ready
tasks assigned to each HwAcc and the number of finished
tasks from this unit. The third register gets the deduction
of the previous two registers and indicates the total amount
of work still waiting for this unit. Finally the fourth register
counts the average task execution time.

Each ready task has a 5bits HwAccID generated by the
target pragmas annotated on each function as shown in
Listing 2. This HwAccID correponds to a mask that indicates
in which accelerators the task can be executed (SMP and
HwAcc0 to HwAcc3 in figure 4). As shown in Figure 4,
when a ready task arrives, TS first checks its hardware
mask. If it’s HwAccID indicates only a specific device, it
will be scheduled directly to that device. Otherwise, TS
compares and selects the one with the least number of
waiting work. In the case of multiple devices with identical
amount of waiting work, Picos++ selects the one with the
higher priority either because this device has more memory
bandwidth or is simply faster. The average execution time
registers can be enabled when different hardware devices
in the system have a big speed gap. In this prototype, the
priorities of different hardware are fixed and are based on
the infrastructure generated: the HwAcc3 has the highest
and the SMP has the lowest priority. For systems that have
different connections and hardware devices, the priorities
can be modified to suit the characteristics of the system, thus
achieving a better performance. This scheme has a small
hardware cost, and it balances the workloads well among
different hardware devices.

In Figure 1, for each ready task from TRS (R1), TS reads
it and might schedule it to SMP (R2). If not, then TS reads all
its dependences from DRS (R3) and schedules it to a HwAcc
(R4). For a bypass task (R1’), TS gets all its dependences
from the bypass task buffer in memory and schedules it to a
HwAcc (R4). When a task in the HwAcc finishes, TS retrives
it through FIFO queue (F5) to update the Picos++ internal
TDG, and also notifies it to the SMP through the ready task
buffer in the main memory (F6)

4 EXPERIMENTAL SETUP AND BENCHMARKS

4.1 Experimental Setup
Picos++ has been coded in VHDL and tested in a Xilinx
hardware platform. Its communication logic and all the
HwAccs have been coded in C with Vivado HLS directives.
The final system designs have been synthesized with Vivado
2016.3. The hardware platform contains a Zynq Ultrascale+
MPSoC Chip XCZU9EG [16]. It includes the Application
Processing Unit (APU) with 4 ARM Cortex-A53 cores at
1.1GHz and a FPGA operating at a frequency from 50 to
300MHz, with 4GB DDR4 main memory.

The evaluation of Picos++ is done using the task-based
parallel programming model OmpSs [2], it is supported by
the source-to-source Mercurium compiler and the Nanos++
runtime system. In this paper, the Picos++ runtime uses the

7

same task creation mechanism as the Nanos++ runtime, but
uses hardware for task dependence analysis and scheduling.
We also use performance tools Extrae and Paraver [17] to
analyze the application behavior in our system.

Sequential and parallel execution time of OmpSs appli-
cations are obtained in the system running Ubuntu Linux
16.04. Each execution has been run for 5 times, and the
median value is used.

4.2 Benchmarks
4.2.1 Synthetic and Real Benchmarks
A brief description of the benchmarks follows:

TestFree creates N tasks with M dependences. Each task
has the same execution time T and all of them can be exe-
cuted in parallel (tasks are independent of each other). This
benchmark is designed to illustrate the processing capacity
of Picos++ in the case of an application with embarrassing
parallelism.

TestChain creates N tasks with M dependences, each of
execution time T. Each task is the consumer of the previous
task, and the producer of the next task. This benchmark is
designed to show the worst case, as it has no parallelism
at all and suffers the communication latency for offloading
task dependences to hardware.

TestNested creates 16 parent tasks. The first 15 tasks
have 2 dependences per task but they are independent from
each other. Each task (parent task) creates an inout chain of
M child tasks, and each child task can be configured to create
its own nested tasks. This inout chain is implemented by
using the first dependence of each parent. The 16th parent
task has 15 dependences that depend on all the previous
15 parent tasks by using their second dependence. This
benchmark with configurable nesting levels of tasks and
configurable child tasks per parent is constructed to test the
nested task support.

Cholesky Factorization computes A = LL’, with A an
n× n matrix and L lower-triangular.

Multisort sorts the input arrays using the divide and
conquer method as can be seen in Listing 1.

Matmul is matrix multiplication. It calculates the multi-
plication of two matrices C = AB.

TABLE 1: The characteristics of real benchmarks
Name Configs #Tasks Seq time(us) Latency(us)

Matmul
(2K, 32) 262144 6820850 26
(2K, 64) 32768 5463956 167
(2K, 128) 4096 5435528 1327

Cholesky (2K, 32) 45760 1232664 27
(2K, 64) 5984 1087485 182

Multisort
(1M, 256, 256k) 9565 395594 41
(2M, 512, 512K) 9565 832882 87
(1M, 1K, 512K) 2397 407648 170

For real benchmarks [18], Table 1 shows the number of
tasks, sequential execution time and task latency (granu-
larity) in microseconds of the applications evaluated with
different problem and block size. In the case of Multisort
application, column Configs indicates the problem, minimal
sort and merge size. During sequential and parallel exe-
cution, the non-recursive tasks of Matmul and Cholesky
that are executed in threads use Openblas. In the case of
Multisort, the non-recursive basic sort tasks are executed
in threads using libc qsort.

TABLE 2: Characteristics of HwAccs in XCZU9EG

Name HWACCs Latency
B 18Kb DSP48E FFs LUTs us

fgemm32 68/3.7% 160/6.4% 19771/3.6% 15559/5.7% 27
fsyrk32 36/2.0% 160/6.4% 19822/3.6% 16149/5.9% 63
ftrsm32 36/2.0% 104/4.1% 11482/2.1% 10875/4.0% 67
fpotrf32 10/0.6% 22/0.9% 3487/0.6% 3302/1.2% 168
fgemm64 74/4.1% 160/6.4% 23887/4.4% 30032/11.0% 126
fsyrk64 42/2.3% 160/6.4% 23849/4.4% 30727/11.2% 270
ftrsm64 42/2.3% 250/9.9% 28734/5.2% 25753/9.4% 314
fpotrf64 28/1.5% 22/0.9% 3514/0.6% 3350/1.2% 981
fmatmul32 68/3.7% 162/6.4% 20106/3.7% 14671/5.4% 27
fmatmul64 138/7.6% 322/12.8% 38770/7.1% 27668/10.9% 105
fmatmul128 287/15.7% 642/25.5% 76147/13.9% 54462/19.9% 497
sort256 68/3.7% 0 20106/3.7% 14671/5.5% 5
sort512 138/7.6% 0 38770/7.1% 27668/10.1% 26
sort1024 159/8.7% 0 47034/8.6% 71124/26.0% 92

TABLE 3: Hardware Resource and Power Consumption
Name FPGA resource Power

BRAM18Kb DSP48E FFs LUTs Watts
XCZU9EG 1824 2520 548160 274080

Picos++ 87/5.0% 0 5478/1.0% 9793/4.0% 0.07
Comm. Logic 2/0% 0 3421/0.6% 4244/1.0% 0.03

APU Watts
4 ARM Cortex-A53s - - - - 1.4

4.2.2 HW Functional Accelerators (HwAccs)
Table 2 shows the hardware cost (absolute number of logics
and percentage of FPGA used) of different HwAccs, and
their latencies in microseconds for executing a task. All
the accelerators are synthesized using 200 MHz clock. In
the Cholesky application there are four different HwAccs:
fgemm, fsyrk and ftrsm and fpotrf that correspond to its
four different kernels. Matmul and Multisort applications
have only one type of HwAccs each, fmatmul and sort,
respectively.

4.3 Hardware Resource and Power Consumption
Table 3 shows the on-chip resource utilization and power
consumption of Picos++ on the Zynq Ultrascale+ XCZU9EG
chip [16]. The resource usage is obtained from Vivado post-
implementation reports. Picos++ and its communication
logic use around 5% of the FPGA resources. This is im-
portant as not only it is small in order to be feasible to
integrate it into multicore processors with very low cost, but
also it allows us to build a highly heterogeneous platform
combining Picos++ with other HwAccs. The 4 ARM Cortex-
A53 cores take around 93.3% of the whole chip power (1.4W
out of 1.5W). Picos++ and its data communication logic only
consume 0.1W.

The power consumption is measured through dedicated
hardware registers in three main hardware parts: FPGA,
APU and the main memory DDR4. Energy consumption is
calculated by integrating the total power consumed by the
three parts along the application execution time.

5 PERFORMANCE AND ENERGY CONSUMPTION

5.1 Task and Dependence Repetition Rate
Table 4 shows the task and dependence repetition rates
(rrTask and rrDep) of the software-only runtime and Pi-
cos++ measured in 100MHz clock cycles. TestFree and
TestChain with 65536 empty tasks (zero execution time)
are used to avoid the influence of task execution time,

8

(a) TestFree (b) TestChain (c) TestFree 15 deps (d) TestChain 15 deps

Fig. 5: Execution time and relative speedup of TestFree, TestChain with 4 threads

TABLE 4: Task, Dependence Repetition Rate in cycles
Testcase TestFree TestChain
Number of dependences 1 15 1 15

HW-only rrTask 24 243 35 348
rrDep 24 16 35 23

SW-only 2t rrTask 1175 5281 1668 3095
rrDep 1175 352 1668 206

SW-only 4t rrTask 1055 5272 1706 3118
rrDep 1055 352 1706 208

Picos++ 2t rrTask 731 855 1251 1419
rrDep 731 57 1251 96

Picos++ 4t rrTask 582 716 1250 1406
rrDep 582 48 1250 94

and different number of dependences are used to study its
impact. Row HW-only shows results without any communi-
cation latencies or software runtime overhead (task creation
and scheduling) in Picos++. Note that the communication
between the processors and Picos++ costs around 300 clock
cycles for the full life cycle of a task. Row SW-only 2t and
4t show results obtained from real executions by using SW-
only runtime with 2 and 4 threads. Similarly Row Picos++
2t and 4t shows real execution results obtained by using the
Picos++.

With HW-only, each task and dependence only takes a
few cycles to be processedand only increases slightly when
increasing the number of dependences. For example, tasks
with 1 dependence in TestFree and TestChain are processed
in 24 and 35 cycles respectively while with 15 dependences,
they are processed in 243 and 348 cycles. The dependence
repetition rate is quite steady for different dependence pat-
terns ranging from 16 to 23 cycles. This is due to the fact
that Picos++ pipelines the processing of all the dependences
of a task. Tasks that are processed through the bypass task
buffer have the same repetition rate as TestFree tasks with
no dependences.

Althouth data communication has a big impact over
system performance as it can be seen in Picos++ rows in
Table 4, the two observations about HW-only hold true for
Picos++ with 2t and 4t. As a result, there is a clear speed up
of managing task dependence analysis in hardware than in
software.

5.2 Synthetic Benchmarks
5.2.1 Performance Impact of the Number of Dependences
Figure 5 shows results of TestFree and TestChain. All the fig-
ures have two Y-axis, the left one (in bars) indicating the exe-
cution time in seconds, and the right one (in lines) showing
the relative speedup of Picos++ against the software-only
runtime with 1 or 4 threads. The left two diagrams in Fig-
ure 5 display these two benchmarks with 65536 empty tasks

(a) 4 child in each parent task (b) 16 child in each parent task

Fig. 6: Time and speedup of TestNested with 4 threads

(tasks with 0 execution time), and with different number
of dependences. Picos++ and SW-only are using the same
task creation and scheduling mechanism, therefore with
empty tasks the results highlight the dependence analysis
cost difference and the communication overhead in Picos++.
There are two key observations. First, Picos++ maintains
a nearly equal performance from 1 to 15 dependences per
task. Second, it has a much lower dependence analysis
cost. For 15 dependences and TestFree, where there is full
parallelism, Picos++ is 7.5x faster than SW-only using 4
threads. In the case of the TestChain, for the same number
of dependences and where there is no parallelism at all,
Picos++ still is up to 2x faster than the SW-only runtime.

5.2.2 Performance Impact of the Task Granularity
The two right diagrams of Figure 5 show results for the
same number of tasks, 15 dependences per task and a range
of task sizes (X-axis) going down from 1ms to 530ns. As it
can be seen, the smaller the task size, the higher speedup
Picos++ has when compared to the SW-only runtime. In
particular Picos++ is 8x and 2.5x faster than SW-only for
TestFree and TestChain respectively.

5.2.3 Support and Performance of Nested Tasks
Figure 6 shows results of TestNested with 4 and 16 levels of
nested child tasks per parent task. On the one hand, results
show that Picos++ can deal with nested tasks. On the other
hand, Picos++ also benefits from fine-grained nested task:
with smaller task sizes Picos++ is faster than the SW-only
runtime.

5.2.4 Scalability with 15 Accelerators
Figure 7 shows three sets of results for TestFree with 65536
tasks and with 15 dependences per task. The figures show
the total execution time (bars, in the left Y-axis) of using
Picos++ and SW-only runtimes and the relative speedup
comparing these two (lines, in the right Y-axis). The X-axis

9

(a) Picos++ at 50Mhz (b) Picos++ at 100Mhz (c) Picos++ at 200Mhz

Fig. 7: Execution time and speedup of TestFree by using Picos++ and SW-only with 15 HwAccs

in each set shows a decreasing task size from 0.5ms to 160ns.
From left to right, the three figures show Picos++ operating
at 50, 100 or 200MHz respectively. In this experiment there
are in total 15 HwAccs operating at 200MHz while all the
SMP cores operate at 1.1GHz. For each set, there are also
results for using either sequential or parallel task creation
mechanisms in the cores.

TestFree with sequential creation used to obtain the data
in Figure 7 is the same that has been used in the previous
sections, where only one thread creates all the new tasks.
We have realized that in this particular experiment, as there
were so many (15) fast HwAccs the element limiting the
execution time was in fact the task creation. In order to
ease this limitation we have implemented the same program
where three of the available threads create the tasks in
parallel (using nested tasks). The remaining thread is used
to process all the finished tasks as this is the fastest thread
combination to execute this benchmark.

As it can be seen from the total execution time (bars) in
Figure 7, the SW-only runtime benefits from the parallel task
creation. However with task sizes smaller than 327,680ns
(0.3ms) it is unable to execute the program faster (grey bars).
On the other hand, when operating at 200MHz, Picos++ is
able to decrease the execution time with task sizes of around
10,240ns (0.01ms) resulting in a 25x speedup against the SW-
only runtime.

It can be also seen that, in the first plot where Picos++ is
operating at 50MHz, the execution time of using sequential
and parallel task creation is the same. This is because there
is a huge frequency gap between the cores (1.1GHz) and
Picos++ (50MHz). Although it is around 10x faster than the
SW-only runtime it is not fast enough to serve the parallel
task creation with 4 cores at full speed.

Moving to the second plot where Picos++ operates at
100MHz, it starts to take advatage of parallel creation. Now
Picos++ operates at twice the frequency than the previous
one and thus should obtain half of the execution time. This
holds true for the parallel task creation, but not for the
sequential one, which means with 100MHz Picos++ is able
to fully serve the sequential task creation with 1 core (in this
case software task creation is the bottleneck).

Finally, looking at the 200MHz results, the execution
time with sequential task creation remains the same as
expected. However, the execution time of parallel task cre-
ation is roughly one third of that with Picos++ running
at 100MHz. This means that Picos++ running at 200MHz
is able to deal with parallel task creation with 4 cores at
full speed, and the software becomes again the bottleneck.
Extrapolating these results, Picos++ operating at the same

speed as the cores (at 1.1GHz) should be able to serve
around 22 cores creating tasks at full speed with tasks as
small as 1861ns executing all at the same time.

To sum up briefly, Picos++ is able to take advantage
of fine-grained parallelism, and it is able to achieve a 25x
speedup over the software-only runtime with 15 HwAccs.
More importantly, we can safely conclude that, with more
hardware resources and a higher frequency design, Picos++
is able to achieve even higher performance for a much larger
range of task granularities.

5.3 Real Benchmarks

5.3.1 Performance Impact of the Task Granularity
Figure 8 shows the speedup, power consumption, and en-
ergy savings of applications using fine-grained tasks that are
executed only in SMPs. Each application in the X-axis shows
two sets of problem and block size per application (their
task sizes are shown in Table 1). In Y-axis the results show
the results obtained by SW-only and Picos++ with 1 to 4
threads. In this experiment, Picos++ is operating at 100MHz
and SMP is operating at 1.1GHz.

As can be seen, Picos++ exceeds SW-only in speedup in
all the cases. For example, Picos++ reaches a 3.6x speedup in
Matmul with block size 64 and a 3.4x speedup in Multisort
with sort size 512. The global performance obtained when
using a larger block size in Matmul and Cholesky is better
because there are far less and larger tasks to manage. How-
ever this is due to the limited number of threads available
in the system. With more threads Picos++ shall be able
to obtain a much higher performance with block size 32.
Despite that, we can still observe that the gap between
Picos++ and SW-only enlarges as the task size becomes
smaller from block size 64 to 32. For example, with Matmul
with block size 32, Picos++ obtains 1.5x speedup versus SW-
only; Similar gap can be observed in both Cholesky and
Multisort.

Figure 8 shows the power consumption of the system
during Matmul execution. Other applications have simi-
lar patterns, therefore only Matmul is shown as a rep-
resentative. As can be seen, the power consumption of
APU is proportional to the number of threads, and that
of DDR is steady during all the executions. Both SW-
only and Picos++ use similar power in these two parts.
For FPGA, using Picos++ consumes 0.1 watt more power.
This slight consumption increase translates to the SUM
(SUM=FPGA+APU+DDR) part.

Figure 8 also shows the energy consumption of all the
applications by using Picos++ versus the SW-only runtime

10

Fig. 8: Results of applications with fine-grained SMP tasks

or sequential executions. When compared to the sequential
version, Picos++ runtime using 4 threads saves more than
60% of energy for all the applications, mainly due to the
faster execution. When compared to the SW-only runtime,
with more threads available and smaller task sizes, Picos++
saves a much higher amount of energy: 22%, 24% and 42%
for the three applications.

Applications with medium size tasks can also benefit
from using Picos++. For example, Picos++(4t) is faster ex-
ecuting Multisort with sort size 1K with a 3.6x speedup
than SW-only(4t) that only reaches a 3.1x against sequential.
Correspondingly, with Multisort, Picos++(4t) saves 20% and
65% of the energy consumption compared to SW-only(4t)
and sequential execution.

5.3.2 Performance of Heterogeneous Task Scheduling
Figures 9a, 9c and 9e show the speedup obtained in the
three analyzed applications when comparing the parallel
runtimes (Picos++ and SW-only) against the sequential
execution. The sequential execution is obtained by using
one core in the SMP. The legend SW-only(Na) indicates
results obtained by using the software-only runtime with
tasks that are not executed in threads but in N HwAccs.
Legend SW-only(Na+4t) indicates results obtained by using
the software-only runtime with tasks that are executed in
both 4 threads and N HwAccs. The same logic applies to
the legends for Picos++. Special attentions should be paid
for the legend with ”*” symbols. For example, with Matmul
block size 128 and Multisort sort size 1K in Figure 9a and 9e,
it means that the system contains only 3 instead of 4 HwAccs
due to the limited capacity of the FPGA that can not hold
4 of these accelerators. It is also worth to mention that with
Cholesky in Figure 9c, two different sets of HwAccs are
used, hence the SW-only(4a+4t) and (4g+4t). This will be
explained later.

As can be seen, using a system with HwAccs results
in a much higher speedup than using SMP threads only.

TABLE 5: The number of tasks executed in different hard-
ware in the Picos++ system

Size Case #SMP #HWACC0 #HWACC1 #HWACC2 #HWACC3

(2k, 32)
4a 0 41664 2016 2016 64
4a+4t 17992 23839 2015 1850 64
4g+4t 4096 10300 10371 10451 10542

(2K, 64)
4a 0 4963 496 496 32
4a+4t 2344 2667 493 448 32
4g+4t 1024 1209 1235 1258 1258

For a brief comparison, in Figure 9a Matmul Picos++(4a+4t)
achieves up to 11.2x speedup while using only SMP threads
(in Figure 8) the speedup obtained is only 3.6x. A similar
behavior can also be observed in the other two applications.

In addition, Picos++ is much better at managing hybrid
system than the software-only runtime. With tasks that can
be executed in both FPGA and SMP threads, for example, for
Choleksy, Picos++(4a+4t) reaches up to 3x speedup while
SW-only displays 1.7x. Even better, the implementation of
Picos++(4g+4t) reaches up to 6.7x while the software-only
runtime only achieves 4.8x speedup. Similarly good results
can be seen for Matmul and Multisort.

Furthermore, the gap between Picos++ and the software-
only runtime enlarges as the task size becomes smaller
(corresponding task sizes can be found in Table 2). For
Matmul, the performance gap obtained when going from
block size 128 to 32 enlarges from 1.1x to 2.7x faster; for
Cholesky, the gap when decreasing from block size 64 to 32
goes from 1.4x to 2.7x and for Multisort, the gap grows from
1.6x to 7.6x.

Correspondingly, Figures 9b, 9d and 9f show the energy
savings of using Picos++ instead of the software-only run-
time or sequential executions. As can be observed, with a
smaller task size and more execution units, Picos++ saves
much more energy. For example, for Matmul with block
sizes 64 to 32, Picos++ saves from up to 27% to 64%
respectively; in addition with Picos++ vs SW-only(1a) to
(4a+4t), Picos++ energy saving raises from 31% to 67%. With
Multisort, the task sizes of 256 and 512 are very close. As a
result, Picos++ saves a similar amount of energy for both
granularities, up to 90%. For Multisort, it can also be seen
that the speedup and energy savings obtained by using 1
to 4 HwAccs do not vary much for the different task sizes.
This is because that most of the execution time is spent on
unraveling the nested layers. As a result there are simply
not enough tasks to feed the HwAccs. With Cholesky with
block size 32, an energy saving of up to 68% of Picos++ over
SW-only (4g+4t) can be observed.

As mentioned earlier, two different sets of HwAccs
(4a and 4g) were used for Cholesky executions shown in
Figure 9c. Table 5 shows the number of tasks that have
been executed in the different hardware for three cases:
The first case (4a) is for using only 4 different HwAccs,
corresponding to the four kernel functions of Cholesky:
gemm, syrk, trsm and portf. Therefore each task can only be
executed in one of these accelerators. As a result, in this case
with block size 32 the software-only runtime is slower than
the sequential version, however Picos++ is able to obtain a
small performance improvement. The second case (4a+4t)
allows each task to be executed in one specific accelerator
or in the threads. The third case (4g+4t) uses four instances
of the same HwAcc (gemm) and uses the threads for the

11

other tasks. In the first case, there is no parallelism for the
same type of tasks during execution, and the dominating
number of gemm tasks also dominates the total execution
time. By allowing gemm tasks to execute in SMP threads
in the second case, nearly half of the gemm tasks are
balanced between SMP and HwAcc0, which improves 2x the
performance comparing to the first case. For the third case,
by employing four instances of gemm accelerators Picos++
further balances the workloads and gains a 4x speedup
compared to the first case.

(a) Matmul speedup (b) Matmul energy savings

(c) Cholesky speedup (d) Cholesky energy savings

(e) Multisort speedup (f) Multisort energy savings

Fig. 9: Speedup and energy savings of applications

5.3.3 Gflops and Gflops per watt

Figure 10 shows the Gflops (Y-axis) obtained by both the
software-only and Picos++ runtimes when computing Mat-
mul with 3 HwAccs of block size 128x128 each. From left to
right, and for both the software-only and Picos++ runtimes,
the bars show results when using only HwAccs for task
execution and HwAccs and 1, 2, 3, or 4 SMP threads to
execute tasks. Tasks executed in the SMP use the optimized
version of the OpenBlas sgemm (single precision Matmul)
implementation. The threads operate at 1.1GHz, Picos++ at
100MHz and HwAccs at 300MHz. It is important to state
that this configuraction (3 HwAccs of block size 128x128) is
the one that obtains the best performance for this problem
in this system when using the software-only runtime, so we
selected this configuration to compare against Picos++.

The software-only runtime requires 2 threads to manage
the task scheduling for 3 HwAccs, which causes perfor-

Fig. 10: Matmul Gflops with 3 FPGA accelerators

mance degration when 3 or 4 SMP threads are enabled
for task execution as the same thread is used both to
compute tasks and manage HwAccs. On the other hand,
Picos++ increases the application performance. The small
slowdown when using one additional SMP thread is due
to a scheduling decision for the last task to be executed
in SMP thread rather than waiting for the HwAccs. This is
translated in a load unbalance between them since HwAccs
are much faster than threads for task execution. However,
with more threads in the system, this unbalance disappears.
This unbalance with one thread could also be solved by
enabling the average task execution time policy in task
scheduling in Picos++ as mentioned in earlier sections.

Picos++ obtains more Gflops when more hardware re-
sources exist in the system and better performance than the
software-only runtime. The software-only runtime achieves
up to 39.6 Gflops while the Picos++ runtime obtains up to
49 Gflops. The whole system (with the Picos++ runtime)
executing this problem has a power consumption of only
5.74 watts, which translates into 8.54 Gflops per watt. To
give an meaning to this value, the same application was run
on different machines. A Intel i5-3470 core (with 4 threads
at 3.20GHz) achieves 0.51 Gflops per watt. A Intel Xeon E5-
2020 V2 (with up to 24 threads at 2.1GHz) achieves 4.14
Gflops per watt and a Intel i7-4600U core (with up to 4
threads at 2.1GHz) achieves 4.75 Gflops per watt.

5.3.4 Scaling Up the Number of HwAccs

Figure 11 shows the speedup of using Matmul with problem
size 2kx2k and block size 32x32 with up to 12 HwAccs
(the maximum number of fmatmul HwAcc with this block
size that can be fit inside the FPGA). There are two sets of
results corresponding to Picos++ working at 100MHz and
200MHz. For each set, there are four bars corresponding to
the speedup of Picos++ over sequential and the speedup of
Picos++ over the software-only runtime. In addition each
case is measured with sequential and parallel task creation.
The X-axis shows an increasing number of HwAccs used in
the system.

(a) Picos++ at 100Mhz (b) Picos++ at 200Mhz

Fig. 11: Speedup of matmul (2k, 32) by using Picos++
runtime with up to 12 HwAccs

12

3,529,008 ns0 ns

 Tasks and dependencies@Picos++_12accs_1k_32.prv

Main Parallel task creation

 Thread 1

 Thread 2

 Thread 3

 Thread 4

FPGA task management

(a) by using Picos++ runtime with 12 HwAccs

3,529,008 ns0 ns

 Tasks and dependencies@SW-only_12accs_1k_32_throttle.prv

Main Parallel task creation FPGA task management

 Thread 1

 Thread 2

 Thread 3

 Thread 4

(b) by using SW-only runtime with 12 HwAccs

Fig. 12: Task Instances of Matmul 2k, 32 execution

In Figure 11, when comparing Picos++ against the se-
quential execution it can be seen that when executing Pi-
cos++ at 100MHz, using parallel task creation results in a
small boost of the performance of Picos++, allowing it to
scale from 6 to 8 HwAccs and obtaining from 3.72x to 5x
speedup. The applications scales up to 10 HwAccs and the
speedup improves from 4.8x to 8.21x when running with
Picos++ at 200MHz. Both the size of the tasks (27 ns in Ta-
ble 2, corresponding to the fmatmul32 HwAcc at 200MHz)
and the maximum number of HwAccs that Picos++ is able
to manage at the same time are coherent with the results
shown in Figure 7. When Picos++ is compared against the
software-only runtime, it can be seen that Picos++ executed
at 200MHz and with parallel task creation achieves a 16.2x
speedup.

To summarize, Picos++ is good at managing heteroge-
neous tasks when taking into account both performance and
energy savings. This is partly due to the fast dependence
analysis and nested task support, but also a new factor
weights in. The heterogeneous task scheduling in hardware
plays an important role in this case as it not only balances
the workload among all the devices, but also brings the
ready-to-execute tasks much closer to the HwAccs in FPGA
and reduces thread contention while the software-only run-
time is heavily burdened by such overhead.

To further explain this effect, Figure 12 shows two
different traces of the same Matmul application (problem
size and block size), with parallel task creation, using the
Picos++ runtime at 200MHz (Figure 12a) and the software-
only runtime at 1.1GHz (Figure 12b), with 12 HwAccs.

As can be seen, the execution time is much shorter when
using Picos++ than the software-only runtime. When exam-
ined closely, the biggest difference between these two traces
lays in the FPGA task management, as it dominates the
execution time in the software-only runtime. This is because
Picos++ directly manages the scheduling and finalization
of FPGA tasks, therefore the FPGA task management only
concerns the deletion of task descriptors in the software part
of the runtime. For the software-only runtime, however, the
threads are required to manage scheduling, finalization and
the deletion of FPGA tasks. This overall management, which
is expensive and also provokes contentions, is translated
into a significant increment of the management overhead
and the execution time of the application. This, together

Thread 1
Thread 2

Thread 3

Thread 4

omp_trsm46,000,924 ns 51,756,839 nsomp_syrkomp_potrfmain

(a) Tasks instances

Thread 1
Thread 2

Thread 3

Thread 4

 Send new task
zoom

Send new task Polling for ready/
executed HW task

Send
finished task

46,000,924 ns 51,756,839 ns

(b) Picos++ APIs

Fig. 13: Visualization of Cholesky execution

with the faster task dependence analysis in hardware, ex-
plains the performance difference between the Picos++ and
the software-only runtime.

5.4 Potential Energy Savings Analysis
Figure 13 shows an execution trace of the Cholesky applica-
tion executed using Picos++ and 4 gemm HwAccs. Similar
behaviors have been observed for other real applications.
This trace shows, for clarity, an execution of a small problem
size 256x256 with block size 64x64, which has 20 tasks
in total. Figure 13a shows the tasks that each thread is
executing at a given moment. As it can be seen, gemm tasks
are not shown as they are executed by the HwAccs instead
of by the threads. Figure 13b shows the Picos++ activities
performed by each thread in the same execution. As it can
be seen any thread at a given moment is executing either a
SMP task, or a Picos++ activity or nothing. In addition, we
have zoomed in a region in Figure 13b to show the series of
sequential pollings the threads perform due to the lack of
available tasks. These polling sequences are not continous.

Figure 13a shows the duration of each task: main,
omp potrf, omp syrk and omp trsm. Thread 1 (T.1 horizon-
tal timeline in the figure) is the main thread and launches
the main function (shown in Figure 13a), which creates
new tasks (shown in the thread activity in Figure 13b), at
the beginning of the trace. During this time threads 2, 3
and 4 are actively polling for ready/executed HwAcc tasks.
The first SMP task that was deemed ready by Picos++ is
omp potrf, and it was scheduled and executed in thread 2
in Figure 13a. After omp potrf, three instances of omp syrk
and then, three instances of omp trsm are executed in
threads 2, 3 and 4. Once a task finishes its execution in a
thread, this thread sends a finished task to Picos++. At the
end of each task in Figure 13a, it can be seen a finished task
send action in Figure 13b. For all the tasks that are executed
in FPGA, there is a finished HwAcc task sent from Picos++
to notify the threads to delete the task descriptor.

In Figure 13a, only a portion of time is spent executing
useful work, the rest is wasted on idle polling for ready/ex-
ecuted HwAcc tasks as shown in Figure 13b. Table 6 quan-
tifies the percentage of time of all the useful functions in
the threads and HwAccs for a real problem with a bigger
problem size 2Kx2K. As it can be seen in the Tasks category,
the main task is executed mainly in Thread 1 and consumes
97% of its time. The other threads execute mainly the potrf,
syrk and trsm functions when they are available. Gemm

13

TABLE 6: Useful time with problem and block size (2K, 64)
Category Name T1/Acc0* T2/Acc1* T3/Acc2* T4/Acc3*

Measured percentage of useful time in an execution trace

Tasks

main 97.00% 1.24% 0.00% 0.00%
potrf 0.14% 0.78% 0.76% 0.75%
syrk 0.28% 15.32% 14.47% 15.00%
trsm 0.26% 20.79% 20.79% 22.64%
gemm* 13.34% 56.52% 56.52% 60.89%

Picos++APIs

New task 33.00% 0.00 0.00 0.00
Polling ready 0.81% 19.19% 19.16% 18.49%
Successful ready 0.05% 5.89% 5.52% 4.78%
Finished task 0.04% 3.08% 3.07% 3.06%

Potential energy savings time
HwAccs omp gemm* 86.66% 43.48% 43.48% 39.11%
Threads Upper bound 0% 48.63% 54.75% 53.11%

tasks are only executed in HwAccs (HwAcc0 to HwAcc3)
and do not consume any execution time in the threads but
use 13.34%, 56.52%, 56.52% and 60.89% of the execution time
in each HwAcc respectively.

Category Picos++APIs shows the time that each thread
expends dealing with Picos++ activities. New task in-
cludes the time of copying necessary data from newly
created Task Descriptor into the new task buffer. Finished
task includes the time it takes to copy the Task Descrip-
tor of the tasks that finished executing in threads into
the finished task buffer; Polling ready includes all the
time that threads spent for busy checking for ready or
finished executed FPGA tasks. Successful ready shows
how much time consumed for the actual successful read
ready task action. As it can be seen, Polling ready is
the dominant factor, due to the fact that threads have no
knowledge of when there is a ready task and basically they
are busy checking when there is no available parallelism.

Finally, section Potential energy savings time summarizes
the percentage of the execution time in the trace that
HwAccs and threads are idle, with the idea that they could
be turned off to save energy without influencing perfor-
mance. Picos++ has knowledge about when there is a ready
task that can be executed in HwAccs or threads. Therefore,
it can turn off the HwAccs and put threads to sleep. When
there is work to be done, it can active HwAccs and wake up
the threads. There exist well documented methods such as
clock gating for turning on/off HwAccs rapidly, and com-
mands for sleeping/waking commercial processors. Theo-
retically in this execution the HwAccs could be turned off
for more than 40% of time. The maximum time that can be
saved in each thread is computed by removing the useful
functions (task creation, execution and Picos++ activities)
time from the total execution time. Taking into account this
upper-bound, threads 2 to 4 could be put in low power
mode for approximately half of the execution time.

5.5 Scalability analysis

Before the hardware implementations, a software cycle-level
simulator has been used to perform a design space explo-
ration. It has measured that the baseline design with one
instance of each five modules is able to scale up to 8 threads,
and a bigger design with four instances of TRSs and DCTs
is able to manage up to 256 threads without performance
degration [13]. The current implementation of Picos++ has
showed even better results in a fully operating system with
4 SMP threads and up to 15 HwAccs, which achieved up

to 25x speedup with TestFree and 16.2x speedup Matmul
application when compared with the software-only runtime.

To further support the management of more than 256
threads or different hardware devices, Picos++ should in-
clude more logic in terms of more instances of TRS and DCT
modules. On one hand, using more modules linearly in-
creases both the memory capacity of Picos++ and its internal
management flow parallelism. On the other hand, although
the number of modules increases the characteristics of each
module remain the same, therefore the cycle time of the
critical path (frequency) should not be significantly affected.

6 RELATED WORK

Several papers deal with hardware support for task de-
pendence management. Intel CARBON [19], Asynchronous
Direct Messages (ADM) [20] and Task Scheduling Unit [21]
introduced hierarchy hardware queue architectures to
speedup task stealing and scheduling. Video-oriented task
scheduler [22] and Programmable Task Management Unit
(TMU) [23] extended the aforementioned works with also
hardware support for task creation, synchronization and
scheduling for Video processing specific applications. Mul-
tilevel Computing Architecture (MLCA) [24] introduced a
novel multicore architecture for coarse-grained task paral-
lelism for multimedia applications. The MLCA augments
a traditional muticore architecture to serve as low level
processing units (PU) with a high level control processor
(CP). The CP is used for task dependence analysis and
schedule tasks when they are ready. Swarm [25] uses the
co-design of the execution model and micro-architecture
to exploit ordered irregular task parallelism. It relies on
speculative task execution and conflict detection to preserve
dependences, which requires hardware transactional mem-
ory support. Fractal [26] extends Swarm to allow nested
parallelism by means of task domains, that can be ordered or
un-ordered to avoid over-serialization. F. Yazdanpanaha [13]
proposed a task dependence manager architecture for task-
based programming models for fine-grained parallelism,
studied as a cycle-level simulator. E.Castillo [7] proposed
a similar hardware task-dependence manager, studied with
gem5 simulator for design space exploration. Both research
works proved that hardware task-dependence management
can be beneficial for fine-grained parallelism. The difference
is that the first work also believes in using hardware for
task scheduling while the second one shows preference for
software.

Nexus# [27] and Task Superscalar [12] were also pro-
posed to accelerate task dependence management in hard-
ware for task-based dataflow programming models. They
were both implemented in FPGA. Task Superscalar was dis-
continued due to some design deadlocks, and inspired Picos
as an early example of a Runtime-Aware architecture [28].
On the other hand, Nexus# was evaluated using traces of
real applications and its performance results proved to be
better than using software alternatives but has not been
further developed. The proposal presented in this work has
several new contributions to previous Picos++ work [14],
in addition to be faster than its earlier alternatives [4].
In this work a new hardware support for heterogeneous
task scheduling has been introduced and extended to also

14

support nested tasks. The evaluation presented includes a
heterogeneous system composed of 4 SMP cores plus up to
15 hardware functional units in FPGA. On the other hand,
this contribution presents a method to override the limit
of the original system of 15 dependences per task and the
whole system has been implemented in a different hardware
platform. In addition, all the energy consumption and per-
formance results are obtained during real executions; being
more significant.

Also several papers deal with heterogeneous task
scheduling. Feng et al. [29] propose a system to extend
OpenMP to target both SMP and GPU acelerators in soft-
ware. In the area of hardware support for heterogeneous
task scheduling, the Heterogeneous Earliest Finish Time
(HEFT) algorithm [30] maintains a list of tasks sorted in
decreasing order of their upward rank. At each schedule
step, HEFT assigns the task with the highest upward rank
to the processors that finishes the execution of the task at
the earliest possible time. The Critical-Path-on-a-Processor
(CPOP) algorithm [30] also maintains a list of tasks sorted
in decreasing order as in HEFT, but in this case it is or-
dered according to the addition of their upward rank plus
downward rank belong to the critical-path. Both of them
are static algorithms. The criticality-aware task scheduler
(CATS) [8] was proposed to dynamically assign critical tasks
to fast cores and non-critical tasks to the slower cores in
the system. The critical tasks considered are the ones in the
task chain with the highest number of tasks. The critical-
path scheduler (CPATH) [8], [9] extended the considera-
tion of task execution time for critical tasks. The version
scheduler [10] described a scheduling policy to schedule
tasks to either processors or GPUs in the system. Tasks that
will be executed in processors or GPUs are implemented
differently. The scheduling policy starts with a training stage
where it learns about the different execution time in these
two devices, then on the second stage it schedules tasks
using the learnt information to balance the workloads. In
our proposal, we borrowed this concept for heterogeneous
executions implying HwAccs, in addition, the hierarchy
hardware queues mentioned earlier are also a inspiration
for the connection between Picos++ and different HwAccs.

7 CONCLUSION

This paper presents Picos++, a hardware runtime for task
dependence management, nested task support and het-
erogeneous task scheduling for task-based programming
models. The current Picos++ system is built on a MPSoC,
which includes four symmetric ARM cores and a FPGA,
both connected to the main memory. Picos++ and several
hardware functional accelerators (HwAccs, for task execu-
tion) are implemented inside the FPGA with two different
clock domains. Picos++ is also integrated with the task-
based programming model OmpSs, and the system runs on
Ubuntu Linux 16.04.

Results of performance and energy consumption show
that Picos++ is able to take advantage of high levels of fine-
grained task parallelism in applications, managing several
execution units and heterogeneity in hardware. By com-
parison, the Picos++ runtime exceeds the default software-
only runtime both in performance and energy efficiency.

With 4 threads and 4 HwAccs, Picos++ achieves up to 7.6x
speedup and 90% of energy savings. With 12 HwAccs, it
achieves a 16x speedup for a matrix multiplication kernel.
All the factors, such as fast dependence analysis, nested task
support, heterogeneous task scheduling in hardware, with
the reduced thread contentions, ultimately contribute to the
very high performance and energy savings gained by our
proposal. For the same reasons, with more threads and hard-
ware execution units, we can safely conclude that it will be
even more significant to use Picos++ hardware runtime than
a software-only one for task-based programming models.

ACKNOWLEDGMENTS

This work is supported by the Spanish Government
(projects SEV-2015-0493 and TIN2015-65316-P), by the Gen-
eralitat de Catalunya (2017-SGR-1414 and 2017-SGR-1328),
by the European Research Council (RoMoL GA 321253) and
by the “Port of OmpSs to the Android platform and Hard-
ware support for Nanos++ runtime” Project Cooperation
Agreement with LG Electronics. We also thank the Xilinx
University Program.

REFERENCES

[1] O. ARB, “Openmp application program interface - openmp stan-
dard 5,” [online], 2018, https://www.openmp.org/press-release/
openmp-5-0-preview-1-published/.

[2] B. S. Center, “Ompss programming model,” [online], 2016, https:
//pm.bsc.es/ompss.

[3] G. Contreras and M. Martonosi, “Characterizing and improving
the performance of intel threading building blocks,” Workload
Characterization. IEEE International Symposium, no. 57-66, 2008.

[4] X. Tan, J. Bosch et al., “Performance analysis of a hardware
accelerator of dependence management for task-based dataflow
programming models,” International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2016.

[5] J. Bosch, X. Tan et al., “Characterizing and improving the perfor-
mance of many-core task-based parallel programming runtimes,”
31st IEEE International Parallel and Distributed Processing Symposium
Workshop, 2017.

[6] N. Engelhardt, T. Dallo et al., “An integrated hardware-software
approach to task graph management,” in In 16th IEEE International
Conference on High Performance and Communications(HPCC-2014),
2014.

[7] E. Castillo, L. Alvarez, M. Moreto et al., “Architectural support for
task dependence management with flexible software scheduling,”
The 24th IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA’18), 2018.

[8] K. Chronaki, A. Rico, R. M. Bodia et al., “Criticality-aware dynamic
task scheduling for heterogeneous system,” International Confer-
ence on Supercomputing (ICS), pp. 329–338, 2015.

[9] K. Chronaki, A. Rico, M. Casas et al., “Task scheduling techniques
for asymmetric multi-core systems,” IEEE Transactions on Parallel
and Districuted Systems (IPDPS), vol. 28, pp. 2074–2084, 2017.

[10] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, “Self-adaptive
ompss tasks in heterogeneous enviroments,” The 27th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp.
138–149, 2013.

[11] Y. Etsion, F. Cabarcas et al., “Task superscalar: An out-of-order task
pipeline,” in IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-43), 2010.

[12] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez,
Y. Etsion, and R. M. Badia, “Analysis of the task superscalar
architecture hardware design,” Procedia Computer Science,
vol. 18, pp. 339 – 348, 2013, 2013 International Conference
on Computational Science. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050913003402

[13] F. Yazdanpanah, C. Alvarez et al., “Picos: A hardware runtime
architecture support for ompss,” Future Generation Computer Sys-
tems(FGCS), 2015.

15

[14] X. Tan, J. Bosch et al., “General purpose task-dependence manage-
ment hardware for task-based dataflow programming models,”
31st IEEE International Parallel and Distributed Processing Sympo-
sium, 2017.

[15] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jimenez-
Gonzalez, C. Alvarez, X. Martorell, E. Ayguade, and J. Labarta,
“Application acceleration on fpgas with ompss@fpga,” The 2018
International Conference on Field-Programmable Technology (FPT), pp.
1 – 8, 2018.

[16] XILINX, “Zynq ultrascale+ mpsoc overview,” [online], 2017,
https://www.xilinx.com/support/documentation/data sheets/
ds891-zynq-ultrascale-plus-overview.pdf.

[17] B. S. Center, “Performance tools,” [online], 2016, http://www.bsc.
es/computer-sciences/performance-tools.

[18] ——, “Bsc application repository,” [online], 2014, https://pm.bsc.
es/projects/bar/wiki/Applications.

[19] S. Kumar, C. J. Hughes et al., “Carbon: Architectural support for
fine-grained parallelism on chip multiprocessors,” in International
Symposium on Computer Architecture, 2007.

[20] D. Sanchez, R. M. Yoo et al., “Flexible architectural support for fine-
grain scheduling,” in International Conference on Architectural Sup-
port for Programming Languages and Operating Systems(ASPLOS),
2010.

[21] J. Hoogerbrugge and A. Terechko, “A multithreaded multicore
system for embeded media processing,” in Transactions on High-
performance Embeded Architectures and Compilers(THEA), 2011.

[22] G. Al-Kadi and A. S. Terechko, “A hardware task scheduler for
embeded video processing,” in International Conference on High
Performance and Embeded Architectures and Compilers(HiPEASC),
2009.

[23] M. Sjalander, A. Terechko et al., “A look-ahead task management
unit for embeded multi-core architectures,” in Conference on Digital
System Design(DSD), 2008.

[24] D. Capalija and T. S. Abdelrahman, “Microarchitecture of a coarse-
grain out-of-order superscalar processor,” in International Transac-
tion on Parallel and Distributed Systems, 2013.

[25] M. C. Jefferey, S. Subramanian, M. Abeydeera, J. Emer, and
D. Sanchez, “Data-centric execution of speculative parallel pro-
grams,” Proceedings of the 49th International Symposium on Microar-
chitecture (MICRO), no. 1-13, 2016.

[26] S. Subramanian, M. C. Jefferey, M. Abeydeera et al., “”fractal: An
execution model for fine-grain nested speculative parallelism”,”
International Symposium on Computer Architecture (ISCA), no. 587-
599, 2016.

[27] T. Dallou, A. Elhossini et al., “Nexus#: A distributed hardware
task manager for task-based programming models,” in IEEE 29th
International Parallel and Distributed Processing Symp(IPDPS), 2015.

[28] M. Valero, M. Moretó et al., “Runtime-aware architectures: A first
approach,” International Journal on Supercomputing Frontiers and
Innovations, vol. 1, 2014.

[29] W. Feng, B. Rountree, T. W. Scogland, and B. R. de Supinski,
“Heterogeneous task scheduling for accelerated openmp,” in
Parallel and Distributed Processing Symposium, International. Los
Alamitos, CA, USA: IEEE Computer Society, may 2012, pp. 144–
155. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/IPDPS.2012.23

[30] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems (IPDPS),
vol. 13, pp. 260–274, 2001.

Xubin Tan received the B.S. and M.S. degrees
in Electronic Information Engineering from the
China Agricultural University (CAU) and in In-
formation and Communication Engineering in
Beijing Institute of Technology (BIT), Beijing in
2009 and 2012, respectively. Currently, she is is
a PhD student in the department of Computer
Architecture of Technical University of Catalunya
(UPC) and also in the Barcelona Supercomput-
ing Center (BSC). Her research interest lies in
novel multicore, manycore, heterogeneous ar-

chitectures for high performance and low power computing.

Jaume Bosch received the B.S. and M.S. de-
grees in Computer Science from UPC in 2015
and 2017, respectively. Currently, he is is a PhD
student in the department of Computer Archi-
tecture of UPC and in the Programming Mod-
els Group in BSC. His research interest lies in
parallel, distributed and heterogeneous runtime
systems for High Performance Computing.

Carlos Álvarez received the M.S. and Ph.D.
degrees in Computer Science from UPC, Spain
in 1998 and 2007, respectively. He currently
holds a position as Tenured Assistant Profes-
sor in the department of Computer Architecture
at UPC, and is a associated researcher at the
department of Computer Science and Program-
ming Models at BSC. His research interests
cover the areas of parallel architectures, runtime
systems and reconfigurable solutions for high-
performance multiprocessor systems. He has

co-authored more than 40 publications in international journals and
conferences. He is currently advising 1 PhD student and has co-advised
2 PhD theses. He has been participating in the HiPEAC Network of
Excellence and in the TERAFLUX and AXIOM European projects.

Daniel Jiménez-González received the M.S.
and Ph.D. degrees in Computer Science from
UPC in 1997 and 2004, respectively. He cur-
rently holds a position as Tenured Assistant Pro-
fessor in the department of Computer Architec-
ture in UPC, and is a associated researcher at
the department of Computer Science and Pro-
gramming Models at BSC. His research interests
cover the areas of parallel architectures, runtime
systems and reconfigurable solutions for high-
performance computing systems. He has coau-

thored more than 40 publications in international journals and confer-
ences. He is currently co-advising 1 PhD students and has co-advised
2 PhD student. He has been participating in the HiPEAC Network
of Excellence and in the SARC, ACOTES, TERAFLUX, AXIOM and
PRACE European projects.

Eduard Ayguadé is a full professor in the Com-
puter Architecture Department at UPC, lecturing
on computer organization and architecture, and
on parallel programming models, since 1987.
His research interests cover microarchitecture,
multicore architectures, and programming mod-
els and their architectural support. He has pub-
lished more than 250 papers in conferences and
journals in these topics. He has participated in
several research projects in the framework of
the European Union and research collaborations

with companies. He is associated director for research on computer
sciences at BSC.

Mateo Valero is full professor at Computer
Architecture Department, UPC and director at
BSC. He has published 700 papers and served
in organization of 300 international conferences.
His main awards are: Seymour Cray, Eckert
Mauchly, Harry Goode, ACM Distinguished Ser-
vice, Hall of Fame member IST European Pro-
gram, King Jaime I in research, two Spanish Na-
tional Awards on Informatics and Engineering.
Honorary Doctorate: Universities of Chalmers,
Belgrade, Las Palmas, Zaragoza, Complutense

of Madrid, Granada and University of Veracruz. He is a Fellow of IEEE,
ACM, and Intel Distinguished Research Fellow. He is a member of
Royal Spanish Academy of Engineering, Royal Academy of Science and
Arts, correspondent academic of Royal Spanish Academy of Sciences,
Academia Europaea and Mexican Academy of Science.

