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The expected increase in the number of electric vehicles (EVs) in the coming years will contribute to
reducing CO2 pollution in our cities. Currently, EVs’ users may suffer from distress due to long charging
service times and overloaded charging stations (CSs). Critical traffic conditions (e.g., traffic jams) affect
EVs’ trip time (TT) towards CSs and thus influence the total trip duration. With this concern, Intelligent
transport systems (ITS) and more specifically connected vehicle technologies, can leverage an efficient
real-time EV charging service by jointly considering CSs status and traffic conditions in the city. In this
work, we propose a scheme to manage EVs’ charging planning, focusing on the selection of a CS for the
energy-requiring EV. The proposed scheme considers anticipated charging slots reservations performed
through a vehicular ad hoc network (VANET), which has been regarded as a cost-efficient communication
framework. In specific, we consider two aspects: 1) the EV’s total trip time towards its destination
considering an intermediate charging at each candidate CS, and 2) the communication delay of the VANET
routing protocol. First, in order to estimate the EV’s total trip time, our CS selection scheme takes into
account the average road speed, traffic lights, and route distance, along the path of the EV. The optimal
CS that produces the minimum total charging service time (including the TT) is suggested to that energy-
requiring EV. Then, we introduce two communication modes based on geographical routing protocols for
VANETs to attain an anticipated charging slot reservation. Simulation results show that with our charging
scheme EVs’ charging service time is reduced and more EVs are successfully charged.

 2019 Elsevier Inc. All rights reserved.

1. Introduction

Now a day, developed countries are implementing policies to
reduce carbon emissions and promote sustainable transportation.
Among many innovative solutions, electric vehicles (EVs) are con-
sidered the most promising alternative to reduce carbon dioxide
greenhouse emissions in the transportation sector [1]. In this con-
text, The European Union has set one of the most challenging
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targets for reducing carbon dioxide greenhouse emissions from ve-
hicles in the world. By the year 2021, CO2 emissions from new
vehicles are expected to be 42% less than new vehicles in 2005
[2]. USA, China, Japan, Canada, among others, lead the rapid de-
velopment of the EVs’ industry. The decisive shift of drivers to use
EVs is contributing to further reductions in CO2 emissions. Since
EVs are expected to continue growing, a new problem arises for
drivers regarding where to charge. In general, EV’s battery charg-
ing is a time-consuming process, although fast-charging stations
and EVs capabilities for different types of charging levels help to
reduce charging time [3] [4]. Battery swapping technology is an-
other option for discharged batteries in EVs [5]. It reduces sub-
stantially time at charging stations compared to the plug-in or
inductive charging. However, battery-charging stations will be the
most widely method to recharge EVs because battery swapping
needs a more complex infrastructure. Therefore, to optimally man-
age where to charge has become an important research problem
in recent years because the relatively long time needed to charge
an EV battery. Furthermore, in case of several EVs are planning

https://doi.org/10.1016/j.vehcom.2019.100188
2214-2096/ 2019 Elsevier Inc. All rights reserved.
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to charge at the same CS (e.g., the CS is located at a highly vis-
ited place) it may become overloaded rapidly, which decreases the
quality of experience (QoE) of the EV’s user.

Most of the current research works in this topic investigate the
EV charging management in terms of energy-scheduling at the CS,
but they are not concerned about EVs’ mobility [6] [7]. In this re-
gard, challenges include the selection of an appropriate CS for the
EV during its driving phase (i.e., during the EVs’ journey), and the
design of a communication framework to support the EV charging
service.

In this paper, we first introduce a CS-selection scheme aims to
minimize the total trip time of the user. Here, we consider traffic
conditions on the EV’s route towards its destination taking into
account an intermediate recharging stop at the selected CS, thus
minimizing the total trip duration.

Second, we propose a communication framework among EVs
and RSUs to interchange charging service messages. The framework
should be highly dynamic and flexible to support the EV charging
service and not interfere to road safety services for smart cities.

To have inter-vehicle communications (IVC), wireless technolo-
gies such as traditional cellular technologies (i.e., long term evo-
lution LTE), cellular vehicle-to-everything (C-V2X) or IEEE 802.11p
could be used in our CS-selection approach. LTE and C-V2X may
significantly increase the communication cost in terms of signal-
ing and delay, since both need a higher overhead than VANETs [8].
Moreover, LTE communications need the use of base station in-
frastructure and employ a licensed band. Nevertheless, the use of
cellular networks for the EV charging service would be provided
to customers by subscription, which could include an additional
cost for users. Alternatively, a cost-efficient solution is the use
of VANETs which can provide high data transfers and low com-
munication latency. Here, vehicles can operate to forward service
messages to other vehicles or to road side units (RSUs) located
along the city. In this way, cooperative behavior among vehicles al-
lows EV drivers to reduce their charging service time. Furthermore,
such a cooperative scheme would assist the smart grid (SG) to ef-
ficiently manage a centralized charging slots reservation scheme in
the CSs deployed throughout the city. Hence, our communication
framework is based on two geographical routing protocols of ve-
hicular ad hoc networks (VANETs). We also evaluate another com-
munication scheme named opportunistic. Specifically, we analyze
the store-carry-forward paradigm, where EVs buffer and forward
messages opportunistically, valid for delay-tolerant applications in
vehicular delay tolerant networks (VDTNs) [9]. It is worth noting
that a similar cooperative, decentralized approach can be imple-
mented with LTE device-to-device technology [10].

Finally, we carry out extensive simulations under realistic ur-
ban scenarios to validate the effectiveness of our proposed EV
charging management system. Here, the proposed strategy clearly
outperforms the most current charging system today (i.e., non-
coordinated).

In a nutshell, we carefully design an efficient EV charging ser-
vice for urban areas when EVs with a critical state of charge
(SoC), i.e., insufficient battery level to complete the trip, will re-
quire charging during their trip. We take advantage of IVC so that
EVs can communicate with the city infrastructure and with other
vehicles to perform an anticipated charging slot reservation. This
feature will definitively improve the efficiency of the EV charging
service.

The rest of the paper is organized as follows. Related work is
discussed in Section 2. Then, the proposed system is presented in
Section 3 including the EVs’ trip time estimation and CS-selection
strategy. After that, Section 4 details the service message interac-
tion and the service data pakets. In Section 5, we introduce two
communication schemes based on geographic routing protocols for
EVs-RSU communications, and also on an opportunistic commu-

nication scheme. Next, Section 6 shows the benefits of our EVs
charging management scheme in realistic urban environments. Fi-
nally, conclusions and some future work are drawn in Section 7.

2. Related work

The increasing EVs penetration that we are witnessing to-
day motivate that several works study the impact of EVs in the
power grid (e.g., voltage deviations, transformers overloading) [11].
Most of the literature, such as [12–15], focuses on optimizing the
energy-scheduling coming from either fossil fuels or renewable en-
ergy resources. Most of these works consider that the EV is already
at an CS or parked at home; thus, EVs’ mobility issues in the
charging management is neglected. Just a few works like [16], [17]
consider the charging service required during the EV’s trip.

The proposed strategies for charging management in the liter-
ature can be classified into (i) centralized and (ii) decentralized
schemes.

(i) A central intelligence or global controller manages EVs’
charging. This controller considers the smart grid (SG) state and
the CSs’ state (e.g., available energy). Here a communication frame-
work is required so that the energy-demanding EVs communicate
with the global controller. The benefits of using a centralized co-
ordination scheme can be found in [18–20]. Among those benefits,
we highlight adaptive real-time operation and better utilization of
resources, since a central management unit might consider the cur-
rent global state of the EVs’ batteries and the amount of available
energy in the SG devoted to EVs. In [21], authors present a cen-
tralized charging management scheme where CSs are selected by
considering the electricity price.

(ii) In a distributed scheme, EVs select an CS based on their
local knowledge and on each driver’s personal preference. The op-
timal CSopt, EV selection (i.e., CS with the minimal charging time) is
not guaranteed but the communication framework is less complex.
In [22], authors propose a decentralized EV charging management
scheme, where CSs disseminate their available time for charging
(i.e., waiting time till start their charging service). EVs use this in-
formation to select an appropriate CS. Here, the system efficiency
depends on the CS dissemination frequency. In [23], an EV charging
management scheme based on communications between EV-RSU
and EV-CS is presented. The former is a vehicle-to-infrastructure
(V2I) communication, whereas the latter is a vehicle-to-grid (V2G)
communication. Here, authors evaluate different VANET routing
protocols in terms of end-to-end delay. Their results show the
impact of choosing a routing protocol, which clearly affects the
average charging service time.

Nevertheless, the above literature does not consider the current
traffic conditions in the city, nor the impact of the communication
protocol in the EV charging framework. Thus, the actual charging
service time may increase, since the EVs’ trip time (TT) increases
under dense traffic conditions, which typically happen in urban
scenarios. Moreover, the EVs’ charging reservations may be affected
by traffic conditions. For instance, a reservation may prematurely
expire before the EV reach the reserved slot in the planned CS.
Very few works undertake the issue of traffic conditions during the
energy-demanding EV’s trip towards the intended CS. In [24], the
drivers’ trip duration and mobility uncertainty (e.g., a traffic jam)
are considered for selecting an CS. In that work, the EV periodi-
cally sends a service request to a centralized controller through a
cellular network, which responses with the CS selected for that EV.
Alternatively to those works proposed in the literature, we present
a communication framework based on VANETs with a novel CS-
selection scheme for an efficient centralized traffic-aware scheme
to manage the EVs charging system.
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Fig. 1. Overview of the proposed EV charging management system. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3. Electric vehicle charging management system

As we said, most reservation-based charging systems, consider
fixed reserve expiration times generally oversized (e.g., reserve ex-
pires in 1 hour). In this way, those systems aim not to consider
traffic conditions or the occurrence of unforeseen situations that
may increase the total trip duration towards the selected CS. How-
ever, when a large number of EVs plan to charge at the same
charging station, it can get congested rapidly, reducing the users’
QoE. Under that situation, EVs could select a non-optimal CS.

To cope with this, we claim that it is essential to consider the
trip duration on the EVs’ charging planning. Specifically, our goal
is to minimize the total trip time to destination for each EV. Thus,
when we detect that an EV has a low battery below a given thresh-
old, in case it does not have enough battery to get destination the
system will look for a proper CS to charge the battery. Current
traffic conditions are taken into account seeking to reserve the CS
where the EV will arrive sooner.

3.1. Definition of entities of the system

1. EV: Each EV appears in the scenario with a certain trip des-
tination. As soon as the EV moves, it progressively discharges
its battery. When an EV presents a low battery state of charge
(SoC) during its trip, meaning that its battery is below a
threshold, the EV starts to negotiate with the EMMS to find
a suitable CS for charging.
Further to this, the EV confirm the reserve of the charging slot
through the nearest RSU (either directly, see a red line in Fig. 1
or according to a multi-hop process, see dotted blue lines in
Fig. 1).

2. CS: Each CS communicates their local status (e.g., electricity
needs of EVs, electricity availability in the CS) to the EMMS.
CSs are able to charge EVs in parallel, based on multiple charg-
ing slots.

3. RSU: RSUs are located at strategic positions within the city,
including all CSs, to provide effective and reliable communica-
tions with the city infrastructure. The RSUs allow the commu-
nication between EVs and EMMS.

4. EMMS: It consists of a centralized entity in charge of the EV’s
charging planning. The electro-mobility management server
(EMMS) has a holistic view of EVs and CSs conditions within
the charging service area (i.e., the city).

5. Network: In order to plan EVs charging, we propose to use
VANETs, as an alternative to cellular communications. It is well
known that infrastructureless VANETs can offer low latency
due to short distances, compared to traditional cellular com-
munications. Nonetheless, the promising C-V2X [25] technol-
ogy also allows direct communication between vehicles, thus
without incurring the long latency present in cellular networks
in which messages have to pass through access points. There-
fore, our proposal for EVs charging management scheme could
easily be adapted as well to C-V2X.
To forward the service messages used in our proposal of an EV
charging system, we consider three geographic routing proto-
cols, which are described in Section 5 and evaluated in Sec-
tion 6.

In this paper, we assume the following:
(i) Each vehicle is equipped with a global position system (GPS)

as well as with an on-board unit (OBU) which allow vehicles to
establish vehicle-to-everything (V2X) communications. Besides, ve-
hicles are aware of smart city services via road-side units (RSUs)
deployed along the city.

(ii) Charging stations (e.g., see CSA and CSB in Fig. 1) and RSUs
are connected to the backbone network as well as to the EMMS.

(iii) Traffic conditions are locally available in the system either
gathered directly from the network itself (e.g., a VANET) or from
any external traffic service (e.g., Google Maps).

3.2. System design

In this section, we detail the main features of our proposal. An
overview is shown in Fig. 1.

According to our proposal, a charging slot is intended to be re-
served in the most suitable CS. The criterion is to select the CS
where the EV driver experiences the minimum service time. This
service time jointly considers the charging time at candidate C Sn
and the total trip time to destination including an intermediate
stop at C Sn . Thus, whenever an EV needs to charge its battery, our
scheme tries to find and reserve (during a specific period) the best
available charging slot. In Fig. 2, our proposed system to manage
the EVs’ charging is shown. Notations are introduced in Table 1.
The system logic is as follows:
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Fig. 2. Proposed system logic for the EV’s charging planning.

Table 1

List of variables used in the system.

Parameter Parameter definition

N Total number of CSs
ARS EV Average road speed
C Sn Candidate charging station
C S EV

LI ST List of CSs attainable by the EV
slotLI ST List of charging slots
C Sopt,EV optimal CS selected for that EV
C S power CS charging power
slotnumC Sn Number of charging slots in C Sn
slotselected,C Sopt,EV Charging slot reserved in the C Sopt,EV
δF F V+EV Total vehicles’ density
ηEV EV’s energy consumption coefficient
DD EV EV’s driving distance
EV SoC EV’s current SoC (%)
EVmax_cap Maximum capacity of the EV’s battery
SoCThreshold Minimum battery level to trigger a

charging request (%)
EVC R EV that reports a charging request
ECC Sn Energy consumption to reach C Sn
EV Dst EV’s destination
CT EV

C Sn
EV’s expected charging time at C Sn

R EV curr ,C Sn shortest route from EV curr to C Sn
RC Sn ,EV Dst shortest route from C Sn to EV Dst

ST
EV Dst

C Sn
EV’s charging service time with regard to C Sn

T T
EV Dst

C Sn
EV’s total trip time to destination
including a charging stop at C Sn

T LEV Number of traffic lights in the EV’s route

Step 1: First, whenever an EV needs to charge its battery we first
check if the EV has enough battery to reach its intended desti-
nation (e.g., home, working place). In such a case, the EV goes
there directly. Conversely, in case the EV does not have enough
battery to reach its destination, it will need an intermediate
stop for charging at the most suitable CS. Here, based on the
EV’s current location and its available SoC, the charging time
is estimated for each candidate C Sn . Candidates C Sn are those
CSs which can be reached by the EV with its current SoC.

Step 2: Based on the output of step 1, the EV’s total trip time to
destination is estimated, including an intermediate charging
stop at each candidate C Sn . We highlight the fact that this
total trip time to destination is estimated considering current
traffic conditions in the scenario.

Step 3: Finally, outputs of step 1 and step 2 are used for the CS
decision and reserving a charging slot at the optimal CS.

3.3. Temporal estimations used to select the optimal CS

As stated previously, we assume that traffic conditions are lo-
cally available, either from the vehicular network itself or from
an external traffic service. Current real-time traffic reporting ser-
vices and route planners (e.g., Google Maps) could be used in our
scheme to estimate the EV’s arrival time towards a specific CS. To
mimic the actual route plan of vehicles in our simulations, we an-
alyze which are the elements along the route that vehicles will
find (e.g., number of traffic lights, intersections, the speed limit
of streets). Those elements have an impact in the EVs’ trip time.
To characterize a trip time estimation model for urban environ-
ments, we have used a multiple linear regression to attain our
traffic-aware proposal of a charging service for EVs. It is worth to
highlight that this paper focuses on the influence of considering
traffic conditions on the EVs’ charging planning, and not on the
design of a traffic reporting service or of a new route planner.

We denote as ST
EV Dst
C Sn

to the service time interval from the mo-
ment when the energy-requiring EV reports its charging request
till the moment when the EV arrives to its destination. This service
time interval includes the charging time at candidate C Sn , where
1 ≤ n ≤ N , being N the total number of CSs.

ST
EV Dst
C Sn

= SRT EV + T T
EV Dst
C Sn

+ CT EV
C Sn

(1)

Here, SRT EV is the service response time measured from the
moment when the EV reports its charging request till the moment
when the vehicle receives the service response from the network.
The service response includes the location of the CS suggested
where the EV is intended to be charged. Note that SRT EV mainly
depends on the routing protocol used to forward service messages.
The EV’s total trip time T T

EV Dst
C Sn

is the time spend to travel toward
the EV’s destination considering an intermediate stop to charge at
candidate C Sn . Note that T T

EV Dst
C Sn

is estimated using eq. (4) accord-
ing to our linear regressions taken a wide range of representative
simulation results, as it is explained in Section 3.3.2. Finally, the
EV’s charging time denoted by CT EV

C Sn
means how long the EV

should be stopped at candidate C Sn during the charging phase.

3.3.1. Expected charging time

At the EMMS side, the expected charging time is calculated con-
sidering information reported by the energy-requiring EV. Further
details of the EV’s information and message exchanges are pre-
sented in Section 4.

We denote CT EV
C Sn

as the EV’s charging time at C Sn and it is
calculated as follows:

CT EV
C Sn

=
EVmax_cap · (1− EV SoC )

C S power
, (2)

where the EVmax_cap refers to the EV’s maximum battery capac-
ity, and the EV SoC is the EV’s current state of charge. Notice
that CT EV

C Sn
depends on the CS characteristics (e.g., fast or slow

recharge). In this work, for the sake of simplicity we assume CSs
are provided with enough energy and public fast-charging slots
with identical charging power C S power .

Algorithm 1, presents details regarding the calculation of the
charging time. First, in case the EV’s SoC is enough to reach its
destination at line 4, the EVs goes directly to its destination. Here,
D

EV curr
EV Dst

· ηEV denote the electric energy required to reach the EV
driver’s destination EV Dst based on the EV’s energy consumption
coefficient (ηEV ). On the other case, if both spare charging slots
and the EV has enough energy to reach candidate C Sn at line 8
and 10 respectively, that C Sn is considered as reachable by the
EV. Here, D EV curr

C Sn
·ηEV denote the electric energy required to reach

candidate C Sn . Note that C S EV
C SRLI ST

LIST is updated at line 11 and
contains attainable CSs for the EV given its current state of charge
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EV SoC and position EV curr . Finally, CT EV
C Sn

is calculated for the
energy-requiring EV at line 12 given (2).

Algorithm 1 CT EV
C Sn

. Expected charging time at C Sn .

1: EV reports (EV SoC , EVmax_cap, EV curr )
2: C S LI ST = List of the N C Sn in the service area
3: D

EV curr

EV Dst
= distance between EV curr and EV Dst

4: if (D EV curr

EV Dst
· ηEV ) < EV SoC ) then

5: gotoDestination
6: else

7: for (n = 1; n ≤ N; n++) do
8: if (charging slot available in C Sn) then
9: D

EV curr

C Sn
= distance between EV curr and C Sn

10: if (D EV curr
C Sn

· ηEV ) < EV SoC ) then

11: add C Sn to C S EV
RLI ST

12: calculate CT EV
C Sn

(2)
13: end if

14: end if

15: end for

16: update C S EV
RLI ST

17: return CT EV
C Sn

18: end if

3.3.2. Estimation of the total trip time to destination

We denote the total trip time T T
EV Dst
C Sn

as the time spent to
travel toward the EV driver’s destination considering an intermedi-
ate stop to charge at the candidate C Sn .

Note that considered CSs are those CSs attainable for the EV
and included in C S EV

RLI ST (output from Algorithm 1). Referred to

Algorithm 2, the T T
EV Dst
C Sn

is obtained as follows:

1. The shortest path (according to the Dijkstra’s algorithm con-
sidering road map topology) toward the EV’s trip destination
is computed. It is composed by the shortest path toward can-
didate C Sn and from that C Sn to the EV Dst , obtained at lines
5 and 6.

2. Upon computing EV’s route, traffic conditions along the route
are updated at line 7. As stated in Section 3, we assume traffic
conditions are locally available gathered directly from the net-
work (e.g., a VANET) or from any traffic service (e.g., Google
Maps).

3. Then, T T EV Dst
C Sn

for the energy-requiring EV is estimated given
the prediction model (4) detailed as follows. Notice that,
instead of considering EV’s local information (i.e., the EV’s
speed) for estimating its trip time, we take into consideration
conditions along the route, since those will inevitably affect
the total trip time (e.g., a high vehicles density reduces vehi-
cles’ speed and therefore the EVs’ electricity consumption).

Algorithm 2 T T
EV Dst
C Sn

. Total trip time estimation to destination in-
cluding a charging stop at C Sn .
1: C S LI ST = List of the N CS in the service area
2: C S EV

RLI ST updated by Algorithm 1
3: for (n = 1; n ≤ N; n++) do
4: if (C Sn ∈ C S EV

RLI ST ) then
5: R EV curr ,C Sn = GET route from EV curr to C Sn
6: RC Sn ,EV Dst = GET route from C Sn to EV Dst

7: update route conditions on R EV curr ,C Sn and RC Sn ,EV Dst

8: calculate T T
EV Dst

C Sn
(4)

9: end if

10: end for

11: return T T
EV Dst

C Sn

To estimate the total trip time T T
EV Dst
C Sn

expressed in (4), we
have characterized the additional time on route due to the pres-
ence of a certain number of traffic lights (T LEV ). Also, we have

used the average road speed (ARS EV ) and the driving distance
(DD EV ). This way, we estimate the EV’s total trip time with respect
to EV Dst and C Sn , i.e. with respect the EV’s destination (EV Dst )
given a charging stop at charge station C Sn . Then, T T

EV Dst
C Sn

is esti-
mated as a linear function of three terms:

(a) The number of traffic lights (T LEV ) along the EV’s route to-
wards EV Dst considering an intermediate charging stop at C Sn .

(b) The average road speed (ARS EV ), calculated by averaging
the road’s speed ARSr of those roads r that compose the path
driven by EV. It basically depends on the current vehicles’ density
on those roads.

(c) The driving distance (DD EV ) calculated by adding road dis-
tances over the map topology.

Notice that ARS EV could be estimated from diverse ways. For
instance, we assume that smart traffic lights average consecutive
speeds (vs) taken from vehicles’ beacons through a given road (r),
by using an exponential weighted moving average (EWMA), see
(3), where i stands for the iteration index of the averaging pro-
cess and w (we used w = 0.25) is the weight to average new ARS
samples:

ARSr,i = w · vs,i + (1− w) · ARSr,i−1 (3)

To model the total trip time T T
EV Dst
C Sn

spent by an EV to travel
towards destination considering a potential intermediate stop to
charge its battery at C Sn , we use a multiple regression statistical
tool [26] and the statistical software SPSS [27]. We have considered
many representative simulations for generic urban scenarios of dif-
ferent dimensions and different vehicles’ densities. The T T

EV Dst
C Sn

is
calculated as follows:

T T
EV Dst

C Sn
= α1 + α2 · T LEV Dst ,C Sn+

α3 · ARS EV Dst ,C Sn + α4 · DD EV Dst ,C Sn (4)

where α1 reflects the average trip time in the assessed scenario;
α2 denotes the time spend due to traffic lights found along the
route. This value is derived from the traffic light cycle; α3 consid-
ers the average road speed variation; the last term α4 adds time
to the T T

EV Dst
C Sn

per each meter traveled in the path.
As expected, an increment on the number of TL or DD in the

path represents an increase in the trip duration, whereas an in-
crease in ARS EV Dst ,C Sn decreases the total trip time. Notice that
αi coefficients of the model in (4) depend on the road map, al-
though our considered scenarios are general enough for urban
environments under diverse vehicles’ densities. In a future work
we plan to consider a self-adaptive model that implements ma-
chine learning techniques to dynamically configure the coefficients
of the model.

3.3.3. CS selection

The CS selection scheme looks for the CS through which the EV
will experience the shortest service time ST

EV Dst
C Sn

(1), mainly set-

tled by the charging time CT EV
C Sn

and the total trip time T T
EV Dst
C Sn

.
By running Algorithm 3, the optimal C Sopt,EV is selected by jointly

considering the total trip time T T
EV Dst
C Sn

towards the EV’s trip des-

tination with an intermediate parking duration for charging CT EV
C Sn

at candidate C Sn . Note that the total trip time towards each candi-
date C Sn is estimated taking into account current traffic conditions
along the route as these affect the total trip time and therefore the
CS selection. Here, a sub-optimal CS selection may diminish the
EV’s user QoE.

We point out that although in this work we consider the ser-
vice time as metric to choose the optimal CS (C Sopt,EV ), additional
metrics could also be included as inputs in Algorithm 3. Examples
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Fig. 3. Interchange of messages in the proposed EV’s charging management system.

of interesting metrics to be considered are waiting time at the CS,
energy price, or origin of energy (renewable or non-renewable).

Algorithm 3 C Sopt,EV . Optimal CS selection.

1: C S LI ST = List of the N CS in the service area
2: for (n = 1; n ≤ N; n++) do
3: calculate CT EV

C Sn
via Algorithm 1

4: if (C Sn ∈ C S EV
RLI ST ) then

5: calculate T T EV
LI ST via Algorithm 2

6: ST
EV Dst

C Sn
= CT EV

C Sn
+ T T

EV Dst

C Sn
7: end if

8: end for

9: GET C Sopt,EV that minimizes ST
EV Dst

C Sn
, eq. (1).

10: Make charging slot reservation at C Sopt,EV

4. Interchange of service messages

In this Section, we detail the service messages exchange be-
tween EVs and the EMMS. The message interaction flow for the
proposed charging service is presented in Fig. 3. We focus on the
EV-RSU communication for an EV charging service during the EV
journey (i.e., while the EV is moving). The EV-RSU communication
is modeled based on the IEEE 1609 WAVE standard [28]. Con-
sidered service messages (1-3 in Fig. 3) are reported following
the standard frame format detailed in the IEEE 1609 WAVE/WAVE
Short Message (WSM) [29].

Once an EV notices a low battery (EV SoC < SoCThreshold), it re-
ports its charge requirements using the service request message to
the closest RSU through the VANET (see 1 in Fig. 3). Details of the
fields of the EV’s request message are given in Table 2.

At the EMMS side, the most suitable CS for the EV is selected
according to Algorithm 3. Then, the EMMS responds to the EV with
a service response message (see 2 in Fig. 3) which contains in-
formation of the selected CS. Table 3 gives details of the EMMS
service response message. Here, the msgID field contains the ap-
plication identifier. The CSinfo field contains information of the
selected CS, e.g. the CS identification, the charging slot reserved
for the EV.

The Service_Status field indicates to the energy-requiring EV
which is the CS decision (i.e., reservation accepted or reservation
request expired). The TT field contains the moment when the EV
is expected to arrive at the selected CS suggested and reserved by
the EMMS (i.e., it counts the EV’s trip time towards the selected
CS, see TT in Fig. 3).

The service messages exchange, is summarized as follows:

Table 2

EV’s service information. EV service request message.

Field Length (Bytes) Description

msgID 1 Application ID value
Veh_ID 4 Vehicle identifier
Veh_Type 1 Type of vehicle (EV)
LongitudEV 4 Vehicles’ geographical Long.
LatitudeEV 4 Vehicles’ geographical Lat.
ElevationEV 4 Vehicles’ elevation

referenced
SoC 1 EV’s battery state of charge
Service_Status 1 Indicates to the EMMS that

the charging service is
required

utcTime 10 Time with mSec precision

Table 3

Charging service information. EMMS service response message.

Field Length (Bytes) Description

msgID 1 Application ID value
CSinfo 5 Contains information of the

CS and slot selected
LongitudC S 4 CS’s geographical Long.
LatitudeC S 4 CS’s geographical Lat.
ElevationC S 4 CS’s elevation referenced
Service_Status 2 Indicates the service status

(CS decision)
TT 2 EV’s trip time
CT 2 Charging time
utcTime 10 Time with mSec precision

• EV’s service request: It is triggered by a low battery event at
the EV side. It includes EV general information (see Table 2).
The EV reports its charging service requirement to the EMMS
through the closest RSU. See 1 in Fig. 3.

• EMMS service response: At the EMMS side, the EV’s service re-
quest is processed and the optimal CS is selected for the EV,
as it is presented in Section 3.3.3. Then, the EMMS communi-
cates the information of the selected CS (see Table 3) to the
EV. See 2 in Fig. 3.

• EV Arrival: Message sent by the EV at its arrival at the selected
CS. At this time, the CT EV is updated according to the current
EV SoC . See 3 in Fig. 3.

5. Communication schemes and routing protocols

In vehicular networks, the network topology is inherently dy-
namic due to the potentially high mobility of nodes (i.e., vehi-
cles). Geographic-based routing protocols, which are based on the
knowledge of the instantaneous locations of nodes, have shown a
better performance in VANETs compared to topology-based routing
protocols commonly used in less dynamic networks such as mobile
ad hoc networks (MANETs) [30] [31]. A similar framework to ours
is proposed in [32]. In that work, energy-requesting EVs choose
and reserve a charging slot in an CS, autonomously and based on
the periodical dissemination of CS information. EVs communicate
with CSs based on opportunistic encounters with RSUs (i.e., EVs
establish 1-hop communications when they reach an RSU).

Alternatively, in this work we propose an optimal centralized
CS-selection scheme using two types of geographic-routing pro-
tocols for VANETs to forward service messages that are exchanged
between EVs and RSUs (to communicate with the EMMS of the SG)
in a multihop manner. This way, using a multihop routing scheme
we attain a more efficient EV charging management system since
messages are delivered faster compared to the case of only us-
ing 1-hop communications. Under this scheme, the EV’s service
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Fig. 4. Basic communication scheme for VANETs, based on message dissemination
with selective forwarding.

response time SRT EV , expressed in (1), is minimized leading to
an earlier charging slot reservation.

In the following we describe the three routing protocol schemes
analyzed in this work and used to forward service messages from
EVs to EMMS, as well as in the reverse direction from the EMMS
to the energy-requesting EVs. The three routing schemes are: (a) a
simple opportunistic routing scheme with which EVs deliver mes-
sages directly to the RSUs; (b) a basic routing scheme to efficiently
forward messages using a selective algorithm; and (c) an advanced
routing scheme based on our previous multimetric routing propos-
als (MMMR) [33] and (3MRP) [34].

5.1. Opportunistic routing scheme

In the opportunistic routing scheme, we consider a typical
store-carry-forward algorithm in which the packet travels within
the vehicle instead of through the VANET. This could occasionally
be done in those sparse occasions in which the current holding
vehicle does not find a proper next forwarding node and during a
maximum accumulated delay per packet. In this present work, we
have implemented a simple opportunistic scheme as a reference
to compare our two proposals explained below. In this opportunis-
tic scheme, EVs just establish a 1-hop communication when they
reach any RSU.

5.2. Basic routing scheme

First, we propose to use a selective forwarding mechanism for
the service messages exchange in section 4. The Basic scheme is il-
lustrated in Fig. 4. The proposed selective forwarding mechanism
reduces network overhead compared to simple flooding, seeking
to avoid network congestion. It works as follows: a forwarding
node broadcasts the packet if it is closer to destination than the
previous forwarding node; otherwise that node refrains in the for-
warding. This is repeated till the packet reaches destination. This
way, the service request message sent from an energy-requesting
EV the reaches the EMMS of the SG (through the nearest RSU). In
this case, we assume RSUs locations are known in advance by all
vehicles.

In Fig. 4, the RSU S sends a response service message to the
destination node EVD (i.e., the energy-requesting EV). Recipient
nodes are those within the RSU’s transmission range (nodes R1 ,
R2 , R3 , and R4 in the example of Fig. 4). If the current receiver
node (R1) is closer to destination (EV D ) compared to the previous
sender position (S), that receiver (R1) decides to re-broadcast the
message. The rest of intermediate receivers (R2 , R3 , R4), decide
not to re-broadcast the message as they are farther to destination
(EV D ) than the previous sender node (S).

The selective forwarding logic is described in Algorithm 4.
Herein, the message includes the destination nodes’ identification
(ID). Once a message is received, in case the current receiver node
is the destination node it processes the message (see lines 1-2);
otherwise, the node computes its distance (curr_dsttoDst) with
respect to the destination node (RSU or EV), see line 5 in Algo-
rithm 4. The curr_dsttoDst is compared with the last receiver dis-
tance to destination (last_dsttoDst) included in the message (see
line 6). If curr_dsttoDst is lower than last_dsttoDst then, the cur-
rent node decides to re-broadcast the message since it is closer to
destination (see line 8 in Algorithm 4). Before forwarding the mes-
sage, the current node updates the last_dsttoDst in the message
with its current closer distance to destination curr_dsttoDst (see
line 7).

Notice that for the response message sent from the RSU to-
wards the energy-requesting EV (EVD in Fig. 4), the current posi-
tion of the EVD (i.e., the destination node of the response mes-
sage) may have changed since the moment in which the energy-
requesting message was sent from that EVD to the RSU. We esti-
mate the EVD position in the reception moment using the former
position of that EV (when it sent the query) and the trajectory of
that EV (estimated from several consecutive positions gathered in
the query message). Thanks to that estimation, the response mes-
sage will reach the energy-requesting EV in its current position.

Algorithm 4 Selective forwarding.
last_dsttoDst = distance from last sender to destination
curr_dsttoDst = distance from current receiver to destination

1: if (DstAddr = curr_nodeAddr) then

2: process_msg();
3: else

4: last_dsttoDst = get_msg_last_dsttoDst();
5: curr_dsttoDst = get_curr_dsttoDst();
6: if (curr_dsttoDst textless last_dsttoDst) then

7: last_dsttoDst = curr_dsttoDst;
8: fwd_msg();
9: end if

10: end if

5.3. Advanced routing scheme

In the previous section, we have presented the basic scheme,
which disseminates service messages based on a selective forward-
ing scheme that tries to avoid network congestion. Nonetheless,
that scheme could cause significant overhead in dense scenar-
ios due to its flooding-like operation. To cope with that, we fur-
ther propose an advanced routing scheme based on our proposals
named multi-metric map-aware routing protocol (MMMR) [33] and
multimedia multi-metric map-aware routing protocol (3MRP) [34]
for VANETs. MMMR and 3MRP are position based, traffic-aware
and delay tolerant geographical routing protocols for VANETs. Both
use several metrics to take hop-by-hop forwarding decisions. In
[33], the authors compared MMMR against well known protocols
such as greedy perimeter stateless routing (GPSR) [35] and I-GPSR
(Improvement GPSR) [36]. 3MRP [34] was specially designed to
transmit video warning messages over VANETs by taking the video
frame types into account. Results in [33] and [34], show that
MMMR and 3MRP outperform existing solutions in terms of per-
centage of packet losses and average packet delay.

Since in our EV charging service, EVs and EMMS interchange
text messages (see Section 4), we will use the MMMR routing pro-
tocol to transmit those messages between EVs and EMMS through
the VANET. Under the Advanced scheme, illustrated in Fig. 5, each
node efficiently forwards packets hop-by-hop to/from the near-
est RSU through the VANET. MMMR routing protocol improves
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Fig. 5. Advanced communication scheme based on the MMMR [33] routing protocol
for VANETs.

the next forwarding node selection based on five metrics: distance
to destination, vehicles’ density, vehicles’ trayectory, MAC losses and
available bandwidth. The MMMR multi-metric forwarding scheme
minimizes the percentage of packet losses and the average packet
delay. MMMR makes use of periodic beacon messages to update
the neighbors nodes’ information. It uses a local buffer that tem-
porally stores a node neighbors table (NNT). The NNT is updated
when a new beacon is received. If the beacon corresponds to a
new neighbor, a new entry is added into the NNT. Otherwise, if
the received beacon corresponds to a node that is already in the
NNT, the neighbor node’s parameters are updated. Each entry in
the NNT becomes a candidate node to forward the packet. A multi-
metric value is computed for every neighbor node in the NNT
that is in LoS with the current node holding the packet. MMMR
forwarding decisions are performed hop-by-hop based on a multi-
metric score computed for each node’s neighbors. This way, the
multimetric calculation is able to adapt to the changing environ-
ment conditions in real time.

6. Performance evaluation

6.1. Scenario configurations

We have implemented our EVs charging management system
in the open source framework VEINS [38], developed for vehicular
network simulations, and OMNeT++ [39] as the network simula-
tion platform. The electro-mobility environment (formed by EVs
and CSs) is implemented using the widely-known vehicular traf-
fic simulator SUMO [40] including buildings that may interfere the
signal between sender and receiver.

Two different scenarios are considered to evaluate our proposal.
On the one hand, Fig. 6a shows a medium-size dense urban sce-
nario, with an area of 1800 m × 1800 m, from Barcelona city,
Spain. On the other hand, Fig. 6b depicts a large-size sparse urban
scenario, with an area of 3200 m × 3600 m, from Berlin city, Ger-
many. Road maps for each scenario include: intersections, speed
limit of streets, traffic lights and buildings information imported
from OpenStreetMaps (OSM) [37]. To estimate the EVs’ trip dura-
tion for each simulation scenario, the αi coefficients used in (4)
and described in Section 3.3.2, are shown in Table 4.

Two types of connected vehicles are included: fossil-fuel vehi-
cles (FFVs) and electric vehicles (EVs) with [28−50] km/h variable
speed. The destination of each vehicle trip is randomly selected in

the road map. EVs discharge their batteries according to the model
detailed in [42]. Also, SUMO was configured with the car-following
Krauss model [41], which defines a realistic car behavior with re-
spect to vehicles on the same line of traffic flow. We consider an
EVs’ penetration of 10%, 50% and 80% with a total number of vehi-
cles T F F V s+EV s = 300.

To set the number of charging stations (CSs), we consider EU
directives described in [45], that recommended at least one public
charging slot for every ten EVs on the road. Thus, for the max-
imum EVs’ penetration percentage considered (80%, which repre-
sents 240 EVs) in the network, four charging stations (CSs) are
distributed within the service area with a maximum of six charg-
ing slots, see Fig. 6. We assume all CSs are fast charging points
with CSpower = 60 kW. We also assume that the set of CSs are pro-
vided with enough energy to be able to charge the total amount of
EVs present in the network.

In our simulations, EVs are moving within the service area until
their batteries fall below a threshold. We set the state of charge
threshold for the EV (SoCThreshold = 45% · EVmax_cap) to start the
service request. The EV’s battery size is set to EVmax_cap = 5 kWh.
Notice this low configuration value (much lower than the current
market EV’s battery size) is just to speed up the battery reduction
and need to charge, so that we speed up the simulation process.
Actually, current EVs have EVbatt_size ≈ of 20, 40, 80, or even 100
kWh [46] [47].

All the vehicles in the network are nodes of the VANET and
can communicate with each other and with the city infrastruc-
ture. RSUs are located at CSs and strategically deployed in the
service area, see Fig. 6. Simulations were carried out using the IEEE
802.11p standard on MAC and physical layers. The dedicated ser-
vice channel SCH3 (174) is used for the energy-charging service,
which is the SCH designated for road traffic efficiency in intelligent
transport systems ITS [44]. We set an average transmission range
of 250 m, which is a typical value in vehicular environments. Sim-
ulation settings are summarized in Table 5.

In Table 6 we point out the different schemes evaluated for
comparison regarding the CS-selection strategy and the routing
scheme used for service messages exchange between EVs and
RSUs. Simulation results are presented with 95% of confidence
interval (CI) obtained from five simulations per point, each run
generated with an independent seed. The following schemes are
evaluated for comparison:

1. Basic traffic-aware reservation (B-TAR): The proposed CS-selection
scheme with our Basic routing scheme (see Section 5.2). Here,
a charging slot is reserved for the EV in the most suitable CS
(where the EV arrives earlier to its destination, considering an
intermediate parking duration for charging at selected CS) fol-
lowing a flooding-based selective forwarding mechanism for
the exchange of service messages.

2. Advanced traffic-aware reservation (A-TAR): The proposed CS-
selection scheme with our advanced multi-metric routing
scheme (see Section 5.3). Here, a charging slot is reserved for
the EV in the most suitable CS considering an efficient service
messages exchange by the means of multi-metric hop-by-hop
forwarding decisions.

3. Opportunistic traffic-aware reservation (O-TAR): The proposed CS-
selection scheme with the opportunistic routing scheme (see
Section 5.1). Unlike the previous schemes (B-TAR and A-TAR),
here service packets are transmitted only when an opportunist
encounter with an RSU happen. Thus, this scheme is based on
1-hop communications. That is, the packet is delivered when
the EV finds an RSU. In the meantime, the EV carries the
packet itself. An example that follows this scheme is [32].

4. Advanced distance-based reservation (A-DBR): This scheme looks
for the closest CS (distance-based strategy), without consid-
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Fig. 6. Simulation scenarios considered: (a) A medium-size dense district in Barcelona, Spain; (b) A large-size sparse district in Berlin, Germany. Maps include locations of
road side units (RSUs) and charging stations (CSs). Traffic lights are imported from OSM [37].

Table 4

Simulation scenario characteristics. Coefficients αi used in (4).

Intersections/km2 Roads/km2 Traffic Lights/km2 α1 α2 α3 α4

Berlin 340 640 18 315.8858 5.2640 −18.9128 0.0785
Barcelona 645 1325 24 83.3345 15.4070 −5.8474 0.0910

ering the traffic in the scenario. Under this scheme, the is
selected based on the distance on the map (shortest path) to-
wards each candidate CSn . Our Advanced routing scheme is
configured for an efficient exchange of service messages.

5. Non-coordinated distance-based (NC-DB): This scheme repre-
sents the current situation in most cities, e.g., Barcelona. Each
EV driver selects the closest CS autonomously. Thus, this is
a distance-based selection scheme without reservation. If the
CS selected is full at the EV’s arrival, the EV goes to the next
closest charging station. This scheme reflects the typical user’s
behavior that we can found nowadays.

6.2. Performance evaluation metrics

We are mainly concerned on how the system performance is
affected by the increasing of EV penetration that we are lately wit-
nessing in our cities. Accordingly, we evaluate the performance of
our proposal as we increase the number of EVs in the scenario.
Also, we are interested in evaluating the influence of the routing
scheme used to exchange the service messages. The following per-
formance metrics are evaluated:

• Percentage of charged EVs: The ratio between successfully
charged EVs and the total number of EVs that needs to charge
during the simulation time. From the city’s point of view, a
high percentage of charged EVs means that the charging in-
frastructure is better utilized.

• Average total trip time: This is the average time elapsed from
the moment the EV’s battery level is lower than a given
threshold (EV SoC < SoCThreshold) till the moment the EV ar-
rives to its destination, including a potential intermediate stop
to charge its battery at the selected CS. From the EV drivers’
point of view, a shorter trip duration improves their QoE.

• Average electricity consumption: This is the average electricity
that EVs consume given the traveled distance towards their
respective destinations, considering a possible intermediate

Table 5

Simulation settings.

Parameter Value

Map Zone Les Corts (Barcelona)
Simulation area size 1800 m × 1800 m
Number of RSUs 7

Map Zone Spandau (Berlin)
Simulation area size 3200 m × 3600 m
Number of RSUs 10

Vehicles’ density 60-180 veh/km2

EVs’ penetration index 30%, 50%, 80%
Mobility model Krauss model [41]
EV energy model Energy model [42]
EVs’ battery size 5 kWh
Number of CS 4
Number of charging slots 24
Fast CS power 60 kW
Path loss model Empirical IEEE 802.11p [43]
Transmission range 250 m
Sensing range ∼ 300 m in LoS
Communication schemes Opportunistic, Basic, and Advanced
PHY and MAC IEEE 802.11p
Nominal bandwidth 6 Mbps
Service channel SCH3 (174) for road traffic

efficiency ITS [44]
Simulation time 5000 s
Beacon interval 1 s

Table 6

Operating modes to be evaluated. Our proposals are highlighted.

Mode Routing scheme CS-selection

B-TAR Basic scheme Traffic-aware

A-TAR Advanced scheme Traffic-aware

O-TAR Opportunistic scheme Traffic-aware
A-DBR Advanced scheme Distance-based
NC-DB - Distance-based
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Fig. 7. Analysis of operating modes (see Table 6). Simulation scenario of a large-size sparse area in Spandau district, Berlin. Six charging slots per CS. (a) % of charged EVs.
(b) Average total trip time till destination. Vehicles’ density δF F V+EV = 60 veh/km2 .

charging stop at a selected CS during the trip. It is calculated
based on the average EVs’ energy consumption in [48].

• Average service response time: It counts the time interval
elapsed from the moment when the EV’s battery is below a
given threshold, until the moment when the EV receives the
information with the selected CS for the EV.

• Communication cost: It evaluates the traffic sent by EVs to the
EMMS in terms of service packets per second (pps).

6.3. Influence of EV penetration

Fig. 7 shows the percentage of EVs successfully charged among
those EVs that required to charge their batteries, i.e. their SoC
was not enough to reach destination and was below a threshold
SoCThreshold . Thus, the complementary graph depicts the amount
of vehicles which required to be charged but did not succeed (i.e.,
all the CSs where congested). Those vehicles keep looking for an
available CS till their batteries get empty, so they never reach their
destination. Therefore, their trip times are not included in Figs. 7b
and 8b, where we represent the average total trip time to destina-
tion.

From Figs. 7 and 8 we can see that the different EVs charg-
ing schemes perform equivalently in both scenarios, Berlin and
Barcelona. Notice that the average total trip time to destination
(see Figs. 7b and 8b) is higher in the Berlin scenario, since the map
area is higher and vehicles make longer trips to their destinations.

In Figs. 7a and 8a, we observe that increasing the EV penetra-
tion index, the percentage of charged EVs is reduced, whereas the
total trip time increases, according to Figs. 7b and 8b. This is be-
cause there are more EVs in the scenario and they could need a
charging slot sometime during simulation. This fact will increase
the chance of having congested CSs.

Our proposal A-TAR achieves the highest percentage of charged
EVs, even under a high EVs’ penetration percentage (see Figs. 7a
and 8a). With a 10% of EVs penetration, A-DBR scheme (which
is distance-based) achieves a performance almost same as that
obtained by A-TAR or B-TAR. Nonetheless, under higher penetra-
tion indexes A-TAR (or B-TAR) scheme clearly outperforms A-DBR
scheme. This is because in A-DBR, only distance towards each CS
is considered to select the nearest CS. Traffic conditions along the
route are not taken into account in A-DBR for the trip time estima-
tion, as it is done in A-TAR and B-TAR. Thus, using A-DBR EVs may
not reach the selected CSs at the time they previously reserved.
Due to the same reason, the average trip time to destination in-
creases, see Figs. 7b and 8b. This implies that only considering
the distance towards each candidate CS in A-DBR, is not a rec-
ommended strategy to attain an optimal performance, especially

when the EVs’ penetration percentage is high. Results for A-DBR
show not only a lower number of EVs successfully charged, but
also a higher trip time for both simulation scenarios, see (Figs. 7
and 8). Notice that for a fair comparison, both schemes A-TAR and
A-DBR implement the same advance communication scheme (see
Section 5.3) to manage the charging slot reservations.

With NC-DB, the percentage of successfully charged EVs (out of
those EVS which needed to charge their batteries) is dramatically
reduced as the EV penetration increases. This is because the sim-
ple NC-DB scheme selects a CS, without any reservation, ignoring
the status of the other CSs. Hence, it is more probable that an EV
selects a CS without any available charging slot (i.e., a congested
CS). In spite of that, note that for a penetration index of 80%, NC-
DB achieves the lowest total trip time (see last column in Figs. 7b
and 8b). However, since there is no reservation mechanism, the
percentage of charged EVs is very low (see last column in Figs. 7a
and 8a). The reason is that in those figures we only consider the
trip time of vehicles that reached destination, and vehicles that
wander looking for an available CS till their batteries get empty
are not included.

It is important to highlight the fact that under all the evaluated
EVs charging schemes there might happen that: (a) there might be
vehicles whose SoC was not enough to reach destination and was
below the threshold SoCThreshold to require a CS in order to charge
their batteries; (b) unfortunately, they did not find any free CS in
the whole area. In such a case, those vehicles keep trying to find
a free CS till their batteries get empty. We have not included their
trip times in Figs. 7b and 8b), since those figures represent the
trip time to destination, and they never reached destination. The
chance to happen this situation is considerable higher with NC-DB,
since this scheme does not implement any CS reservation.

In Figs. 7 and 8, we observe that O-TAR shows a lower per-
formance than our proposals A-TAR and B-TAR, for low, medium
and high EVs’ penetration percentages. Particularly, with A-TAR the
amount of EVs charged is in average 7% higher compared to O-
TAR. The reason is that O-TAR implements an opportunistic routing
scheme, where service packets are carried by the EVs instead of
being transmitted through the VANET. In case the reservation is
not successfully completed (see service messages flow Section 4)
at 1-hop, the EV has to wait until another opportunistic encounter
with an RSU (i.e., be within an RSU transmission range) takes
place. This behavior affects the charging service response time,
see Fig. 9a, that increases notably compared to A-TAR and B-TAR.
Furthermore, under O-TAR the amount of electricity consumption
also increases markedly, see Fig. 9b. This implies that although de-
lay requirements of an EVs charging service may not be stringent
(compared to safety applications), if EVs are informed in advance
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Fig. 8. Analysis of operating modes (see Table 6). Simulation scenario of a medium-size dense are in Les Corts district, Barcelona. Six charging slots per CS. (a) % of charged
EVs. (b) Average total trip time till destination. Vehicles’ density δF F V+EV = 120 veh/km2 .

about their new destination (i.e., the location of the most suitable
CS suggested for battery charging) they will spend less time driv-
ing, will use less energy during their driving phase and thus will
require less energy during their charging phase.

Concluding, our proposals A-TAR and B-TAR achieve the low-
est total trip times to destination among all the reservation-based
schemes (A-TAR, B-TAR, O-TAR and A-DBR, see Fig. 8b and Fig. 9b),
decrease the amount of energy required by the EV from the CS
during the charging phase, and consequently EVs consume a lower
amount of energy, see Fig. 9b.

6.4. Scalability of the routing schemes

We are interested in evaluating the system scalability in terms
of the service communication cost, measuring the traffic generated
to provide the proposed charging service. For this, we evaluate
our two proposed routing schemes (i.e., Advanced and Basic, see
Section 5) under low (60 veh/km2), medium (90 veh/km2), and
high (180 veh/km2) vehicles’ densities in the simulation scenario
of Barcelona city (see Fig. 6a). We compare both proposed routing
schemes against the well known GPSR [35] routing protocol as a
reference.

In Fig. 10, we observe that the higher the vehicles’ density,
the better the routing protocols performance. Thus, the perfor-
mance for δEV+F F V = 90 veh/km2 is better than for δEV+F F V =

60 veh/km2 next forwarding node selection. This is true up to
a maximum vehicle density above which the collision percent-
age will be too high. Certainly, we observe that for a δEV+F F V =

180 veh/km2 the average service packet rate (packets/s) for all the
EVs increases again. This is due to higher packet collisions pro-
duce more packet re-transmissions. Besides, the Advanced routing
scheme shows the highest performance compared with the Basic
and GPSR routing protocols, in Fig. 10. The reason is its effective-
ness in selecting the next hop to forward packets, since it is based
on the efficient multimetric geographic MMMR [33] routing proto-
col. Here, the GPSR routing protocol generates a higher amount of
traffic because of it is not so efficient in the next hop selection to
forward service packets and therefore more re-transmissions are
required to fulfill the reservation of a charging slot successfully.
The Basic routing scheme shows the highest amount of traffic gen-
erated (packets/s) mainly due to its flooding-like operation.

6.5. Discussion on routing schemes

In Fig. 11 we consider the Barcelona-Les Corts simulation sce-
nario depicted in Fig. 6a, with 80% EV penetration and a medium

Fig. 9. (a) Average charging service response time for the three time-based schemes,
SRT EV in (1). (b) Average electricity consumption per EV.

vehicles’ density (δF F V+EV = 90 veh/km2). In that figure we com-
pare the opportunistic, basic and advance routing schemes in
terms of % of packet losses, average round-trip-time (RTT), and
average service response time SRT EV expressed in (1). Default
configurations are detailed in Table 5.

In Fig. 11a, we observe that the Opportunistic scheme achieves
the lower percentage of packet losses compared with the Basic
and Advanced schemes. The reason is that in the Opportunistic
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Fig. 10. Average packet rate of the charging service as a function of the total vehi-
cles’ density, δF F V+EV . Simulation scenario of Barcelona city. There are 100 EVs.

case, the service message is saved in a local buffer of the energy-
required EV until an encounter with an RSU happens, i.e. the mes-
sage is stored and carried by the EV till finding an RSU to deliver it.
Conversely, the Advanced scheme selects the best next forwarding
node according to a multi-metric score, and stores the service mes-
sage only in case there is no neighbor to forward the message to.
The Basic scheme presents the highest percentage of packet losses
because of the flooding-like scheme to forward the EV’s service re-
quest messages sent at the moment the EV detects a low battery.
As we consider a realistic scenario, the energy-requiring EV may
remain stopped during a while (e.g., in a red traffic light) with-
out any neighbor around to forward the message. In such a low
connectivity case, packet losses will increase.

Fig. 11b shows the average round trip time (RTT) calculated
based on those packets that successfully arrived at destination.
The RTT counts the time interval elapsed from the moment an
EV sends a charging request message to the EMMS, till the recep-
tion moment of the correspondent EMMS service response, see RTT
Fig. 3. We observe a slightly higher RTT in both proposed schemes
(Basic and Advanced) compared with the Opportunistic scheme.
The reason is that service messages are forwarded through sev-
eral hops before reaching their destination (RSU or EV), whereas
in Opportunistic the delivery is 1-hop.

Fig. 11c shows the EVs’ average service response time SRT EV ,
i.e. the interval of time elapsed from the moment when the EV
shows a low battery till the moment when the vehicle receives
the answer from the charging service. Despite the good results for
the Opportunistic scheme shown in Fig. 11a, and Fig. 11b, Fig. 11c
shows that with our two proposed communication schemes (Ba-
sic and Advanced) the energy-requesting EV is answered much
sooner compared to the Opportunistic case. In Fig. 11c, we observe
that the Opportunistic scheme shows the highest delay due to the
high amount of time that packets spend in the local buffer of the
energy-requesting EV. The average SRT EV in the Basic scheme is
higher than with the Advanced scheme because with the Basic
scheme more retransmissions are required to complete the charg-
ing slot reservation.

Under an ideal channel without errors, the minimum delay
(MD) to deliver the packet (VANET transmission over the air in
just 1 hop) is given by MD =

8·LData(bits)
Throughput(bits/s)

. For a nominal data
rate of 6Mbps and a packet length of 200 bytes, the achievable
maximum throughput of 802.11p is around 2Mbps [49]. The cal-
culated minimum delay, in this case, would be MD = 0.8ms. In
the Opportunistic equivalent case, considering the target urban
scenario where vehicles’ speed is S ≈ 60 km/h = 16.67 m/s and

the RSU transmission range RSUx = 250 m, a packet would take
OpporDelay =

RSUx(m)
S(m/s)

= 16s to get the RSU in 1 hop. These sim-
ple numbers help us to realize that forwarding packets through
the VANET is always better than store and carry them in the ve-
hicle, since the delay is much lower. This conclusion can also be
seen in Fig. 11c, where the average SRT for the Opportunistic case
is around 16s, whereas for the Basic scheme is around 6s and for
the Advanced scheme is about 3s.

6.6. Discussion on operating modes

Given the results obtained for the two different simulation sce-
narios and considering the EVs’ penetration percentage as a major
factor to evaluate the usefulness of the operation modes, we can
settle that:

1. Low EVs’ penetration scenario: Under this configuration, reserv-
ation-based schemes (A-TAR, B-TAR, O-TAR and A-DBR) show
a similar behavior, see Figs. 7 and 8. Here, NR-DB (without
reservation) can work relatively well in terms of percentage of
successfully charged EVs. However, it achieves the highest to-
tal trip time, which reduces the EV users’ QoE. Besides, the
total trip time is remarkable reduced by A-TAR and B-TAR.

2. High EVs’ penetration scenario: Under this configuration A-TAR
and B-TAR show the best performance even under a high EV
penetration (80%), see Figs. 7 and 8. Even though in these
figures we observe just a subtle improvement of the B-TAR
scheme compared to O-TAR, the latter shows a higher aver-
age electricity consumption, see Fig. 8a. Here, with NC-DB and
A-DBR, the percentage of charged EVs is dramatically reduced
and therefore they do not scale well when the number of EV
increases.

According to recent studies [2] the EV ratio is foreseen to be
35% around the year 2022. Rapid battery cost reduction, strong
policy support from governments, rising commitment from prime
automakers, have put EVs on track to reflect higher sales than fuel-
powered vehicles. Indeed, according to [50] EV sales during 2018
have grown around 78% in China, 34% in Europe and 79% in the
USA, compared to 2017; and the forecast is that this trend will
increase in the coming years. Thus, with the increasing number
of EVs in our cities, it will pay-off to arrange a reservation-based
energy-charging framework. Results show that our proposals A-TAR
and B-TAR provide the best performance even under a high EVs’
penetration percentage, in terms of percentage of EVs successfully
charged, total trip time to destination, and amount of electricity
consumption.

7. Conclusions and future work

In this paper, we have proposed an efficient charging man-
agement system for on-the-move EVs’ charging planning. Our ap-
proach includes an advance communication framework based on
VANETs with geographical-routing protocols for centralized antic-
ipated charging slot reservations. In specific, we have first intro-
duced a scheme to select the optimal looking to minimize the total
charging service time of the energy-requiring EV. The EV’s trip
time is estimated considering current traffic conditions towards
its destination, considering an intermediate charging stop during
the trip at the selected CS, leading to a traffic-aware CS selection
scheme. Then, we have evaluated the influence of the transmis-
sion delay incorporated by opportunistic communication and we
demonstrate that our proposed multi-hop multimetric communica-
tion scheme can achieve better performance. Evaluation results in
the district of Les Corts-Barcelona and Spandau-Berlin have shown
the benefits of our proposal, achieving higher percentage of EVs
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Fig. 11. Comparison of Opportunistic, Basic and Advanced routing schemes in terms of (a) percentage of packet losses, (b) average round trip time (see RTT in Fig. 3), and (c)
average service response time. Simulation scenario of Barcelona city. 80% EVs’ penetration. Vehicles’ density δEV+F F V = 90 veh/km2 . CI 95%.

successfully charged, shorter total trip time to destination, as well
as less EVs’ energy consumption.

As future work, we plan to analyze the effect of some additional
waiting slots arranged in the CSs for those vehicles that arrive at
the CS when it is full. Under this scheme, EVs queuing time at CSs
should be included in the optimal decision scheme. Also, we plan
to include in our proposal a grid-to-vehicle (G2V) communication
scheme used to limit the amount of energy to charge each EV
as a dynamic percentage of the maximum capacity of its battery,
EVmax_cap . That maximum allowed percentage will be computed
depending on the SG state. This way, during peak-hours of energy
demand in the city, the SG will regulate the amount of energy
devoted to the EVs’ fleet. Such scheme will need a G2V communi-
cation framework to perform efficiently.

We plan to design a machine-learning algorithm o dynami-
cally adjust the coefficients of the model. Finally, in a future work
we plan to tackle privacy issues in our proposal of a centralized
management system for the EVs charging service. As EVs share in-
formation with the EMMS, a secure communication is required to
ensure security services (i.e., confidentiality, integrity, and privacy)
to protect any personal sensitive information.

Acronyms

ARS Average road speed
CI Confidence Interval
C-V2X Cellular vehicle to everything
CS Charging station
CT Charging time
DSRC Dedicated short range communication
DBR Distance-based reservation
DD Driving distance
EMMS Electro-mobility management server
EV Electric vehicle
FFV Fossil-fuel vehicle
G2V Grid to vehicle
GPSR Greedy perimeter stateless routing
ITS Intelligent transport systems
IVC Inter-vehicle communications
LoS Line of sight
MD Minimum delay
MMMR Multimetric map-aware routing protocol
NC Non-coordinated
NNT Node neighbors table
OBU On-board units
OSM OpenStreetMaps
QoE Quality of experience

RSU Road side unit
RTT Round trip time
SG Smart grid
SoC State of charge
SRT Service response time
ST Service time
TAR Traffic-aware reservation
TL Traffic light
TT Trip time
V2I Vehicle to infrastructure
V2G Vehicle-to-grid
V2V Vehicle-to-vehicle
V2X Vehicle-to-everything
VANET Vehicular ad hoc network
VDTN Vehicular delay tolerant network
WAVE Wireless access in vehicular environments
WSA WAVE service advertisement
WSM WAVE short message
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